Topology of matrix product states with onsite symmetry

Ken Shiozaki

YITP, Kyoto Univ. and JST PRESTO

Nov. 25, 2020, Rigorous Stat. Phys. 2020 @Zoom

KS and Takahiro Morimoto, in preparation.

Outline

Introduction

Thouless pump

 Kitaev's proposal: invertible phases are described by a generalized cohomology theory Main part

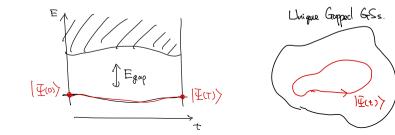
- ▶ Adiabatic cycle of \mathbb{Z}_2 symmetric spin chain
- Matrix product state
- homotopy class
- Cluster model
- Generic finite group onsite symmetry

Adiabatic cycle in unique gapped ground states

Consider a cycle of Hamiltonians with a unique gapped ground state in a many-body system.

$$H(t), \quad t \in [0,T], \quad H(T) = H(0).$$

- We want to study the "homotopy class" of the cycle $|\Psi(t)\rangle$ of the instantaneous ground state of the Hamiltonian defined by $H(t) |\Psi(t)\rangle = E_{\rm GS} |\Psi(t)\rangle$.
- We are interested in the "topology" of the space of unique gapped ground states that is not rigorously defined yet.
- In the rest of this talk, I simply refer to an adiabatic cycle of unique gapped ground state as an adiabatic cycle.



Thouless pump PRB 27, 6083 (1983)

• An adiabatic cycle in 1D systems with U(1) symmetry.

$$[N,H] = 0, \quad N = \sum_{j} n_j.$$

- \blacktriangleright In this cases, adiabatic cycles are known to be classified by \mathbb{Z} .
- ▶ If an adiabatic cycle is "topologically non-trivial", a U(1) charge is pumped by an integer from left to right when the system is on a finite chain (open boundary condition).
- \blacktriangleright The number of the pumped U(1) charge is given by an integer-valued topological invariant

$$\nu := \frac{1}{2\pi i} \oint_0^T dt \frac{d}{dt} \arg Z(t) \in \mathbb{Z},$$

where $Z(t) := \langle \Psi(t) | e^{\sum_{j=1}^{L} \frac{2\pi i n_j}{L}} | \Psi(t) \rangle \in \mathbb{C}$ is the electric polarization of the ground state $|\Psi(t)\rangle$ of the Hamiltonian H(t).

▶ For a closed chain this is the same as the many-body Chern number

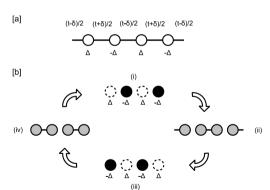
$$\nu = \frac{1}{2\pi i} \oint_0^T dt \oint_0^{2\pi} d\Phi F_{t\Phi}(t,\Phi), \quad F = \left\langle d\Psi(t,\Phi) | d\Psi(t,\Phi) \right\rangle,$$

where Φ is the twisted boundary condition.

The Rice-Mele model PRL 49, 1455 (1982).

- ▶ The Thouless pump may be well illustrated by the Rice-Mele model.
- A free fermion model with the nearest neighbor hopping with the staggered amplitude $t + \delta, t \delta$ and the staggered potential Δ .

$$H = \sum_{j} \left(\frac{t}{2} + (-1)^{j} \frac{\delta}{2}\right) (a_{j}^{\dagger} a_{j} + h.c.) + \Delta (-1)^{j} a_{j}^{\dagger} a_{j}.$$



Adiabatic cycle in generic 1D systems

- ▶ In general, one can think of an adiabatic cycle in gapped 1D systems in arbitrary setting:
 - fermion or boson (spin systems)
 - with onsite symmetry (time-reversal, \mathbb{Z}_2 lsing, U(1), etc.)
- We want to address the following questions:
 - Do non-trivial adiabatic cycles exist?
 - If there is, how are they classified?
 - Can a topological invariant be constructed from a given cycle of Hamiltonian H(t) or a given cycle of pure state |Ψ(t)⟩?
- ▶ For free fermions, the answer is known.[Teo-Kane 10]

Theorem

For free fermionic systems, the classification of adiabatic cycles in 1D is the same as the classification of gapped unique ground states in 0D.

Kitaev's proposal

On the basis of the results of free fermions, Kitaev proposed a generic topological structure behind the unique gapped ground states.

