Higher Berry structure of matrix product states

Ken Shiozaki 塩崎謙
Yukawa Institute of Theoretical Physics，Kyoto University
June 20， 2023 ＠NTU

with
Niclas Heinsdorf（MPI Stuttgart and UBC Vancouver），
Shuhei Ohyama（YITP，Kyoto），
Ref：arXiv：2305．08109．
Related papers：
－Adam Artymowicz，Anton Kapustin，Nikita Sopenko，arXiv：2305．06399．
－Marvin Qi，David T．Stephen，Xueda Wen，Daniel Spiegel，Markus J．Pflaum，Agnés Beaudry， Michael Hermele，arXiv：2305．07700．

Berry phase Berry, 84

- The Berry phase is a $U(1)$-valued quantity defined from a one-parameter family of pure states in a 0 -dim system, a quantum mechanical system.
- Consider a one-parameter family of normalized states $|\psi(x)\rangle \in \mathbb{C}^{N},\langle\psi(x) \mid \psi(x)\rangle=1$, a circle $x \in C \cong S^{1}$.
- We introduce a triangulation $|C|=\left\{\left[x_{j}, x_{j+1}\right]\right\}_{j=1}^{n}$ of C.
- Because two nearest-neighbor states $\left|\psi\left(x_{j}\right)\right\rangle$ and $\left|\psi\left(x_{j+1}\right)\right\rangle$ are "close" to each other, implying $\left\langle\psi\left(x_{j}\right) \mid \psi\left(x_{j+1}\right)\right\rangle \neq 0$, the $U(1)$ phase of the inner product $\left\langle\psi\left(x_{j}\right) \mid \psi\left(x_{j+1}\right)\right\rangle$ is well-defined.

Cont.

- For $|C|$, one can define a $U(1)$-valued quantity

$$
e^{i \gamma(|C|)}:=\prod_{j=1}^{n} \frac{\left\langle\psi\left(x_{j}\right) \mid \psi\left(x_{j+1}\right)\right\rangle}{\left|\left\langle\psi\left(x_{j}\right) \mid \psi\left(x_{j+1}\right)\right\rangle\right|} \in U(1) .
$$

- $e^{i \gamma(|C|)}$ is manifestly invariant under gauge transformations $\left|\psi\left(x_{j}\right)\right\rangle \mapsto\left|\psi\left(x_{j}\right)\right\rangle e^{i \xi_{j}}$.
- The Berry phase is defined as the limit

$$
e^{i \gamma(C)}=\lim _{\left|x_{j}-x_{j+1}\right| \rightarrow 0} e^{i \gamma(|C|)} .
$$

- In numerical calculations, the lattice formula $e^{i \gamma(|C|)}$ is usually sufficient.

Berry "flux"

- Similarly, there is a lattice definition of the Berry curvature (field strength).
- For a 2-simplex $\Delta^{2}=(012)$ in the parameter space \mathcal{M}, we define the "Berry flux" $e^{i F\left(\Delta^{2}\right)}$ as the Berry phase of the boundary of Δ^{2}.

$$
e^{i F\left(\Delta^{2}\right)}:=e^{i \gamma\left(\partial \Delta^{2}\right)} .
$$

- If the 2-simplex Δ^{2} is small enough, the flux piercing Δ^{2} is small $e^{i F\left(\Delta^{2}\right)} \sim 1$.
- Thus, $F\left(\Delta^{2}\right)$ can be considered as a \mathbb{R}-valued quantity $F\left(\Delta^{2}\right) \in \mathbb{R}$.

