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Main result

I We want to know the existence/absence of stable gapless surface states on
the boundary of the 3-ball for given magnetic point group symmetry.

I No translation symmetry
I The dimensionality of surface states → higher-order TIs/TSCS

I In this work, we formulated how to compute the quotient group K/K′′′,
the classification of surface states, and computed the classification for all
122 magnetic point groups in TIs and TSCs.
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Plan

I Compute K
I Cornfeld-Chapman trick
I Periodic table

I Compute K′′′

I 0d state = 3d Dirac Hamiltonian with a hedgehog mass potential
I Compute the homomorphism K′′′ → K
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Dirac Hamiltonian with point group symmetry

I Dirac Hamiltonian in d space dimensions (k = −i∂) with a uniform mass

H(k) = −i
d∑
j=1

γj∂j +M, {γi, γj} = 2δij , {γi,M} = 0.

I Let G be a point group, i.e., G acts on the real-space coordinate x as a
discrete subgroup of O(d).

g : x 7→ Ogx, g ∈ G.

I We denote the operator acting on the one-particle Hilbert space by ĝ.

I As usual, symmetry operators form a projective representation with a
factor system

ĝĥ = zg,hĝh, g, h ∈ G,

where zg,h ∈ U(1) is called the factor system.

I ĝ can be antiunitary. We specify if ĝ is unitary or not by φg ∈ {±1}.
I ĝ can flip the Hamiltonian H(k), which specified by cg ∈ {±1}.
I In sum,

ĝH(k)ĝ−1 = cgH(φgOgk), ĝiĝ−1 = φgi, g ∈ G.
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I Mass term M obeys the following complicated algebra.

ĝĥ = zg,hĝh.

ĝγĝ−1 = φgcgO
−1
g γ, ĝMĝ−1 = cgM,

{γi, γj} = 2δij , {γi,M} = 0.

I Question. How to get the topological classification of the “space” of the
mass term M?
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Step 1: Cornfeld-Chapman trick

I The gamma matrices γj themselves can be used to make Spin(d) rotation
operators.

I Let

Rθ = exp
i

2
θijLij , [Lij ]kl = −i(δikδjl − δjkδil),

be an SO(d) rotation.

I The set {θij ∈ [0, 2π]} of SO(d) rotation parameters gives us a lift
SO(d)→ Spin(d),

Uθ = exp
i

2
θijΣij , Σij =

−i
4

[γi, γj ].

I The key equality:

UθγU
−1
θ = Rθγ.

I Therefore, the SO(d) part of ĝ can be “onsite”.
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I For generic O(d) rotations, we write

Og =

{
Rθg (Og ∈ SO(d)),
M1Rθg (Og /∈ SO(d)),

where M1 : (x1, x2, . . . ) 7→ (−x1, x2, . . . ) is the reflection for the
x1-direction.

I Let

pg := detOg ∈ {±1}

is the marker for specifying orientation-preserving/reversing elements.

I Per the value of pg, we introduce the modified operator

g̃ := (γ1)
1−pg

2 × Uθ × ĝ.

I We find that g̃ is now an onsite symmetry operator

g̃γg̃−1 = cgpgφgγ, g̃Mg̃−1 = cgpgM,

i.e.,

g̃H(k)g̃−1 = cgpgH(φgk).
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Step 2: The Wigner criteria and the orthogonal test

I For onsite symmetry, the classification of the mass term M is
straightforward.

I First, we decompose the symmetry group G with respect to whether g̃ is
TRS, PHS, or chiral symmetry.

G = G0︸︷︷︸
unitary

t aG0︸︷︷︸
TRS

t bG0︸︷︷︸
PHS

t abG0︸ ︷︷ ︸
chiral

,

G0 = {g ∈ G|φg = cgpg = 1},
a ∈ G, φa = −1, capa = 1,

b ∈ G, φb = −1, cbpb = −1,

ab ∈ G, φab = 1, cabpab = −1.

I An “irrep of G” can be seen as an irrep of G0 with the data of how
remaining operators a, b, and ab act on its irrep. → 19 patterns.
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19 effective AZ class

There are 19 patterns of the presences/absences of a, b, ab and the values of
the Wigner criteria WT

α ,W
C
α and the orthogonal test OΓ

αα, which we call the
effective AZ (EAZ) classes.
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Periodic table

Once the EAZ class of the irrep α is fixed, the classification of the mass term
for the irrep α is found by the periodic table.

