The classification of Surface states of topological superconductors

Ken Shiozaki

YITP, JST Presto

Sep. 10, 2019 @ Gihu Univ.

Ref: KS, arXiv:1907.09354.

Main result

- ► We want to know the existence/absence of stable gapless surface states on the boundary of the 3-ball for given magnetic point group symmetry.
- No translation symmetry
- \blacktriangleright The dimensionality of surface states \rightarrow higher-order TIs/TSCS

▶ In this work, we formulated how to compute the quotient group *K*/*K*^{'''}, the classification of surface states, and computed the classification for all 122 magnetic point groups in TIs and TSCs.

- ▶ Compute *K*
 - Cornfeld-Chapman trick
 - Periodic table
- ▶ Compute *K*^{'''}
 - 0d state = 3d Dirac Hamiltonian with a hedgehog mass potential
 - \blacktriangleright Compute the homomorphism $K^{\prime\prime\prime} \rightarrow K$

Dirac Hamiltonian with point group symmetry

• Dirac Hamiltonian in d space dimensions $(\mathbf{k} = -i\partial)$ with a uniform mass

$$H(\mathbf{k}) = -i\sum_{j=1}^{d} \gamma_j \partial_j + M, \qquad \{\gamma_i, \gamma_j\} = 2\delta_{ij}, \qquad \{\gamma_i, M\} = 0.$$

▶ Let G be a point group, i.e., G acts on the real-space coordinate x as a discrete subgroup of O(d).

$$g: \boldsymbol{x} \mapsto O_g \boldsymbol{x}, \qquad g \in G.$$

- We denote the operator acting on the one-particle Hilbert space by \hat{g} .
- As usual, symmetry operators form a projective representation with a factor system

$$\hat{g}\hat{h} = z_{g,h}\widehat{gh}, \qquad g,h \in G,$$

where $z_{g,h} \in U(1)$ is called the factor system.

- \hat{g} can be antiunitary. We specify if \hat{g} is unitary or not by $\phi_g \in \{\pm 1\}$.
- \hat{g} can flip the Hamiltonian $H(\mathbf{k})$, which specified by $c_g \in \{\pm 1\}$.
- In sum,

$$\hat{g}H(\mathbf{k})\hat{g}^{-1} = c_gH(\phi_gO_g\mathbf{k}), \qquad \hat{g}i\hat{g}^{-1} = \phi_g i, \qquad g \in G.$$

• Mass term M obeys the following complicated algebra.

$$\begin{split} \hat{g}\hat{h} &= z_{g,h}\widehat{g}\hat{h}.\\ \hat{g}\boldsymbol{\gamma}\hat{g}^{-1} &= \phi_g c_g O_g^{-1}\boldsymbol{\gamma}, \qquad \hat{g}M\hat{g}^{-1} = c_g M,\\ \{\gamma_i, \gamma_j\} &= 2\delta_{ij}, \qquad \{\gamma_i, M\} = 0. \end{split}$$

 \blacktriangleright Question. How to get the topological classification of the "space" of the mass term M?

Step 1: Cornfeld-Chapman trick

• The gamma matrices γ_j themselves can be used to make Spin(d) rotation operators.

Let

$$R_{\theta} = \exp \frac{i}{2} \theta_{ij} L_{ij}, \qquad [L_{ij}]_{kl} = -i(\delta_{ik} \delta_{jl} - \delta_{jk} \delta_{il}),$$

be an SO(d) rotation.

► The set $\{\theta_{ij} \in [0, 2\pi]\}$ of SO(d) rotation parameters gives us a lift $SO(d) \rightarrow Spin(d)$,

$$U_{\theta} = \exp \frac{i}{2} \theta_{ij} \Sigma_{ij}, \qquad \Sigma_{ij} = \frac{-i}{4} [\gamma_i, \gamma_j].$$

► The key equality:

$$U_{\theta} \boldsymbol{\gamma} U_{\theta}^{-1} = R_{\theta} \boldsymbol{\gamma}.$$

• Therefore, the SO(d) part of \hat{g} can be "onsite".

