Real-space AHSS

k-space AHSS

Classification table

Appendix/back up

Recent Developments of the Classification of Topological Insulators and Superconductors

Ken Shiozaki

YITP, Kyoto University

ken.shiozaki@yukawa.kyoto-u.ac.jp

2024/6/26, @Zurich

Based on [1] KS, Masatoshi Sato, Kiyonori Gomi, 1802.06694; [2] KS, Charles Zhaoxi Xiong, Kiyonori Gomi, 1810.00801; [3] KS, Seishiro Ono, 2304.01827.

Why generalized	(co)	homol	logy?
0000000			

Take home message

- We determined about 60% of the classification of crystalline free fermion topological phases [KS=Ono, 2304.01827].
- The results are summarized in the webpage (link). (The link is found from [KS=Ono, 2304.01827].)
- Rich information!

	• #	TI spin	ful 721			× +						
		pinful_721.html										
	Space c											
	System	: TI										
	Factor s	syster	m : spir	nful								
	Symme	try ty	pe : m	agne	tic sp	ace grou	р	Fo	ur 4n	d-ord	der TIs = Atomic insulators	
	BNS nu	mber										
	BNS syr	One 2nd-order TI										
Three in	depende	ent ir	reps	One	inva	riant ov	er 2-di	im. sút	space	в		
	\sim	Candidate K-groups										
	n=0	$\kappa_0 = \kappa^0 (z^3 + z_2)$ Classification of bulk TIs										
	n=1	$K_{-1}=K^{1}(Z+Z_{2}^{2})$ Classification of gapless phases										
	n=2	Z4	$Z+Z_2$	Z ₂	<u>)</u>	n=2	Z ⁴	Z+Z2	Z2	0	K-2=K ² Z ⁵	
	n=3	0	0	0	0	n=3	0	0	0	0	K-3=K ³ Z+Z2	
	n=4	Z ³	Z+Z22	Z	0	n=4	Z^3+Z_2	Z+Z ₂	Z+Z ₂	0	$K_{4}=K^{4}Z^{3}+Z_{2}$ Uniqueness of each low means that the	8
	n=5	0	0	0	0	n=5	0	0	0	0	classification is fixed only by E2 page	s
	n=6	Z4	Z+Z ₂	Z2	0	n=6	Z ⁴	Z+Z2 ²	Z ₂	0	K-5-K 2+22	
	n=7	0	0	0	0	n=7	0	0	0	0	K-6=K° 22	
	E2 ^{p,-n}	p=0	p=1	p=2	p=3	E ² p,-n	p=0	p=1	p=2	p=3	K ₋₇ = K $[Z+Z_2]$ Classification of adiabatic cycles	

Real-space AHSS

k-space AHSS

Classification table

Appendix/back up

Outline

- Math behind invertible phases: generalized (co)homology theory [2] KS=Xiong=Gomi, 1810.00801
- Real-space Atiyah-Hirzebruch spectral sequence for crystalline invertible phases [2] KS=Xiong=Gomi, 1810.00801
- Case of free fermions with transnational symmetry: *k*-space Atiyah-Hirzebruch spectral sequence [1] KS=Sato=Gomi, 1802.06694
- Classification tables [3] KS=Ono, 2304.01827

- Compared to the k-space classification of topological insulators/superconductors, the real-space classification may be less familiar.

- I mainly talk about real-space construction.
- I can not talk about the details. This slide is super brief.

Why g	generalized	(co)	homo	logy?
0000	000	· ·		

Real-space AHSS

k-space AHSS

Classification table

Appendix/back up

Invertible phases

... Gapped phases without ground state degeneracy

Gapped phases = topological phases

Two properties of invertible phases which are closely related:

- (i) Invertibility $\rightarrow \Omega$ -spectrum structure
- (ii) Bulk-boundary correspondence \rightarrow boundary map of homological theories

 Why generalized (co)homology?
 Real-space AHSS
 k-space AHSS
 Classification table
 Appendix/back up

 (i) Invertibility and Kitaev's Ω-spectrum conjecture [Kitaev '11, '13, '15 (videos), Gaiotto=Johnson-Freyd, 1712.07950]

- Given a *d*-D invertible state $|\chi\rangle$, there exists its "inverse" $|\bar{\chi}\rangle$ such that $|\chi\rangle \otimes |\bar{\chi}\rangle \sim |1\rangle \otimes |1\rangle$.
- Using this, given a *d*-D invertible state $|\chi\rangle$, an adiabaic cycle (Thouless pump) in (d + 1)-D is canonically constructed:

• This suggests the homotopy equivalence

 $F_d \sim \Omega F_{d+1} := \{ |\chi_{d+1}(t)\rangle : [0,1] \rightarrow F_{d+1} | |\chi_{d+1}(0)\rangle = |\chi_{d+1}(1)\rangle = |1_{d+1}\rangle \},$ where F_d = the "space of d-D invertible states".

 Why generalized (co)homology?
 Real-space AHSS
 k-space AHSS
 Classification table
 Appendix/back up

 (i) Invertibility and Kitaev's Ω-spectrum conjecture (cont.)
 [Kitaev '11, '13, '15 (videos),

 Gaiotto=Johnson-Freyd, 1712.07950]

- The sequence of spaces $\{F_d\}_{d\in\mathbb{Z}}$ with the relations $F_d \sim \Omega F_{d+1}$ is called the Ω -spectrum.
- As a matter of mathematical fact, an Ω -spectrum $\{F_d\}_{d\in\mathbb{Z}}$ defines a generalized cohomology and homology theories:

 $h^d(X,Y) := [X/Y, F_d]$

: Family of d-D invertible states over the parameter space (X, Y),

 $h_n(X,Y) := \operatorname{colim}_{k \to \infty} [S^{n+k}, (X/Y) \land F_k]$

: "Degree-n" invertible phases over the real space (X, Y).

(The meaning of "degree-n" is explained soon later.)

• Lesson. Physics with invertibility/adiabatic pump should be described by a generalized (co)homology theory.

(ii) Bulk-boundary correspondence is the boundary map of homology

- If bulk is nontrivial, the boundary exhibits a gapless/SSB/LRE phase protected by anomalous symmetry.
- Ex: Haldane chain protected by either TRS or $\mathbb{Z}_2 \times \mathbb{Z}_2$ onsite symm.

