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High-spin torus isomers and their precession motions
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Background: In our previous study, we found that an exotic isomer with a torus shape may exist in the high-spin,
highly excited states of 40Ca. The z component of the total angular momentum, Jz = 60�, of this torus isomer is
constructed by totally aligning 12 single-particle angular momenta in the direction of the symmetry axis of the
density distribution. The torus isomer executes precession motion with the rigid-body moments of inertia about
an axis perpendicular to the symmetry axis. The investigation, however, has been focused only on 40Ca.
Purpose: We systematically investigate the existence of exotic torus isomers and their precession motions for
a series of N = Z even-even nuclei from 28Si to 56Ni. We analyze the microscopic shell structure of the torus
isomer and discuss why the torus shape is generated beyond the limit of large oblate deformation.
Method: We use the cranked three-dimensional Hartree-Fock method with various Skyrme interactions in
a systematic search for high-spin torus isomers. We use the three-dimensional time-dependent Hartree-Fock
method for describing the precession motion of the torus isomer.
Results: We obtain high-spin torus isomers in 36Ar, 40Ca, 44Ti, 48Cr, and 52Fe. The emergence of the torus isomers
is associated with the alignments of single-particle angular momenta, which is the same mechanism as found in
40Ca. It is found that all the obtained torus isomers execute the precession motion at least two rotational periods.
The moment of inertia about a perpendicular axis, which characterizes the precession motion, is found to be close
to the classical rigid-body value.
Conclusions: The high-spin torus isomer of 40Ca is not an exceptional case. Similar torus isomers exist widely
in nuclei from 36Ar to 52Fe and they execute the precession motion. The torus shape is generated beyond the
limit of large oblate deformation by eliminating the 0s components from all the deformed single-particle wave
functions to maximize their mutual overlaps.
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I. INTRODUCTION

Nuclear rotation is a key phenomenon to study the funda-
mental properties of finite many-body quantum systems. In
particular, the rotation about the symmetry (z) axis produces
a unique quantum object with its density distribution of a
torus shape, as shown in our previous studies for 40Ca [1,2].
In a classical picture for such rotation the oblate deformation
develops with increasing rotational frequency due to the strong
centrifugal force [3]. However, such a collective rotation
about the symmetry axis is quantum-mechanically forbidden.
Instead, it is possible to construct extremely high-spin states by
aligning individual angular momenta of single-particle motion
in the direction of the symmetry axis [4,5].

A drastic example is a high-spin torus isomer in 40Ca [1],
where 12 single particles with the orbital angular momenta
� = +4, +5, and +6 align in the direction of the symmetry
axis and construct a z component of the total angular
momentum of Jz = 60�. Thus, a “macroscopic” amount of
circulating current emerges in the torus isomer state, which
may be regarded as a fascinating new form of the nuclear
matter suggested by Bohr and Mottelson [6].

Another important kind of rotation is a collective motion
that restores the symmetry spontaneously broken in the self-
consistent mean field. The density distribution of the torus
isomer largely breaks the symmetry about an (x or y) axis
perpendicular to the symmetry axis [2]. Below, we call this
axis a perpendicular axis. Thus, the torus isomer can rotate

about a perpendicular axis, although the collective rotation
about the symmetry axis is quantum-mechanically forbidden.
This rotational degree of freedom causes the precession motion
of the system as a whole. Then, an interesting question arises
how such a “femtoscale magnet” rotates collectively to restore
the broken symmetry about a perpendicular axis.

A physical quantity characterizing such a collective rotation
is the moment of inertia about a perpendicular axis. It has
been theoretically recognized that an independent-particle
configuration in a deformed harmonic-oscillator potential
rotates with the rigid-body moment of inertia when the
self-consistency between the mean-field potential and the
density is fulfilled [7]. However, measured moments of inertia
for the case of the precession motion of prolately deformed
nuclei are often much smaller than the rigid-body values even
when pairing correlations are negligible [8,9]. This is because
of shell effects in high-K prolate isomers [8]. Although
precession modes of high-K oblate isomers have not been
observed yet, their moments of inertia would be much reduced
from the rigid-body values due to oblate shell structures at
small deformations [10].

From these observations, it might be conjectured that
the moment of inertia about a perpendicular axis for the
torus isomer also significantly deviates from the classical
rigid-body value, because the torus isomer is a unique quantum
object characterized by the alignment of angular momenta
of independent-particle motions. It is thus surprising that the
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moment of inertia about a perpendicular axis, evaluated with
the time-dependent Hartree-Fock (TDHF) method, from the
rotational period of the precession motion of the torus isomer
in 40Ca takes a value close to the classical rigid-body value
[2]. We analyzed the microscopic structure of the precession
motion by using the random-phase approximation (RPA)
method. In the RPA calculation, the precession motion of the
torus isomer is generated by a coherent superposition of many
one-particle-one-hole excitations across the sloping Fermi
surface. We found that the precession motion obtained by the
TDHF calculation is a pure collective motion well decoupled
from other collective modes. In our previous studies, however,
we focused only on the torus isomer of 40Ca. It is thus important
to investigate whether torus isomers exist also in other nuclei
and the properties of the precession motion found there are
universal or not.

In this paper, we first perform a systematic investigation of
the high-spin torus isomers for a series of N = Z even-even
nuclei from 28Si to 56Ni. We show that the high-spin torus
isomer of 40Ca is not an exceptional case. About 40 years ago,
Wong suggested, using a macroscopic-microscopic method,
the possible existence of torus isomers at highly excited states
of a wide region of nuclei [12]. Quite recently, Staszczak and
Wong systematically explored the existence of torus isomers
using the constrained cranked Hartree-Fock (HF) method and
found some torus isomers at highly excited states in several
nuclei [11]. However, they use the harmonic-oscillator basis
expansion method, which is insufficient to treat unbound
states. It is therefore difficult to examine the stability of the
torus isomers against the nucleon emission in their calculation,
although some of them would contain single particles in
unbound states.

