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Adiabatic cycle in unique gapped ground states
I An adiabatic cycle is a periodic one-parameter family of Hamiltonians H(θ) with unique

gapped ground state |Ψ(θ)〉 in a many-body system.

H(θ), θ ∈ [0, 2π], H(2π) = H(0),

H(θ) |Ψ(θ)〉 = EGS(θ) |Ψ(θ)〉 .
I One of the motivation to study such cycles, not just a Hamiltonian, is to study the

“higher-dimensional homotopy” of the “space of unique gapped ground states”.
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Thouless pump
I An adiabatic cycle in 1D systems with U(1) symmetry

[N,H(θ)] = 0, N =
∑
j

nj .

I Given a unique gapped ground state |Ψ〉 with U(1) symmetry, one can define a
U(1)-valued quantity (polarization) [Resta]

eiΘΨ ∼ 〈Ψ |Utwist |Ψ〉 ∈ U(1), Utwist = e
∑`
j=1

2πinj
` .

I This implies that the “space of unique gapped ground states” has a “vortex” characterized
by π1.

I For a given cycle |Ψ(θ)〉, one can define the Z invariant as the U(1) phase winding of the
polarization

ν =
1

2πi

∮
dΘΨ(θ) ∈ Z.

I Physically, ν is the U(1) charge pumped by a period of adiabatic cycle.
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Adiabatic cycle in general

I One can think of adiabatic cycles in generic systems:
I Generic space dimensions
I Fermion and Boson (spin systems)
I Any onsite symmetry (time-reversal, Z2 Ising, U(1), etc.)

I We want to address the following questions:
I Do non-trivial adiabatic cycles exist?
I If there is, how are they classified?
I Can we have a topological invariant of adiabatic cycles?

I For free fermions (with transnational invariance), the K-theory tells us [Teo-Kane]:
the classification of adiabatic cycles in dD is the same as the classification of gapped
unique ground states in (d− 1)D.

K−n(S1 ∧ Sd) ∼= K−(n−1)(Sd) ∼= K−n(Sd−1).
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Ω-spectrum proposal by Kitaev

Kitaev proposed a generic topological structure behind the unique gapped ground states.
[Kitaev, 11, 13, 15]

I Let Ed be the “space of dD unique gapped ground states”.

I The sequence of the spaces {Ed}d∈Z forms an Ω-spectrum of the generalized cohomology
theory. Namely, there is a homotopy equivalence

ΩEd+1 ∼ Ed,

where

ΩEd+1 =
{
|Ψ(θ)〉 ∈ Ed+1| |Ψ(2π)〉 = |Ψ(0)〉 = |1〉

}
is the (based) loop space of Ed+1. [Xiong, Gaiotto–Johnson-Freyd] (|1〉 is a trivial tensor
product state.)

I Implication: The adiabatic cycles in (d+ 1)D are classified by the SPT phases in dD.
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Canonical adiabatic cycle
I There is a canonical construction of the adiabatic cycle in (d+ 1)D for a given unique

gapped ground state |χ〉 in dD. [Kitaev]

I There should be the inverse state |χ̄〉 such that |χ〉 ⊗ |χ̄〉 ∼ |1〉 ⊗ |1〉.
I Applying this homotopy to the tensor product state · · · ⊗ |χ〉 ⊗ |χ̄〉 ⊗ · · · in (d+ 1)D, we

have an adiabatic cycle with the pumped state |χ〉 / |χ̄〉 at the left/right edge.

I This gives a map Ed → ΩEd+1. I’m not sure an inverse map ΩEd+1 → Ed is constructed
and the homotopy equivalence is proven. cf. Gaiotto–Johnson-Freyd
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Motivation

I Adiabatic cycles in any space dimensions and any symmetry groups.

I To give models of adiabatic cycles in many-body systems, especially, for quantum spin
systems. (The canonical adiabatic cycle introduced above is too simple...)

I Is there any “geometric quantity” like the polarization eiΘ for generic adiabatic cycles?
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Adiabatic cycles of 1D spin systems (spin chains) with Z2 symmetry

I For a simple setting for the many-body problem, let me start with the spin system with
onsite Z2 symmetry.

I What is the classification of adiabatic cycles of spin chains with Z2 symmetry?

