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Berry phase
» The Berry phase is a U(1)-valued quantity defined from a one-parameter family of pure
states in a 0-dim system, a quantum mechanical system.
» Consider a one-parameter family of normalized states |¢(z)) € CN, (v(z)[h(x)) =1, a
circle z € C = S*.
> We introduce a triangulation |C| = {[z},2;41]}7_; of C.
> Because two nearest-neighbor states |¢(x;)) and |¢(xj41)) are “close” to each other,

implying (¢(z;)[¢(z;41)) # 0, the U(1) phase of the inner product (¢(z;)|1(z;+1)) is
well-defined.
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Cont.

» For |C], one can define a U(1)-valued quantity

oo . o (Wp)l(@4))
= oty € V0

» (€1 is manifestly invariant under gauge transformations |¢(x;)) — |1(z;)) €%

» The Berry phase is defined as the limit

() — lim e (C)
|2 —2j11]—0

» In numerical calculations, the lattice formula e?(I€D) is usually sufficient.
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Berry “flux”
» Similarly, there is a lattice definition of the Berry curvature (field strength).

> For a 2-simplex A2 = (012) in the parameter space M, we define the “Berry flux” eiF(&”)
as the Berry phase of the boundary of AZ.

eiF(Az) — em(aAz).

» If the 2-simplex A? is small enough, the flux piercing A? is small eiF(A%) 1.
» Thus, F(A?) can be considered as a R-valued quantity F/(A?) € R.

(figure from wikipedia)
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Chern number

» For a 2-submanifold ¥ C M and its fixed triangulation ||, a Z-valued quantity (the first
Chern number in the limit of Area(A?) — 0), is defined.

1
v(S) = o Y F(A*) el
AZ¢|x|
» The quantization v(|X|) € Z is manifest:

2 (IZ) — H RACIS Y
A2¢ ||

s
‘Fﬁ{\v

(figure from wikipedia)
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To 1-dim invertible states in quantum spin systems

>

>

We want to discuss generalizing the story above to invertible (= short-range entangled =
unique gapped) states in 1-dim quantum spin systems.

The essential difference is that a 1-dim system is inherently infinite-dimensional:
~Y d
Htotal = ®H17 H.L = C
TEZ

One can try the same definition of the Berry phage in 0-dim systems to 1-dim systems but
with finite system size with length L.

However, the inner product between two different invertible states decays exponentially

(Wly') ~ ek,
So the U(1) phase is of (¢|¢)") might be numerically ill-defined...

This suggests we must reconstruct the “higher Berry phase” in a way suitable for 1-dim
infinite systems.
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Kapustin=Spodyneiko
» Kapustin and Spodyneiko proposed “higher Berry curvature” in d-dim systems.

PHYSICAL REVIEW B 101, 235130 (2020)

Higher-dimensional generalizations of Berry curvature

Anton Kapustin® and Lev Spodyneiko®®
California Institute of Technology, Pasadena, California 91125, USA

M  (Received 20 February 2020; accepted 14 May 2020; published 11 June 2020)

» In the form of correlation functions of the local Hamiltonians h, and its external
derivatives dh.., they constructed a Q(4*2)(M)-valued quantity ((d 4 2)- differential
form), a generalization of the Berry curvature in d-dim.

» | am not going into detail, but let me explain the relationship with the Q-spectrum
structure of the space of invertible states.
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()-spectrum proposal

>
>

>

A proposal on the topological structure behind the space of invertible states.

Let F; be the “space of d-dim invertible states” (which has not been rigorously defined
yet).

Proposal: The sequence of the spaces {Fy}qcz forms an Q-spectrum of the generalized
cohomology theory. Namely, there is a homotopy equivalence

OFy4q ~ Fy,
where
QFg41 = {S" = Faa| [¥(0)) = [¥(21)) = 1) }

is the based loop space of Fj;,1. (|1) is a trivial tensor product state.)

Physically, QF;,1 is the “space of adiabatic cycles in (d + 1)-dim".

Implication: The adiabatic cycles in (d + 1)-dim are classified by the invertible phases in
d-dim.

