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Adiabatic cycle in unique gapped ground states

» An adiabatic cycle is a periodic one-parameter family of Hamiltonians H () with unique
gapped ground state |¥(6)) in a many-body system.

H(), 0e€]l0,2n], H(2m)= H(0),
H(0) [¥(0)) = Ecs(0) [¥(0)) .

» One of the motivation to study such cycles, not just a Hamiltonian, is to study the
“higher-dimensional homotopy" of the “space of unique gapped ground states”.

=
/ -/EX/‘teA/ S:ateg / ’ S'\’ME’_ o l,m?z_m,
/ / / / / / // a_qr{;@i %-\,OW\ A S‘fo-'tag"

[Ty Gorourd_state Tam)y

[Ty

3/32



Thouless pump
» An adiabatic cycle in 1D systems with U(1) symmetry

IN.H(®)] =0, N= an

> Given a unique gapped ground state |¥) with U(1) symmetry, one can define a
U (1)-valued quantity (polarization)

¢ 2ming

'O ~ (V| Upwist | W) € U(1), Upwist = e=i=1 " ¢

» This implies that the “space of unique gapped ground states” has a “vortex” characterized

by 7.
» For a given cycle |T(6)), one can define the Z invariant as the U(1) phase winding of the
polarization
! de € Z.
v=
o ()

> Physically, v is the U(1) charge pumped by a period of adiabatic cycle.

4/32



Adiabatic cycle in general

» One can think of adiabatic cycles in generic systems:

> Generic space dimensions
» Fermion and Boson (spin systems)
> Any onsite symmetry (time-reversal, Z3 Ising, U(1), etc.)

> We want to address the following questions:

» Do non-trivial adiabatic cycles exist?
> If there is, how are they classified?
» Can we have a topological invariant of adiabatic cycles?

> For free fermions (with transnational invariance), the K-theory tells us
the classification of adiabatic cycles in dD is the same as the classification of gapped
unique ground states in (d — 1)D.

—n(Sl A Sd) ~ K—(n—l)(sd) ~ K—n(Sd—l)_
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()-spectrum proposal by Kitaev
Kitaev proposed a generic topological structure behind the unique gapped ground states.

» Let F; be the “space of dD unique gapped ground states”.

» The sequence of the spaces {E;}qez forms an Q-spectrum of the generalized cohomology
theory. Namely, there is a homotopy equivalence

QFEg41 ~ Ey,
where
QE411 = {[¥(0)) € Eaa| [¥(27)) = [¥(0)) = [1) }

is the (based) loop space of E41. (1) is a trivial tensor
product state.)

» Implication: The adiabatic cycles in (d 4+ 1)D are classified by the SPT phases in dD.
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Canonical adiabatic cycle
» There is a canonical construction of the adiabatic cycle in (d 4+ 1)D for a given unique
gapped ground state |x) in dD.
» There should be the inverse state |) such that |x) ® |x) ~ |1) ® |1).

> Applying this homotopy to the tensor product state --- ® |x) ® |x) ® - -+ in (d + 1)D, we
have an adiabatic cycle with the pumped state |x) / |¥) at the left/right edge.

L+l

» This gives a map Eg — QFE441. I'm not sure an inverse map QF 11 — Fy is constructed
and the homotopy equivalence is proven.
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Motivation

» Adiabatic cycles in any space dimensions and any symmetry groups.

» To give models of adiabatic cycles in many-body systems, especially, for quantum spin
systems. (The canonical adiabatic cycle introduced above is too simple...)

» |s there any “geometric quantity” like the polarization e*© for generic adiabatic cycles?
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Adiabatic cycles of 1D spin systems (spin chains) with Z, symmetry

» For a simple setting for the many-body problem, let me start with the spin system with
onsite Zo symmetry.

» What is the classification of adiabatic cycles of spin chains with Zy symmetry?

H(@) = ZG(Q)SJZ + b(g)(Sf)z + C(G)stjz_i_l + d(H)SJ . Sj+1 + 6(9)(5] . Sj+1)2 + -y
J
V=725 [V,H]=0.

