Partial point group operation and
 Symmetry protected topological phases

Ken Shiozaki	YITP, Kyoto university with
Hassan Shapourian	University of Chicago \rightarrow MIT-Harvard joint posdoc
Shinsei Ryu	University of Chicago

Aug 21, 2019 @ Southeast University

- Refs:

KS, Hassan Shapourian, Shinsei Ryu, arXiv:1609.05970.
Hassan Shapourian, KS, Shinsei Ryu, arXiv:1607.03896.
KS, Shinsei Ryu, arXiv:1607.06504.

Outline

- Introduction
- Rényi entropy
- for the purpose of introducing the partial symmetry transformation
- Partial point group transformation and symmetry protected phases
- Partial point group transformation
- Partial rotation
- Partial inversion

Rényi entropy

$$
D>\bar{D}
$$

- Def:

$$
\begin{aligned}
& S_{R, N}=\frac{1}{1-N} \ln \operatorname{tr}\left[\rho_{D}^{N}\right], \quad \rho_{D}=\operatorname{tr}_{\bar{D}}[|\psi\rangle\langle\psi|] \\
& S_{R}=\lim _{N \rightarrow 1} S_{R, N}
\end{aligned}
$$

- $\operatorname{tr}\left[\rho_{D}^{N}\right]$ can be written as the expectation value of the partial replica permutation operator T_{D} for the replica ground state $|\Psi\rangle=|\psi\rangle \otimes \cdots \otimes|\psi\rangle$,

$$
\operatorname{tr}\left[\rho_{D}^{N}\right]=\langle\Psi| T_{D}|\Psi\rangle
$$

- For fermions,

$$
\begin{gathered}
T_{D}\left(f_{1}^{\dagger}(x), \ldots, f_{N}^{\dagger}(x)\right) T_{D}^{-1}= \begin{cases}\left(f_{1}^{\dagger}(x), \ldots, f_{N}^{\dagger}(x)\right) M_{T} & (x \in D), \\
\left(f_{1}^{\dagger}(x), \ldots, f_{N}^{\dagger}(x)\right)\end{cases} \\
M_{T}=\left(\begin{array}{cccc}
0 & -1 & & \\
& 0 & -1 & \\
& & \cdots & \\
\\
1 & & & 0
\end{array}\right) \\
1
\end{gathered}
$$

- Introduce the fermion basis $\tilde{f}_{1}^{\dagger}, \ldots \tilde{f}_{N}^{\dagger}$ diagonalizing M_{T} as

$$
\begin{aligned}
& \tilde{f}_{k}=\frac{1}{\sqrt{N}}\left(f_{1}^{\dagger}+\omega_{k} f_{2}^{\dagger}+\omega_{k}^{2} f_{3}^{\dagger}+\cdots+\omega_{k}^{N-1} f_{N}^{\dagger}\right), \\
& \omega_{k}=e^{\frac{2 \pi i(k-1 / 2)}{N}}, \quad k=1, \ldots, N, \\
& T_{D} \tilde{f}_{k}^{\dagger}(x) T_{D}^{-1}= \begin{cases}-\omega_{k} \tilde{f}_{k}^{\dagger}(x) & (x \in D), \\
\tilde{f}_{k}^{\dagger}(x) & (x \notin D) .\end{cases}
\end{aligned}
$$

- When $|\psi\rangle$ preserves the $U(1)$ symmetry, $\operatorname{tr}\left[\rho_{D}^{N}\right]$ is further recast as the product of the ground state expectation value of the partial $U(1)$ transformation as

$$
\operatorname{tr}\left[\rho_{D}^{N}\right]=\left.\prod_{\ell=-\frac{N-1}{2},-\frac{N-1}{2}+1, \ldots, \frac{N-1}{2}}\langle\psi| U_{\frac{2 \pi \ell}{N}}\right|_{D}|\psi\rangle,
$$

where $\left.U_{\theta}\right|_{D}$ is the partial $U(1)$ transformation.

- Partial onsite transformation.