70(QFay1) = mo(Fa).-

This is consistent with physics: Thouless pump, Floquet cycle,...
For free fermions, m(Q2* Fy, 1) = mo(F,) is well-established
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What is the space of invertible states in 1-dim quantum spin systems?
puzzle
» For 0-dim,

Ey ~CPN"1(=CVN/C*) <= CP* = BU(1) ~ K(Z,2),
the classifying space of U(1). The embedding is given by
’l/) = (’1/11,...’¢N) — (wl,...,wN,O).

» If the Q-spectrum structure is true,
Ey ~ QFE, = ki~ K(Z, 3)

is consistent.
» What is K(Z,3)?

— the classifying space of infinite projective unitary group BPU (o) ~ K(Z, 3).
» Where is PU(00)-bundle structure in 1-dim invertible states?
» A family of matrix product states (MPSs) is a PU(D)-bundle.

Haegeman=Marién=0sborne=Verstraete 14
» MPS should be a good starting point.
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Matrix product state (MPS)

» Total Hilbert space:

_ N
total ® Hl’ 7«' - :

> A pure state |[¢) € - | is specified by the wave function

= Y (i, in) iv-e-ip).

U1 ,eenyiL,

tota

» The MPS representation is a way to write the wave function (i1, ...,4r) in the following
form:

W(iy, ... ip) = tr[Al . gl

Here, {Al*li=} N | is set of D; x D, matrices.

» An MPS representation is given by successive singular value decompositions from left to
right.
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Translational invariant MPS

> Let 7, be the translation operator
T. ‘11,L> = |i2---iLz'1).

> Fact. Translation invariant state 7. |1) = [¢) has a translational invariant MPS
representation

) = {A}), = Z tr[A% - AT Jiy i)

81 yenstL,
» In the rest of this talk, | focus only on translational invariant states and MPSs.
» (D-MPS) A D-MPS is the set of D x D matrices
{AZ ivzl, AZ S Matpxp((j).

D is called the bond dimension.
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Injective MPS

» D-MPS may be a cat state, a superposition of macroscopically different states.
» To remove such MPSs, we impose “injectivity” on MPS:
» (Transfer matrix) We introduce the transfer matrix T € End(Matp« p(C)) by

N
T(X):=» AXAT
=1

> (Injectivity) D-MPS is injective iff
(i) The largest eigenvalue Ao of T in magnitude |A| is unique, and its eigenspace is
non-degenerate.
(if) The corresponding eigenvector X is positive X > 0.

» T is completely positive — A9 > 0 (positive real number).
» If D-MPS is injective, the correlation function decays exponentially.

(0:0;) = (02) (O) ~ e o70/E & = —1/log(IM]/|Mal),

where A1 is the second largest eigenvalue in magnitude.

— "invertible" state.
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Canonical form

» (Canonical form) A D-MPS is in the canonical form when

N N
D AAT=1p and Y ATATAT=A?
i=1 i=1
hold, where A is a positive-definite diagonal matrix whose entries are the Schmidt
eigenvalues and satisfy tr [A?] = 1.
» This is a normalization condition for MPSs.
» Remark. Injective D-MPS can be in the canonical form:
N Ny 1
AXAT =X = (——=X 124XV (——=X"124 XY = 1p,
; ; VAo VAo
N N . ‘
S ATYHA =Y, Yo =UTAU = ) (UATUNAX(UTAU)T = A%
i=1 1=1

» In the rest of my talk, | assume D-MPSs are injective and in the canonical form.
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Gauge

>

>

structure of MPS

Theorem. (Fundamental theorem of MPS.) For two D-MPSs {A{}Y |, {A1}N | with the

=1 :
matrices of the Schmidt eigenvalues Ag and Ay, if 2L > ¢D* (c = O(1)) and Ze'® € U(1)
st [{AL}:), = e |{Al};),, then Fleifr € U(1) and 3V, € U(D) sit.
AZ') = 61.901‘/01143‘/02, 1= 1, v ]\/v7 and ‘/01A1 = A()VOl.

Here, Vp; is unique up to U(1) phases.

The matrix V{1 is unique as an element of the projective unitary group
PU(D) =U(D)/ (Vo1 ~ ¢Vin).

Thus, a family of D-MPS over a parameter space M is a U(1) x PU(D) bundle over M.

