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Take home message

We determined about 60% of the classification of crystalline free fermion topological phases
[KS=Ono, 2304.01827].
The results are summarized in the webpage (link). (The link is found from [KS=Ono, 2304.01827].)
Rich information!

Three independent irreps
One invariant over 2-dim. subspace

One 2nd-order TI

Classification of bulk TIs

Classification of adiabatic cycles

Classification of gapless phases

Four 4nd-order TIs = Atomic insulators

Uniqueness of each low means that the 

classification is fixed only by E2 pages
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Outline

Math behind invertible phases: generalized (co)homology theory [2] KS=Xiong=Gomi, 1810.00801

Real-space Atiyah-Hirzebruch spectral sequence for crystalline invertible phases
[2] KS=Xiong=Gomi, 1810.00801

Case of free fermions with transnational symmetry: k-space Atiyah-Hirzebruch spectral sequence
[1] KS=Sato=Gomi, 1802.06694

Classification tables [3] KS=Ono, 2304.01827

- Compared to the k-space classification of topological insulators/superconductors, the real-space
classification may be less familiar.
- I mainly talk about real-space construction.
- I can not talk about the details. This slide is super brief.
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Invertible phases

... Gapped phases without ground state degeneracy

Invertible phases
Topological insulators/superconductors, 

Haldane chain, integer quantum Hall 

states, …

Gapless phases
Critical systems, SSB phases 

of continuous symmetry, …

Long-range entangled phases
Fractional quantum Hall states, 

superconductors with dynamical gauge 

field, (SSB of discrete symmetry, 

fraction phases), …

Gapped phases = topological phases

Two properties of invertible phases which are closely related:

(i) Invertibility → Ω-spectrum structure

(ii) Bulk-boundary correspondence → boundary map of homological theories
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(i) Invertibility and Kitaev’s Ω-spectrum conjecture [Kitaev ‘11, ‘13, ‘15 (videos), Gaiotto=Johnson-Freyd,

1712.07950]

Given a d-D invertible state |χ⟩, there exists its “inverse” |χ̄⟩ such that |χ⟩ ⊗ |χ̄⟩ ∼ |1⟩ ⊗ |1⟩.
Using this, given a d-D invertible state |χ⟩, an adiabaic cycle (Thouless pump) in (d+ 1)-D is
canonically constructed:

This suggests the homotopy equivalence

Fd ∼ ΩFd+1 := {|χd+1(t)⟩ : [0, 1] → Fd+1| |χd+1(0)⟩ = |χd+1(1)⟩ = |1d+1⟩},

where Fd = the “space of d-D invertible states”.
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(i) Invertibility and Kitaev’s Ω-spectrum conjecture (cont.) [Kitaev ‘11, ‘13, ‘15 (videos),

Gaiotto=Johnson-Freyd, 1712.07950]

The sequence of spaces {Fd}d∈Z with the relations Fd ∼ ΩFd+1 is called the Ω-spectrum.

As a matter of mathematical fact, an Ω-spectrum {Fd}d∈Z defines a generalized cohomology and
homology theories:

hd(X,Y ) := [X/Y, Fd]

: Family of d-D invertible states over the parameter space (X,Y ),

hn(X,Y ) := colimk→∞[Sn+k, (X/Y ) ∧ Fk]

: “Degree-n” invertible phases over the real space (X,Y ).

(The meaning of “degree-n” is explained soon later.)

Lesson. Physics with invertibility/adiabatic pump should be described by a generalized
(co)homology theory.
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(ii) Bulk-boundary correspondence is the boundary map of homology

If bulk is nontrivial, the boundary exhibits a gapless/SSB/LRE phase protected by anomalous
symmetry.

Ex: Haldane chain protected by either TRS or Z2 × Z2 onsite symm.

The bulk-boundary correspondence reminds us the boundary map of homology theory

𝑝𝑥 + 𝑖𝑝𝑦
𝜕

𝑆1
𝐷2

hn(D
2, ∂D2)

∂−→ →hn−1(∂D
2)
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What is the degree n?

hn=0(X,Y ): classification of invertible phase over (X,Y ), since

h0(D
n, ∂Dn) =

Poincare
h−n(pt) = hn(pt) = [pt, Fn] = π0(Fn).

