Classification of Dirac Hamiltonians with point group symmetry

Ken Shiozaki
YITP, JST Presto

July 29, 2019 @ Sendai
Ref: KS, arXiv:1907.09354.

- Part 1. The classification of the uniform mass term in the Dirac Hamiltonian.
- Part 2. The classification of boundary gapless states on the spherical surface.
- Part 1. The classification of the uniform mass term in the Dirac Hamiltonian.
- Part 2. The classification of boundary gapless states on the spherical surface.

Dirac Hamiltonian with point group symmetry

- Dirac Hamiltonian in d space dimensions $(\boldsymbol{k}=-i \boldsymbol{\partial})$ with a uniform mass

$$
H(\boldsymbol{k})=-i \sum_{j=1}^{d} \gamma_{j} \partial_{j}+M, \quad\left\{\gamma_{i}, \gamma_{j}\right\}=2 \delta_{i j}, \quad\left\{\gamma_{i}, M\right\}=0
$$

- Let G be a point group, i.e., G acts on the real-space coordinate \boldsymbol{x} as a discrete subgroup of $O(d)$.

$$
g: \boldsymbol{x} \mapsto O_{g} \boldsymbol{x}, \quad g \in G .
$$

- We denote the operator acting on the one-particle Hilbert space by \hat{g}.
- As usual, symmetry operators form a projective representation with a factor system

$$
\hat{g} \hat{h}=z_{g, h} \widehat{g h}, \quad g, h \in G
$$

where $z_{g, h} \in U(1)$ is called the factor system.

- \hat{g} can be antiunitary. We specify if \hat{g} is unitary or not by $\phi_{g} \in\{ \pm 1\}$.
- \hat{g} can flip the Hamiltonian $H(\boldsymbol{k})$, which specified by $c_{g} \in\{ \pm 1\}$.
- In sum,

$$
\hat{g} H(\boldsymbol{k}) \hat{g}^{-1}=c_{g} H\left(\phi_{g} O_{g} \boldsymbol{k}\right), \quad \hat{g} i \hat{g}^{-1}=\phi_{g} i, \quad g \in G
$$

- Mass term M obeys the following complicated algebra.

$$
\begin{aligned}
& \hat{g} \hat{h}=z_{g, h} \widehat{g h} . \\
& \hat{g} \gamma \hat{g}^{-1}=\phi_{g} c_{g} O_{g}^{-1} \gamma, \quad \hat{g} M \hat{g}^{-1}=c_{g} M \\
& \left\{\gamma_{i}, \gamma_{j}\right\}=2 \delta_{i j}, \quad\left\{\gamma_{i}, M\right\}=0
\end{aligned}
$$

- Question. How to get the topological classification of the "space" of the mass term M ?

Strategy

- Step 1. The point group symmetry can be onsite in keeping the topological classification. [Cornfeld-Chapman, '18]
- Step 2. For onsite symmetry, the classification of the mass term is straightforward. \rightarrow the periodic table.

Step 1: Cornfeld-Chapman trick

- The gamma matrices γ_{j} themselves can be used to make $\operatorname{Spin}(d)$ rotation operators.
- Let

$$
R_{\theta}=\exp \frac{i}{2} \theta_{i j} L_{i j}, \quad\left[L_{i j}\right]_{k l}=-i\left(\delta_{i k} \delta_{j l}-\delta_{j k} \delta_{i l}\right)
$$

be an $S O(d)$ rotation.

- The set $\left\{\theta_{i j} \in[0,2 \pi]\right\}$ of $S O(d)$ rotation parameters gives us a lift $S O(d) \rightarrow \operatorname{Spin}(d)$,

$$
U_{\theta}=\exp \frac{i}{2} \theta_{i j} \Sigma_{i j}, \quad \Sigma_{i j}=\frac{-i}{4}\left[\gamma_{i}, \gamma_{j}\right]
$$

- The key equality:

$$
U_{\theta} \gamma U_{\theta}^{-1}=R_{\theta} \gamma
$$

- Therefore, the $S O(d)$ part of \hat{g} can be "onsite".
- For generic $O(d)$ rotations, we write

$$
O_{g}= \begin{cases}R_{\theta_{g}} & \left(O_{g} \in S O(d)\right) \\ M_{1} R_{\theta_{g}} & \left(O_{g} \notin S O(d)\right)\end{cases}
$$

where $M_{1}:\left(x_{1}, x_{2}, \ldots\right) \mapsto\left(-x_{1}, x_{2}, \ldots\right)$ is the reflection for the x_{1}-direction.