(figure from wikipedia)

Chern number

- For a 2-submanifold $\Sigma \subset \mathcal{M}$ and its fixed triangulation $|\Sigma|$, a \mathbb{Z}-valued quantity (the first Chern number in the limit of $\operatorname{Area}\left(\Delta^{2}\right) \rightarrow 0$), is defined.

$$
\nu(|\Sigma|)=\frac{1}{2 \pi} \sum_{\Delta^{2} \in|\Sigma|} F\left(\Delta^{2}\right) \in \mathbb{Z}
$$

- The quantization $\nu(|\Sigma|) \in \mathbb{Z}$ is manifest:

$$
e^{2 \pi i \nu(|\Sigma|)}=\prod_{\Delta^{2} \in|\Sigma|} e^{i \gamma\left(\partial \Delta^{2}\right)} \equiv 1
$$

To 1-dim invertible states in quantum spin systems

- We want to discuss generalizing the story above to invertible (\cong short-range entangled \cong unique gapped) states in 1-dim quantum spin systems.
- The essential difference is that a 1-dim system is inherently infinite-dimensional:

$$
\mathcal{H}_{\text {total }}=\bigotimes_{x \in \mathbb{Z}} \mathcal{H}_{x}, \quad \mathcal{H}_{x} \cong \mathbb{C}^{d} .
$$

- One can try the same definition of the Berry phage in 0-dim systems to 1 -dim systems but with finite system size with length L.
- However, the inner product between two different invertible states decays exponentially

$$
\left\langle\psi \mid \psi^{\prime}\right\rangle \sim e^{-\alpha L} .
$$

- So the $U(1)$ phase is of $\left\langle\psi \mid \psi^{\prime}\right\rangle$ might be numerically ill-defined...
- This suggests we must reconstruct the "higher Berry phase" in a way suitable for 1-dim infinite systems.

Kapustin=Spodyneiko

- Kapustin and Spodyneiko proposed "higher Berry curvature" in d-dim systems.

PHYSICAL REVIEW B 101, 235130 (2020)

Higher-dimensional generalizations of Berry curvature

Anton Kapustin ${ }^{*}$ and Lev Spodyneiko ${ }^{\dagger}{ }^{\dagger}$
California Institute of Technology, Pasadena, California 91125, USA
(0) (Received 20 February 2020; accepted 14 May 2020; published 11 June 2020)

- In the form of correlation functions of the local Hamiltonians h_{x} and its external derivatives $d h_{x}$, they constructed a $\Omega^{(d+2)}(\mathcal{M})$-valued quantity $((d+2)$-differential form), a generalization of the Berry curvature in d-dim.
- I am not going into detail, but let me explain the relationship with the Ω-spectrum structure of the space of invertible states.

Ω-spectrum proposal [Kitaev, 11, 13, 15, ... in videos]

- A proposal on the topological structure behind the space of invertible states.
- Let F_{d} be the "space of d-dim invertible states" (which has not been rigorously defined yet).
- Proposal: The sequence of the spaces $\left\{F_{d}\right\}_{d \in \mathbb{Z}}$ forms an Ω-spectrum of the generalized cohomology theory. Namely, there is a homotopy equivalence

$$
\Omega F_{d+1} \sim F_{d}
$$

where

$$
\left.\Omega F_{d+1}=\left\{S^{1} \rightarrow F_{d+1}| | \Psi(0)\right\rangle=|\Psi(2 \pi)\rangle=|1\rangle\right\}
$$

is the based loop space of F_{d+1}. (|1 \rangle is a trivial tensor product state.)

- Physically, ΩF_{d+1} is the "space of adiabatic cycles in $(d+1)$-dim".
- Implication: The adiabatic cycles in $(d+1)$-dim are classified by the invertible phases in d-dim.

$$
\pi_{0}\left(\Omega F_{d+1}\right)=\pi_{0}\left(F_{d}\right) .
$$

This is consistent with physics: Thouless pump, Floquet cycle,...

- For free fermions, $\pi_{0}\left(\Omega^{k} F_{d+k}\right)=\pi_{0}\left(F_{d}\right)$ is well-established [Teo-Kane '10].

What is the space of invertible states in 1-dim quantum spin systems? puzzle

- For 0-dim,

$$
E_{0} \sim \mathbb{C} P^{N-1}\left(=\mathbb{C}^{N} / \mathbb{C}^{\times}\right) \hookrightarrow \mathbb{C} P^{\infty}=B U(1) \sim K(\mathbb{Z}, 2)
$$

the classifying space of $U(1)$. The embedding is given by

$$
\psi=\left(\psi_{1}, \ldots \psi_{N}\right) \mapsto\left(\psi_{1}, \ldots, \psi_{N}, 0\right)
$$

- If the Ω-spectrum structure is true,

$$
E_{0} \sim \Omega E_{1} \quad \Rightarrow \quad E_{1} \sim K(\mathbb{Z}, 3)
$$

is consistent.