The meaning of the generic n-th homology is obtained by considering what is the physical
phenomenon living in the boundary of the n-th homology.

Ch= -1

Chern ins.

Adiabatic pump

Ch=1

Chern ins.

Chern ins. chiral edge
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What is the degree n? (cont.)

...

h1(X,Y ) := the classification of adiabatic pumps over the real space X which may create an
invertible state on Y ⊂ X.

h0(X,Y ) := the classification of invertible phases over the real space X which may have anomaly
on Y ⊂ X.

h−1(X,Y ) := the classification of anomalies over the real space X which may have a
“source/sink” of an anomalous excitation on Y ⊂ X.
...
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How useful is it?

There are practical benefits to studying invertible phases:

The real space X can be an arbitrary real space and need not be a manifold (manifold is locally
Euclidean). For example, we can ask what is the classification of invertible phases over a
trijunction,the Klein bottle, etc.

The generalized homology description is based on real spaces on which invertible phases defined,
meaning that it is straightforward to implement spatial symmetry (point and space group
symmetry). ⇒ Equivariant homology hG

n (X,Y ).

In particular, the Atiyah-Hirzebruch Spectral Sequence (AHSS) gives us a systematic way to
thinking the interplay of crystalline symmetry and physics of invertible phases.
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Real-space AHSS: Literature

Free fermion topological phases are classified by K-homology over real spaces [Kitaev, 0901.2686]:

Generalized (co)homology/Ω-spectrum proposal [Kitaev ‘11,’13 (videos)].
→ Even for many-body invertible phases, they can be classified by a generalized homology over
real spaces.
Two similar strategies appeared in the study of crystalline invertible phases:

Dimensional reduction— to classify invertible phases with crystalline
symmetry [Song=Huang=Fu=Hermele 1604.08151],
Lattice homotopy— to classify LSM-type theorems [Po=Watanabe=Jian=Zaletel 1703.06882].
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Real-space AHSS: Literature (cont.)

These two procedures are summarized as trivializing something nontrivial living in low-dimensional
real spaces by something nontrivial living in higher-dimensional real spaces: [Figure from
Huang=Song=Huang=Hermele, 1705.09243]

Reminds us the Atiyah-Hirzebruch spectral sequence (AHSS) of the generalized homology theory.
We reconstruct these studies in terms of the AHSS of the generalized homology
theory KS=Xiong=Gomi 1810.00801.
Our contribution:

The complete mathematical structure behind the real-space approach.
Importance of higher differentials and group extension— they can be interpreted and computed using
physics knowledge.

AHSS paper at the same time: Song=Fang=Qi 1810.11013, Song=Huang=Qi=Fang=Hermele
1810.02330, Else=Thorngren 1810.10539.
Math paper: Freed=Hopkins 1901.06419.
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(Homological) spectral sequence in general

A spectral sequence starts from the E1-page, which is something commutable.

E1 = {E1
p,−n}p,n

Compute the rth differential (n = 1, 2, . . . ,)

drp,−n : Er
p,−n → Er

p−r,−n+r−1, dr ◦ dr = 0.

The next page is defined as the homology of dr,

Er+1
p,−n = Ker drp,−n/Im drp+r,−n−r+1.

When this iteration converges at some Eq-page:

E1 ⇒ E2 ⇒ · · ·Eq = Eq+1 = · · · =: E∞,

the E∞-page {E∞
p,−n−p}p “approximates” the homology group h−n(X,Y ).

13 / 41



Why generalized (co)homology? Real-space AHSS k-space AHSS Classification table Appendix/back up

Real-space AHSS (1) : Cell decomposition

The starting point of the AHSS is to give a filtration of the space X,

X0 ⊂ X1 ⊂ · · · ⊂ X.

A useful filtration is the symmetric cell-decomposition

X = {0-cells} ∪ {1-cells} ∪ {2-cells} ∪ · · · , X0 = {0-cells}, Xp = Xp−1 ∪ {p-cells}.

