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Adiabatic cycle in unique gapped ground states
I Consider a cycle of Hamiltonians with a unique gapped ground state in a many-body

system.

H(t), t ∈ [0, T ], H(T ) = H(0).

I We want to study the “homotopy class” of the cycle |Ψ(t)〉 of the instantaneous ground
state of the Hamiltonian defined by H(t) |Ψ(t)〉 = EGS |Ψ(t)〉.

I We are interested in the “topology” of the space of unique gapped ground states that is
not rigorously defined yet.

I In the rest of this talk, I simply refer to an adiabatic cycle of unique gapped ground state
as an adiabatic cycle.

*鱲が
"

暑
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Thouless pump PRB 27, 6083 (1983)

I An adiabatic cycle in 1D systems with U(1) symmetry.

[N,H] = 0, N =
∑
j

nj .

I In this cases, adiabatic cycles are known to be classified by Z.
I If an adiabatic cycle is “topologically non-trivial”, a U(1) charge is pumped by an integer

from left to right when the system is on a finite chain (open boundary condition).
I The number of the pumped U(1) charge is given by an integer-valued topological invariant

ν :=
1

2πi

∮ T

0

dt
d

dt
argZ(t) ∈ Z,

where Z(t) := 〈Ψ(t)|e
∑L
j=1

2πinj
L |Ψ(t)〉 ∈ C is the electric polarization of the ground state

|Ψ(t)〉 of the Hamiltonian H(t).
I For a closed chain this is the same as the many-body Chern number

ν =
1

2πi

∮ T

0

dt

∮ 2π

0

dΦFtΦ(t,Φ), F = 〈dΨ(t,Φ)|dΨ(t,Φ)〉 ,

where Φ is the twisted boundary condition.
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The Rice-Mele model PRL 49, 1455 (1982).

I The Thouless pump may be well illustrated by the Rice-Mele model.
I A free fermion model with the nearest neighbor hopping with the staggered amplitude
t+ δ, t− δ and the staggered potential ∆.

H =
∑
j

(
t

2
+ (−1)j

δ

2

)
(a†jaj + h.c.) + ∆(−1)ja†jaj .
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Adiabatic cycle in generic 1D systems

I In general, one can think of an adiabatic cycle in gapped 1D systems in arbitrary setting:
I fermion or boson (spin systems)
I with onsite symmetry (time-reversal, Z2 Ising, U(1), etc.)

I We want to address the following questions:
I Do non-trivial adiabatic cycles exist?
I If there is, how are they classified?
I Can a topological invariant be constructed from a given cycle of Hamiltonian H(t) or a

given cycle of pure state |Ψ(t)〉?

I For free fermions, the answer is known.[Teo-Kane 10]

Theorem
For free fermionic systems, the classification of adiabatic cycles in 1D is the same as the
classification of gapped unique ground states in 0D.
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Kitaev’s proposal

I On the basis of the results of free fermions, Kitaev proposed a generic topological
structure behind the unique gapped ground states.

Proposition (Kitaev, 11,13,15)
The spaces {Fd}d∈Z≥0

of unique gapped ground states in d space dimensions form an
Ω-spectrum of a generalized cohomology theory.

I I will not go into detail today. See also Gaiotto and Johnson-Freyd, JHEP (2109)

I This proposal implies the generalization about the classification of adiabatic cycles in 1D
many-body systems.

Proposition
For generic many-body systems, the classification of adiabatic cycles in 1D is the same as the
classification of gapped unique ground states in 0D.
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Canonical adiabatic cycle
I Kitaev provided a sort of canonical adiabatic cycle to support his proposal:
I A characteristic of a unique gapped ground state is the existence of an inverse of it up to

homotopy equivalence |χ〉 ⊗ |χ̄〉 ∼ |1〉 ⊗ |1〉. Here, |χ〉 is a unique gapped ground state in
dD, and |1〉 is, for example, the tensor product state.

I Applying this homotopy to the tensor product state · · · ⊗ |χ〉 ⊗ |χ̄〉 ⊗ · · · in (d+ 1)D, we
have an adiabatic cycle with the pumped state |χ〉 / |χ̄〉 at the left/right edge.