- What is $K(\mathbb{Z}, 3)$?
\rightarrow the classifying space of infinite projective unitary group $B P U(\infty) \sim K(\mathbb{Z}, 3)$.
- Where is $P U(\infty)$-bundle structure in 1-dim invertible states?
- A family of matrix product states (MPSs) is a $P U(D)$-bundle.

Haegeman=Mariën=Osborne=Verstraete 14

- MPS should be a good starting point.

Matrix product state (MPS) Vidal, Perez-Garcia=Verstraete=Wolf=Cirac

- Total Hilbert space:

$$
\mathcal{H}_{\text {total }}^{(L)}=\bigotimes_{x=1}^{L} \mathcal{H}_{x}, \quad \mathcal{H}_{x}=\mathbb{C}^{N} .
$$

- A pure state $|\psi\rangle \in \mathcal{H}_{\text {total }}^{(L)}$ is specified by the wave function

$$
|\psi\rangle=\sum_{i_{1}, \ldots, i_{L}} \psi\left(i_{1}, \ldots, i_{L}\right)\left|i_{1} \cdots i_{L}\right\rangle .
$$

- The MPS representation is a way to write the wave function $\psi\left(i_{1}, \ldots, i_{L}\right)$ in the following form:

$$
\psi\left(i_{1}, \ldots, i_{L}\right)=\operatorname{tr}\left[A^{[1] i_{1}} \cdots A^{[L] i_{L}}\right] .
$$

Here, $\left\{A^{[x] i_{x}}\right\}_{x=1}^{N}$ is set of $D_{j} \times D_{j+1}$ matrices.

- An MPS representation is given by successive singular value decompositions from left to right.

Translational invariant MPS Perez-Garcia=Verstraete=Wolf=Cirac

- Let \hat{T}_{r} be the translation operator

$$
\hat{T}_{r}\left|i_{1} \cdots i_{L}\right\rangle=\left|i_{2} \cdots i_{L} i_{1}\right\rangle .
$$

- Fact. Translation invariant state $\hat{T}_{r}|\psi\rangle=|\psi\rangle$ has a translational invariant MPS representation

$$
|\psi\rangle=\left|\left\{A^{i}\right\}_{i}\right\rangle_{L}:=\sum_{i_{1}, \ldots, i_{L}} \operatorname{tr}\left[A^{i_{1}} \cdots A^{i_{L}}\right]\left|i_{1} \cdots i_{L}\right\rangle .
$$

- In the rest of this talk, I focus only on translational invariant states and MPSs.
- (D-MPS) A D-MPS is the set of $D \times D$ matrices

$$
\left\{A^{i}\right\}_{i=1}^{N}, \quad A^{i} \in \operatorname{Mat}_{D \times D}(\mathbb{C})
$$

D is called the bond dimension.

Injective MPS Perez-Garcia=Verstraete=Wolf=Cirac

- D-MPS may be a cat state, a superposition of macroscopically different states.
- To remove such MPSs, we impose "injectivity" on MPS:
- (Transfer matrix) We introduce the transfer matrix $T \in \operatorname{End}\left(\operatorname{Mat}_{D \times D}(\mathbb{C})\right.$) by

$$
T(X):=\sum_{i=1}^{N} A^{i} X A^{i \dagger}
$$

- (Injectivity) D-MPS is injective iff
(i) The largest eigenvalue λ_{0} of T in magnitude $|\lambda|$ is unique, and its eigenspace is non-degenerate.
(ii) The corresponding eigenvector X is positive $X>0$.
- T is completely positive $\rightarrow \lambda_{0}>0$ (positive real number).
- If D-MPS is injective, the correlation function decays exponentially.

$$
\left\langle\hat{O}_{x} \hat{O}_{y}^{\prime}\right\rangle-\left\langle\hat{O}_{x}\right\rangle\left\langle\hat{O}_{y}^{\prime}\right\rangle \sim e^{-|x-y| / \xi}, \quad \xi=-1 / \log \left(\left|\lambda_{1}\right| /\left|\lambda_{0}\right|\right),
$$

where λ_{1} is the second largest eigenvalue in magnitude.
\rightarrow "invertible" state.