Ex: 2d real space with C4 rotation and Z2 translation symmetry:

{0-cells}

{1-cells}

{2-cells}

(0,0) (
1

2
, 0)

(0,
1

2
) (

1

2
,
1

2
)
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Topological Crystalline Liquid [Thorngren=Else 1612.00846]

1-cell, 2-cell??
Please keep in your mind the following picture:

a (the scale of lattice translation) ≫ ξ (the scale of microscopic degrees of freedom).

⇒ (p ≥ 1)-D invertible states over p-cells make sense.
This is not the situation of cond-mat, however, it is useful and may works for topological
classification because the effective theory would be “topological”. (Figure from [Thorngren=Else
1612.00846])
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Real-space AHSS (2) : E1-page

We want to compute the homology group hG
0 (X), the classification of invertible phases over the

real space X with crystalline symmetry G.

The E1-page is defined by

E1
p,−n := hG

p−n(Xp, Xp−1),

the (p− n)-th homology over Xp relative to Xp−1.

It can be rewritten as

E1
p,−n

∼=
∏

j∈{p-cells}
h
G

D
p
j

p−n (Dp
j , ∂D

p
j )

∼=
∏

j∈{p-cells}
h̃
G

D
p
j

p−n (Dp
j /∂D

p
j (
∼= Sp))

∼=
∏

j∈{p-cells}
h
G

D
p
j

−n (pt) (suspension iso.).

Thus, E1
p,−q is collection of ablian groups of n-D invertible phases with the little group GD

p
j
,

which fixes the p-cell Dp
j .
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Real-space AHSS (3.1): The first differential d1

The E1-page hosts the “local information” of invertible phases.

We should properly glue the local information together, which is partly done by the first
differential d1p,−q : E1

p,−q → E1
p−1,−q.

Math def:

d1p,−n : E1
p,−n = hG

p−n(Xp, Xp−1)
∂ (bulk−bdy)−−−−−−−−−→ hG

p−n−1(Xp−1)

inclusion−−−−−→ hG
p−n−1(Xp−1, Xp−2) = E1

p−1,−n

This is essentially the bulk-boundary correspondence: how invertible states over p-cells show
anomalies over adjacent (p− 1)-cells. — easy to compute.

Adiabatic deformation of 0D states [Huang=Song=Huang=Hermele 1705.09243] ⇒ d11,0.
Lattice homology [Po=Watanabe=Jian=Zaletel 1703.06882] ⇒ d11,−1.
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Real-space AHSS (3.1): The first differential d1 (cont.)

0-cell 1-cell 2-cell 3-cell

Anomalies

Inv. phases

Adia. pumps

The adiabatic creation 
of a 1D invertible 
states over 2-cells

Edge states of a 1D 
invertible phases over 

1-cells

Ker/Im
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AHSS (3.2): The second differential d2

This is not the end of the story.
The E2-page is still the “local information” in the sense that they are glued together only on the
1-skeleton X1, not the full space X.
We should further compute the anomaly-free condition between p- and (p− 2)-cells, which is the
second differential

d2p,−n : E2
p,−n → E2

p−2,−n+1.

An example of nontrivial second differential d22,−2 is 2D even parity superconductor:
On a single px + ipy superconductor, the even parity condition Ĉ2

2 = Id enforces a vortex defect
at the inversion center with Majorana zero, meaning that the system can not be gapped.
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Real-space AHSS (3.2): The second differential d2 (cont.)

0-cell 1-cell 2-cell 3-cell

Anomalies

Inv phases

Adia. pumps

2D Invertible phases 
over 2-cells may have 

anomaly at 0-cells

Ker/Im
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Real-space AHSS (3.3): The third differential d3

0-cell 1-cell 2-cell 3-cell

anomalies

SPT phases

Adia. pumps

Ker/Im

Adiabatic creation of a 
2D invertible states over 

a 3-cell may be 
equivalent to a 0D state
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Real-space AHSS (4): Group extension

E∞-page itself does not provide the group structure of invertible phases.

