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Berry phase Berry, 84

▶ The Berry phase is a U(1)-valued quantity defined from a one-parameter family of pure
states in a 0-dim system, a quantum mechanical system.

▶ Consider a one-parameter family of normalized states |ψ(x)⟩ ∈ CN , ⟨ψ(x)|ψ(x)⟩ = 1, a
circle x ∈ C ∼= S1.

▶ We introduce a triangulation |C| = {[xj , xj+1]}nj=1 of C.

▶ Because two nearest-neighbor states |ψ(xj)⟩ and |ψ(xj+1)⟩ are “close” to each other,
implying ⟨ψ(xj)|ψ(xj+1)⟩ ≠ 0, the U(1) phase of the inner product ⟨ψ(xj)|ψ(xj+1)⟩ is
well-defined.

⑦…
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Cont.

▶ For |C|, one can define a U(1)-valued quantity

eiγ(|C|) :=

n∏
j=1

⟨ψ(xj)|ψ(xj+1)⟩
| ⟨ψ(xj)|ψ(xj+1)⟩ |

∈ U(1).

▶ eiγ(|C|) is manifestly invariant under gauge transformations |ψ(xj)⟩ 7→ |ψ(xj)⟩ eiξj .
▶ The Berry phase is defined as the limit

eiγ(C) = lim
|xj−xj+1|→0

eiγ(|C|).

▶ In numerical calculations, the lattice formula eiγ(|C|) is usually sufficient.
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Berry “flux”
▶ Similarly, there is a lattice definition of the Berry curvature (field strength).

▶ For a 2-simplex ∆2 = (012) in the parameter space M, we define the “Berry flux” eiF (∆2)

as the Berry phase of the boundary of ∆2.

eiF (∆2) := eiγ(∂∆
2).

▶ If the 2-simplex ∆2 is small enough, the flux piercing ∆2 is small eiF (∆2) ∼ 1.

▶ Thus, F (∆2) can be considered as a R-valued quantity F (∆2) ∈ R.

(figure from wikipedia)
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Chern number
▶ For a 2-submanifold Σ ⊂ M and its fixed triangulation |Σ|, a Z-valued quantity (the first

Chern number in the limit of Area(∆2) → 0), is defined.

ν(|Σ|) = 1

2π

∑
∆2∈|Σ|

F (∆2) ∈ Z.

▶ The quantization ν(|Σ|) ∈ Z is manifest:

e2πiν(|Σ|) =
∏

∆2∈|Σ|

eiγ(∂∆
2) ≡ 1.

(figure from wikipedia)
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To 1-dim invertible states in quantum spin systems

▶ We want to discuss generalizing the story above to invertible (∼= short-range entangled ∼=
unique gapped) states in 1-dim quantum spin systems.

▶ The essential difference is that a 1-dim system is inherently infinite-dimensional:

Htotal =
⊗
x∈Z

Hx, Hx
∼= Cd.

▶ One can try the same definition of the Berry phage in 0-dim systems to 1-dim systems but
with finite system size with length L.

▶ However, the inner product between two different invertible states decays exponentially

⟨ψ|ψ′⟩ ∼ e−αL.

▶ So the U(1) phase is of ⟨ψ|ψ′⟩ might be numerically ill-defined...

▶ This suggests we must reconstruct the “higher Berry phase” in a way suitable for 1-dim
infinite systems.
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Kapustin=Spodyneiko

▶ Kapustin and Spodyneiko proposed “higher Berry curvature” in d-dim systems.

▶ In the form of correlation functions of the local Hamiltonians hx and its external
derivatives dhx, they constructed a Ω(d+2)(M)-valued quantity ((d+ 2)- differential
form), a generalization of the Berry curvature in d-dim.

▶ I am not going into detail, but let me explain the relationship with the Ω-spectrum
structure of the space of invertible states.
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Ω-spectrum proposal [Kitaev, 11, 13, 15, ... in videos]

▶ A proposal on the topological structure behind the space of invertible states.
▶ Let Fd be the “space of d-dim invertible states”(which has not been rigorously defined

yet).
▶ Proposal: The sequence of the spaces {Fd}d∈Z forms an Ω-spectrum of the generalized

cohomology theory. Namely, there is a homotopy equivalence

ΩFd+1 ∼ Fd,

where

ΩFd+1 =
{
S1 → Fd+1| |Ψ(0)⟩ = |Ψ(2π)⟩ = |1⟩

}
is the based loop space of Fd+1. (|1⟩ is a trivial tensor product state.)