Canonical form Perez-Garcia=Verstraete=Wolf=Cirac

- (Canonical form) A D-MPS is in the canonical form when

$$
\sum_{i=1}^{N} A^{i} A^{i \dagger}=1_{D} \quad \text { and } \quad \sum_{i=1}^{N} A^{i \dagger} \Lambda^{2} A^{i}=\Lambda^{2}
$$

hold, where Λ is a positive-definite diagonal matrix whose entries are the Schmidt eigenvalues and satisfy $\operatorname{tr}\left[\Lambda^{2}\right]=1$.

- This is a normalization condition for MPSs.
- Remark. Injective D-MPS can be in the canonical form:

$$
\begin{aligned}
& \sum_{i=1}^{N} A^{i} X A^{i \dagger}=\lambda_{0} X \quad \Rightarrow \quad \sum_{i=1}^{N}\left(\frac{1}{\sqrt{\lambda_{0}}} X^{-1 / 2} A^{i} X^{1 / 2}\right)\left(\frac{1}{\sqrt{\lambda_{0}}} X^{-1 / 2} A^{i} X^{1 / 2}\right)^{\dagger}=1_{D} \\
& \sum_{i=1}^{N} A^{i \dagger} Y_{0} A^{i}=Y_{0}, Y_{0}=U^{\dagger} \Lambda^{2} U \quad \Rightarrow \quad \sum_{i=1}^{N}\left(U A^{i \dagger} U^{\dagger}\right) \Lambda^{2}\left(U^{\dagger} A^{i} U\right)^{\dagger}=\Lambda^{2}
\end{aligned}
$$

- In the rest of my talk, I assume D-MPSs are injective and in the canonical form.

Gauge structure of MPS Perez-Garcia=Verstraete=Wolf=Cirac

- Theorem. (Fundamental theorem of MPS.) For two D-MPSs $\left\{A_{0}^{i}\right\}_{i=1}^{N},\left\{A_{1}^{i}\right\}_{i=1}^{N}$ with the matrices of the Schmidt eigenvalues Λ_{0} and Λ_{1}, if ${ }^{\exists} L>c D^{4}(c=O(1))$ and ${ }^{\exists} e^{i \alpha} \in U(1)$ s.t. $\left|\left\{A_{0}^{i}\right\}_{i}\right\rangle_{L}=e^{i \alpha}\left|\left\{A_{1}^{i}\right\}_{i}\right\rangle_{L}$, then ${ }^{\exists 1} e^{i \theta_{01}} \in U(1)$ and ${ }^{\exists} V_{01} \in U(D)$ s.t.

$$
A_{0}^{i}=e^{i \theta_{01}} V_{01} A_{1}^{i} V_{01}^{\dagger}, \quad i=1, \ldots N, \quad \text { and } \quad V_{01} \Lambda_{1}=\Lambda_{0} V_{01} .
$$

Here, V_{01} is unique up to $U(1)$ phases.

- The matrix V_{01} is unique as an element of the projective unitary group

$$
P U(D)=U(D) /\left(V_{01} \sim e^{i \beta} V_{01}\right) .
$$

- Thus, a family of D-MPS over a parameter space \mathcal{M} is a $U(1) \times P U(D)$ bundle over \mathcal{M}.
- Remark. $U(1)$ part is from 0-dim nature because we are considering translational invariant MPSs.

