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Main result

» We want to know the existence/absence of stable gapless surface states on
the boundary of the 3-ball for given magnetic point group symmetry.

» No translation symmetry

» The dimensionality of surface states — higher-order Tls/TSCS

K" c K' cC K’ C K

» In this work, we formulated how to compute the quotient group K/K"",
the classification of surface states, and computed the classification for all
122 magnetic point groups in Tls and TSCs.



» Compute K

» Cornfeld-Chapman trick
> Periodic table

» Compute K"’

> 0d state = 3d Dirac Hamiltonian with a hedgehog mass potential
» Compute the homomorphism K" — K
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Dirac Hamiltonian with point group symmetry

Dirac Hamiltonian in d space dimensions (k = —i8) with a uniform mass
d
H(k)=—iY %0+ M,  {y,u}=26;  {vwM}=0.
j=1

Let G be a point group, i.e., G acts on the real-space coordinate x as a
discrete subgroup of O(d).

g:x— Ogz, geq.

» We denote the operator acting on the one-particle Hilbert space by §.
» As usual, symmetry operators form a projective representation with a

factor system
gh=zgngh,  g,h€G,

where z4, € U(1) is called the factor system.
» § can be antiunitary. We specify if § is unitary or not by ¢, € {£1}.
» ¢ can flip the Hamiltonian H(k), which specified by ¢, € {£+1}.

» In sum,

GH(k)§ ™' = cgH($gOgk),  §ig~ " = ¢qgi, g€G.



» Mass term M obeys the following complicated algebra.
f]il = Zg,hgf\L.
9V = becgOg 'y, MG = oM,
{vi,vit =26, {wm, M}=0.

» Question. How to get the topological classification of the “space” of the
mass term M?



Step 1:

Cornfeld-Chapman trick

The gamma matrices 7; themselves can be used to make Spin(d) rotation
operators.

Let
R = exp %9¢jL¢j, [Lijler = —i(0ir051 — dj10a1),

be an SO(d) rotation.

The set {6;; € [0,27]} of SO(d) rotation parameters gives us a lift
SO(d) — Spin(d),

i —1i
Up = exp 5 0i534, i = — vl
2 4
The key equality:
UsyU, " = Rery.

Therefore, the SO(d) part of § can be “onsite”.



For generic O(d) rotations, we write

0. — Ry, (Og4 € SO(d)),
1=\ MR, (0, ¢ SO(d)).
where M : (z1,22,...) — (—x1,x2,...) is the reflection for the
x1-direction.
Let

pg :=det Oy € {£1}

is the marker for specifying orientation-preserving/reversing elements.

Per the value of pgy, we introduce the modified operator

1—pg

g:i=(mn) 2 xUsxg.
We find that § is now an onsite symmetry operator

g’}’g_l = CgPgPgYs §M§_1 = cgpgM,

gH(k)§71 = cgpgH (dgk).



Step 2: The Wigner criteria and the orthogonal test

» For onsite symmetry, the classification of the mass term M is
straightforward.

» First, we decompose the symmetry group GG with respect to whether g is
TRS, PHS, or chiral symmetry.

G= Gy UaGoUbGy uabGo,
~— M~ ~r =
unitary TRS PHS chiral

Go = {g € Gl¢g = cgpg = 1},

a €@, ¢a = —1, CaPa =1,
beq, o = —1, cpy = —1,
ab € G, Pab = 1, CapPab = —1.

> An “irrep of G" can be seen as an irrep of Gy with the data of how
remaining operators a, b, and ab act on its irrep. — 19 patterns.



There are 19 patterns of the presences/absences of a, b, ab and the values of
the Wigner criteria W2, W< and the orthogonal test OL,,, which we call the
effective AZ (EAZ) classes.
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Once the EAZ class of the irrep « is fixed, the classification of the mass term
for the irrep « is found by the periodic table.

