## A Discrete Formulation of Three Dimensional Winding Number

Ken Shiozaki

YITP, Kyoto University

May 31, 2024, @NYU ABU DHABI

Based on K.S., arXiv:2403.05291.

## 1D Winding number

• Consider a continuous map from  $S^1$  to U(1):

 $g: S^1 \to U(1), \quad \theta \mapsto g_\theta \in U(1).$ 



 $\blacktriangleright$  Winding number is defined as How many times this map winds over U(1).

 $\blacktriangleright$  If g is smooth, the winding number is written as an integral form

$$W_1[g] = \frac{1}{2\pi} \oint d\theta \frac{\partial}{\partial \theta} \log g_{\theta} \in \mathbb{Z}.$$

# 1D Winding number (cont.)



The winding number W₁ can also be written as the discrete sum of small angles:
 Approximate S¹ with a set of vertices 0 = θ₁ < θ₂ < ··· < θ<sub>N</sub> < θ<sub>N+1</sub> = 2π, then,

$$W_1^{\text{dis}}\left[\{g_{\theta_j}\}_{j=1}^N\right] = \frac{1}{2\pi i} \sum_{j=1}^N \log(g_{\theta_{j+1}}/g_{\theta_j}) \in \mathbb{Z}.$$

► Nice points:

- The small angle  $\log(g_{\theta_{i+1}}/g_{\theta_i})$  has no  $2\pi i$  ambiguity, if  $g_{\theta_i}$  and  $g_{\theta_{i+1}}$  is close enough.
- The quantization is manifest. Since

$$e^{2\pi i W_1^{\text{dis}}\left[\{g_{\theta_j}\}_{j=1}^N\right]} = \prod_{j=1}^N (g_{\theta_{j+1}}/g_{\theta_j}) \equiv 1.$$
3/21

## Winding number in general

▶ The winding number is generalized to continuous and oriented maps from any odd-dimensional close manifold X<sub>2n+1</sub> to U(N)

 $g: X_{2n+1} \to U(N).$ 

For smooth maps, the winding number is given by

$$W_{2n+1}[g] = \frac{n!}{(2n+1)!(2\pi i)^{n+1}} \int_{X_{2n+1}} \operatorname{tr}\left[(g^{\dagger}dg)^{2n+1}\right] \in \mathbb{Z}.$$

- Question: Is there a discrete formula for the winding number  $W_{2n+1}[g]$ ?
- My definition of a discrete formula:

(i) Based on a lattice approximation  $\Lambda$  of the manifold  $X_{2n+1}$ . (ii) The computational cost is  $O(|\Lambda|)$ , the number of vertices of lattice  $\Lambda$ . (iii) manifestly quantized.

• We found a discrete formula of this sense for  $W_3[g]$ , the 3D winding number.

## Why 3D winding number? Ex. topological band theory

▶ 3D time-reversal invariant topological superconductors are classified by  $\mathbb{Z}$  and characterized by  $W_3[g]$  with

$$g: T^3 \to \mathrm{GL}_N(\mathbb{C}), \quad g_k = \varepsilon_k + i\delta_k.$$

Here,  $\mathbf{k} \in T^3$  lives in 3D Brillouin zone torus,  $\varepsilon_{\mathbf{k}}$  is the normal part of the electron (Bloch Hamiltonian), and  $\delta_{\mathbf{k}}$  comes from the superconducting gap function.

 $\triangleright$   $W_3[g]$  gapless Majorana Weyl fermions appear on the sample boundary.



## Why 3D winding number? Ex. topological band theory (cont.)

For example, the He-B phase is known to have  $W_3[g] = 1$ , where  $g_k$  is given from

$$arepsilon_{oldsymbol{k}} = rac{oldsymbol{k}^2}{2m} - \mu, \quad \delta_{oldsymbol{k}} = rac{\Delta}{v_F}oldsymbol{k}\cdotoldsymbol{\sigma}.$$

- But in numerical calculations such as first-principle calculation, the Bloch Hamiltonian \varepsilon\_k is not written as a function over the Brillouin zone torus, but just a data of matrices over a discretized Brillouin zone torus.
- ▶ So, a discrete calculation formula of  $W_3[g]$  is desirable.