This is because the stacking higher dimensional invertible phases may be a lower-dimensional
invertible phase. ⇒ nontrivial group extension.

Ex. Trivial extension:

0 → Z2 → Z2 + Z2 → Z2 → 0.

Ex. Nontrivial extension:

0 → Z2 → Z4 → Z2 → 0.
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Real-space AHSS (4): Group extension (cont.)

Introduce

Fph0 := Im [hG
0 (Xp) → hG

0 (X)], p = 0, 1, . . . ,

the classification of invertible phases at most p-dimensions.
E∞-page is the “ratio" between adjacent layers of filtration: Fph0/Fp−1h0

∼= E∞
p,−p.

1st-oder2nd-oder
3rd-oder

Remark. E∞
p,−p is the classification of (d− p+ 1)th-order invertible

phases [Huang=Song=Huang=Hermele 1705.09243, Trifunovic=Brouwer 1805.02598].
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LSM type theorems

Im drr,−r = SPT-LSM theorm [Lu 1705.04691, Yang=Jiang=Vishwanath=Ran 1705.05421]:
In DOF consisting only of Im drr,−r ⊂ E1

0,−1, if we get an invertible state, this state must be a
nontrivial invertible state.

E∞
0,−1 = LSM theorem:

DOF consisting only of E∞
0,−1 ⊂ E1

0,−1 can not have an invertible state.
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Free fermions

A subclass of invertible phases — invertible phases of fermion bi-linear Hamiltonian

Ĥ =
∑
xy,ij

c†xiHxi,yjcyj .

Discussed to be the same as the classification of Dirac mass M(r) over the d-D Euclidean space
Rd with crystalline G symmetry.

H =
d∑

µ=1

−i∂µγµ +M(r).

⇒ K-homology KG
0 (Rd).

The real-space AHSS applies to free fermions (K-homology) as well.

Current status:
The first differential d1p,−n is easy to compute ⇒ the list of E2-pages for 1651 magnetic space
groups [KS=Ono 2304.01827].
There is an algorithm to compute the second differential d22,−2 for TRS superconductors with
conventional pairing symmetry [Ono=KS=Watanabe 2206.02489].
No algorithm for higher differentials dr≥2

p,−n and solving the group extension.
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Free fermions with lattice translational invariance — Band theory

With lattice translation symmetry, the free fermion Hamiltonian H is characterized by a parameter
family of Hermite matrices Hk:

Hx,y = Hx−y
Fourier tr.−−−−−−−→ Hk.

The classification of invertible phases of free fermions is the same as the classification of
Hamiltonians Hk over the Brillouin zone (BZ) torus T d

⇒ K-cohomology theory K−n(T d) [Freed=Moore 1208.5055].

K-cohomology theory K−n(X): the classification of “functions" over the space X. (contravariant
functor)

K-homology theory Kn(X): the classification of “textures" over the space X. (covariant functor)
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Connected homomorphism of K-cohomology

The degree-0 K-group K0(X) is represented by a pair of gapped Hamiltonian (Hk, H
′
k) over X 1.

We want to understand the connected homomorphism

d : K0(Y ) → K1(X,Y ).

This is naturally understood as the creation of gapless points associated with the topological
transition over Y ⊂ X.

Spectral flow
Weyl pt

This also implies that degree-1 K-group K1(X) is the classification of gapless Hamiltonians.

1Precisely, the K-group K0(X) is represented by a triple (E,H,H′), where E is a vector bundle over X and H,H′

are flat and gapped Hamiltonians acting on E [Karoubi’s book].
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Physical meaning of degree n of K-cohomology group K−n(X)

K−1(X): One-parameter family of gapped Hamiltonian over X.

Hk,θ = k · γ + θΓ.

∼= the gauge transformation over X.

K0(X): Gapped Hamiltonian over X.

Hk = k · γ +M.

K1(X): Gapless Hamiltonian over X.

Hk = k · γ.

K2(X): Singular Hamiltonian over X.

