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Rényi entropy

𝐷 ഥ𝐷

I Def:

SR,N =
1

1− N
ln tr [ρND ], ρD = tr D̄ [|ψ〉 〈ψ|],

SR = lim
N→1

SR,N .

I tr [ρND ] can be written as the expectation value of the partial replica
permutation operator TD for the replica ground state
|Ψ〉 = |ψ〉 ⊗ · · · ⊗ |ψ〉,

tr [ρND ] = 〈Ψ|TD |Ψ〉 .
I For fermions,

TD(f †1 (x), . . . , f †N (x))T−1
D =

{
(f †1 (x), . . . , f †N (x))MT (x ∈ D),

(f †1 (x), . . . , f †N (x)) (x /∈ D),

MT =


0 −1

0 −1
· · ·

0 −1
1 0

 .



I Introduce the fermion basis f̃ †1 , . . . f̃
†
N diagonalizing MT as

f̃k =
1√
N

(f †1 + ωk f
†

2 + ω2
k f
†

3 + · · ·+ ωN−1
k f †N ),

ωk = e
2πi(k−1/2)

N , k = 1, . . . ,N,

TD f̃
†
k (x)T−1

D =

{
−ωk f̃

†
k (x) (x ∈ D),

f̃ †k (x) (x /∈ D).

I When |ψ〉 preserves the U(1) symmetry, tr [ρND ] is further recast as the
product of the ground state expectation value of the partial U(1)
transformation as

tr [ρND ] =
∏

`=− N−1
2
,− N−1

2
+1,..., N−1

2

〈ψ|U 2π`
N

∣∣∣
D
|ψ〉,

where Uθ|D is the partial U(1) transformation.

I Partial onsite transformation.



Bulk-boundary correspondence for gapped phases

𝐷 ഥ𝐷

I For a gapped ground state (= a short-range entangled (SRE) state) |ψ〉,
the reduced density matrix ρD = tr D̄ [|ψ〉 〈ψ|] is well-approximated by the
physical boundary excitation Hbdy living on ∂D that emerges when we cut
the system at D.

ρD ∼
e−βHbdy

tr [e−βHbdy ]
, β ∼ ξ ∼ 1

m
.

Here, ξ ∼ 1
m

is the correlation length of the bulk.
I The partial U(1) transformation Uθ|D behaves as the U(1) transformation

Ubdy,θ for the boundary excitation Hbdy.
I Therefore, with the assumption of the bulk-boundary correspondence, the

ground state expectation value 〈ψ|Uθ|D |ψ〉 of the partial U(1)
transformation is written as the expectation value of the U(1)
transformation for the boundary system.

〈ψ|Uθ|D |ψ〉 ∼
tr [Ubdy,θe

−βHbdy ]

tr [e−βHbdy ]
.



Ex1: (2+1)D Chern insulator
I D = D2: a 2D disc. |∂D| = 2πL.
I Bulk:

H =
∑
k

f †k [kxσx + kyσy + (m − εk2)σz ]fk .

I Boundary:

Hbdy =
2π

L

∑
n∈Z+ 1

2

n : γ†nγn : − 1

24
.

I Partial U(1) transformation

〈ψ|Uθ|D |ψ〉 ∼
tr [e−iθQbdye−ξHbdy ]

tr [e−ξHbdy ]
, Qbdy =

∑
n∈Z+ 1

2

: γ†mγm : .

I By using the S transformation, it is approximated by the vacuum
contribution

〈ψ|Uθ|D |ψ〉 ∼ exp

[
−2πξ

L

1

2
(
θ

2π
)2

]
, −π < θ < π.

I Rényi entropy

SR,N =
N + 1

24N
× 2πL

ξ
· · · −−−→

N→1
SR =

1

12
× 2πL

ξ
+ · · · .



Ex2: (3+1)D topological insulator

I D = D3: a 3D disc. |∂D| = S2 with the radius R.
I Bulk:

H =
∑

k

f †k [k · στx + (m − εk2)τz ]fk .

I Boundary:

Hbdy =
1

R

∫
dΩ(γ†↑, γ

†
↓)

(
0 −i∂θ − 1

sin θ
∂φ − i cot θ

2

−i∂θ + 1
sin θ

∂φ − i cot θ
2

0

)(
γ↑
γ↓

)
I Partial U(1) transformation

〈ψ|Uθ|D |ψ〉 ∼
tr [e−iθQbdye−ξHbdy ]

tr [e−ξHbdy ]
, Qbdy =

∫
dΩ : γ†↑γ↑ + γ†↓γ↓ : .

