A Discrete Formulation of Three Dimensional Winding Number

Ken Shiozaki
YITP, Kyoto University

May 31, 2024, @NYU ABU DHABI

Based on K.S., arXiv:2403.05291.

1D Winding number

- Consider a continuous map from S^{1} to $U(1)$:

$$
g: S^{1} \rightarrow U(1), \quad \theta \mapsto g_{\theta} \in U(1)
$$

- Winding number is defined as How many times this map winds over $U(1)$.
- If g is smooth, the winding number is written as an integral form

$$
W_{1}[g]=\frac{1}{2 \pi} \oint d \theta \frac{\partial}{\partial \theta} \log g_{\theta} \in \mathbb{Z}
$$

1D Winding number (cont.)

- The winding number W_{1} can also be written as the discrete sum of small angles:
- Approximate S^{1} with a set of vertices $0=\theta_{1}<\theta_{2}<\cdots<\theta_{N}<\theta_{N+1}=2 \pi$, then,

$$
W_{1}^{\text {dis }}\left[\left\{g_{\theta_{j}}\right\}_{j=1}^{N}\right]=\frac{1}{2 \pi i} \sum_{j=1}^{N} \log \left(g_{\theta_{j+1}} / g_{\theta_{j}}\right) \in \mathbb{Z} .
$$

- Nice points:
- The small angle $\log \left(g_{\theta_{j+1}} / g_{\theta_{j}}\right)$ has no $2 \pi i$ ambiguity, if $g_{\theta_{j}}$ and $g_{\theta_{j+1}}$ is close enough.
- The quantization is manifest. Since

$$
e^{2 \pi i W_{1}^{\operatorname{dis}}\left[\left\{g_{\theta_{j}}\right\}_{j=1}^{N}\right]}=\prod_{j=1}^{N}\left(g_{\theta_{j+1}} / g_{\theta_{j}}\right) \equiv 1 .
$$

Winding number in general

- The winding number is generalized to continuous and oriented maps from any odd-dimensional close manifold $X_{2 n+1}$ to $U(N)$

$$
g: X_{2 n+1} \rightarrow U(N) .
$$

- $\pi_{2 n+1}[U(N \rightarrow \infty)]=\mathbb{Z}$.
- For smooth maps, the winding number is given by

$$
W_{2 n+1}[g]=\frac{n!}{(2 n+1)!(2 \pi i)^{n+1}} \int_{X_{2 n+1}} \operatorname{tr}\left[\left(g^{\dagger} d g\right)^{2 n+1}\right] \in \mathbb{Z} .
$$

- Question: Is there a discrete formula for the winding number $W_{2 n+1}[g]$?
- My definition of a discrete formula:
(i) Based on a lattice approximation Λ of the manifold $X_{2 n+1}$.
(ii) The computational cost is $O(|\Lambda|)$, the number of vertices of lattice Λ.
(iii) manifestly quantized.
- We found a discrete formula of this sense for $W_{3}[g]$, the 3D winding number.

Why 3D winding number? Ex. topological band theory

- 3D time-reversal invariant topological superconductors are classified by \mathbb{Z} and characterized by $W_{3}[g]$ with

$$
g: T^{3} \rightarrow \mathrm{GL}_{N}(\mathbb{C}), \quad g_{\boldsymbol{k}}=\varepsilon_{\boldsymbol{k}}+i \delta_{\boldsymbol{k}}
$$

Here, $\boldsymbol{k} \in T^{3}$ lives in 3D Brillouin zone torus, $\varepsilon_{\boldsymbol{k}}$ is the normal part of the electron (Bloch Hamiltonian), and δ_{k} comes from the superconducting gap function.

- $W_{3}[g]$ gapless Majorana Weyl fermions appear on the sample boundary.

Why 3D winding number? Ex. topological band theory (cont.)

- For example, the He-B phase is known to have $W_{3}[g]=1$, where $g_{\boldsymbol{k}}$ is given from

$$
\varepsilon_{\boldsymbol{k}}=\frac{\boldsymbol{k}^{2}}{2 m}-\mu, \quad \delta_{\boldsymbol{k}}=\frac{\Delta}{v_{F}} \boldsymbol{k} \cdot \boldsymbol{\sigma}
$$

- But in numerical calculations such as first-principle calculation, the Bloch Hamiltonian $\varepsilon_{\boldsymbol{k}}$ is not written as a function over the Brillouin zone torus, but just a data of matrices over a discretized Brillouin zone torus.
- So, a discrete calculation formula of $W_{3}[g]$ is desirable.

What we want to do

Input data:

- 1 : a lattice approximation of 3D oriented and closed manifold X_{3}.
- $\left\{g_{v}\right\}_{v \in \Lambda}$, a set of $U(N)$ matrices over Λ.
- For any adjacent vertices v, v^{\prime}, unitary matrices g_{v} and $g_{v^{\prime}}$ are close to each other. For example, $\left\|I_{N}-g_{v}^{\dagger} g_{v^{\prime}}\right\|<\delta$ with some small constant δ^{1}.