▶ Physically, ΩFd+1 is the “space of adiabatic cycles in (d+ 1)-dim”.
▶ Implication: The adiabatic cycles in (d+ 1)-dim are classified by the invertible phases in
d-dim.

π0(ΩFd+1) = π0(Fd).

This is consistent with physics: Thouless pump, Floquet cycle,...
▶ For free fermions, π0(Ω

kFd+k) = π0(Fd) is well-established [Teo-Kane ’10].
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What is the space of invertible states in 1-dim quantum spin systems?
puzzle
▶ For 0-dim,

E0 ∼ CPN−1(= CN/C×) ↪→ CP∞ = BU(1) ∼ K(Z, 2),

the classifying space of U(1). The embedding is given by

ψ = (ψ1, . . . ψN ) 7→ (ψ1, . . . , ψN , 0).

▶ If the Ω-spectrum structure is true,

E0 ∼ ΩE1 ⇒ E1 ∼ K(Z, 3)

is consistent.
▶ What is K(Z, 3)?

→ the classifying space of infinite projective unitary group BPU(∞) ∼ K(Z, 3).
▶ Where is PU(∞)-bundle structure in 1-dim invertible states?
▶ A family of matrix product states (MPSs) is a PU(D)-bundle.

Haegeman=Mariën=Osborne=Verstraete 14

▶ MPS should be a good starting point.
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Matrix product state (MPS) Vidal, Perez-Garcia=Verstraete=Wolf=Cirac

▶ Total Hilbert space:

H(L)
total =

L⊗
x=1

Hx, Hx = CN .

▶ A pure state |ψ⟩ ∈ H(L)
total is specified by the wave function

|ψ⟩ =
∑

i1,...,iL

ψ(i1, . . . , iL) |i1 · · · iL⟩ .

▶ The MPS representation is a way to write the wave function ψ(i1, . . . , iL) in the following
form:

ψ(i1, . . . , iL) = tr [A[1]i1 · · ·A[L]iL ].

Here, {A[x]ix}Nx=1 is set of Dj ×Dj+1 matrices.

▶ An MPS representation is given by successive singular value decompositions from left to
right.
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Translational invariant MPS Perez-Garcia=Verstraete=Wolf=Cirac

▶ Let T̂r be the translation operator

T̂r |i1 · · · iL⟩ = |i2 · · · iLi1⟩ .

▶ Fact. Translation invariant state T̂r |ψ⟩ = |ψ⟩ has a translational invariant MPS
representation

|ψ⟩ = |{Ai}i⟩L :=
∑

i1,...,iL

tr [Ai1 · · ·AiL ] |i1 · · · iL⟩ .

▶ In the rest of this talk, I focus only on translational invariant states and MPSs.

▶ (D-MPS) A D-MPS is the set of D ×D matrices

{Ai}Ni=1, Ai ∈ MatD×D(C).

D is called the bond dimension.
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Injective MPS Perez-Garcia=Verstraete=Wolf=Cirac

▶ D-MPS may be a cat state, a superposition of macroscopically different states.

▶ To remove such MPSs, we impose “injectivity” on MPS:

▶ (Transfer matrix) We introduce the transfer matrix T ∈ End(MatD×D(C)) by

T (X) :=

N∑
i=1

AiXAi†.

▶ (Injectivity) D-MPS is injective iff
(i) The largest eigenvalue λ0 of T in magnitude |λ| is unique, and its eigenspace is

non-degenerate.
(ii) The corresponding eigenvector X is positive X > 0.

▶ T is completely positive → λ0 > 0 (positive real number).

▶ If D-MPS is injective, the correlation function decays exponentially.

