An overview of symmetry protected topological
phases

Ken Shiozakli YITP

5/24/2019

@Nagoya Univ.



Contents
® Partition functions and classification of SPT
phases
® Bulk-boundary correspondence

® Model construction



Topological equivalence
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“Topological” equivalence: If there exists a pass connecting two phases A
and B without a phase transition, A and B are considered to be in a same
phase.

Ice # water
Water = water vapor

SSB of translation symmetry between {ice} and {water, water vapor}



Topological phases of matter

® Logically, there may exists phase distinctions without SSB in a certain
class of phases of matter.

® In topological phases, we consider the following setup:
v’ Zero temperature

v' Gapped phases (there exists a finite energy gap in between the
ground and the first excited state.)

v With symmetry (Z2 Ising, U(1) particle conservation, time-reversal,



® Let's imagine a phase diagram for a given dof.

Top. phase A Top. phase B Top. phase C
b

Gapless phases or SSB
Parameters of

Hamiltonian

® A topological phase := an equivalence class under the equivalence
relation.



Symmetry Protected Topological phases

® In general, there exists a ground state degeneracy that depends on the
global topology of the closed space manifold.

® SPT phases := topological phases that have a unique ground state for any
closed space manifolds.

® Long-Range Entangled (LRE) topological phases = topological phases that
have a ground state degeneracy for a closed space manifold.
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® Exs of SPT phases: Haldane chain, topological insulators/superconductors,

® Exs of LRE topological phases: Toric code, fluctional quantum Hall effect,



Classification of SPT phases

How to classify SPT phases?

Recall that in QFTs,

A theory = a set of correlation functions

In SPT phases, all information should be encoded in the ground state.

Excited states do not affect which topological phases a given gapped
phases belongs to.

No excited states
-> No scale
-> Topological quantum field theory (TQFT)

Hilbert space is one-dimensional
-> Nno operators
-> Only partition functions are correlation functions.

A set of correlation functions = a set of partition functions.



The classification of SPT phases
= the classification of U(1)-valued partition functions without a
continues parameter [Chen-Gu-Liu-Wen, Kapustin, Freed-Hopkins,

Yonekura, -]
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Spacetime manifolds and external fields

® The partition function over a closed space manifold X and time circle St is
always unity:

Z(X x 8Y) =Tr(1) = (GS|GS) = 1.
® Therefore, to distinguish different SPT phases, we should employ generic

closed spacetime manifolds.

® We also have a external field A (a G-bundle) introduced by (pre)gauging
global G symmetry.



1) generic spacetime manifolds

® We would like to define a theory over an arbitrary spacetime manifold.
® Recall that a manifold M is a set of patches and patch transformations.
® The low-energy dof would be described by a topological field theory.

® There, spacetime rotation symmetry is effectively emergent.

® The spacetime rotation symmetry can be used to define the patch
transformation for the field.
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® We get partition functions over closed spacetime manifolds.

Z(M)eU(1)



2) external fields

® We have global ¢ symmetry.

® The field ¢(x) is equipped with a G-action, i.e. ¢(x) is a representation of

| o(x) — go(x), gea.

® This G-action can be used to define the background G-field.
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® We get partition functions over closed spacetime manifolds with G-field

(G-bundles, says).
Z(M,A)eU(1)




3 ) Non-orientable spacetime manifolds

® If an orientation-reversing symmetry (e.g. time-reversal, reflection) is
present, one can define partition functions over non-orientable manifolds.

~

Cb(’f', _T) — Tqb(’f‘, T)

® We get partition functions over non-orientable manifold with G-field, if an
orientation-reversing symmetry is present.

Z(M,A)eU(1)



® In sum,

Z(M, A) Dge="m(&A) ¢ (1)

matter ﬁelds

Background G-field
Closed spacetime manifold

® A Comment: Manifolds for fermions are more involved. The fermion field
is rotated by the Spin(d) group, a double cover of SO(d), meaning that
the spacetime manifold has (variants of) spin structure.