I I’m not sure this picture correctly describes the Ω-spectrum structure of unique gapped
ground states... Continuity of adiabatic Hamiltonian?? No entanglement??
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Adiabatic cycles in spin chains with Z2 symmetry

I For the simplest setting of the many-body problem, consider the following case.

I What is the classification of adiabatic cycles of spin chains with Z2 symmetry?

H =
∑
j

aSzj + b(Szj )2 + cSzj S
z
j+1 + dSj · Sj+1 + e(Sj · Sj+1)2 + · · · ,

Z = eiπ
∑
j S

z
j , [Z,H] = 0.

I If the Kitaev’s proposal is correct, adiabatic cycles are classified by Z2, the classification of
Z2 charge.
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Matrix product state

I The Matrix Product State (MPS) is quite useful tool to describe unique gapped ground
states in spin chains.

I For simplicity, we assume translational symmetry.

I A matrix product state defined by a collection of matrices {Am} is written as

|ψ({Am})〉 =
∑
{mj}

Tr[· · ·AmjAmj+1
· · · ] |· · ·mjmj+1 · · ·〉 .

Here, Am = [Am]αβ are D ×D matrices with m = 1, . . . ,dimHj the indices of the local
Hilbert space Hj , and αβ stands for the bond Hilbert space. D measures the
entanglement between two sites.

10 / 21



Injective MPS and uniqueness

I Unique gapped ground states are described by injective MPSs. (Short-range correlation,
and no cat states.)

I The only property of injective MPS we use is the following.

Lemma
Two injective MPSs |Ψ({Am})〉 and |Ψ({Ãm})〉 represent the same state iff there exists
eiχ ∈ U(1) and W ∈ U(D) such that

Ãm = eiχW †AmW.

Here, eiχ is unique and W is unique up to a U(1) phase.

I This is a kind of gauge choice of an MPS. Physical consequences should be independent
of this gauge choice.
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MPS with Z2 symmetry
I Write the Z2-symmetry operator as Z =

⊗
j U

(j), where U (j) is a local Z2 transformation

at site j, namely, U (j) |nj〉 =
∑
mj
|mj〉Umjnj with Umn a D ×D unitary matrix.

I The Z2-symmetry action on the injective MPS |Ψ({Am})〉 is given by

Z |Ψ({Am})〉 =
∑
{mj}

tr [· · ·Amj · · · ] |· · ·nj · · ·〉 [· · ·Unjmj · · · ].

I Therefore, from the lemma above, the Z2 symmetry Z |Ψ({Am})〉 ∼ |Ψ({Am})〉 implies
that there exists a unitary matrix V ∈ U(D) and phase eiθ such that∑

n

UmnAn = eiθV †AmV.

Here, eiθ is unique and V ∈ U(D) is unique up to a U(1) phase, again.

I Because the Z2 transformations twice is the same as the identity, we have eiθ ∈ ±1 and
the V square is the identity matrix 1D up to a U(1) phase.

I The matrix V is regarded as an element of the projective unitary group
[V ] ∈ PU(D) := U(D)/{z1D|z ∈ U(1)}.
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Where is the topology?

I Which is the desired topological space of which the fundamental group π1 is non-trivial?

{Am} eiθ V /gauge

I The space of U(1) phase eiθ is just two points eiθ ∈ {±1}.

I The space to which a collection of matrices {Am} seems to be complected (for me). How
to deal with the injectivity, which is a kind of algebraic constraint on Ams, and the gauge
freedom...

I The space to which V ∈ U(D) belongs is simpler than one of Ams. Let’s see the detail of
the space of V .
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Topology of the space of V

D = 1

I The projective unitary group is trivial PU(1) = {1}, and no non-trivial loops exist.

I This suggests that non-trivial entanglement is necessary to obtain a non-trivial adiabatic
cycle.

D = 2

I The projective unitary group PU(2) = SU(2)/{1,−1} = SO(3) is identified with the
group of SO(3) rotation.