• For generic O(d) rotations, we write

$$O_g = \begin{cases} R_{\theta_g} & (O_g \in SO(d)), \\ M_1 R_{\theta_g} & (O_g \notin SO(d)), \end{cases}$$

where $M_1:(x_1,x_2,\dots)\mapsto (-x_1,x_2,\dots)$ is the reflection for the x_1 -direction.

Let

$$p_g := \det O_g \in \{\pm 1\}$$

is the marker for specifying orientation-preserving/reversing elements.

• Per the value of p_g , we introduce the modified operator

$$\tilde{g} := (\gamma_1)^{\frac{1-p_g}{2}} \times U_\theta \times \hat{g}.$$

• We find that \tilde{g} is now an onsite symmetry operator

$$\tilde{g}\gamma\tilde{g}^{-1} = c_g p_g \phi_g \gamma, \qquad \tilde{g}M\tilde{g}^{-1} = c_g p_g M,$$

i.e.,

$$\tilde{g}H(\boldsymbol{k})\tilde{g}^{-1} = c_g p_g H(\phi_g \boldsymbol{k}).$$

- ► For onsite symmetry, the classification of the mass term *M* is straightforward.
- First, we decompose the symmetry group G with respect to whether \tilde{g} is TRS, PHS, or chiral symmetry.

$$\begin{split} G &= \underbrace{G_0}_{\text{unitary}} \sqcup \underbrace{aG_0}_{\text{TRS}} \sqcup \underbrace{bG_0}_{\text{PHS}} \sqcup \underbrace{abG_0}_{\text{chiral}}, \\ G_0 &= \{g \in G | \phi_g = c_g p_g = 1\}, \\ a \in G, \qquad \phi_a = -1, \qquad c_a p_a = 1, \\ b \in G, \qquad \phi_b = -1, \qquad c_b p_b = -1, \\ ab \in G, \qquad \phi_{ab} = 1, \qquad c_a b p_{ab} = -1. \end{split}$$

• An "irrep of G" can be seen as an irrep of G_0 with the data of how remaining operators a, b, and ab act on its irrep. \rightarrow 19 patterns.

19 effective AZ class

There are 19 patterns of the presences/absences of a, b, ab and the values of the Wigner criteria $W^T_{\alpha}, W^C_{\alpha}$ and the orthogonal test $O^{\Gamma}_{\alpha\alpha}$, which we call the effective AZ (EAZ) classes.

Once the EAZ class of the irrep α is fixed, the classification of the mass term for the irrep α is found by the periodic table.

EAZ class	d = 0	d = 1	d = 2	d = 3	d = 4	d = 5	d = 6	d = 7
$A, A_T, A_C, A_\Gamma, A_{T,C}$	Z	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AIII, AIII $_T$	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AI, AI_C	Z	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2
BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2
D, D_T	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0
DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$
AII, AII_C	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
CII	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
C, C_T	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0
CI	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}

3d superconductors (SCs) with magnetic point group symmetry

- ► A subtle point for SCs is that the symmetry algebra depends on what the representation of the gap function is.
- Suppose that the normal part h(k) is invariant under a magnetic point group

$$u_g h(\boldsymbol{k}) u_g^{-1} = h(\phi_g O_g \boldsymbol{k}), \qquad u_g u_h = z_{g,h} u_{gh}.$$

• The superconducting gap function $\Delta(\mathbf{k}) = \sum_{i=1}^{N} \eta_i \Delta_i(\mathbf{k})$ is a rep of G in general.

$$\Delta_i(\phi_g O_g \boldsymbol{k}) = [D_\rho(g)]_{ij} \times u_g \Delta_j(\boldsymbol{k}) u_g^T.$$

- When $\Delta(\mathbf{k})$ obeys a nontrivial rep of G, such SCs are said unconventional.
- For unconventional SCs, the superconducting order spontaneously breaks the magnetic point group symmetry.
- ▶ By the U(1) phase rotation

$$\hat{U}_{\theta_g/2}\hat{\psi}_{\boldsymbol{x}}\hat{U}_{\theta_g/2}^{-1} = \hat{\psi}_{\boldsymbol{x}}e^{-i\theta_g/2}$$

of the complex fermion, the gap function changes as $\Delta(\mathbf{k}) \mapsto e^{i\theta_g} \Delta(\mathbf{k})$.