Some terminologies

® Gapped phases
~ Invertible phases

~Theories with U(1)-valued partition functions

® SPT phases (in my definition)
~ deformation invariant invertible phases

~ Theories with U(1)-valued partition functions without a
continuous parameter

® For example, the 4d topological theta term of the background U(1)-field
6
4—7_[2 MF ANF
has continuous parameter 6 € [0,2rr]. This is not the partition function of SPT
phases, but the partition functions of invertible phases.



Ex: Haldane chain w/ TRS

® (1+1)d bosonic SPT phases w/ TRS
® (Classification : Z,
® Model: 1d antiferromagnetic spin chain with S=1 [Haldane].

H=> 8, Set1.

® An exactly solvable model: AKLT chain [Affleck-Lieb-Kennedy-Tasaki]

1
H = E Sy Sa:—|—1 + § E (Sa: . Sa:—|—1)2-
T T Projector onto spin 1

[P W VY WG W
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Spin 1/2
® The topological action is the 2nd Stiefel-Whitney class of tangent

bundle of spacetime manifold.
eiStOp[M] — o0 " ’LUQ(TM)’ 0 c {0,71'}.




® Semiclassical description of the AF spin chain:
Fluctuation field 7i(x) € S? from the AF ground state
Se ~ (=1)* ()
® TR-symmetry:

’T‘§x T-1= —§x > T.n(x,7) = —-n(x,—1)

® Action O(3) NLo model with topological theta term [Haldane]:

1
S[i] = 29 [ drdx { (0,1)? + (0,1)?} + 2miS X Q,
1 — — —
Qzﬁfdrdxn-arnxaxn € Z,
where, S is the spin quantum number.
® For simplicity, let’s consider the easy plane limit by setting
n = (cos ¢, sin ¢, 0)

® The meron configuration becomes a single vortex.



2d abelian sigma model

® A toy model of Haldane chain phase protected by TR symmetry. (For
example, see [Takayoshi-Pujol-Tanaka, arXiv:1609.01316])

® Target space is St.
“the easy plane limit of semiclassical description of the AF chain”

¢: M —R/21Z = S!

— O

Spacetime M

® With vortex events.
(The field ¢ can be singular.)




Theta term

Z[M| = /ngexp {— Skin|@] + 10(# of vortices) |, 6 € |0, 27]

T

Unimportant for topological phases

v Ex: The ground state functional on St (Disc state):

GS[p()] = e o110

10 (winding number)

(&
v Ex: Partition function over a closed oriented manifold:

ZIM] = 1.



TR transformation
TST '=-8§ = oz, 7) = oz, —T)+7

TR symmetry = the theory is invariant under the relabeling of path-
integral variables by

¢(x,7) = ¢(x, —7) + .
In the presence of TR symmetry, 6 is quantized.

6 €{0,m}

¢ = m is known to be a nontrivial SPT phase.

How to detect 67



® “Gauging” the TR symmetry = to define the theory on unoriented
manifolds by the use of TR transformation.

~

o(x,—7)=¢(x,7)+ 7

® At orientation reversing patches, the filed is shifted by =.
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® A cross-cap.




® A cross-cap.




® A cross-cap.

® Around a cross cap, the vortex number should be odd.

, T



The partition function over the real projective plane:

1 (6 =0,trivial),

21 _ 0 __
ZIRP] = _{ —1 (6 = m,Haldane).

Sphere with a cross-cap
= Real projective plane
Cf. The partition function over the Klein bottle:

o 2i0
ZIKB| =™ =1 Klein bottle

The partition function over the real projective plane RP? is the SPT
invariant of Haldane chain phase.

Consistent with the classification of topological action

eiStop[M] _ 6759 " 'wg(TM)’ = {O,ﬂ'}.



Classification of SPT phases

Z(M,A) = e2™Sor(MA) 7 (71)

|II

® s the classification of U(1)-valued “topological” partition functions.

® Ex: Dijkgraaf-Witten topological actions classified by the group
cohomology

HY(BG,U(1)) = HY(G,U(1)).
-> bosonic nonchiral SPT phases.

® In the end, SPT phases are known to be classified by the Anderson dual
of the cobordism group
(D)%, (BG) = Free Q5fI,(BG) x Tor Q5" (BG) (non-canonical).