• The bulk-boundary correspondence reminds us the boundary map of homology theory

 $h_n(D^2, \partial D^2) \xrightarrow{\partial} \to h_{n-1}(\partial D^2)$

• $h_{n=0}(X,Y)$: classification of invertible phase over (X,Y), since

$$h_0(D^n, \partial D^n) \underset{\text{Poincare}}{=} h_{-n}(\text{pt}) = h^n(\text{pt}) = [\text{pt}, F_n] = \pi_0(F_n).$$

• The meaning of the generic *n*-th homology is obtained by considering what is the physical phenomenon living in the boundary of the *n*-th homology.

- h₁(X,Y) := the classification of adiabatic pumps over the real space X which may create an invertible state on Y ⊂ X.
- h₀(X,Y) := the classification of invertible phases over the real space X which may have anomaly on Y ⊂ X.
- $h_{-1}(X,Y) :=$ the classification of anomalies over the real space X which may have a "source/sink" of an anomalous excitation on $Y \subset X$.

.

- There are practical benefits to studying invertible phases:
- The real space X can be an arbitrary real space and need not be a manifold (manifold is locally Euclidean). For example, we can ask what is the classification of invertible phases over a trijunction, the Klein bottle, etc.

- The generalized homology description is based on real spaces on which invertible phases defined, meaning that it is straightforward to implement spatial symmetry (point and space group symmetry). \Rightarrow Equivariant homology $h_n^G(X, Y)$.
- In particular, the Atiyah-Hirzebruch Spectral Sequence (AHSS) gives us a systematic way to thinking the interplay of crystalline symmetry and physics of invertible phases.

 k-space AHSS

Classification table

Appendix/back up

Real-space AHSS: Literature

• Free fermion topological phases are classified by K-homology over real spaces [Kitaev, 0901.2686]:

Periodic table for topological insulators and superconductors

Alexei Kitaev

California Institute of Technology, Pasadena, CA 91125, U.S.A.

A gapped local system on a compact metric space L (say, a manifold with or without boundary) is characterized by a K-homology class $\xi \in K_q^{\mathbb{R}}(L)$, where q is defined (mod8). K-homology (see e.g. [30]) and the related noncommutative geometry [31] are advanced

• Generalized (co)homology/ Ω -spectrum proposal [Kitaev '11,'13 (videos)].

 \rightarrow Even for many-body invertible phases, they can be classified by a generalized homology over real spaces.

- Two similar strategies appeared in the study of crystalline invertible phases:
 - Dimensional reduction— to classify invertible phases with crystalline symmetry [Song=Huang=Fu=Hermele 1604.08151],
 - Lattice homotopy— to classify LSM-type theorems [Po=Watanabe=Jian=Zaletel 1703.06882].

Real-space AHSS

k-space AHSS

Classification table

Appendix/back up

Real-space AHSS: Literature (cont.)

• These two procedures are summarized as *trivializing something nontrivial living in low-dimensional real spaces by something nontrivial living in higher-dimensional real spaces*: [Figure from Huang=Song=Huang=Hermele, 1705.09243]

- Reminds us the Atiyah-Hirzebruch spectral sequence (AHSS) of the generalized homology theory.
- We reconstruct these studies in terms of the AHSS of the generalized homology
 - theory KS=Xiong=Gomi 1810.00801.
- Our contribution:
 - The complete mathematical structure behind the real-space approach.
 - Importance of higher differentials and group extension— they can be interpreted and computed using physics knowledge.
- AHSS paper at the same time: Song=Fang=Qi 1810.11013, Song=Huang=Qi=Fang=Hermele 1810.02330, Else=Thorngren 1810.10539.
- Math paper: Freed=Hopkins 1901.06419.

(Homological) spectral sequence in general

Why generalized (co)homology?

• A spectral sequence starts from the E^1 -page, which is something commutable.

$$E^1 = \{E^1_{p,-n}\}_{p,n}$$

• Compute the rth differential ($n = 1, 2, \ldots$,)

$$d_{p,-n}^r : E_{p,-n}^r \to E_{p-r,-n+r-1}^r, \qquad d^r \circ d^r = 0.$$

• The next page is defined as the homology of d^r ,

Real-space AHSS

$$E_{p,-n}^{r+1} = \text{Ker } d_{p,-n}^r / \text{Im } d_{p+r,-n-r+1}^r.$$

• When this iteration converges at some E^q -page:

$$E^1 \Rightarrow E^2 \Rightarrow \cdots E^q = E^{q+1} = \cdots =: E^{\infty},$$

the $E^\infty\text{-page }\{E^\infty_{p,-n-p}\}_p$ "approximates" the homology group $h_{-n}(X,Y).$

k-space AHSS

Classification table

Real-space AHSS (1) : Cell decomposition

Why generalized (co)homology?

• The starting point of the AHSS is to give a filtration of the space X,

 $X_0 \subset X_1 \subset \cdots \subset X.$

k-space AHSS

Classification table

• A useful filtration is the symmetric cell-decomposition

Real-space AHSS

 $X = \{\operatorname{\mathsf{0-cells}}\} \cup \{\operatorname{\mathsf{1-cells}}\} \cup \{\operatorname{\mathsf{2-cells}}\} \cup \cdots, \quad X_0 = \{\operatorname{\mathsf{0-cells}}\}, \quad X_p = X_{p-1} \cup \{p\text{-cells}\}.$

• Ex: 2d real space with C_4 rotation and \mathbb{Z}^2 translation symmetry:

Topological Crystalline Liquid [Thorngren=Else 1612.00846]

- 1-cell, 2-cell??
- Please keep in your mind the following picture:

a (the scale of lattice translation) $\gg \xi$ (the scale of microscopic degrees of freedom).

- $\bullet \ \Rightarrow \ (p \geq 1) \text{-} \mathsf{D}$ invertible states over p-cells make sense.
- This is not the situation of cond-mat, however, it is useful and may works for topological classification because the effective theory would be "topological". (Figure from [Thorngren=Else 1612.00846])

FIG. 1. (a) In a smooth state, the lattice spacing and the correlation length ξ are much loss than the unit cell size a and the radius of spatial variation. (b) The topological response of a crystalline topological liquid is captured by a spatially-dependent TQPT that captures the spatial dependence within each unit cell but "forgets" about the lattice

Real-space AHSS

Classification table

Appendix/back up

Real-space AHSS (2) : E^1 -page

- We want to compute the homology group $h_0^G(X)$, the classification of invertible phases over the real space X with crystalline symmetry G.
- The E^1 -page is defined by

$$E_{p,-n}^{1} := h_{p-n}^{G}(X_{p}, X_{p-1}),$$

the (p-n)-th homology over X_p relative to X_{p-1} .