Remark. U(1) part is from 0-dim nature because we are considering translational invariant

MPSs.
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Charastristic class of PU(D) bundle Grothendieck 66

» Let's consider a D-MPS bundle over M.
» Let {U,}o be a good cover of M. 1

» On two patch intersections Uyg = U, N Ug, we have transition functions
(€02 (), Vs () by

A () = e0er VI () A (1) Vagp ().
» Over z € Uapy = Uy NUg NU,, consider two deformations (z € Uypy is omitted)
i 0 i i ifss i T TN i
AL =P VE AVe,, AL =€V ARV, = e VE VI ALV 6V,
and using the uniqueness of V,,,, we have the 1-cocycle condition for {V,z}as:
Vo (2)Vay (2) = P @V (2), TP c U(1), € Uyp,.
» The formula Ohyama—=Ryu, 2304.05356.:

€9e81®) — t1[A2 (2) Vs (2) Voo (2) Vaa (2)).

LAll sets and all non-empty intersections of finitely-many sets are contractible.
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cont.
> There is a consistency condition on e*®22(*) V, 5(V3, Vi) = (VasVisy)Vis gives us

ei¢a55(z)ei¢ﬁv5(x) — eid’a/?'y(z)ei‘bawts(m)’ T € Uaﬁ’yéa

meaning that ¢?%57(*) is a 2-cocycle in Z2(M, U(1)).

» The change of U(1) phase V,3(x) — Vaﬁ(x)eigﬂﬁf"’”) leads the equivalence relation by the
2-coboundary €% ~ e*?§e’é. Thus, [¢*¢=s(®)] € H2(M,U(1)).

> Take a lift R/27Z > ¢apy(2) = dap~ () € R, we have a Z-valued 3-cocycle
_ Lsse )
c= 27_( ) )

and its equivalence class (from choices of lifts) is the characteristic class (Dixmier-Douady
class) of PU(D)-bundle

[d] € H3(M, Z).

16/31



cont.

> However, [c] never represents a free part of H*(M,Z).

» This is because we can choose V,5(x) to be a SU(D) matrix by using the U(1) phase
freedom. In doing so, the 2-cocycle e*®=5+(#) is quantized to a Zp-value

ePapr@) € Zp = {e%@ =0,...,D—1},
resulting in
D x [ =0¢€ H*M,Z).
» Therefore, D-MPS bundle can provide only the D-torsion part of H3(M,Z),
{z € H*(M,Z)|Dx = 0}.
» cf. See for an explicit construction of MPS when M = RP? x St

and M = L(3,1) x SL.
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Is constant bond dimension D physically reasonable?

> No.

» The bond dimension D is just a parameter to represent a true gapped state |¢) with an
MPS |[MPS) with an error (¢)|MPS) =1 —e.

» Even in the class of MPSs with finite bond dimensions (like AKLT state), it is easy to
make a continuous path from different bond dimensions:

[(t)) = (1 —t) |D—MPS) + t|D'—MPS) .

» |t is natural to think of a family of MPS over M whose bond dimension D, is also a
function over M.

» In this talk, the interest is a lattice formulation of the higher Berry phase. We introduce a
triangulation |M| of M.

» Input: a set of D,-MPSs over the vertices p of | M|.
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What is the “measure” of the space of MPSs?

>
>

>

How to estimate the distance between two MPSs?

For the purpose of making the higher Berry phase, a measure may be given by the
spectrum of the mixed transfer matrix.

For physically different Do-MPS {43}, and D1-MPS {A{}Y |, we define the mixed
transfer matrix To; € End(Matp,x p, (C)) by

N
T (X) =) Ay X AT
i=1

If two MPSs are physically “close” to each other, the spectrum of Tj; should resemble the
spectra of transfer matrices for each.

N N
Too(X) =Y AGXAY, Ti(X)=> AixAj
=1 =1

In particular, the largest eigenvalue g1 of Tp; in magnitude || is unique, its eigenspace is
non-degenerate, |\o1| ~ 1, and there is a finite gap |A| < |Ao1| — [0 for A # Ao1.
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“Overlap matrix" Vp

> Let V1 be the eigenvector with A = A1 of the mixed transfer matrix Tp1, namely,

N
ZAf)V(nAllT = Xo1Vo1, Vo1 € Matp,xp, (C).

i=1

» We can fix Vg = VOTl.
» The matrix Vj1 plays the role of the inner product (¢)(z;)|¢(z;+1)) in the discrete Berry
phase formula in 0-dim.
» cf. Vo1 is nothing but the transition function when {4}}; and {A%}; represent the same
physical state.
» There are two types of gauge transformation of Vy1:
(i) Voo — WoVoa Wy - _
This comes from the gauge transformations of MPSs A%, — " WA W, n=0,1.
(i) Vor — 2Vo1 with z € C*.
This is because the eigenvalue equation To1(Vo1) = Ao1 Vo1 does not fix the overall C
number of V1.
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2-cocycle and weighting by Schmidt eigenvalues

» Let's construct a gauge invariant quantity from the set of Vj;s!

