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1D Winding number

▶ Consider a continuous map from S1 to U(1):

g : S1 → U(1), θ 7→ gθ ∈ U(1).

▶ Winding number is defined as How many times this map winds over U(1).
▶ If g is smooth, the winding number is written as an integral form

W1[g] =
1

2π

∮
dθ

∂

∂θ
log gθ ∈ Z.
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1D Winding number (cont.)

▶ The winding number W1 can also be written as the discrete sum of small angles:
▶ Approximate S1 with a set of vertices 0 = θ1 < θ2 < · · · < θN < θN+1 = 2π, then,

W dis
1

[
{gθj}Nj=1

]
=

1

2πi

N∑
j=1

log(gθj+1/gθj ) ∈ Z.

▶ Nice points:
▶ The small angle log(gθj+1/gθj ) has no 2πi ambiguity, if gθj and gθj+1 is close enough.
▶ The quantization is manifest. Since

e
2πiWdis

1

[
{gθj }

N
j=1

]
=

N∏
j=1

(gθj+1/gθj ) ≡ 1.
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Winding number in general
▶ The winding number is generalized to continuous and oriented maps from any

odd-dimensional close manifold X2n+1 to U(N)

g : X2n+1 → U(N).

▶ π2n+1[U(N → ∞)] = Z.
▶ For smooth maps, the winding number is given by

W2n+1[g] =
n!

(2n+ 1)!(2πi)n+1

∫
X2n+1

tr [(g†dg)2n+1] ∈ Z.

▶ Question: Is there a discrete formula for the winding number W2n+1[g]?
▶ My definition of a discrete formula:� �

(i) Based on a lattice approximation Λ of the manifold X2n+1.
(ii) The computational cost is O(|Λ|), the number of vertices of lattice Λ.
(iii) manifestly quantized.� �

▶ We found a discrete formula of this sense for W3[g], the 3D winding number.
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Why 3D winding number? Ex. topological band theory

▶ 3D time-reversal invariant topological superconductors are classified by Z and
characterized by W3[g] with

g : T 3 → GLN (C), gk = εk + iδk.

Here, k ∈ T 3 lives in 3D Brillouin zone torus, εk is the normal part of the electron (Bloch
Hamiltonian), and δk comes from the superconducting gap function.

▶ W3[g] gapless Majorana Weyl fermions appear on the sample boundary.

5 / 21



Why 3D winding number? Ex. topological band theory (cont.)

▶ For example, the He-B phase is known to have W3[g] = 1, where gk is given from

εk =
k2

2m
− µ, δk =

∆

vF
k · σ.

▶ But in numerical calculations such as first-principle calculation, the Bloch Hamiltonian εk
is not written as a function over the Brillouin zone torus, but just a data of matrices over
a discretized Brillouin zone torus.

▶ So, a discrete calculation formula of W3[g] is desirable.
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What we want to do
Input data:
▶ Λ: a lattice approximation of 3D oriented and closed manifold X3.
▶ {gv}v∈Λ, a set of U(N) matrices over Λ.
▶ For any adjacent vertices v, v′, unitary matrices gv and gv′ are close to each other. For

example, ||IN − g†vgv′ || < δ with some small constant δ 1.
Output:
▶ 3D Winding winding number W3[g] ∈ Z.

1I have not established yet the upper limit of δ (Admissibility condition) so that our discrete formula works.
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Strategy

Volume integral over cube
⇒ Surface integral over plaquette
⇒ Loop integral over the boundary of plaquette (Berry phase)
⇒ Discrete approximation of Berry phase
⇒ Discrete formula of W3[g]
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Basic bundle gerbe

▶ Our derivation is a straightforward application of the basic bundle gerbe 2 over SU(N)
[Gawędzki=Reis, hep-th/0205233].

▶ There is a canonical gerbe connection over SU(N) whose 3-form curvature is
1

24π2 tr [(g
†dg)3] representing H3(SU(N),Z) = Z.

▶ Pulling back it to X3, we have a gerbe connection over X3.
▶ Cf. The usual 1-form Berry connection is given by pull back of a canonical connection

over CP∞.