Bulk-boundary correspondence for gapped phases

D
 \bar{D}

- For a gapped ground state ($=$ a short-range entangled (SRE) state) $|\psi\rangle$, the reduced density matrix $\rho_{D}=\operatorname{tr}_{\bar{D}}[|\psi\rangle\langle\psi|]$ is well-approximated by the physical boundary excitation $H_{\text {bdy }}$ living on ∂D that emerges when we cut the system at D.

$$
\rho_{D} \sim \frac{e^{-\beta H_{\mathrm{bdy}}}}{\operatorname{tr}\left[e^{-\beta H_{\mathrm{bdy}}}\right]}, \quad \beta \sim \xi \sim \frac{1}{m} .
$$

Here, $\xi \sim \frac{1}{m}$ is the correlation length of the bulk.

- The partial $U(1)$ transformation $\left.U_{\theta}\right|_{D}$ behaves as the $U(1)$ transformation $U_{\mathrm{bdy}, \theta}$ for the boundary excitation $H_{\text {bdy }}$.
- Therefore, with the assumption of the bulk-boundary correspondence, the ground state expectation value $\left.\langle\psi| U_{\theta}\right|_{D}|\psi\rangle$ of the partial $U(1)$ transformation is written as the expectation value of the $U(1)$ transformation for the boundary system.

$$
\left.\langle\psi| U_{\theta}\right|_{D}|\psi\rangle \sim \frac{\operatorname{tr}\left[U_{\mathrm{bdy}, \theta} e^{-\beta H_{\mathrm{bdy}}}\right]}{\operatorname{tr}\left[e^{-\beta H_{\mathrm{bdy}}}\right]}
$$

Ex1: $(2+1) \mathrm{D}$ Chern insulator

- $D=D^{2}$: a 2D disc. $|\partial D|=2 \pi L$.
- Bulk:

$$
H=\sum_{k} f_{k}^{\dagger}\left[k_{x} \sigma_{x}+k_{y} \sigma_{y}+\left(m-\epsilon k^{2}\right) \sigma_{z}\right] f_{k}
$$

- Boundary:

$$
H_{\mathrm{bdy}}=\frac{2 \pi}{L} \sum_{n \in \mathbb{Z}+\frac{1}{2}} n: \gamma_{n}^{\dagger} \gamma_{n}:-\frac{1}{24} .
$$

- Partial $U(1)$ transformation

$$
\left.\langle\psi| U_{\theta}\right|_{D}|\psi\rangle \sim \frac{\operatorname{tr}\left[e^{-i \theta Q_{\mathrm{bdy}}} e^{-\xi H_{\mathrm{bdy}}}\right]}{\operatorname{tr}\left[e^{-\xi H_{\mathrm{bdy}}}\right]}, \quad Q_{\mathrm{bdy}}=\sum_{n \in \mathbb{Z}+\frac{1}{2}}: \gamma_{m}^{\dagger} \gamma_{m}:
$$

- By using the S transformation, it is approximated by the vacuum contribution

$$
\left.\langle\psi| U_{\theta}\right|_{D}|\psi\rangle \sim \exp \left[-\frac{2 \pi \xi}{L} \frac{1}{2}\left(\frac{\theta}{2 \pi}\right)^{2}\right], \quad-\pi<\theta<\pi .
$$

- Rényi entropy

$$
S_{R, N}=\frac{N+1}{24 N} \times \frac{2 \pi L}{\xi} \cdots \xrightarrow[N \rightarrow 1]{\longrightarrow} S_{R}=\frac{1}{12} \times \frac{2 \pi L}{\xi}+\cdots
$$

Ex2: $(3+1) \mathrm{D}$ topological insulator

- $D=D^{3}$: a 3D disc. $|\partial D|=S^{2}$ with the radius R.
- Bulk:

$$
H=\sum_{\boldsymbol{k}} f_{k}^{\dagger}\left[\boldsymbol{k} \cdot \boldsymbol{\sigma} \tau_{x}+\left(m-\epsilon k^{2}\right) \tau_{z}\right] f_{k}
$$

- Boundary:

$$
H_{\mathrm{bdy}}=\frac{1}{R} \int d \Omega\left(\gamma_{\uparrow}^{\dagger}, \gamma_{\downarrow}^{\dagger}\right)\left(\begin{array}{cc}
0 & -i \partial_{\theta}-\frac{1}{\sin \theta} \partial_{\phi}-\frac{i \cot \theta}{2} \\
-i \partial_{\theta}+\frac{1}{\sin \theta} \partial_{\phi}-\frac{i \cot \theta}{2} & 0
\end{array}\right)\binom{\gamma_{\uparrow}}{\gamma_{\downarrow}}
$$

