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Universal damping mechanism of quantum vibrations in deep sub-barrier fusion reactions
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We demonstrate the damping of quantum octupole vibrations near the touching point when two colliding nuclei
approach each other in the mass-asymmetric 16O + 208Pb system, for which the strong fusion hindrance was clearly
observed. We, for the first time, apply the random-phase approximation method to the heavy-mass asymmetric
dinuclear system to calculate the transition strength B(E3) as a function of the center-of-mass distance. The
obtained B(E3) strengths are substantially damped near the touching point, because the single-particle wave
functions of the two nuclei strongly mix with each other and a neck is formed. The energy-weighted sums
of B(E3) are also strongly correlated with the damping factor, which is phenomenologically introduced in the
standard coupled-channel calculations to reproduce the fusion hindrance. This strongly indicates that the damping
of the quantum vibrations universally occurs in the deep sub-barrier fusion reactions.
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Heavy-ion fusion reactions are an excellent probe to inves-
tigate the fundamental features of the dynamics for many-body
quantum systems. When a projectile approaches a target, the
Coulomb barrier is formed, because of the strong cancellation
between the Coulomb repulsion and the nuclear attractive
force. Nuclear fusion takes place when the projectile penetrates
through this Coulomb barrier. At incident energies in the
vicinity of the Coulomb barrier height, called the sub-barrier
fusion, the strong enhancements of fusion cross sections,
compared to the estimations of a simple one-dimensional
potential model, have been observed in many systems. These
enhancements are well accounted for in terms of the couplings
between the relative motion of the colliding nuclei and the
intrinsic degrees of freedom such as collective vibrations of
the target and the projectile [1]. The coupled-channel (CC)
model, which takes into account this mechanism, has been
successful in describing such enhancements [2,3].

Recent experiments at extremely low incident energies,
called the deep sub-barrier energies, revealed, however, that
steep falloffs of the fusion cross sections, compared to the es-
timations of the standard CC model, emerge in a wide range of
mass systems [4,5] (see Ref. [6] for details). These steep falloff
phenomena are often called the fusion hindrance. An important
quantity for understanding this fusion hindrance is the potential
energy at the touching point of the colliding nuclei, which is
strongly correlated with the threshold incident energy for the
emergence of the fusion hindrance. That is, the fusion hin-
drance would be associated with the dynamics in the overlap
region of the two colliding nuclei (see Fig. 1 in Ref. [7]).

A theoretical challenge is how to extend the standard CC
model to describe these fusion hindrance phenomena in the
overlap region. Two different models based on assumptions
opposite to each other have been proposed [6]. One is the
sudden approach proposed by Mişicu and Esbensen [8,9]. They
constructed a heavy ion-ion potential with a shallow potential
pocket considering the Pauli principle effect that acts when
two colliding nuclei overlap with each other. The other is the
adiabatic approach proposed by Ichikawa et al. [10]. In this
approach, neck formations between the colliding nuclei are

taken into account in the overlap region. Based on this picture,
the sudden and adiabatic processes were smoothly jointed
by phenomenologically introducing the damping factor in the
coupling form factor [11]. Later, we showed that the physical
origin of the damping factor is the damping of quantum
vibrations of the target and the projectile near the touching
point using the random-phase approximation (RPA) method
for the light-mass symmetric 16O + 16O and 40Ca + 40Ca
systems [12].

In recent years, another useful approach, different from
the CC model, has been developed to describe heavy-ion
fusion reactions on the basis of the self-consistent mean-field
theory [6]: In particular, Umar and Oberacker proposed the
density-constrained time-dependent Hartree-Fock method to
calculate the energy-dependent ion-ion interaction poten-
tial [13]. By using this method, systematic investigations on
deep sub-barrier fusions have been performed [14–16].