- Let

$$
p_{g}:=\operatorname{det} O_{g} \in\{ \pm 1\}
$$

is the marker for specifying orientation-preserving/reversing elements.

- Per the value of p_{g}, we introduce the modified operator

$$
\tilde{g}:=\left(\gamma_{1}\right)^{\frac{1-p_{g}}{2}} \times U_{\theta} \times \hat{g} .
$$

- We find that \tilde{g} is now onsite symmetry operator

$$
\tilde{g} \gamma \tilde{g}^{-1}=c_{g} p_{g} \phi_{g} \gamma, \quad \tilde{g} M \tilde{g}^{-1}=c_{g} p_{g} M
$$

i.e.,

$$
\tilde{g} H(\boldsymbol{k}) \tilde{g}^{-1}=c_{g} p_{g} H\left(\phi_{g} \boldsymbol{k}\right)
$$

Some comments

- Orientation-reversing symmetry $p_{g}=-1$ behaves as chiral symmetry.
- The factor system of \tilde{g} s differs from that of original operators \hat{g} s. Explicitly, the factor system $\tilde{z}_{g, h}$ defined by $\tilde{g} \tilde{h}=\tilde{z}_{g, h} \widetilde{g h}$ is given by

$$
\tilde{z}_{g, h}=z_{g, h}^{\prime} \times(-1)^{\frac{1-c_{g} \phi_{g}}{2} \frac{1-p_{h}}{2}} \times z_{g, h}
$$

Here,

$$
z_{g, h}^{\prime}:=U_{\theta_{h}} U_{\theta_{g}} U_{\theta_{g h}}^{-1} \in\{ \pm 1\}
$$

is the factor system for $\operatorname{Spin}(d)$ rotations.

- The Cornfeld-Chapman trick should be the implementation of the equivariant Thom isomorphism.

$$
K_{n}^{G}\left(\mathbb{R}^{d}\right) \cong K_{(\mathrm{twist})+n-d}^{G}(p t) \cong K_{(\mathrm{twist})+n}^{\left.G\right|_{\text {onsite }}}\left(\mathbb{R}^{d}\right)
$$

Step 2: The Wigner criteria and the orthogonal test

- For onsite symmetry, the classification of the mass term M is straightforward.
- First, we decompose the symmetry group G with respect to whether \tilde{g} is TRS, PHS, or chiral symmetry.

$$
\begin{aligned}
& G=\underbrace{G_{0}}_{\text {unitary }} \sqcup \underbrace{a G_{0}}_{\text {TRS }} \sqcup \underbrace{b G_{0}}_{\text {PHS }} \sqcup \underbrace{a b G_{0}}_{\text {chiral }}, \\
& G_{0}=\left\{g \in G \mid \phi_{g}=c_{g} p_{g}=1\right\}, \\
& a \in G, \quad \phi_{a}=-1, \quad c_{a} p_{a}=1, \\
& b \in G, \quad \phi_{b}=-1, \quad c_{b} p_{b}=-1, \\
& a b \in G, \quad \phi_{a b}=1, \quad c_{a b} p_{a b}=-1 .
\end{aligned}
$$

- An "irrep of G " can be seen as an irrep of G_{0} with the data of how remaining operators a, b, and $a b$ act on its irrep. $\rightarrow 19$ patterns.

Wigner criterion

- Let α be an irrep of G_{0} with the factor system $\tilde{z}_{g, h}$.
- The TRS-type operator \hat{a} acts on the representation vector space V of the irrep α in three ways.
- Let $|i\rangle$ be the basis of the representation vector space V, that is

$$
\hat{g}|i\rangle=|j\rangle\left[\tilde{D}_{\alpha}(g)\right]_{j i}
$$

with $D_{\alpha}(g)$ the representation matrix.