• It can be rewritten as

$$\begin{split} E_{p,-n}^{1} &\cong \prod_{j \in \{p\text{-cells}\}} h_{p-n}^{G_{D_{j}^{p}}}(D_{j}^{p}, \partial D_{j}^{p}) \cong \prod_{j \in \{p\text{-cells}\}} \tilde{h}_{p-n}^{G_{D_{j}^{p}}}(D_{j}^{p}/\partial D_{j}^{p} (\cong S^{p})) \\ &\cong \prod_{j \in \{p\text{-cells}\}} h_{-n}^{G_{D_{j}^{p}}}(pt) \qquad (\text{suspension iso.}). \end{split}$$

• Thus, $E_{p,-q}^1$ is collection of ablian groups of *n*-D invertible phases with the little group $G_{D_j^p}$, which fixes the *p*-cell D_j^p .

- The E^1 -page hosts the "local information" of invertible phases.
- We should properly glue the local information together, which is partly done by the first differential $d_{p,-q}^1: E_{p,-q}^1 \to E_{p-1,-q}^1$.
- Math def:

$$d_{p,-n}^{1}: E_{p,-n}^{1} = h_{p-n}^{G}(X_{p}, X_{p-1}) \xrightarrow{\partial \text{ (bulk-bdy)}} h_{p-n-1}^{G}(X_{p-1})$$
$$\xrightarrow{\text{inclusion}} h_{p-n-1}^{G}(X_{p-1}, X_{p-2}) = E_{p-1,-n}^{1}$$

- This is essentially the bulk-boundary correspondence: how invertible states over p-cells show anomalies over adjacent (p-1)-cells. easy to compute.
- Adiabatic deformation of 0D states [Huang=Song=Huang=Hermele 1705.09243] $\Rightarrow d_{1,0}^1$. Lattice homology [Po=Watanabe=Jian=Zaletel 1703.06882] $\Rightarrow d_{1,-1}^1$.

 Why generalized (co)homology?
 Real-space AHSS 0000000
 k-space AHSS 0000000
 Classification table 000000
 Appendix/back up 0000000

 Real-space AHSS (3.1):
 The first differential d^1 (cont.)
 Classification table
 Appendix/back up

Real-space AHSS

AHSS (3.2): The second differential d^2

- This is not the end of the story.
- The E^2 -page is still the "local information" in the sense that they are glued together only on the 1-skeleton X_1 , not the full space X.
- \bullet We should further compute the anomaly-free condition between p- and (p-2)-cells, which is the second differential

$$d_{p,-n}^2: E_{p,-n}^2 \to E_{p-2,-n+1}^2.$$

• An example of nontrivial second differential $d_{2,-2}^2$ is 2D even parity superconductor: On a single $p_x + ip_y$ superconductor, the even parity condition $\hat{C}_2^2 = \text{Id}$ enforces a vortex defect at the inversion center with Majorana zero, meaning that the system can not be gapped.

Classification table

Real-space AHSS (4): Group extension

Why generalized (co)homology?

• E^{∞} -page itself does not provide the group structure of invertible phases.

Real-space AHSS

 This is because the stacking higher dimensional invertible phases may be a lower-dimensional invertible phase. ⇒ nontrivial group extension.

k-space AHSS

Classification table

• Ex. Trivial extension:

$$0 \to \mathbb{Z}_2 \to \mathbb{Z}_2 + \mathbb{Z}_2 \to \mathbb{Z}_2 \to 0.$$

Ex. Nontrivial extension:

$$0 \to \mathbb{Z}_2 \to \mathbb{Z}_4 \to \mathbb{Z}_2 \to 0.$$

Real-space AHSS (4): Group extension (cont.)

Introduce

Why generalized (co)homology?

$$F_p h_0 := \text{Im} [h_0^G(X_p) \to h_0^G(X)], \qquad p = 0, 1, \dots,$$

k-space AHSS

Classification table

the classification of invertible phases at most p-dimensions.

Real-space AHSS

• E^{∞} -page is the "ratio" between adjacent layers of filtration: $F_p h_0 / F_{p-1} h_0 \cong E_{p,-p}^{\infty}$.

 Remark. E[∞]_{p,-p} is the classification of (d − p + 1)th-order invertible phases [Huang=Song=Huang=Hermele 1705.09243, Trifunovic=Brouwer 1805.02598].

Why	generalized	(co)	homo	logy?
0000	0000	1		

LSM type theorems

- Im $d_{r,-r}^r =$ SPT-LSM theorm [Lu 1705.04691, Yang=Jiang=Vishwanath=Ran 1705.05421]: In DOF consisting only of Im $d_{r,-r}^r \subset E_{0,-1}^1$, if we get an invertible state, this state must be a nontrivial invertible state.
- $E_{0,-1}^{\infty} = \text{LSM}$ theorem: DOF consisting only of $E_{0,-1}^{\infty} \subset E_{0,-1}^{1}$ can not have an invertible state.

Why generalized	(co)	homol	ogy?
0000000			

Real-space AHSS

k-space AHSS

Classification table

Appendix/back up

Free fermions

• A subclass of invertible phases — invertible phases of fermion bi-linear Hamiltonian

$$\hat{H} = \sum_{xy,ij} c^{\dagger}_{xi} \mathcal{H}_{xi,yj} c_{yj}.$$

• Discussed to be the same as the classification of Dirac mass M(r) over the *d*-D Euclidean space \mathbb{R}^d with crystalline *G* symmetry.

$$\mathcal{H} = \sum_{\mu=1}^{d} -i\partial_{\mu}\gamma_{\mu} + M(\boldsymbol{r}).$$

 \Rightarrow K-homology $K_0^G(\mathbb{R}^d)$.

- The real-space AHSS applies to free fermions (K-homology) as well.
- Current status:
 - The first differential $d_{p,-n}^1$ is easy to compute \Rightarrow the list of E^2 -pages for 1651 magnetic space groups [KS=Ono 2304.01827].
 - There is an algorithm to compute the second differential $d_{2,-2}^2$ for TRS superconductors with conventional pairing symmetry [Ono=KS=Watanabe 2206.02489].
 - No algorithm for higher differentials $d_{p,-n}^{r\geq 2}$ and solving the group extension.

