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1D Winding number
» Consider a continuous map from S* to U(1):

g:S* = UQ1), 60— gocU().

{
S
» Winding number is defined as How many times this map winds over U(1).
» If g is smooth, the winding number is written as an integral form
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1D Winding number (cont.)
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» The winding number W; can also be written as the discrete sum of small angles:
» Approximate S* with a set of vertices 0 = 0 < < --- < Ox < Oy41 = 2, then,

dlS [{g } —72103‘ geﬁl/ge)

» Nice points:
» The small angle log(ge;.,/go,;) has no 2mi ambiguity, if go, and go
» The quantization is manifest. Since

N
dli
62 i W1 {99 } H 96J+1/90 =1.

;41 18 close enough.
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Winding number in general

» The winding number is generalized to continuous and oriented maps from any
odd-dimensional close manifold X, 1 to U(N)

g: X2n+1 — U(N)
> 7T2n+1[U(N — OO)] = 7.
» For smooth maps, the winding number is given by

n!
— T 2n+1 Z
Wansalg] (2n + 1)!(2mi)n Tt /x+ rilgidg)™ ] € 2.

> Question: Is there a discrete formula for the winding number W5,,11[g]?
» My definition of a discrete formula:

(i) Based on a lattice approximation A of the manifold X5, 41.
(ii) The computational cost is O(|A]), the number of vertices of lattice A.
(iii) manifestly quantized.

» We found a discrete formula of this sense for W3]g], the 3D winding number.
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Why 3D winding number? Ex. topological band theory

» 3D time-reversal invariant topological superconductors are classified by Z and
characterized by W3|g|] with

g:T3—>GLN<(C), gk = €k + 10k

Here, k € T2 lives in 3D Brillouin zone torus, €, is the normal part of the electron (Bloch
Hamiltonian), and &g comes from the superconducting gap function.

» Wslg] gapless Majorana Weyl fermions appear on the sample boundary.
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Why 3D winding number? Ex. topological band theory (cont.)

> For example, the He-B phase is known to have W3[g] = 1, where g, is given from

k? A
ek=——W, Oop=—k- o.
2m Vp

» But in numerical calculations such as first-principle calculation, the Bloch Hamiltonian e
is not written as a function over the Brillouin zone torus, but just a data of matrices over
a discretized Brillouin zone torus.

> So, a discrete calculation formula of W3[g] is desirable.
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What we want to do

Input data:
> A: a lattice approximation of 3D oriented and closed manifold X3.
» {gy}ven, a set of U(NN) matrices over A.

» For any adjacent vertices v, v’, unitary matrices g, and g,/ are close to each other. For
example, ||Iy — gl g./|| < & with some small constant § 1.

Output:
» 3D Winding winding number W3][g] € Z.

1| have not established yet the upper limit of § (Admissibility condition) so that our discrete formula works.
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Strategy

Volume integral over cube
= Surface integral over plaquette
= Loop integral over the boundary of plaquette (Berry phase)
= Discrete approximation of Berry phase

= Discrete formula of W3][g]
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Basic bundle gerbe

» Our derivation is a straightforward application of the basic bundle gerbe % over SU(N)

WZW BRANES AND GERBES

KRZYSZTOF GAWEDZKI and NUNO REIS
Laboratoire de Physique, ENS-Lyon,
46, Allée d’ltalie, F-6936} Lyon, France

Received 30 July 2002

» There is a canonical gerbe connection over SU(N) whose 3-form curvature is
7i=tr [(g7dg)?] representing H3(SU(N),Z) = Z.

» Pulling back it to X3, we have a gerbe connection over X3.

» Cf. The usual 1-form Berry connection is given by pull back of a canonical connection
over CP®°.

2A gerbe is a “2-form U(1) connection" in hep-th context.
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https://arxiv.org/abs/hep-th/0205233

Global 3-form — local 2-form over patch

» We begin with the integral formula of W3][g],

Wilg] = ! /X H(g), H(g)Zétr[(gng)?’]-

T oon

» Because H is closed as dH = 0, there locally exists a 2-form B such that H = dB.
» Diagonilizing g,

g="M, 4 e U(N), A=diag(e!,...,e"V),
we get the 2-from B explicitly as in [Gawedzki=Reis, hep-th/0205233]

1 1
= —tryf TdyA™ + — > )2
B 47Ttr [YTdyA~yTdyA™ ] + 271_tr [(log A)(7vdy)?] .

» Here, log A is ill-defined, since log e*? ~ i¢ has the 2mwi ambiguity.
» We have to fix a branch of log, which is why B can not be a global 2-form.
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https://arxiv.org/abs/hep-th/0205233

0-gap

» To fix a branch of log, we introduce a gap condition for unitary matrices g € U(N).

» For a 6 € [0,27), we say that g, has the f-gap over U C X3 if none of eigenvalues of g,
for £ € U are e [Carpentier=Delplace=Fruchart=Gawedzki=Tauber, 1503.04157].

QWJ thalv«es

c-? 87(_
E—

» If U is small enough, at least one #-gap should be found.
» Thus, X3 has a covering {U;}; so that g, has the 6;-gap over U;.
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https://arxiv.org/abs/1503.04157

Explicit form of B and its gauge invariance

» Over a patch Uj, the 2-form is explicitly given by

1 1
By, = 4—tr [y dyAyTdyA~=Y] + %tr [(logy, N(vdy)?, zeU;.