® Global symmetry can be higher-form symmetries.
-> Eilenberg—MacLane space K(G,n) for n-form ¢ symmetry.



Dijkgraaf-Witten theory [bijkgraaf-witten, 90]

® Motivation: What is a suitable generalization of the Chern-Simons action
of U(1) gauge theory to that of finite groups?
® Given d-cocycle w € Z4(BG,R/Z), the topological action is given by
S@[A] = jA*(a)), A:M - BG,

M
where BG is the classifying space of the group G.

-> Twisted G gauge theory
[ DA W, (AW, (A) -+ exp 2mi S© [A].

® By design, the action Sy [A] is invariant under continuous deformation of
G-bundle 4 - M.

® The classification of DW G gauge theory is given by the group
cohomology

HY(BG,R/Z) = H(G,U(1)).



Relation to SPT phases

® The DW topological action

S@[A] = jA*(a)), A:M - BG
M

gives topological partition functions classified by H%(G, U(1)).

ZprM,4) = [ | | D gesuloAl = 1z, 4)) x exp 2mi 53 14]

matter

® Gauging ¢ symmetry gives the DW twisted gauge theory:

ZDW(M) = fDA ZSPT(Mr A).



Exs of group cohomology

(for example, see [Chen-Gu-Liu-Wen, arXiv:1106.4772])

G| a=1 | d=2 | d=3 | d=4 _
A 0 Z5 0 Z,

Zy Zn 0 Zn 0
ZTl X Zm Zn X Zm chd(n,m) ZTL X Zm chzd(n,m)
X chd(n,m)
S50(3) 0 Z Z 0
U(1) Z 0 z 0
Inequivalent
1d irreps

Inequivalent factor
systems of projective
reps

More involved
anomalies



Ex: 1d bosonic SPT phases with Z, x Z, symmery

® Group cohomology: H2(Z, X Z,,U(1)) = Z,.

® Topological action:
v Let 44,4, be (Z, x 1)- and (1 x Z,)- fields, respectively. (Z, = {0,,1}).
v Si(A1,A) = [, A1 UA; € {01}

® Trivial SPT phase:
Ztriv(M;ApAz) = 1.

® Nontrivial SPT phase:

Znomtrio(M, Ay, Ay) = exp i j AU 4.
M

® From this explicit form of topological action, we find thaet the SPT phase
can be detected by the torus partition function with background
holonomies.

Znontriv <T2;fA1 = 1:%“12 = 1) = TTtwised bdy cond.for (Z,x1) [01><22 charge] = —L
X y



Cobordism classification

® Group cohomology classification does not explain SPT phases described
by topological actions defined only by the spacetime manifold itself.

® From the same reason, the group cohomology can not describe SPT
phases of fermionic dof.

® The cobordism was proposed to classify all SPT phase. [Kapustin]

® Precisely speaking, SPT phases are classified by the Anderson dual of the
cobordism group

(D). (BG) = Free QI (BG) x Tor Q5" (BG) (non-canonical).



Cobordism

® Cobordism invariance # topological invariance

® Two d-manifolds M, N are said to be cobordant iff there exists a (d + 1)-
manifold W whose boundary is M U (—N).

(from wikipedia)

® This gives an equivalence relation.

® Disjoint union yields the structure of Abelian group.
[M] + [N] :=[M U N]

-> Cobordism group Q3"
v' Unoriented manifold
v' Fermionic dof -> (variants of) spin structure

® With background G-fields -> Q5" (BG), cobordism of manifolds with G-fields



Cobordism invariant theories

(M,A)~ (N,B) = Z(M,A)=Z(N,B).

/{@Cﬁ\
(M,A)

© (NA)

® A homomorphism from the cobordism group to U(1) group is a
cobordism invariant invertible theory.

Hom(Q3" (BG),U(1))



Deformation invariant invertible theories

SPT phases (~ deformation invariant invertible theories) are said to be
classified by the Anderson dual of the cobordism group. [Kapustin, Freed-
Hopkins]

(D)%, (BG) = Free Q31 (BG) X Tor Q5" (BG)
Torsion part: no continuous parameter

Free part : theta term -> continuous parameter 6 -> not an SPT phase.