» The adiabatic cycles are supposed to be classified by Zs, the classification of Zy charge.
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A toy model

» As a simple model of the Zy spin pump, we consider the spin chain with spin 1/2 dofs at
each site and introduce the ground state parameterized by 6 as in

0
|‘Ife>:ZeQNdW|“'UjUj+1"'>, oj € {1}
{o;}

where Ny, is the number of domain walls, which is defined by

1—o0%0%
Jj-j+1
Nagw = E _

ttd Vit tt{d it

» The periodicity of § seems to be 47, however, on the closed chain w/ PBC or APBC, the
number of domain walls is even/odd, implying that the periodicity of 8 is 27.
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To be precise, the parent Hamiltonian Hy is 2m-periodic.
The ground state |Uy) is given by the local unltary (finite time time evolution of a local
Hamiltonian) which gives the (1) factor e to each domain wall.

|Wo) =Up |-+ —— - - z:el2 Naw |ogioipn ),

{oi}
0 1— KT] U]+1
SICEE
The parent Hamiltonian Hg is also given by the local unitary

Hy =UgHoU;', Ho=—Y o

The parent Hamiltonian Hy is found to be 27-periodic, as in

_ rzrr—1
= UgO'j U9
1+ cosf 1—cosf
_ T z T _z e z Y Y _z
= 57 5 05-1979541 + 2bln9(aj_1aj + 007 )-

This model has a Zy symmetry defined by the m-rotation around the z-axis.

Vi, = HU;”.
J
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Edge ambiguity of the local unitary
» The local unitary Uy again seems not to be 27-periodic.
» If we rewrite Uy as

+ola

6 ; 20 1+r7 1-0% N
He Y05 etf0—t— @4 o7 NHe“g =:U9,

the 27-periodicity Uy is evident. Uy assign the U(1) phase e only on the configuration

™.

eiG 1 0 1

ttd Vit tt{d it

» However, Ug differs from Uy on an open chain. In other words, the local unitary Uy has
ambiguity in the local unitary near the edge.

» Later, we will see Uy has good properties for our purpose.

12/32



Local unitary on an open chain

» Let us consider the open chain j =1,..., N.

» We shall define two different local unitaries

N-1
ﬁl—crjajz-+1
Uy = ez 2 ,
Jj=1
- N-1 1+0% 1—07 4
0 J J+
Uy = e 2 T,
j=1

which are related by an edge term.

» They have different properties under Z, and 27-periodicity.

» Uy is Zy symmetric as V7, UQVZ;1 = Uy, but breaks the 27-periodicity at the edge
Usr ~ 0i0%.

» Uy breaks Z, symmetry at the edge, but preserves the 27-periodicity.

> Later, we use Uy for creating the texture Hamiltonian.
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Edge state
» On the open chain, the Hamiltonian is like
HG _ gulk + H;dge.

> ng“‘ is the sum of local Hamiltonians strictly inside the bulk, i.e.,
N-1
bulk __ 0
HpM = - " BY.
=2

d . . .
> H,°*° can be any local Hamiltonian near the edge, which we see some examples later.

» The ground state is four-fold degenerate from the edge free spins. The relative U(1)
phases are fixed, for example, as

N-1 2]
1+ B?
[Wg(or,0n)) = ] 5 lon T ton).
Jj=2
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Edge Zy symmetry
» On the ground state manifold, the Zs symmetry action is found to be

.n01+0
Vi, [Wo(or,on)) = €2 [Wy(—01,—on)), o1,0n € £1.

> By introducing the spin operators ¢/', 5/ acting on the ground state manifold
|Yg(0o1,0n)), the effective Zo symmetry is written as a separated form for each edge, as
for 1D SPT phases.

VY ~ e
> WWe stress that the overall U(1) phase of the left Zy action v¢ has no physical meaning.
The separated Zs action should be regarded as a projective representation of Zs.
> As no nontrivial projective representation of Zs exists H?(Za,U (1)) = 0, the effective Z
action can be a linear representation for a 6. In fact, the gauge choice v/ = €957 is
linear (v%)? = 1.
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The Zs invariant
> However, the gauge choice v/ = e%alzéf is not 2m-periodic.
» If we enforce the 2m-periodicity of vle, we realize that we can not have a linear
representation of Zs. For example, the gauge choice

I
vl =72 g7

gives us (vf)? = e¥1.

