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Take-home message

® Transpose ~ time-reversal (TR) transformation for the
imaginary time path-integral.

(O ... 0,0)7" = O OF -..OF

® The partial transpose enable us to simulate the partition
function over non-orientable manifolds in the operator

formalism.
S

Real projective plane Klein bottle

® Developed the partial transpose for fermions in the operator
formalism .
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Motivation

How to detect symmetry protected topological (SPT) phases (~
gapped phases without ground state degeneracy)
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The classification of symmety-protected topoldgical phases
~ the classification of U(1)-valued topological paxtition functions
[ Kapustin | Freed-Hopkins, ---]
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Motivation

In SPT phases with time-reversal (TR) symmetry, the spacetime
manifold M to detect nontrivial SPT phases is sometimes non-
orientable.

v Ex: Haldane chain phase, topological insulator/superconductor, -

The partition function over a suitable non-orientable manifold is the
“order parameter” of SPT phases.

Ex: (1+1)d bosonic SPT phases with TR sym.
v “Order parameter” = real projective plane RP2
ezStOp(M) — iy fM wg(TM)’ (V _ O, 1)
= €iStOp(RP2) _— (—1)V

v'If the partition function over RP? is negative, the theory is in
nontrivial SPT phases.



Motivation

Non-orientable manifold???

In cond-mat, we have only

v Hamiltonian H or the ground state |y), and
v' TR operator T.

How to make non-orientable manifold from a set of a ground state
wave function and a TR operator?
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An answer is to use the partial transpose.



TRS < Transpose



TRS < Transpose

Given a TR operator, how to get the transpose?
Let’s consider the expectation value of the TR operator.

WIT 1)

This is ill-defined, because T is anti-linear.

However, the amplitude is well-defined.



® Some calculation:

| (@[T|0) [P = (| U )" (" U )
= trf|yp) (| U |9p)" (op|" UT]

= tr[pU p:U"
:p p,\]\ Complex conjugate
= tr[pUp" U,

Transpose in the operator algebra

® Here, p = |Y)y|and U is the unitary part of the TR operator, i.e. T =
UK with K the complex conjugate.

® We used the Hermiticity pt = p.

® In this way, a TR operator T induces a sort of the transpose in the
operator algebra.

T=UK = Up"U!



® The transpose is understood as the time-reversal transformation in
the imaginary time path-integral.

(0, ...0,0,)1" = O OLr ... Ot
1 2 n
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® Therefore, it is expected that the transpose can be used to
“simulate” non-orientable manifolds.

® Advantage: the transpose operation is linear, so it can be applied to
a subsystem of the real space.

= Partial transpose



Partial transpose
and
non-orientable manifolds
N
bosonic systems



Bosonic transpose

In bosonic (spin) systems, the operator algebra is the matrix algebra.

The transpose is the matric transpose

(1) GD™ = 17) (il

Given operator
A=Ay li) (il
1,7
the transposed operator is given by

AT =N A1) (-
2,]



Bosonic partial transpose

® Divide the Hilbert space into two parts.

® Given a operator:

A=Y Ajjmli€h,jely) (kel,lel
37, kl

® The partial transpose on the subsystem I, is defined as the matrix
transpose on 1.

At — Z Aijrilk € I, j € Iz) (i € I, 1 € Iy
ikl



An application: the non-local order parameter
for the Haldane chain phase

A model Hamiltonian: (1+1)d antiferromagnetic Heisenberg model

J

TR symmetry T = (X) '™ K
J

The classification of SPT phases is known to be Z,.

For the S=1 spin system, the ground state is nontrivial SPT phase.
(the Haldane chain).

The Z, “order parameter” is the partition function on RP2 (real
projective plane).



Let’s construct the Z, “order parameter” in the operator formalism.
The rule of this game is:
v Input data

«  Pure state (ground state) W>

- TR operator 7T — ® inS§ K¢
J

v’ Out put = Z, order parameter

Pollmann and Turner discovered that the Z, order parameter is the
“partial transpose” on two adjacent intervals. [Pollmann-Turner ‘12]
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® The partial transpose on two adjacent intervals. [Pollmann-Turner ‘12]
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® Using the MPS, one can prove that the U(1) phase of Z,; is quantized
if intervals are large enough compared to the correlation length.