Proposition (Kitaev, 11,13,15)

The spaces $\{F_d\}_{d \in \mathbb{Z}_{\geq 0}}$ of unique gapped ground states in d space dimensions form an Ω -spectrum of a generalized cohomology theory.

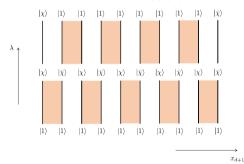
- ▶ I will not go into detail today. See also Gaiotto and Johnson-Freyd, JHEP (2109)
- This proposal implies the generalization about the classification of adiabatic cycles in 1D many-body systems.

Proposition

For generic many-body systems, the classification of adiabatic cycles in 1D is the same as the classification of gapped unique ground states in 0D.

Canonical adiabatic cycle

- ► Kitaev provided a sort of canonical adiabatic cycle to support his proposal:
- A characteristic of a unique gapped ground state is the existence of an inverse of it up to homotopy equivalence |χ⟩ ⊗ |χ̄⟩ ~ |1⟩ ⊗ |1⟩. Here, |χ⟩ is a unique gapped ground state in dD, and |1⟩ is, for example, the tensor product state.
- Applying this homotopy to the tensor product state $\cdots \otimes |\chi\rangle \otimes |\bar{\chi}\rangle \otimes \cdots$ in (d+1)D, we have an adiabatic cycle with the pumped state $|\chi\rangle / |\bar{\chi}\rangle$ at the left/right edge.



I'm not sure this picture correctly describes the Ω-spectrum structure of unique gapped ground states... Continuity of adiabatic Hamiltonian?? No entanglement??

Adiabatic cycles in spin chains with \mathbb{Z}_2 symmetry

- ▶ For the simplest setting of the many-body problem, consider the following case.
- What is the classification of adiabatic cycles of spin chains with \mathbb{Z}_2 symmetry?

$$H = \sum_{j} aS_{j}^{z} + b(S_{j}^{z})^{2} + cS_{j}^{z}S_{j+1}^{z} + d\mathbf{S}_{j} \cdot \mathbf{S}_{j+1} + e(\mathbf{S}_{j} \cdot \mathbf{S}_{j+1})^{2} + \cdots,$$

$$Z = e^{i\pi \sum_{j} S_{j}^{z}}, \quad [Z, H] = 0.$$

► If the Kitaev's proposal is correct, adiabatic cycles are classified by Z₂, the classification of Z₂ charge.

Matrix product state

- The Matrix Product State (MPS) is quite useful tool to describe unique gapped ground states in spin chains.
- ► For simplicity, we assume translational symmetry.
- A matrix product state defined by a collection of matrices $\{A_m\}$ is written as

$$|\psi(\{A_m\})\rangle = \sum_{\{m_j\}} \operatorname{Tr}[\cdots A_{m_j} A_{m_{j+1}} \cdots] |\cdots m_j m_{j+1} \cdots \rangle.$$

Here, $A_m = [A_m]_{\alpha\beta}$ are $D \times D$ matrices with $m = 1, \dots, \dim \mathcal{H}_j$ the indices of the local Hilbert space \mathcal{H}_j , and $\alpha\beta$ stands for the bond Hilbert space. D measures the entanglement between two sites.

Injective MPS and uniqueness

- Unique gapped ground states are described by injective MPSs. (Short-range correlation, and no cat states.)
- The only property of injective MPS we use is the following.

Lemma

Two injective MPSs $|\Psi(\{A_m\})\rangle$ and $|\Psi(\{\tilde{A}_m\})\rangle$ represent the same state iff there exists $e^{i\chi} \in U(1)$ and $W \in U(D)$ such that

 $\tilde{A}_m = e^{i\chi} W^{\dagger} A_m W.$

Here, $e^{i\chi}$ is unique and W is unique up to a U(1) phase.

This is a kind of gauge choice of an MPS. Physical consequences should be independent of this gauge choice.