⟨ÔxÔ
′
y⟩ − ⟨Ôx⟩ ⟨Ô′

y⟩ ∼ e−|x−y|/ξ, ξ = −1/ log(|λ1|/|λ0|),

where λ1 is the second largest eigenvalue in magnitude.
→ ”invertible” state.
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Canonical form Perez-Garcia=Verstraete=Wolf=Cirac

▶ (Canonical form) A D-MPS is in the canonical form when

N∑
i=1

AiAi† = 1D and

N∑
i=1

Ai†Λ2Ai = Λ2

hold, where Λ is a positive-definite diagonal matrix whose entries are the Schmidt
eigenvalues and satisfy tr [Λ2] = 1.

▶ This is a normalization condition for MPSs.

▶ Remark. Injective D-MPS can be in the canonical form:

N∑
i=1

AiXAi† = λ0X ⇒
N∑
i=1

(
1√
λ0
X−1/2AiX1/2)(

1√
λ0
X−1/2AiX1/2)† = 1D,

N∑
i=1

Ai†Y0A
i = Y0, Y0 = U†Λ2U ⇒

N∑
i=1

(UAi†U†)Λ2(U†AiU)† = Λ2.

▶ In the rest of my talk, I assume D-MPSs are injective and in the canonical form.
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Gauge structure of MPS Perez-Garcia=Verstraete=Wolf=Cirac

▶ Theorem. (Fundamental theorem of MPS.) For two D-MPSs {Ai
0}Ni=1, {Ai

1}Ni=1 with the
matrices of the Schmidt eigenvalues Λ0 and Λ1, if

∃L > cD4 (c = O(1)) and ∃eiα ∈ U(1)
s.t. |{Ai

0}i⟩L = eiα |{Ai
1}i⟩L, then ∃1eiθ01 ∈ U(1) and ∃V01 ∈ U(D) s.t.

Ai
0 = eiθ01V01A

i
1V

†
01, i = 1, . . . N, and V01Λ1 = Λ0V01.

Here, V01 is unique up to U(1) phases.

▶ The matrix V01 is unique as an element of the projective unitary group

PU(D) = U(D)/(V01 ∼ eiβV01).

▶ Thus, a family of D-MPS over a parameter space M is a U(1)× PU(D) bundle over M.

▶ Remark. U(1) part is from 0-dim nature because we are considering translational invariant
MPSs.

14 / 31



Charastristic class of PU(D) bundle Grothendieck 66

▶ Let’s consider a D-MPS bundle over M.

▶ Let {Uα}α be a good cover of M. 1

▶ On two patch intersections Uαβ = Uα ∩ Uβ , we have transition functions
(eiθαβ(x), Vαβ(x)) by

Ai
β(x) = eiθαβ(x)V †

αβ(x)A
i
α(x)Vαβ(x).

▶ Over x ∈ Uαβγ = Uα ∩ Uβ ∩ Uγ , consider two deformations (x ∈ Uαβγ is omitted)

Ai
γ = eiθαγV †

αγA
i
αVαγ , Ai

γ = eiθβγV †
βγA

i
βVβγ = eiθβγeiθαβV †

βγV
†
αβA

i
αVαβVβγ ,

and using the uniqueness of Vαγ , we have the 1-cocycle condition for {Vαβ}αβ :

Vαβ(x)Vβγ(x) = eiϕαβγ(x)Vαγ(x),
∃eiϕαβγ(x) ∈ U(1), x ∈ Uαβγ .

▶ The formula Ohyama=Ryu, 2304.05356.:

eiϕαβγ(x) = tr [Λ2
α(x)Vαβ(x)Vβγ(x)Vγα(x)].

1All sets and all non-empty intersections of finitely-many sets are contractible.
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cont.

▶ There is a consistency condition on eiϕαβγ(x). Vαβ(VβγVγδ) = (VαβVβγ)Vγδ gives us

eiϕαβδ(x)eiϕβγδ(x) = eiϕαβγ(x)eiϕαγδ(x), x ∈ Uαβγδ,

meaning that eiϕαβγ(x) is a 2-cocycle in Ž2(M, U(1)).

▶ The change of U(1) phase Vαβ(x) 7→ Vαβ(x)e
iξαβ(x) leads the equivalence relation by the

2-coboundary eiϕ ∼ eiϕδeiξ. Thus, [eiϕαβγ(x)] ∈ Ȟ2(M, U(1)).