Free fermions with lattice translational invariance — Band theory

• With lattice translation symmetry, the free fermion Hamiltonian \mathcal{H} is characterized by a parameter family of Hermite matrices \mathcal{H}_{k} :

$$\mathcal{H}_{x,y} = \mathcal{H}_{x-y} \xrightarrow{\text{Fourier tr.}} \mathcal{H}_{k}.$$

- The classification of invertible phases of free fermions is the same as the classification of Hamiltonians \mathcal{H}_k over the Brillouin zone (BZ) torus T^d \Rightarrow K-cohomology theory $K^{-n}(T^d)$ [Freed=Moore 1208.5055].
- K-cohomology theory $K^{-n}(X)$: the classification of "functions" over the space X. (contravariant functor)
- K-homology theory $K_n(X)$: the classification of "textures" over the space X. (covariant functor)

Connected homomorphism of K-cohomology

Why generalized (co)homology?

• The degree-0 K-group $K^0(X)$ is represented by a pair of gapped Hamiltonian (H_k, H'_k) over X^{1} .

k-space AHSS

Classification table

• We want to understand the connected homomorphism

Real-space AHSS

$$d: K^0(Y) \to K^1(X, Y).$$

• This is naturally understood as the creation of gapless points associated with the topological transition over $Y \subset X$.

• This also implies that degree-1 K-group $K^1(X)$ is the classification of gapless Hamiltonians.

¹Precisely, the K-group $K^0(X)$ is represented by a triple (E, H, H'), where E is a vector bundle over X and H, H' are flat and gapped Hamiltonians acting on E [Karoubi's book].

Physical meaning of degree n of $K\mbox{-}{\rm cohomology}$ group $K^{-n}(X)$

• $K^{-1}(X)$: One-parameter family of gapped Hamiltonian over X.

$$\mathcal{H}_{\boldsymbol{k},\theta} = \boldsymbol{k} \cdot \boldsymbol{\gamma} + \theta \Gamma.$$

 \cong the gauge transformation over X.

• $K^0(X)$: Gapped Hamiltonian over X.

$$\mathcal{H}_{\boldsymbol{k}} = \boldsymbol{k} \cdot \boldsymbol{\gamma} + M.$$

• $K^1(X)$: Gapless Hamiltonian over X.

$$\mathcal{H}_{k} = k \cdot \gamma.$$

• $K^2(X)$: Singular Hamiltonian over X.

$$\mathcal{H}_{k} = \operatorname{Im} \log \left[k_{d} + i \sum_{\mu=1}^{d-1} k_{\mu} \gamma_{\mu} \right].$$

Real-space AHSS

k-space AHSS

Classification table

Appendix/back up

k-space AHSS: d_1

• The mathematical structure is dual to the real-space AHSS. All the arrows are reversed.

Real-space AHSS

k-space AHSS

Classification table

Appendix/back up

k-space AHSS: d_2

Why generalized (co)homology? k-space AHSS: d_3 Real-space AHSS

k-space AHSS

Classification table

Appendix/back up

 $n = 0 \begin{bmatrix} E_3^{0,0} & E_3^{1,0} & E_3^{2,0} & E_3^{3,0} \end{bmatrix}$ $n = 1 \begin{bmatrix} E_3^{0,-1} & E_3^{1,-1} & E_3^{2,-1} & E_3^{3,-1} \end{bmatrix}$ $\begin{array}{c} n=2 \\ n=3 \\ n=3 \\ E_3^{0,-2} \\ E_3^{-2} \\ E_3^{-2} \\ E_3^{-2} \\ E_3^{-2} \\ E_3^{-2} \\ E_3^{-3} \\ E_3^{$ $n = 4 \begin{bmatrix} e_{2}^{0,-4} & e_{2}^{1,-4} & e_{2}^{2,-4} \end{bmatrix} E_{2}^{3,-4}$ $n = 5 \begin{bmatrix} E_2^{0,-5} & E_2^{1,-5} & E_2^{2,-5} & E_2^{3,-5} \end{bmatrix}$**x** $n = 6 \begin{bmatrix} E_2^{0,-6} & E_2^{1,-6} & E_2^{2,-6} & E_2^{3,-6} \end{bmatrix}$ $n = 7 \begin{bmatrix} E_3^{0,-7} & E_3^{1,-7} & E_3^{2,-7} & E_3^{3,-7} \end{bmatrix}$ $E_3^{p,-n} \mid p = 0 \quad p = 1 \quad p = 2 \quad p = ($ Ex: creation of \ominus $d_3: E_3^{p,-n} \to E_3^{p+3,-n-2}$ Weyl point form inversion center 0 Ker/Im 0 2-cell 3-cell 0-cell 1-cell $E_4^{p,-n} := \operatorname{Ker} d_3^{p,-n} / \operatorname{Im} d_3^{p-3,-n+2}$ $=E^{p,-n}_{\infty}$

Real-space AHSS

k-space AHSS

Classification table

Appendix/back up

k-space AHSS: Group extension

- E_{∞} -page is insufficient for the complete classification of the band structure.
- This is because E_1 -page misses the higher-dimensional structure of Hamiltonian at the high-symmetric point.
- Ex: C₄-rotation symmetry:

• To get the group structure for E_{∞} -page, we have to solve the group extension problem: If a stack of band structures is non-trivial at a high-symmetry point, does a non-trivial band structure appear in adjacent high-dimensional cells?

Example of group extension: 1D gapless edge state of class D superconductors

Real-space AHSS

k-space AHSS

Classification table

Appendix/back up

k-space AHSS: Current status

- The first differential d₁^{p,-n} is easy to compute
 ⇒ the list of E₂-pages for 1651 magnetic space groups [KS=Ono 2304.01827].
- No algorithm for higher differentials $d_{r>2}^{p,-n}$.
- No algorithm for solving the group extension.

From k-space AHSS to topological invariants

Why generalized (co)homology?

• We do not know the concrete expression for many topological invariants.