In this Rapid Communication, we show that the damping of
the quantum vibrations near the touching point is a universal
mechanism in the deep sub-barrier fusions and is responsible
for the fusion hindrance. A typical example optimally suited
for this purpose is the recent precise data for the 16O + 208Pb
fusion [5]. The performances of both the sudden and adiabatic
models have been well tested in this system [9,11]. The
adiabatic model can reproduce well the experimental data
rather than the sudden model for the fusion hindrance. To
discriminate which model is a better description, we here
show the physical origin of the damping factor introduced in
Ref. [11] in the heavy-mass asymmetric 16O + 208Pb system.

In the standard CC model (and the sudden model), the
vibrational modes of the individual colliding nuclei are
assumed not to change, even when the two nuclei strongly
overlap with each other. However, as shown in Ref. [12], the
single-particle wave functions are drastically changed by level
repulsions, which are associated with the neck formations.
We apply the RPA method to the heavy-mass asymmetric
system, 16O + 208Pb, and show that these mechanisms lead
to damping of quantum vibrations in the colliding nuclei near
the touching point. This is exhibited by a drastic decreases
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of the B(E3) strengths carried by low-energy RPA excitation
modes.

To illustrate our main idea, we first discuss the Nilsson
diagram for protons as a function of the center-of-mass
distance, R, in the 16O + 208Pb system. We calculate the mean-
field potential for the 16O + 208Pb system using the folding
procedure with the single Yukawa function [17]. Before the
touching point, we assume the spherical shape for both nuclei.
After the touching point, we describe the nuclear shapes with
the reflection-asymmetric lemniscatoids parametrization [18].
(The parametrization dependence is negligible, because in
this Rapid Communication we do not discuss the strongly
overlapping region.) Based on these densities, we also calcu-
late the Coulomb potential. We use the radius for the proton
and neutron potentials, R0, with R0 = 1.27A1/3 fm, where
A is the total nucleon number. The depths of the neutron
and proton potentials for individual 16O and 208Pb nuclei, VT

and VP , are taken from Ref. [19]. In the folding procedure,
we smoothly joint the two different depth parameters of the
mean-field potentials for 16O and 208Pb by the function V0(z) =
1
2 [(VT − VP )erf{(z − zc)/μ} + (VT + VP )], where zc denotes
the center position between the two surfaces of the colliding
nuclei and μ denotes the smoothing parameter. We take
μ = 0.8 fm, which is the same as the diffuseness parameter of
the single-particle potential. In the calculations, the origin is
located at the center-of-mass position of the two nuclei.

Using the obtained mean-field potentials, we solve the
axially symmetric Schrödinger equation with the spin-orbit
force. The details of the model and the parameters are similar
to Refs. [17,19]. Then, the z component of the total angular
momentum, �, is the good quantum number. Note that the
parity is not a good quantum number because the mean-field
potential for the whole system breaks the space-reflection sym-
metry. We expand the single-particle wave functions in terms
of the deformed harmonic-oscillator bases in the cylindrical
coordinate representation. The deformation parameter of the
basis functions is determined so as to cover the target and the
projectile. The basis functions with energies lower than 26 �ω
are taken into account.

Figure 1 shows the Nilsson diagram as a function of the
center-of-mass distance R. In the figure, we can see extremely
strong Coulomb effect of 208Pb on 16O. The single-particle p1/2

and p3/2 states in 16O are shown by the (red) thick solid lines.
Even at the large separation distance R = 20 fm, the energies
of these two states are higher than the Fermi energy of the s1/2

state in 208Pb. The mismatch of the two Fermi levels between
16O and 208Pb occurs due to the strong Coulomb effect. At an
infinite separation distance, the energies of the p1/2 and p3/2

states for 16O are −5.88 and −10.7 MeV, respectively. Thus,
at R = 20 fm, the depth of the mean-field potential for 16O
becomes shallow by about 5 MeV due to the Coulomb effect
from 208Pb.