We then perform a systematic TDHF calculation to in-
vestigate the properties of the precession motion. For all
the high-spin torus isomers obtained by the cranked HF
calculation, we find the periodic solutions of the TDHF
equation of motion, which describe the precession motions.
Among them, the precession motion of the 60� torus iso-
mer of 40Ca is particularly stable and continues for many
periods.

To understand the microscopic origin of appearance of the
torus isomers, we analyze the process during which the shell
structure of the large oblate shape and that of the torus shape
grow up from that of the spherical shape. Using the radially
displaced harmonic-oscillator (RDHO) model [12] and the
oblately deformed harmonic-oscillator potential, we finally
discuss why the lowest 0s components disappear from all the
single-particle wave functions of the occupied states and how
a large ‘hole’ region is created in the center of the nucleus to
generate the torus shape.

This paper is organized as follows. In Sec. II, we describe
the theoretical framework and parameters of the numerical
calculation. In Sec. III, we present results of the systematic
calculation for static and dynamical properties of the high-spin
torus isomers including their precession motions. In Sec. IV,
we analyze microscopic shell structures of the torus isomers
and discuss the reason why the torus shape emerges beyond
the limit of large oblate deformation. Finally, we summarize
our studies in Sec. V.

II. THEORETICAL FRAMEWORK

A. Cranked HF calculation

To investigate systematically the existence of high-spin
torus isomer states in a wide range of nuclei, we use the
cranked three-dimensional Skyrme HF method. To build
high-spin states rotating about the symmetry axis of the density
distribution (z axis), we add a Lagrange multiplier, ω, to the
HF Hamiltonian, Ĥ . Then, the effective HF Hamiltonian,
Ĥ ′, is written as Ĥ ′ = Ĥ − ωĴz, where Ĵz denotes the z
component of the total angular momentum. We minimize this
effective HF Hamiltonian with a given Lagrange multiplier,
which is equivalent to the cranked HF equation given by
δ〈Ĥ − ωĴz〉 = 0.

For this purpose, we slightly modify the code SKY3D. The
details of the code are given in Ref. [13]. In the code, the single-
particle wave functions are described on a Cartesian grid with
a grid spacing of 1.0 fm, which is a good approximation for
not only bound states but also unbound states in contrast to the
harmonic-oscillator basis expansion. We take 32 × 32 × 24
grid points for the x, y, and z directions, respectively. This is
sufficiently accurate to provide converged configurations. The
damped-gradient iteration method [14] is used, and all deriva-
tives are calculated with the Fourier transformation method.

In the calculation, we use the SLy6, SkI3, and SkM∗ Skyrme
forces to check the interaction dependence of the calculated
results. These effective interactions were well constructed
based on nuclear bulk properties but differ in details; SLy6
as a fit which includes information on isotopic trends and
neutron matter [15], SkI3 as a fit taking into account the
relativistic isovector properties of the spin-orbit force [16],
and SkM∗ as a widely used traditional standard [17]. However,
except for the effective mass, the bulk properties (equilibrium
energy and density, incompressibility, and symmetry energy)
are comparable to each other. In the energy density functional,
we omit terms depending on the spin density, because it
may be necessary to extend the standard form of the Skyrme
interaction in order to properly take into account the spin-
density dependent effects [18] (see also a review [19]), but
such effects are inessential to the torus isomers.

B. Setting of initial configurations

In the cranked HF calculations, we first search for stable
torus configurations in a series of N = Z even-even nuclei
from 28Si to 56 Ni. We use, as an initial configuration of the
HF calculation, an α-cluster ring configuration placed on the
x-y plane, as shown in Fig. 1 of Ref. [1]. The α-cluster wave
function is described by a Gaussian function with the width
of 1.8 fm. The center positions of the Gaussian functions are
placed equiangularly along a circle with a radius of 6.5 fm
on the (x,y) plane. Only for the calculations of 52Fe with the
SkM∗ interaction, we use a radius of 7.55 fm and a width
of 1.63 fm. Using these initial configurations, we perform
15 000 HF iterations. We search for stable torus solutions
varying ω from 0.5 to 2.5 MeV/� with a step of 0.1 MeV/�.
After these calculations, we check the convergence of the
total energies, the density distributions, and the total angular
momenta. In the calculations of the excitation energies, we
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subtract the expectation value of the center-of-mass motion in
both the ground and the torus isomer states.

We next calculate all single-particle states including those
above the Fermi energy. To calculate those, we use, as initial
wave functions of the HF calculation, the single-particle wave
functions of the RDHO model [12]. This model is a good
approximation to the mean-field of torus-shaped isomers. In
this model, the single-particle potential is given by

V (r,z) = 1
2mω2

0(r − R0)2 + 1
2mω2

0z
2, (1)

where m denotes the nucleon mass, ω0 the oscillator frequency,
r and z the radial and the z components of the cylindrical
coordinate system, and R0 the radius parameter of the torus
shape. Since the radial wave function of the lowest energy in
the RDHO model is described by a shifted Gaussian function
with the width d = √

�/mω0, we determine ω0 from the radius
of a cross section of a torus ring. The optimal values of R0 and
d are determined through the global investigation mentioned
above. Using this initial condition and a value of ω0 obtained
by the global investigation, we perform the HF iteration over
20 000 times and calculate the single-particle states up to the
40th for both protons and neutrons.