Real-space AHSS

k-space AHSS

Classification table

- Only the number of irreps at high-symmetry points (0D invariants) and the topological invariants using the whole BZ torus (ex: Chern number, winding number) are known.
- For intermediate situations, no systematic construction of topological invariants defined over 1D and 2D subspace of BZ torus is known.
- Remark. Many ad hoc constructions are known. Wilson line, mirror Chern/winding number, glide $\mathbb{Z}_2/\mathbb{Z}_4$ invariant, etc.
- The k-space AHSS can be used to construct k-space topological invariants systematically.
- We have constructed all the topological invariants defined over the 1-dimensional subspace of BZ torus, for the cases where the Altland-Zirnbauer symmetry class over 1-cell is either AIII, AI, DIII, or CI [Ono=KS 2311.15814]. (website)

Real-space AHSS

k-space AHSS

Classification table

Appendix/back up

Classificaion table: Strategy

- The real-space and k-space AHSSs give the different E^{∞} and E_{∞} -pages, respectively.
- But converge the same classification group! 2

$$K_{-n}(\mathbb{R}^d) \cong K^n(T^d).$$

• Even if no formulas of higher-differentials d^r , d_r of AHSS for $r \ge 2$ are known, we can try all possible d^r , d_r , because they are represented by integer-valued matrices

$$\begin{pmatrix} * & * & \cdots \\ * & * & \cdots \\ \vdots & & \ddots \\ \vdots & & \ddots \end{pmatrix}.$$

- Therefore, all possible E^{∞} and E_{∞} -pages can be listed in a brute-force calculation.
- Also, the group extension of \mathbb{Z} -modules is characterized by an integer-valued matrix ³, meaning that all the possible group extensions can be listed.
- The true classification group lives in the intersection of possibilities from real-space AHSS and *k*-space AHSS. ⇒ strong constraint on the true classification!

²For crystalline symmetry, the isomorphism was proven in [Gomi=Kubota=Thiang 2102.00393]. ³The linear structure is known as the Baer sum.

Real-space AHSS

k-space AHSS

Classification table

Appendix/back up

Classification table: Strategy (cont.)

Why generalized	(co)	homol	ogy?
0000000			

Real-space AHSS

k-space AHSS

Classification table

Appendix/back up

Summary of results

Symmetry type	Number of symmetry settings	n=0	n = 1	n=2	n=3	n=4	n = 5	n=6	n = 7
3D, magnetic space groups	31050	0.594	0.779	0.886	0.859	0.749	0.663	0.539	0.519
3D, magnetic point groups	2346	0.788	0.869	0.931	0.939	0.941	0.817	0.649	0.682
2D, magnetic layer groups	9264	0.88	0.966	0.975	0.964	0.941	0.914	0.801	0.751
2D, magnetic point groups	2364	0.951	0.978	0.976	0.974	0.984	0.936	0.769	0.795
1D, magnetic rod groups	6488	0.943	0.996	0.999	0.996	0.981	0.975	0.945	0.897
1D, magnetic point groups	1946	0.958	0.997	0.998	0.997	0.995	0.984	0.93	0.904

TABLE VI. The proportion of symmetry classes for which the candidate K-group SK_{-n} is uniquely determined. The first column indicates the spatial dimension and the presence or absence of lattice translational symmetry.

- n = 0: gapped band structures
- n = 1: gapless band structures
- n = 7: adiabatic cycles = gapped Floquet phases = large gauge transformations

Setting:

- Insulators for spinless and spinful electrons.
- Superconductors for spinless and spinful electrons and with and without spin SO(3) symmetry.
- 1651 magnetic space groups.
- For superconductors, all possible pairing symmetry of gap function.
- The results are summarized in the webpage (link).

Why generalized (co)homology? Meaning of table Real-space AHSS

k-space AHSS

Classification table

	× .	TI spin	ful 721			× +					
			25 1	www2.y	yukawa	.kyoto-u.a	ic.jp/~ke	n.shiozaki	/ahss/e	2/TI_sp	binful_721.html
	Space o	limen	sion : :	3							
	System	: TI									
	Factor s	syster	m : spii	nful							
	Symme	try ty	/pe : m	agne	tic spa	ace grou	q	Fo	our 4n	d-ord	der TIs = Atomic insulators
	BNS nu	mber	: 85.6	1					/	/	
	BNS sy	mbol	: P4'/n							(One 2nd-order TI
Three ind	lepende	ent ir	reps	One	inva /	riant ov	/er 2-d	lim. súl	ospac	e	
	\rightarrow	k-spa	ce E ₂ -p	bage			Real-sp	ace E ² -	page		Candidate K-groups
	n=0	Z ³	Z+Z2 ²	z /	0	n=0	Z ³ +Z ₂	Z+Z2	Z+Z ₂	0	$\mathbf{K}_{0} = \mathbf{K}^{0} \left(\mathbf{Z}^{3} + \mathbf{Z}_{2} \right)$ Classification of bulk TIs
	n=1	0	0	0/	0	n=1	0	0	0	Ø	$K_{-1}=K^{1}(Z+Z_{2}^{2})$ Classification of gapless phases
	n=2	Z4	$Z+Z_2$	Z ₂	þ	n=2	Z ⁴	Z+Z ₂ ²	Z ₂	0	K-2=K ² Z ⁵
	n=3	0	0	0	0	n=3	0	0	0	0	K -3= K ³ Z+Z ₂
	n=4	Z ³	Z+Z2 ²	Z	0	n=4	Z ³ +Z ₂	z+Z2	Z+Z ₂	0	K ₋₄ = K^4 Z ³ +Z ₂ Uniqueness of each low means that the classification is fixed only by E2 pages
	n=5	0 74	0	0	0	n=5	74	0	0	0	K ₋₅ =K ⁵ Z+Z ₂ ²
	n=7	0	0	0	0	n=7	0	0	0	0	K-6=K ⁶ Z ⁵
	E2 ^{p,-n}	p=0	p=1	p=2	p=3	E ² p,-n	p=0	p=1	p=2	p=3	$\mathbf{K_{-7}=K^2}$ $\mathbf{Z}+\mathbf{Z}_2$ Classification of adiabatic cycles

Real-space AHSS

k-space AHSS

Classification table

Appendix/back up

Meaning of table (cont.)