- We want to consider how the TRS-type operator \hat{a} acts on V, which can be checked by looking the formal basis $\hat{a}|i\rangle$.
- The irrep $a(\alpha)$ mapped by \hat{a} has the following representation matrices

$$
\hat{g}(\hat{a}|i\rangle)=(\hat{a}|j\rangle)\left[\tilde{D}_{a(\alpha)}(g)\right]_{j i}, \quad \tilde{D}_{a(\alpha)}(g)=\frac{\tilde{z}_{g, a}}{\tilde{z}_{a, a^{-1} g a}} \tilde{D}_{\alpha}\left(a^{-1} g a\right)^{*}
$$

- $a(\alpha)$ is unitary equivalent to α or not, which can be checked by the orthogonality relation of the irreducible character $\tilde{\chi}_{\alpha}(g)=\operatorname{Tr} \tilde{D}_{\alpha}(g)$.

$$
O_{\alpha \beta}^{T}:=(a(\alpha), \beta)=\frac{1}{\left|G_{0}\right|} \sum_{g \in G_{0}}\left[\frac{\tilde{z}_{g, a}}{\tilde{z}_{a, a^{-1} g a}} \tilde{\chi}_{\alpha}\left(a^{-1} g a\right)^{*}\right]^{*} \tilde{\chi}_{\beta}(g) \in\{0,1\}
$$

- If $O_{\alpha \alpha}^{T}=0, \hat{a}$ does not preserve the irrep α, and transforms α to another irrep $\beta=a(\alpha)$ satisfying $O_{\alpha \beta}^{T}=1$.
- When $O_{\alpha \alpha}^{T}=1$, the TRS-type operator \hat{a} preserves the irrep α, but there still remain two situations: \hat{a} produces the Kramers degeneracy or not, which can be checked by the Wigner criterion

$$
W_{\alpha}^{T}:=\frac{1}{\left|G_{0}\right|} \sum_{g \in G_{0}} \tilde{z}_{a g, a g} \tilde{\chi}_{\alpha}\left((a g)^{2}\right) \in\{0, \pm 1\}
$$

- We can see

$$
\begin{array}{ll}
W_{\alpha}^{T}=1 & \Rightarrow \quad a(\alpha)=\alpha \text { and } \hat{a} \text { is non-Kramers (class } \mathrm{AI}) \\
W_{\alpha}^{T}=-1 \quad \Rightarrow & a(\alpha)=\alpha \text { and } \hat{a} \text { is Kramers (class AII) } \\
W_{\alpha}^{T}=0 \quad \Rightarrow \quad a(\alpha) \neq \alpha
\end{array}
$$

- Therefore, the Wigner criterion W_{α}^{T} alone gives us how \hat{a} acts on the irrep α.

(The detail)

- If $a(\alpha)=\alpha$, there exists a unitary matrix U such that

$$
\tilde{D}_{a(\alpha)}(g)=\frac{\tilde{z}_{g, a}}{\tilde{z}_{a, a-1 g a}}\left[\tilde{D}_{\alpha}\left(a^{-1} g a\right)\right]_{j i}^{*}=U^{\dagger} \tilde{D}_{\alpha}(g) U, \quad g \in G_{0}
$$

- The matrix U behaves as a matrix representation of a.
- Form the Schor's lemma, one can show that $U U^{*}=\xi \tilde{D}_{\alpha}\left(a^{2}\right)$ with ξ a $U(1)$ phase and $\xi / z_{a, a} \in\{ \pm 1\}$.
- Introduce a new basis $\widetilde{|i\rangle}=(\hat{a}|j\rangle) U_{j i}^{\dagger}$ that obeys the same matrix rep $\widehat{g} \mid \widetilde{|i\rangle}=\widetilde{|j\rangle}\left[\tilde{D}_{\alpha}(g)\right]_{j i}$.
- Taking the same transformation twice yields

$$
\widetilde{\mid \overline{|i\rangle}}=\xi / z_{a, a}|i\rangle
$$

- Therefore,

$$
\begin{array}{ll}
\xi / z_{a, a}=1 & \Rightarrow \quad \hat{a} \text { is non-Kramers (class AI) } \\
\xi / z_{a, a}=-1 & \Rightarrow \quad \hat{a} \text { is Kramers (class AII) }
\end{array}
$$

