Topological insulators and superconductors

Bulk ••• insulator

Boundary ••• topologically protected gapless states localized at boundary

A toy model for the integer quantum Hall state

A toy model for the integer quantum Hall state

Energy dispersion near $m \sim -2$ $H = \sin k_x \sigma_1 + \sin k_y \sigma_2 + (m + \cos k_x + \cos k_y) \sigma_3$ $E(k_x, k_y) = \pm \sqrt{\sin^2 k_x + \sin^2 k_y + (m + \cos k_x + \cos k_y)^2}$ m = -2.3m-2 m = -3m =__? m =

Energy gap is closed at **k** = **0**

4 2 0 -2 -4

The effective model for the Γ point (*k=0*)

x = 0

$$H = \sin k_x \sigma_1 + \sin k_y \sigma_2 + (m + \cos k_x + \cos k_y) \sigma_3$$

$$\downarrow k \sim 0$$

$$H = k_x \sigma_1 + k_y \sigma_2 + (m + 2 - k^2) \sigma_3$$
Finite system
$$H = -i\partial_x \sigma_1 + k_y \sigma_2 + (m + 2 - k_y^2 + \partial_x^2) \sigma_3$$

$$\downarrow k_y = 0 \text{ (for only time-saving)}$$

$$H|_{k_y=0} = -i\partial_x \sigma_1 + (m + 2 + \partial_x^2) \sigma_3$$

$$= \begin{pmatrix} m + 2 + \partial_x^2 & -i\partial_x \\ -i\partial_x & -(m + 2 + \partial_x^2) \end{pmatrix}$$

$$\downarrow \phi \propto e^{\lambda x}$$

$$H|_{k_y=0} = \begin{pmatrix} m+2+\lambda^2 & -i\lambda \\ -i\lambda & -(m+2+\lambda^2) \end{pmatrix}$$

An analytic solution for the gapless mode

$$\begin{split} H|_{k_y=0} &= \begin{pmatrix} m+2+\lambda^2 & -i\lambda \\ -i\lambda & -(m+2+\lambda^2) \end{pmatrix} \\ \hline \text{The condition for the existence} & \det\left(H|_{k_y=0}\right) = 0 \\ \hline m+2+\lambda^2 &= +\lambda \ , \ -\lambda \\ \lambda_1 &= \frac{1}{2} + \sqrt{\frac{1}{4} - (m+2)} \ \phi_1 &= \begin{pmatrix} 1 \\ -i \end{pmatrix} \ \lambda_3 &= -\frac{1}{2} + \sqrt{\frac{1}{4} - (m+2)} \ \phi_3 &= \begin{pmatrix} 1 \\ i \end{pmatrix} \\ \lambda_2 &= \frac{1}{2} - \sqrt{\frac{1}{4} - (m+2)} \ \phi_2 &= \begin{pmatrix} 1 \\ -i \end{pmatrix} \ \lambda_4 &= -\frac{1}{2} - \sqrt{\frac{1}{4} - (m+2)} \ \phi_4 &= \begin{pmatrix} 1 \\ i \end{pmatrix} \\ \hline \text{The condition for Localizing at } x \sim 0 \qquad \operatorname{Re}(\lambda) < 0 \\ \hline \text{(A)} \ m+2 &< 0 \qquad & \lambda_2 \ , \ \lambda_4 \\ \hline \text{(B)} \ m+2 &> 0 \qquad & \lambda_3 \ , \ \lambda_4 \end{split}$$

An analytic solution for the gapless mode

B.C. For example $\phi|_{x=0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Message • • •

the existence of the gapless modes is determined by the Hamiltonian's parameters

An analytic solution for the gapless mode

The energy spectrum of the finite system

The meaning of "Topologically protected"

- This gapless state is stable against the deformation of the Hamiltonian unless the energy gap is closed.
- Independent of the Boundary conditions.
- Insensitive to disorder, impossible to localize.

Whether do there exist the gapless states is determined by the bulk behavior.

Topological classification of bulk insulators

Consider 2-dimensinal insulating systems

 $H(k_x, k_y) = \varepsilon(\mathbf{k}) + \mathbf{R}(\mathbf{k}) \cdot \boldsymbol{\sigma} \qquad R = \sqrt{\mathbf{R}^2}$

The global structure of spinor space

Ground state topology

Topology ••• The study of geometrical properties that are insensitive to <u>smooth deformations</u>