» Before we do so, we return to the cases of physically equivalent three MPSs. For
physically equivalent three D-MPSs {Aj};, {A7}4, {A5}; with the matrices of Schmidt
eigenvalues Ag, A1, Ay, the 2-cocycle e*?012 is given by

€i¢012 =tr [A(z)VO]_VYlg‘/go].

» This is not symmetric in the labels 0,1,2. A more symmetric expression that is suitable for
physically different MPSs is

. 2 2 2
"% = tr [A§ Vo1 AF Vi2 A3 Vag).

» We employ this formula for MPSs, which are physically different but close to each other.
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Higher Berry connection

» For a 2-simplex A% = (012) of the discretized parameter space | M|, we define a
U(1)-valued quantity

tr [A§ VOlAlg‘/igAQ% ‘/20}
2 2 2
|tr [AG VorA$ ViaAS Vo

elPo12 .

eU(1).

— invariant under the 1st gauge (i) Vo1 — WonWf.
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Higher Berry curvature (flux)
» For a 3-simplex A3 = (0123) of [ M|, we define the “higher Berry flux"

eiF(A3) - ei¢'123e—i¢023ei¢013ei¢012 c U(]_)

— invariant under the 2nd gauge (i) Vo1 — 2Vp1 with z € C*.

» If the triangulation | M] is small enough then eiF(A%) 1 so that we can think F(A3) as
an R-valued quantity.
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Topological invariant (Dixmier-Douady class)

» The sum over all 3-simplexes of | M| is manifestly quantized
1 .
X))=— F(A%) e Z
WX = o= Y F(aY)e
Ase|X|
since

e2miv(IX]) _ H 2miF(A®) H 1123 o~ 10023 pido1s pidorz _ 1
A3e|X]| A3

» We expect that v(|X|) characterizes the free part of the 3rd cohomology group

H?3(M,Z), the topological nature of the parameter family of invertible 1-dim spin systems.
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|\/|ode| ( Xueda Wen, et al. + perturbation)
» Two spin 1/2 dof oy and 7, for each site.

Ho(a € [—g, %},n € 5?)
= sin(2« —o; 7 (@€ [-F,0) cos(2a —n-o;+n-T
= sin(2 )%Z:{ T o041 (@€ (0,%]) + cos(2 )%; L V-

f (7 r (7 r
| FICEIEE T
allo)la)la]lalla)la]la

» This is an array of two spin problems, so easy to solve.
> At a = &7, n disappears, implying that the parameter space is 3.

» The bond dimension is D =1 for a € [-%] and D =2 for a € [0, ].
» This model shows a nontrivial value for the topological invariant introduced by
Kapustin=Spodyneiko.
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cont.
» We add NN and NNN Heisenberg terms to Hy(a, n).
H(a,n) = Hy(a,n) + Jq Z(al ‘T 4T o) + o Z(o‘l cO1 T Tiv)-
ez lez

» We numerically solve this model by DMRG with TeNPy (Tensor Network Python) package
Hauschild=Pollmann.

» In this model, the higher Berry flux is symmetric for the S2-direction.

T T T T T, T, T, T,
™
a=7
! ...'....
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Numerical results
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cont.
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cont.
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cont.
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Summary

» We studied the geometric structure of the family of MPSs.

» We propose that the eigenvector Vjy; of the mixed transfer matrix Ty, for physically
different but close MPSs resembles the inner product (1g|11) of two states in 0-dim. We
constructed the higher Berry phase and the higher Berry curvature of MPSs.

» We demonstrated that by using DMRG the integrated higher Berry curvature over the
3-sphere shows the nontrivial topological invariant v(|M|) = 1.

KS, Heinsdorf, Ohyama, 2305.08109.
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