EAZ class d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=7
A Ar,Ac,Ar, A1 c Z 0 7 0 Z 0 Z 0
AIIL, AllLp 0 Z 0 Z 0 Z 0 Z
Al Al¢ Z 0 0 0 27, 0 Lo Zso
BDI Lo Z 0 0 0 27, 0 Za
D,Dp Lo Zo Z 0 0 0 27 0
DIIT 0 Zsa Zo Z 0 0 0 27
AllL All¢o 27, 0 Zo Lo Z 0 0 0
CII 0 27 0 Za Zsa Z 0 0
C,Cr 0 0 27 0 Zo Zo Z 0
CI 0 0 0 27 0 Zo Zo Z
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3d superconductors (SCs) with magnetic point group symmetry

» A subtle point for SCs is that the symmetry algebra depends on what the
representation of the gap function is.

» Suppose that the normal part h(k) is invariant under a magnetic point
group

Ugh(’“)“;1 = h(py04k), UgUh = Zg,hUgh-

» The superconducting gap function A(k) = ZL n:A;(k) is a rep of G in
general.

Ai(gOqk) = [Dp(9)]ij % ugj(k)ug .

g9

» When A(k) obeys a nontrivial rep of G, such SCs are said unconventional.

» For unconventional SCs, the superconducting order spontaneously breaks
the magnetic point group symmetry.

» By the U(1) phase rotation

U@g/gi/;mU;gl/Q = z&me*iag/2

of the complex fermion, the gap function changes as A(k) — %9 A(k).

» This means, for the subgroup G, C G of which the rep is 1-dimensional,
the symmetry of the magnetic point group G recovers.



» From the above reason, we assume that the gap function obeys a 1-dim
irrep of G, which we denote it by ¢'%.

A(pgOgk) = €9 x ugA(k)uy .
» The BdG Hamiltonian

(k) AK)
H(’“)‘(A(kﬁ —h(—k)T)T

is invariant under the symmetry group G x ZS where C = 7,K is PHS
operator.

» The symmetry operator § for g € G depends on the 1-dim irrep as in

A ug ) A": iGQAA
g—( ezegu;) gC =¢e"7Cyg.



» There are 380 inequivalent symmetry classes from 122 magnetic point
groups and 1-dim irreps in 3d.

» The effective AZ classes for spinless and spinful SCs in 3d are listed in
[KS].

» Spinful systems:

MPG  Ker¢ Irrep EAZ K§(R?) K% (R K%(R?)
1 1 A {D} 0 0 0
11’ 1 A {DII} Z 0 0
1 1 A,  {BDI} 0 0 27,
1 1 A, {DIlI} Z 0 0
11 1 A, {Dr} 0 0 0
11 1 A, {DII?} 7.%? 0 0
m3m’ m3 A, {Di DI} Z 0 0
m3m’  m3 E, {D%DII} Z 0 0
m3m’  m3 A, {DIPF} 7x5 0 0
m3m’  m3 E., {DlIF} 7*5 0 0
m'3'm’ 432 A, {D'} 0 0 0
m/3'm’ 432 Ay {D®Ac} O 7 0



» Compute K

» Cornfeld-Chapman trick
> Periodic table

» Compute K"’

> 0d state = 3d Dirac Hamiltonian with a hedgehog mass potential
» Compute the homomorphism K" — K
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Additional masses

» The effective AZ class provides the classification of Dirac Hamiltonian
with a uniform mass, which we denote K = K& (R%).

» However, the classification of the uniform mass does not imply the
classification of the gapless surface states.

» Put differently, not every element in the K-group K obeys the
bulk-boundary correspondence.

» This is because for point group symmetry there may be spatially-varying
mass terms that induce mass gap to the surface state. [Isobe-Fu '15, ..]

H=—-i8 - v+ M+ mi(x)l'y + ma(x)l2 + -




Higher-order SPT phases [Huang-Song-Huang-Hermele '17, ...]

» This observation leads to the concept of so-called higher-order Tls/TSCs.

» We define K™ C K as the subgroup of Dirac Hamiltonians in the
K-group K that admits at least n spatially-varying masses.
» For 3d:

K" c K' cC K’ C K

» The quotient group K"~V /K™ is called nth-order Tls/TSCs.
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Equivalence between atomic insulators and Dirac Hamiltonians with a
hedgehog mass

» One can also canonically compute the group K (¥ of dth-order Tls/TSCs,
the localized states at the center of the point group.

» To compute K@ we note the equivalence between the atomic insulators
exactly at the point group center and the d-dim Dirac Hamiltonian with
hedgehog-mass potential with a unit winding number. This is known as
the Jackiw-Rossi bound state.

