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⚫ “Topological” equivalence: If there exists a pass connecting two phases A 
and B without a phase transition, A and B are considered to be in a same 
phase. 

⚫ Ice ≠ water

⚫ Water = water vapor 

⚫ SSB of translation symmetry between {ice} and {water, water vapor}

Topological equivalence



Topological phases of matter

⚫ Logically, there may exists phase distinctions without SSB in a certain 
class of phases of matter. 

⚫ In topological phases, we consider the following setup: 

✓ Zero temperature 

✓ Gapped phases (there exists a finite energy gap in between the 
ground and the first excited state.)

✓ With symmetry (Z2 Ising, U(1) particle conservation, time-reversal, 
…)



⚫ Let’s imagine a phase diagram for a given dof. 

⚫ A topological phase := an equivalence class under the equivalence 
relation. 

Parameters of 
Hamiltonian

‥‥

Gapless phases or SSB

a

b

c

Top. phase A Top. phase B Top. phase C



Symmetry Protected Topological phases

⚫ In general, there exists a ground state degeneracy that depends on the 
global topology of the closed space manifold. 

⚫ SPT phases := topological phases that have a unique ground state for any 
closed space manifolds. 

⚫ Long-Range Entangled (LRE) topological phases = topological phases that 
have a ground state degeneracy for a closed space manifold. 

⚫ Exs of SPT phases: Haldane chain, topological insulators/superconductors,
…

⚫ Exs of LRE topological phases: Toric code, fluctional quantum Hall effect, 
…



Classification of SPT phases

⚫ How to classify SPT phases? 

⚫ Recall that in QFTs, 

A theory = a set of correlation functions

⚫ In SPT phases, all information should be encoded in the ground state. 

⚫ Excited states do not affect which topological phases a given gapped 
phases belongs to. 

⚫ No excited states
-> no scale

-> Topological quantum field theory (TQFT)

⚫ Hilbert space is one-dimensional 
-> no operators

-> Only partition functions are correlation functions.

⚫ A set of correlation functions = a set of partition functions. 



⚫ The classification of SPT phases 
= the classification of U(1)-valued partition functions without a 
continues parameter [Chen-Gu-Liu-Wen, Kapustin, Freed-Hopkins, 
Yonekura, …]

Excited states Characterizes 
SPT phases

Euclidian spacetime 
manifold



Spacetime manifolds and external fields

⚫ The partition function over a closed space manifold 𝑋 and time circle 𝑆1 is 
always unity: 

⚫ Therefore, to distinguish different SPT phases, we should employ generic 
closed spacetime manifolds. 

⚫ We also have a external field 𝐴 (a 𝐺-bundle) introduced by (pre)gauging 
global 𝐺 symmetry. 



１) generic spacetime manifolds
⚫ We would like to define a theory over an arbitrary spacetime manifold.

⚫ Recall that a manifold 𝑀 is a set of patches and patch transformations. 

⚫ The low-energy dof would be described by a topological field theory. 

⚫ There, spacetime rotation symmetry is effectively emergent.

⚫ The spacetime rotation symmetry can be used to define the patch 
transformation for the field. 

⚫ We get partition functions over closed spacetime manifolds.



2) external fields

⚫ We have global 𝐺 symmetry.

⚫ The field 𝜙(𝑥) is equipped with a 𝐺-action, i.e. 𝜙 𝑥 is a representation of 
𝐺. 

⚫ This 𝐺-action can be used to define the background 𝐺-field. 

⚫ We get partition functions over closed spacetime manifolds with 𝐺-field 
(𝐺-bundles, says).



３) Non-orientable spacetime manifolds

⚫ If an orientation-reversing symmetry (e.g. time-reversal, reflection) is 
present, one can define partition functions over non-orientable manifolds. 

⚫ We get partition functions over non-orientable manifold with 𝐺-field, if an 
orientation-reversing symmetry is present. 



⚫ In sum, 

⚫ A Comment: Manifolds for fermions are more involved. The fermion field 
is rotated by the Spin(d) group, a double cover of SO(d), meaning that 
the spacetime manifold has (variants of) spin structure. 

Background 𝐺-field

Closed spacetime manifold



Some terminologies 

⚫ Gapped phases 

∼ Invertible phases 

∼Theories with U(1)-valued partition functions

⚫ SPT phases (in my definition)

∼ deformation invariant invertible phases

∼ Theories with U(1)-valued partition functions without a 
continuous parameter

⚫ For example, the 4d topological theta term of the background U(1)-field 
𝜃

4𝜋2
න
𝑀

𝐹 ∧ 𝐹

has continuous parameter 𝜃 ∈ [0,2𝜋]. This is not the partition function of SPT 
phases, but the partition functions of invertible phases. 



Ex: Haldane chain w/ TRS

⚫ (1+1)d bosonic SPT phases w/ TRS

⚫ Classification : 𝑍2

⚫ Model: 1d antiferromagnetic spin chain with S=1 [Haldane]. 