Output:

- 3D Winding winding number $W_{3}[g] \in \mathbb{Z}$.

[^0]
Strategy

Volume integral over cube
\Rightarrow Surface integral over plaquette
\Rightarrow Loop integral over the boundary of plaquette (Berry phase)
\Rightarrow Discrete approximation of Berry phase
\Rightarrow Discrete formula of $W_{3}[g]$

$$
\begin{array}{lll}
\sqrt[H]{H} \rightarrow & \rightarrow & \rightarrow \\
\int H^{(3)}
\end{array}
$$

Basic bundle gerbe

- Our derivation is a straightforward application of the basic bundle gerbe ${ }^{2}$ over $\operatorname{SU}(N)$ [Gawędzki=Reis, hep-th/0205233].

wzw branes and gerbes

KRZYSZTOF GAWȨDZKI and NUNO REIS
Laboratoire de Physique, ENS-Lyon,
46, Allée d'Italie, F-69364 Lyon, France

Received 30 July 2002

- There is a canonical gerbe connection over $S U(N)$ whose 3-form curvature is $\frac{1}{24 \pi^{2}} \operatorname{tr}\left[\left(g^{\dagger} d g\right)^{3}\right]$ representing $H^{3}(S U(N), \mathbb{Z})=\mathbb{Z}$.
- Pulling back it to X_{3}, we have a gerbe connection over X_{3}.
- Cf. The usual 1-form Berry connection is given by pull back of a canonical connection over $\mathbb{C} P^{\infty}$.

[^1]
Global 3-form \rightarrow local 2-form over patch

- We begin with the integral formula of $W_{3}[g]$,

$$
W_{3}[g]=\frac{1}{2 \pi} \int_{X_{3}} H(g), \quad H(g)=\frac{1}{12 \pi} \operatorname{tr}\left[\left(g^{\dagger} d g\right)^{3}\right] .
$$

- Because H is closed as $d H=0$, there locally exists a 2-form B such that $H=d B$.
- Diagonilizing g,

$$
g=\gamma \Lambda \gamma^{\dagger}, \quad \gamma \in U(N), \quad \Lambda=\operatorname{diag}\left(e^{i \phi_{1}}, \ldots, e^{i \phi_{N}}\right)
$$

we get the 2 -from B explicitly as in [Gawędzki=Reis, hep-th/0205233]

$$
B=\frac{1}{4 \pi} \operatorname{tr}\left[\gamma^{\dagger} d \gamma \Lambda \gamma^{\dagger} d \gamma \Lambda^{-1}\right]+\frac{1}{2 \pi} \operatorname{tr}\left[(\log \Lambda)\left(\gamma^{\dagger} d \gamma\right)^{2}\right] .
$$

- Here, $\log \Lambda$ is ill-defined, since $\log e^{i \phi} \sim i \phi$ has the $2 \pi i$ ambiguity.
- We have to fix a branch of log, which is why B can not be a global 2-form.
θ-gap
- To fix a branch of log, we introduce a gap condition for unitary matrices $g \in U(N)$.
- For a $\theta \in[0,2 \pi)$, we say that g_{x} has the θ-gap over $U \subset X_{3}$ if none of eigenvalues of g_{x} for $x \in U$ are $e^{i \theta}$ [Carpentier=Delplace=Fruchart=Gawędzki=Tauber, 1503.04157].

- If U is small enough, at least one θ-gap should be found.
- Thus, X_{3} has a covering $\left\{U_{j}\right\}_{j}$ so that g_{x} has the θ_{j}-gap over U_{j}.

Explicit form of B and its gauge invariance

- Over a patch U_{j}, the 2-form is explicitly given by

$$
B_{\theta_{j}}=\frac{1}{4 \pi} \operatorname{tr}\left[\gamma^{\dagger} d \gamma \Lambda \gamma^{\dagger} d \gamma \Lambda^{-1}\right]+\frac{1}{2 \pi} \operatorname{tr}\left[\left(\log _{\theta_{j}} \Lambda\right)\left(\gamma^{\dagger} d \gamma\right)^{2}\right], \quad x \in U_{j} .
$$

- Here, $\log _{\theta}$ specifies the branch of \log so that

$$
\log _{\theta} e^{i \phi}=i \phi, \quad \theta \leq \phi<\theta+2 \pi .
$$

- The 1st term of B_{θ} is a global 2-form as it does not depend on θ.
- Remark The diagonalization unitary matrix γ is not unique as it $g=\gamma \Lambda \gamma^{\dagger}$ is unchanged under "gauge transformations"

$$
\gamma \mapsto \gamma W, \quad W \Lambda=\Lambda W, \quad W \in U(N) .
$$

The 2-form B_{θ} is gauge-invariant.