H(θ) =
∑
j

a(θ)Sxj + b(θ)(Sxj )2 + c(θ)Sxj S
x
j+1 + d(θ)Sj · Sj+1 + e(θ)(Sj · Sj+1)2 + · · · ,

V = eiπ
∑
j S

x
j , [V,H] = 0.

I The adiabatic cycles are supposed to be classified by Z2, the classification of Z2 charge.
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A toy model
I As a simple model of the Z2 spin pump, we consider the spin chain with spin 1/2 dofs at

each site and introduce the ground state parameterized by θ as in

|Ψθ〉 =
∑
{σj}

e
iθ
2 Ndw |· · ·σjσj+1 · · ·〉 , σj ∈ {↑, ↓},

where Ndw is the number of domain walls, which is defined by

Ndw =
∑
j

1− σzjσzj+1

2
.

I The periodicity of θ seems to be 4π, however, on the closed chain w/ PBC or APBC, the
number of domain walls is even/odd, implying that the periodicity of θ is 2π.
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I To be precise, the parent Hamiltonian Hθ is 2π-periodic.
I The ground state |Ψθ〉 is given by the local unitary (finite time time evolution of a local

Hamiltonian) which gives the U(1) factor e
iθ
2 to each domain wall.

|Ψθ〉 = Uθ |· · · →→ · · ·〉 ∼
∑
{σj}

e
iθ
2 Ndw |· · ·σjσj+1 · · ·〉 ,

Uθ =
∏
j

e
iθ
2

1−σzj σ
z
j+1

2 ,

I The parent Hamiltonian Hθ is also given by the local unitary

Hθ = UθH0U
−1
θ , H0 = −

∑
j

σxj .

I The parent Hamiltonian Hθ is found to be 2π-periodic, as in

Bθj = Uθσ
x
j U
−1
θ

=
1 + cos θ

2
σxj −

1− cos θ

2
σzj−1σ

x
j σ

z
j+1 +

1

2
sin θ(σzj−1σ

y
j + σyj σ

z
j+1).

I This model has a Z2 symmetry defined by the π-rotation around the x-axis.

VZ2 =
∏
j

σxj .

11 / 32



Edge ambiguity of the local unitary

I The local unitary Uθ again seems not to be 2π-periodic.

I If we rewrite Uθ as

Uθ =
∏
j

e−
iθ
4 σ

z
j eiθ

1+σzj
2

1−σzj+1
2 e

iθ
4 σ

z
j+1 ∼

∏
j

eiθ
1+σzj

2

1−σzj+1
2 =: Ũθ,

the 2π-periodicity Ũθ is evident. Ũθ assign the U(1) phase eiθ only on the configuration
↑↓.

I However, Ũθ differs from Uθ on an open chain. In other words, the local unitary Uθ has
ambiguity in the local unitary near the edge.

I Later, we will see Uθ has good properties for our purpose.
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Local unitary on an open chain

I Let us consider the open chain j = 1, . . . , N .

I We shall define two different local unitaries

Uθ =

N−1∏
j=1

e
iθ
2

1−σzj σ
z
j+1

2 ,

Ũθ =

N−1∏
j=1

eiθ
1+σzj

2

1−σzj+1
2 ,

which are related by an edge term.

I They have different properties under Z2 and 2π-periodicity.

I Uθ is Z2 symmetric as VZ2
UθV

−1
Z2

= Uθ, but breaks the 2π-periodicity at the edge
U2π ∼ σz1σzN .

I Ũθ breaks Z2 symmetry at the edge, but preserves the 2π-periodicity.

I Later, we use Uθ for creating the texture Hamiltonian.
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Edge state

I On the open chain, the Hamiltonian is like

Hθ = Hbulk
θ +Hedge

θ .

I Hbulk
θ is the sum of local Hamiltonians strictly inside the bulk, i.e.,

Hbulk
θ = −

N−1∑
j=2

Bθj .

I Hedge
θ can be any local Hamiltonian near the edge, which we see some examples later.

I The ground state is four-fold degenerate from the edge free spins. The relative U(1)
phases are fixed, for example, as

|Ψθ(σ1, σN )〉 =

N−1∏
j=2

1 +Bθj
2

|σ1 ↑ · · · ↑ σN 〉 .
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Edge Z2 symmetry
I On the ground state manifold, the Z2 symmetry action is found to be

VZ2 |Ψθ(σ1, σN )〉 = eiθ
σ1+σN

2 |Ψθ(−σ1,−σN )〉 , σ1, σN ∈ ±1.