⚫ An exactly solvable model: AKLT chain [Affleck-Lieb-Kennedy-Tasaki]

⚫ The topological action is the 2nd Stiefel-Whitney class of tangent 
bundle of spacetime manifold. 

Spin 1/2

Projector onto spin 1 



⚫ Semiclassical description of the AF spin chain:

Fluctuation field 𝑛 𝑥 ∈ 𝑆2 from the AF ground state
Ԧ𝑆𝑥 ∼ −1 𝑥 𝑛(𝑥)

⚫ TR-symmetry: 
𝑇 Ԧ𝑆𝑥 𝑇−1 = − Ԧ𝑆𝑥 ⇒ 𝑇. 𝑛 𝑥, 𝜏 = −𝑛 𝑥,−𝜏

⚫ Action O(3) NLσ model with topological theta term [Haldane]: 

𝑆 𝑛 =
1

2𝑔
∫ 𝑑𝜏𝑑𝑥 { 𝜕𝜏𝑛

2 + 𝜕𝑥𝑛
2} + 2𝜋𝑖𝑆 × 𝑄,

𝑄 =
1

4𝜋
∫ 𝑑𝜏 𝑑𝑥 𝑛 ⋅ 𝜕𝜏 𝑛 × 𝜕𝑥 𝑛 ∈ Z,

where, 𝑆 is the spin quantum number. 

⚫ For simplicity, let’s consider the easy plane limit by setting

𝑛 = (cos 𝜙, sin 𝜙, 0) .

⚫ The meron configuration becomes a single vortex. 



2d abelian sigma model

⚫ A toy model of Haldane chain phase protected by TR symmetry. (For 
example, see [Takayoshi-Pujol-Tanaka, arXiv:1609.01316])

⚫ Target space is S1. 
“the easy plane limit of semiclassical description of the AF chain”

⚫ With vortex events. 
(The field can be singular.)

Spacetime



⚫ Theta term

✓ Ex: The ground state functional on S1 (Disc state): 

✓ Ex: Partition function over a closed oriented manifold: 

Unimportant for topological phases



⚫ TR transformation

⚫ TR symmetry = the theory is invariant under the relabeling of path-
integral variables by 

⚫ In the presence of TR symmetry, is quantized. 

⚫ is known to be a nontrivial SPT phase.

⚫ How to detect    ?



⚫ “Gauging” the TR symmetry = to define the theory on unoriented
manifolds by the use of TR transformation. 

⚫ At orientation reversing patches, the filed is shifted by π. 



⚫ A cross-cap.



⚫ A cross-cap.



⚫ A cross-cap.

⚫ Around a cross cap, the vortex number should be odd. 



⚫ The partition function over the real projective plane: 

⚫ Cf. The partition function over the Klein bottle: 

⚫ The partition function over the real projective plane RP2 is the SPT 
invariant of Haldane chain phase. 

⚫ Consistent with the classification of topological action 

Sphere with a cross-cap
= Real projective plane

Klein bottle



Classification of SPT phases

⚫ is the classification of U(1)-valued “topological” partition functions. 

⚫ Ex: Dijkgraaf-Witten topological actions classified by the group 
cohomology

𝐻𝑑 𝐵𝐺, 𝑈 1 ≅ 𝐻𝑑 𝐺, 𝑈 1 .

-> bosonic nonchiral SPT phases.

⚫ In the end, SPT phases are known to be classified by the Anderson dual 
of the cobordism group 

(𝐷Ω)𝑠𝑡𝑟
𝑑 𝐵𝐺 ≅ 𝐹𝑟𝑒𝑒 Ω𝑑+1

𝑠𝑡𝑟 𝐵𝐺 × 𝑇𝑜𝑟 Ω𝑑
𝑠𝑡𝑟 𝐵𝐺 (non-canonical).

⚫ Global symmetry can be higher-form symmetries. 
-> Eilenberg–MacLane space 𝐾(𝐺, 𝑛) for n-form 𝐺 symmetry. 



Dijkgraaf-Witten theory [Dijkgraaf-Witten, 90]

⚫ Motivation: What is a suitable generalization of the Chern-Simons action 
of U(1) gauge theory to that of finite groups? 

⚫ Given d-cocycle 𝜔 ∈ 𝑍𝑑 𝐵𝐺, 𝑅/𝑍 , the topological action is given by 

𝑆𝑀
𝜔 𝐴 = න

𝑀

𝐴∗ 𝜔 , 𝐴:𝑀 → 𝐵𝐺 ,

where 𝐵𝐺 is the classifying space of the group 𝐺. 

-> Twisted 𝐺 gauge theory 

∫ 𝐷𝐴𝑊1 𝐴 𝑊2 𝐴 ⋯exp 2𝜋𝑖 𝑆𝑀
𝜔 𝐴 .

⚫ By design, the action 𝑆𝑀
𝜔 𝐴 is invariant under continuous deformation of 

𝐺-bundle 𝐴 → 𝑀.