Local 2-form over patch \rightarrow Local 1-form over patch intersection

- The key property of Gawędzki-Reis's construction is that the difference of B_{θ} between two different θ-gaps is a total derivative.
- This occurs because the change in the branch of \log is a constant:

$$
\log _{\theta_{1}} e^{i \phi}-\log _{\theta_{2}} e^{i \phi}= \begin{cases}2 \pi i \times \operatorname{sgn}\left(\theta_{1}-\theta_{2}\right) & \left(\min \left(\theta_{1}, \theta_{2}\right)<\phi<\max \left(\theta_{1}, \theta_{2}\right)\right) \\ 0 & \text { (otherwise) }\end{cases}
$$

Local 2-form over patch \rightarrow Local 1-form over patch intersection (cont.)

- Thus,

$$
\log _{\theta_{1}} \Lambda-\log _{\theta_{2}} \Lambda=2 \pi i \times \operatorname{sgn}\left(\theta_{1}-\theta_{2}\right) \times P_{\theta_{1}, \theta_{2}} .
$$

Here, $P_{\theta_{1}, \theta_{2}}$ is the orthogonal projector onto the eigenspace of g_{x} between θ_{1} and θ_{2} [Carpentier=Delplace=Fruchart=Gawędzki=Tauber, 1503.04157].

- Explicitly, writing the eigenstates of g as

$$
\begin{gathered}
g\left|u_{n}\right\rangle=e^{i \phi_{n}}\left|u_{n}\right\rangle, \\
P_{\theta_{1}, \theta_{2}}=\sum_{n: \min \left(\theta_{1}, \theta_{2}\right)<\phi_{n}<\max \left(\theta_{1}, \theta_{2}\right)}\left|u_{n}\right\rangle\left\langle u_{n}\right|
\end{gathered}
$$

(b)

Local 2-form over patch \rightarrow Local 1-form over patch intersection (cont.)

- Over a two patch intersection $x \in U_{1} \cap U_{2}$, we get

$$
\begin{aligned}
B_{\theta_{1}}-B_{\theta_{2}} & =\frac{1}{2 \pi} \operatorname{tr}\left[\left(\log _{\theta_{1}} \Lambda-\log _{\theta_{2}} \Lambda\right)\left(\gamma^{\dagger} d \gamma\right)^{2}\right] \\
& =\frac{1}{2 \pi} \operatorname{tr}\left[2 \pi i \times \operatorname{sgn}\left(\theta_{1}-\theta_{2}\right) \times P_{\theta_{1}, \theta_{2}} \times\left(\gamma^{\dagger} d \gamma\right)^{2}\right] \\
& =i \times \operatorname{sgn}\left(\theta_{1}-\theta_{2}\right) \sum_{n: \min \left(\theta_{1}, \theta_{2}\right)<\phi_{n}<\max \left(\theta_{1}, \theta_{2}\right)} \sum_{m=1}^{N}\left\langle u_{n} \mid d u_{m}\right\rangle\left\langle u_{m} \mid d u_{n}\right\rangle \\
& =-i \times \operatorname{sgn}\left(\theta_{1}-\theta_{2}\right) \sum_{n: \min \left(\theta_{1}, \theta_{2}\right)<\phi_{n}<\max \left(\theta_{1}, \theta_{2}\right)} d\left\langle u_{n} \mid d u_{n}\right\rangle \\
& =d\left[-i \times \operatorname{sgn}\left(\theta_{1}-\theta_{2}\right) \sum_{n: \min \left(\theta_{1}, \theta_{2}\right)<\phi_{n}<\max \left(\theta_{1}, \theta_{2}\right)}\left\langle u_{n} \mid d u_{n}\right\rangle\right] \\
& =: d \alpha_{\theta_{1}, \theta_{2}}, \quad x \in U_{1} \cap U_{2} .
\end{aligned}
$$

- The 1-form $\alpha_{\theta_{1}, \theta_{2}}$ is the Berry connection between θ_{1} and θ_{2} !

Discrete formula

- Now we are ready to construct the discrete formula of $W_{3}[g]$.
- Give a cubic lattice approximation Λ of X_{3}. (Any cell decomposition works as well.)
- 3D winding number $W_{3}[g]$ is the sum of integrals over cubes.

$$
W_{3}[g]=\frac{1}{2 \pi} \sum_{c \in\{\text { cubes }\}} \int_{c} H(g) .
$$

- On each cube c, we pick a θ-gap parameter $\theta_{c} \in[0,2 \pi)$ by smearing eigenvalues over eight vertices of the corner of the cube c.
(c)

Discrete formula (cont.)