EAZ class d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7
A,AT ,AC ,AΓ,AT,C Z 0 Z 0 Z 0 Z 0
AIII,AIIIT 0 Z 0 Z 0 Z 0 Z
AI,AIC Z 0 0 0 2Z 0 Z2 Z2

BDI Z2 Z 0 0 0 2Z 0 Z2

D,DT Z2 Z2 Z 0 0 0 2Z 0
DIII 0 Z2 Z2 Z 0 0 0 2Z
AII,AIIC 2Z 0 Z2 Z2 Z 0 0 0
CII 0 2Z 0 Z2 Z2 Z 0 0
C,CT 0 0 2Z 0 Z2 Z2 Z 0
CI 0 0 0 2Z 0 Z2 Z2 Z
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3d superconductors (SCs) with magnetic point group symmetry

I A subtle point for SCs is that the symmetry algebra depends on what the
representation of the gap function is.

I Suppose that the normal part h(k) is invariant under a magnetic point
group

ugh(k)u−1
g = h(φgOgk), uguh = zg,hugh.

I The superconducting gap function ∆(k) =
∑N
i=1 ηi∆i(k) is a rep of G in

general.

∆i(φgOgk) = [Dρ(g)]ij × ug∆j(k)uTg .

I When ∆(k) obeys a nontrivial rep of G, such SCs are said unconventional.

I For unconventional SCs, the superconducting order spontaneously breaks
the magnetic point group symmetry.

I By the U(1) phase rotation

Ûθg/2ψ̂xÛ
−1
θg/2

= ψ̂xe
−iθg/2

of the complex fermion, the gap function changes as ∆(k) 7→ eiθg∆(k).

I This means, for the subgroup G∗ ⊂ G of which the rep is 1-dimensional,
the symmetry of the magnetic point group G∗ recovers.
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I From the above reason, we assume that the gap function obeys a 1-dim
irrep of G, which we denote it by eiθg .

∆(φgOgk) = eiθg × ug∆(k)uTg .

I The BdG Hamiltonian

H(k) =

(
h(k) ∆(k)

∆(k)† −h(−k)T

)
τ

is invariant under the symmetry group G× ZC2 where Ĉ = τxK is PHS
operator.

I The symmetry operator ĝ for g ∈ G depends on the 1-dim irrep as in

ĝ =

(
ug

eiθgu∗g

)
, ĝĈ = eiθg Ĉĝ.
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I There are 380 inequivalent symmetry classes from 122 magnetic point
groups and 1-dim irreps in 3d.

I The effective AZ classes for spinless and spinful SCs in 3d are listed in
[KS].

I Spinful systems:

MPG Ker φ Irrep EAZ KG
0 (R3) KG

−1(R3) KG
−2(R3) · · ·

1 1 A {D} 0 0 0
11′ 1 A {DIII} Z 0 0
1̄ 1̄ Ag {BDI} 0 0 2Z
1̄ 1̄ Au {DIII} Z 0 0
1̄1′ 1̄ Ag {DT } 0 0 0
1̄1′ 1̄ Au {DIII2} Z×2 0 0
...
m3̄m′ m3̄ Ag {D2

T ,DIII} Z 0 0
m3̄m′ m3̄ Eg {D2

T ,DIII} Z 0 0
m3̄m′ m3̄ Au {DIII5} Z×5 0 0
m3̄m′ m3̄ Eu {DIII5} Z×5 0 0
m′3̄′m′ 432 A1 {D10} 0 0 0
m′3̄′m′ 432 A2 {D2,AC} 0 Z 0
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Plan

I Compute K
I Cornfeld-Chapman trick
I Periodic table

I Compute K′′′

I 0d state = 3d Dirac Hamiltonian with a hedgehog mass potential
I Compute the homomorphism K′′′ → K
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Additional masses

I The effective AZ class provides the classification of Dirac Hamiltonian
with a uniform mass, which we denote K = KG

n (Rd).

I However, the classification of the uniform mass does not imply the
classification of the gapless surface states.

I Put differently, not every element in the K-group K obeys the
bulk-boundary correspondence.

I This is because for point group symmetry there may be spatially-varying
mass terms that induce mass gap to the surface state. [Isobe-Fu ’15, ...]

H = −i∂ · γ +M +m1(x)Γ1 +m2(x)Γ2 + · · ·

I For 3d:
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Higher-order SPT phases [Huang-Song-Huang-Hermele ’17, ...]

I This observation leads to the concept of so-called higher-order TIs/TSCs.

I We define K(n) ⊂ K as the subgroup of Dirac Hamiltonians in the
K-group K that admits at least n spatially-varying masses.

I For 3d:

I The quotient group K(n−1)/K(n) is called nth-order TIs/TSCs.
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Equivalence between atomic insulators and Dirac Hamiltonians with a
hedgehog mass

I One can also canonically compute the group K(d) of dth-order TIs/TSCs,
the localized states at the center of the point group.

I To compute K(d), we note the equivalence between the atomic insulators
exactly at the point group center and the d-dim Dirac Hamiltonian with
hedgehog-mass potential with a unit winding number. This is known as
the Jackiw-Rossi bound state.