The single-particle energies of the p1/2 and p3/2 states
in 16O remarkably increase with decreasing R due to the
increasing Coulomb effect from 208Pb. Then, many level
crossings and repulsions between the energy levels of 16O and
208Pb occur. With decreasing R, the energy of the p1/2 state
becomes positive around R = 18 fm, that is, it changes into a
resonance state, but there is still a sufficiently high Coulomb
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FIG. 1. (Color online) Nilsson diagram for the 16O + 208Pb
system as a function of R. The light gray (red) thick lines represent
the occupied p1/2 and p3/2 states in 16O. The dark gray (blue) thick
solid lines show the occupied states in 208Pb. The gray area indicates
the overlap region of the colliding nuclei. The arrows represent the
main particle-hole excitations constituting the RPA modes.

barrier. After that, it goes across the f5/2 and p3/2 states of
208Pb around R = 16 fm and the p1/2 state of 208Pb around
R = 13 fm. Below R = 13 fm, the Coulomb barrier becomes
lower due to the attractive nuclear mean-field potential. Then,
the strong mixture of the single-particle states between 16O and
208Pb starts in many levels, which causes many level splittings
seen in the Nilsson diagram.

We now solve the RPA equation at each R for the mass-
asymmetric 16O + 208Pb system. We calculate the first excited
3− (octupole vibrational) states of 16O and 208Pb, which give
the main contributions in the standard CC calculations. We
can easily apply the RPA method to the di-nuclear system,
because its wave function is described with a one-center Slater
determinant. We take the single-particle levels for each neutron
and proton up to the 200th and the coherent superposition of
all one-particle–one-hole states with excitation energies below
30 MeV. We follow the diabatic single-particle configuration
corresponding to the ground state of 16O. The occupied p1/2

and p3/2 states in 16O are represented by the light gray (red)
thick curves in Fig. 1. We carry out the RPA calculation,
avoiding immediate vicinities of the level-crossing points.
We use the density-dependent residual interaction taken from
Ref. [20] and tune it so that the energy of the spurious
center-of-mass motion becomes zero. We calculate B(E3)
values for the RPA solutions with � = 0 in individual nuclei
using the shifted octupole operator, ̂Q30(R − R′

0), where R′
0 is

the center-of-mass position of the projectile or target nucleus.
At the large separation distance R = 20 fm, we obtain

the first 3− excited states of individual nuclei. The obtained
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FIG. 2. (Color online) Contour maps of the proton transition
densities and current distributions for the first excited 3− states of
16O and 208Pb at R = 20 and 10.73 fm. The contour lines correspond
to multiples of 0.01 and 0.005 fm−2 for 16O and 208Pb, respectively.
The arrows represent the current density. The currents and colors are
normalized at R = 20 fm in individual nuclei. The (red) thick solid
circles indicate the half depth of the mean-field potential.

energies and B(E3, 3−
1 → 0+

1 ) values are 2.86 MeV and
7.13 × 104e2 fm6 for 208Pb and 4.64 MeV and 124 e2 fm6

for 16O. The obtained transition densities and currents for the
first 3− states of 16O and 208Pb are depicted in Figs. 2(a)
and 2(c). At R = 20 fm, these modes are isolated. When the
two nuclei approach each other, however, these modes start to
fragment into several states. To evaluate the octupole collective
strengths carried by low-energy excitations, we then calculate
the energy-weighted sum of B(E3) strengths. By checking
the spectrum of all obtained RPA modes as a function of R,
we determined to take the sum for octupole excitations with
E � 4 MeV and E � 6 MeV for 208Pb and 16O, respectively.

Figure 3 shows the B(E3) strengths for (a) 16O and (b) 208Pb
as functions of R. The calculated values (the solid circles)
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FIG. 3. Energy-weighted sums of B(E3) for (a) 16O and (b) 208Pb
as functions of R. The solid circles show the results of the RPA
calculations. The dashed curves represent the damping factor, which
well reproduces the experimental data of the fusion cross section for
16O + 208Pb taken from Ref. [11]. The gray area indicates the overlap
region of the colliding nuclei.

drastically decrease near the touching point (the boundary
between the white and gray areas) in both nuclei. The transition
densities and currents for the RPA modes with the maximum
B(E3) at the touching point are depicted in Figs. 2(b) and 2(d).
These figures indicate that the octupole collectivities of both
16O and 208Pb are considerably diminished by each colliding
partner.