Space dimension : 3

System : SC

Factor system : spinful

Symmetry type : magnetic space group

BNS number : 160.66

BNS symbol : R3m1'

Class : D

Pairing symmetry : A₂

Character table of A2:

1	m ₁₀₀	3 ₀₀₁ +	3001	m ₁₁₀	m ₀₁₀
1	-1	1	1	-1	-1

	k-spa	се Е ₂ -ра	ge		. 1	Real-s	pace E ²	-page				Candidate K-groups	
n=0	Z2 ⁶	Z ² +Z ₂ ²	Z2	0	n=0	Z2 ²	Z23	Z ₂	0	К 0=К0	Z ³ +Z ₂ ³	Z ³ +Z ₄ +Z ₂ ² Z ³ +Z ₄ ² +Z ₂ Z ³ +Z ₂ ⁴ Z ³ +Z ₄ +Z ₂ ³ Z ³ +Z ₂ ⁵	
n=1	Z ₂ ²	Z+Z2 ²	z	Z ₂	n=1	Z+Z2	Z+Z22	Z22	Z2	K-1=K1	Z ⁴	Z ⁴ +Z ₂	
n=2	z	Z ₂ ³	z	0	n=2	z	Z ²	Z+Z2	Z ₂	K-2=K ²	z	M Ministration (1997) and a state of a	
n=3	Z	Z ₂	Z22	Z	n=3	0	0	Z	Z	K-3=K ³	0	 Multiple possibilities implies that the classification is NOT fixed by E2 pages 	
n=4	0	Z ²	Z ₂	0	n=4	0	0	0	0	K.4=K ⁴	Z ³	classification is NOT fixed by E2 pages	
n=5	0	z	z	Z ₂	n=5	Z	Z	0	0	v _v5	-		
n=6	z	0	z	0	n=6	Z	Z ²	Z	0	K.5=K-	2*		
n=7	Z+Z24	0	0	z	n=7	Z2	Z ₂	z	Z	K-6=K6	Z+Z2	$Z+Z_4$ $Z+Z_8$ $Z+Z_2^2$ $Z+Z_4+Z_2$ $Z+Z_2^3$	
E2 ^{p,-r}	p=0	p=1	p=2	p=3	E ² p,-n	p=0	p=1	p=2	p=3	K ₋₇ =K ⁷	Z4 ³	$Z_{8}+Z_{4}+Z_{2} \left\ Z_{8}+Z_{4}^{2} - \left\ Z_{8}^{2}+Z_{2} \right\ Z_{4}^{2}+Z_{2}^{2} - \left Z_{4}^{3}+Z_{2} \right Z_{8}+Z_{2}^{3} \left Z_{8}+Z_{4}+Z_{2}^{2} \right Z_{4}+Z_{2}^{4} \left Z_{4}^{2}+Z_{2}^{3} \right Z_{8}+Z_{4}^{4} \left Z_{2}^{6} \right Z_{8}^{2}+Z_{2}^{2} \left Z_{8}^{2}+Z_{2}^{2} \left Z_{8}^{2}+Z_{2}^{2} \right Z_{8$	Z ₄ +Z ₂ ⁵ Z ₂ ⁷

Real-space AHSS

k-space AHSS

Classification table

Appendix/back up

Summary and future works

- The real-space AHSS is applicable for any invertible phases. The underlying mathematical structure is the Ω -spectrum structure of invertible states.
- For free fermions with lattice translational symmetry, *k*-space AHSS is also available.
- Comparing real-space and k-space E_2 -pages gives us a strong constraint for the K-group.
- All calculation details are in KS=Ono, 2304.01827.
 —Cell decomposition, irreducible characters, making the E1-page, formulas of d¹, d₁, listing possible d^r, d_r for r ≥ 2, Baer sum, ...

Open questions:

- Algorithm to compute the higher differentials.
- Algorithm to compute the group extension.
- Algorithm to contract the k-space topological invariants from k-space AHSS [Ono=KS 2311.15814].
- Algorithm to provide the microscopic model Hamiltonians from real-space AHSS.
- Fermionic crystalline equivalence principle? [Debray 2102.02941, Manjunath=Calvera=Barkeshli 2210.02452]

Some useful mathematical facts and physical interpretation

• By design, the classification of n-dim. SPT phases is given by the disconnected parts of F_n ,

$$\pi_0(F_n) = [pt, F_n] = h^n(pt).$$

• From the Poincaré duality and the suspension isomorphism,

$$h^n(pt) = h_{-n}(pt) = h_0(D^n, \partial D^n).$$

• $h_0(D^n, \partial D^n)$ can be identified with the classification of SPT phases over D^n relative to its boundary ∂D^n .

Classification table

From SPT phases to a generalized homology theory

- $h_0(X,Y) :=$ the abelian group of SPT phases over a real space X which may have an quantum anomaly over a real space $Y \subset X$.
- We define the boundary map $\partial: h_0(X,Y) \to h_{-1}(Y)$ as the bulk-boundary correspondence.
- This implies $h_{-1}(Y)$ should be regarded as the abelian group of quantum anomaly over a real space Y.
- Ex: Superconductors over $X=S^2$ that may have an anomalous edge state over the equator $Y=S^1.$ We have

$$h_0(S^2, S^1) = \mathbb{Z} \times \mathbb{Z}, \qquad h_{-1}(S^1) = \mathbb{Z},$$

 $\partial : h_0(S^2, S^1) \to h_{-1}(S^1), \qquad (n, m) \mapsto n - m.$

• The ordinary bulk-boundary correspondence is the special case of the boundary map ∂ where $X = D^n$ and $Y = \partial D^n$.

Real-space AHSS

k-space AHSS

Classification table

Appendix/back up

"Physical definition" of $h_n(X, Y)$ v.s. the axioms

Let's consider if the above identification of the group $h_n(X, Y)$ with a physical phenomenon related to SPT phases satisfies the axioms.

- ✓ A covariant functor (Because of the real-space picture)
- ✓ (homotopy) If $f, f' : X \to X'$ are homotopic, then $f_* = f'_*$.
- ✓ (excision) For $A, B \subset X$, the inclusion $A \to A \cup B$ induces an isomorphism $h_n(A, A \cap B) \to h_n(A \cup B, B)$.
- $\checkmark (additivity)$ $h_n(\sqcup_\lambda X_\lambda, \sqcup_\lambda Y_\lambda) = \sqcup_\lambda h_n(X_\lambda, Y_\lambda).$
- ✓ (exactness)

For $Y \subset X$, there is a long exact sequence

$$\cdots \to h_n(Y) \to h_n(X) \to h_n(X,Y) \xrightarrow{\partial} h_{n-1}(Y) \to \cdots$$

... It looks OK.