⚫ The classification of DW 𝐺 gauge theory is given by the group 
cohomology

𝐻𝑑 𝐵𝐺, 𝑅/𝑍 ≅ 𝐻𝑑 𝐺, 𝑈 1 .



Relation to SPT phases

⚫ The DW topological action 

𝑆𝑀
𝜔 𝐴 = න

𝑀

𝐴∗ 𝜔 , 𝐴:𝑀 → 𝐵𝐺

gives topological partition functions classified by 𝐻𝑑 𝐺, 𝑈 1 .

𝑍𝑆𝑃𝑇 𝑀,𝐴 = ∫ ෑ

𝑚𝑎𝑡𝑡𝑒𝑟

𝐷 𝜙 𝑒−𝑆𝑀 𝜙,𝐴 = 𝑍 𝑀, 𝐴 × exp 2𝜋𝑖 𝑆𝑀
𝜔[𝐴]

⚫ Gauging 𝐺 symmetry gives the DW twisted gauge theory:

𝑍𝐷𝑊 𝑀 = ∫𝐷𝐴 𝑍𝑆𝑃𝑇 𝑀, 𝐴 .



Exs of group cohomology
(for example, see [Chen-Gu-Liu-Wen, arXiv:1106.4772])

𝑮 𝒅 = 𝟏 𝒅 = 𝟐 𝒅 = 𝟑 𝒅 = 𝟒

𝑍2
𝑇 0 𝑍2 0 𝑍2

𝑍𝑛 𝑍𝑛 0 𝑍𝑛 0

𝑍𝑛 × 𝑍𝑚 𝑍𝑛 × 𝑍𝑚 𝑍gcd(𝑛,𝑚) 𝑍𝑛 × 𝑍𝑚
× 𝑍gcd(𝑛,𝑚)

𝑍gcd 𝑛,𝑚
×2

𝑆𝑂(3) 0 𝑍2 𝑍 0

𝑈(1) 𝑍 0 𝑍 0

Inequivalent 
1d irreps

Inequivalent factor 
systems of projective 
reps

More involved 
anomalies



Ex: 1d bosonic SPT phases with 𝑍2 × 𝑍2 symmery

⚫ Group cohomology: 𝐻2 𝑍2 × 𝑍2, 𝑈 1 = 𝑍2.

⚫ Topological action: 

✓ Let 𝐴1, 𝐴2 be 𝑍2 × 1 - and (1 × 𝑍2)- fields, respectively. (𝑍2 = {0, , 1}).

✓ S𝑀
𝜔 𝐴1, 𝐴2 = ∫𝑀𝐴1 ∪ 𝐴2 ∈ {0,1}

⚫ Trivial SPT phase: 
𝑍𝑡𝑟𝑖𝑣 𝑀,𝐴1, 𝐴2 = 1.

⚫ Nontrivial SPT phase: 

𝑍𝑛𝑜𝑛𝑡𝑟𝑖𝑣 𝑀, 𝐴1, 𝐴2 = exp𝜋𝑖 න
𝑀

𝐴1 ∪ 𝐴2 .

⚫ From this explicit form of topological action, we find thaet the SPT phase 
can be detected by the torus partition function with background 
holonomies. 

𝑍𝑛𝑜𝑛𝑡𝑟𝑖𝑣 𝑇2, ර
𝑥

𝐴1 = 1,ර
𝑦

𝐴2 = 1 = 𝑇𝑟𝑡𝑤𝑖𝑠𝑒𝑑 𝑏𝑑𝑦 𝑐𝑜𝑛𝑑.𝑓𝑜𝑟 (𝑍2×1)
𝑂1×𝑍2 𝑐ℎ𝑎𝑟𝑔𝑒 = −1.



Cobordism classification

⚫ Group cohomology classification does not explain SPT phases described 
by topological actions defined only by the spacetime manifold itself. 

⚫ From the same reason, the group cohomology can not describe SPT 
phases of fermionic dof. 

⚫ The cobordism was proposed to classify all SPT phase. [Kapustin]

⚫ Precisely speaking, SPT phases are classified by the Anderson dual of the 
cobordism group 

(𝐷Ω)𝑠𝑡𝑟
𝑑 𝐵𝐺 ≅ 𝐹𝑟𝑒𝑒 Ω𝑑+1

𝑠𝑡𝑟 𝐵𝐺 × 𝑇𝑜𝑟 Ω𝑑
𝑠𝑡𝑟 𝐵𝐺 (non-canonical).



Cobordism
⚫ Cobordism invariance ≠ topological invariance

⚫ Two 𝑑-manifolds 𝑀,𝑁 are said to be cobordant iff there exists a 𝑑 + 1 -
manifold 𝑊 whose boundary is 𝑀 ⊔ −𝑁 .

⚫ This gives an equivalence relation.

⚫ Disjoint union yields the structure of Abelian group. 

