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Abstract
Assuming that the time-evolution of the self-consistent mean field is deter-
mined by five pairs of collective coordinate and collective momentum, we
microscopically derive the collective Hamiltonian for low-frequency quadru-
pole modes of excitation. We show that the five-dimensional collective
Schrödinger equation is capable of describing large-amplitude quadrupole
shape dynamics seen as shape coexistence/mixing phenomena. We focus on
basic ideas and recent advances of the approaches based on the time-depen-
dent mean-field theory, but relations to other time-independent approaches are
also briefly discussed.

Keywords: collective Hamiltonian, large-amplitude collective motion, shape
coexistence, time-dependent self-consistent mean field

(Some figures may appear in colour only in the online journal)

1. Introduction

In this paper, we focus on low-frequency quadrupole motions which play the major role in
low-energy excitation spectra. As is well known, various giant resonances appearing in highly
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excited states are well described by the random-phase approximation (RPA), which is a small-
amplitude approximation of the time-dependent Hartree–Fock (TDHF) theory. In contrast to
the giant resonances, low-frequency quadrupole vibrations exhibit characteristic features
associated with superfluidity of the finite quantum system (nucleus), that is, pairing corre-
lations and varying shell structure of the self-consistent mean field play essential roles [1–4].

1.1. Quantum shape fluctuation, shape mixing and shape coexistence

The low-frequency quadrupole vibrations can be regarded as soft modes of the quantum
phase transition towards equilibrium deformations of the mean field. As is well known, in
nuclei situated in the transitional region from spherical to deformed, amplitudes of quantum
shape fluctuation about the equilibrium remarkably increase. This is the case also for weakly
deformed nuclei where the gain in binding energies due to the symmetry breaking is com-
parable in magnitude to the vibrational zero-point energies. The transitional region is wide
and those nuclei exhibit quite rich excitation spectra. This is a characteristic feature of finite
quantum systems and provides an invaluable opportunity to investigate the process of the
quantum phase transition through analysis of quantum spectra. To describe such large-
amplitude collective motions (LACM), we need to go beyond the small-amplitude approx-
imation (quasiparticle RPA (QRPA)) of the time-dependent Hartree–Fock–Bogoliubov
(TDHFB) theory for superfluid systems. It is required to develop a microscopic theory of
LACM capable of describing the varying shell structure associated with the time-dependent
mean field with superfluidity.

The spherical shell structure gradually changes with the growth of deformation and
generates ‘deformed shell structures’ and ‘deformed magic numbers,’ that stabilize certain
deformed shapes of the mean field. When a few local minima of the mean field with different
shapes appear in the same energy region, LACM tunneling through potential barriers and
extending between local minima may take place. These phenomena may be regarded as a kind
of macroscopic quantum tunneling. Note that the barriers are not generated by external fields
but self-consistently generated as a consequence of quantum dynamics of the many-body
system under consideration. Quantum spectra of low-energy excitation that needs such
concepts have been observed in almost all regions of the nuclear chart [5]. When different
kinds of quantum eigenstates associated with different shapes coexist in the same energy
region, we may call them ‘shape coexistence phenomena.’ This is the case when shape
mixing due to tunneling motion is weak and collective wave functions retain their localiza-
tions about different equilibrium shapes. On the other hand, if the shape mixing is strong,
large-amplitude shape fluctuations (delocalization of the collective wave functions) extending
to different local minima may occur.

1.2. Collective rotations restoring broken symmetries

As is well known, the central concept of the BCS theory of superconductivity is spontaneous
breaking of the gauge symmetry and emergence of collective modes. The massless modes
restoring the broken symmetry are called Anderson–Nambu–Goldstone (ANG) modes [6–8].
As emphasized by Bohr and Mottelson, nuclear rotation can be regarded as an ANG mode
restoring the broken rotational symmetry in real space [1, 9].