C. Sloping Fermi surface

It is important to note that the cranking term −ωĴz does
not change the single-particle wave functions for rotation
about the symmetry axis. Thus, it is useful to introduce the
concept of “sloping” Fermi surface. As usual, the single-

particle Hamiltonian is given by Ĥ ′ = ∑
i(ĥi − ωĵz

(i)
), where

ĥi and ĵz
(i)

denote the mean-field Hamiltonian and the
z component of the total angular momentum for each single
particle, respectively. The eigenvalue of Ĥ ′ is written as
E′ = ∑

i[(ei − λ) − �ω�i], where λ denotes the Fermi energy
at ω = 0. The symbols ei and �i denote the single-particle

energy and the eigenvalue of ĵz
(i)

, respectively. By introducing
the sloping Fermi surface defined by λ′(�) = λ + �ω�, we
can rewrite E′ as E′ = ∑

i{ei − λ′(�i)}. Therefore, aligned
configurations can be easily constructed by plotting the single-
particle energies as a function of � and tilting the Fermi surface
in the (e,�) plane. It is important to note that the value of ω
to specify an aligned configuration is not unique. As we can
immediately see in Figs. 3–7 below, individual configurations
do not change for a finite range of ω.

D. Optimally aligned torus configurations

Let us focus on optimally aligned torus configurations
where all the single-particle states below the sloping Fermi
surface are occupied. They are expected to be more stable
than other aligned configurations involving particle-hole ex-
citations across the sloping Fermi surface. Before carrying
out the cranked HF calculations, we can easily presume
candidates of optimally aligned torus configurations. Since the
effects of the spin-orbit potential are negligibly weak in the
torus configurations, not only � but also the z component
of the orbital angular momentum, �, are good quantum
numbers (� = � + �, where � denotes the z component of
the spin, ±1/2) [1]. Single-particle states having the same

� value with different spin directions are approximately
degenerated and simultaneously occupied. Thus, the lowest-
energy configurations for the torus shapes at ω = 0 are � = 0,
±1, ±2, and ±3 for 28Si, � = 0, ±1, ±2, ±3, and +4 or −4
for 32S, � = 0, ±1, . . ., ±4 for 36Ar, � = 0, ±1, . . ., ±4, and
+5 or −5 for 40Ca, � = 0, ±1, . . ., ±5 for 44Ti, � = 0, ±1,
. . ., ±5, and +6 or −6 for 48Cr, � = 0, ±1, . . ., ±6 for 52Fe,
and � = 0, ±1, . . ., ±6, and +7 or −7 for 56Ni.

For instance, in 40Ca, possible aligned configurations at ω �=
0 are (i) � = 0, ±1, . . ., ±4, and +5 for Jz = 20� [=5� × 2
(spin degeneracy) ×2 (isospin degeneracy)], (ii) � = 0, ±1,
±2, ±3, +4, and +5 for Jz = 60� [=15� × 2 × 2], and
(iii) � = 0, ±1, ±2, +3, +4, +5, +6, and +7 for Jz = 100�

[=25� × 2 × 2]. However, we could not obtain stable HF
solutions for the configurations (i) and (iii): the centrifugal
force is insufficient for stabilizing the configuration (i), while
the last occupied single-particle state with � = 7 is unbound
for the configuration (iii). Indeed, we confirmed that the torus
isomer configuration (iii) with Jz = 100� slowly decays. In the
systematic calculations, it is often difficult to discuss the sta-
bility of torus isomers when such unbound states are included.
To avoid this difficulty, in this paper, we focus on torus con-
figurations without involving unbound single-particle states.

E. TDHF calculation for the precession motion

For the stable torus isomers obtained above, we performed
TDHF calculations to investigate their precession motions.
The time evolution of the density distribution is determined
by solving the TDHF equation of motion i�ρ̇ = [Ĥ ,ρ]. When
an impulsive force is provided in a direction perpendicular
to the symmetry axis at t = 0, the torus isomer starts to
execute the precession motion. This precession motion is
associated with a rotation about a perpendicular axis, i.e.,
an axis perpendicular to the symmetry axis. In Ref. [2], we
already showed that this precession motion is a pure collective
motion to restore the broken symmetry and well described
as coherent superpositions of many 1p-1h excitations across
the sloping Fermi surface. We investigate whether other torus
isomers also execute the precession motion well decoupled
from other collective modes and whether their moments of
inertia are close to the rigid-body values or not. In this way,
we can also check the stability of the obtained torus isomers
against given impulsive forces.

Figure 1 illustrates the schematic picture of the precession
motion taken from Ref. [2]. At t = 0, the torus isomer is placed
on the x-y plane with the angular momentum K (=Jz) along
the z axis in the laboratory frame. When an impulsive force is
provided in the negative x direction (the dotted line) at t = 0,
the total angular momentum becomes �I (the dashed line). We
call this vector the precession axis. After that, the symmetry
axis of the density distribution in the body-fixed frame (the
bold solid line) starts to rotate about the precession axis with
the rotational angle φ. In the precession motion, the value K
is conserved and its direction is identical to the bold solid line.
The tilting angle θ is defined as the angle between the bold
solid and the dashed lines. Then, the moment of inertia for the
rotation about a perpendicular axis, T⊥, can be estimated by
T⊥ = I/ωprec, where ωprec denotes the rotational frequency of
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FIG. 1. Schematic picture for the precession motion of torus
isomers taken from Ref. [2]. The bold solid line denotes the symmetry
axis of the density distribution. The dashed line denotes the precession
axis. The symbols θ and φ denote the tilting and the rotational angles,
respectively.

the precession motion. To build the first excited state of the
precession motion, we provide an impulsive force such that
the total angular momentum becomes I = K + 1.