- One can show

$$
W_{\alpha}^{T}= \begin{cases}\xi / z_{a, a} & (\hat{a}|i\rangle \text { is unitary equivalent to }|i\rangle), \\ 0 & (\hat{a}|i\rangle \text { is unitary inequivalent to }|i\rangle)\end{cases}
$$

- In the same way, we introduce the Wigner criterion for the PHS-type operator \hat{b} by

$$
W_{\alpha}^{C}=\frac{1}{\left|G_{0}\right|} \sum_{g \in G_{0}} \tilde{z}_{b g, b g} \tilde{\chi}_{\alpha}\left((b g)^{2}\right) \in\{0, \pm 1\}
$$

and we have

$$
\begin{array}{ll}
W_{\alpha}^{C}=1 & \Rightarrow b(\alpha)=\alpha, \text { and } \hat{b} \text { behaves as class D PHS, } \\
W_{\alpha}^{C}=-1 \quad \Rightarrow \quad a(\alpha)=\alpha, \text { and } \hat{b} \text { behaves as class C PHS, } \\
W_{\alpha}^{C}=0 \quad \Rightarrow b(\alpha) \neq \alpha .
\end{array}
$$

- For the chiral-type operator $\widehat{a b}$, we ask if the mapped irrep $a b(\alpha)$ is unitary equivalent to α or not, which can be checked by the orthogonal test

$$
O_{\alpha \alpha}^{\Gamma}=\frac{1}{\left|G_{0}\right|} \sum_{g \in G_{0}}\left[\frac{\tilde{z}_{g, a b}}{\tilde{z}_{a b,(a b)^{-1} g a b}} \tilde{\chi}_{\alpha}\left((a b)^{-1} g a b\right)\right]^{*} \tilde{\chi}_{\alpha}(g) \in\{0,1\}
$$

We have

$$
\begin{aligned}
& O_{\alpha \alpha}^{\Gamma}=1 \quad \Rightarrow \quad a b(\alpha)=\alpha, \text { and } \widehat{a b} \text { behaves as chiral symmetry, } \\
& O_{\alpha \alpha}^{\Gamma}=0 \quad \Rightarrow \quad a b(\alpha) \neq \alpha
\end{aligned}
$$

19 effective AZ class

There are 19 patterns of the presences/absences of $a, b, a b$ and the values of the Wigner criteria $W_{\alpha}^{T}, W_{\alpha}^{C}$ and the orthogonal test $O_{\alpha \alpha}^{\Gamma}$, which we call the effective AZ (EAZ) classes.

$\begin{array}{llll}0 & 1 & 0 & \mathrm{D}_{T}\end{array}$

$$
\begin{array}{cccc}
-1 & 0 & 0 & \mathrm{AII}_{C}
\end{array}
$$

Periodic table

Once the EAZ class of the irrep α is fixed, the classification of the mass term for the irrep α is found by the periodic table.

EAZ class	$d=0$	$d=1$	$d=2$	$d=3$	$d=4$	$d=5$	$d=6$	$d=7$
$\mathrm{A}, \mathrm{A}_{T}, \mathrm{~A}_{C}, \mathrm{~A}_{\Gamma}, \mathrm{A}_{T, C}$	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AIII, AIII_{T}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
$\mathrm{AI}, \mathrm{AI}_{C}$	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
BDI	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}
D, D_{T}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0
DIII	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$
AII, AII_{C}	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0
CII	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0
C, C_{T}	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0
CI	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}

Short summary

- For any point group symmetry, the classification of the mass term of the Dirac Hamiltonian (the K-group $K_{n}^{G}\left(\mathbb{R}^{d}\right)$) can be computed solely by the irreducible character.

Application I. $3 d$ insulators with magnetic point group symmetry

- There are 122 crystallographic magnetic point groups in $3 d$.
- Let G be a magnetic point group equipped with the data $\left(O_{g}, \phi_{g}, z_{g, h}\right)$. ($c_{g} \equiv 1$.)
- The factor system is given as

$$
z_{g, h}= \begin{cases}1 & (\text { spinless }) \\ (-1)^{\frac{1-\phi_{g}}{2}} \frac{1-\phi_{h}}{2} & (\text { spinful })\end{cases}
$$

- We get the complete list of the effective AZ classes for 122 magnetic point groups. [KS]
- Spinful systems:

MPG	EAZ	$K_{0}^{G}\left(\mathbb{R}^{3}\right)$	$K_{-1}^{G}\left(\mathbb{R}^{3}\right)$	$K_{-2}^{G}\left(\mathbb{R}^{3}\right)$	\cdots
1	$\{\mathrm{~A}\}$	0	\mathbb{Z}	0	
11^{\prime}	$\{\mathrm{AlI}\}$	\mathbb{Z}_{2}	\mathbb{Z}	0	
$\overline{1}$	$\{\mathrm{AIII}\}$	\mathbb{Z}	0	\mathbb{Z}	
$\overline{1} 1^{\prime}$	$\{\mathrm{DIII}\}$	\mathbb{Z}	0	0	
$\overline{1}^{\prime}$	$\{\mathrm{D}\}$	0	0	0	
\vdots					
$m \overline{3} m^{\prime}$	$\left\{\left.\mathrm{DIII}\right\|^{4}\right\}$	$\mathbb{Z}^{\times 4}$	0	0	
$m^{\prime} \overline{3} m^{\prime}$	$\left\{\mathrm{D}^{5}\right\}$	0	0	0	

Application II. $3 d$ superconductors (SCs) with magnetic point group

 symmetry- A subtle point for SCs is that the symmetry algebra depends on what the representation of the gap function is.
- Suppose that the normal part $h(\boldsymbol{k})$ is invariant under a magnetic point group

$$
u_{g} h(\boldsymbol{k}) u_{g}^{-1}=h\left(\phi_{g} O_{g} \boldsymbol{k}\right), \quad u_{g} u_{h}=z_{g, h} u_{g h}
$$

- The superconducting gap function $\Delta(\boldsymbol{k})=\sum_{i=1}^{N} \eta_{i} \Delta_{i}(\boldsymbol{k})$ is a rep of G in general.

$$
\Delta_{i}\left(\phi_{g} O_{g} \boldsymbol{k}\right)=\left[D_{\rho}(g)\right]_{i j} \times u_{g} \Delta_{j}(\boldsymbol{k}) u_{g}^{T}
$$

- When $\Delta(\boldsymbol{k})$ obeys a nontrivial rep of G, such SCs are said unconventional.
- For unconventional SCs, the superconducting order spontaneously breaks the magnetic point group symmetry.
- By the $U(1)$ phase rotation

$$
\hat{U}_{\theta_{g} / 2} \hat{\psi}_{\boldsymbol{x}} \hat{U}_{\theta_{g} / 2}^{-1}=\hat{\psi}_{\boldsymbol{x}} e^{-i \theta_{g} / 2}
$$

of the complex fermion, the gap function changes as $\Delta(\boldsymbol{k}) \mapsto e^{i \theta_{g}} \Delta(\boldsymbol{k})$.

- This means, for the subgroup $G_{*} \subset G$ of which the rep is 1-dimensional, the symmetry of the magnetic point group G_{*} recovers.
- From the above reason, we assume that the gap function obeys a 1-dim irrep of G, which we denote it by $e^{i \theta_{g}}$.

$$
\Delta\left(\phi_{g} O_{g} \boldsymbol{k}\right)=e^{i \theta_{g}} \times u_{g} \Delta(\boldsymbol{k}) u_{g}^{T}
$$

- The BdG Hamiltonian

$$
H(\boldsymbol{k})=\left(\begin{array}{cc}
h(\boldsymbol{k}) & \Delta(\boldsymbol{k}) \\
\Delta(\boldsymbol{k})^{\dagger} & -h(-\boldsymbol{k})^{T}
\end{array}\right)_{\tau}
$$

is invariant under the symmetry group $G \times \mathbb{Z}_{2}^{C}$ where $\hat{C}=\tau_{x} K$ is PHS operator.