-> Cobordism group  Ω𝑑
𝑠𝑡𝑟

✓ Unoriented manifold 

✓ Fermionic dof -> (variants of) spin structure

⚫ With background 𝐺-fields -> Ω𝑑
𝑠𝑡𝑟 𝐵𝐺 , cobordism of manifolds with 𝐺-fields

(from wikipedia)



Cobordism invariant theories

⚫ A homomorphism from the cobordism group to U(1) group is a 
cobordism invariant invertible theory. 

𝐻𝑜𝑚(Ω𝑑
𝑠𝑡𝑟 𝐵𝐺 , 𝑈(1))

(M,A) (N,A)
(W,C)



Deformation invariant invertible theories

⚫ SPT phases (∼ deformation invariant invertible theories) are said to be 
classified by the Anderson dual of the cobordism group. [Kapustin, Freed-
Hopkins]

(𝐷Ω)𝑠𝑡𝑟
𝑑 𝐵𝐺 ≅ 𝐹𝑟𝑒𝑒 Ω𝑑+1

𝑠𝑡𝑟 𝐵𝐺 × 𝑇𝑜𝑟 Ω𝑑
𝑠𝑡𝑟 𝐵𝐺

⚫ Torsion part: no continuous parameter

⚫ Free part : theta term -> continuous parameter 𝜃 -> not an SPT phase. 

⚫ However, the 𝑍 classification in d-dim. implies the existence of the Chern-
Simons action in (d-1)-dim. whose coefficient is in 𝑍.

-> SPT phases. 

-> describes thermal and quantum Hall effects.



From theta term to the Chern-Simons action

⚫ Ex: theta term of the 4d background U(1)-field 

1

4𝜋2
න
𝑁4

𝐹2 ∈ 𝑍 ⇒ exp 2𝜋𝑖 ×
1

4𝜋2
න
𝑀4

𝐹2 = 1.

⚫ Here, 𝑁4 is a closed 4-manifold. 

⚫ For a U(1)-bundle 𝐴 → 𝑀3 over a 3-manifold 𝑀3, set an extension of 𝐴 to 
a 4-manifold 𝑀4 with the boundary 𝜕𝑀4 = 𝑀3. The 3d Chern-Simons 
action is defined by 

exp
𝑖𝑘

2𝜋𝑖
න
𝑀3

"𝐴𝑑𝐴" ≔ exp 𝑘 × 2𝜋𝑖 ×
1

4𝜋2
න
𝑀4

𝐹2 , 𝑘 ∈ 𝑍

⚫ This is well-defined because the U(1) value does not depend on 

extensions, thanks to 
1

4𝜋2
∫𝑁4

𝐹2 ∈ 𝑍 .

𝑀3 𝑀4−𝑀′4



✓ Ex1: Ω4
𝑆𝑂 𝑝𝑡 = 𝑍. (bosonic systems with no symmetry)

• 4d topological action is the signature of manifold

• 𝑐𝑜𝑛𝑠𝑡 × ∫𝑀𝑅
2 ∈ 𝑍

• 3d SPT action is the gravitation CS form (Kitaev 𝐸8 state)

• exp 2𝜋𝑖 𝑘 × 𝑐𝑜𝑛𝑠𝑡 × ∫𝑀𝑇𝑟 𝜔𝑑𝜔 +
2

3
𝜔3 , 𝑘 ∈ 𝑍

✓ Ex2: Ω4
𝑆𝑂 𝐵𝑈(1) = 𝑍 × 𝑍. (bosonic systems with U(1) symmetry)

• Another 4d topological action is the theta term of U(1)-field.

•
1

4𝜋2
∫𝑀𝐹

2 ∈ 𝑍

• 3d SPT action is the U(1) CS form (bosonic quantum Hall effect)

• exp
𝑖𝑘

2𝜋
∫𝑀𝐴 𝑑𝐴 , 𝑘 ∈ 𝑍.

Kitaev 𝐸8
state

𝑐− = 8𝑘 chiral central charge

bosonic quantum 
Hall effect

𝜎𝑥𝑦=2k : quantum Hall conductivity

𝑐− = 0 : no thermal Hall effect



Short summary

⚫ SPT phases are gapped quantum phases with symmetry.

⚫ SPT phases are characterized by U(1)-valued partition functions. 

⚫ SPT phases are classified by the Anderson dual of the cobordism group. 



Contents
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⚫ Bulk-boundary correspondence

⚫ Model construction



Bulk-boundary correspondence

Bulk:

Nontrivial SPT phase

Boundary:  dof with a quantum anomaly



Bulk-boundary correspondence

⚫ The emergent low-energy dof is the signature of nontrivial SPT phases. 

⚫ The trivial SPT phase: tensor product state 

✓ On the open bdy condition, the system is still gapped as bulk. 

Ψ =⊗𝑥 ↑ 𝑥, ↑ 𝑥 ∈ ℋ𝑥

⚫ Nontrivial SPT phases: nontrivial short-range entanglement

✓ A “nontrivial” low-energy dof appears.