2A gerbe is a “2-form U(1) connection" in hep-th context.
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Global 3-form → local 2-form over patch

▶ We begin with the integral formula of W3[g],

W3[g] =
1

2π

∫
X3

H(g), H(g) =
1

12π
tr [(g†dg)3].

▶ Because H is closed as dH = 0, there locally exists a 2-form B such that H = dB.
▶ Diagonilizing g,

g = γΛγ†, γ ∈ U(N), Λ = diag(eiϕ1 , . . . , eiϕN ),

we get the 2-from B explicitly as in [Gawędzki=Reis, hep-th/0205233]

B =
1

4π
tr [γ†dγΛγ†dγΛ−1] +

1

2π
tr

[
(log Λ)(γ†dγ)2

]
.

▶ Here, log Λ is ill-defined, since log eiϕ ∼ iϕ has the 2πi ambiguity.
▶ We have to fix a branch of log, which is why B can not be a global 2-form.
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θ-gap

▶ To fix a branch of log, we introduce a gap condition for unitary matrices g ∈ U(N).
▶ For a θ ∈ [0, 2π), we say that gx has the θ-gap over U ⊂ X3 if none of eigenvalues of gx

for x ∈ U are eiθ [Carpentier=Delplace=Fruchart=Gawędzki=Tauber, 1503.04157].

▶ If U is small enough, at least one θ-gap should be found.
▶ Thus, X3 has a covering {Uj}j so that gx has the θj-gap over Uj .
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Explicit form of B and its gauge invariance

▶ Over a patch Uj , the 2-form is explicitly given by� �
Bθj =

1

4π
tr [γ†dγΛγ†dγΛ−1] +

1

2π
tr [(logθj Λ)(γ

†dγ)2], x ∈ Uj .� �
▶ Here, logθ specifies the branch of log so that

logθ e
iϕ = iϕ, θ ≤ ϕ < θ + 2π.

▶ The 1st term of Bθ is a global 2-form as it does not depend on θ.

▶ Remark The diagonalization unitary matrix γ is not unique as it g = γΛγ† is unchanged
under “gauge transformations"

γ 7→ γW, WΛ = ΛW, W ∈ U(N).

The 2-form Bθ is gauge-invariant.
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Local 2-form over patch → Local 1-form over patch intersection

▶ The key property of Gawędzki-Reis’s construction is that the difference of Bθ between two
different θ-gaps is a total derivative.

▶ This occurs because the change in the branch of log is a constant:

logθ1 e
iϕ − logθ2 e

iϕ =

{
2πi× sgn(θ1 − θ2) (min(θ1, θ2) < ϕ < max(θ1, θ2)),

0 (otherwise).
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Local 2-form over patch → Local 1-form over patch intersection (cont.)
▶ Thus,

logθ1 Λ− logθ2 Λ = 2πi× sgn(θ1 − θ2)× Pθ1,θ2 .

Here, Pθ1,θ2 is the orthogonal projector onto the eigenspace of gx between θ1 and θ2
[Carpentier=Delplace=Fruchart=Gawędzki=Tauber, 1503.04157].

▶ Explicitly, writing the eigenstates of g as

g |un⟩ = eiϕn |un⟩ ,

Pθ1,θ2 =
∑

n:min(θ1,θ2)<ϕn<max(θ1,θ2)

|un⟩ ⟨un|

14 / 21

https://arxiv.org/abs/1503.04157


Local 2-form over patch → Local 1-form over patch intersection (cont.)
▶ Over a two patch intersection x ∈ U1 ∩ U2, we get

Bθ1 −Bθ2 =
1

2π
tr [(logθ1 Λ− logθ2 Λ)(γ

†dγ)2]

=
1

2π
tr

[
2πi× sgn(θ1 − θ2)× Pθ1,θ2 × (γ†dγ)2

]
= i× sgn(θ1 − θ2)

∑
n:min(θ1,θ2)<ϕn<max(θ1,θ2)

N∑
m=1

⟨un|dum⟩ ⟨um|dun⟩

= −i× sgn(θ1 − θ2)
∑

n:min(θ1,θ2)<ϕn<max(θ1,θ2)

d ⟨un|dun⟩

= d

−i× sgn(θ1 − θ2)
∑

n:min(θ1,θ2)<ϕn<max(θ1,θ2)

⟨un|dun⟩


=: dαθ1,θ2 , x ∈ U1 ∩ U2.