- The symmetry operator \hat{g} for $g \in G$ depends on the 1-dim irrep as in

$$
\hat{g}=\left(\begin{array}{cc}
u_{g} & \\
& e^{i \theta_{g}} u_{g}^{*}
\end{array}\right), \quad \hat{g} \hat{C}=e^{i \theta_{g}} \hat{C} \hat{g}
$$

- There are 380 inequivalent symmetry classes from 122 magnetic point groups and 1-dim irreps in $3 d$.
- The effective AZ classes for spinless and spinful SCs in $3 d$ are listed in [KS].
- Spinful systems:

MPG	Ker ϕ	Irrep	EAZ	$K_{0}^{G}\left(\mathbb{R}^{3}\right)$	$K_{-1}^{G}\left(\mathbb{R}^{3}\right)$	$K_{-2}^{G}\left(\mathbb{R}^{3}\right)$	
1	1	A	\{D\}	0	0	0	
11^{\prime}	1	A	\{DIII\}	\mathbb{Z}	0	0	
$\overline{1}$	$\overline{1}$	A_{q}	\{BDI\}	0	0	$2 \mathbb{Z}$	
$\overline{1}$	$\overline{1}$	A_{u}	\{DIII\}	\mathbb{Z}	0	0	
$\overline{1} 1^{\prime}$	$\overline{1}$	A_{g}	$\left\{\mathrm{D}_{T}\right\}$	0	0	0	
$\overline{1} 1^{\prime}$	$\overline{1}$	A_{u}	\{DIII ${ }^{2}$	$\mathbb{Z}^{\times 2}$	0	0	
:							
$m \overline{3} m^{\prime}$	$m \overline{3}$	A_{g}	\{ D_{T}^{2}, DIII $\}$	\mathbb{Z}	0	0	
$m \overline{3} m^{\prime}$	$m \overline{3}$	E_{g}	\{ $\left.\mathrm{D}_{T}^{2}, \mathrm{DIII}\right\}$	\mathbb{Z}	0	0	
$m \overline{3} m^{\prime}$	$m \overline{3}$	A_{u}	$\left\{\mathrm{DIII}^{5}\right\}$	$\mathbb{Z}^{\times 5}$	0	0	
$m \overline{3} m^{\prime}$	$m \overline{3}$	E_{u}	$\left\{\mathrm{DIII}^{5}\right\}$	$\mathbb{Z}^{\times 5}$	0	0	
$m^{\prime} \overline{3}^{\prime} m^{\prime}$	432	A_{1}	$\left\{\mathrm{D}^{10}\right\}$	0	0	0	
$m^{\prime} \overline{3}^{\prime} m^{\prime}$	432	A_{2}	$\left\{\mathrm{D}^{2}, \mathrm{~A}_{C}\right\}$	0	\mathbb{Z}	0	

- Part 1. The classification of the uniform mass term in the Dirac Hamiltonian.
- Part 2. The classification of boundary gapless states on the spherical surface.

Additional masses

- The effective AZ class provide the classification of Dirac Hamiltonian with a uniform mass, which we denote $K=K_{n}^{G}\left(\mathbb{R}^{d}\right)$.
- However, the classification of the uniform mass does not imply the classification of the gapless surface states.
- Put differently, not every element in the K-group K obeys the bulk-boundary correspondence.
- This is because for point group symmetry there may be spatially-varying mass terms that induce mass gap to the surface state. [Isobe-Fu '15, ...]

$$
H=-i \boldsymbol{\partial} \cdot \boldsymbol{\gamma}+M+m_{1}(\boldsymbol{x}) \Gamma_{1}+m_{2}(\boldsymbol{x}) \Gamma_{2}+\cdots
$$

- For 3d:

Higher-order SPT phases [Huang-Song-Huang-Hermele '17, ...]

- This observation leads to the concept of so-called higher-order TIs/TSCs.
- We define $K^{(n)} \subset K$ as the subgroup of Dirac Hamiltonians in the K-group K that admits at least n spatially-varying masses.
- For $3 d$:

- The quotient group $K^{(n-1)} / K^{(n)}$ is called n th-order TIs/TSCs.