Hk = Im log

[
kd + i

d−1∑
µ=1

kµγµ

]
.
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k-space AHSS: d1

The mathematical structure is dual to the real-space AHSS. All the arrows are reversed.

0-cell 1-cell 2-cell 3-cell

Ker/Im

Gapped 

Hamiltonians

Gapless 

Hamilotnians

Singular 

Hamiltonians

Creation of fermi 

surface
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k-space AHSS: d2

0-cell 1-cell 2-cell 3-cell

Ex: creation Dirac 

point from rotation 

center

Ker/Im
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k-space AHSS: d3

0-cell 1-cell 2-cell 3-cell

Ex: creation of 
Weyl point form 
inversion center

Ker/Im
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k-space AHSS: Group extension

E∞-page is insufficient for the complete classification of the band structure.

This is because E1-page misses the higher-dimensional structure of Hamiltonian at the
high-symmetric point.

Ex: C4-rotation symmetry:

To get the group structure for E∞-page, we have to solve the group extension problem:
If a stack of band structures is non-trivial at a high-symmetry point, does a non-trivial band
structure appear in adjacent high-dimensional cells?

32 / 41



Why generalized (co)homology? Real-space AHSS k-space AHSS Classification table Appendix/back up

Example of group extension: 1D gapless edge state of class D superconductors

Nontrivial 

group extension
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k-space AHSS: Current status

The first differential dp,−n
1 is easy to compute

⇒ the list of E2-pages for 1651 magnetic space groups [KS=Ono 2304.01827].

No algorithm for higher differentials dp,−n
r≥2 .

No algorithm for solving the group extension.
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From k-space AHSS to topological invariants

We do not know the concrete expression for many topological invariants.

0-skeleton 1-skeleton 2-skeleton 3-skeleton

Only the number of irreps at high-symmetry points (0D invariants) and the topological invariants
using the whole BZ torus (ex: Chern number, winding number) are known.
For intermediate situations, no systematic construction of topological invariants defined over 1D
and 2D subspace of BZ torus is known.
Remark. Many ad hoc constructions are known. Wilson line, mirror Chern/winding number, glide
Z2/Z4 invariant, etc.

The k-space AHSS can be used to construct k-space topological invariants systematically.
We have constructed all the topological invariants defined over the 1-dimensional subspace of BZ
torus, for the cases where the Altland-Zirnbauer symmetry class over 1-cell is either AIII, AI, DIII,
or CI [Ono=KS 2311.15814]. (website)
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Classificaion table: Strategy

The real-space and k-space AHSSs give the different E∞- and E∞-pages, respectively.
But converge the same classification group! 2

K−n(Rd) ∼= Kn(T d).

Even if no formulas of higher-differentials dr, dr of AHSS for r ≥ 2 are known, we can try all
possible dr, dr, because they are represented by integer-valued matrices∗ ∗ · · ·

∗ ∗ · · ·
...

. . .

 .

Therefore, all possible E∞- and E∞-pages can be listed in a brute-force calculation.
Also, the group extension of Z-modules is characterized by an integer-valued matrix 3, meaning
that all the possible group extensions can be listed.
The true classification group lives in the intersection of possibilities from real-space AHSS and
k-space AHSS. ⇒ strong constraint on the true classification!

2For crystalline symmetry, the isomorphism was proven in [Gomi=Kubota=Thiang 2102.00393].
3The linear structure is known as the Baer sum.
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Classificaion table: Strategy (cont.)

- Insulator/Superconductor

- Crystalline symmetry

- Pairing symmetry for SC

- Presence/Absence of SO(3) 

spin rotation symmetry

Input Real-space AHSS

K-space AHSS

Candidates of 

Candidates of 

Group 

extension

Candidates of 

Candidates of 

Group 

extension

True

Fake
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Summary of results

n = 0: gapped band structures
n = 1: gapless band structures
n = 7: adiabatic cycles = gapped Floquet phases = large gauge transformations

Setting:
Insulators for spinless and spinful electrons.
Superconductors for spinless and spinful electrons and with and without spin SO(3) symmetry.
1651 magnetic space groups.
For superconductors, all possible pairing symmetry of gap function.
The results are summarized in the webpage (link).
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Meaning of table

Three independent irreps
One invariant over 2-dim. subspace

One 2nd-order TI

Classification of bulk TIs

Classification of adiabatic cycles

Classification of gapless phases

Four 4nd-order TIs = Atomic insulators

Uniqueness of each low means that the 

classification is fixed only by E2 pages
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Meaning of table (cont.)