ZPT/‘ZPT‘ —>

-1, 11, |12 > €.



® The Pollmann-Turner invariant Zp; is topologically equivalent to the
partition function over RP2. [KS-Ryu, ‘16]
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In the same way, the partial transpose for disjoint two intervals is

topologically equivalent to the Klein bottle partition function.
[Calabrese-Cardy-Tonni ‘12]
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Partial transpose
and
non-orientable manifolds
N
fermionic systems



Transpose in the fermionic operator algebra

Every operator can be expanded by Majorana fermions

2N
A= E : E , Apr--pkcm"'cpw

k=1 p1<p2--<pj

cj- =c;, {c¢j,cr} =20,k

Operator algebra = the algebra generated by the Majorana fermions
(Clifford algebra).

The transpose (linear anti-automorphism) would be defined as
reversing the order of Majorana fermions.

tT e . . .
(Cm Cpy * Cpk) = Cpy, CpoCpy

(@ A+BB)" = aA"+8B", (AB)" = B"A".



® This transpose is “canonical” in the sense that the transpose is
compatible with the basis change

‘/Cj‘/]L — [Ov]jkck, Oy € O(QN)

A —— vavt
ol O w]

Atr Yy y ATy

® We got the full transpose for fermions.

® A remark: we did not use a TR transformation to define the transpose
of fermions. This can be compared with the transpose of bosons
where there is no canonical transpose in the absence of a TR
transformation.



Fermionic transpose and Grassmannian

Does the fermionic transpose give the TR transformation in the
imaginary time path-integral?

Yes. Let us consider a simple TR transformation for complex fermions
fj as

Tf;rT_1 = f;, T |vac) = |vac) .

The unitary part of the TR transformation T is found to be the
particle-hole transformation

CrfiCr:' =f;,  Crlvac) = |full).

The transpose operation corresponding to the TR transformation T is

A CpATCl



For coherent state basis
{&}) = e =095 Jvac),
the transpose with the particle-hole transformation reads
Cr(1e) () O = i) g ).

This is the desired TR transformation for the path-integral.

Therefore, the partial transpose in fermions is expected to be used to
simulate the real projective plane and the Klein bottle, as in the cases
of bosons.
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Fermionic partial transpose

[KS-Shapourian-Gomi-Ryu, 1710.01886,
cf. Shapourian-KS-Ryu, 1607.03896;
Shapourian-Ryu, 1804.08637]

® What is the partial transpose for fermions?

® Introduce two subsystems of degrees of freedom.

ai,ag, ... bljbg,...
Il IQ
A= E : Ap, .- ‘Dhyq1° Ao apl T lpy bgy - - - bqu
k"I k? ~— < —~ _/
I Iy

® We want to define the partial transpose "A!1“ on the subsystem I,.



® [t is natural to impose the following three good properties on the
partial transpose :

1. Preserve the identity:

(1d)™ = 1d

2. The successive partial transposes on I: and I> goes back to the
full transpose:

( Atrl)trg _ Atr

3. The partial transpose is compatible with the basis changes
preserving subsysems I: U I2.

(VAVHI =y Ayt

Va,jVT = [O[l]jkak, VijJr — [OIg]jkbk-



® For generic operators there is no solution that meets the above three
conditions.

® For operators preserving the total fermion parity (like the density
matrix)

A= E : APl"‘PklaQ1“'Qk2 Up, * " Apy,, b, - -b%,

k’lvk27k1+k2€even ~ —~ NG — D

I Iy

there is the unique solution.

® The partial transpose for the subsystem I, is the scalar multiplication
by i** which depends on the number of the Majorana fermions in the
subspace I1.

4 )

tr1 __ k1 ... .o
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Shapourian-KS-Ryu, 1607.03896.; KS-Shapourian-Gomi-Ryu, 1710.01886.