Equivalence between atomic insulators and Dirac Hamiltonians with a

 hedgehog mass- One can also canonically compute the group $K^{(d)}$ of d th-order TIs/TSCs, the localized states at the center of the point group.
- To compute $K^{(d)}$, we note the equivalence between the atomic insulators exactly at the point group center and the d-dim Dirac Hamiltonian with hedgehog-mass potential with a unit winding number. This is known as the Jackiw-Rossi bound state.

$$
H_{0 D} \quad \leftrightarrow \quad H_{d D}=-i \boldsymbol{\partial} \cdot \boldsymbol{\gamma}+\boldsymbol{m}(\boldsymbol{x}) \cdot \boldsymbol{\Gamma}+M
$$

$$
\boldsymbol{m}(x)
$$

- The explicit construction is as follows.
- Let $H_{0 D}$ be a $0 d$ Hamiltonian. We have the successive isomorphic maps:

$$
\begin{array}{ll}
0 d \rightarrow 1 d: & H_{1 D}=-i \partial_{1} \sigma_{y}+x_{1} \sigma_{x}+H_{0 D} \sigma_{z} \\
1 d \rightarrow 2 d: & H_{2 D}=-i \partial_{2} s_{y}+x_{2} s_{x}+H_{1 D} s_{z} \\
2 d \rightarrow 3 d: & H_{3 D}=-i \partial_{3} \mu_{y}+x_{3} \mu_{x}+H_{2 D} \mu_{z}
\end{array}
$$

The homomorphism $f: K_{\mathrm{AI}} \rightarrow K$

- Let K_{AI} be the abelian group generated by atomic insulators exactly at the point group center.
- Not every $0 d$ Hamiltonian $H_{0 D}$ in K_{AI} is pinned at the point group center, since some combination of atomic orbitals can go far away without breaking the point group symmetry.
- We define the homomorphism

$$
f: K_{\mathrm{AI}} \rightarrow K
$$

by neglecting the hedgehog-mass potential $\boldsymbol{m}(\boldsymbol{x}) \cdot \boldsymbol{\Gamma}$ in the $d D$ Hamiltonian $H_{d D}$,

$$
H_{d D}=-i \boldsymbol{\partial} \cdot \boldsymbol{\gamma}+\boldsymbol{m}(\boldsymbol{x}) \cdot \boldsymbol{\Gamma}+M \mapsto H_{d D}^{\prime}=-i \boldsymbol{\partial} \cdot \boldsymbol{\gamma}+H_{0 D} \Gamma_{0}
$$

- The image of f has the physical meaning of the Jackiw-Rossi bound state pinned at the point group center, i.e., the d th-order Tls/TSCs. Thus,

$$
K^{(d)}=\operatorname{Im} f
$$

- It is easy to compute the group K_{AI}, which is just the K-group of reps of the point group G with the data $\left(\phi_{g}, c_{g}, z_{g, h}\right)$.
- Thus, we conclude that the group $K^{(d)}$ of d th-order Tls/TSCs is computed canonically.
- Therefore, one can in principle compute the quotient $K / K^{(d)}$, the group composed of surface gapless states, by the irreducible character.
- For $3 d$:

- The explicit form of the homomorphism f for $3 d$ is given in [KS].
- For instance, for an irrep β of K_{AI}, the $3 d$ winding number detecting a direct summand \mathbb{Z} in K belonging to the irrep α of G_{0}, is given by

$$
\begin{aligned}
& \left.w_{3 d}\right|_{\beta \rightarrow \alpha}=\frac{1}{\left|G_{0}\right|} \sum_{\substack{g \in G, \phi_{g}=c_{g}=-p_{g}=1}} \tilde{\chi}_{\alpha}^{+}(g)^{*} \times 2 \cos \frac{\theta_{g}}{2} \\
& \times\left\{\begin{array}{l}
\chi_{\beta}(g) \\
\chi_{\beta}(g)+\chi_{\underline{a}(\beta)}(g) \\
\chi_{\beta}(g)-\chi_{\underline{b}(\beta)}(g) \\
\chi_{\beta}(g)-\chi_{\underline{a b}(\beta)}(g) \\
\chi_{\beta}(g)+\chi_{\underline{a}(\beta)}(g)-\chi_{\underline{b}(\beta)}(g)-\chi_{\underline{a b}(\beta)}(g)
\end{array}\right. \\
& \text { for A, AI, } \\
& \text { for All, } \mathrm{A}_{T} \text {, } \\
& \text { for } \mathrm{D}, \mathrm{C}, \mathrm{~A}_{C}, \mathrm{Al}_{C}, \mathrm{BDI}, \mathrm{Cl} \text {, } \\
& \text { for AllI, } \mathrm{A}_{\Gamma} \text {, } \\
& \text { for } \mathrm{A}_{T . C}, \text { Alll }_{T}, \mathrm{D}_{T}, \text { DIII, } \mathrm{All}_{C}, \mathrm{CII}, \mathrm{C}_{T} \text {. }
\end{aligned}
$$

- See [KS] for the detail.
- What I want to empathize is that the homomorphism f can be computed by the data ($G, O_{g}, \phi_{g}, c_{g}, z_{g, h}$) and the irreducible character.