- Partial $U(1)$ transformation

$$
\left.\langle\psi| U_{\theta}\right|_{D}|\psi\rangle \sim \frac{\operatorname{tr}\left[e^{-i \theta Q_{\mathrm{bdy}}} e^{-\xi H_{\mathrm{bdy}}}\right]}{\operatorname{tr}\left[e^{-\xi H_{\mathrm{bdy}}}\right]}, \quad Q_{\mathrm{bdy}}=\int d \Omega: \gamma_{\uparrow}^{\dagger} \gamma_{\uparrow}+\gamma_{\downarrow}^{\dagger} \gamma_{\downarrow}:
$$

- Since the bdy excitations is free, one can compute the partial $U(1)$ transformation analyticalally.

$$
\left.\langle\psi| U_{\theta}\right|_{D}|\psi\rangle=\exp \left[-\frac{R^{2}}{\xi^{2}}\left\{\frac{\operatorname{Li}_{3}\left(-e^{-i \theta}\right)+\operatorname{Li}_{3}\left(-e^{i \theta}\right)}{2}+\frac{3}{4} \zeta(3)\right\}-\ln \left|\cos \frac{\theta}{2}\right|+\cdots\right]
$$

- Rényi entropy

$$
S_{R, N}=\frac{9 \zeta(3)}{4} \frac{1+N+N^{2}}{3 N^{2}} \frac{R^{2}}{\xi^{2}}-\frac{\ln 2}{3}+\cdots \underset{N \rightarrow 1}{\longrightarrow} S_{R}=\frac{9 \zeta(3)}{4} \frac{R^{2}}{\xi^{2}}-\frac{\ln 2}{3}+\cdots
$$

Partial onsite symmetry transformation

- Partial onsite symmetry transformation

- Symmetry defect surface D with the boundary ∂D.
- There is no interpretation as a topological manifold with a background field. The boundary ∂D is a kind of a singularity.
- Said differently, the expectation value $\left.\langle\psi| U\right|_{D}|\psi\rangle$ may depend on the "boundary condition" on the boundary ∂D.

Partial point group transformation [KS-Shapourian-Ryu]

- Similarly, in the presence of point group symmetry G (reflection, rotation, inversion, ...), we may consider the partial point group transformations

$$
\left.\langle\psi| g\right|_{D}|\psi\rangle, \quad g \in G
$$

- In particular, we fucus on a point group operation that freely acts on the space manifold except for the point group center.
- For instance, n-fold rotation symmetry in (2+1)D.

- There is the topological interpretation: the partial point group transformation makes a sort of a cross-cap in the spacetime manifold.
- For the partial n-fold rotation in $(2+1) \mathrm{D}$, the resulting manifold is the $(2+1) \mathrm{D}$ manifold with a cross-cap to make the lens space $L(n, 1)$.
- The partial reflection $x \mapsto-x$ for (1+1)D \Rightarrow the real projective plane $R P^{2}$.
- The partial n-fold rotation for $(2+1) \mathrm{D}$ \Rightarrow the lens space $L(n, 1)$.
- The partial inversion $(x, y, z) \mapsto(-x,-y,-z)$ for $(3+1) \mathrm{D}$ \Rightarrow the 4D real projective space $R P^{4}$.

Partial reflection

Partial rotation

Partial inversion

Our claim

(1) For point group symmetry g which acts on the d-dim. space manifold freely except for the point group center, the expectation value of the partial point group transformation $\left.g\right|_{D}$ for a g-symmetric short-range entangled (SRE) state $|\psi\rangle$ takes a form as

$$
\left.\langle\psi| g\right|_{D}|\psi\rangle=\exp \left[i \theta+\gamma-\alpha \frac{|\partial D|}{\xi^{d-1}}+\cdots\right]
$$

Here, θ, γ are scale-independent constants, α is a complex constant, and ξ is the correlation length of bulk.
(2) The scale-independent $U(1)$ phase $e^{i \theta}$ is indeed quantized. I.e. $e^{i \theta}$ does not change under the continuous deformation of $|\psi\rangle$ with keeping the short range correlation and the g symmetry.

- A comment:

Since the partial point group transformation $\left.g\right|_{D}$ is not a symmetry of the system, we have the loss of the amplitude proportional to the number of dof living in the boundary ∂D.