I Furthermore, the condition [V ]2 = id shows that V is either (i) identity or (ii) π-rotation
around an axis n̂ ∈ S2.

I For the former case, [V ] is constant, meaning that the fundamental group is trivial.

I For the latter case, the equivalent class [V ] runs over the real projective plane
RP 2 = S2/Z2, since n̂ and −n̂ represents the same π-rotation. Therefore, we obtain the
Z2 classification π1(RP 2) = Z2!

D ≥ 3

I One can show the fundamental group of the space to which V belongs is Z2 if trV = 0.
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Homotopy class and gauge independence
I The discussion above shows the homotopy class of the matrix V (t) signals a nontrivial

adiabatic cycle.

I To have a periodic cycle of V (t), a cycle of matrices Am(t)s should be also periodic
Am(T ) = Am(0). Under the periodicity of Am(t), a cycle of V (t) is defined by

UmnAn(t) = eiθ(t)V (t)†Am(t)V (t), [V (T )] = [V (0)].

I We should take care about the gauge dependence of Ams. A cycle of gauge
transformation (eiχ(t),W (t)) with periodicity eiχ(T ) = eiχ(0) and W (T ) = W (0) induces
the gauge transformation of V (t),

V (t) 7→ Ṽ (t) = W (t)†V (t)W (t).

I We can see that this does not affect the homotopy class of V (t):
W (t) can be regarded as a cycle of the spacial unitary group SU(D). Since SU(D) is
simply connected (π1(SU(D)) = 0) the cycle W (t) is contractible to the constant cycle
W (t) ∼ 1D.
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Cluster model
I A simple model showing a nontrivial homotopy class of V (t) is given by the cluster model

[Briegel-Raussendorf, PRL 86, 910 (2001)] with a slight modification.

H(φ) = −
∑
j

σzj τ
x
j+ 1

2
σzj+1 −

∑
j

τzj− 1
2
(φ)σxj τ

z
j+ 1

2
(φ).

I Here, σj , τj+ 1
2

are spin operators at sites j, j + 1
2 (j ∈ Z).

I All terms are commuted with each other.
I The spin operator τj+ 1

2
(φ) is defined by the φ/2 rotation around the x-axis of the τ spin.

τj+ 1
2
(φ) := e

−iφ2 τ
x

j+1
2 τj+ 1

2
e
iφ2 τ

x

j+1
2 .

I The Hamiltonian is π-periodic.

H(φ+ π) = H(φ),

whereas τ (φ) is 2π-periodic

τzj+ 1
2
(π) = −τzj+ 1

2
.

I This model enjoys the Z2 symmetry defined as the flip of σ spins Z :=
∏
j σ

x
j .
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Edge state
I The cluster Hamiltonian with the open boundary condition:

Hopen(φ) = −
N−1∑
j=1

σzj τ
x
j+ 1

2
σzj+1 −

N∑
j=1

τzj− 1
2
(φ)σxj τ

z
j+ 1

2
(φ).

I The ground state is given by imposing

σzj τ
x
j+ 1

2
σzj+1 = τzj− 1

2
(φ)σxj τ

z
j+ 1

2
(φ) = 1

on the total Hilbert space.

I It is found that the ground state is four-fold degenerate, which is originated from the
emergent spin 1/2 degree of freedom at each edge.

I One can read off the Z2-symmetry action on the ground state manifolds as

Z|G.S. = σx1σ
x
2 · · ·σxN−1σ

x
N |G.S. = τz1

2
(φ)× τzN+ 1

2
(φ).

I Remarkebely, the symmetry transformation on the edge states explicitly depend on the
adiabatic parameter φ.
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Edge state

I The Z2 symmetry action on the right edge τzN+1/2(φ) is identified with the matrix V (φ)
on the bond Hilbert space for MPS. Thus, we have

V (φ) = τz(φ) = τzeiτ
xφ =

(
cosφ i sinφ
−i sinφ − cosφ

)
.

I (The same matrix V (φ) can be explicitly derived from the MPS representation of the
ground state of the cluster Hamiltonian. )

I This belongs to a nontrivial homotopy class of π1(RP 2) = Z2.