MPS with \mathbb{Z}_2 symmetry

- ▶ Write the Z₂-symmetry operator as $Z = \bigotimes_j U^{(j)}$, where $U^{(j)}$ is a local \mathbb{Z}_2 transformation at site j, namely, $U^{(j)} |n_j\rangle = \sum_{m_j} |m_j\rangle U_{m_jn_j}$ with U_{mn} a $D \times D$ unitary matrix.
- \blacktriangleright The \mathbb{Z}_2 -symmetry action on the injective MPS $|\Psi(\{A_m\})\rangle$ is given by

$$Z |\Psi(\{A_m\})\rangle = \sum_{\{m_j\}} \operatorname{tr} \left[\cdots A_{m_j} \cdots\right] |\cdots n_j \cdots\rangle \left[\cdots U_{n_j m_j} \cdots\right].$$

▶ Therefore, from the lemma above, the \mathbb{Z}_2 symmetry $Z |\Psi(\{A_m\})\rangle \sim |\Psi(\{A_m\})\rangle$ implies that there exists a unitary matrix $V \in U(D)$ and phase $e^{i\theta}$ such that

$$\sum_{n} U_{mn} A_n = e^{i\theta} V^{\dagger} A_m V.$$

Here, $e^{i\theta}$ is unique and $V \in U(D)$ is unique up to a U(1) phase, again.

- Because the Z₂ transformations twice is the same as the identity, we have e^{iθ} ∈ ±1 and the V square is the identity matrix 1_D up to a U(1) phase.
- ▶ The matrix V is regarded as an element of the projective unitary group $[V] \in PU(D) := U(D)/\{z\mathbf{1}_D | z \in U(1)\}.$

Where is the topology?

• Which is the desired topological space of which the fundamental group π_1 is non-trivial?

 $\{A_m\}$ $e^{i\theta}$ V /gauge

• The space of U(1) phase $e^{i\theta}$ is just two points $e^{i\theta} \in \{\pm 1\}$.

- ▶ The space to which a collection of matrices {*A_m*} seems to be complected (for me). How to deal with the injectivity, which is a kind of algebraic constraint on *A_ms*, and the gauge freedom...
- The space to which $V \in U(D)$ belongs is simpler than one of A_m s. Let's see the detail of the space of V.

Topology of the space of \boldsymbol{V}

 $\underline{D=1}$

- The projective unitary group is trivial $PU(1) = \{1\}$, and no non-trivial loops exist.
- This suggests that non-trivial entanglement is necessary to obtain a non-trivial adiabatic cycle.
- $\underline{D=2}$
 - ▶ The projective unitary group $PU(2) = SU(2)/\{1, -1\} = SO(3)$ is identified with the group of SO(3) rotation.
 - Furthermore, the condition $[V]^2 = id$ shows that V is either (i) identity or (ii) π -rotation around an axis $\hat{n} \in S^2$.
 - \blacktriangleright For the former case, [V] is constant, meaning that the fundamental group is trivial.
 - For the latter case, the equivalent class [V] runs over the real projective plane $RP^2 = S^2/\mathbb{Z}_2$, since \hat{n} and $-\hat{n}$ represents the same π -rotation. Therefore, we obtain the \mathbb{Z}_2 classification $\pi_1(RP^2) = \mathbb{Z}_2!$

$\underline{D\geq 3}$

• One can show the fundamental group of the space to which V belongs is \mathbb{Z}_2 if $\operatorname{tr} V = 0$.

Homotopy class and gauge independence

- The discussion above shows the homotopy class of the matrix V(t) signals a nontrivial adiabatic cycle.
- ▶ To have a periodic cycle of V(t), a cycle of matrices $A_m(t)$ s should be also periodic $A_m(T) = A_m(0)$. Under the periodicity of $A_m(t)$, a cycle of V(t) is defined by

$$U_{mn}A_n(t) = e^{i\theta(t)}V(t)^{\dagger}A_m(t)V(t), \quad [V(T)] = [V(0)].$$

▶ We should take care about the gauge dependence of A_m s. A cycle of gauge transformation $(e^{i\chi(t)}, W(t))$ with periodicity $e^{i\chi(T)} = e^{i\chi(0)}$ and W(T) = W(0) induces the gauge transformation of V(t),

$$V(t) \mapsto \tilde{V}(t) = W(t)^{\dagger} V(t) W(t).$$

▶ We can see that this does not affect the homotopy class of V(t): W(t) can be regarded as a cycle of the spacial unitary group SU(D). Since SU(D) is simply connected ($\pi_1(SU(D)) = 0$) the cycle W(t) is contractible to the constant cycle $W(t) \sim \mathbf{1}_D$.