H0D ↔ HdD = −i∂ · γ +m(x) · Γ +M.

I The explicit construction is as follows.
I Let H0D be a 0d Hamiltonian. We have the successive isomorphic maps:

0d→ 1d : H1D = −i∂1σy + x1σx +H0Dσz,

1d→ 2d : H2D = −i∂2sy + x2sx +H1Dsz,

2d→ 3d : H3D = −i∂3µy + x3µx +H2Dµz,
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The homomorphism f : KAI → K

I Let KAI be the abelian group generated by atomic insulators exactly at
the point group center.

I Not every 0d Hamiltonian H0D in KAI is pinned at the point group
center, since some combination of atomic orbitals can go far away without
breaking the point group symmetry.

I We define the homomorphism

f : KAI → K,

by neglecting the hedgehog-mass potential m(x) · Γ in the dD
Hamiltonian HdD,

HdD = −i∂ · γ +m(x) · Γ +M 7→ H ′dD = −i∂ · γ +H0DΓ0.

I The image of f has the physical meaning of the Jackiw-Rossi bound state
pinned at the point group center, i.e., the dth-order TIs/TSCs. Thus,

K(d) = Im f.

I It is easy to compute the group KAI, which is just the K-group of reps of
the point group G with the data (φg, cg, zg,h).

I Thus, we conclude that the group K(d) of dth-order TIs/TSCs is
computed canonically.
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I Therefore, one can in principle compute the quotient K/K(d), the group
composed of surface gapless states, by the irreducible character.

I For 3d:
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I The explicit form of the homomorphism f for 3d is given in [KS].
I For instance, for an irrep β of KAI, the 3d winding number detecting a

direct summand Z in K belonging to the irrep α of G0, is given by

w3d|β→α =
1

|G0|

∑
g∈G,

φg=cg=−pg=1

χ̃
+
α (g)

∗ × 2 cos
θg

2

×


χβ(g) for A, AI,
χβ(g) + χa(β)(g) for AII, AT ,

χβ(g)− χb(β)(g) for D, C, AC , AIC , BDI, CI,

χβ(g)− χab(β)(g) for AIII, AΓ,

χβ(g) + χa(β)(g)− χb(β)(g)− χab(β)(g) for AT.C , AIIIT , DT , DIII, AIIC , CII, CT .

I See [KS] for the detail.

I What I want to empathize is that the homomorphism f can be computed
by the data (G,Og, φg, cg, zg,h) and the irreducible character.
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The classification of spherical surface states

I Along the line of the above thought, one can compute the classification of
gapless states on (d− 1)D sphere Sd−1 = ∂Bd, the boundary states of
dD TIs/TSCs over the d-ball Bd.

I In [KS], I summarized the complete list of the surface states of 3d
TIs/TSCs for 122 magnetic point group symmetry.

I Ex: SCs in spinful systems.

MPG Ker φ Irrep EAZ KG
0 (R3) FreeK/K′′′ TorK/K′′′

1 1 A {D} 0 0 {}
11′ 1 A {DIII} Z 1 {}
1̄ 1̄ Ag {BDI} 0 0 {}
1̄ 1̄ Au {DIII} Z 0 {4}
1̄1′ 1̄ Ag {DT } 0 0 {}
1̄1′ 1̄ Au {DIII2} Z×2 1 {4}
...
m3̄m′ m3̄ Ag {D2

T ,DIII} Z 0 {}
m3̄m′ m3̄ Eg {D2

T ,DIII} Z 0 {}
m3̄m′ m3̄ Au {DIII5} Z×5 3 {}
m3̄m′ m3̄ Eu {DIII5} Z×5 3 {}
m′3̄′m′ 432 A1 {D10} 0 0 {}
m′3̄′m′ 432 A2 {D2,AC} 0 0 {}
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Ex: SCs with TRS and inversion symmetry (1̄1′)

I Even parity SCs (Ag rep) ⇒ K/K′′′ = 0.
I No surface state.

I Odd parity SCs (Au rep) ⇒ K/K′′′ = Z× Z4.
I Z: 2d Majorana-Weyl surface states.
I Z4: generated by the helical henge Majorana state. Doubling it yields to 0d

Majorana bound state.
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Summary

I Using the Cornfeld-Chapman’s trick, we completed the classification of
topological insulators/superconductors with point group symmetry.

I By identifying the atomic insulators at the point group center and dD
Dirac Hamiltonians with hedgehog-mass potential with a unit winding
number, one can compute the group K(d) of dth-order TIs/TSCs from the
irreducible character.

I We presented the complete list of the effective AZ classes for
insulators/superconductors with 122 magnetic point group and their
surface states.
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Wigner criterion

I Let α be an irrep of G0 with the factor system z̃g,h.