▶ This means, for the subgroup $G_* \subset G$ of which the rep is 1-dimensional, the symmetry of the magnetic point group G_* recovers.

• From the above reason, we assume that the gap function obeys a 1-dim irrep of G, which we denote it by $e^{i\theta_g}$.

$$\Delta(\phi_g O_g \boldsymbol{k}) = e^{i\theta_g} \times u_g \Delta(\boldsymbol{k}) u_g^T.$$

The BdG Hamiltonian

$$H(oldsymbol{k}) = egin{pmatrix} h(oldsymbol{k}) & \Delta(oldsymbol{k}) \ \Delta(oldsymbol{k})^\dagger & -h(-oldsymbol{k})^T \end{pmatrix}_ au$$

is invariant under the symmetry group $G\times \mathbb{Z}_2^C$ where $\hat{C}=\tau_x K$ is PHS operator.

• The symmetry operator \hat{g} for $g \in G$ depends on the 1-dim irrep as in

$$\hat{g} = \begin{pmatrix} u_g & \\ & e^{i\theta_g} u_g^* \end{pmatrix}, \qquad \hat{g}\hat{C} = e^{i\theta_g}\hat{C}\hat{g}$$

- ► There are 380 inequivalent symmetry classes from 122 magnetic point groups and 1-dim irreps in 3*d*.
- ► The effective AZ classes for spinless and spinful SCs in 3d are listed in [KS].
- Spinful systems:

MPG	$Ker\;\phi$	Irrep	EAZ	$K_0^G(\mathbb{R}^3)$	$K^G_{-1}(\mathbb{R}^3)$	$K^G_{-2}(\mathbb{R}^3)$	•••
1	1	Α	{D}	0	0	0	
11'	1	A	{DIII}	\mathbb{Z}	0	0	
$\overline{1}$	$\overline{1}$	A_g	{BDI}	0	0	$2\mathbb{Z}$	
$\overline{1}$	$\overline{1}$	A_u	{DIII}	\mathbb{Z}	0	0	
$\bar{1}1'$	$\overline{1}$	A_{g}	$\{D_T\}$	0	0	0	
$\bar{1}1'$	ī	A_u	$\{DIII^2\}$	$\mathbb{Z}^{ imes 2}$	0	0	
:							
$m\bar{3}m'$	$m\bar{3}$	A_g	$\{D_T^2,DIII\}$	\mathbb{Z}	0	0	
$m\bar{3}m'$	$m\bar{3}$	E_g	$\{D_T^2,DIII\}$	\mathbb{Z}	0	0	
$m\bar{3}m'$	$m\bar{3}$	A_u	$\{DIII^5\}$	$\mathbb{Z}^{\times 5}$	0	0	
$m\bar{3}m'$	$m\bar{3}$	E_u	$\{DIII^5\}$	$\mathbb{Z}^{\times 5}$	0	0	
$m'\bar{3}'m'$	432	A_1	$\{D^{10}\}$	0	0	0	
$m'\bar{3}'m'$	432	A_2	$\{D^2,A_C\}$	0	\mathbb{Z}	0	

- ▶ Compute *K*
 - Cornfeld-Chapman trick
 - Periodic table
- ▶ Compute *K*^{'''}
 - 0d state = 3d Dirac Hamiltonian with a hedgehog mass potential
 - \blacktriangleright Compute the homomorphism $K^{\prime\prime\prime} \rightarrow K$