I By introducing the spin operators σ̄µ1 , σ̄
µ
N acting on the ground state manifold

|Ψθ(σ1, σN )〉, the effective Z2 symmetry is written as a separated form for each edge, as
for 1D SPT phases. [Pollmann–Berg–Turner–Oshikawa, Chen–Gu–Wen,

Schuch–Pérez-Garćıa–Cirac]

PθVZ2
Pθ = e

iθ
2 σ̄

z
1 σ̄x1 · e

iθ
2 σ̄

z
N σ̄xN .

I Let us focus on the effective Z2 symmetry on the left.

vθl ∼ e
iθ
2 σ̄

z
1 σ̄x1 .

I We stress that the overall U(1) phase of the left Z2 action vθl has no physical meaning.
The separated Z2 action should be regarded as a projective representation of Z2.

I As no nontrivial projective representation of Z2 exists H2(Z2, U(1)) = 0, the effective Z2

action can be a linear representation for a θ. In fact, the gauge choice vθl = e
iθ
2 σ̄

z
1 σ̄x1 is

linear (vθl )2 = 1.
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The Z2 invariant
I However, the gauge choice vθl = e

iθ
2 σ̄

z
1 σ̄x1 is not 2π-periodic.

I If we enforce the 2π-periodicity of vθl , we realize that we can not have a linear
representation of Z2. For example, the gauge choice

vθl = eiθ
1+σ̄z1

2 σ̄x1

gives us (vθl )2 = eiθ1.
I We come up with the existence of the Z2 invariant that prevents a 2π-periodic linear

representation.
I Let ωθ ∈ U(1) be the 2π-periodic two-cocycle (factor system) of the projective

representation of Z2 defined by

(vθl )2 = ωθ1.

The Z2 invariant is defined by the parity of the phase winding of the two-cocycle.

ν :=
1

2πi

∮
d logωθ mod 2.

I The Z2-ness is because a redefinition vθl 7→ vθl αθ with αθ a 2π-periodic U(1)-valued
function changes ν by an even integer.
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Z2 charge pump

I Since any 2π-periodic one-dimensional projective representation of Z2 has the trivial Z2

invariant ν ≡ 0, we conclude the following:

I If the Z2 invariant ν is nontrivial ν ≡ 1, then the edge state can not be a unique state for
all theta.

I To demonstrate it we consider the following edge Hamiltonian

Hedge
θ = −λ1σ

x
1 − λNσxN .

I The first-order effective edge Hamiltonian becomes

PθH
edge
θ Pθ = −λ1 cos

θ

2
e−

iθ
4 σ̄

z
1 σ̄x1 e

iθ
4 σ̄

z
1 − λN cos

θ

2
e−

iθ
4 σ̄

z
N σ̄xNe

iθ
4 σ̄

z
N .
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I We have the level crossing at some θ.

I And also, the edge Z2 charge flips after a period of cycle.

I So it is reasonable to call this the Z2 charge pump.
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Texture induced Z2 charge

I Another feature of nontrivial adiabatic cycle is the texture induced Z2 charge.

I We modify the Hamiltonian, which is the sum of local terms Bθj , so that the local terms

Bθj vary in the space as

Htexture = −
∑
j

B
θ(j)
j ,

with θ(x) a real function which varies from 0 to 2π in an interval.

I Interestingly, for our model, we can prove a texture indeed has the Z2 charge.
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I Recall that our model is made with the local unitary

Uθ =
∏
j

e
iθ
2

1−σzj σ
z
j+1

2 .

I We may try to introduce a kind of twist operator

U [θ] =
∏
j

e
iθ(j)

2

1−σzj σ
z
j+1

2

to make the texture Hamiltonian by

Htexture = U [θ]H0U [θ]−1.

I By the design of Uθ, this construction preserves Z2 symmetry.

I However, this does not work for a closed chain, due the absence of the 2π-periodicity of

local unitary operator e
iθ
2

1−σzj σ
z
j+1

2 .
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I Let’s see the detail of this point for the closed chain where the N + 1 and 1 sites are
identified.