Charastristic class of $P U(D)$ bundle Grothendieck 66

- Let's consider a D-MPS bundle over \mathcal{M}.
- Let $\left\{U_{\alpha}\right\}_{\alpha}$ be a good cover of \mathcal{M}. ${ }^{1}$
- On two patch intersections $U_{\alpha \beta}=U_{\alpha} \cap U_{\beta}$, we have transition functions $\left(e^{i \theta_{\alpha \beta}(x)}, V_{\alpha \beta}(x)\right)$ by

$$
A_{\beta}^{i}(x)=e^{i \theta_{\alpha \beta}(x)} V_{\alpha \beta}^{\dagger}(x) A_{\alpha}^{i}(x) V_{\alpha \beta}(x) .
$$

- Over $x \in U_{\alpha \beta \gamma}=U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$, consider two deformations ($x \in U_{\alpha \beta \gamma}$ is omitted)

$$
A_{\gamma}^{i}=e^{i \theta_{\alpha \gamma}} V_{\alpha \gamma}^{\dagger} A_{\alpha}^{i} V_{\alpha \gamma}, \quad A_{\gamma}^{i}=e^{i \theta_{\beta \gamma}} V_{\beta \gamma}^{\dagger} A_{\beta}^{i} V_{\beta \gamma}=e^{i \theta_{\beta \gamma}} e^{i \theta_{\alpha \beta}} V_{\beta \gamma}^{\dagger} V_{\alpha \beta}^{\dagger} A_{\alpha}^{i} V_{\alpha \beta} V_{\beta \gamma},
$$

and using the uniqueness of $V_{\alpha \gamma}$, we have the 1-cocycle condition for $\left\{V_{\alpha \beta}\right\}_{\alpha \beta}$:

$$
V_{\alpha \beta}(x) V_{\beta \gamma}(x)=e^{i \phi_{\alpha \beta \gamma}(x)} V_{\alpha \gamma}(x), \quad{ }^{\exists} e^{i \phi_{\alpha \beta \gamma}(x)} \in U(1), \quad x \in U_{\alpha \beta \gamma} .
$$

- The formula Ohyama=Ryu, 2304.05356.:

$$
e^{i \phi_{\alpha \beta \gamma}(x)}=\operatorname{tr}\left[\Lambda_{\alpha}^{2}(x) V_{\alpha \beta}(x) V_{\beta \gamma}(x) V_{\gamma \alpha}(x)\right] .
$$

[^0]
cont.

- There is a consistency condition on $e^{i \phi_{\alpha \beta \gamma}(x)} . V_{\alpha \beta}\left(V_{\beta \gamma} V_{\gamma \delta}\right)=\left(V_{\alpha \beta} V_{\beta \gamma}\right) V_{\gamma \delta}$ gives us

$$
e^{i \phi_{\alpha \beta \delta}(x)} e^{i \phi_{\beta \gamma \delta}(x)}=e^{i \phi_{\alpha \beta \gamma}(x)} e^{i \phi_{\alpha \gamma \delta}(x)}, \quad x \in U_{\alpha \beta \gamma \delta},
$$

meaning that $e^{i \phi_{\alpha \beta \gamma}(x)}$ is a 2-cocycle in $\check{Z}^{2}(\mathcal{M}, U(1))$.

- The change of $\mathrm{U}(1)$ phase $V_{\alpha \beta}(x) \mapsto V_{\alpha \beta}(x) e^{i \xi_{\alpha \beta}(x)}$ leads the equivalence relation by the 2-coboundary $e^{i \phi} \sim e^{i \phi} \delta e^{i \xi}$. Thus, $\left[e^{i \phi_{\alpha \beta \gamma}(x)}\right] \in \check{H}^{2}(\mathcal{M}, \underline{U(1)})$.
- Take a lift $\mathbb{R} / 2 \pi \mathbb{Z} \ni \phi_{\alpha \beta \gamma}(x) \rightarrow \tilde{\phi}_{\alpha \beta \gamma}(x) \in \mathbb{R}$, we have a \mathbb{Z}-valued 3-cocycle

$$
c=\frac{1}{2 \pi} \delta \tilde{\phi} \in \check{Z}^{3}(\mathcal{M}, \mathbb{Z})
$$

and its equivalence class (from choices of lifts) is the characteristic class (Dixmier-Douady class) of $P U(D)$-bundle

$$
[c] \in \check{H}^{3}(\mathcal{M}, \mathbb{Z})
$$

cont.