» We come up with the existence of the Zs invariant that prevents a 2m-periodic linear
representation.

» Let wy € U(1) be the 27-periodic two-cocycle (factor system) of the projective
representation of Zs defined by

(U?)Z = U.}gl.

The Zs invariant is defined by the parity of the phase winding of the two-cocycle.

1
Vi= — fdlogwg mod 2.
211

» The Zs-ness is because a redefinition vf) — vl‘)

function changes v by an even integer.

ap with ag a 2m-periodic U (1)-valued
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Zs charge pump

» Since any 2m-periodic one-dimensional projective representation of Zs has the trivial Z,
invariant ¥ = 0, we conclude the following:

» If the Zs invariant v is nontrivial v = 1, then the edge state can not be a unique state for
all theta.

» To demonstrate it we consider the following edge Hamiltonian
Hgdge = —\07 — AnoR.

» The first-order effective edge Hamiltonian becomes
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» We have the level crossing at some 6.
» And also, the edge Zs charge flips after a period of cycle.
» So it is reasonable to call this the Zs charge pump.

Eedge(e)
(=-1 (=-1
¢=1 ¢=1
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Texture induced Zs charge

» Another feature of nontrivial adiabatic cycle is the texture induced Zs charge.
» We modify the Hamiltonian, which is the sum of local terms BY?, so that the local terms
BY vary in the space as

0
Htexture = - Z Bj (J)a
J

with 6(x) a real function which varies from 0 to 27 in an interval.

» Interestingly, for our model, we can prove a texture indeed has the Zy charge.
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» Recall that our model is made with the local unitary

1—c%c%

0~ "j g+1
S
» We may try to introduce a kind of twist operator
i6(4) l—az.gz.+1
0] = HET — 5=
J

to make the texture Hamiltonian by
Htexture = U[H]HOU[G]_:L

» By the design of Uy, this construction preserves Zy symmetry.

» However, this does not work for a closed chain, due the absence of the 27-periodicity of

i 1— CYJU]+1

local unitary operator e T
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» Let's see the detail of this point for the closed chain where the N + 1 and 1 sites are

identified.
» Let 6(z) is a function with boundaries #(1) = 0 and §(N) = 27. Accordingly, the twist

like operator is given by

N 2z
i0() 17959541
Ul = I | e 2 T .
j=1

> The local terms BY* = U[f]ojU[6] " are found to be not smooth at j = 1.

J
0(j—1 0(j 0(i—1 0(j
B;x = cos G=1 cos —(2‘7)02” —sin U 5 ) sin —(;)aj_la}”ojﬂ
(-1 0(j (i —1 0(j
+ sin (]2 ) cos %) 5107 + cos (12 ) sin %)0;40;-“

forj=2,...,N and
O(N) 01) , . 6(N) . 6(1)

BY™ = cos —5 €08 —~07 —sin——sin Tofvafaé
O(N 0(1 O(N 01
+sin%cos %af\, !+ sgsin Qa%aj.
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To make the texture Hamiltonian smooth, we have to insert the Z, charged operator o7
at site 1.
The “true” twist operator is

Utwist == CTTU[H],

and the smooth texture Hamiltonian is Hiexture = UtwistHOUt:\,list-

Utea

Since U[6] preserves the Zs charge VZQU[G]VZ;1 = Ul#)], we find that the twist operator
Uiwist has nontrivial Zy charge from the inserted charged operator

—1
VZZ Uv‘cwistvvz2 = —Utwist-

The ground state of the texture Hamiltonian Hiexture is given by |Piexture) = Uswist | Vo),
we conclude that a texture of 6 has the Zy charge.
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Short summary and the rest plan of this talk

» We can define a Zy invariant from the two-cocycle of the edge symmetry action.

— Given a (d + 1)-cocycle which is 27-periodic, we can define a set of invariants taking
values in H¥1(G, 7).

» Using the local unitary Uy which is G-symmetric but is not 2m-periodic on the boundary,
one can make the twist operator to introduce a spatial texture that varies from 0 to 2.