Where we were from

- We encountered the partial point group transformation as the order parameter $\langle\psi| \mathcal{O}_{\mathrm{SPT}}|\psi\rangle$ of symmetry protected topological (SPT) phases with point group symmetry. [KS-Shapourian-Ryu]
- Why?
- SPT phases are believed to be described by invertible TQFTs $\left(\operatorname{dim} \mathcal{H}_{M_{d}}=1\right)$.
- A point group symmetry operation becomes onsite or orientation-reversing symmetry. (Ex: C_{4} rotation $\rightarrow \mathbb{Z}_{4}$ onsite)
- For onsite symmetry, (the torsion part of) SPT phases are classified by (the torsion part of) the cobordism group. Precisely, an SPT phase can be viewed as a homomorphism

$$
\Omega_{d+1}^{\operatorname{str}}(B G) \rightarrow U(1), \quad Z: M \rightarrow Z(M)
$$

- Therefore, an SPT phase is detected by the path-integral over the generator manifolds of the cobordism group $\Omega_{D}^{\text {str }}(B G)$.
- In some cases, a generator manifold $M_{\text {gen }}$ is given by a kind of cross-cap so that it can be "simulated" by the expectation value $\left.\langle\psi| g\right|_{D}|\psi\rangle$ of the partial point group transformation of a point group operator g.

$$
\left.Z\left(M_{\mathrm{gen}}\right) \sim\langle\psi| g\right|_{D}|\psi\rangle \quad \text { for the } U(1) \text { phase part. }
$$

(Ex: $\Omega_{4}^{\mathrm{Pin}_{+}}(p t)=\mathbb{Z}_{16}$ generated by $R P^{4} \rightarrow$ the partial inversion)

- Since $\operatorname{Hom}\left(\right.$ Tor $\left.\Omega_{d+1}^{\text {str }}(B G), U(1)\right)$ is a torsion, $e^{i \theta}$ should be quantized.

Outline

- Introduction
- Rényi entanglement entropy - for the purpose of introducing the partial symmetry transformation
- Partial point group transformation and symmetry protected phases
- Partial point group transformation
- Partial rotation
- Partial inversion

Partial reflection

Partial rotation

Partial inversion

Partial rotations for $(2+1) D$

$$
\left.\langle\psi| C_{n}\right|_{D}|\psi\rangle=\exp \left[i \theta+\gamma-\alpha \frac{|\partial D|}{\xi}+\cdots\right] .
$$

Ex: $(2+1) \mathrm{D}\left(p_{x}-i p_{y}\right)$-superconductor

- Numerical calculation for a lattice model

$$
H=\underbrace{-t \sum_{\langle i, j\rangle}\left(f_{i}^{\dagger} f_{j}+\text { h.c. }\right)}_{\text {hopping }}-\underbrace{\mu \sum_{i} f_{i}^{\dagger} f_{i}}_{\text {chemical }}+\underbrace{\Delta \sum_{\langle i, j\rangle}\left(e^{-i \theta_{i, j}} f_{i}^{\dagger} f_{j}^{\dagger}+\text { h.c. }\right)}_{\left(p_{x}-i p_{y}\right) \text {-gap function }} .
$$

t : hopping
μ : chemical potential $\Delta=t$

Edge CFT calculation (cf. [Tu-Zhang-Qi, 12] "momentum polarization")

- The bulk-boundary correspondence: the reduced density matrix over D of the gapped ground state $|\psi\rangle$ is approximated by an edge CFT.

$$
\rho_{D}=\operatorname{tr}_{\bar{D}}(|\psi\rangle\langle\psi|) \sim \frac{e^{-\xi H_{\text {edge }}}}{Z}
$$

where $\xi \sim \frac{1}{m} \ll|\partial D|$ is the correlation length of bulk.