Why genera	lized ((co)	homo	logy?
0000000				

Exactness

Real-space AHSS

k-space AHSS

Classification table

$$\cdots \xrightarrow{\partial^1} h_0(Y) \xrightarrow{f^0_*} h_0(X) \xrightarrow{g^0_*} h_0(X,Y) \xrightarrow{\partial^0} h_{-1}(Y) \xrightarrow{f^{-1}_*} \cdots$$

- f_* and g_* are induced homomorphisms of inclusions $f: X \to Y$ and $g: (X, \emptyset) \to (X, Y)$, respectively.
- f_*^0 is regarded as embedding an SPT phase over Y in X.

 Why generalized (co)homology?
 Real-space AHSS
 k-space AHSS
 Classification table
 Appendix/back up

 •
 g_*^0 is regarded as cutting out Y from X, which leads to anomalous states over Y from an SPT phase over X.

• ∂^0 is the bulk-boundary correspondence.

Real-space AHSS

k-space AHSS

Classification table

Appendix/back up

Real-space AHSS (4): Filtration

- $\bullet~E^\infty\text{-page}$ itself does not provides the classification of SPT phenomena.
- $\bullet\,$ Introduce the following subgroups of $h_n^G(X,Y),$

$$F_ph_n := \operatorname{Im} [h_n^G(X_p, X_p \cap Y) \to h_n^G(X, Y)], \qquad p = 0, 1, \dots.$$

- This has the clear physical meaning. For instance, F_ph_0 is the classification of SPT phases over the *p*-skeleton X_p which persists after being embedded in the whole space X.
- We have a filtration of the homology group

$$0 \subset F_0 h_n \subset F_1 h_n \subset \cdots \subset F_d h_n = h_n^G(X, Y),$$

where d is the space dimension of X.

• The following relation connects the E^{∞} -page and the homology group.

$$F_p h_n / F_{p-1} h_n \cong E_{p,n-p}^{\infty}.$$

• The E^{∞} -page has good physical meanings.

- $E_{p,-p}^{\infty}$: The classification of (d-p+1)th-order SPT phases. (cf. Huang-Song-Huang-Hermele)
- Ex: 3d with point group symmetry (without translation symmetry):

• This unifies the terminology of "strong" and "weak" SPT phases and higher-order SPT phases.

Ex: the classification of higher-order TIs with magnetic point group symmetry via the AHSS [Okuma-Sato-KS, cf. Cornfeld-Chapman, KS]

k-space AHSS

Classification table

Real-space AHSS

Why generalized (co)homology?

	G	2'	2'/m	2'/m'	2'2'2	m'	m2'	4'	m'm	m	m'm	'm	4'22'	42'2'	$\overline{4}2'r$	$n' = \overline{4}$	2'm
	$K_0^G(\mathbb{E}^3)$	\mathbb{Z}_2 \mathbb{Z} \mathbb{Z}		\mathbb{Z}_2^2	\mathbb{Z}_2^2 \mathbb{Z}		\mathbb{Z}_2	$\mathbb{Z}_2 = \mathbb{Z}^2$		\mathbb{Z}^2		\mathbb{Z}_2^2	\mathbb{Z}_2^4	\mathbb{Z}^2	\mathbb{Z}	$\oplus \mathbb{Z}_2$	
	$E_{0,0}^{\infty}$	$0 0 \mathbb{Z} \mathbb{Z}_2$		\mathbb{Z}_2	0		0	0		\mathbb{Z}		\mathbb{Z}_2	\mathbb{Z}_2^3	\mathbb{Z}^2		\mathbb{Z}_2	
	$E_{2,-2}^{\infty}$	$\mathbb{Z}_2 \mathbb{Z} \mathbb{Z}$		\mathbb{Z}_2	\mathbb{Z}_2		\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}^2		\mathbb{Z}		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2		\mathbb{Z}
2nd	-order TI																-/
	G	4'm	$m' 4'_{/}$	m 4'	/m' 4	'/m	mm'	4/n	im'm	4	l/m'n	nm	4'/m	'm'm	32'	3m'	3'm
	$K_0^G(\mathbb{E}^3)$	\mathbb{Z}	Z	2^{2}	\mathbb{Z}	\mathbb{Z}^{2}	3		\mathbb{Z}^4	2	$\mathbb{Z}^2\oplus$	\mathbb{Z}_2	7	Z^{2}	\mathbb{Z}_2^3	\mathbb{Z}^3	$\mathbb{Z}\oplus\mathbb{Z}_2$
	$E_{0,0}^{\infty}$	0 Z		Z	\mathbb{Z}	\mathbb{Z}			\mathbb{Z}^3 \mathbb{Z}_2			\mathbb{Z}		\mathbb{Z}_2^2	\mathbb{Z}^3	\mathbb{Z}_2	
	$E_{2,-2}^{\infty}$	\mathbb{Z}		Z Z	\mathbb{Z}_2 \mathbb{Z}^2		2		\mathbb{Z}		\mathbb{Z}^2			Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
	G	4'32	$m\overline{3}r$	n' m	$\overline{3}'m$	m 6' 6'/r		<i>'</i> 6'	'/m	$n \overline{6}'m2' \overline{6}m$		$\overline{6}m'$	2' 6'	m'm	6'2'2	62'2	/
	$K_0^G(\mathbb{E}^3)$	\mathbb{Z}_2^4	\mathbb{Z}^4	\mathbb{Z}^2	$\oplus \mathbb{Z}_2$	\mathbb{Z}_2 \mathbb{Z}^2			\mathbb{Z}^2 \mathbb{Z}		$\oplus \mathbb{Z}_2 = \mathbb{Z}^3$		Z		\mathbb{Z}_2^3	\mathbb{Z}_2^6	_
	$E_{0,0}^{\infty}$	\mathbb{Z}_2^3 \mathbb{Z}^3		\mathbb{Z}	$\oplus \mathbb{Z}_2$	0	\mathbb{Z}^2		\mathbb{Z} \mathbb{Z}		\mathbb{Z}_2 \mathbb{Z}^2			0		\mathbb{Z}_2^5	
	$E_{2,-2}^{\infty}$	\mathbb{Z}_2	\mathbb{Z}		\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2		\mathbb{Z}	2	Z	\mathbb{Z}		\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	
	G	6'/m'm'm 6		6/mr	/mm'm'		ımm'	6/3	m'mn	n	Other	rs†					
	$K_0^G(\mathbb{E}^3)$	\mathbb{Z}^3		\mathbb{Z}	6	\mathbb{Z}^3		$\mathbb{Z}^2\oplus\mathbb{Z}^2_2$		2	0						

50/41

Real-space AHSS

k-space AHSS

Classification table

Ex: the classification of higher-order TIs with magnetic point group symmetry via the AHSS [Okuma-Sato-KS, cf. Cornfeld-Chapman, KS]

k-space AHSS

Classification table

Real-space AHSS

Why generalized (co)homology?