The microscopic origin of the damping of these vibrations
is easily seen as follows. At R = 20 fm, the main proton
components of the 3− modes are the excitations p1/2 → d5/2

and p3/2 → d5/2 for 16O, and the excitations d3/2 → h9/2 and
s1/2 → f7/2 for 208Pb [see the (red and blue) arrows around
R = 19 fm in Fig. 1]. The density distributions of the p1/2 and
d5/2 states in 16O are displayed in Figs. 4(a) and 4(b). Their
wave functions suffer major modifications near the touching
point at R = 11.65 fm, as depicted in Figs. 4(c) and 4(d) [see
also the (red) arrow at R = 11.65 fm in Fig. 1]. We can clearly
see the neck formations in Fig. 4(d). Also for 208Pb, similar
drastic changes of single-particle wave functions occur for
both protons and neutrons near the Fermi surface, causing the
damping of the collectivity of the 3− vibration [see the (blue)
arrows around 10.6 fm in Fig. 1].

Finally, to see the correlation with the damping factor
phenomenologically introduced in the CC calculation, we
compare the calculated results with the damping factor that
well reproduced the experimental data of the fusion cross
section for 16O + 208Pb [11]. The damping factor is given
by �(r,λα) = e−(r−Rd−λα )2/2a2

d for r < Rd + λα (otherwise
� = 1), where ad and λa denote the damping width and the
eigenvalues of the coupling matrix elements, respectively. The
parameter Rd is given by Rd = rd (A1/3

T + A
1/3
P ), where rd

denotes the damping radius parameter, and AT and AP are the
mass numbers of the target and the projectile, respectively. In
the calculation of Ref. [11], rd = 1.298 fm and ad = 1.05 fm
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FIG. 4. (Color online) Density distributions of the p1/2 and d5/2

states originally belonging to 16O at R = 20 fm and their evolutions
at R = 11.65 fm. The (red) thick solid circles indicate the half depth
of the mean-field potential. The contour lines correspond to multiples
of 0.0015 fm−3. The colors are normalized at 0.01 fm−3.

are used. Then, the largest eigenvalue of λα is 1.46 fm. In
Figs. 3(a) and 3(b), the dashed curves represent the damping
factor with these parameters normalized at R = 20 fm. We
can see that the damping factor strongly correlates with the
calculated energy-weighted sums of B(E3) in the low-energy
region, which clearly indicates that the damping of the
quantum vibrations indeed occurs when the colliding nuclei
approach each other.

In summary, we have demonstrated the damping of the
quantum octupole vibrations of both 16O and 208Pb, when
they approach each other. To show this, we, for the first
time, applied the RPA method to the heavy-mass asymmetric
16O + 208Pb system. We have discussed the Nilsson diagram
as a function of the center-of-mass distance R and have
shown that the single-particle energies in 16O are largely
shifted to the positive-energy direction by the strong Coulomb
effects from the heavy-mass 208Pb in a colliding process.
We calculated the B(E3) strengths for 16O and 208Pb as a
function of R. The obtained B(E3) strengths are substantially
damped near the touching point of the colliding nuclei. The
obtained energy-weighted sum of B(E3) in the low-energy
region exhibits a strong correlation with the damping factor
that reproduces well the experimental data of the fusion cross
section for 16O + 208Pb. This is a clear evidence that the
damping of the quantum octupole vibrations indeed occur near
the touching point in the deep sub-barrier fusion reactions. The
drastic change of single-particle wave functions constituting
the low-energy collective excitations discussed in this paper
would commonly occur in all deep sub-barrier reactions.
Therefore, the damping of quantum vibrations in both the
target and the projectile near the touching point seems to be
a universal mechanism causing the fusion hindrance, which
should be taken into account in the standard CC model.
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[8] Ş. Mişicu and H. Esbensen, Phys. Rev. Lett. 96, 112701 (2006);

,Phys. Rev. C 75, 034606 (2007).
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