In finite quantum systems such as nuclei, the rotational ANG modes may couple rather
strongly with quantum shape-fluctuation modes. For instance, even when the self-consistent
mean field acquires a deep local minimum at a finite value of β, the nucleus may exhibit a
large-amplitude shape fluctuation in the γ degree of freedom, if the deformation potential is
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flat in this direction. Here, as usual, β and γ represent the magnitudes of axially symmetric
and asymmetric quadrupole deformations, respectively. Such a situation is widely observed in
experiments and called γ-soft. Although the quantum-mechanical collective rotation is for-
bidden about the symmetry axis, the rotational degrees of freedoms about three principal axes
are all activated once the axial symmetry is dynamically broken due to the quantum shape
fluctuation. Rotational spectra in such γ-soft nuclei do not exhibit a simple I(I + 1) pattern.
Such an interplay of the shape-fluctuation and rotational modes may be regarded as a char-
acteristic feature of finite quantum systems and provides an invaluable opportunity to
investigate the process of the quantum phase transition through analysis of quantum spectra.

Thus, we need to treat the two kinds of collective variables, i.e., those associated with the
symmetry-restoring ANG modes and those for quantum shape fluctuations, in a unified
manner to describe low-energy excitation spectra of nuclei.

1.3. Five-dimensional (5D) quadrupole collective Hamiltonian

Vibrational and rotational motions of the nucleus can be described as time-evolution of a self-
consistent mean field. This is the basic idea underlying the unified model of Bohr and
Mottelson [10, 11]. In this approach, the 5D collective Hamiltonian describing the quadrupole
vibrational and rotational motions is given by [1, 12]

H T T V , , 1coll vib rot ( ) ( )b g= + +

T D D D
1

2
, ,

1

2
, , 2vib

2 2( ) ˙ ( ) ˙ ˙ ( ) ˙ ( )b g b b g bg b g g= + +bb bg gg

T
I

2 ,
. 3

k

k

k
rot

2

( )
( )

å b g
=

Here, β and γ are treated as dynamical variables, and ḃ and ġ represent their time-derivatives.
They are related to expectation values of the quadruple operators (with respect to the time-
dependent mean-field states) and their variations in time. The quantities (D D, ,bb bg and Dγγ)
appearing in the kinetic energies of vibrational motion, Tvib, represent inertial masses of the
vibrational motion. They are functions of β and γ. The quantities Ik and ,k( ) b g in the
rotational energy Trot represent the three components of the angular momentum and the
corresponding moments of inertia, respectively. Note that they are defined with respect to the
principal axes of the body-fixed (intrinsic) frame that is attached to the instantaneous shape of
the time-dependent mean-field.

In the case that the potential energy V(β, γ) has a deep minimum at a finite value of β and
γ = 0° (or γ = 60°), a regular rotational spectrum with the I(I + 1) pattern may appear. In
addition to the ground band, we can expect the β and γ bands to appear, where vibrational
quanta with respect to the β and γ degrees of freedom are excited. Detailed investigations on
the γ-vibrational bands over many nuclei have revealed, however, that they usually exhibit
significant anharmonicities (non-linearlities) [13]. Also for the β-vibrational bands, it has
been known [14–16] that they couple, sometimes very strongly, with pairing-vibrational
modes (associated with fluctuations of the pairing gap). Recent experimental data indicate the
need for a radical review of their characters [5].

1.4. Collective quantization of time-dependent mean fields

States vectors of time-dependent mean field are kinds of generalized coherent states, and we
can rigorously formulate the TDHFB as a theory of classical Hamiltonian dynamical system
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of large dimension [17–20]. Because time-evolution of the mean field is determined by the
classical Hamilton equations, we cannot describe, within the framework of the TDHFB,
quantum spectra of low-lying states and macroscopic quantum tunneling phenomena such as
spontaneous fissions and subbarrier fusions. To describe these genuine quantum phenomena,
we need to introduce a few collective variables determining the time-evolution of the mean
field and quantize them. We refer this procedure ‘collective quantization.’