Multiple possibilities implies that the 

classification is NOT fixed by E2 pages
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Summary and future works

The real-space AHSS is applicable for any invertible phases. The underlying mathematical
structure is the Ω-spectrum structure of invertible states.

For free fermions with lattice translational symmetry, k-space AHSS is also available.

Comparing real-space and k-space E2-pages gives us a strong constraint for the K-group.

All calculation details are in KS=Ono, 2304.01827.
—Cell decomposition, irreducible characters, making the E1-page, formulas of d1, d1, listing
possible dr, dr for r ≥ 2, Baer sum, ...

Open questions:

Algorithm to compute the higher differentials.

Algorithm to compute the group extension.

Algorithm to contract the k-space topological invariants from k-space AHSS [Ono=KS 2311.15814].

Algorithm to provide the microscopic model Hamiltonians from real-space AHSS.

Fermionic crystalline equivalence principle? [Debray 2102.02941, Manjunath=Calvera=Barkeshli
2210.02452]

41 / 41



Why generalized (co)homology? Real-space AHSS k-space AHSS Classification table Appendix/back up

Some useful mathematical facts and physical interpretation

By design, the classification of n-dim. SPT phases is given by the disconnected parts of Fn,

π0(Fn) = [pt, Fn] = hn(pt).

From the Poincaré duality and the suspension isomorphism,

hn(pt) = h−n(pt) = h0(D
n, ∂Dn).

h0(D
n, ∂Dn) can be identified with the classification of SPT phases over Dn relative to its

boundary ∂Dn.
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From SPT phases to a generalized homology theory

h0(X,Y ) := the abelian group of SPT phases over a real space X which may have an quantum
anomaly over a real space Y ⊂ X.
We define the boundary map ∂ : h0(X,Y ) → h−1(Y ) as the bulk-boundary correspondence.
This implies h−1(Y ) should be regarded as the abelian group of quantum anomaly over a real
space Y .

Ex: Superconductors over X = S2 that may have an anomalous edge state over the equator Y = S1.
We have

h0(S
2, S1) = Z× Z, h−1(S

1) = Z,

∂ : h0(S
2, S1) → h−1(S

1), (n,m) 7→ n−m.

𝑝𝑥 + 𝑖𝑝𝑦
⊕𝑛

𝑝𝑥 + 𝑖𝑝𝑦
⊕𝑚

𝜕

𝑆2

𝑆1
𝑆1
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The ordinary bulk-boundary correspondence is the special case of the boundary map ∂ where
X = Dn and Y = ∂Dn.

𝑝𝑥 + 𝑖𝑝𝑦
𝜕

𝑆1
𝐷2
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“Physical definition” of hn(X,Y ) v.s. the axioms

Let’s consider if the above identification of the group hn(X,Y ) with a physical phenomenon related to
SPT phases satisfies the axioms.

✓ A covariant functor (Because of the real-space picture)

✓ (homotopy)
If f, f ′ : X → X ′ are homotopic, then f∗ = f ′

∗.

✓ (excision)
For A,B ⊂ X, the inclusion A → A ∪B induces an isomorphism hn(A,A ∩B) → hn(A ∪B,B).

✓ (additivity)
hn(⊔λXλ,⊔λYλ) = ⊔λhn(Xλ, Yλ).