✓ Ex: AKLT state: 

Spin 1/2

Projection 
onto spin 1

Bell pair

Free 1/2 
spin dof

Free 1/2 
spin dof



Ex: decorated domain wall state 

⚫ 1d bosonic systems with 𝑍2 × 𝑍2 symmetry

⚫ Dof: two flavors of Ising spins 𝜎𝑗
𝜇
, 𝜏
𝑗+

1

2

𝜇
, 𝑗 ∈ 𝑍.

⚫ Hamiltonian (cluster Hamiltonian)

𝐻 = −

𝑗

𝐴
𝑗+

1
2
−

𝑗

𝐵𝑗: = −

𝑗∈𝑍

𝜎𝑗
𝑧𝜏
𝑗+

1
2

𝑥 𝜎𝑗+1
𝑧 −

𝑗∈𝑍

𝜏
𝑗−

1
2

𝑧 𝜎𝑗
𝑥𝜏
𝑗+

1
2

𝑧

⚫ 𝑍2 × 𝑍2 symmetry operators: 

𝑈𝜎 =ෑ

𝑗

𝜎𝑗
𝑥 , 𝑈𝜏 =ෑ

𝑗

𝜏
𝑗+

1
2

𝑥

⚫ All terms are commuted with each other. 

⚫ The ground state is the state with 𝐴
𝑗+

1

2

Ψ = 𝐵𝑗 Ψ = |Ψ⟩.

⚫ On the closed ring 𝑆1, all terms are independent, meaning that the 
ground state is unique. (cf. toric code)

⚫ Moreover, an excited state has at least the energy 𝐸 = 2. -> gapped



⚫ Let us write the ground state with the bases of 𝜎𝑗
𝑧 = {↑, ↓}, 𝜏

𝑗+
1

2

𝑥 = {+.−}.

⚫ 1st terms ->   𝜎𝑗
𝑧𝜎𝑗+1

𝑧 = 𝜏
𝑗+

1

2

𝑥 ->   decorated domain walls (DDWs)

⚫ 2nd terms fluctuate the decorated domain walls 

-> The ground state is the equal-weight superposition of the decorated 
domain walls. 

Ψ = 

𝐷𝐷𝑊𝑠

| 𝐷𝐷𝑊 ⟩



⚫ Hamiltonian on the open chain 

𝐻 = −

𝑗=1

𝑁−1

𝜎𝑗
𝑧𝜏
𝑗+

1
2

𝑥 𝜎𝑗+1
𝑧 −

𝑗=1

𝑁

𝜏
𝑗−

1
2

𝑧 𝜎𝑗
𝑥𝜏
𝑗+

1
2

𝑧

⚫ # (dof) = 2N+1, #(𝐴
𝑗+

1

2

, 𝐵𝑗) = 2N-1 

-> The ground state is 4-fold degenerate. 

Ψ 𝑎, 𝑏 = 

𝐷𝐷𝑊𝑠

𝜏1
2

𝑥 = 𝑎 − 𝐷𝐷𝑊 − 𝜏
𝑁+

1
2

𝑥 = 𝑏 , 𝑎, 𝑏 ∈ {+,−}.

⚫ This 4-fold degeneracy is not accidental, but protected by the 𝑍2 ×
𝑍2 symmetry!



⚫ To see this, let’s consider how 𝑍2 × 𝑍2 symmetry operators act on the 
ground states. 

𝑈𝜎 ቚ
Ψ
=ෑ

𝑗

𝜎𝑗
𝑥 ቚ

Ψ
=ෑ

𝑗

(𝜏
𝑗−

1
2

𝑧 𝜏
𝑗+

1
2

𝑧 ) = 𝜏1
2

𝑧 ⊗ 𝜏
𝑁+

1
2

𝑧 =:𝑈𝜎
𝐿 ⊗𝑈𝜎

𝑅,

𝑈𝜏 ቚ
Ψ
=ෑ

𝑗

𝜏𝑗
𝑥 ቚ

Ψ
= 𝜏1

2

𝑥 ෑ

𝑗

𝜎𝑗
𝑧𝜎𝑗+1

𝑧 𝜏
𝑁+

1
2

𝑥 = 𝜏1
2

𝑥𝜎1
𝑧 ⊗𝜎𝑁

𝑧𝜏
𝑁+

1
2

𝑥 =:𝑈𝜏
𝐿 ⊗𝑈𝜏

𝑅.

⚫ 𝑍2 × 𝑍2 symmetry operations split into ones for the left and right dof. 

⚫ The most important point is that on the one side of edges 𝑍2 × 𝑍2 acts on 

dof as a nontrivial projective representation that is classified by 𝐻2൫

൯

𝑍2 ×

𝑍2, 𝑈 1 = 𝑍2, which can be seen in the algebra  

𝑈𝜎
𝑅 𝑈𝜏

𝑅 = −𝑈𝜏
𝑅𝑈𝜎

𝑅.