#### What we want to do

Input data:

- A: a lattice approximation of 3D oriented and closed manifold  $X_3$ .
- $\{g_v\}_{v\in\Lambda}$ , a set of U(N) matrices over  $\Lambda$ .
- For any adjacent vertices v, v', unitary matrices  $g_v$  and  $g_{v'}$  are close to each other. For example,  $||I_N g_v^{\dagger}g_{v'}|| < \delta$  with some small constant  $\delta^{-1}$ .

Output:

▶ 3D Winding winding number  $W_3[g] \in \mathbb{Z}$ .



<sup>&</sup>lt;sup>1</sup>I have not established yet the upper limit of  $\delta$  (Admissibility condition) so that our discrete formula works.

## Strategy

Volume integral over cube

- $\Rightarrow$  Surface integral over plaquette
  - $\Rightarrow$  Loop integral over the boundary of plaquette (Berry phase)
    - $\Rightarrow$  Discrete approximation of Berry phase
      - $\Rightarrow$  Discrete formula of  $W_3[g]$



## Basic bundle gerbe

 Our derivation is a straightforward application of the basic bundle gerbe<sup>2</sup> over SU(N) [Gawędzki=Reis, hep-th/0205233].

#### WZW BRANES AND GERBES

KRZYSZTOF GAWĘDZKI and NUNO REIS Laboratoire de Physique, ENS-Lyon, 46, Allée d'Italie, F-69364 Lyon, France

Received 30 July 2002

- ► There is a canonical gerbe connection over SU(N) whose 3-form curvature is  $\frac{1}{24\pi^2} \operatorname{tr} \left[ (g^{\dagger} dg)^3 \right]$  representing  $H^3(SU(N), \mathbb{Z}) = \mathbb{Z}$ .
- Pulling back it to  $X_3$ , we have a gerbe connection over  $X_3$ .
- ► Cf. The usual 1-form Berry connection is given by pull back of a canonical connection over CP<sup>∞</sup>.

<sup>&</sup>lt;sup>2</sup>A gerbe is a "2-form U(1) connection" in hep-th context.

#### Global 3-form $\rightarrow$ local 2-form over patch

• We begin with the integral formula of  $W_3[g]$ ,

$$W_3[g] = \frac{1}{2\pi} \int_{X_3} H(g), \quad H(g) = \frac{1}{12\pi} \operatorname{tr} [(g^{\dagger} dg)^3].$$

Because H is closed as dH = 0, there *locally* exists a 2-form B such that H = dB.
Diagonilizing g,

$$g = \gamma \Lambda \gamma^{\dagger}, \quad \gamma \in U(N), \quad \Lambda = \operatorname{diag}(e^{i\phi_1}, \dots, e^{i\phi_N}),$$

we get the 2-from B explicitly as in [Gawędzki=Reis, hep-th/0205233]

$$B = \frac{1}{4\pi} \operatorname{tr} \left[ \gamma^{\dagger} d\gamma \Lambda \gamma^{\dagger} d\gamma \Lambda^{-1} \right] + \frac{1}{2\pi} \operatorname{tr} \left[ (\log \Lambda) (\gamma^{\dagger} d\gamma)^{2} \right].$$

• Here,  $\log \Lambda$  is ill-defined, since  $\log e^{i\phi} \sim i\phi$  has the  $2\pi i$  ambiguity.

• We have to fix a branch of  $\log$ , which is why B can not be a global 2-form.

## $\theta$ -gap

- To fix a branch of log, we introduce a gap condition for unitary matrices  $g \in U(N)$ .
- For a  $\theta \in [0, 2\pi)$ , we say that  $g_x$  has the  $\theta$ -gap over  $U \subset X_3$  if none of eigenvalues of  $g_x$  for  $x \in U$  are  $e^{i\theta}$  [Carpentier=Delplace=Fruchart=Gawędzki=Tauber, 1503.04157].



- ▶ If U is small enough, at least one  $\theta$ -gap should be found.
- ▶ Thus,  $X_3$  has a covering  $\{U_j\}_j$  so that  $g_x$  has the  $\theta_j$ -gap over  $U_j$ .

## Explicit form of $\boldsymbol{B}$ and its gauge invariance

• Over a patch  $U_i$ , the 2-form is explicitly given by

$$B_{\theta_j} = \frac{1}{4\pi} \operatorname{tr} \left[ \gamma^{\dagger} d\gamma \Lambda \gamma^{\dagger} d\gamma \Lambda^{-1} \right] + \frac{1}{2\pi} \operatorname{tr} \left[ (\log_{\theta_j} \Lambda) (\gamma^{\dagger} d\gamma)^2 \right], \quad x \in U_j.$$

▶ Here,  $\log_{\theta}$  specifies the branch of  $\log$  so that

$$\log_{\theta} e^{i\phi} = i\phi, \quad \theta \le \phi < \theta + 2\pi.$$

The 1st term of  $B_{\theta}$  is a global 2-form as it does not depend on  $\theta$ .