- However, $[c]$ never represents a free part of $\check{H}^{3}(\mathcal{M}, \mathbb{Z})$.
- This is because we can choose $V_{\alpha \beta}(x)$ to be a $S U(D)$ matrix by using the $U(1)$ phase freedom. In doing so, the 2-cocycle $e^{i \phi_{\alpha \beta \gamma}(x)}$ is quantized to a \mathbb{Z}_{D}-value

$$
e^{i \phi_{\alpha \beta \gamma(x)}} \in \mathbb{Z}_{D}=\left\{\left.e^{\frac{2 \pi i p}{D}} \right\rvert\, p=0, \ldots, D-1\right\}
$$

resulting in

$$
D \times[c]=0 \in \check{H}^{3}(\mathcal{M}, \mathbb{Z})
$$

- Therefore, D-MPS bundle can provide only the D-torsion part of $H^{3}(\mathcal{M}, \mathbb{Z})$,

$$
\left\{x \in H^{3}(\mathcal{M}, \mathbb{Z}) \mid D x=0\right\} .
$$

- cf. See Ohyama=Terashima=KS for an explicit construction of MPS when $\mathcal{M}=\mathbb{R} P^{2} \times S^{1}$ and $\mathcal{M}=L(3,1) \times S^{1}$.

Is constant bond dimension D physically reasonable?

- No.
- The bond dimension D is just a parameter to represent a true gapped state $|\psi\rangle$ with an MPS $|\mathrm{MPS}\rangle$ with an error $\langle\psi \mid \mathrm{MPS}\rangle=1-\epsilon$.
- Even in the class of MPSs with finite bond dimensions (like AKLT state), it is easy to make a continuous path from different bond dimensions:

$$
|\psi(t)\rangle=(1-t)|D-\mathrm{MPS}\rangle+t\left|D^{\prime}-\mathrm{MPS}\right\rangle .
$$

- It is natural to think of a family of MPS over \mathcal{M} whose bond dimension D_{x} is also a function over \mathcal{M}.
- In this talk, the interest is a lattice formulation of the higher Berry phase. We introduce a triangulation $|\mathcal{M}|$ of \mathcal{M}.
- Input: a set of D_{p}-MPSs over the vertices p of $|\mathcal{M}|$.

What is the "measure" of the space of MPSs?

- How to estimate the distance between two MPSs?
- For the purpose of making the higher Berry phase, a measure may be given by the spectrum of the mixed transfer matrix.
- For physically different D_{0}-MPS $\left\{A_{0}^{i}\right\}_{i=1}^{N}$ and D_{1}-MPS $\left\{A_{1}^{i}\right\}_{i=1}^{N}$, we define the mixed transfer matrix $T_{01} \in \operatorname{End}\left(\operatorname{Mat}_{D_{0} \times D_{1}}(\mathbb{C})\right)$ by

$$
T_{01}(X):=\sum_{i=1}^{N} A_{0}^{i} X A_{1}^{i \dagger}
$$

- If two MPSs are physically "close" to each other, the spectrum of T_{01} should resemble the spectra of transfer matrices for each.

$$
T_{00}(X)=\sum_{i=1}^{N} A_{0}^{i} X A_{0}^{i \dagger}, \quad T_{11}(X)=\sum_{i=1}^{N} A_{1}^{i} X A_{1}^{i \dagger} .
$$

- In particular, the largest eigenvalue λ_{01} of T_{01} in magnitude $|\lambda|$ is unique, its eigenspace is non-degenerate, $\left|\lambda_{01}\right| \sim 1$, and there is a finite gap $|\lambda|<\left|\lambda_{01}\right|-|\delta \lambda|$ for $\lambda \neq \lambda_{01}$.