I The Z2 transformation at an edge breaks the π-periodicity.

τz(φ+ π) = −τz(φ).

I cf. Topological Floquet phases Potter-Morimoto-Vishwanath, PRX 6, 041001 (2016).
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Spin systems with generic finite group symmetry

I The classification of adiabatic cycle above can be generalized to generic finite symmetry
group G.

I Our proof is much based on the work about the homotopy type of the projective unitary
group. Espinoza-Uribe, arXiv:1511.06785

Theorem
For an injective MPS with a projective representation Vg of G, the classification of adiabatic
cycle is given by the subgroup of Hom(G,U(1)) defined by

{η ∈ Hom(G,U(1))|tr [Vg] = 0 holds for any elements g ∈ G with ηg 6= 1}.

I With a suitable equivalence relation on unique gapped ground states, it might be
attributed to the group of the known classification of 0D unique gapped ground states,

H1(G,U(1)) ∼= Hom(G,U(1)).

I cf. Topological Floquet phases Potter-Morimoto-Vishwanath, PRX 6, 041001 (2016).
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Proof (see also Espinoza-Uribe, arXiv:1511.06785)
I Let |Ψ({Am})〉 be an MPS that is unique gapped and G symmetric.

gmnAn = eiθgV †g AmVg.

I Here, Vg is a projective representation with a two-cocycle ω,

VgVh = ωg,hVgh, ωg,h ∈ U(1), ωh,kω
−1
gh,kωgh,kω

−1
g,h = 1.

I A homomorphism η : G→ U(1), ηgηh = ηgh may change the ω-projective representation
by Vg 7→ ηgVg while keeping the two-cocycle ω.

I Therefore, a cycle Vg(t) runs over the quotient space

{The space of ω-projective representations}/Hom(G,U(1)).

I Any ω-projective representation Vg can be written as

Vg = WV ref
g W †

with a reference ω-projective representation V ref
g .

I The matrix W lives in the spacial unitary group SU(D) that is simply connected, the
fundamental group of {The space of ω-projective representations} is trivial. Thus,

π1

[
{The space of ω-projective representations}/Hom(G,U(1))

]
∼= Hom(G,U(1)).
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Summary

I Motivated by the Kitaev’s proposal, we sturdy the topological classification of adiabatic
cycle of unique gapped ground state of spin chains.

I Using the injective MPS, we found that the symmetry transformation V on the bond
Hilbert space is essentially classified by the group H1(G,U(1)) ∼= Hom(G,U(1)), which is
the same as the classification of 0D spin systems with G symmetry.

21 / 21



Z2 charge localized at a texture

I One way to verify that the cluster model H(φ) has a nontrivial adiabatic cycle is to
introduce a texture in space direction where the Hamiltonian H(φ) varies from 0 to π and
measure the Z2 charge.

I Note that the Hamiltonian H(φ) can be written in the form of the following unitary
transformation.

H(φ) = Uτ (φ)H(φ = 0)Uτ (φ)†, Uτ (φ) =
∏
j

e
−iφ2 τ

x

j+1
2 .

I Then the Hamiltonian Htext with a can be written as

Htext = UtwH(φ = 0)U†tw, Utw =

N∏
j=1

e
−i πj2N τ

x

j+1
2

∏
j>N

e
−iπ2 τ

x

j+1
2 ∼

N∏
j=1

e
−i πj2N τ

x

j+1
2

∏
j>N

τxj+ 1
2
.
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Cont.
I For simplicity, let us consider a kink at j = 0.

Hkink = UkinkH(φ = 0)U†kink, Ukink =
∏
j>0

τxj+ 1
2

eti t.eet言
I The ground state with a kink can be written as |GSkink〉 = Ukink |GS(φ = 0)〉.
I Noticing τx

j+ 1
2

= σzjσ
z
j+1 for the ground state manifolds, we have

|GSkink〉 = (σz0 ⊗ id⊗ id⊗ · · · ) |GSkink〉 .

I Therefor, a kink has a Z2 charge.

I We can also confirm that the Z2 charge emerges at a texture varying slowly in the chain
by a numerical caluclation.
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