- Then, the partial C_{n} rotation is same as the $\frac{2 \pi}{n}$ translation on the edge CFT.

$$
\left.\langle\psi| C_{n}|D| \psi\right\rangle \sim \frac{\operatorname{tr}\left[e^{\left.-i: P: \frac{2 \pi L}{n} e^{-\xi H_{\text {edge }}}\right]}\right.}{Z}
$$

- This is a high temperature partition function.
- For right-moving (chiral) CFT, $P=H_{\text {edge }}$.

$$
\frac{\operatorname{tr}\left[e^{-i: P: \frac{2 \pi L}{n}} e^{-\xi H_{\text {edge }}}\right]}{Z}=\frac{e^{-\frac{2 \pi i c}{24 n}}}{Z} \sum_{a \in \mathrm{reps}} \chi_{a}\left(\frac{i \xi}{L}-\frac{1}{n}\right)
$$

- Applying the ($S T^{-n} S$) modular transformation, it can be written as a low-temperature partition function and is approximated by the vacuum.

$$
\begin{aligned}
& \frac{i \xi}{L}-\frac{1}{n} \xrightarrow{S}-\frac{1}{\frac{i \xi}{L}-\frac{1}{n}} \xrightarrow{T^{-n}} \frac{\frac{i n \xi}{L}}{\frac{i \xi}{L}-\frac{1}{n}} \stackrel{S}{\rightarrow} \frac{i L}{n^{2} \xi}+\frac{1}{n} \\
& \operatorname{tr}\left[e^{-i: P: \frac{2 \pi L}{n}} e^{-\xi H_{\text {edge }}}\right]=e^{-\frac{2 \pi i c}{24 n}} \sum_{a} \sum_{b}\left(S T^{-n} S\right)_{a b} \chi_{b}\left(\frac{i L^{2}}{n^{2} \xi}+\frac{1}{n}\right) \\
& \sim e^{-\frac{2 \pi i c}{24 n}} \sum_{a} \sum_{b}\left(S T^{-n} S\right)_{a b} e^{\left(\frac{2 \pi i}{n}-\frac{2 \pi L}{n^{2} \xi}\right)\left(h_{b}-\frac{c}{24}\right)}
\end{aligned}
$$

- Note that $S T^{-n} S$ the modular transformation to make the lens space $L(n, 1)$ in the surgery of two solid tori.

Ex: $(2+1) \mathrm{D}\left(p_{x}-i p_{y}\right)$-superconductor

- Bulk Hamiltonian

$$
H=\sum_{k=\left(k_{x}, k_{y}\right)}\left[f_{k}^{\dagger}\left(\frac{k^{2}}{2 m}-\mu\right) f_{k}+\frac{\Delta}{2}\left(k_{x}-i k_{y}\right) f_{k}^{\dagger} f_{-k}^{\dagger}+\text { h.c. }\right] .
$$

- Rotation symmetry

$$
C_{\theta} f_{r, \phi}^{\dagger} C_{\theta}^{-1}=e^{-i \theta / 2} f_{r, \phi+\theta}^{\dagger}, \quad C_{2 \pi}=(-1)^{F}
$$

- The edge Majorana excitation on ∂D is given by the Jackiw-Rebi trick.
- Instead of dealing with the open space D directly, we consider the spatially-varying mass $\mu(r)$ so that $\mu(r)$ represents the phase boundary between the topological $(\mu(r)<0$ for $r<L)$ phase and the trivial $(\mu(r)>0$ for $r>L)$ phase.

$$
\begin{gathered}
\gamma\left(\frac{L \phi}{2 \pi}\right) \sim\left[e^{\frac{i \phi}{2}+\frac{\pi i}{4}} f_{r, \phi}+e^{-\frac{i \phi}{2}-\frac{\pi i}{4}} f_{r, \phi}^{\dagger}\right] e^{-\int^{r} \frac{\mu\left(r^{\prime}\right)}{\Delta} d r^{\prime}}, \\
\underset{\text { real condition }}{\gamma(\ell)^{\dagger}=\gamma(\ell), \quad \begin{array}{c}
\text { APBC }(\text { NS sector })
\end{array}} .
\end{gathered}
$$

- Plugging this into the bulk Hamiltonian, we have the edge Hamiltonian

$$
H_{\mathrm{NS}}=\frac{2 \pi \Delta}{L}\left(\sum_{n \in \mathbb{Z}+\frac{1}{2}, n>0} n \gamma_{-n} \gamma_{n}-\frac{1}{48}\right) .
$$

- The CFT data:

$$
\begin{aligned}
& c=\frac{1}{2}, \quad\left(h_{1}, h_{\psi}, h_{\sigma}\right)=\left(0, \frac{1}{2}, \frac{1}{16}\right), \\
& S=\frac{1}{2}\left(\begin{array}{ccc}
1 & 1 & \sqrt{2} \\
1 & 1 & -\sqrt{2} \\
\sqrt{2} & \sqrt{2} & 0
\end{array}\right), \quad T=e^{-\frac{\pi i}{24}}\left(\begin{array}{ccc}
1 & & \\
& -1 & \\
& & e^{\frac{\pi i}{8}}
\end{array}\right),
\end{aligned}
$$

Virasolo rep. $=[1] \oplus[\psi] \quad$ (NS sector).