I Let θ(x) is a function with boundaries θ(1) = 0 and θ(N) = 2π. Accordingly, the twist
like operator is given by

U [θ] =

N∏
j=1

e
iθ(j)

2

1−σzj σ
z
j+1

2 .

I The local terms Btx
j = U [θ]σxj U [θ]−1 are found to be not smooth at j = 1.

Btx
j = cos

θ(j − 1)

2
cos

θ(j)

2
σxj − sin

θ(j − 1)

2
sin

θ(j)

2
σzj−1σ

x
j σ

z
j+1

+ sin
θ(j − 1)

2
cos

θ(j)

2
σzj−1σ

y
j + cos

θ(j − 1)

2
sin

θ(j)

2
σyj σ

z
j+1

for j = 2, . . . , N and

Btx
1 = cos

θ(N)

2
cos

θ(1)

2
σx1 − sin

θ(N)

2
sin

θ(1)

2
σzNσ

x
1σ

z
2

+ sin
θ(N)

2
cos

θ(1)

2
σzNσ

y
1 + cos

θ(N)

2
sin

θ(1)

2
σy1σ

z
2 .
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I To make the texture Hamiltonian smooth, we have to insert the Z2 charged operator σz1
at site 1.

I The “true” twist operator is

Utwist = σz1U [θ],

and the smooth texture Hamiltonian is Htexture = UtwistH0U
−1
twist.

延灤
"

I Since U [θ] preserves the Z2 charge VZ2U [θ]V −1
Z2

= U [θ], we find that the twist operator
Utwist has nontrivial Z2 charge from the inserted charged operator

VZ2
UtwistV

−1
Z2

= −Utwist.

I The ground state of the texture Hamiltonian Htexture is given by |Ψtexture〉 = Utwist |Ψ0〉,
we conclude that a texture of θ has the Z2 charge.
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Short summary and the rest plan of this talk

I We can define a Z2 invariant from the two-cocycle of the edge symmetry action.

→ Given a (d+ 1)-cocycle which is 2π-periodic, we can define a set of invariants taking
values in Hd+1(G,Z).

I Using the local unitary Uθ which is G-symmetric but is not 2π-periodic on the boundary,
one can make the twist operator to introduce a spatial texture that varies from 0 to 2π.

→ The Bockstein homomorphism Hd(G,U(1))→ Hd+1(G,Z) gives us a local unitary Uθ
for the adiabatic cycle in (d+ 1)D for the Chen-Gu-Liu-Wen construction, which is known
constrcution by Roy–Harper (17). By using this exactly solvable model, we can show that a
texture traps the SPT phase of dimension one lower.

23 / 32



Topological invariants of adiabatic cycles
I Given a dD non-chiral unique gapped ground state |Ψθ〉, one in principle may extract the

(d+ 1)-cocyele ωθ ∈ Zd+1(G,U(1)), by, for example, the Else–Nayak approach.

I With ωθ, one can introduce the set of Z invariants

n(g1, . . . , gd+1) =
1

2πi

∮
dωθ(g1, . . . , gd+1) ∈ Z.

I A part of Z invariants is meaningless, since ambiguity of the (d+ 1)-cocycle from the
(d+ 1)-coboundary also gives the set of Z invaraints. Let αθ ∈ Cd(G,U(1)) be a
d-cochian. The trivialized Z invariants are given by the differential dm of the windings of
αθs

m(g1, . . . , gd) =
1

2πi

∮
dαθ(g1, . . . , gd) ∈ Z.

I In other words, the topological invaraint of adiabatic cycle takes a value in the group
cohomology with Z coefficient

Hd+1(G,Z) = Zd+1(G,Z)/Bd+1(G,Z).

24 / 32



Bockstein homomorphism
I The Bockstein homomorphism

Hd(G,U(1))→ Hd+1(G,Z)

gives us a concrete way for an exactly solvable lattice model by Chen-Gu-Liu-Wen
construction, as explained below.

I Given a homogeneous d-cocyle

ν(g0, . . . , gd) = eiφν(g0,...,gd) ∈ Zd(G,U(1)),

which we want to pump, we introduce a lift

R/2πZ 3 φν(g0, . . . , gd)→ φ̃ν(g0, . . . , gd) ∈ R.