- ▶ The effective AZ class provides the classification of Dirac Hamiltonian with a *uniform* mass, which we denote $K = K_n^G(\mathbb{R}^d)$.
- However, the classification of the uniform mass does not imply the classification of the gapless surface states.
- ▶ Put differently, not every element in the *K*-group *K* obeys the bulk-boundary correspondence.
- This is because for point group symmetry there may be spatially-varying mass terms that induce mass gap to the surface state. [Isobe-Fu '15, ...]

$$H = -i\boldsymbol{\partial} \cdot \boldsymbol{\gamma} + M + m_1(\boldsymbol{x})\Gamma_1 + m_2(\boldsymbol{x})\Gamma_2 + \cdots$$

► For 3d:

Higher-order SPT phases [Huang-Song-Huang-Hermele '17, ...]

- ► This observation leads to the concept of so-called higher-order TIs/TSCs.
- ► We define K⁽ⁿ⁾ ⊂ K as the subgroup of Dirac Hamiltonians in the K-group K that admits at least n spatially-varying masses.
- ► For 3*d*:

▶ The quotient group $K^{(n-1)}/K^{(n)}$ is called *n*th-order TIs/TSCs.

Equivalence between atomic insulators and Dirac Hamiltonians with a hedgehog mass

- ► One can also canonically compute the group K^(d) of dth-order TIs/TSCs, the localized states at the center of the point group.
- ► To compute $K^{(d)}$, we note the equivalence between the atomic insulators exactly at the point group center and the *d*-dim Dirac Hamiltonian with hedgehog-mass potential with a unit winding number. This is known as the Jackiw-Rossi bound state.

The explicit construction is as follows.

. . .

• Let H_{0D} be a 0d Hamiltonian. We have the successive isomorphic maps:

$$\begin{array}{ll} 0d \rightarrow 1d: & H_{1D} = -i\partial_1\sigma_y + x_1\sigma_x + H_{0D}\sigma_z, \\ 1d \rightarrow 2d: & H_{2D} = -i\partial_2s_y + x_2s_x + H_{1D}s_z, \\ 2d \rightarrow 3d: & H_{3D} = -i\partial_3\mu_y + x_3\mu_x + H_{2D}\mu_z, \end{array}$$

The homomorphism $f: K_{AI} \to K$

- ► Let K_{AI} be the abelian group generated by atomic insulators exactly at the point group center.
- ▶ Not every 0*d* Hamiltonian *H*_{0D} in *K*_{AI} is pinned at the point group center, since some combination of atomic orbitals can go far away without breaking the point group symmetry.
- We define the homomorphism

$$f: K_{\mathrm{AI}} \to K,$$

by neglecting the hedgehog-mass potential $m(x) \cdot \Gamma$ in the dD Hamiltonian H_{dD} ,

$$H_{dD} = -i\boldsymbol{\partial}\cdot\boldsymbol{\gamma} + \boldsymbol{m}(\boldsymbol{x})\cdot\boldsymbol{\Gamma} + M \mapsto H_{dD}' = -i\boldsymbol{\partial}\cdot\boldsymbol{\gamma} + H_{0D}\Gamma_0.$$

The image of f has the physical meaning of the Jackiw-Rossi bound state pinned at the point group center, i.e., the dth-order TIs/TSCs. Thus,

$$K^{(d)} = \mathsf{Im} \ f.$$

- ► It is easy to compute the group K_{AI}, which is just the K-group of reps of the point group G with the data (φ_g, c_g, z_{g,h}).
- ► Thus, we conclude that the group K^(d) of dth-order TIs/TSCs is computed canonically.

- ► Therefore, one can in principle compute the quotient *K*/*K*^(*d*), the group composed of surface gapless states, by the irreducible character.
- ► For 3*d*:

- The explicit form of the homomorphism f for 3d is given in [KS].
- For instance, for an irrep β of K_{AI}, the 3d winding number detecting a direct summand Z in K belonging to the irrep α of G₀, is given by

$$\begin{split} w_{3d}|_{\beta \to \alpha} &= \frac{1}{|G_0|} \sum_{\substack{g \in G, \\ \phi_g = c_g = -p_g = 1}} \tilde{\chi}^+_{\alpha}(g)^* \times 2\cos\frac{\theta_g}{2} \\ &\times \begin{cases} \chi_{\beta}(g) & \text{for A, Al,} \\ \chi_{\beta}(g) + \chi_{\underline{a}}(\beta)(g) & \text{for All, } A_T, \\ \chi_{\beta}(g) - \chi_{\underline{b}}(\beta)(g) & \text{for D, C, } A_C, \text{Al}_C, \text{ BDI, CI,} \\ \chi_{\beta}(g) - \chi_{\underline{a}\underline{b}}(\beta)(g) & \text{for All, } A_T, \\ \chi_{\beta}(g) + \chi_{\underline{a}}(\beta)(g) - \chi_{\underline{b}}(\beta)(g) - \chi_{\underline{a}\underline{b}}(\beta)(g) & \text{for A}_{T,C}, \text{AllI}_T, \text{D}_T, \text{DIII, AII}_C, \text{CI, } \text{C}_T. \end{split}$$

- See [KS] for the detail.
- What I want to empathize is that the homomorphism f can be computed by the data $(G, O_g, \phi_g, c_g, z_{g,h})$ and the irreducible character.

The classification of spherical surface states

- ► Along the line of the above thought, one can compute the classification of gapless states on (d − 1)D sphere S^{d−1} = ∂B^d, the boundary states of dD TIs/TSCs over the d-ball B^d.
- In [KS], I summarized the complete list of the surface states of 3d TIs/TSCs for 122 magnetic point group symmetry.
- Ex: SCs in spinful systems.

MPG	$Ker\;\phi$	Irrep	EAZ	$K_0^G(\mathbb{R}^3)$	FreeK/K'''	${\rm Tor}K/K^{\prime\prime\prime}$
1	1	A	{D}	0	0	{}
11'	1	A	{DIII}	\mathbb{Z}	1	{}
$\overline{1}$	$\overline{1}$	A_g	{BDI}	0	0	{}
$\overline{1}$	ī	A_u	{DIII}	\mathbb{Z}	0	$\{4\}$
$\overline{1}1'$	$\overline{1}$	A_g	$\{D_T\}$	0	0	{}
$\bar{1}1'$	$\overline{1}$	A_u	$\{DIII^2\}$	$\mathbb{Z}^{ imes 2}$	1	$\{4\}$
:						
$m\bar{3}m'$	$m\bar{3}$	A_q	$\{D_T^2,DIII\}$	\mathbb{Z}	0	{}
$m\bar{3}m'$	$m\bar{3}$	E_{g}	$\left\{ D_T^2, DIII \right\}$	\mathbb{Z}	0	{}
$m\bar{3}m'$	$m\bar{3}$	A_u	${DIII^5}$	$\mathbb{Z}^{ imes 5}$	3	{}
$m\bar{3}m'$	$m\bar{3}$	E_u	$\{DIII^5\}$	$\mathbb{Z}^{ imes 5}$	3	{}
$m'\bar{3}'m'$	432	A_1	$\{D^{10}\}$	0	0	{}
$m'\bar{3}'m'$	432	A_2	$\{D^2,A_C\}$	0	0	{}

Ex: SCs with TRS and inversion symmetry $(\overline{1}1')$

- Even parity SCs $(A_g \text{ rep}) \Rightarrow K/K''' = 0.$
 - No surface state.
- Odd parity SCs $(A_u \operatorname{rep}) \Rightarrow K/K''' = \mathbb{Z} \times \mathbb{Z}_4.$
 - ▶ ℤ: 2d Majorana-Weyl surface states.
 - $\blacktriangleright \ \mathbb{Z}_4$: generated by the helical henge Majorana state. Doubling it yields to 0d Majorana bound state.

- Using the Cornfeld-Chapman's trick, we completed the classification of topological insulators/superconductors with point group symmetry.
- ► By identifying the atomic insulators at the point group center and dD Dirac Hamiltonians with hedgehog-mass potential with a unit winding number, one can compute the group K^(d) of dth-order Tls/TSCs from the irreducible character.
- We presented the complete list of the effective AZ classes for insulators/superconductors with 122 magnetic point group and their surface states.