I Since the bdy excitations is free, one can compute the partial U(1)
transformation analyticalally.

〈ψ|Uθ|D |ψ〉 = exp

[
−R2

ξ2

{
Li3(−e−iθ) + Li3(−e iθ)

2
+

3

4
ζ(3)

}
− ln

∣∣∣∣cos
θ

2

∣∣∣∣+ · · ·
]
.

I Rényi entropy

SR,N =
9ζ(3)

4

1 + N + N2

3N2

R2

ξ2
− ln 2

3
+ · · · −−−→

N→1
SR =

9ζ(3)

4

R2

ξ2
− ln 2

3
+ · · · .



Partial onsite symmetry transformation

I Partial onsite symmetry transformation

〈ψ|U|D |ψ〉 =
𝑥1

𝑥2
|𝜓⟩

⟨𝜓|

𝐷

𝑥1

𝑥2 𝐷

Ԧ𝑥

Ԧ𝑥

𝑈 𝐼𝑑 𝐷

I Symmetry defect surface D with the boundary ∂D.

I There is no interpretation as a topological manifold with a background
field. The boundary ∂D is a kind of a singularity.

I Said differently, the expectation value 〈ψ|U|D |ψ〉 may depend on the
“boundary condition” on the boundary ∂D.



Partial point group transformation [KS-Shapourian-Ryu]

I Similarly, in the presence of point group symmetry G (reflection, rotation,
inversion, ...), we may consider the partial point group transformations

〈ψ|g |D |ψ〉 , g ∈ G .

I In particular, we fucus on a point group operation that freely acts on the
space manifold except for the point group center.

I For instance, n-fold rotation symmetry in (2+1)D.

〈ψ|Cn|D |ψ〉 =
𝑥1

𝑥2
|𝜓⟩

⟨𝜓|

𝐷

𝑥1

𝑥2

𝐶𝑛 𝐼𝑑

Ԧ𝑥

𝐶𝑛 Ԧ𝑥

𝐿(𝑛, 1)

I There is the topological interpretation: the partial point group
transformation makes a sort of a cross-cap in the spacetime manifold.

I For the partial n-fold rotation in (2+1)D, the resulting manifold is the
(2+1)D manifold with a cross-cap to make the lens space L(n, 1).



Exs

I The partial reflection x 7→ −x for (1+1)D
⇒ the real projective plane RP2.

I The partial n-fold rotation for (2+1)D
⇒ the lens space L(n, 1).

I The partial inversion (x , y , z) 7→ (−x ,−y ,−z) for (3+1)D
⇒ the 4D real projective space RP4.

Partial rotation Partial inversion
Partial reflection



Our claim

(1) For point group symmetry g which acts on the d-dim. space manifold
freely except for the point group center, the expectation value of the
partial point group transformation g |D for a g -symmetric short-range
entangled (SRE) state |ψ〉 takes a form as

〈ψ|g |D |ψ〉 = exp

[
iθ + γ − α |∂D|

ξd−1
+ · · ·

]
.

Here, θ, γ are scale-independent constants, α is a complex constant, and ξ
is the correlation length of bulk.

(2) The scale-independent U(1) phase e iθ is indeed quantized. I.e. e iθ does
not change under the continuous deformation of |ψ〉 with keeping the
short range correlation and the g symmetry.

I A comment:
Since the partial point group transformation g |D is not a symmetry of the
system, we have the loss of the amplitude proportional to the number of
dof living in the boundary ∂D.



Where we were from
I We encountered the partial point group transformation as the order

parameter 〈ψ|OSPT|ψ〉 of symmetry protected topological (SPT) phases
with point group symmetry. [KS-Shapourian-Ryu]

I Why?
I SPT phases are believed to be described by invertible TQFTs

(dimHMd = 1).
I A point group symmetry operation becomes onsite or orientation-reversing

symmetry. (Ex: C4 rotation → Z4 onsite)
I For onsite symmetry, (the torsion part of) SPT phases are classified by

(the torsion part of) the cobordism group. Precisely, an SPT phase can be
viewed as a homomorphism

Ωstr
d+1(BG)→ U(1), Z : M → Z(M).

I Therefore, an SPT phase is detected by the path-integral over the
generator manifolds of the cobordism group Ωstr

D (BG).
I In some cases, a generator manifold Mgen is given by a kind of cross-cap

so that it can be “simulated” by the expectation value 〈ψ|g |D |ψ〉 of the
partial point group transformation of a point group operator g .