⚫ There is no 1-dimensional rep of nontrivial projective representations, 
meaning that the one side of edge should be degenerate, unless the bulk 
gap is closed. 

⚫ This is an example of the quantum anomaly. 



Symmetry fractionalization

⚫ Assumption: the bulk dof obey a linear representation of 𝐺.

⚫ The classification of 1d bosonic SPT phases with global 𝐺 symmetry is the 
classification of how 𝐺 symmetry can act on the edge dof protectively. 
“symmetry fractionalization”

𝑈𝑔 ቚ
𝑙𝑜𝑤−𝑒𝑛𝑒𝑟𝑔𝑦

= 𝑈𝑔
𝐿 ⊗𝑈𝑔

𝑅

⚫ The total symmetry action 𝑈𝑔 |𝑙𝑜𝑤−𝑒𝑛𝑒𝑟𝑔𝑦 is linear representation of 𝐺. 

bulk

Right edgeLeft edge



Projective representations

Let 𝐺 be a group. A set of matrices 𝐷𝑔 𝑔∈𝐺
is called a projective 

representation iff

𝐷𝑔𝐷ℎ = 𝜔𝑔,ℎ 𝐷𝑔ℎ, 𝜔𝑔,ℎ ∈ 𝑈 1 .

The associativity (𝐷𝑔𝐷ℎ)𝐷𝑘 = 𝐷𝑔(𝐷ℎ𝐷𝑘) yields the 2-cocyle condition 

𝜔𝑔,ℎ𝜔𝑔ℎ,𝑘 = 𝜔𝑔,ℎ𝑘𝜔ℎ,𝑘 .

The redefinition 𝐷𝑔 ↦ 𝛼𝑔 𝐷𝑔, 𝛼𝑔 ∈ 𝑈 1 yields the equivalence relation

𝜔𝑔,ℎ ∼ 𝜔𝑔,ℎ 𝛼ℎ𝛼𝑔ℎ
−1𝛼𝑔

The factor system 𝜔𝑔,ℎ is classified by the group cohomology

𝐻2 𝐺, 𝑈 1 = 𝑍2(𝐺, 𝑈(1))/𝐵2(𝐺, 𝑈(1)).



Why quantum anomaly?

⚫ Let’s consider a (0+1)d system obeying a linear representation of 𝐺. 

⚫ The linearity of 𝐺-action is nothing but the gauge equivalence on the 
background 𝐺-field. 

𝑈𝑔𝑈ℎ = 𝑈𝑔ℎ

𝜏

ℎ

𝑔

∼

𝜏

𝑔ℎ



⚫ However, if 𝐺-action obeys an nontrivial projective representation, the 
partition function can not be gauge independent by a counter term (1-
coboundary). 

𝜏

ℎ

𝑔

𝜏

𝑔ℎ

𝑈𝑔𝑈ℎ = 𝜔𝑔,ℎ𝑈𝑔ℎ 𝑈𝑔ℎ≠



2d DW theory

⚫ Let’s consider the relationship between edge anomaly and the bulk DW 
action. 

⚫ A 𝐺-field 𝐴 over 𝑀 is a symmetry defect network on 𝑀.

⚫ When a matter field passes a defect line labeled by 𝑔 ∈ 𝐺, the matter field 
is charged by 𝑔. 

𝑔

ℎ

𝑔ℎ



⚫ The ansatz for U(1)-valued topological actions: 

𝑍 𝑀, 𝐴 = ෑ

𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

𝜔𝑔,ℎ , 𝜔𝑔,ℎ ∈ 𝑈 1 .

⚫ Topological invariance requires the 2-cocycle condition on 𝜔𝑔,ℎ.

⚫ We got the 2d DW topological action labeled by a 2-group cocycle 𝜔𝑔,ℎ.

𝑔

ℎ

𝑔ℎ

𝜔𝑔,ℎ

𝑔

ℎ

𝜔𝑔,ℎ

𝑘

𝜔𝑔ℎ,𝑘

𝑔

ℎ

𝜔ℎ,𝑘

𝑘

𝜔𝑔,ℎ𝑘

=



Anomaly cancellation

⚫ The total system composed of the bulk and the boundary is anomaly free. 

𝜏

ℎ

𝑔

𝑈𝑔
𝑅𝑈ℎ

𝑅 = 𝜔𝑔,ℎ𝑈𝑔ℎ
𝑅

𝜔𝑔,ℎ
−1

𝑔ℎ

Bulk

Right edge

∼

𝜏

𝑈𝑔ℎ
𝑅

𝑔ℎ

Bulk

Right edge

𝑔ℎ



(2+1)d example: the integer quantum Hall state

⚫ Bulk dof: Dirac fermions. 