- For the edge Majorana, the partial rotation is indeed the translation

$$
C_{\theta} \gamma(\ell) C_{\theta}^{-1}=\gamma\left(\ell+\frac{\theta L}{2 \pi}\right)
$$

- The partial C_{n} rotation is given as

$$
\left.\langle\psi| C_{n}|D| \psi\right\rangle \sim \begin{cases}\exp \left[-\frac{\left(n^{2}+2\right) \pi i}{24 n}-\left(1-\frac{1}{n^{2}}\right) \frac{1}{48} \frac{2 \pi L}{\xi}+\cdots\right] & \text { (} n \text { even }) \\ \exp \left[-\frac{\left(n^{2}-1\right) \pi i}{24 n}-\ln \sqrt{2}-\left(1+\frac{1}{n^{2}}\right) \frac{1}{48} \frac{2 \pi L}{\xi}+\cdots\right] & \text { (} n \text { odd }) .\end{cases}
$$

- For some ns:

$$
\begin{aligned}
& \left.\langle\psi| C_{2}\right|_{D}|\psi\rangle \sim \exp \left[-\frac{\pi i}{8}-\frac{3}{4} \cdot \frac{1}{48} \cdot \frac{2 \pi L}{\xi}+\cdots\right] \\
& \left.\langle\psi| C_{3}\right|_{D}|\psi\rangle \sim \exp \left[-\frac{\pi i}{9}-\ln \sqrt{2}-\frac{11}{9} \cdot \frac{1}{48} \cdot \frac{2 \pi L}{\xi}+\cdots\right] \\
& \left.\langle\psi| C_{4}\right|_{D}|\psi\rangle \sim \exp \left[-\frac{3 \pi i}{16}-\frac{15}{16} \cdot \frac{1}{48} \cdot \frac{2 \pi L}{\xi}+\cdots\right] \\
& \left.\langle\psi| C_{5}\right|_{D}|\psi\rangle \sim \exp \left[-\frac{\pi i}{5}-\ln \sqrt{2}-\frac{27}{25} \cdot \frac{1}{48} \cdot \frac{2 \pi L}{\xi}+\cdots\right] \\
& \left.\langle\psi| C_{6}\right|_{D}|\psi\rangle \sim \exp \left[-\frac{19 \pi i}{72}-\frac{35}{36} \cdot \frac{1}{48} \cdot \frac{2 \pi L}{\xi}+\cdots\right]
\end{aligned}
$$

- There $U(1)$ phases exactly match with the numerical calculation.

Ex: $(2+1) \mathrm{D}\left(p_{x}-i p_{y}\right)$-superconductor

- Numerical calculation for a lattice model

$$
H=\underbrace{-t \sum_{\langle i, j\rangle}\left(f_{i}^{\dagger} f_{j}+\text { h.c. }\right)}_{\text {hopping }}-\underbrace{\mu \sum_{i} f_{i}^{\dagger} f_{i}}_{\text {chemical }}+\underbrace{\Delta \sum_{\langle i, j\rangle}\left(e^{-i \theta_{i, j}} f_{i}^{\dagger} f_{j}^{\dagger}+\text { h.c. }\right)}_{\left(p_{x}-i p_{y}\right) \text {-gap function }} .
$$

t : hopping
μ : chemical potential $\Delta=t$

Partial inversion for $(3+1) \mathrm{d}$

Ex: $(3+1) \mathrm{D}$ odd parity superconductors with inversion symmetry

- Inversion symmetry

$$
I f_{j}^{\dagger}(x) I^{-1}=f_{i}^{\dagger}(-x) \mathcal{I}_{i j}, \quad I^{2}=(-1)^{F}, \quad(x=(x, y, z))
$$