The classification of the Map $T^2 \rightarrow S^2$

The classification of the Map $T^2 \rightarrow S^2$

The classification of the Map $\ T^2 o S^2$

Integer \mathbb{Z} which counts the number of times S^2 covers S^2

Example

$$u_{-}(\mathbf{k}) = \frac{1}{\sqrt{2R(R-R_3)}} \begin{pmatrix} R-R_3\\ -R_1 - iR_2 \end{pmatrix} \sim \begin{pmatrix} \cos\frac{\theta(\mathbf{k})}{2}\\ e^{i\phi(\mathbf{k})}\sin\frac{\theta(\mathbf{k})}{2} \end{pmatrix}$$
$$\mathbf{n}(\mathbf{k}) = -\frac{\mathbf{R}(\mathbf{k})}{R(\mathbf{k})}$$
$$\mathbf{n}(\mathbf{k}) = \begin{pmatrix} \sin\theta\cos\phi\\ \sin\theta\sin\phi\\ \cos\theta \end{pmatrix} = \begin{pmatrix} 2\sin\frac{\theta}{2}\cos\frac{\theta}{2}\cos\phi\\ 2\sin\frac{\theta}{2}\cos\frac{\theta}{2}\sin\phi\\ \cos^2\frac{\theta}{2} - \sin^2\frac{\theta}{2} \end{pmatrix} = -\frac{\mathbf{R}(\mathbf{k})}{R(\mathbf{k})}$$

 $H = \sin k_x \sigma_1 + \sin k_y \sigma_2 + (m + \cos k_x + \cos k_y) \sigma_3$

$$H = -i\partial_x \sigma_1 + (m+2+\partial_x^2) \sigma_3$$
$$= \begin{pmatrix} m+2+\partial_x^2 & -i\partial_x \\ -i\partial_x & -(m+2+\partial_x^2) \end{pmatrix}$$

$$\phi^{\{0\}}(x) \sim {\binom{1}{i}} e^{-\frac{x}{2}} \sinh\left(\sqrt{\frac{1}{4}} - (m+2) x\right)$$
$$H\phi^{\{0\}}(x) = 0$$

There exist a zero energy state, but not stable along perturbation

$$\mu \ \phi^{\{0\}}(x) = \mu \ \phi^{\{0\}}(x)$$
$$\Delta \sigma_2 \ \phi^{\{0\}}(x) = \Delta \ \phi^{\{0\}}(x)$$

This zero mode is not topologically protected

This is consistent in the topological classification ground state

If there are a certain appropriate symmetry, the zero mode is topologically protected.

 $\boldsymbol{R}(\boldsymbol{k})$

$$H(k_{x}) = \varepsilon(k_{x}) + R(k_{x}) \cdot \sigma$$

$$(Ex) \text{ Chiral symmetry}$$

$$\sigma_{2}H(x)\sigma_{2} = -H(x)$$

$$\varepsilon(k_{x}) = R_{2}(k_{x}) = 0$$

$$\sigma_{2}H(k_{x})\sigma_{2} = -H(k_{x})$$

$$u_{-}(k_{x})$$

$$S^{1} \text{ Integer } \mathbb{Z}$$

$$S^{1}$$

$$H(k_{x}) = \varepsilon(k_{x}) + \mathbf{R}(k_{x}) \cdot \sigma$$
(Ex) Particle-Hall symmetry (ii)
$$\sigma_{2}H^{*}(x)\sigma_{2} = -H(x)$$

$$\sigma_{2}H^{*}(k_{x})\sigma_{2} = -H(-k_{x})$$

$$\boxed{\operatorname{Trivial}}$$

$$R_{1}(k_{x}) = \begin{pmatrix} R_{1}(-k_{x}) \\ R_{2}(k_{x}) \\ R_{3}(-k_{x}) \end{pmatrix}$$

Topological classification depend on the symmetry matrix

 $\begin{array}{ll} (\sigma_1 K)(\sigma_1 K)=1 \\ (\sigma_2 K)(\sigma_2 K)=-1 \end{array} \qquad \qquad K \cdots \text{ complex conjugate} \end{array}$

Topological classification of insulators and superconductors

- *H*(*k*) → Insulating Hamiltonian or BdG Hamiltonian d-dimension Full gapped
- 1. Determine the local symmetries

2. Classify the ground state topology

Topological classification of insulators and superconductors

Schnyder et al.(2008)

Symmetry					d							
S	AZ	Θ^2	Ξ^2	Π^2	0	1	2	3	4	5	6	7
0	А	0	0	0	Z	0	Z	0	Z	0	Z	0
1	AIII	0	0	1	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
0	AI	1	0	0	Z	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2
1	BDI	1	1	1	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2
2	D	0	1	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0
3	DIII	-1	1	1	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	$2\mathbb{Z}$
4	AII	-1	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0
5	CII	-1	-1	1	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
6	С	0	-1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0
7	CI	1	-1	1	0	0	0	2Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z

••• Completely classified

Bulk-boundary correspondence