<u>Remark</u> The diagonalization unitary matrix γ is not unique as it g = γΛγ<sup>†</sup> is unchanged under "gauge transformations"

$$\gamma \mapsto \gamma W, \quad W\Lambda = \Lambda W, \quad W \in U(N).$$

The 2-form  $B_{\theta}$  is gauge-invariant.

#### Local 2-form over patch $\rightarrow$ Local 1-form over patch intersection

- The key property of Gawędzki-Reis's construction is that the difference of  $B_{\theta}$  between two different  $\theta$ -gaps is a total derivative.
- ▶ This occurs because the change in the branch of log is a constant:

$$\log_{\theta_1} e^{i\phi} - \log_{\theta_2} e^{i\phi} = \begin{cases} 2\pi i \times \operatorname{sgn}(\theta_1 - \theta_2) & (\min(\theta_1, \theta_2) < \phi < \max(\theta_1, \theta_2)), \\ 0 & (\text{otherwise}). \end{cases}$$

$$\log_{\theta_1} \Lambda - \log_{\theta_2} \Lambda = 2\pi i \times \operatorname{sgn}(\theta_1 - \theta_2) \times P_{\theta_1, \theta_2}$$

Here,  $P_{\theta_1,\theta_2}$  is the orthogonal projector onto the eigenspace of  $g_x$  between  $\theta_1$  and  $\theta_2$  [Carpentier=Delplace=Fruchart=Gawędzki=Tauber, 1503.04157].

• Explicitly, writing the eigenstates of g as

$$g\left|u_{n}\right\rangle = e^{i\phi_{n}}\left|u_{n}\right\rangle,$$



#### Local 2-form over patch $\rightarrow$ Local 1-form over patch intersection (cont.)

▶ Over a two patch intersection  $x \in U_1 \cap U_2$ , we get

$$B_{\theta_1} - B_{\theta_2} = \frac{1}{2\pi} \operatorname{tr} \left[ (\log_{\theta_1} \Lambda - \log_{\theta_2} \Lambda) (\gamma^{\dagger} d\gamma)^2 \right]$$
  

$$= \frac{1}{2\pi} \operatorname{tr} \left[ 2\pi i \times \operatorname{sgn}(\theta_1 - \theta_2) \times P_{\theta_1, \theta_2} \times (\gamma^{\dagger} d\gamma)^2 \right]$$
  

$$= i \times \operatorname{sgn}(\theta_1 - \theta_2) \sum_{n:\min(\theta_1, \theta_2) < \phi_n < \max(\theta_1, \theta_2)} \sum_{m=1}^{N} \langle u_n | du_m \rangle \langle u_m | du_n \rangle$$
  

$$= -i \times \operatorname{sgn}(\theta_1 - \theta_2) \sum_{n:\min(\theta_1, \theta_2) < \phi_n < \max(\theta_1, \theta_2)} d \langle u_n | du_n \rangle$$
  

$$= d \left[ -i \times \operatorname{sgn}(\theta_1 - \theta_2) \sum_{n:\min(\theta_1, \theta_2) < \phi_n < \max(\theta_1, \theta_2)} \langle u_n | du_n \rangle \right]$$
  

$$=: d\alpha_{\theta_1, \theta_2}, \quad x \in U_1 \cap U_2.$$

▶ The 1-form  $\alpha_{\theta_1,\theta_2}$  is the Berry connection between  $\theta_1$  and  $\theta_2$ !

## Discrete formula

- Now we are ready to construct the discrete formula of  $W_3[g]$ .
- Give a cubic lattice approximation  $\Lambda$  of  $X_3$ . (Any cell decomposition works as well.)
- ▶ 3D winding number  $W_3[g]$  is the sum of integrals over cubes.

$$W_3[g] = \frac{1}{2\pi} \sum_{c \in \{\text{cubes}\}} \int_c H(g).$$

▶ On each cube c, we pick a  $\theta$ -gap parameter  $\theta_c \in [0, 2\pi)$  by smearing eigenvalues over eight vertices of the corner of the cube c.