To solve the TDHF equation, we use the code SKY3D and
take the Taylor expansion of the time-development operator
up to the 12th order. The setups of spatial grid points
and interactions are the same as those of the cranked HF
calculations described above. We start to perform calculations
from the initial density distribution obtained by the cranked
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FIG. 2. (Color online) Density distributions on the z = 0 plane
of the obtained stable torus isomers. The contours correspond to
multiple steps of 0.015 fm−3. The color is normalized by the largest
density in each plot.

TABLE I. Stable torus isomers obtained in the cranked HF calcu-
lation with various Skyrme interactions. The excitation energy, Eex, is
measured from the ground state. The calculated density distributions
are fitted to the Gaussian function ρ(r,z) = ρ0e

−[(r−R0)2+z2]/d2
and

the resulting values of the parameters, ρ0, R0, and d , are listed.
The symbols, T rid

⊥ and T rid
‖ , denote the rigid-body moments of

inertia for the rotations about a perpendicular and the symmetry axes,
respectively.

System Jz Eex ρ0 R0 d T rid
⊥ T rid

‖
(�) (MeV) (fm−3) (fm) (fm) (�2/MeV) (�2/MeV)

(SLy6)
36Ar 36 123.89 0.137 5.12 1.62 14.3 26.4
40Ca 60 169.71 0.129 6.07 1.61 21.0 39.6
44Ti 44 151.57 0.137 6.30 1.61 24.6 46.5
48Cr 72 191.25 0.132 7.19 1.60 33.8 64.7
52Fe 52 183.70 0.138 7.47 1.60 39.1 75.1

(SkI3)
36Ar 36 125.15 0.146 5.01 1.58 13.7 25.3
40Ca 60 173.52 0.138 5.90 1.58 19.9 37.5
44Ti 44 153.02 0.146 6.17 1.58 23.6 44.6
48Cr 72 193.66 0.141 7.00 1.57 32.0 61.3
52Fe 52 183.70 0.147 7.31 1.57 37.5 71.9

(SkM∗)
36Ar 36 124.80 0.131 5.16 1.65 14.6 26.9
40Ca 60 167.84 0.122 6.17 1.64 21.8 41.0
44Ti 44 152.20 0.131 6.36 1.64 25.1 47.5
48Cr 72 192.40 0.125 7.30 1.63 34.9 66.7
52Fe 52 187.08 0.132 7.55 1.63 40.0 76.7

HF calculations. The time step of the TDHF calculations is
0.2 fm/c. We calculate the time evolution until 3000 fm/c.
To excite the precession motion, we provide an impulsive
force at t = 0 by the external potential given by Vext(r,ϕ,z) =
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FIG. 3. Single-particle energies versus the z component of the
total angular momentum, �, for 36Ar. Solid and open circles denote
the single-particle energies of the positive- and negative-parity states,
respectively. To illustrate the degeneracy of positive- and negative-
parity states, some negative-parity states are shown by double open
circles.
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FIG. 4. Single-particle energies versus � for 40Ca. All symbols
are the same as in Fig. 3.

V0z cos ϕ exp[−(r − R0)2/d2]. This impulsive force gives an
angular momentum in the negative x direction at t = 0. The
parameter V0 is chosen such that the total angular momentum
becomes I = K + 1.

III. RESULTS OF CALCULATION

A. Static properties

We have carried out a systematic search for stable torus
isomers for the N = Z even-even nuclei from 28Si to 56Ni.
The result of the calculation is summarized in Table I. We
obtain the stable torus isomers in 36Ar for Jz = 36 �, 40Ca for
Jz = 60�, 44Ti for Jz = 44 �, 48Cr for Jz = 72 �, and 52Fe for
Jz = 52 � with all the three Skyrme interactions used in this
study. On the other hand, we have not found any stable torus
isomer in 28Si, 32S, and 56Ni. In Fig. 2, we plot the total density
distributions of the torus isomers obtained in the cranked HF
calculation with the SLy6 interaction.
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FIG. 5. Single-particle energies versus � for 44Ti. All symbols
are the same as in Fig. 3.
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FIG. 6. Single-particle energies versus � for 48Cr. All symbols
are the same as in Fig. 3.

The total density distribution of each of the torus isomers
obtained in the cranked HF calculation is well fitted by the
Gaussian function ρ(r,z) = ρ0e

−[(r−R0)2+z2]/d2
, where ρ0, R0,

and d denote the maximum value of the nucleon density, the
radius of the torus ring, and the width of a cross section of the
torus ring, respectively. The resulting values of the parameters,
ρ0, R0, and d, are tabulated in the middle part of Table I. We
see that the values ρ0 and d are almost constant for all the torus
isomers. The interaction dependence of these values is weak.
It is interesting that, in all the results, ρ0 is smaller than the
saturation nuclear density (ρsat ∼ 0.17 fm−3) and d is close
to the width of an α particle used in Brink’s α-cluster model
(dα ∼ 1.46 fm) [20].

Using the total density distribution, we also calculate the
rigid-body moments of inertia for rotation about a perpendic-
ular axis, T rid

⊥ , and the symmetry axis, T rid
‖ . The results are

also shown in Table I. Later, we shall compare these values
for T rid

⊥ with those obtained by an analysis of the precession
motions in the TDHF time evolution.
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FIG. 7. Single-particle energies versus � for 52Fe. All symbols
are the same as in Fig. 3.
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FIG. 9. Time evolution of the precession motion for the torus
isomers of 36Ar calculated by solving the TDHF equation of motion
for the SLy6 interaction. In the plot, panels (a), (b), and (c) denote
the total angular momentum I , the tilting angle θ , and the rotational
angle φ, respectively.
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FIG. 10. Time evolution of the precession motion for the torus
isomers of 40Ca. All symbols are the same as Fig. 9.