▶ The 1-form αθ1,θ2 is the Berry connection between θ1 and θ2!
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Discrete formula
▶ Now we are ready to construct the discrete formula of W3[g].
▶ Give a cubic lattice approximation Λ of X3. (Any cell decomposition works as well.)
▶ 3D winding number W3[g] is the sum of integrals over cubes.

W3[g] =
1

2π

∑
c∈{cubes}

∫
c

H(g).

▶ On each cube c, we pick a θ-gap parameter θc ∈ [0, 2π) by smearing eigenvalues over
eight vertices of the corner of the cube c.
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Discrete formula (cont.)
▶ Then, each integral can be written as a surface integral.

W3[g] =
1

2π

∑
c∈{cubes}

∫
c

dBθc =
1

2π

∑
c∈{cubes}

∫
∂c

Bθc .

▶ This is further simplified to the sum of surface integrals over all plaquette.

W3[g] =
1

2π

∑
p∈{plaquettes}

∫
p

(Bθ−
p
−Bθ+

p
).

Here, θ+p and θ−p correspond to the gap parameters of cubes adjacent to plaquette p, in
directions parallel and antiparallel to p’s normal vector, respectively:
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Discrete formula (cont.)
▶ Therefore, W3[g] can be written as the sum of Berry phases of all over plaquettes.

W3[g] =
1

2π

∑
p∈{plaquettes}

∫
p

dαθ−
p ,θ+

p
=

1

2π

∑
p∈{plaquettes}

∮
∂p

αθ−
p ,θ+

p

▶ Final step. The Berry phase over a small plaquette is approximated by the product of
inner products. For example, if αθ−

p ,θ+
p

is composed of a single band |un0
⟩,∮

∂p

αθ−
p ,θ+

p

∼= sgn(θ+p − θ−p )×Arg

 ∏
j=0,1,2,3

⟨un0
(vj+1) |un0

(vj)⟩

 =: Φp.

(Φp is defined for general cases as well.)
▶ The Berry flux Φp is small enough so that Φp can be considered as an R-valued quantity,

not R/2πZ-valued.
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Discrete formula (cont.)
▶ We got the discrete formula

W dis
3 [{g}v∈Λ] =

1

2π

∑
p∈{plaquettes}

Φp ∈ Z.

▶ This formula can be evaluated only by diagonalizing the matrix g over the vertices v ∈ Λ
approximating X3. → the computational cost is O(|Λ|).

▶ Moreover, the quantization of W dis
3 [{g}v∈Λ] is manifest: We can show that

e2πiW
dis
3 [{g}v∈Λ] =

∏
p∈{plaquettes}

eiΦp ≡ 1,

using the cocycle condition around the edges.
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Sanity check

▶ We have checked that the discrete formula W dis
3 [g] does works only for a simple 2× 2

model

gk =
∑

µ=x,y,z

sin kµσµ − i(m+
∑

µ=x,y,z

cos kµ)12

+ (small random k-dependent perturbation).

Without perturbation, W3[g] = −2 for |m| < 1, W3[g] = 1 for 1 < |m| < 3, and
W3[g] = 0 else.
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Summary and Outlook

▶ We proposed a discrete formula for the 3D winding number W3[g], a generalization of the
Fukui-Hatsugai-Suzuki formula for the 1st Chern number ch1.

▶ The numerical cost is O(|Λ|), where |Λ| is the number of mesh vertices.

▶ It is interesting to generalize the discrete formula for the 2nd Chern number ch2.
Can ch2 be written only with the set of points of the Grassmann manifold over mesh
vertices of a 4-manifold X4? Does the 2-gerbe structure of the Chern-Simons 3-form help
us in this regard?
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