Wigner criterion

- Let α be an irrep of G_0 with the factor system $\tilde{z}_{g,h}$.
- \blacktriangleright The TRS-type operator \hat{a} acts on the representation vector space V of the irrep α in three ways.
- Let $|i\rangle$ be the basis of the representation vector space V, that is

$$\hat{g}|i\rangle = |j\rangle [\tilde{D}_{\alpha}(g)]_{ji},$$

with $D_{\alpha}(g)$ the representation matrix.

- ► We want to consider how the TRS-type operator â acts on V, which can be checked by looking the formal basis â |i⟩.
- The irrep $a(\alpha)$ mapped by \hat{a} has the following representation matrices

$$\hat{g}(\hat{a} \left| i \right\rangle) = (\hat{a} \left| j \right\rangle) [\tilde{D}_{a(\alpha)}(g)]_{ji}, \qquad \tilde{D}_{a(\alpha)}(g) = \frac{z_{g,a}}{\tilde{z}_{a,a^{-1}ga}} \tilde{D}_{\alpha}(a^{-1}ga)^*.$$

• a(α) is unitary equivalent to α or not, which can be checked by the orthogonality relation of the irreducible character χ̃_α(g) = TrĎ_α(g).

$$O_{\alpha\beta}^{T} := (a(\alpha), \beta) = \frac{1}{|G_0|} \sum_{g \in G_0} \left[\frac{\tilde{z}_{g,a}}{\tilde{z}_{a,a^{-1}ga}} \tilde{\chi}_{\alpha} (a^{-1}ga)^* \right]^* \tilde{\chi}_{\beta}(g) \in \{0,1\}.$$

- ► If $O_{\alpha\alpha}^T = 0$, \hat{a} does not preserve the irrep α , and transforms α to another irrep $\beta = a(\alpha)$ satisfying $O_{\alpha\beta}^T = 1$.
- When O^T_{αα} = 1, the TRS-type operator â preserves the irrep α, but there still remain two situations: â produces the Kramers degeneracy or not, which can be checked by the Wigner criterion

$$W_{\alpha}^{T} := \frac{1}{|G_{0}|} \sum_{g \in G_{0}} \tilde{z}_{ag,ag} \tilde{\chi}_{\alpha}((ag)^{2}) \in \{0, \pm 1\}.$$

We can see

$$\begin{array}{ll} W^T_\alpha = 1 & \Rightarrow & a(\alpha) = \alpha \text{ and } \hat{a} \text{ is non-Kramers (class AI),} \\ W^T_\alpha = -1 & \Rightarrow & a(\alpha) = \alpha \text{ and } \hat{a} \text{ is Kramers (class AII),} \\ W^T_\alpha = 0 & \Rightarrow & a(\alpha) \neq \alpha. \end{array}$$

• Therefore, the Wigner criterion W_{α}^{T} alone gives us how \hat{a} acts on the irrep α .

(The detail)

▶ If $a(\alpha) = \alpha$, there exists a unitary matrix U such that

$$\tilde{D}_{a(\alpha)}(g) = \frac{\tilde{z}_{g,a}}{\tilde{z}_{a,a^{-1}ga}} [\tilde{D}_{\alpha}(a^{-1}ga)]_{ji}^* = U^{\dagger}\tilde{D}_{\alpha}(g)U, \qquad g \in G_0.$$

- ▶ The matrix U behaves as a matrix representation of a.
- ► Form the Schor's lemma, one can show that $UU^* = \xi \tilde{D}_{\alpha}(a^2)$ with ξ a U(1) phase and $\xi/z_{a,a} \in \{\pm 1\}$.
- Introduce a new basis $\widetilde{|i\rangle} = (\hat{a} |j\rangle) U_{ji}^{\dagger}$ that obeys the same matrix rep $\hat{g}|\widetilde{i\rangle} = \widetilde{|j\rangle} [\tilde{D}_{\alpha}(g)]_{ji}.$
- Taking the same transformation twice yields

$$\widetilde{\widetilde{\left|i\right\rangle}} = \xi/z_{a,a} \left|i\right\rangle.$$