▶ Take a lift R/2πZ ∋ ϕαβγ(x) → ϕ̃αβγ(x) ∈ R, we have a Z-valued 3-cocycle

c =
1

2π
δϕ̃ ∈ Ž3(M,Z),

and its equivalence class (from choices of lifts) is the characteristic class (Dixmier-Douady
class) of PU(D)-bundle

[c] ∈ Ȟ3(M,Z).
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cont.

▶ However, [c] never represents a free part of Ȟ3(M,Z).
▶ This is because we can choose Vαβ(x) to be a SU(D) matrix by using the U(1) phase

freedom. In doing so, the 2-cocycle eiϕαβγ(x) is quantized to a ZD-value

eiϕαβγ(x) ∈ ZD = {e 2πip
D |p = 0, . . . , D − 1},

resulting in

D × [c] = 0 ∈ Ȟ3(M,Z).

▶ Therefore, D-MPS bundle can provide only the D-torsion part of H3(M,Z),

{x ∈ H3(M,Z)|Dx = 0}.

▶ cf. See Ohyama=Terashima=KS for an explicit construction of MPS when M = RP 2 × S1

and M = L(3, 1)× S1.
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Is constant bond dimension D physically reasonable?

▶ No.

▶ The bond dimension D is just a parameter to represent a true gapped state |ψ⟩ with an
MPS |MPS⟩ with an error ⟨ψ|MPS⟩ = 1− ϵ.

▶ Even in the class of MPSs with finite bond dimensions (like AKLT state), it is easy to
make a continuous path from different bond dimensions:

|ψ(t)⟩ = (1− t) |D−MPS⟩+ t |D′−MPS⟩ .

▶ It is natural to think of a family of MPS over M whose bond dimension Dx is also a
function over M.

▶ In this talk, the interest is a lattice formulation of the higher Berry phase. We introduce a
triangulation |M| of M.

▶ Input: a set of Dp-MPSs over the vertices p of |M|.

18 / 31



What is the “measure” of the space of MPSs?
▶ How to estimate the distance between two MPSs?

▶ For the purpose of making the higher Berry phase, a measure may be given by the
spectrum of the mixed transfer matrix.

▶ For physically different D0-MPS {Ai
0}Ni=1 and D1-MPS {Ai

1}Ni=1, we define the mixed
transfer matrix T01 ∈ End(MatD0×D1

(C)) by

T01(X) :=

N∑
i=1

Ai
0XA

i†
1 .

▶ If two MPSs are physically “close” to each other, the spectrum of T01 should resemble the
spectra of transfer matrices for each.

T00(X) =

N∑
i=1

Ai
0XA

i†
0 , T11(X) =

N∑
i=1

Ai
1XA

i†
1 .

▶ In particular, the largest eigenvalue λ01 of T01 in magnitude |λ| is unique, its eigenspace is
non-degenerate, |λ01| ∼ 1, and there is a finite gap |λ| < |λ01| − |δλ| for λ ̸= λ01.
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“Overlap matrix” V01

▶ Let V01 be the eigenvector with λ = λ01 of the mixed transfer matrix T01, namely,

N∑
i=1

Ai
0V01A

i†
1 = λ01V01, V01 ∈ MatD0×D1(C).

▶ We can fix V10 = V †
01.

▶ The matrix V01 plays the role of the inner product ⟨ψ(xj)|ψ(xj+1)⟩ in the discrete Berry
phase formula in 0-dim.

▶ cf. V01 is nothing but the transition function when {Ai
0}i and {Ai

1}i represent the same
physical state.

▶ There are two types of gauge transformation of V01:

(i) V01 → W0V01W
†
1 .

This comes from the gauge transformations of MPSs Ai
n → eiθnW †

nA
i
nWn, n = 0, 1.

(ii) V01 → zV01 with z ∈ C×.
This is because the eigenvalue equation T01(V01) = λ01V01 does not fix the overall C
number of V01.
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2-cocycle and weighting by Schmidt eigenvalues

▶ Let’s construct a gauge invariant quantity from the set of V01s!