An application: the non-local order parameter
for 1d superconductors with TR symmetry

® A model Hamiltonian: (1+1)d p-wave superconductor (Kitaev chain)
H=) [_ i fi+Af L] + h'c'} —pny I
J J

£ A
1 f; Pl

® TR symmetry Tf;-rT_1 — f;-r, T |vac) = |vac) .

® The classification of SPT phases is known to be Zg. [Fidkowski-Kitaev
‘10]

® The Zg “order parameter” is the partition function on RP? (real
projective plane). ng_ (pt) = Zg



® The Zg order parameter in operator formalism is the partial transpose
on adjacent two intervals
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Numerical calculation [arXiv:1607.03896]

H=—ty [flf; = AL ]+ he] = 0D 1l
J J

I tr !
Z = trrur, {pthzOTlp?llUb [CTl]q

[a] .
2.0t v KB
> © RP?
5
§ 1.0
~ Trivial Topological Trivial

A is fixed to be A = t.



Manybody Z, Kane-Mele invariant

(2+1)d topological insulator (TR symmetry with Kramers)

The generating manifold is the Klein bottle x S! with a unit magnetic
flux. [Witten "16]

B

IQHE for spin up
Combine two technics:

v' Disjoint partial transpose -> Klein bottle
v' Twist operator -> a unit magnetic flux

IQHE for spin down

+ + .y 27 i (x,
PRyUR; *— TIR1UR3 [6 > wery T, MY |GS) <GS|} ;

I — 1 I
/4 = TrRlURS [PElURSC’Tl [PRluRS]t [CTI]T} y



Manybody Z, Kane-Mele invariant

Numerical calculation for a free fermion model

Z ="ITrR,UR; [PgluRgcll [IORluR:a]trl [Cll] }

[b]

v Ly=8
1.0} L=
R Ly=12
— .
N
Trivial Topological Trivial
0.0 | swwwewewwweww | Mhdbdddddddddd
—4 —2 0 2 4
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Take-home message

® Transpose ~ time-reversal (TR) transformation for the
imaginary time path-integral.

(O ... 0,0)7" = O OF -..OF

® The partial transpose enable us to simulate the partition
function over non-orientable manifolds in the operator

formalism.
S

Real projective plane Klein bottle

® Developed the partial transpose for fermions in the operator
formalism .
tr1 __ vl ... .o
AT = § : Apl“'pk1:Q1“'(Ik2Z Ap, apkleH b%2
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Plan

Why non-orientable manifolds?

Time-reversal operation = a sort of transpose in the operator
algebra

Partial transpose and non-orientable manifolds in bosons

Partial transpose and non-orientable manifolds in fermions



® Applications of the fermionic partial transpose

v' To simulate the partition function on unoriented manifolds in the
operator formalism

v' Manybody SPT invariant for Kitaev chain
[Shapourian-KS-Ryu, arXiv:1607.03896]

v' Fermionic entanglement negativity
[Shapourian-KS-Ryu, arXiv:1611.07536]



® The emergence of the matrix transpose can be also understood as
follows: In the matrix algebra, every linear anti-automorphism

O = ¢(0),  ¢(a0)=ad(0), ¢(010;) = $(O2)h(01),

can be written in a form
p(O) =UO"UT
with U a unitary matrix.
® Under a basis change, the linear anti-automorphism @ is changed as
o(0) — H(VIOV)=UVTOV'UT = Vi(vovmor(vovT)iv
® Hence, the unitary matrix U for ® is changed as

U VUV

® This is nothing but the basis change of the unitary part of TRS.
T=UKw— VUKV =VUV'"K



Comment (1)

® [t should be noted that the matrix transpose is basis-dependent:
under a basis change, the matrix transpose is changed as

O — (VIOV)" = VI(VVIMOr(vvinTy

® In general, VV is not the identity, implying the absence of a
“canonical” transpose in the operator algebra of spin systems.

® The transpose is well-defined only in the presence of a TRS T.



® |et's consider a spin system.

® The Hilbert space is the tensor product of local Hilbert spaces.
~ N
H=&,H,, H,=C".

® The matrix transpose is well-defined.

A AT



Fermionic Fock space

® |et fj be complex fermions.

Y =0 iy =1{fLf}=0.