To investigate microscopic structures of the torus isomers,
we plot in Figs. 3–7 neutron single-particle energies versus �
for each torus isomer calculated with the SLy6 interaction. In
the figures, the solid and the open circles denote the positive-
and negative-parity states, respectively. The gray area in each
plot denotes the occupied states. In each plot, we see that the
single-particle energies with the same � are almost degenerate.
This indicates that the effects of the spin-orbit force are
negligibly small and � is approximately a good quantum
number in all the torus isomers. One may also notice that
the Kramer’s degeneracy for a pair of single-particle states
with ±� is lifted. This is due to the time-odd components
(dependent on the current density) of the cranked HF mean
fields associated with the macroscopic currents, which are
produced by the alignment of the single-particle angular
momenta with large values of �.

Because of the negligible spin-orbit splittings, the spin-orbit
partners are always occupied simultaneously. Therefore, the
Jz values of the optimally aligned configurations are easily
determined by summing up the � values of the occupied
single-particle states: they are � = 0,±1,±2,±3,+4,+5
[Jz = 9 � ×2 (spin degeneracy) ×2 (isospin degeneracy) = 36
�] for 36Ar, � = 0,±1,±2,±3,+4,+5,+6 [Jz = 15 � ×2 ×
2 = 60 �] for 40Ca, � = 0,±1, . . . ,±4,+5,+6 [Jz = 11
� ×2 × 2 = 44 �] for 44Ti, � = 0,±1, . . . ,±4,+5,+6,+7
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FIG. 11. Time evolution of the precession motion for the torus
isomers of 44Ti. All symbols are the same as Fig. 9.

[Jz = 18 � ×2 × 2 = 72 �] for 48Cr, and � = 0,±1,
. . . ,±5,+6,+7 [Jz = 13 � ×2 × 2 = 52 �] for 52Fe.

We can estimate from the figures a region of ω for
which each of the torus isomers stably exist. This is done
by determining the steepest and the most gradual slopes
of the Fermi surface for which the occupied single-particle
configuration remains the same. The results are plotted in
Fig. 8. The solid, dashed, and dotted lines denote the regions
of ω for each of the stable torus isomers obtained with the
SLy6, SkI3, and SkM∗ interactions, respectively. We see that
the result does not strongly depend on the Skyrme interaction
employed, although the width is weakly dependent on it.

B. Dynamic properties

We carried out a systematic TDHF calculation for each of
the torus isomers and found that that the TDHF time evolution
of the density distribution is quite similar to that displayed in
Fig. 2 of [2]. Figures 9–13 show the calculated time evolution
of the precession motion for each of the torus isomers obtained
with the SLy6 interaction. In each plot in the figures, panels (a),
(b), and (c) denote the total angular momentum, I , the tilting
angle, θ , and the rotational angle, φ, respectively. In panel (a)
in each plot, we can see that the total angular momentum is
conserved very well. This indicates that the TDHF calculations
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FIG. 12. Time evolution of the precession motion for the torus
isomers of 48Cr. All symbols are the same as Fig. 9.

are sufficiently accurate. We find that the precession motion
of the 40Ca torus isomer is especially stable [see panel (b) in
each plot], where the rotational angle φ lineally increases with
time, indicating that the rotation of the symmetry axis about
the precession axis keeps a constant velocity through all the
periods. This indicates that the strong shell effects responsible
for the appearance of the torus isomer in 40Ca also stabilize
the precession motion. We find that the precession motions
emerge also for other torus isomers and they are stable at least
for two periods. After that, however, the tilting angle gradually
starts to fluctuate. Correspondingly, the rotational angle φ also
starts to deviate from the linear time evolution [see panel (c) in
each plot]. We have also carried out similar TDHF calculations
with the use of the SkI3 and SkM∗ interactions. The results
are similar to those shown above for the SLy6 interaction,
which implies that the properties of the precession motion are
robust and depend on the choice of the Skyrme interaction
only weakly.

To evaluate the moment of inertia for the rotation about
a perpendicular axis, we take the average of the two periods
starting from t = 0 during which the precession motion is
especially stable. The results are tabulated in the third column
of Table II. Using these values, we calculate the frequency of
the precession motion by ωprec = 2π/Tprec and the moment of
inertia for the rotation about a perpendicular axis by T TDHF

⊥ =
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FIG. 13. Time evolution of the precession motion for the torus
isomers of 52Fe. All symbols are the same as Fig. 9.

I/ωprec. The results are tabulated in the forth and fifth columns
of Table II. The obtained moments of inertia are very close to
the rigid-body values tabulated in Table I for all the Skyrme
interactions employed. As discussed in Ref. [2], these results
indicate that the precession motions under consideration are
pure collective motions generated by coherent superpositions
of many 1p-1h excitations across the sloping Fermi surface.

IV. DISCUSSION

A. Radial density distributions of individual
single-particle states

Let us examine the radial density distributions of individual
single-particle wave functions on the z = 0 plane for the torus
isomer of 40Ca. For this purpose, we interpolate the density dis-
tributions described with a Cartesian coordinate in the cranked
HF calculations by means of a third-order B-spline function.
After that, we transform those to a cylindrical coordinate
representation [ρi(x,y) → ρi(r,ϕ)]. We then integrate ρi(r,ϕ)
in the ϕ direction and obtain ρi(r). The calculated results are
plotted in the upper panel of Fig. 14.