The classification of spherical surface states

- Along the line of the above thought, one can compute the classification of gapless states on $(d-1) D$ sphere $S^{d-1}=\partial B^{d}$, the boundary states of $d D$ TIs/TSCs over the d-ball B^{d}.
- In [KS], I summarized the complete list of the surface states of $3 d$

Tls/TSCs for 122 magnetic point group symmetry.

- Ex: SCs in spinful systems.

MPG	Ker ϕ	Irrep	EAZ	$K_{0}^{G}\left(\mathbb{R}^{3}\right)$	Free $K / K^{\prime \prime \prime}$	Tor $K / K^{\prime \prime \prime}$
1	1	A	$\{\mathrm{D}\}$	0	0	$\}$
11^{\prime}	1	A	$\{\mathrm{DIII}\}$	\mathbb{Z}	1	$\}$
$\overline{1}$	$\overline{1}$	A_{g}	$\{\mathrm{BDI}\}$	0	0	$\}$
$\overline{1}$	$\overline{1}$	A_{u}	$\{\mathrm{DIII}\}$	\mathbb{Z}	0	$\{4\}$
$\overline{1} 1^{\prime}$	$\overline{1}$	A_{g}	$\left\{\mathrm{D}_{T}\right\}$	0	0	$\}$
$\overline{1} 1^{\prime}$	$\overline{1}$	A_{u}	$\{\mathrm{DIII}\}$	$\mathbb{Z}^{\times 2}$	1	$\{4\}$
\vdots						
$m \overline{3} m^{\prime}$	$m \overline{3}$	A_{g}	$\left\{\mathrm{D}_{T}^{2}, \mathrm{DIII}\right\}$	\mathbb{Z}	0	$\}$
$m \overline{3} m^{\prime}$	$m \overline{3}$	E_{g}	$\left\{\mathrm{D}_{T}^{2}, \mathrm{DIII}\right\}$	\mathbb{Z}	0	$\}$
$m \overline{3} m^{\prime}$	$m \overline{3}$	A_{u}	$\left\{\mathrm{DIII}^{5}\right\}$	$\mathbb{Z}^{\times 5}$	3	$\}$
$m \overline{3} m^{\prime}$	$m \overline{3}$	E_{u}	$\left\{\mathrm{DIII}^{5}\right\}$	$\mathbb{Z}^{\times 5}$	3	$\}$
$m^{\prime} \overline{3}^{\prime} m^{\prime}$	432	A_{1}	$\left\{\mathrm{D}^{10}\right\}$	0	0	$\}$
$m^{\prime} \overline{3}^{\prime} m^{\prime}$	432	A_{2}	$\left\{\mathrm{D}^{2}, \mathrm{~A}_{C}\right\}$	0	0	$\}$

Ex: SCs with TRS and inversion symmetry ($\overline{1} 1^{\prime}$)

- Even parity SCs (A_{g} rep) $\Rightarrow K / K^{\prime \prime \prime}=0$.
- No surface state.
- Odd parity SCs (A_{u} rep) $\Rightarrow K / K^{\prime \prime \prime}=\mathbb{Z} \times \mathbb{Z}_{4}$.
- $\mathbb{Z}: 2 d$ Majorana-Weyl surface states.
- \mathbb{Z}_{4} : generated by the helical henge Majorana state. Doubling it yields to $0 d$ Majorana bound state.

Summary

- Using the Cornfeld-Chapman's trick, we completed the classification of topological insulators/superconductors with point group symmetry.
- By identifying the atomic insulators at the point group center and $d D$ Dirac Hamiltonians with hedgehog-mass potential with a unit winding number, one can compute the group $K^{(d)}$ of d th-order TIs/TSCs from the irreducible character.
- We presented the complete list of the effective AZ classes for insulators/superconductors with 122 magnetic point group and their surface states.