— The Bockstein homomorphism H(G,U(1)) — H (G, Z) gives us a local unitary Up
for the adiabatic cycle in (d + 1)D for the Chen-Gu-Liu-Wen construction, which is known
constrcution by . By using this exactly solvable model, we can show that a
texture traps the SPT phase of dimension one lower.
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Topological invariants of adiabatic cycles

» Given a dD non-chiral unique gapped ground state |¥g), one in principle may extract the
(d 4 1)-cocyele wy € Z4T1(G,U(1)), by, for example, the Else-Nayak approach.

» With wy, one can introduce the set of Z invariants

1
n(gi,---s9d+1) = i j{dwa(gh ooy 9dy1) € Z.

» A part of Z invariants is meaningless, since ambiguity of the (d + 1)-cocycle from the
(d + 1)-coboundary also gives the set of Z invaraints. Let ay € C%(G,U(1)) be a
d-cochian. The trivialized Z invariants are given by the differential dm of the windings of
Qs

1
m(gl,...,gd):%%dag(gl,...,gd)ez.

» In other words, the topological invaraint of adiabatic cycle takes a value in the group
cohomology with Z coefficient

H¥YG, 7) = 271G, 2) /BTG, 7).
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Bockstein homomorphism
» The Bockstein homomorphism
HYG,U(1)) — H™(G,7)
gives us a concrete way for an exactly solvable lattice model by Chen-Gu-Liu-Wen

construction, as explained below.
» Given a homogeneous d-cocyle

v(go, -+, ga) = €091 € ZU@,U(1)),
which we want to pump, we introduce a lift

R/27Z > ¢u(go,---,94) — (iy(go, ...,9d4) € R.

» From the cocycle condition of v, the differential idgg,, is a (d+ 1)-cocycle of Z coefficient

1 -
%(d%)(go, - gar1) € Z7NG,Z).
» We introduce a 27-periodic (d 4 1)-cocycle by

Véd"‘l) — e%(dqgu)(go ----- ga+1)

» We apply the Chen-Gu-Liu-Wen construction to Véd+1).
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Chen-Gu-Liu-Wen construction

> Let X4 be a space manifold with a triangulation and a branching structure.

/Hg:ge%@c\%\(].

» We introduce the local Hilbert space spanned by the group elements |g € G) equippied
with the G action g |h) = |gh) on each site.

» In this Hilbert space, we define the local unitary

Uy = 37 [T etreaDtammtom ot {g;}) {g;}
g5} Ad

where the product [] .. runs over all the d-simplices, s(A?) € +1 represents the
orientation of A?, and g, € G is a reference group element.
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Group cohomology construction of adiabatic cycles

Uy = Z o 32 s(AM)(ddy) (g+,90----94) {g; 1) {gi},
{g;} Ad
> By design,f]e is 2m-periodic even in the presence of boundary.
» However, Uy breaks G symmetry on the boundary of X, as well as local unitaries of static
SPTs. ~
» Instead, we employ an alternative local form. The R-valued (d + 1)-cocycle d¢, can be
written as

d(gl/(g*ag(% cee 7gd) = élj(‘q()?glv DRI agd) - (dOé)(go, SRR 7gd)

with a(go, ..., gd—-1) = gz,,(g*, 9o, --,9d—1) a (d — 1)-cocyle.
» The coboundary term da is canceled out with adjacent d-simplices. Therefore, the local
unitary

= Y [ etreaortooa) 14,1 ({g;}]

{g;} A?

gives the same action for the bulk dofs as Uy.
» Uy is exactly the same local unitary by . 2732



= S [ etre@Doetoman 1{g,1) ({g;}

{5} Ad

It turns out that Uy breaks the 27-periodicity only on the boundary, and the remaining
local unitary on the boundary is that for (d — 1)D SPT phase of v € Z4(G,U(1))

Use = Ubay@) = Y. T] #9000, 001" {an}) (a1

{gneox,} Ad=1€d X,

In this sense, the local unitary Uy pumps the (d — 1)D SPT phase on the boundary.

Uy is G symmetric even in the presence of boundary
9Usg~" = Up.
Moreover, for an arbitrary function 6 : {A%} — R, the space-dependent local unitary
A0 (AN ( )
Ule) =Y T s a0 mmaed {g;}) ({g,
{g;} Ad

is G-symmetric.
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Texture induced SPT phase

» We also can construct an exactly solvable model of the texture Hamiltonian.