Z(Mgen) ∼ 〈ψ|g |D |ψ〉 for the U(1) phase part.

(Ex: Ω
Pin+
4 (pt) = Z16 generated by RP4 → the partial inversion)

I Since Hom(Tor Ωstr
d+1(BG),U(1)) is a torsion, e iθ should be quantized.
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Partial rotations for (2+1)D

𝑥1

𝑥2
|𝜓⟩

⟨𝜓|

𝐷

𝑥1

𝑥2

𝐶𝑛 𝐼𝑑

Ԧ𝑥

𝐶𝑛 Ԧ𝑥

𝐿(𝑛, 1)

〈ψ|Cn|D |ψ〉 = exp

[
iθ + γ − α |∂D|

ξ
+ · · ·

]
.



Ex: (2+1)D (px − ipy )-superconductor
I Numerical calculation for a lattice model

H = −t
∑
〈i,j〉

(f †i fj + h.c.)

︸ ︷︷ ︸
hopping

−µ
∑
i

f †i fi︸ ︷︷ ︸
chemical

+ ∆
∑
〈i,j〉

(e−iθi,j f †i f
†
j + h.c.)

︸ ︷︷ ︸
(px − ipy )-gap function

.

t : hopping
μ : chemical potential 
⊿ = t

𝐴𝑟𝑔 ⟨𝜓 𝐶𝑛 𝐷|𝜓⟩

𝐴𝑟𝑔 ⟨𝜓 𝐶𝑛 𝐷|𝜓⟩



Edge CFT calculation (cf. [Tu-Zhang-Qi, 12] “momentum polarization”)

I The bulk-boundary correspondence: the reduced density matrix over D of
the gapped ground state |ψ〉 is approximated by an edge CFT.

ρD = tr D̄(|ψ〉 〈ψ|) ∼ e−ξHedge

Z
,

where ξ ∼ 1
m
� |∂D| is the correlation length of bulk.

I Then, the partial Cn rotation is same as the 2π
n

translation on the edge
CFT.

〈ψ|Cn|D |ψ〉 ∼
tr
[
e−i :P: 2πL

n
e
−ξHedge

]
Z

I This is a high temperature partition function.



I For right-moving (chiral) CFT, P = Hedge.

tr
[
e−i :P: 2πL

n e−ξHedge

]
Z

=
e−

2πic
24n

Z

∑
a∈reps

χa(
iξ

L
− 1

n
).

I Applying the (ST−nS) modular transformation, it can be written as a
low-temperature partition function and is approximated by the vacuum.

iξ

L
− 1

n
S−→ − 1

iξ
L
− 1

n

T−n

−−−→
inξ
L

iξ
L
− 1

n

S−→ iL

n2ξ
+

1

n
,

tr
[
e−i :P: 2πL

n e−ξHedge

]
= e−

2πic
24n

∑
a

∑
b

(ST−nS)abχb(
iL2

n2ξ
+

1

n
)

∼ e−
2πic
24n

∑
a

∑
b

(ST−nS)abe
( 2πi

n
− 2πL

n2ξ
)(hb− c

24
)
.

I Note that ST−nS the modular transformation to make the lens space
L(n, 1) in the surgery of two solid tori.



Ex: (2+1)D (px − ipy )-superconductor

(𝑝𝑥 − 𝑖𝑝𝑦)-SC

Chiral Majorana edgeI Bulk Hamiltonian

H =
∑

k=(kx ,ky )

[
f †k (

k2

2m
− µ)fk +

∆

2
(kx − iky )f †k f

†
−k + h.c.

]
.

I Rotation symmetry

Cθf
†
r,φC

−1
θ = e−iθ/2f †r,φ+θ, C2π = (−1)F .

I The edge Majorana excitation on ∂D is given by the Jackiw-Rebi trick.
I Instead of dealing with the open space D directly, we consider the

spatially-varying mass µ(r) so that µ(r) represents the phase boundary
between the topological (µ(r) < 0 for r < L) phase and the trivial
(µ(r) > 0 for r > L) phase.

γ(
Lφ

2π
) ∼

[
e

iφ
2

+πi
4 fr,φ + e−

iφ
2
−πi

4 f †r,φ

]
e−

∫ r µ(r′)
∆

dr′ ,

γ(`)† = γ(`)
real condition

, γ(`+ 2πL) = −γ(`)
APBC (NS sector)

.