I The TRS-type operator â acts on the representation vector space V of the
irrep α in three ways.

I Let |i〉 be the basis of the representation vector space V , that is

ĝ |i〉 = |j〉 [D̃α(g)]ji,

with Dα(g) the representation matrix.

I We want to consider how the TRS-type operator â acts on V , which can
be checked by looking the formal basis â |i〉.

I The irrep a(α) mapped by â has the following representation matrices

ĝ(â |i〉) = (â |j〉)[D̃a(α)(g)]ji, D̃a(α)(g) =
z̃g,a

z̃a,a−1ga

D̃α(a−1ga)∗.

I a(α) is unitary equivalent to α or not, which can be checked by the
orthogonality relation of the irreducible character χ̃α(g) = TrD̃α(g).

OTαβ := (a(α), β) =
1

|G0|
∑
g∈G0

[
z̃g,a

z̃a,a−1ga

χ̃α(a−1ga)∗
]∗
χ̃β(g) ∈ {0, 1}.
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I If OTαα = 0, â does not preserve the irrep α, and transforms α to another
irrep β = a(α) satisfying OTαβ = 1.

I When OTαα = 1, the TRS-type operator â preserves the irrep α, but there
still remain two situations: â produces the Kramers degeneracy or not,
which can be checked by the Wigner criterion

WT
α :=

1

|G0|
∑
g∈G0

z̃ag,agχ̃α((ag)2) ∈ {0,±1}.

I We can see

WT
α = 1 ⇒ a(α) = α and â is non-Kramers (class AI),

WT
α = −1 ⇒ a(α) = α and â is Kramers (class AII),

WT
α = 0 ⇒ a(α) 6= α.

I Therefore, the Wigner criterion WT
α alone gives us how â acts on the irrep

α.
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(The detail)

I If a(α) = α, there exists a unitary matrix U such that

D̃a(α)(g) =
z̃g,a

z̃a,a−1ga

[D̃α(a−1ga)]∗ji = U†D̃α(g)U, g ∈ G0.

I The matrix U behaves as a matrix representation of a.
I Form the Schor’s lemma, one can show that UU∗ = ξD̃α(a2) with ξ a
U(1) phase and ξ/za,a ∈ {±1}.

I Introduce a new basis |̃i〉 = (â |j〉)U†ji that obeys the same matrix rep

ĝ|̃i〉 = |̃j〉[D̃α(g)]ji.
I Taking the same transformation twice yields˜̃|i〉 = ξ/za,a |i〉 .

I Therefore,

ξ/za,a = 1 ⇒ â is non-Kramers (class AI)
ξ/za,a = −1 ⇒ â is Kramers (class AII)

I One can show

WT
α =

{
ξ/za,a (â |i〉 is unitary equivalent to |i〉),
0 (â |i〉 is unitary inequivalent to |i〉).
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I In the same way, we introduce the Wigner criterion for the PHS-type
operator b̂ by

WC
α =

1

|G0|
∑
g∈G0

z̃bg,bgχ̃α((bg)2) ∈ {0,±1},

and we have

WC
α = 1 ⇒ b(α) = α, and b̂ behaves as class D PHS,

WC
α = −1 ⇒ a(α) = α, and b̂ behaves as class C PHS,

WC
α = 0 ⇒ b(α) 6= α.

I For the chiral-type operator âb, we ask if the mapped irrep ab(α) is unitary
equivalent to α or not, which can be checked by the orthogonal test

OΓ
αα =

1

|G0|
∑
g∈G0

[
z̃g,ab

z̃ab,(ab)−1gab

χ̃α((ab)−1gab)

]∗
χ̃α(g) ∈ {0, 1}.

We have

OΓ
αα = 1 ⇒ ab(α) = α, and âb behaves as chiral symmetry,

OΓ
αα = 0 ⇒ ab(α) 6= α.
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Application I. 3d insulators with magnetic point group symmetry

I There are 122 crystallographic magnetic point groups in 3d.
I Let G be a magnetic point group equipped with the data (Og, φg, zg,h).

(cg ≡ 1.)
I The factor system is given as

zg,h =

{
1 (spinless)

(−1)
1−φg

2

1−φh
2 (spinful)

I We get the complete list of the effective AZ classes for 122 magnetic point
groups. [KS]

I Spinful systems:

MPG EAZ KG
0 (R3) KG

−1(R3) KG
−2(R3) · · ·

1 {A} 0 Z 0
11′ {AII} Z2 Z 0
1̄ {AIII} Z 0 Z
1̄1′ {DIII} Z 0 0
1̄′ {D} 0 0 0
...
m3̄m′ {DIII4} Z×4 0 0
m′3̄m′ {D5} 0 0 0
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