’ 7

» Here, log, specifies the branch of log so that
logy e’ =i¢, 0 <¢<0+2m.
» The 1st term of By is a global 2-form as it does not depend on 6.

» Remark The diagonalization unitary matrix 7 is not unique as it ¢ = yAyT is unchanged
under “gauge transformations"

y=AW, WA=AW, W eU(N).
The 2-form By is gauge-invariant.
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Local 2-form over patch — Local 1-form over patch intersection

» The key property of Gawedzki-Reis's construction is that the difference of By between two
different 0-gaps is a total derivative.

» This occurs because the change in the branch of log is a constant:

2mi x sgn(fy — 63) (min(6y,62) < ¢ < max(6y,6s)),

logy. €' —logy, '* =
801 80: 0 (otherwise).
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Local 2-form over patch — Local 1-form over patch intersection (cont.)
> Thus,

logy, A —logy, A = 2mi x sgn(01 — 02) x Py, 9,.

Here, Py, o, is the orthogonal projector onto the eigenspace of g, between 6, and 62
[Carpentier=Delplace=Fruchart=Gawedzki=Tauber, 1503.04157].
> Explicitly, writing the eigenstates of g as

glun) =€ Juy)

P91,92 = Z |Un> <un|
n:min(01,02)<¢, <max(01,02)
(b) Im A
Py, 0,

Lol

Re A

14 /21


https://arxiv.org/abs/1503.04157

Local 2-form over patch — Local 1-form over patch intersection (cont.)

» Over a two patch intersection x € Uy N Us, we get
1
By, — By, = 5tr[(logs, A ~ logy, A)(31dr)

1
= 2—tr (270 x sgn(f1 — 62) x Py, 9, X (vTdy ?]
i

N
=i x sgn(f; — 62) Z Z (un|dum) (wm|dun)
n:min(01,02)<¢, <max(0;,02) m=1
= —i x sgn(fy — 63) > d (| duy,)

n:min(61,02) <, <max(01,02)

=d | —i x sgn(6; — 6>) > (tn | dut,)
n:min(01,02)<¢, <max(01,02)

=: dagl’ez, xz e Uy NUs.

» The 1-form ay, g, is the Berry connection between 6, and 65!
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Discrete formula

» Now we are ready to construct the discrete formula of Ws][g].
» Give a cubic lattice approximation A of X5. (Any cell decomposition works as well.)
» 3D winding number W3][g] is the sum of integrals over cubes.

1
Walg=5- > | Hlg)
c€{cubes} ” ¢

» On each cube ¢, we pick a #-gap parameter 0. € [0,27) by smearing eigenvalues over
eight vertices of the corner of the cube c.

(C) Im A

o

} Re A
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Discrete formula (cont.)

» Then, each integral can be written as a surface integral.
1 1
W = — dB = — B .
slgl = o > | dBo. = o > Do
ce{cubes} ce{cubes}
» This is further simplified to the sum of surface integrals over all plaquette.
1
Wilg] = % Z (BG; - Be;)-
pe{plaquettes} P

Here, 9; and 0, correspond to the gap parameters of cubes adjacent to plaquette p, in
directions parallel and antiparallel to p's normal vector, respectively:
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Discrete formula (cont.)
» Therefore, W5[g] can be written as the sum of Berry phases of all over plaquettes.

1 1
Wislg] = o Z /daa;ﬁ; = o Z ]ép Yo, 08

pe{plaquettes} P pe{plaquettes}

» Final step. The Berry phase over a small plaquette is approximated by the product of
inner products. For example, if Qg g+ is composed of a single band |uy,),

§ a0y sy —0;) < Arg | T] G (o) s (0| == 0,
9p 7=0,1,2,3

(@, is defined for general cases as well.)
» The Berry flux ®, is small enough so that ®, can be considered as an R-valued quantity,
not R/27Z-valued.

18/21



Discrete formula (cont.)
» We got the discrete formula

is 1
Wit {gherl =5- > @ €L

pe{plaquettes}

» This formula can be evaluated only by diagonalizing the matrix g over the vertices v € A
approximating X3. — the computational cost is O(|A]).
» Moreover, the quantization of W§[{g},ca] is manifest: We can show that

e27riW3diS[{g}veA] — H eiq)i" =1

pe{plaquettes}

)

using the cocycle condition around the edges. O
(b)

E 0o
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Sanity check

» We have checked that the discrete formula Wis[g] does works only for a simple 2 x 2
model

gk = Z sink,o,, —i(m + Z cos ky)1a
U=x,Yy,2 n=x,Yy,z
+ (small random k-dependent perturbation).

Without perturbation, W3[g] = —2 for |m| < 1, Ws[g] =1 for 1 < |m| < 3, and
Wslg] = 0 else.
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Summary and Outlook

» \We proposed a discrete formula for the 3D winding number W3[g], a generalization of the
Fukui-Hatsugai-Suzuki formula for the 1st Chern number ch;.

» The numerical cost is O(]A|), where |A| is the number of mesh vertices.

» It is interesting to generalize the discrete formula for the 2nd Chern number chs.
Can chs be written only with the set of points of the Grassmann manifold over mesh
vertices of a 4-manifold X7 Does the 2-gerbe structure of the Chern-Simons 3-form help
us in this regard?
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