"Overlap matrix" V_{01}

- Let V_{01} be the eigenvector with $\lambda=\lambda_{01}$ of the mixed transfer matrix T_{01}, namely,

$$
\sum_{i=1}^{N} A_{0}^{i} V_{01} A_{1}^{i \dagger}=\lambda_{01} V_{01}, \quad V_{01} \in \operatorname{Mat}_{D_{0} \times D_{1}}(\mathbb{C})
$$

- We can fix $V_{10}=V_{01}^{\dagger}$.
- The matrix V_{01} plays the role of the inner product $\left\langle\psi\left(x_{j}\right) \mid \psi\left(x_{j+1}\right)\right\rangle$ in the discrete Berry phase formula in 0-dim.
- cf. V_{01} is nothing but the transition function when $\left\{A_{0}^{i}\right\}_{i}$ and $\left\{A_{1}^{i}\right\}_{i}$ represent the same physical state.
- There are two types of gauge transformation of V_{01} :
(i) $V_{01} \rightarrow W_{0} V_{01} W_{1}^{\dagger}$.

This comes from the gauge transformations of MPSs $A_{n}^{i} \rightarrow e^{i \theta_{n}} W_{n}^{\dagger} A_{n}^{i} W_{n}, n=0,1$.
(ii) $V_{01} \rightarrow z V_{01}$ with $z \in \mathbb{C}^{\times}$.

This is because the eigenvalue equation $T_{01}\left(V_{01}\right)=\lambda_{01} V_{01}$ does not fix the overall \mathbb{C} number of V_{01}.

2-cocycle and weighting by Schmidt eigenvalues

- Let's construct a gauge invariant quantity from the set of $V_{01} s$!
- Before we do so, we return to the cases of physically equivalent three MPSs. For physically equivalent three D-MPSs $\left\{A_{0}^{i}\right\}_{i},\left\{A_{1}^{i}\right\}_{i},\left\{A_{2}^{i}\right\}_{i}$ with the matrices of Schmidt eigenvalues $\Lambda_{0}, \Lambda_{1}, \Lambda_{2}$, the 2-cocycle $e^{i \phi_{012}}$ is given by

$$
e^{i \phi_{012}}=\operatorname{tr}\left[\Lambda_{0}^{2} V_{01} V_{12} V_{20}\right] .
$$

- This is not symmetric in the labels $0,1,2$. A more symmetric expression that is suitable for physically different MPSs is

$$
e^{i \phi_{012}}=\operatorname{tr}\left[\Lambda_{0}^{\frac{2}{3}} V_{01} \Lambda_{1}^{\frac{2}{3}} V_{12} \Lambda_{2}^{\frac{2}{3}} V_{20}\right] .
$$

- We employ this formula for MPSs, which are physically different but close to each other.

Higher Berry connection

- For a 2 -simplex $\Delta^{2}=(012)$ of the discretized parameter space $|\mathcal{M}|$, we define a $U(1)$-valued quantity

$$
e^{i \phi_{012}}:=\frac{\operatorname{tr}\left[\Lambda_{0}^{\frac{2}{3}} V_{01} \Lambda_{1}^{\frac{2}{3}} V_{12} \Lambda_{2}^{\frac{2}{3}} V_{20}\right]}{\left|\operatorname{tr}\left[\Lambda_{0}^{\frac{2}{3}} V_{01} \Lambda_{1}^{\frac{2}{3}} V_{12} \Lambda_{2}^{\frac{2}{3}} V_{20}\right]\right|} \in U(1) .
$$

\rightarrow invariant under the 1st gauge (i) $V_{01} \rightarrow W_{0} V_{01} W_{1}^{\dagger}$.

Higher Berry curvature (flux)

- For a 3-simplex $\Delta^{3}=(0123)$ of $|\mathcal{M}|$, we define the "higher Berry flux"

$$
e^{i F\left(\Delta^{3}\right)}:=e^{i \phi_{123}} e^{-i \phi_{023}} e^{i \phi_{013}} e^{i \phi_{012}} \in U(1) .
$$

\rightarrow invariant under the 2 nd gauge (ii) $V_{01} \rightarrow z V_{01}$ with $z \in \mathbb{C}^{\times}$.

- If the triangulation $|\mathcal{M}|$ is small enough then $e^{i F\left(\Delta^{3}\right)} \sim 1$ so that we can think $F\left(\Delta^{3}\right)$ as an \mathbb{R}-valued quantity.