## Discrete formula (cont.)

▶ Then, each integral can be written as a surface integral.

$$W_3[g] = \frac{1}{2\pi} \sum_{c \in \{\text{cubes}\}} \int_c dB_{\theta_c} = \frac{1}{2\pi} \sum_{c \in \{\text{cubes}\}} \int_{\partial c} B_{\theta_c}$$

This is further simplified to the sum of surface integrals over all plaquette.

$$W_3[g] = \frac{1}{2\pi} \sum_{p \in \{\text{plaquettes}\}} \int_p (B_{\theta_p^-} - B_{\theta_p^+}).$$

Here,  $\theta_p^+$  and  $\theta_p^-$  correspond to the gap parameters of cubes adjacent to plaquette p, in directions parallel and antiparallel to p's normal vector, respectively:



## Discrete formula (cont.)

• Therefore,  $W_3[g]$  can be written as the sum of Berry phases of all over plaquettes.

$$W_3[g] = \frac{1}{2\pi} \sum_{p \in \{\text{plaquettes}\}} \int_p d\alpha_{\theta_p^-, \theta_p^+} = \frac{1}{2\pi} \sum_{p \in \{\text{plaquettes}\}} \oint_{\partial p} \alpha_{\theta_p^-, \theta_p^+}$$

Final step. The Berry phase over a small plaquette is approximated by the product of inner products. For example, if  $\alpha_{\theta_p^-, \theta_p^+}$  is composed of a single band  $|u_{n_0}\rangle$ ,

$$\oint_{\partial p} \alpha_{\theta_p^-, \theta_p^+} \cong \operatorname{sgn}(\theta_p^+ - \theta_p^-) \times \operatorname{Arg}\left[\prod_{j=0,1,2,3} \left\langle u_{n_0}(v_{j+1}) \,|\, u_{n_0}(v_j) \right\rangle\right] =: \Phi_p$$

 $(\Phi_p \text{ is defined for general cases as well.})$ 

• The Berry flux  $\Phi_p$  is small enough so that  $\Phi_p$  can be considered as an  $\mathbb{R}$ -valued quantity, not  $\mathbb{R}/2\pi\mathbb{Z}$ -valued.



## Discrete formula (cont.)

► We got the discrete formula

$$W_3^{\mathrm{dis}}[\{g\}_{v\in\Lambda}] = \frac{1}{2\pi} \sum_{p\in\{\mathrm{plaquettes}\}} \Phi_p \in \mathbb{Z}.$$

- ► This formula can be evaluated only by diagonalizing the matrix g over the vertices  $v \in \Lambda$  approximating  $X_3$ .  $\rightarrow$  the computational cost is  $O(|\Lambda|)$ .
- ▶ Moreover, the quantization of  $W_3^{\text{dis}}[\{g\}_{v \in \Lambda}]$  is manifest: We can show that

$$e^{2\pi i W_3^{\operatorname{dis}}[\{g\}_{v\in\Lambda}]} = \prod_{p\in\{\operatorname{plaquettes}\}} e^{i\Phi_p} \equiv 1,$$

using the cocycle condition around the edges.



#### Sanity check

 $\blacktriangleright$  We have checked that the discrete formula  $W_3^{\rm dis}[g]$  does works only for a simple  $2\times 2$  model

$$g_{\mathbf{k}} = \sum_{\mu=x,y,z} \sin k_{\mu} \sigma_{\mu} - i(m + \sum_{\mu=x,y,z} \cos k_{\mu}) \mathbf{1}_{2} + (\text{small random } \mathbf{k}\text{-dependent perturbation}).$$

Without perturbation,  $W_3[g] = -2$  for |m| < 1,  $W_3[g] = 1$  for 1 < |m| < 3, and  $W_3[g] = 0$  else.

## Summary and Outlook

- ▶ We proposed a discrete formula for the 3D winding number W<sub>3</sub>[g], a generalization of the Fukui-Hatsugai-Suzuki formula for the 1st Chern number ch<sub>1</sub>.
- The numerical cost is  $O(|\Lambda|)$ , where  $|\Lambda|$  is the number of mesh vertices.



It is interesting to generalize the discrete formula for the 2nd Chern number ch<sub>2</sub>. Can ch<sub>2</sub> be written only with the set of points of the Grassmann manifold over mesh vertices of a 4-manifold X<sub>4</sub>? Does the 2-gerbe structure of the Chern-Simons 3-form help us in this regard?