® The Fock space F is spanned or defined by the occupation basis

niny . ny) = [{ng}) = (1) ()" - (1) Jvac)

® We always assume the fermion parity symmetry.

(DF = TIED55, (=) vac) = a).

Jj=1



® Summary of the definition of fermionic partial transpose:

v A two-subdivision of the Fock space (per complex fermions)

ai,ag, ...

by, by, . ..

I

I

v' The fermionic partial transpose is defined only on operators
preserving the fermion parity.

A= E : Apr'-Pklm'"%Q Apy * = Ay bgy - - - bqu'
kljk‘Q,]fl_'_kQ:even N —~ R —~— _
I I
4 )
bri . — § g
AT = Apl---pkl A1y U Gpy o Oy by, b%-
k1,ko,k1+ko=even
N /

KS-Shapourian-Gomi-Ryu, 1710.01886, Shapourian-KS-Ryu, 1607.03896



® From the Schur’s lemma, the condition 3 leads to that the partial
transpose is a scalar multiplication which may depend on the number
of the Majorana fermions in the subspace I..

tri —
(ap, Uy, by, b%) = ZiyQp, = Apy, by, b%, 2z, € C.

® The conditions 1. and 2. reads

—1 U{Zl—l-lfQ:Q mod 4)j

20 =1, Zhet By =
! bk 1 (ki+ko=0 mod 4).

® There are two solutions
A\ k
2z =(£0)", (k=0,1...),
which are related by the fermion parity. I employ the convention
g =1"(k=0,1...).

® If we includes ki+k2 = odd, there is no solution.




Fermionic partial TR transformation

KS-Shapourian-Gomi-Ryu, 1710.01886,
Shapourian-KS-Ryu, 1607.03896

Combining the fermionic partial transpose and the unitary part Cr of a

given TR operator T, one can introduce the fermionic partial TR
transformation:

Def. (Femrionic partial TR transformation)

v Let A be an operator preserving the fermion parity defined on the
two intervals I1U 2.

Il IQ
v Let CJ' be the unitary part of T on the subsystem I1.

v' The partial TR transformation on I: is defined by

A CFAMCHT



In the coherent state basis

7/ S
[{&ien }s{Sien}) = € 2uieh Sifi~2ien Sif lvac) ,

the partial TR transformation reads as

Cr (& ien A& en) {xiYien, Ixitienl) " CHT
= [{ilttr]jixntiens (& jen) (G UL i Yien, {X; }ien) -

This is the same as the TR transformation on the subsystem I: in the
imaginary time path-integral.

Therefore, the partial TR transformation serves to simulate the real
projective plane and the Klein bottle.

=
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® Cf. Network rep. for the Klein bottle (detect the Z4 subgroup)
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Z8 invariant of the Kitaev Chain

(1+1)d class BDI superconductors 7° =1

NOZZENGY ARG AN

Classification = Z8 [Fidkowski-Kitaev].

Majorana fermion

Background structure = pin- structrue

Topological action = eta invariant (see Kapustin-Thorngren-Turzillo-Wang)

eistop[M,?] _ /DwD¢€—SM[¢,w,A] _ 2min(M,A)/8

. Z8 valued:
Pin- str. n(M,A) €{0.1,...,7}
For M= RP?, the eta invariant takes the smallest value £1.
n(RP? A) = £1

This means that the partition function on RP? is the Z8 order
parameter of the Kitaev chian with TRS, as for the Haldane chain.



Summary

The TQFT description of SPT phases w/ TR symmetry suggest using
unoriented manifolds.

The problem is how to obtain unoriented manifolds from the TR
operator.

The (fermionic) partial transpose can simulate the partition function
over (i) the real projective plane and (ii) the Klein bottle.

We defined the fermionic analog of the partial transpose, and our
definition correctly simulate the partition function over unoriented
manifolds in fermionic systems.

Various non-local order parameters for fermionic SPT phases are
constructed in this way. Please see the list in [arXiv:1710.01886].

Another topic: our definition of fernionic partial transpose can be
used to define a fermionic analog of entanglement negativity.
[arXiv:1611.07536]