⚫ Classification of SPT phases: 𝐷Ωspinc
3 pt ≅ 𝐹𝑟𝑒𝑒 Ω4

𝑠𝑝𝑖𝑛𝑐
𝑝𝑡 = 𝑍 × 𝑍

⚫ One of Z is generated by the integer quantum Hall state. 

⚫ Bulk model (free fermion):

𝐻𝑏𝑢𝑙𝑘 = −𝑖 𝜎𝑥𝜕𝑥 − 𝑖 𝜎𝑦 𝜕𝑦 + 𝑚 − 𝜖𝜕2 𝜎𝑧, 𝑚, 𝜖 > 0.

⚫ Boundary: chiral Dirac fermion

𝐻𝑏𝑑𝑦 = 

𝑘∈𝑍+
𝜃
2𝜋

𝑣𝑘 𝜓𝑘
†𝜓𝑘

⚫ Anomaly under the global gauge transformation 𝜃 ↦ 𝜃 + 2𝜋.

⚫ The bulk action is the CS 3-form exp
𝑖

4𝜋
∫𝑀𝐴𝑑𝐴, which is gauge dependent

on open manifolds.

⚫ The anomaly on the boundary is cancelled by the bulk CS action.

𝑘

𝐸 = 𝑣𝑘



Bulk-boundary correspondence

⚫ On the boundaries of nontrivial SPT phases, there appears low-energy dof. 

⚫ As a standalone system, the boundary dof has an anomaly. 

⚫ The anomaly on the boundary is cancelled by the bulk. 

Bulk:

Nontrivial SPT phase

Boundary:  dof with a quantum anomaly



Contents
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⚫ Model construction



Model construction [Chen-Gu-Liu-Wen]

⚫ So far, we discussed a lot about DW topological action, which is the 
response theory obtained by integrating out the matter dof. 

⚫ Is there a canonical way to construct SPT phases? 

⚫ For SPT phases described by the group cohomology, yes. [Chen-Gu-Liu-
Wen]

⚫ Mathematically, we use the dual expression of the group cohomology by 
the “homogenous cochain”. 



A heuristic derivation

⚫ For concreteness, we consider (2+1)d SPT phases. (The derivation is 
parallel for general dimensions.)

⚫ For a given 3-cocycle 𝜔 ℎ01, ℎ12, ℎ23 ∈ 𝑍3(𝐺, 𝑈(1)), the DW action is given 
by 

𝑍𝐷𝑊
𝜔 𝑀, {ℎ𝑖𝑗} =ෑ

Δ3

𝜔 ℎ01, ℎ12, ℎ23
𝜎(Δ3),

where Δ3 runs all 3-simplexes, and 𝜎 Δ3 ∈ {±1} is the sign of the simplex Δ3. 

0

1

2

3

ℎ01

ℎ12

ℎ23

𝜔(ℎ01, ℎ12, ℎ23)

0

1

2

3

ℎ01

ℎ12

ℎ23

𝜔 ℎ01, ℎ12, ℎ23
−1



⚫ Take the gauge transformation 𝑔𝑣: {𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠} → 𝐺, we have 

𝑍𝐷𝑊
𝜔 𝑀, {ℎ𝑖𝑗} =ෑ

Δ3

𝜔 𝑔0
−1ℎ01𝑔1, 𝑔1

−1ℎ12𝑔2, 𝑔2
−1ℎ23𝑔3

𝜎 Δ3 .

⚫ Since this does not depend on the gauge transformation, summing up the 
all gauge transformations, we get 

𝑍𝐷𝑊
𝜔 𝑀, {ℎ𝑖𝑗} =

1

|𝐺|𝑁𝑣


{𝑔𝑣}

ෑ

Δ3

𝜔 𝑔0
−1ℎ01𝑔1, 𝑔1

−1ℎ12𝑔2, 𝑔2
−1ℎ23𝑔3

𝜎 Δ3 ,

Where 𝑁𝑣 is the total number of vertices. 

0

1

2

3

ℎ01

ℎ12

ℎ23

𝑔0
𝑔1

𝑔2

𝑔3



𝑍𝐷𝑊
𝜔 𝑀, {ℎ𝑖𝑗} =

1

|𝐺|𝑁𝑣


{𝑔𝑣}

ෑ

Δ3

𝜔 𝑔0
−1ℎ01𝑔1, 𝑔1

−1ℎ12𝑔2, 𝑔2
−1ℎ23𝑔3

𝜎 Δ3 ,

⚫ The field 𝑔𝑣: {vertices} → 𝐺 can be regarded as a matter field living on the 
vertices. 

⚫ In particular, without a background 𝐺 field, we have the partition function 
of the matter field 

𝑍𝑆𝑃𝑇
𝜔 𝑀 =

1

|𝐺|𝑁𝑣


{𝑔𝑣}

ෑ

Δ3

𝜔 𝑔0
−1𝑔1, 𝑔1

−1𝑔2, 𝑔2
−1𝑔3

𝜎 Δ3 .