> As for 1D cases, we first introduce a function 6 : {A?} — [0, 27] which can have jumps
21 — 0 somewhere, and Let M, 1 be the codimension 1 surface on which 8 jumps from
27 to 0.

» Introduce the twist operator of the form

Utwist - U(Mdfl)ilU[e]a

io(ad dy 7
vl = 3 [T "0 g,) (g}

{gjex, } AdeXqy

UMa1) = > I] w900 900" Hgnd) Hgadl-

{gnemy_1} Ad=teMy 20/32



» We can show that the twist Hamiltonian defined by UtwistHOUt;,list traps the SPT phase
one dimension lower, by explicitly computing how G symmetry acts on the ground state

manifold of the system with boundary.

» The ground state manifold |¥({gnecax,})) is explicitly written as

(U ({gneox.}))
_s(Ad-1 w(Ad)S dy 7
= ) I g0, igaa) @) [ e o@D 0sa) {3 {g,}),
{9jex,} A471eMay AdeXy
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» from which we can explicitly compute how the G symmetry acts on the boundary states
| ({gneoax,})). In doing so, it turns out that the nontrivial G action is only on the
boundary OMy_1 of My_1. We have the following form

9% {gneox,})) = Noma—.(9)Sox.(9) [¥({gn}) (1)

where Nypr,_, and Spx, are local unitaries acting on dMy—1 and 90X, respectively, as in
Sox,(9) [¥({g.}) = [¥({g9.}) (2)
Noatas @) 1®Uga}y =TI (9099490, 9a-2)" "N W({ga}) . (3)

Ad=2€dMg_1

» The local unitary Nanr,_, (9)Sax,(g) (restricted to dMy—1) is known as an anomalous
symmetry action of the boundary of (d — 1)D SPT phase with v € Z4(G,U(1)s). (For
example, see )

» Thus, we conclude that the texture Hamiltonian Hiexture traps the (d — 1)D SPT phase
on the codimension 1 surface M;_1.
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Summary

» For adiabatic cycles of quantum spin systems, the topological invariant is the U(1) phase
winding numbers

1
n=— ¢ dloguwy
2w
of the 2m-periodic (d + 1)-cocycle wy € Z9+1(G,U(1)). The equivalence class [n] takes a
value in the group cohomology H*!(G,7Z).

» By tracing the Bockstein homomorphism H¢(G,U(1)) = H*!(G,Z), we can construct a
local unitary of adiabatic cycles, which is the same one by

» With the group cohomology model, we have checked the desired properties of the
adiabatic cycles: we showed that the local unitary pumps the SPT phase on the
boundary , and the texture Hamiltonian traps the SPT phase in one dimension
lower.

32/32



Matrix product state

» The Matrix Product State (MPS) is quite useful tool to describe unique gapped ground
states in spin chains.

» For simplicity, we assume translational symmetry.

» A matrix product state defined by a collection of matrices {4,,} is written as

[W({An})) ZTr A Ay [ mymgn ).
{m;}
Here, A,;, = [A;]ap are D x D matrices with m = 1,...,dim?#; the indices of the local

Hilbert space #;, and af stands for the bond Hilbert space. D measures the
entanglement between two sites.
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Injective MPS and uniqueness

» Unique gapped ground states are described by injective MPSs. (Short-range correlation,
and no cat states.)

» The only property of injective MPS we use is the following.
Lemma )
Two injective MPSs |U({A,})) and |¥({A.})) represent the same state iff there exists
e € U(1) and W € U(D) such that
Ay = eXWTA,,W.

Here, X is unique and W' is unique up to a U(1) phase.

» This is a kind of gauge choice of an MPS. Physical consequences should be independent
of this gauge choice.
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The Rice-Mele model

» A nontrivial Thouless pump is good illustrated by the Rice-Mele model.
» Free fermion model with nearest neighbor hopping with the staggered amplitude ¢ + § and
t — §, and the staggered potential A.

6
H= Z( (alaj + h.c) + A1) ala;.
(el (tB)2  (t+8)2 (t-3)/2 (t+B)2  (t-D)/2
—-O0—0—C0——0—
A -A A -A

[b] 0
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