However, the Z classification in d-dim. implies the existence of the Chern-
Simons action in (d-1)-dim. whose coefficient is in Z.

-> SPT phases.

-> describes thermal and quantum Hall effects.



From theta term to the Chern-Simons action

® Ex: theta term of the 4d background U(1)-field

1 1
— | F?€Z =exp 27Ti><4— F?

— 1
2 2 '
m* )y, T Iy,

® Here, N, is a closed 4-manifold.

® For a U(1)-bundle A - M; over a 3-manifold M;, set an extension of A to
a 4-manifold M, with the boundary oM, = M;. The 3d Chern-Simons
action is defined by
ik 1
exp— | "AdA" = exp Ik X 2mi X — | F?

, k e€Z
21T1 M, 412 M,

® This is well-defined because the U(1) value does not depend on

extensions, thanks to ifN4F2 €.

4712



v Ex1: 03°(pt) = Z. (bosonic systems with no symmetry)
« 4d topological action is the signature of manifold
* (const)x [ R*€Z
« 3d SPT action is the gravitation CS form (Kitaev Eg state)

Kitaev Eg
» exp2mi k X (const) x [ Tr la)da) +-w ] kez / state /

= 8k chlraI central charge
v Ex2: 03°(BU(1)) = Z x Z. (bosonic systems with U(l) symmetry)

« Another 4d topological action is the theta term of U(1)-field.
- — [ FleZ
4_7t2fM €

« 3d SPT action is the U(1) CS form (bosonic quantum Hall effect)

—

ik bosonic quantum
e exp— |, AdA, k € Z.
Pon fM Hall effect
ﬁ

0xy =2k : quantum Hall conductivity
c_ = 0 : no thermal Hall effect




Short summary

® SPT phases are gapped quantum phases with symmetry.
® SPT phases are characterized by U(1)-valued partition functions.

® SPT phases are classified by the Anderson dual of the cobordism group.
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Bulk-boundary correspondence

Bulk:

Nontrivial SPT phase

Boundary: dof with a quantum anomaly



Bulk-boundary correspondence

® The emergent low-energy dof is the signature of nontrivial SPT phases.
® The trivial SPT phase: tensor product state

v" On the open bdy condition, the system is still gapped as bulk.

|LIJ> =®x |T>x» |T)x € H,

trrrtrtettttetttett

® Nontrivial SPT phases: nontrivial short-range entanglement
v A “nontrivial” low-energy dof appears.

v Ex: AKLT state: Projection
onto spin 1

Freelgz> U U T u u Free 1/2

spin dof Bell pair Spin 1/2 spin dof




Ex: decorated domain wall state

1d bosonic systems with Z, x Z, symmetry

Dof: two flavors of Ising spins 0 r 1,] € Z.

Hamiltonian (cluster Hamiltonian)

H=—EA_1 EB——EarlajH ET-lo-JTl
- ]2 2 ]__ ]+
J

JEZ JEZ

Z, X Z, symmetry operators:

U =‘ ‘a-x U :‘ ‘Tx
o j o T j+%
' J

]
All terms are commuted with each other.

The ground state is the state with Aj+1|‘11) = B;|¥) = |¥).
2

On the closed ring S, all terms are independent, meaning that the
ground state is unique. (cf. toric code)

Moreover, an excited state has at least the energy E = 2. -> gapped



® Let us write the ground state with the bases of o7 = {T1,1}, r]?:l ={+.-}.

2

® lstterms -> ofcf, = r]?‘+1 -> decorated domain walls (DDWS5s)
2

{‘ +—+ —+++—+++++ >}

Mt tEeivitteeee

® 2nd terms fluctuate the decorated domain walls

-> The ground state is the equal-weight superposition of the decorated
domain walls.

W)= ) |DDW)

DDWs



® Hamiltonian on the open chain

N-—1 N
H=- ) 0/t 10/ ~ zfz_zgffiz
= ) = J=2 © T3
T1 O T3 T 1 O T 1
5 71 73 ° N—35 YN IN+3

® # (dof) = 2N+1, #(Aj+1,Bj) = 2N-1

-> The ground state is 4-fold degenerate.