▶ Before we do so, we return to the cases of physically equivalent three MPSs. For
physically equivalent three D-MPSs {Ai

0}i, {Ai
1}i, {Ai

2}i with the matrices of Schmidt
eigenvalues Λ0,Λ1,Λ2, the 2-cocycle eiϕ012 is given by

eiϕ012 = tr [Λ2
0V01V12V20].

▶ This is not symmetric in the labels 0, 1, 2. A more symmetric expression that is suitable for
physically different MPSs is

eiϕ012 = tr [Λ
2
3
0 V01Λ

2
3
1 V12Λ

2
3
2 V20].

▶ We employ this formula for MPSs, which are physically different but close to each other.

21 / 31



Higher Berry connection

▶ For a 2-simplex ∆2 = (012) of the discretized parameter space |M|, we define a
U(1)-valued quantity

eiϕ012 :=
tr [Λ

2
3
0 V01Λ

2
3
1 V12Λ

2
3
2 V20]∣∣tr [Λ 2

3
0 V01Λ

2
3
1 V12Λ

2
3
2 V20]

∣∣ ∈ U(1).

→ invariant under the 1st gauge (i) V01 →W0V01W
†
1 .
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Higher Berry curvature (flux)

▶ For a 3-simplex ∆3 = (0123) of |M|, we define the “higher Berry flux”

eiF (∆3) := eiϕ123e−iϕ023eiϕ013eiϕ012 ∈ U(1).

→ invariant under the 2nd gauge (ii) V01 → zV01 with z ∈ C×.

▶ If the triangulation |M| is small enough then eiF (∆3) ∼ 1 so that we can think F (∆3) as
an R-valued quantity.
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Topological invariant (Dixmier-Douady class)

▶ The sum over all 3-simplexes of |M| is manifestly quantized

ν(|X|) = 1

2π

∑
∆3∈|X|

F (∆3) ∈ Z,

since

e2πiν(|X|) =
∏

∆3∈|X|

e2πiF (∆3) =
∏
∆3

eiϕ123e−iϕ023eiϕ013eiϕ012 = 1.

▶ We expect that ν(|X|) characterizes the free part of the 3rd cohomology group
H3(M,Z), the topological nature of the parameter family of invertible 1-dim spin systems.
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Model ( Xueda Wen, et al. + perturbation)
▶ Two spin 1/2 dof σl and τl for each site.

H0(α ∈ [−π
4
,
π

4
],n ∈ S2)

= sin(2α)
∑
l∈Z

{
−σj · τj (α ∈ [−π

4 , 0])
τl · σl+1 (α ∈ [0, π4 ])

+ cos(2α)
∑
l∈Z

(−n · σl + n · τl).
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▶ This is an array of two spin problems, so easy to solve.
▶ At α = ±π

4 , n disappears, implying that the parameter space is S3.
▶ The bond dimension is D = 1 for α ∈ [−π

4 ] and D = 2 for α ∈ [0, π4 ].
▶ This model shows a nontrivial value for the topological invariant introduced by

Kapustin=Spodyneiko. 25 / 31



cont.
▶ We add NN and NNN Heisenberg terms to H0(α,n).

H(α,n) = H0(α,n) + J1
∑
l∈Z

(σl · τl + τl · σl+1) + J2
∑
l∈Z

(σl · σl+1 + τl · τl+1).

▶ We numerically solve this model by DMRG with TeNPy (Tensor Network Python) package
Hauschild=Pollmann.

▶ In this model, the higher Berry flux is symmetric for the S2-direction.
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Numerical results
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cont.
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cont.
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cont.
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Summary

▶ We studied the geometric structure of the family of MPSs.

▶ We propose that the eigenvector V01 of the mixed transfer matrix T01 for physically
different but close MPSs resembles the inner product ⟨ψ0|ψ1⟩ of two states in 0-dim. We
constructed the higher Berry phase and the higher Berry curvature of MPSs.

▶ We demonstrated that by using DMRG the integrated higher Berry curvature over the
3-sphere shows the nontrivial topological invariant ν(|M|) = 1.

KS, Heinsdorf, Ohyama, 2305.08109.
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