Hop <« Hgp=-i0-v+m(x) T+ M.

1

m(z)
» The explicit construction is as follows.
» Let Hop be a 0d Hamiltonian. We have the successive isomorphic maps:
0d — 1d : Hip :—i810y+$101+H0D0'2a
1d — 2d : Hop = —’1:828y+$289;+H1D57,7
2d — 3d : H3p = —i03py + x3/tz + Hap iz,
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The homomorphism f: K1 — K

Let Ka1 be the abelian group generated by atomic insulators exactly at
the point group center.

Not every Od Hamiltonian Hop in Kar is pinned at the point group
center, since some combination of atomic orbitals can go far away without
breaking the point group symmetry.

We define the homomorphism

f KA1 — K,
by neglecting the hedgehog-mass potential m(x) - T' in the dD
Hamiltonian Hyp,
Hap = —i6-’y+m(w)-I‘+M»—>HéD = —i8-~y+H0DFo.
The image of f has the physical meaning of the Jackiw-Rossi bound state
pinned at the point group center, i.e., the dth-order Tls/TSCs. Thus,
K9 =Imf.

It is easy to compute the group Kar, which is just the K-group of reps of
the point group G with the data (¢g4, cg, 2g,1).

Thus, we conclude that the group K4 of dth-order TIs/TSCs is
computed canonically.



» Therefore, one can in principle compute the quotient K/K(d), the group
composed of surface gapless states, by the irreducible character.

» For 3d:
K/K///
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» The explicit form of the homomorphism f for 3d is given in [KS].
» For instance, for an irrep 8 of K1, the 3d winding number detecting a

direct summand Z in K belonging to the irrep a of G, is given by

1 0
w3dlg—sa = Gl Z )"(i(g)* X 2 cos ?g
|Gol Jcc,
¢g:cg:—pg:1

x5(9) for A, Al,

xg(9) + xa(p)(9) for All, A,
x ¢ x5(9) = xp(p)(9) for D, C, Ac, Alc, BDI, Cl,

x8(9) — Xab(s)(9) for Alll, Ap,

x8(9) + xa(p)(9) — Xp(8)(9) — Xab(p)(9)  for Ar.c. Alllp, D, DHI, Allc, ClI, Cr.

See [KS] for the detail.

What | want to empathize is that the homomorphism f can be computed
by the data (G, Oy, ¢g, cq, 2g,n) and the irreducible character.



The classification of spherical surface states

» Along the line of the above thought, one can compute the classification of
gapless states on (d — 1) D sphere S~ = 9B, the boundary states of
dD Tls/TSCs over the d-ball B%.

» In [KS], | summarized the complete list of the surface states of 3d
Tls/TSCs for 122 magnetic point group symmetry.

» Ex: SCs in spinful systems.

MPG  Ker¢ Irrep EAZ K§(R®) FreeK/K" TorK/K"
1 1 A {D} 0 0 g
11’ 1 A {DlI} Z 1 {
1 1 A,  {BDI} 0 0 O
1 1 A, {DIl} Z 0 {4}
1’ i A,  {Dr} 0 0 {
1 1 A,  {DlII?} 72 1 {4}
m3m’  m3 Ag {D%..DlII} 0 {}
m3m’  m3 E, {D%DIll} Z 0 {3}
m3m’  m3 A, {DNI’} 7*° 3 {}
m3m’ m3  E, {DIIP} 7x5 3 {3}
m'3'm’ 432 A, {D'} 0 0 {}
m/3'm’ 432 Ay  {D?*Ac} 0 0 {3



Ex: SCs with TRS and inversion symmetry (11')

» Even parity SCs (A, rep) = K/K" = 0.

> No surface state.

» Odd parity SCs (A, rep) = K/K"' =7 x Zs.
> 7: 2d Majorana-Weyl surface states.
> 7Z4: generated by the helical henge Majorana state. Doubling it yields to 0d
Majorana bound state.

7 Zy

| X2 =

Xn

X2 =

N
N

N



Summary

» Using the Cornfeld-Chapman’s trick, we completed the classification of
topological insulators/superconductors with point group symmetry.