I From the cocycle condition of ν, the differential 1
2πdφ̃ν is a (d+ 1)-cocycle of Z coefficient

1

2π
(dφ̃ν)(g0, . . . , gd+1) ∈ Zd+1(G,Z).

I We introduce a 2π-periodic (d+ 1)-cocycle by

ν
(d+1)
θ := e

iθ
2π (dφ̃ν)(g0,...,gd+1).

I We apply the Chen-Gu-Liu-Wen construction to ν
(d+1)
θ .
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Chen-Gu-Liu-Wen construction
I Let Xd be a space manifold with a triangulation and a branching structure.

なま𥻘利
。
傘崎ぶ憑っ籤「

I We introduce the local Hilbert space spanned by the group elements |g ∈ G〉 equippied
with the G action ĝ |h〉 = |gh〉 on each site.

I In this Hilbert space, we define the local unitary

Ũθ =
∑
{gj}

∏
∆d

e
iθ
2π s(∆

d)(dφ̃ν)(g∗,g0....,gd) |{gj}〉 〈{gj}| ,

where the product
∏

∆d runs over all the d-simplices, s(∆d) ∈ ±1 represents the
orientation of ∆d, and g∗ ∈ G is a reference group element.
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Group cohomology construction of adiabatic cycles Roy–Harper

Ũθ =
∑
{gj}

∏
∆d

e
iθ
2π s(∆

d)(dφ̃ν)(g∗,g0....,gd) |{gj}〉 〈{gj}| ,

I By design, Ũθ is 2π-periodic even in the presence of boundary.
I However, Ũθ breaks G symmetry on the boundary of Xd, as well as local unitaries of static

SPTs.
I Instead, we employ an alternative local form. The R-valued (d+ 1)-cocycle dφ̃ν can be

written as

dφ̃ν(g∗, g0, . . . , gd) = φ̃ν(g0, g1, . . . , gd)− (dα)(g0, . . . , gd)

with α(g0, . . . , gd−1) = φ̃ν(g∗, g0, . . . , gd−1) a (d− 1)-cocyle.
I The coboundary term dα is canceled out with adjacent d-simplices. Therefore, the local

unitary

Uθ =
∑
{gj}

∏
∆d

e
iθ
2π s(∆

d)φ̃ν(g0,...,gd) |{gj}〉 〈{gj}|

gives the same action for the bulk dofs as Ũθ.
I Uθ is exactly the same local unitary by Roy–Harper 17. 27 / 32



Uθ =
∑
{gj}

∏
∆d

e
iθ
2π s(∆

d)φ̃ν(g0,...,gd) |{gj}〉 〈{gj}|

I It turns out that Uθ breaks the 2π-periodicity only on the boundary, and the remaining
local unitary on the boundary is that for (d− 1)D SPT phase of ν ∈ Zd(G,U(1))

U2π = Ubdy(ν) =
∑

{gn∈∂Xd}

∏
∆d−1∈∂Xd

ν(g∗, g0, . . . , gd−1)s(∆
d−1) |{gn}〉 〈{gn}| .

I In this sense, the local unitary Uθ pumps the (d− 1)D SPT phase on the boundary.
Potter–Morimoto, Roy–Harper

I Uθ is G symmetric even in the presence of boundary

ĝUθĝ
−1 = Uθ.

I Moreover, for an arbitrary function θ : {∆d} → R, the space-dependent local unitary

U [θ] =
∑
{gj}

∏
∆d

e
iθ(∆d)

2π s(∆d)φ̃ν(g0,...,gd) |{gj}〉 〈{gj}|

is G-symmetric.
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Texture induced SPT phase
I We also can construct an exactly solvable model of the texture Hamiltonian.
I As for 1D cases, we first introduce a function θ : {∆d} → [0, 2π] which can have jumps

2π → 0 somewhere, and Let Md−1 be the codimension 1 surface on which θ jumps from
2π to 0.

I Introduce the twist operator of the form

Utwist = U(Md−1)−1U [θ], が鐵薊※
U [θ] =

∑
{gj∈Xd}

∏
∆d∈Xd

e
iθ(∆d)

2π s(∆d)φ̃ν(g0,...,gd) |{gj}〉 〈{gj}| ,

U(Md−1) =
∑

{gn∈Md−1
}

∏
∆d−1∈Md−1

ν(g∗, g0, . . . , gd−1)s(∆
d−1) |{gn}〉 〈{gn}| .
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I We can show that the twist Hamiltonian defined by UtwistH0U
−1
twist traps the SPT phase

one dimension lower, by explicitly computing how G symmetry acts on the ground state
manifold of the system with boundary.