As shown in Refs. [1,2], the RDHO model can describe well
the microscopic structures of torus isomers. To illustrate this,
we solve the Schrödinger equation with the RDHO potential,
Eq. (1), by means of the deformed harmonic-oscillator basis

TABLE II. Results of the TDHF calculation for the precession
motions of the torus isomers from 36Ar to 52Fe. The symbol I

denotes the resulting total angular momentum after an impulsive
force is provided. The symbol Tprec denotes the average over the
two periods from t = 0 for the precession motion. The symbol ωprec

denotes the precession frequency estimated by ωprec = 2π/Tprec. The
symbol T TDHF

⊥ denotes the moment of inertia for the rotation about
a perpendicular axis estimated by T TDHF

⊥ = I/ωprec.

System I Tprec ωprec T TDHF
⊥

(�) (MeV/�) (MeV) (�2/MeV)

(SLy6)
36Ar 37 450.1 2.75 13.5
40Ca 61 402.5 3.08 19.8
44Ti 45 651.0 1.90 23.7
48Cr 73 554.5 2.24 32.6
52Fe 53 872.8 1.42 37.3

(SkI3)
36Ar 37 427.9 2.90 12.8
40Ca 61 378.6 3.28 18.6
44Ti 45 624.4 1.99 22.7
48Cr 73 524.5 2.36 30.9
52Fe 53 839.0 1.48 35.9

(SkM∗)
36Ar 37 464.2 2.67 13.9
40Ca 61 418.2 2.96 20.6
44Ti 45 666.1 1.86 24.2
48Cr 73 572.8 2.16 33.7
52Fe 53 894.8 1.39 38.3

expansion and calculate ρi(r). In the calculation, we take
R0 = 6.07 fm and d = 1.61 fm for the RDHO model and
the same aligned single-particle configuration as that obtained
by the cranked HF calculation for 40Ca. The obtained radial
density distributions of the individual single-particle states are
plotted in the lower panel of Fig. 14. Using these density
distributions, we calculate the rigid-body moments of inertia
about a perpendicular axis and the symmetry axis: they
are T RDHO

⊥ = 21.3 �
2/MeV and T RDHO

‖ = 40.2 �
2/MeV,

respectively. These values are in good agreement with those
obtained by the cranked HF calculation.

In Fig. 14, it is clearly seen that the radial density
distributions of the individual single-particle states in the
RDHO model are quite similar to those obtained by the
cranked HF calculations. In particular, the peak positions of
each radial density distribution are in good agreement between
the two calculations. As a matter of fact, the peak position of
each density distribution shifts to a larger r with increasing
orbital angular momentum. Looking into details of the density
distributions obtained by the cranked HF calculations, one may
notice that some radial density distributions with high angular
momentum slightly shift due to the spin-orbit potential. In
Fig. 4, the degeneracy of single-particle energies with the same
high � is indeed slightly broken for the spin-orbit partner with
�π = 9/2− and 11/2− (� = 5) and that with �π = 11/2+
and 13/2+ (� = 6). These spin-orbit effects are absent in the
RDHO model.
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FIG. 14. Radial density distributions of individual single-particle
states on the z = 0 plane for 40Ca obtained by the cranked HF
calculations (upper panel) and the RDHO model (lower pannel). The
densities for the φ direction in cylindrical coordinates are integrated.

B. Shell structure of torus nucleus

Using the RDHO model, we next investigate shell structures
of a torus isomer and examine how single-particle config-
urations change from spherical to torus shapes. Figure 15
shows a Nilsson diagram versus the parameter η = R0/d for
40Ca. At η = 0, the nuclear shape is spherical. At η = 4, a
torus shape is well developed, which is a size similar to that
obtained by the cranked HF calculations. Note that we take into
account volume conservation inside an equipotential surface
of a torus isomer (see Ref. [12] and the Appendix for the
volume conservation in 0 � η � 1). To eliminate the volume
effect, we plot the single-particle energies in unit of �ω0(η). In
this figure, we slightly shift the single-particle energies with
higher � in order to illustrate the degeneracy of the states.

In Fig. 15, we see the spherical major shell with E =
�ω0(Nsh + 3/2) at η = 0, where Nsh denotes the total number
of oscillator quanta. With increasing η, the single-particle
energies with � = 1/2 approach the asymptotic value given
by E = �ω0(N ′

sh + 1), where N ′
sh = nr + nz, nz and nr denote

the quantum number for oscillations in the z and the radial
directions, respectively. The energies of other single-particle
states with larger � in the same Nsh shell steeply decrease
as a function of η. At η = 4, the tenth and 11th (from the
bottom) single-particle states with �p = 11/2− and 13/2−

 0

 1

 2

 3

 0  1  2  3  4
S

in
gl

e-
P

ar
tic

le
 E

ne
rg

y 
[U

ni
ts

 o
f 

ω
0(

η)
]

η = R0/d

2

6

10
14 18

22

8

FIG. 15. Nilsson diagram versus η = R0/d of the RDHO model
for 40Ca. The solid and dashed lines denote the single-particle states
with positive and negative parities, respectively. The single-particle
energies are plotted in units of �ω0(η). To illustrate the degeneracy
of the levels, the single-particle energies with higher � are slightly
shifted.

(� = 6) become lower than the 14th level with N ′
sh = 1 (the

1�ω0 state). These two single-particle states originate from
those with a spherical harmonic-oscillator quantum number of
Nsh = 5 (the 5�ω0 state).