» By identifying the atomic insulators at the point group center and dD
Dirac Hamiltonians with hedgehog-mass potential with a unit winding
number, one can compute the group K@ of dth-order Tls/TSCs from the
irreducible character.

» We presented the complete list of the effective AZ classes for
insulators/superconductors with 122 magnetic point group and their
surface states.



Wigner

v

v

criterion

Let a be an irrep of G with the factor system Z, .

The TRS-type operator a acts on the representation vector space V' of the
irrep « in three ways.

Let |¢) be the basis of the representation vector space V, that is
gy = 17) [Da(9)]ss;

with D, (g) the representation matrix.

We want to consider how the TRS-type operator @ acts on V, which can
be checked by looking the formal basis a |3).

The irrep a(a) mapped by a has the following representation matrices

§@1i)) = @) Paw @i Date(9) = 52— Dala™g0)".

a(«) is unitary equivalent to « or not, which can be checked by the
orthogonality relation of the irreducible character o (g) = TrDa(g).

Oap = (a(@), B) = ‘G‘Z

Z _ * * ~
{ 205 (aga)"| %slg) € {0.1).
geGo

aa ~lga



If OT, =0, & does not preserve the irrep «, and transforms a to another
irrep 8 = a(a) satisfying OL; =

When OT, =1, the TRS-type operator @ preserves the irrep «, but there
still remain two situations: a produces the Kramers degeneracy or not,
which can be checked by the Wigner criterion

> ZagagXal(ag)®) € {0, £1}.

a =

G
| 0 9€Go
We can see

is non-Kramers (class Al),
is Kramers (class All),

IsH

Wri=1 = a(a)=aand
WI=-1 = a(a)=aand
Wri=0 = a(a)#a

Q>

Therefore, the Wigner criterion W2 alone gives us how & acts on the irrep
a.
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(The detail)

» If a(a)) = a, there exists a unitary matrix U such that

_ Zoa e _ ) _
Da(ay(9) = %[Da (a 'ga)l}; = U'Da(g)U, g € Go.
a,a”tga
» The matrix U behaves as a matrix representation of a.
» Form the Schor’s lemma, one can show that UU* = £ D, (a?) with € a
U(1) phase and &/zq,0 € {£1}.
» Introduce a new basis |i) = (@ |]>)U;Z that obeys the same matrix rep

gli) = 1)) [Da(9)l;i-
» Taking the same transformation twice yields

i) = &/za,alt) -
» Therefore,
&/za0 =1 = @ is non-Kramers (class Al)
&/za,0 =—1 = ais Kramers (class All)

» One can show

wT — &/za,a (@ |i) is unitary equivalent to |)),
10 (@ i) is unitary inequivalent to |3)).

26
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> In the same way, we introduce the Wigner criterion for the PHS-type
operator b by

1 - -
Wy = Gl D" ZgpgXal(bg)?) € {0,+1},
ol geco
and we have
wg =1 b(a) = a, and b behaves as class D PHS,

=
wl=-1 = a(a) = a, and b behaves as class C PHS,
wg =0 = b(a) # .

» For the chiral-type operator cﬁ), we ask if the mapped irrep ab(a) is unitary
equivalent to « or not, which can be checked by the orthogonal test

*

1 Zg,a - _ -
O = 1t [%xa((ab) 'gab)| Xalg) € {0,1}.
0 g€Go ab,(ab)~lgab
We have
OLn=1 = abla)=aq,and ab behaves as chiral symmetry,
OLa =0 = abla)#a.
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Application |. 3d insulators with magnetic point group symmetry

v

There are 122 crystallographic magnetic point groups in 3d.
Let G be a magnetic point group equipped with the data (Oy, ¢g, 24,1)-

(g =1.)
The factor system is given as

1 (spinless)
Zg,h = 1-0g 1-¢
oh (-1)" =z 2" (spinful)

> We get the complete list of the effective AZ classes for 122 magnetic point
groups. [KS]
Spinful systems:

MPG EAZ  KS(R®) KO (R?) KR

v

v

v

1 {A} 0 Z 0
11’ {All}  Z, 7 0
1 {Alll} 7 0 V/
1’ {DIy  z 0 0
i {D} 0 0 0
m3m’  {DIlI*} z** 0 0
m'3m’ {D°} 0 0 0
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