- Then, each integral can be written as a surface integral.

$$
W_{3}[g]=\frac{1}{2 \pi} \sum_{c \in\{\mathrm{cubes}\}} \int_{c} d B_{\theta_{c}}=\frac{1}{2 \pi} \sum_{c \in\{\mathrm{cubes}\}} \int_{\partial c} B_{\theta_{c}} .
$$

- This is further simplified to the sum of surface integrals over all plaquette.

$$
W_{3}[g]=\frac{1}{2 \pi} \sum_{p \in\{\text { plaquettes }\}} \int_{p}\left(B_{\theta_{p}^{-}}-B_{\theta_{p}^{+}}\right) .
$$

Here, θ_{p}^{+}and θ_{p}^{-}correspond to the gap parameters of cubes adjacent to plaquette p, in directions parallel and antiparallel to p 's normal vector, respectively:

Discrete formula (cont.)

- Therefore, $W_{3}[g]$ can be written as the sum of Berry phases of all over plaquettes.

$$
W_{3}[g]=\frac{1}{2 \pi} \sum_{p \in\{\text { plaquettes }\}} \int_{p} d \alpha_{\theta_{p}^{-}, \theta_{p}^{+}}=\frac{1}{2 \pi} \sum_{p \in\{\text { plaquettes }\}} \oint_{\partial p} \alpha_{\theta_{p}^{-}, \theta_{p}^{+}}
$$

- Final step. The Berry phase over a small plaquette is approximated by the product of inner products. For example, if $\alpha_{\theta_{p}^{-}, \theta_{p}^{+}}$is composed of a single band $\left|u_{n_{0}}\right\rangle$,

$$
\oint_{\partial p} \alpha_{\theta_{p}^{-}, \theta_{p}^{+}} \cong \operatorname{sgn}\left(\theta_{p}^{+}-\theta_{p}^{-}\right) \times \operatorname{Arg}\left[\prod_{j=0,1,2,3}\left\langle u_{n_{0}}\left(v_{j+1}\right) \mid u_{n_{0}}\left(v_{j}\right)\right\rangle\right]=: \Phi_{p}
$$

(Φ_{p} is defined for general cases as well.)

- The Berry flux Φ_{p} is small enough so that Φ_{p} can be considered as an \mathbb{R}-valued quantity, not $\mathbb{R} / 2 \pi \mathbb{Z}$-valued.

Discrete formula (cont.)

- We got the discrete formula

$$
W_{3}^{\text {dis }}\left[\{g\}_{v \in \Lambda}\right]=\frac{1}{2 \pi} \sum_{p \in\{\text { plaquettes }\}} \Phi_{p} \in \mathbb{Z} .
$$

- This formula can be evaluated only by diagonalizing the matrix g over the vertices $v \in \Lambda$ approximating $X_{3} . \rightarrow$ the computational cost is $O(|\Lambda|)$.
- Moreover, the quantization of $W_{3}^{\text {dis }}\left[\{g\}_{v \in \Lambda}\right]$ is manifest: We can show that

$$
e^{2 \pi i W_{3}^{\mathrm{dis}}\left[\{g\}_{v \in \Lambda}\right]}=\prod_{p \in\{\text { plaquettes }\}} e^{i \Phi_{p}} \equiv 1,
$$

using the cocycle condition around the edges.
(b)

Sanity check

- We have checked that the discrete formula $W_{3}^{\text {dis }}[g]$ does works only for a simple 2×2 model

$$
\begin{aligned}
g_{\boldsymbol{k}}= & \sum_{\mu=x, y, z} \sin k_{\mu} \sigma_{\mu}-i\left(m+\sum_{\mu=x, y, z} \cos k_{\mu}\right) \mathbf{1}_{2} \\
& + \text { (small random } \boldsymbol{k} \text {-dependent perturbation). }
\end{aligned}
$$

Without perturbation, $W_{3}[g]=-2$ for $|m|<1, W_{3}[g]=1$ for $1<|m|<3$, and $W_{3}[g]=0$ else.

Summary and Outlook

- We proposed a discrete formula for the 3D winding number $W_{3}[g]$, a generalization of the Fukui-Hatsugai-Suzuki formula for the 1st Chern number $c h_{1}$.
- The numerical cost is $O(|\Lambda|)$, where $|\Lambda|$ is the number of mesh vertices.

- It is interesting to generalize the discrete formula for the 2nd Chern number ch_{2}. Can $c h_{2}$ be written only with the set of points of the Grassmann manifold over mesh vertices of a 4-manifold X_{4} ? Does the 2-gerbe structure of the Chern-Simons 3-form help us in this regard?

[^0]: ${ }^{1}$ I have not established yet the upper limit of δ (Admissibility condition) so that our discrete formula works.

[^1]: ${ }^{2} \mathrm{~A}$ gerbe is a "2-form $U(1)$ connection" in hep-th context.