- The classification of SPT phases is given by $\mho_{\mathrm{pin}_{+}}^{4}(p t)=\operatorname{Hom}\left(\Omega_{4}^{\text {pin }_{+}}(p t), U(1)\right)=\mathbb{Z}_{16}$. [Kitaev,
Fidkowski-Chen-Vishwanath, You-Xu, Kapustin-Thorngren-Turzillo-Wang, ...]
- The generator manifold of $\Omega_{4}^{\text {pin }_{+}}(p t)$ is the $4 D$ real projective space $R P^{4}$.
- $R P^{4}$ is simulated by the ground state expectation value of the partial inversion defined by

$$
I \|_{D} f_{j}^{\dagger}(x)\left(\left.I\right|_{D}\right)^{-1}= \begin{cases}f_{i}^{\dagger}(-x) \mathcal{I}_{i j} & (x \in D) \\ f_{j}^{\dagger}(x) & (x \notin D)\end{cases}
$$

Partial inversion

A generator model

- A generator model of $\mathcal{V}_{\text {pin }_{+}}^{4}(p t)=\mathbb{Z}_{16}$ is given by the topological superconductor for the $\mathrm{He}-\mathrm{B}$ phase.
- The bulk Hamiltonian is given by

$$
H=\sum_{\boldsymbol{k}=\left(k_{x}, k_{y}, k_{z}\right)} \Psi_{k}^{\dagger}\left[\left(\frac{k^{2}}{2 m}-\mu\right) \tau_{z}+\Delta \tau_{x} \boldsymbol{k} \cdot \sigma\right] \boldsymbol{\Psi}_{\boldsymbol{k}},
$$

where $\Psi(\boldsymbol{k})=\left(f_{\uparrow, \boldsymbol{k}}, f_{\downarrow, \boldsymbol{k}}, f_{\downarrow,-\boldsymbol{k}}^{\dagger},-f_{\uparrow,-\boldsymbol{k}}^{\dagger}\right)$ is the Nambu fermion.

- Inversion symmetry:

$$
I f_{\sigma, x}^{\dagger} I^{-1}=i f_{\sigma,-x}^{\dagger}, \quad I^{2}=(-1)^{F}
$$

- The partial inversion on $\partial B^{3}=$ the antipodal map on $\partial B^{3}=S^{2}$.
- The surface excitation $\gamma(\theta, \phi)$ is explicitly written by the bulk complex fermion as in

$$
\begin{aligned}
\gamma(\theta, \phi) \sim[- & e^{-i \phi / 2} \cos \frac{\theta}{2}\left\{f_{\uparrow}^{\dagger}(r, \theta, \phi)+i f_{\downarrow}(r, \theta, \phi)\right\} \\
& \left.-e^{i \phi / 2} \sin \frac{\theta}{2}\left\{f_{\downarrow}^{\dagger}(r, \theta, \phi)-i f_{\uparrow}(r, \theta, \phi)\right\}\right] e^{-\int^{r} \frac{\mu\left(r^{\prime}\right)}{\Delta} d r^{\prime}}
\end{aligned}
$$

where $\mu(r)$ represents the boundary at the radius $r=R$ between the topological $\mu<0$ and trivial $(\mu>0)$ regions.

- APBC for the ϕ-direction (like the Schwinger gauge)

$$
\gamma(\theta, \phi+2 \pi)=-\gamma(\theta, \phi)
$$

- The partial inversion $I_{\text {surf }}$ acts on the surface fermions as

$$
I_{\mathrm{surf}} \gamma^{\dagger}(\theta, \phi) I_{\mathrm{surf}}^{-1}=-i \gamma(\pi-\theta, \phi+\pi)
$$

- Plugging $\gamma(\theta, \phi), \gamma^{\dagger}(\theta, \phi)$ into the bulk Hamiltonian, we have the surface Hamiltonian

$$
\begin{aligned}
& H_{\text {surf }}=\int \sin \theta d \theta d \phi(\gamma(\theta, \phi),-\gamma(\theta, \phi)) \mathcal{H}\binom{\gamma(\theta, \phi)}{-\gamma^{\dagger}(\theta, \phi)}, \\
& \mathcal{H}=\frac{\Delta}{R}\left(\begin{array}{cc}
0 & -i \partial_{\theta}-\frac{1}{\sin \theta} \partial_{\phi}-\frac{i \cot \theta}{2} \\
-i \partial_{\theta}+\frac{1}{\sin \theta} \partial_{\phi}-\frac{i \cot \theta}{2} & 0
\end{array}\right) .
\end{aligned}
$$