I The ground state manifold |Ψ({gn∈∂Xd})〉 is explicitly written as

|Ψ({gn∈∂Xd})〉

=
∑
{gj∈X̊d}

∏
∆d−1∈Md−1

ν(g∗, g0, . . . , gd−1)−s(∆
d−1)

∏
∆d∈Xd

e
iθ(∆d)

2π s(∆d)φ̃ν(g0,...,gd) |{gj}, {gn}〉 ,
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I from which we can explicitly compute how the G symmetry acts on the boundary states
|Ψ({gn∈∂Xd})〉. In doing so, it turns out that the nontrivial G action is only on the
boundary ∂Md−1 of Md−1. We have the following form

ĝ |Ψ({gn∈∂Xd})〉 = N∂Md−1
(g)S∂Xd(g) |Ψ({gn}〉 (1)

where N∂Md−1
and S∂Xd are local unitaries acting on ∂Md−1 and ∂Xd, respectively, as in

S∂Xd(g) |Ψ({gn}〉 = |Ψ({ggn}〉 , (2)

N∂Md−1
(g) |Ψ({gn}〉 =

∏
∆d−2∈∂Md−1

ν(g∗, gg∗, g0, . . . , gd−2)|∆
d−2| |Ψ({gn}〉 . (3)

I The local unitary N∂Md−1
(g)S∂Xd(g) (restricted to ∂Md−1) is known as an anomalous

symmetry action of the boundary of (d− 1)D SPT phase with ν ∈ Zd(G,U(1)s). (For
example, see Else–Nayak)

I Thus, we conclude that the texture Hamiltonian Htexture traps the (d− 1)D SPT phase
on the codimension 1 surface Md−1.
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Summary

I For adiabatic cycles of quantum spin systems, the topological invariant is the U(1) phase
winding numbers

n =
1

2πi

∮
d logωθ

of the 2π-periodic (d+ 1)-cocycle ωθ ∈ Zd+1(G,U(1)). The equivalence class [n] takes a
value in the group cohomology Hd+1(G,Z).

I By tracing the Bockstein homomorphism Hd(G,U(1)) ∼= Hd+1(G,Z), we can construct a
local unitary of adiabatic cycles, which is the same one by Roy–Harper.

I With the group cohomology model, we have checked the desired properties of the
adiabatic cycles: we showed that the local unitary pumps the SPT phase on the
boundary Roy–Harper, and the texture Hamiltonian traps the SPT phase in one dimension
lower.
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Matrix product state

I The Matrix Product State (MPS) is quite useful tool to describe unique gapped ground
states in spin chains.

I For simplicity, we assume translational symmetry.

I A matrix product state defined by a collection of matrices {Am} is written as

|ψ({Am})〉 =
∑
{mj}

Tr[· · ·AmjAmj+1
· · · ] |· · ·mjmj+1 · · ·〉 .

Here, Am = [Am]αβ are D ×D matrices with m = 1, . . . ,dimHj the indices of the local
Hilbert space Hj , and αβ stands for the bond Hilbert space. D measures the
entanglement between two sites.
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Injective MPS and uniqueness

I Unique gapped ground states are described by injective MPSs. (Short-range correlation,
and no cat states.)

I The only property of injective MPS we use is the following.

Lemma
Two injective MPSs |Ψ({Am})〉 and |Ψ({Ãm})〉 represent the same state iff there exists
eiχ ∈ U(1) and W ∈ U(D) such that

Ãm = eiχW †AmW.

Here, eiχ is unique and W is unique up to a U(1) phase.

I This is a kind of gauge choice of an MPS. Physical consequences should be independent
of this gauge choice.
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The Rice-Mele model
I A nontrivial Thouless pump is good illustrated by the Rice-Mele model.
I Free fermion model with nearest neighbor hopping with the staggered amplitude t+ δ and
t− δ, and the staggered potential ∆.

H =
∑
j

(
t

2
+ (−1)j

δ

2

)
(a†jaj + h.c.) + ∆(−1)ja†jaj .
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