	G	2'	2'/m	2'/m'	2'2'2	m'	m2'	4'	m'm	m	m'm	'm	4'22'	42'2'	$\overline{4}2'n$	$n' = \overline{4}$	2'm
	$K_0^G(\mathbb{E}^3)$	\mathbb{Z}_2	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_2^2	\mathbb{Z}		\mathbb{Z}_2 \mathbb{Z}^2			\mathbb{Z}^2		$\mathbb{Z}_2^2 \mathbb{Z}_2^4$		\mathbb{Z}^2	\mathbb{Z}	$\oplus \mathbb{Z}_2$
	$E_{0,0}^{\infty}$	0	0	\mathbb{Z}	\mathbb{Z}_2		0	0	0		\mathbb{Z}		\mathbb{Z}_2	\mathbb{Z}_2^3	\mathbb{Z}^2		\mathbb{Z}_2
	$E_{2,-2}^{\infty}$	\mathbb{Z}_2	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2		\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}^2		\mathbb{Z}		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2		\mathbb{Z}
2nd	-order TI																-/
	G	4'm	m' 4'/	$m 4'_{I}$	m' 4	2'/m	mm'	4/n	im'm	/ 4	4/m'r	nm	4'/n	n'm'm	32'	3m'	3'm
	$K_0^G(\mathbb{E}^3)$	\mathbb{Z} \mathbb{Z}^2		2^{2}	\mathbb{Z}		\mathbb{Z}^3		\mathbb{Z}^4		$\mathbb{Z}^2\oplus\mathbb{Z}_2$		2	\mathbb{Z}^2	\mathbb{Z}_2^3	\mathbb{Z}^3	$\mathbb{Z}\oplus\mathbb{Z}_2$
	$E_{0,0}^{\infty}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix} 0 \mathbb{Z} \mathbb{Z}$		\mathbb{Z}	\mathbb{Z}		\mathbb{Z}^3			\mathbb{Z}_2			\mathbb{Z}		\mathbb{Z}^3	\mathbb{Z}_2	
	$E_{2,-2}^{\infty}$	\mathbb{Z}	7	Z 7	\mathbb{Z}_2	\mathbb{Z}^2			\mathbb{Z}	\mathbb{Z}^2				\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
	G	4'32'	$m\overline{3}n$	n' m'	$\overline{3}'m$	6'	6'/m	′ 6'	'/m	$\overline{6}'i$	m2'	$\overline{6}m'$	2' 6	m'm	6'2'2	62'2	1
	$K_0^G(\mathbb{E}^3)$	\mathbb{Z}_2^4	\mathbb{Z}^4	\mathbb{Z}^2	$\oplus \mathbb{Z}_2$	\mathbb{Z}_2	\mathbb{Z}^2		\mathbb{Z}^2	$\mathbb{Z} \in$	$ in \mathbb{Z}_2 $	\mathbb{Z}^3		\mathbb{Z}	\mathbb{Z}_2^3	\mathbb{Z}_2^6	_
	$E_{0,0}^{\infty}$	\mathbb{Z}_2^3	\mathbb{Z}^3	\mathbb{Z} ($\oplus \mathbb{Z}_2$	0	\mathbb{Z}^2		\mathbb{Z}	7	\mathbb{Z}_2	\mathbb{Z}^2		0	\mathbb{Z}_2^2	\mathbb{Z}_2^5	
	$E_{2,-2}^{\infty}$	\mathbb{Z}_2	\mathbb{Z}		\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2		\mathbb{Z}		\mathbb{Z}	\mathbb{Z}		\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	
	G	$G = \begin{bmatrix} 6'/m'm' & 6/mm'm' \end{bmatrix}$		n'm'	6'/mmm'		6/m'mm		n	Others^\dagger							
	$K_0^G(\mathbb{E}^3)$	\mathbb{Z}^3		\mathbb{Z}	\mathbb{Z}^6		\mathbb{Z}^3		$2 \oplus \mathbb{Z}_2^2$	2	0						

Why generalized	(co)homology?
0000000	

Classification table

LSM type theorems

- Im $d_{r,-r}^r =$ SPT-LSM theorm [Lu 1705.04691, Yang=Jiang=Vishwanath=Ran 1705.05421]: In DOF consisting only of Im $d_{r,-r}^r \subset E_{0,-1}^1$, if we get an invertible state, this state must be a nontrivial invertible state.
- $E_{0,-1}^{\infty} = \text{LSM theorem}$:

DOF consisting only of $E_{0,-1}^{\infty} \subset E_{0,-1}^{1}$ can not have an invertible state.

LSM-type theorems forbid the system with a sort of dof having a unique symmetric gapped ground state in the presence of translation symmetry and others. [Chen-Gu-Wen 11, Watanabe-Po-Vishwanath-Zaletel 15]

- The group $E_{0,-1}^{\infty}$ is the classification of the LSM theorem with crystalline G symmetry. (cf. Po-Watanabe-Jian-Zaletel 17,)
- See [KS-Xiong-Gomi 18, Else-Thorngren 19, Jiang-Cheng-Qi 19] for the detail.
- " A LSM theorem as a boundary of an SPT phase" [Metlitski-Thorngren, ...]
- Using the AHSS, one can systematically classify the LSM-type theorems for a given space group and onsite symmetry. Many symmetry classes are remain unclassified.

Real-space AHSS

k-space AHSS

Classification table

Summary for part 3

- The AHSS gives us a useful tool to study the SPT phases and LSM theorems with crystalline symmetry with respect to high-symmetry regions in the real space.
- The differentials of the AHSS can be physically understood, thus they are computable from physical arguments. See KS-Xiong-Gomi for various worked examples of higher-differentials.
- The E^{∞} -page itself has a physical meaning. It represents the classification of higher-order SPT phases, anomalies, and adiabatic pumps. In particular, $E^{\infty}_{-1,0}$ is the classification of LSM theorems.