It is easy to understand these behaviors. As Wong showed
in Ref. [12], the single-particle energies for large R0 are
approximately given by E ∼ �ω0(N ′

sh + 1) + �
2�2/2mR2

0.
Thus, the single-particle energies belonging to the same N ′

sh
shell are proportional to �2 at lager R0.

Figure 16 shows the single-particle energies in the RDHO
model versus � from η = 0 to 4. At η = 0 [Fig. 16(a)], the
familiar shell structure of the spherical harmonic-oscillator is
seen. With increasing η [Figs. 16(b)–16(d)], single-particle
energies with high � rapidly decrease. Then, the single-
particle energies start to form parabolic structures. At η = 4
[Fig. 16(e)], two important properties emerge: (i) the curvature
of the parabolic structure becomes large, and (ii) the single-
particle energies within the same N ′

sh shell are proportional to
�2. These two properties play an essential role in stabilizing
the torus isomers when single particles are aligned in the
direction of the symmetry axis.

It is surprising that the single-particle shell structure of the
RDHO model at η = 4 is very similar to that of Fig. 5 obtained
by the cranked HF calculation. The RDHO model is therefore a
good approximation for describing the microscopic structures
of the torus isomers.
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single-particle states with positive and negative parities, respectively.

C. Emergence of the torus shape beyond the
limit of oblate deformation

Lastly, let us discuss the reason why the torus nucleus
emerges beyond the limit of large oblate deformation. In the
spherical harmonic-oscillator potential, the radial wave func-
tion of the lowest single-particle state is given by a Gaussian
function peaked at the center (the 0s state): accordingly, the
central part of the total density distribution is quite stable.
Then, a question arises why such a stable and robust wave
function vanishes and how the torus shape emerges.

To investigate why the 0s state disappears, we calculate the
single-particle energies for the deformed harmonic-oscillator
potential as a function of oblate deformation. Figure 17
shows the obtained Nilsson diagram versus the aspect ratio
of the short (the z direction) to the long (the radial direction)
axes for an ellipsoidal nuclear surface (oblate deformation).
The aspect ratio 1 : 1 corresponds to the spherical shape.
The aspect ratio 1 : 5 corresponds to an oblate shape with the
same aspect ratio as that of the torus isomer of 40Ca
obtained by the cranked HF calculation. The single-particle
energies are plotted in unit of �ω0(ε), where ω0(ε) denotes
the frequency of the harmonic-oscillator potential depending
on the Nilsson perturbed-spheroid parameter ε to describe
ellipsoidal nuclear shapes. In ω0(ε), the volume conservation
inside an equipotential surface is taken into account [21]. In
the figure, we see that some single-particle energies associated
with high Nsh spherical major shells rapidly decrease with
increasing oblate deformation. At the aspect ratio 1 : 5, the
last occupied state for 40Ca (N = 20) originates from that with
a spherical harmonic-oscillator quantum number of Nsh = 3
(the 3�ω0 state).

In Fig. 18, the single-particle energies are plotted versus �
at each aspect ratio. We see that the shell gaps of the single-
particle energies decrease with increasing oblate deformation.
However, the basic pattern of deformed shell structure does

not change, in contrast to that of the RDHO model shown
in Fig. 16. In Fig. 18(e), the dashed line denotes the Fermi
level for N = 20 at ω = 0. The neutron density distribution,
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ρ(r,z), for the occupied configuration is shown in Fig. 19(a).
The densities in the ϕ direction are integrated. Two prominent
peaks are seen in the density distribution. We next consider
an aligned single-particle configuration at ω = 1.6 MeV/�.
This ω corresponds to a value for the torus isomer of 40Ca.
The occupied states at this ω are shown by the gray area
in Fig. 18(e). By the alignments, totally five single-particle
states with 11/2−[505] and 9/2−[505] (� = 5), 9/2+[404]
and 7/2+[404] (� = 4), and 5/2+[402] (� = 2) are occupied
(the asymptotic Nilsson label �π [Nnz�] is used here). On
the other hand, the single particle states with −7/2−[303] and
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FIG. 19. (Color online) (a) Density distributions of neutrons in
40Ca calculated for the deformed harmonic-oscillator model at an
oblate deformation of the aspect ratio 1 : 5 with ω = 0. The contours
correspond to multiple steps of 0.05 fm−2. The densities for the φ

direction in the cylindrical coordinate are integrated. (b) The same as
(a) but with ω =1.6 MeV/�. The colors are normalized by the largest
density of (a).

−5/2−[303] (� = 3), −5/2+[202] (� = 2), and −3/2−[301]
and −1/2−[301] (� = 1) become unoccupied. Summing
up the aligned single-particle angular momenta, we obtain
the neutron contribution to the z component of the total
angular momentum Jz = 31�. Taking into account the proton
contribution as well, we finally obtain the total angular
momentum Jz = 62 � for this oblate configuration, which is
close to that of the torus isomer for 40Ca obtained by the
cranked HF calculation. The neutron density distribution at
ω = 1.6 MeV/� is shown in Fig. 19(b). The two peaks seen
in Fig. 19(a) vanish and densities in the central region become
flat and stretch to radial direction, as the single-particle states
with high � are occupied.