I Plugging this into the bulk Hamiltonian, we have the edge Hamiltonian

HNS =
2π∆

L

 ∑
n∈Z+ 1

2
,n>0

nγ−nγn −
1

48

 .

I The CFT data:

c =
1

2
, (h1, hψ, hσ) = (0,

1

2
,

1

16
),

S =
1

2

 1 1
√

2

1 1 −
√

2√
2
√

2 0

 , T = e−
πi
24

1
−1

e
πi
8

 ,

Virasolo rep. = [1]⊕ [ψ] (NS sector).

I For the edge Majorana, the partial rotation is indeed the translation

Cθγ(`)C−1
θ = γ(`+

θL

2π
)

I The partial Cn rotation is given as

〈ψ|Cn|D |ψ〉 ∼

 exp
[
− (n2+2)πi

24n
− (1− 1

n2 ) 1
48

2πL
ξ

+ · · ·
]

(n even),

exp
[
− (n2−1)πi

24n
− ln
√

2− (1 + 1
n2 ) 1

48
2πL
ξ

+ · · ·
]

(n odd).



I For some ns:

〈ψ|C2|D |ψ〉 ∼ exp

[
−πi

8
− 3

4
· 1

48
· 2πL

ξ
+ · · ·

]
,

〈ψ|C3|D |ψ〉 ∼ exp

[
−πi

9
− ln
√

2− 11

9
· 1

48
· 2πL

ξ
+ · · ·

]
,

〈ψ|C4|D |ψ〉 ∼ exp

[
−3πi

16
− 15

16
· 1

48
· 2πL

ξ
+ · · ·

]
,

〈ψ|C5|D |ψ〉 ∼ exp

[
−πi

5
− ln
√

2− 27

25
· 1

48
· 2πL

ξ
+ · · ·

]
,

〈ψ|C6|D |ψ〉 ∼ exp

[
−19πi

72
− 35

36
· 1

48
· 2πL

ξ
+ · · ·

]
.

I There U(1) phases exactly match with the numerical calculation.



Ex: (2+1)D (px − ipy )-superconductor
I Numerical calculation for a lattice model

H = −t
∑
〈i,j〉

(f †i fj + h.c.)

︸ ︷︷ ︸
hopping

−µ
∑
i

f †i fi︸ ︷︷ ︸
chemical

+ ∆
∑
〈i,j〉

(e−iθi,j f †i f
†
j + h.c.)

︸ ︷︷ ︸
(px − ipy )-gap function

.

t : hopping
μ : chemical potential 
⊿ = t

𝐴𝑟𝑔 ⟨𝜓 𝐶𝑛 𝐷|𝜓⟩

𝐴𝑟𝑔 ⟨𝜓 𝐶𝑛 𝐷|𝜓⟩



Partial inversion for (3+1)d

Partial inversion Antipodal map

(3+1)D bulk (2+1)D surface

𝜓 𝐼 𝐷 𝜓 = | 𝜓 𝐼 𝐷 𝜓 | 𝑒𝑖𝜃 tr I e−𝜉 𝐻𝑠𝑢𝑟𝑓 = tr I e−𝜉 𝐻𝑠𝑢𝑟𝑓 𝑒𝑖𝜃

〈ψ|I |D |ψ〉 = exp

[
iθ + γ − α |∂D|

ξ2
+ · · ·

]
.



Ex: (3+1)D odd parity superconductors with inversion symmetry

I Inversion symmetry

If †j (x)I−1 = f †i (−x)Iij , I 2 = (−1)F , (x = (x , y , z)).

I The classification of SPT phases is given by
f4

pin+
(pt) = Hom(Ω

pin+
4 (pt),U(1)) = Z16. [Kitaev,

Fidkowski-Chen-Vishwanath, You-Xu, Kapustin-Thorngren-Turzillo-Wang, ...]

I The generator manifold of Ω
pin+
4 (pt) is the 4D real projective space RP4.

I RP4 is simulated by the ground state expectation value of the partial
inversion defined by

I |D f †j (x)(I |D)−1 =

{
f †i (−x)Iij (x ∈ D),

f †j (x) (x /∈ D).

Partial inversion Antipodal map



A generator model

I A generator model of f4
pin+

(pt) = Z16 is given by the topological
superconductor for the He-B phase.

I The bulk Hamiltonian is given by

H =
∑

k=(kx ,ky ,kz )

Ψ†k

[
(
k2

2m
− µ)τz + ∆τxk · σ

]
Ψk ,

where Ψ(k) = (f↑,k , f↓,k , f
†
↓,−k ,−f

†
↑,−k) is the Nambu fermion.