Cluster model

A simple model showing a nontrivial homotopy class of V(t) is given by the cluster model [Briegel-Raussendorf, PRL **86**, 910 (2001)] with a slight modification.

$$H(\phi) = -\sum_{j} \sigma_{j}^{z} \tau_{j+\frac{1}{2}}^{x} \sigma_{j+1}^{z} - \sum_{j} \tau_{j-\frac{1}{2}}^{z}(\phi) \sigma_{j}^{x} \tau_{j+\frac{1}{2}}^{z}(\phi).$$

- ▶ Here, $\sigma_j, \tau_{j+\frac{1}{2}}$ are spin operators at sites $j, j + \frac{1}{2} (j \in \mathbb{Z})$.
- All terms are commuted with each other.
- The spin operator $\tau_{j+\frac{1}{2}}(\phi)$ is defined by the $\phi/2$ rotation around the x-axis of the τ spin.

$$\boldsymbol{\tau}_{j+\frac{1}{2}}(\phi) := e^{-i\frac{\phi}{2}\tau_{j+\frac{1}{2}}^{x}} \boldsymbol{\tau}_{j+\frac{1}{2}} e^{i\frac{\phi}{2}\tau_{j+\frac{1}{2}}^{x}}.$$

The Hamiltonian is π-periodic.

$$H(\phi + \pi) = H(\phi),$$

whereas $\boldsymbol{\tau}(\phi)$ is 2π -periodic

$$\tau_{j+\frac{1}{2}}^{z}(\pi) = -\tau_{j+\frac{1}{2}}^{z}$$

▶ This model enjoys the \mathbb{Z}_2 symmetry defined as the flip of σ spins $Z := \prod_j \sigma_j^x$.

Edge state

▶ The cluster Hamiltonian with the open boundary condition:

$$H^{\text{open}}(\phi) = -\sum_{j=1}^{N-1} \sigma_j^z \tau_{j+\frac{1}{2}}^x \sigma_{j+1}^z - \sum_{j=1}^N \tau_{j-\frac{1}{2}}^z(\phi) \sigma_j^x \tau_{j+\frac{1}{2}}^z(\phi).$$

The ground state is given by imposing

$$\sigma_{j}^{z}\tau_{j+\frac{1}{2}}^{x}\sigma_{j+1}^{z} = \tau_{j-\frac{1}{2}}^{z}(\phi)\sigma_{j}^{x}\tau_{j+\frac{1}{2}}^{z}(\phi) = 1$$

on the total Hilbert space.

- It is found that the ground state is four-fold degenerate, which is originated from the emergent spin 1/2 degree of freedom at each edge.
- One can read off the \mathbb{Z}_2 -symmetry action on the ground state manifolds as

$$Z|_{G.S.} = \sigma_1^x \sigma_2^x \cdots \sigma_{N-1}^x \sigma_N^x|_{G.S.} = \tau_{\frac{1}{2}}^z(\phi) \times \tau_{N+\frac{1}{2}}^z(\phi).$$

Remarkebely, the symmetry transformation on the edge states explicitly depend on the adiabatic parameter φ.

Edge state

• The \mathbb{Z}_2 symmetry action on the right edge $\tau_{N+1/2}^z(\phi)$ is identified with the matrix $V(\phi)$ on the bond Hilbert space for MPS. Thus, we have

$$V(\phi) = \tau^{z}(\phi) = \tau^{z} e^{i\tau^{x}\phi} = \begin{pmatrix} \cos\phi & i\sin\phi\\ -i\sin\phi & -\cos\phi \end{pmatrix}.$$

- (The same matrix $V(\phi)$ can be explicitly derived from the MPS representation of the ground state of the cluster Hamiltonian.)
- ▶ This belongs to a nontrivial homotopy class of $\pi_1(RP^2) = \mathbb{Z}_2$.
- The \mathbb{Z}_2 transformation at an edge breaks the π -periodicity.

$$\tau^z(\phi + \pi) = -\tau^z(\phi).$$

cf. Topological Floquet phases Potter-Morimoto-Vishwanath, PRX 6, 041001 (2016).

Spin systems with generic finite group symmetry

- ► The classification of adiabatic cycle above can be generalized to generic finite symmetry group *G*.
- Our proof is much based on the work about the homotopy type of the projective unitary group. Espinoza-Uribe, arXiv:1511.06785

Theorem

For an injective MPS with a projective representation V_g of G, the classification of adiabatic cycle is given by the subgroup of Hom(G, U(1)) defined by

 $\{\eta \in \operatorname{Hom}(G, U(1)) | \operatorname{tr}[V_g] = 0 \text{ holds for any elements } g \in G \text{ with } \eta_g \neq 1 \}.$

With a suitable equivalence relation on unique gapped ground states, it might be attributed to the group of the known classification of 0D unique gapped ground states,

 $H^1(G, U(1)) \cong \operatorname{Hom}(G, U(1)).$

cf. Topological Floquet phases Potter-Morimoto-Vishwanath, PRX 6, 041001 (2016).