✓ (exactness)
For Y ⊂ X, there is a long exact sequence

· · · → hn(Y ) → hn(X) → hn(X,Y )
∂−→ hn−1(Y ) → · · ·

... It looks OK.
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Exactness

· · · ∂1

−→ h0(Y )
f0
∗−→ h0(X)

g0∗−→ h0(X,Y )
∂0

−→ h−1(Y )
f−1
∗−−−→ · · ·

f∗ and g∗ are induced homomorphisms of inclusions f : X → Y and g : (X, ∅) → (X,Y ),
respectively.
f0
∗ is regarded as embedding an SPT phase over Y in X.
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g0∗ is regarded as cutting out Y from X, which leads to anomalous states over Y from an SPT
phase over X.

∂0 is the bulk-boundary correspondence.

From these physical interpretations, we can see the long exact sequence is compatible with
properties of the SPT phases.
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Real-space AHSS (4): Filtration

E∞-page itself does not provides the classification of SPT phenomena.

Introduce the following subgroups of hG
n (X,Y ),

Fphn := Im [hG
n (Xp, Xp ∩ Y ) → hG

n (X,Y )], p = 0, 1, . . . .

This has the clear physical meaning. For instance, Fph0 is the classification of SPT phases over
the p-skeleton Xp which persists after being embedded in the whole space X.

We have a filtration of the homology group

0 ⊂ F0hn ⊂ F1hn ⊂ · · · ⊂ Fdhn = hG
n (X,Y ),

where d is the space dimension of X.

The following relation connects the E∞-page and the homology group.

Fphn/Fp−1hn
∼= E∞

p,n−p.

The E∞-page has good physical meanings.
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Higher-order SPT phases

E∞
p,−p: The classification of (d− p+ 1)th-order SPT phases. (cf. Huang-Song-Huang-Hermele)

Ex: 3d with point group symmetry (without translation symmetry):

1st-oder2nd-oder
3rd-oder

This unifies the terminology of “strong” and “weak” SPT phases and higher-order SPT phases.
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Ex: the classification of higher-order TIs with magnetic point group symmetry via the AHSS
[Okuma-Sato-KS, cf. Cornfeld-Chapman, KS]

50 / 41



Why generalized (co)homology? Real-space AHSS k-space AHSS Classification table Appendix/back up

51 / 41



Why generalized (co)homology? Real-space AHSS k-space AHSS Classification table Appendix/back up

Ex: the classification of higher-order TIs with magnetic point group symmetry via the AHSS
[Okuma-Sato-KS, cf. Cornfeld-Chapman, KS]
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LSM type theorems

Im drr,−r = SPT-LSM theorm [Lu 1705.04691, Yang=Jiang=Vishwanath=Ran 1705.05421]:
In DOF consisting only of Im drr,−r ⊂ E1

0,−1, if we get an invertible state, this state must be a
nontrivial invertible state.
E∞

0,−1 = LSM theorem:
DOF consisting only of E∞

0,−1 ⊂ E1
0,−1 can not have an invertible state.

LSM-type theorems forbid the system with a sort of dof having a unique symmetric gapped
ground state in the presence of translation symmetry and others. [Chen-Gu-Wen 11,
Watanabe-Po-Vishwanath-Zaletel 15]
The group E∞

0,−1 is the classification of the LSM theorem with crystalline G symmetry. (cf.
Po-Watanabe-Jian-Zaletel 17, )
See [KS-Xiong-Gomi 18, Else-Thorngren 19, Jiang-Cheng-Qi 19] for the detail.
“ A LSM theorem as a boundary of an SPT phase” [Metlitski-Thorngren, ...]

Using the AHSS, one can systematically classify the LSM-type theorems for a given space group
and onsite symmetry. Many symmetry classes are remain unclassified.

od Anomaly

↳
か かか

が か

か 。 灥
驒
が

が やや か が

Id T
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Summary for part 3

The AHSS gives us a useful tool to study the SPT phases and LSM theorems with crystalline
symmetry with respect to high-symmetry regions in the real space.

The differentials of the AHSS can be physically understood, thus they are computable from
physical arguments. See KS-Xiong-Gomi for various worked examples of higher-differentials.

The E∞-page itself has a physical meaning. It represents the classification of higher-order SPT
phases, anomalies, and adiabatic pumps. In particular, E∞

−1,0 is the classification of LSM theorems.
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