I Inversion symmetry:

If †σ,x I
−1 = if †σ,−x , I 2 = (−1)F .

I The partial inversion on ∂B3 = the antipodal map on ∂B3 = S2.

I The surface excitation γ(θ, φ) is explicitly written by the bulk complex
fermion as in

γ(θ, φ) ∼
[
− e−iφ/2 cos

θ

2
{f †↑ (r , θ, φ) + if↓(r , θ, φ)}

− e iφ/2 sin
θ

2
{f †↓ (r , θ, φ)− if↑(r , θ, φ)}

]
e−

∫ r µ(r′)
∆

dr′ ,

where µ(r) represents the boundary at the radius r = R between the
topological µ < 0 and trivial (µ > 0) regions.



I APBC for the φ-direction (like the Schwinger gauge)

γ(θ, φ+ 2π) = −γ(θ, φ).

I The partial inversion Isurf acts on the surface fermions as

Isurfγ
†(θ, φ)I−1

surf = −iγ(π − θ, φ+ π).

I Plugging γ(θ, φ), γ†(θ, φ) into the bulk Hamiltonian, we have the surface
Hamiltonian

Hsurf =

∫
sin θdθdφ(γ(θ, φ),−γ(θ, φ))H

(
γ(θ, φ)
−γ†(θ, φ)

)
,

H =
∆

R

(
0 −i∂θ − 1

sin θ
∂φ − i cot θ

2

−i∂θ + 1
sin θ

∂φ − i cot θ
2

0

)
.

I We no longer have a simple algebraic way to implement the S
transformation to approximate the partition function for (2+1)D CFTs.
However, this is a free theory, everything is computable. (cf. [Cardy 91,
Operator content and modular properties of higher-dimensional conformal
field theories])



I By using the monopole harmonics, it is straightforward to diagonalize the
surface Hamiltonian as in

Hsurf =
∆

R

∑
n∈N

∑
m=−(n−1/2),−(n−1/2)+1,...,n−1/2

nχ†n,mχn,m,

and we show that the partial inversion acts on eigenstates as

Isurfχ
†
n,mI

−1
surf = i(−1)nχ†n,m, (n ∈ N).

I We arrive at the analytic expression of the partial inversion, the
expectation value of the antipodal map Isurf .

〈ψ|I |D |ψ〉 ∼
tr [Isurfe

− ξ
∆
Hsurf ]

tr [e−
ξ
∆
Hsurf ]

=

∏∞
n=1(1 + i(−q)n)2n∏∞

n=1(1 + qn)2n
, q = e−ξ/R .

I Using the Cahen-Mellin integral (∼ the S transformation [Cardy 91]), we
have

〈ψ|I |D |ψ〉 ∼
tr [Isurfe

− ξ
∆
Hsurf ]

tr [e−
ξ
∆
Hsurf ]

= exp

[
−πi

8
+

ln 2

12
− 21

16
ζ(3)

R2

ξ2
+ · · ·

]
.

I This matches with the cobordism classification f4
pin+

(pt) = Z16.



Numerical results

I The lattice model for the HE-B phase on the 3D cubic lattice.

H = −t
∑
〈i,j〉,σ

(f †σ,i fσ,j + h.c.)− µ
∑
σ,i

f †σ,i fσ,j

+ ∆
∑

〈i,j〉,σ,σ′

∑
µ=x,y,z

{
(σµiσy )σ,σ′ f

†
σ,i f
†
σ′,j + h.c.

}
.

I The topological phase with a single surface Majorana fermion appears for
t < |µ| < 3t.

I The numerical result for t = ∆, 123 sites for the total system, and 63 sites
for the partial inversion.



Summary [KS-Shapourian-Ryu, arXiv:1609.05970]

I The partial point group operation may have a topological meaning.

I The expectation value of the partial point group transformation g |D on a
g -symmetric short-range entangled (SRE) state |ψ〉 takes a form as

〈ψ|g |D |ψ〉 = exp

[
iθ + γ − α |∂D|

ξd−1
+ · · ·

]
.

I The U(1) phase e iθ is quantized, and its value is determined by the SPT
phases with point group symmetry to which the SRE state |ψ〉 belongs.

I cf. The anomaly indicator for the gapped topological ordered surface
[Wang-Levin, Tachikawa-Yonekura, Barkeshli et al (16)].

Partial rotation Partial inversion
Partial reflection