Figure 20 shows the density distributions of individual
single-particle states of special interest at aspect ratio 1 : 5.
The densities for the ϕ direction in the cylindrical coordinate
are integrated. The dashed line shows the density distribution
of the lowest � = 0 state. On the other hand, the solid lines
depict those of the aligned � = 2, 4, and 5 states mentioned
above that are occupied at ω = 1.6 MeV/�. The single-particle
density distributions of these aligned states peak around r =
6 fm. Apparently, the overlap between the aligned nucleons and
the nucleons in the lowest � = 0 state is very small. Namely,
the lowest � = 0 state largely containing the spherical 0s
component is rather isolated from the others. To gain the
attractive interactions between nucleons, the total system tends
to maximize the overlaps between the density distributions
of individual single particles. Thus, it would be energetically
favorable to concentrate the densities of individual nucleons
around r = 6 fm. In this way, the nucleus with extremely large
oblate deformation may start to generate the torus shape. This
seems to be the basic reason why a large ‘hole’ is created in
the central region of the nucleus by eliminating the spherical
0s wave function.
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FIG. 20. Density distributions of the single-particle states of
special interest for 40Ca on the z = 0 plane in an oblate deformation of
the aspect ratio 1 : 5 calculated with the deformed harmonic-oscillator
model. The densities in the φ direction in the cylindrical coordinate
are integrated. The solid lines show the density distributions of the
aligned single-particle states with � = 2, 4, and 5 that are occupied
at ω = 1.6 MeV/�. The dashed line shows the density distribution of
the lowest � = 0 state.

V. SUMMARY

We have systematically investigated the existence of high-
spin torus isomers for a series of N = Z even-even nuclei
from 28Si to 56Ni using the cranked HF method. We found
the stable torus isomers from 36Ar to 52Fe for all the Skyrme
interactions used in this study. In the obtained torus isomers,
the z components of the total angular momentum are Jz = 36�

for 36Ar, 60� for 40Ca, 44� for 44Ti, 72� for 48Cr, and 52� for
52Fe. We fitted the density distribution of each of the obtained
torus isomers with the Gaussian function. We also analyzed
the microscopic structure of the obtained torus isomers by
plotting the single-particle energies versus � and using the
concept of sloping Fermi surface. We determined the regions
of ω for which the obtained torus isomers can stably exist
in each Skyrme interaction. The dependence of the obtained
results on the Skyrme interactions employed is found to be
weak.

We have also performed TDHF calculations to explore
the properties of the precession motion rotating with angular

momentum I = K + 1, which is built on each of the obtained
torus isomer with I = K . For all the obtained torus isomers,
the precession motion emerges and the symmetry axis rotates
about the precession axis for at least two periods. It was
found that the precession motion of the 60� isomer in 40Ca
is especially robust and stably rotates for many periods, We
obtained similar results for all the Skyrme interactions used,
We also estimated the moment of inertia for the rotation about
a perpendicular axis from the calculated rotational periods of
the precession motion. The obtained moments of inertia are
close to the rigid-body values for all the obtained torus isomers.

We have discussed the radial density distribution of each
single-particle wave function in the high-spin torus isomer
of 40Ca. We showed that the density distributions are well
approximated by those of the RDHO model. We then discussed
how the shell structure develops from spherical to torus shapes.
There are two important mechanisms for stabilizing torus
isomers: (i) the development of the major shells consisting
of single-particle states whose energies are given by E =
(N ′

sh + 1) + �
2�2/2mR2

0, where N ′
sh = nr + nz and � is the z

component of orbital angular momentum. (ii) a large value of
R0 that reduces the energies of high � single-particle states.
We finally discussed why the 0s components of all the single-
particle wave functions vanish and generate a torus shape.
We showed that in an aligned single-particle configuration
with extremely large oblate deformation, the overlaps between
the density distributions of the lowest � = 0 single-particle
state and the aligned high-� single-particle states become
very small due to the strong centrifugal force. To gain the
attractive interaction energy as much as possible, nucleons tend
to maximize the overlaps of their wave functions. An optimal
configuration beyond the limit of large oblate deformation
is the one creating the localization of single-particle density
distributions around a torus ring. This seems to be a basic
mechanism of the emergence of high-spin torus isomers.
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APPENDIX: PARAMETERS AND VOLUME CONSERVATION IN THE RDHO MODEL

In the RDHO model, we take the oscillator frequency, ω0, to conserve the inner volume of an equipotential energy surface. It
is given by

(
ω0
◦
ω0

)3

=
{(

1 + η2

2

)√
1 − η2 + 3

4πη
(
1 + 2

π
arctan η√

1−η2

)
(0 � η < 1)

3
2πη (η � 1),

(A1)

where η = R0/d and
◦
ω0 denotes the oscillator frequency in the spherical limit. Here, we take �

◦
ω0= 41A−1/3ρtorus/ρgr MeV,

where A is the number of nucleons, and ρtorus and ρgr denote the average densities of a torus isomer and the ground state,
respectively [11]. In the calculations, we use ρtorus = (2/3)ρgr.
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557 (1974).

[4] A. Bohr, in Elementary Modes of Excitation in Nuclei, Proceed-
ings of the International School of Physics “Enrico Fermi”,
Course LXIX, edited by A. Bohr and R. A. Broglia (North-
Holland, Amsterdam, 1977), p. 3.

[5] A. V. Afanasjev, D. B. Fossan, G. J. Lane, and I. Ragnarsson,
Phys. Rep. 322, 1 (1999).

[6] A. Bohr and B. R. Mottelson, Nucl. Phys. A 354, 303c (1981).
[7] A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. II (World

Scientific, Singapore, 1998).
[8] M. A. Deleplanque, S. Frauendorf, V. V. Pashkevich, S. Y. Chu,

and A. Unzhakova, Phys. Rev. C 69, 044309 (2004).
[9] Y. R. Shimizu, M. Matsuzaki, and K. Matsuyanagi, Phys. Rev.

C 72, 014306 (2005).
[10] C. G. Andersson, J. Krumlinde, G. Leander, and Z. Szymański,
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