Proof (see also Espinoza-Uribe, arXiv:1511.06785)

 \blacktriangleright Let $|\Psi(\{A_m\})\rangle$ be an MPS that is unique gapped and G symmetric.

$$g_{mn}A_n = e^{i\theta_g}V_g^{\dagger}A_mV_g$$

▶ Here, V_g is a projective representation with a two-cocycle ω ,

$$V_g V_h = \omega_{g,h} V_{gh}, \quad \omega_{g,h} \in U(1), \quad \omega_{h,k} \omega_{gh,k}^{-1} \omega_{gh,k} \omega_{g,h}^{-1} = 1.$$

- ▶ A homomorphism $\eta : G \to U(1)$, $\eta_g \eta_h = \eta_{gh}$ may change the ω -projective representation by $V_g \mapsto \eta_g V_g$ while keeping the two-cocycle ω .
- ▶ Therefore, a cycle $V_g(t)$ runs over the quotient space

{The space of ω -projective representations}/Hom(G, U(1)).

 \blacktriangleright Any $\omega\text{-projective}$ representation V_g can be written as

 $V_g = W V_g^{\rm ref} W^{\dagger}$

with a reference ω -projective representation V_a^{ref} .

The matrix W lives in the spacial unitary group SU(D) that is simply connected, the fundamental group of {The space of ω -projective representations} is trivial. Thus,

 $\pi_1 \Big[\{ \text{The space of } \omega \text{-projective representations} \} / \text{Hom}(G, U(1)) \Big] \cong \text{Hom}(G, U(1)).$

Summary

- Motivated by the Kitaev's proposal, we sturdy the topological classification of adiabatic cycle of unique gapped ground state of spin chains.
- ▶ Using the injective MPS, we found that the symmetry transformation V on the bond Hilbert space is essentially classified by the group $H^1(G, U(1)) \cong \text{Hom}(G, U(1))$, which is the same as the classification of 0D spin systems with G symmetry.

\mathbb{Z}_2 charge localized at a texture

- One way to verify that the cluster model H(φ) has a nontrivial adiabatic cycle is to introduce a texture in space direction where the Hamiltonian H(φ) varies from 0 to π and measure the Z₂ charge.
- Note that the Hamiltonian $H(\phi)$ can be written in the form of the following unitary transformation.

$$H(\phi) = U_{\tau}(\phi)H(\phi = 0)U_{\tau}(\phi)^{\dagger}, \quad U_{\tau}(\phi) = \prod_{j} e^{-i\frac{\phi}{2}\tau_{j+\frac{1}{2}}^{x}}.$$

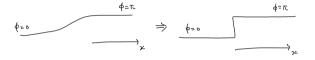
• Then the Hamiltonian H_{text} with a can be written as

$$H_{\text{text}} = U_{\text{tw}} H(\phi = 0) U_{\text{tw}}^{\dagger}, \quad U_{\text{tw}} = \prod_{j=1}^{N} e^{-i\frac{\pi j}{2N}\tau_{j+\frac{1}{2}}^{x}} \prod_{j>N} e^{-i\frac{\pi}{2}\tau_{j+\frac{1}{2}}^{x}} \sim \prod_{j=1}^{N} e^{-i\frac{\pi j}{2N}\tau_{j+\frac{1}{2}}^{x}} \prod_{j>N} \tau_{j+\frac{1}{2}}^{x}$$

Cont.

• For simplicity, let us consider a kink at j = 0.

$$H_{\text{kink}} = U_{\text{kink}} H(\phi = 0) U_{\text{kink}}^{\dagger}, \quad U_{\text{kink}} = \prod_{j>0} \tau_{j+\frac{1}{2}}^{x}$$



▶ The ground state with a kink can be written as $|GS_{kink}\rangle = U_{kink} |GS(\phi = 0)\rangle$. ▶ Noticing $\tau_{j+\frac{1}{2}}^x = \sigma_j^z \sigma_{j+1}^z$ for the ground state manifolds, we have

$$|GS_{\text{kink}}\rangle = (\sigma_0^z \otimes \text{id} \otimes \text{id} \otimes \cdots) |GS_{\text{kink}}\rangle.$$

- ▶ Therefor, a kink has a Z₂ charge.
- ► We can also confirm that the Z₂ charge emerges at a texture varying slowly in the chain by a numerical caluclation.