Therefore,

- $\begin{array}{ll} \xi/z_{a,a}=1 & \Rightarrow & \hat{a} \text{ is non-Kramers (class Al)} \\ \xi/z_{a,a}=-1 & \Rightarrow & \hat{a} \text{ is Kramers (class All)} \end{array}$
- One can show

$$W_{\alpha}^{T} = \begin{cases} \xi/z_{a,a} & (\hat{a} \mid i \rangle \text{ is unitary equivalent to } \mid i \rangle), \\ 0 & (\hat{a} \mid i \rangle \text{ is unitary inequivalent to } \mid i \rangle). \end{cases}$$

 \blacktriangleright In the same way, we introduce the Wigner criterion for the PHS-type operator \hat{b} by

$$W_{\alpha}^{C} = \frac{1}{|G_{0}|} \sum_{g \in G_{0}} \tilde{z}_{bg,bg} \tilde{\chi}_{\alpha}((bg)^{2}) \in \{0, \pm 1\},\$$

and we have

$$\begin{array}{ll} W^C_\alpha = 1 & \Rightarrow & b(\alpha) = \alpha, \text{ and } \hat{b} \text{ behaves as class D PHS,} \\ W^C_\alpha = -1 & \Rightarrow & a(\alpha) = \alpha, \text{ and } \hat{b} \text{ behaves as class C PHS,} \\ W^C_\alpha = 0 & \Rightarrow & b(\alpha) \neq \alpha. \end{array}$$

For the chiral-type operator ab, we ask if the mapped irrep ab(α) is unitary equivalent to α or not, which can be checked by the orthogonal test

$$O_{\alpha\alpha}^{\Gamma} = \frac{1}{|G_0|} \sum_{g \in G_0} \left[\frac{\tilde{z}_{g,ab}}{\tilde{z}_{ab,(ab)^{-1}gab}} \tilde{\chi}_{\alpha}((ab)^{-1}gab) \right]^* \tilde{\chi}_{\alpha}(g) \in \{0,1\}.$$

We have

$$O_{\alpha\alpha}^{\Gamma} = 1 \Rightarrow ab(\alpha) = \alpha$$
, and \widehat{ab} behaves as chiral symmetry,
 $O_{\alpha\alpha}^{\Gamma} = 0 \Rightarrow ab(\alpha) \neq \alpha$.

Application I. 3d insulators with magnetic point group symmetry

- ▶ There are 122 crystallographic magnetic point groups in 3d.
- ▶ Let G be a magnetic point group equipped with the data $(O_g, \phi_g, z_{g,h})$. $(c_g \equiv 1.)$
- The factor system is given as

$$z_{g,h} = \begin{cases} 1 & (\text{spinless}) \\ (-1)^{\frac{1-\phi_g}{2}\frac{1-\phi_h}{2}} & (\text{spinful}) \end{cases}$$

- ▶ We get the complete list of the effective AZ classes for 122 magnetic point groups. [KS]
- Spinful systems:

MPG	EAZ	$K_0^G(\mathbb{R}^3)$	$K^G_{-1}(\mathbb{R}^3)$	$K^G_{-2}(\mathbb{R}^3)$	•••
1	{A}	0	\mathbb{Z}	0	
11'	{AII}	\mathbb{Z}_2	\mathbb{Z}	0	
ī	{AIII}	\mathbb{Z}	0	\mathbb{Z}	
$\overline{1}1'$	{DIII}	\mathbb{Z}	0	0	
$\overline{1}'$	{D}	0	0	0	
:					
ā /	(0)114)	rm × 4	0	0	
$m3m^2$	{DIII1*}	$\mathbb{Z}^{\wedge 1}$	0	0	
$m'\bar{3}m'$	$\{D^5\}$	0	0	0	