W(a, b)) = Z (75 = @) = oW — (7 s = b)> ab € {+ -}

DDWs '~ 2

® This 4-fold degeneracy is not accidental, but protected by the Z, x
Z, symmetry!



To see this, let's consider how Z, x Z, symmetry operators act on the
ground states.

— X —_ Z Z 4
Ua| —‘ ‘0j| —‘ ‘(T._lT.+1)—T1®T L1 Uz ® U,
v T A 2 *2
X X X __Z Z.X L R
= T-| oo T10 onT =:U U:.
W Hftp %(‘ ‘( ]+1>N+; ;1® NN% : ®Ur

J

Z, X Z, symmetry operations split into ones for the left and right dof.

The most important point is that on the one side of edges Z, x Z, acts on
dof as a nontrivial projective representation that is classified by H2(Z, x
Z,,U(1)) = Z,, which can be seen in the algebra

Uy Uf = —UFUS.
There is no 1-dimensional rep of nontrivial projective representations,
meaning that the one side of edge should be degenerate, unless the bulk

gap is closed.

This is an example of the quantum anomaly.



Symmetry fractionalization

® Assumption: the bulk dof obey a linear representation of G.

® The classification of 1d bosonic SPT phases with global G symmetry is the
classification of how ¢ symmetry can act on the edge dof protectively.
“symmetry fractionalization”

bulk

Left edge Right edge

Ug =U; ® Uy

low—energy

® The total symmetry action Uy |5y —energy IS linear representation of G.



Projective representations

Let G be a group. A set of matrices {Dg}gEG is called a projective

representation iff
DgDh — O)g,h Dgh' (Ug,h (S U(l)

The associativity (D,Dy)Dy = D,(DyDy) Yields the 2-cocyle condition
Wg hWghk = Wghk Whk-

The redefinition D, - a, Dg4, a, € U(1) yields the equivalence relation

-1

The factor system w, j, is classified by the group cohomology

H?(G,U(1)) = Z%(G,U(1))/B2(G, U(1)).



Why quantum anomaly?

® |et's consider a (0+1)d system obeying a linear representation of G.

® The linearity of G-action is nothing but the gauge equivalence on the
background ¢-field.

UgUh - Ugh




® However, if G-action obeys an nontrivial projective representation, the
partition function can not be gauge independent by a counter term (1-
coboundary).

UgUh = a)g,hUgh * Ugh



2d DW theory

® |et's consider the relationship between edge anomaly and the bulk DW
action.

® A G-field A over M is a symmetry defect network on M.

® When a matter field passes a defect line labeled by g € G, the matter field
is charged by g.

A



® The ansatz for U(1)-valued topological actions:

Z(M,A) = 1_[ Wgn,  Wgn € U, , gh

junctions Wg,h

® Topological invariance requires the 2-cocycle condition on wg .

Wy, hk

® We got the 2d DW topological action labeled by a 2-group cocycle wg .



Anomaly cancellation

® The total system composed of the bulk and the boundary is anomaly free.

Right edge Right edge
Bulk AT Bulk AT
gh Wg,h gh
h




(2+1)d example: the integer quantum Hall state

® Bulk dof: Dirac fermions.

® Classification of SPT phases: DQ3 . (pt) = Free Qipinc(pt) =7xZ

spin

® One of Z is generated by the integer quantum Hall state.

® Bulk model (free fermion): E = vk
Hypyix = =i 040, —i0, 0, +(m—€d0*)g,, m,e>0.
® Boundary: chiral Dirac fermion
Hpay = z vk Wiy k
kEZ+i

2m

® Anomaly under the global gauge transformation 6 - 6 + 2.

® The bulk action is the CS 3-form expﬁfMAdA, which is gauge dependent
on open manifolds.

® The anomaly on the boundary is cancelled by the bulk CS action.



Bulk-boundary correspondence

® On the boundaries of nontrivial SPT phases, there appears low-energy dof.
® As a standalone system, the boundary dof has an anomaly.

® The anomaly on the boundary is cancelled by the bulk.

Bulk:

Nontrivial SPT phase

Boundary: dof with a quantum anomaly
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Model construction [chen-Gu-Liu-wen]

So far, we discussed a lot about DW topological action, which is the
response theory obtained by integrating out the matter dof.