- We no longer have a simple algebraic way to implement the S transformation to approximate the partition function for (2+1)D CFTs. However, this is a free theory, everything is computable. (cf. [Cardy 91, Operator content and modular properties of higher-dimensional conformal field theories])
- By using the monopole harmonics, it is straightforward to diagonalize the surface Hamiltonian as in

$$
H_{\text {surf }}=\frac{\Delta}{R} \sum_{n \in \mathbb{N}} \sum_{m=-(n-1 / 2),-(n-1 / 2)+1, \ldots, n-1 / 2} n \chi_{n, m}^{\dagger} \chi_{n, m}
$$

and we show that the partial inversion acts on eigenstates as

$$
I_{\text {surf }} \chi_{n, m}^{\dagger} I_{\text {surf }}^{-1}=i(-1)^{n} \chi_{n, m}^{\dagger}, \quad(n \in \mathbb{N})
$$

- We arrive at the analytic expression of the partial inversion, the expectation value of the antipodal map $I_{\text {surf }}$.

$$
\left.\langle\psi| I\right|_{D}|\psi\rangle \sim \frac{\operatorname{tr}\left[I_{\mathrm{surf}} e^{-\frac{\xi}{\Delta} H_{\mathrm{surf}}}\right]}{\operatorname{tr}\left[e^{-\frac{\xi}{\Delta} H_{\mathrm{surf}}}\right]}=\frac{\prod_{n=1}^{\infty}\left(1+i(-q)^{n}\right)^{2 n}}{\prod_{n=1}^{\infty}\left(1+q^{n}\right)^{2 n}}, \quad q=e^{-\xi / R}
$$

- Using the Cahen-Mellin integral (\sim the S transformation [Cardy 91]), we have

$$
\left.\langle\psi| I\right|_{D}|\psi\rangle \sim \frac{\operatorname{tr}\left[I_{\text {surf }} e^{-\frac{\xi}{\Delta} H_{\mathrm{surf}}}\right]}{\operatorname{tr}\left[e^{-\frac{\xi}{\Delta} H_{\mathrm{surf}}}\right]}=\exp \left[-\frac{\pi i}{8}+\frac{\ln 2}{12}-\frac{21}{16} \zeta(3) \frac{R^{2}}{\xi^{2}}+\cdots\right] .
$$

- This matches with the cobordism classification $\mho_{\text {pin }_{+}}^{4}(p t)=\mathbb{Z}_{16}$.

Numerical results

- The lattice model for the HE-B phase on the 3D cubic lattice.

$$
\begin{aligned}
H= & -t \sum_{\langle i, j\rangle, \sigma}\left(f_{\sigma, i}^{\dagger} f_{\sigma, j}+\text { h.c. }\right)-\mu \sum_{\sigma, i} f_{\sigma, i}^{\dagger} f_{\sigma, j} \\
& +\Delta \sum_{\langle i, j\rangle, \sigma, \sigma^{\prime}} \sum_{\mu=x, y, z}\left\{\left(\sigma_{\mu} i \sigma_{y}\right)_{\sigma, \sigma^{\prime}} f_{\sigma, i}^{\dagger} f_{\sigma^{\prime}, j}^{\dagger}+\text { h.c. }\right\} .
\end{aligned}
$$

- The topological phase with a single surface Majorana fermion appears for $t<|\mu|<3 t$.
- The numerical result for $t=\Delta, 12^{3}$ sites for the total system, and 6^{3} sites for the partial inversion.

Summary [KS-Shapourian-Ryu, arXiv:1609.05970]

- The partial point group operation may have a topological meaning.
- The expectation value of the partial point group transformation $\left.g\right|_{D}$ on a g-symmetric short-range entangled (SRE) state $|\psi\rangle$ takes a form as

$$
\left.\langle\psi| g\right|_{D}|\psi\rangle=\exp \left[i \theta+\gamma-\alpha \frac{|\partial D|}{\xi^{d-1}}+\cdots\right]
$$

- The $U(1)$ phase $e^{i \theta}$ is quantized, and its value is determined by the SPT phases with point group symmetry to which the SRE state $|\psi\rangle$ belongs.
- cf. The anomaly indicator for the gapped topological ordered surface [Wang-Levin, Tachikawa-Yonekura, Barkeshli et al (16)].