Topological invariant (Dixmier-Douady class)

- The sum over all 3 -simplexes of $|\mathcal{M}|$ is manifestly quantized

$$
\nu(|X|)=\frac{1}{2 \pi} \sum_{\Delta^{3} \in|X|} F\left(\Delta^{3}\right) \in \mathbb{Z}
$$

since

$$
e^{2 \pi i \nu(|X|)}=\prod_{\Delta^{3} \in|X|} e^{2 \pi i F\left(\Delta^{3}\right)}=\prod_{\Delta^{3}} e^{i \phi_{123}} e^{-i \phi_{023}} e^{i \phi_{013}} e^{i \phi_{012}}=1
$$

- We expect that $\nu(|X|)$ characterizes the free part of the 3rd cohomology group $H^{3}(\mathcal{M}, \mathbb{Z})$, the topological nature of the parameter family of invertible 1-dim spin systems.

Model (Xueda Wen, et al. + perturbation)

- Two spin $1 / 2$ dof σ_{l} and τ_{l} for each site.

$$
\begin{aligned}
& H_{0}\left(\alpha \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right], \boldsymbol{n} \in S^{2}\right) \\
& =\sin (2 \alpha) \sum_{l \in \mathbb{Z}}\left\{\begin{array}{cc}
-\boldsymbol{\sigma}_{j} \cdot \boldsymbol{\tau}_{j} & \left(\alpha \in\left[-\frac{\pi}{4}, 0\right]\right) \\
\boldsymbol{\tau}_{l} \cdot \boldsymbol{\sigma}_{l+1} & \left(\alpha \in\left[0, \frac{\pi}{4}\right]\right)
\end{array}+\cos (2 \alpha) \sum_{l \in \mathbb{Z}}\left(-\boldsymbol{n} \cdot \boldsymbol{\sigma}_{l}+\boldsymbol{n} \cdot \boldsymbol{\tau}_{l}\right) .\right.
\end{aligned}
$$

- This is an array of two spin problems, so easy to solve.
- At $\alpha= \pm \frac{\pi}{4}, \boldsymbol{n}$ disappears, implying that the parameter space is S^{3}.
- The bond dimension is $D=1$ for $\alpha \in\left[-\frac{\pi}{4}\right]$ and $D=2$ for $\alpha \in\left[0, \frac{\pi}{4}\right]$.
- This model shows a nontrivial value for the topological invariant introduced by

cont.

- We add NN and NNN Heisenberg terms to $H_{0}(\alpha, \boldsymbol{n})$.

$$
H(\alpha, \boldsymbol{n})=H_{0}(\alpha, \boldsymbol{n})+J_{1} \sum_{l \in \mathbb{Z}}\left(\boldsymbol{\sigma}_{l} \cdot \boldsymbol{\tau}_{l}+\boldsymbol{\tau}_{l} \cdot \boldsymbol{\sigma}_{l+1}\right)+J_{2} \sum_{l \in \mathbb{Z}}\left(\boldsymbol{\sigma}_{l} \cdot \boldsymbol{\sigma}_{l+1}+\boldsymbol{\tau}_{l} \cdot \boldsymbol{\tau}_{l+1}\right)
$$

- We numerically solve this model by DMRG with TeNPy (Tensor Network Python) package Hauschild=Pollmann.
- In this model, the higher Berry flux is symmetric for the S^{2}-direction.

Numerical results

cont.

cont.

cont.

Summary

- We studied the geometric structure of the family of MPSs.
- We propose that the eigenvector V_{01} of the mixed transfer matrix T_{01} for physically different but close MPSs resembles the inner product $\left\langle\psi_{0} \mid \psi_{1}\right\rangle$ of two states in 0-dim. We constructed the higher Berry phase and the higher Berry curvature of MPSs.
- We demonstrated that by using DMRG the integrated higher Berry curvature over the 3 -sphere shows the nontrivial topological invariant $\nu(|\mathcal{M}|)=1$.

KS, Heinsdorf, Ohyama, 2305.08109.

[^0]: ${ }^{1}$ All sets and all non-empty intersections of finitely-many sets are contractible.