Is there a canonical way to construct SPT phases?

For SPT phases described by the group cohomology, yes. [Chen-Gu-Liu-
Wen]

Mathematically, we use the dual expression of the group cohomology by
the “homogenous cochain”



A heuristic derivation

® For concreteness, we consider (2+1)d SPT phases. (The derivation is
parallel for general dimensions.)

® For a given 3-cocycle w(hyy, hyy, hy3) € Z3(G,U(1)), the DW action is given
by
Ziw (M, {hij}) = Hw(h(,l,hlz,hzg)U(AS),
A3

where A3 runs all 3-simplexes, and ¢(A3%) € {+1} is the sign of the simplex A3.

3
has




® Take the gauge transformation g,:{vertices} - G, we have
Ziw(M, {hy;}) = 1_[ ®(go ho191, 91 11292, 97 *h2393)° ).
A3

® Since this does not depend on the gauge transformation, summing up the
all gauge transformations, we get

1 — — — 3
ZB)W(M' {hij}) - |G| Ny z ‘ ‘ w(go  ho191, 91 " h1292, 92 1h2393)0(A ),
{gv} A3

Where N, is the total number of vertices.

3
93 hy3

Yo



1 — — - 3
ZB)W(M' {hij}) - G|y z J w(go ho191, 91 h1292, 92 1}12393)0(A ),
{gv} A%

® The field g,:{vertices} » G can be regarded as a matter field living on the
vertices.

® In particular, without a background ¢ field, we have the partition function
of the matter field

1 —_ — — 3
Zspr(M) = 1o, z 1_[ w(g5" 91, 97" 92,971 93)° 4.
{gv} A3

® v(90,91,92 93) = w(90 91,9792 95 g3) is called the homogenious cochain,
because it holds that

v(990,991,992,993) = V(9o 91, 92, 93)-

® The 3-cocycle condition of w becomes

v(91, 92, 93, 94)V(Go, 92, 93, 94) - v( 9o, 91, 93, 94) V(Go, 91, 92, 94) " v(9o, 91, 92, 93) = 1.



® In sum, for a given homogenous 3-cocycle v(gq, 91,92, 93) € Z3(G,U(1)), the
Lagrangian of the matter theory is given by

e It =v(go, g1, 95, 92)7),

and the partition function is

1 3
ZSQ;’T(M) = |G|NV z HV(QOJLglnglgB)O-(A )

{gv} A3

® This is the generalization of the theta term of the NLo model to finite
groups.



® The wave function ¥, ({g,},cam) Over the 2-manifold oM is given by the
path-integral of internal dof of M

1 3
W, {gv}veom) = IGlNintemal z V(90;91;gz,93)0(A ) € Hoym-

{gy}veinternal

® In particular, the ground state wave function over the 2-sphere is given by

1 3
B (ohes) =157 ). | 7000 91.92,907),

g« A3
® Using the 3-cocyle condition, we arrive at the simple expression
va({gv}vesz) — V(Lgl:gz:gB)a(Az) )

A 4
AZ

where A? runs over the 2-simpleces on the 2-sphere.

t e




® The ground state is given by

w,) = v(1, 91,92 93)° A7) |{gu}).

{g} A?

® Here, {1g,) }4¢c IS the basis of local Hilbert space at the vertex v equipped
with the G-action g |h) = |gh).

® The exactly solvable commuting projector Hamiltonian is given as follows.

1

® We first introduce the trivial Hamiltonian H, as a “disordered Hamiltonian

=P B= 1d® (Pl @ Id -,

0) = Z 190}

® The ground state of H, is the trivial tensor product state

W) = Qy ).



® The SPT Hamiltonian H,, is defined so that the ground state of H,, is |¥,).

® Using the nonlocal unitary transformation

Uy = z nv(l'gl'gZ'QB)a(Az) 1{g,}) ({gv}],

{gv} AZ?

we have the SPT Hamiltonian

H,=U,Hy U, = —z U, P, Ut

v

® [t is evident that this Hamiltonian is short-ranged and exactly solvable.

® See [Chen-Gu-Liu-Wen] for various examples.