⚫ 𝜈 𝑔0, 𝑔1, 𝑔2, 𝑔3 ≔ 𝜔 𝑔0
−1𝑔1, 𝑔1

−1𝑔2, 𝑔2
−1𝑔3 is called the homogenious cochain, 

because it holds that 

𝜈 𝑔𝑔0, 𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3 = 𝜈 𝑔0, 𝑔1, 𝑔2, 𝑔3 .

⚫ The 3-cocycle condition of 𝜔 becomes 

𝜈 𝑔1, 𝑔2, 𝑔3, 𝑔4 𝜈 𝑔0, 𝑔2, 𝑔3, 𝑔4
−1 𝜈 𝑔0, 𝑔1, 𝑔3, 𝑔4 𝜈 𝑔0, 𝑔1, 𝑔2, 𝑔4

−1 𝜈 𝑔0, 𝑔1, 𝑔2, 𝑔3 = 1.



⚫ In sum, for a given homogenous 3-cocycle 𝜈 𝑔0, 𝑔1, 𝑔2, 𝑔3 ∈ 𝑍3(𝐺, 𝑈(1)), the 
Lagrangian of the matter theory is given by 

𝑒𝑖 ∫Δ3 ℒ = 𝜈 𝑔0, 𝑔1, 𝑔2, 𝑔3
𝜎 Δ3 ,

and the partition function is 

𝑍𝑆𝑃𝑇
𝜔 𝑀 =

1

|𝐺|𝑁𝑣


{𝑔𝑣}

ෑ

Δ3

𝜈 𝑔0, 𝑔1, 𝑔2, 𝑔3
𝜎 Δ3 .

⚫ This is the generalization of the theta term of the NLσ model to finite 
groups. 



⚫ The wave function Ψ𝜈 {𝑔𝑣}𝑣∈𝜕𝑀 over the 2-manifold 𝜕𝑀 is given by the 
path-integral of internal dof of 𝑀

Ψ𝜈 {𝑔𝑣}𝑣∈𝜕𝑀 =
1

𝐺 𝑁𝑣
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 

{𝑔𝑣},𝑣∈𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

𝜈 𝑔0, 𝑔1, 𝑔2, 𝑔3
𝜎 Δ3 ∈ ℋ𝜕𝑀.

⚫ In particular, the ground state wave function over the 2-sphere is given by 

Ψ𝜈 {𝑔𝑣}𝑣∈𝑆2 =
1

𝐺


𝑔∗

ෑ

Δ3

𝜈 𝑔∗, 𝑔1, 𝑔2, 𝑔3
𝜎 Δ3 .

⚫ Using the 3-cocyle condition, we arrive at the simple expression 

Ψ𝜈 {𝑔𝑣}𝑣∈𝑆2 =ෑ

Δ2

𝜈 1, 𝑔1, 𝑔2, 𝑔3
𝜎 Δ2 ,

where Δ2 runs over the 2-simpleces on the 2-sphere. 

*



⚫ The ground state is given by 

Ψ𝜈 =
1

𝐺 𝑁𝑣


{𝑔𝑣}

ෑ

Δ2

𝜈 1, 𝑔1, 𝑔2, 𝑔3
𝜎 Δ2 |{𝑔𝑣}⟩ .

⚫ Here, { 𝑔𝑣 }𝑔∈𝐺 is the basis of local Hilbert space at the vertex 𝑣 equipped 
with the 𝐺-action ො𝑔 ℎ = 𝑔ℎ .

⚫ The exactly solvable commuting projector Hamiltonian is given as follows. 

⚫ We first introduce the trivial Hamiltonian 𝐻0 as a “disordered Hamiltonian“ 

𝐻0 = −

𝑣

𝑃𝑣, 𝑃𝑣 = ⋯ 𝐼𝑑 ⊗ |𝜙𝑣⟩⟨𝜙𝑣| ⊗ 𝐼𝑑⋯ ,

𝜙𝑣 =
1

𝐺


𝑔∈𝐺

|𝑔𝑣⟩ .

⚫ The ground state of 𝐻0 is the trivial tensor product state 

Ψ0 =⊗𝑣 𝜙𝑣 .



⚫ The SPT Hamiltonian 𝐻𝜈 is defined so that the ground state of 𝐻𝜈 is Ψ𝜈 .

⚫ Using the nonlocal unitary transformation 

𝑈𝜈 ≔ 

{𝑔𝑣}

ෑ

Δ2

𝜈 1, 𝑔1, 𝑔2, 𝑔3
𝜎 Δ2 {𝑔𝑣} ⟨{𝑔𝑣}|,

we have the SPT Hamiltonian 

𝐻𝜈 = 𝑈𝜈 𝐻0 𝑈𝜈
−1 = −

𝑣

𝑈𝜈 𝑃𝑣 𝑈𝜈
−1.

⚫ It is evident that this Hamiltonian is short-ranged and exactly solvable. 

⚫ See [Chen-Gu-Liu-Wen] for various examples. 