For small-amplitude vibrations about an HFB equilibrium, it is well known that we can
introduce collective variables in a microscopic way by solving the QRPA equations. Single-
particle spectra for a mean-field of a finite quantum system have rich shell structures, and
thereby a variety of collective vibrational modes emerge. Even within the isoscalar quadru-
pole vibrations, two collective modes appear exhibiting quite different characteristics; the
low- (usually first excited 2+) and high-frequency (giant resonance) modes. One of the merits
of the QRPA is that we can determine the microscopic structures of the collective coordinates
and momenta starting from a huge number of microscopic (particle–hole, particle–particle,
and hole–hole) degrees of freedom. We can thus learn how collective vibrations are generated
as coherent superpositions of many two-quasiparticle excitations. Examining the microscopic
structure of the low-frequency quadrupole vibrations, we see that the weights of two-quasi-
particle excitations near the Fermi surface are much larger than those in the mass quadrupole
operators (see, e.g., [21]). This clearly indicates the importance of describing collective modes
in a microscopic way. Another merit of the QRPA is that it yields the ANG modes and their
collective masses (inertial functions). In this way, we can restore the symmetries broken by
the mean-field approximation [8, 22, 23].

It has been one of the longstanding fundamental subjects in nuclear structure physics to
construct a microscopic theory of LACM by extending the QRPA concepts to non-equili-
brium states [24–26]. Below we shall briefly review various ideas proposed up to now for
this aim.

2. Basic ideas of large-amplitude collective motion

During the attempts to construct a microscopic theory of LACM since the latter half of the
1970s, significant progress has been achieved in the fundamental concepts of collective
motion. Especially important is the recognition that microscopic derivation of the collective
Hamiltonian is equivalent to extraction of a collective submanifold embedded in the TDHFB
phase space, which is approximately decoupled from other non-collective degrees of freedom.
From this point of view we can say that collective variables are nothing but local canonical
variables which can be flexibly chosen on this submanifold. Below we review recent
developments achieved on the basis of such concepts.

2.1. Extraction of collective submanifold

Attempts to formulate a LACM theory without assuming adiabaticity of large-amplitude
collective motion were initiated by Rowe and Bassermann [27] and Marumori [28], and led to
the formulation of the self-consistent collective coordinate (SCC) method [29]. In these
approaches, collective coordinates and collective momenta are treated on the same footing. In
the SCC method, basic equations determining the collective submanifold are derived by
requiring maximal decoupling of the collective motion of interest and other non-collective
degrees of freedom. The collective submanifold is a geometrical object that is invariant with
respect to the choice of the coordinate system whereas the collective coordinates depend on it.
The idea of coordinate-independent theory of collective motion was developed also by Rowe
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[30] and Yamamura and Kuriyama [19]. This idea gave a deep impact on the fundamental
question ‘what are the collective variables.’ The SCC method was first formulated for TDHF,
but later extended to TDHFB for describing nuclei with superfluidity [31].

In the SCC method, under the assumption that time evolution is governed by a few
collective coordinates q q q q, , , f1 2( )= ¼ and collective momenta p p p p, , , ,f1 2( )= ¼ the
TDHFB states vectors are written as

t q p, e , 4G q pi ,
0∣ ( ) ∣ ( ) ( )ˆ ( )f f f= =

or equivalently,

t , e , 5Gi ,
0( ) ( )∣ ( ) ( )ˆ* *f f h h f= = h h

where 0f denotes the HFB ground state and , , , f1 2( )h h h h= ¼ with

q p q p
1

2
i ,

1

2
i . 6i i i i i i( ) ( ) ( )*h h= + = -

The TDHFB states t( )f are required to fulfill the canonical variable conditions

, ,
1

2
, 7

i
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h
f h h h

¶
¶

=

, ,
1

2
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i
i( ) ( ) ( )*

*
*f h h

h
f h h h

¶
¶

= -

which guarantee that (q, p) are canonical conjugate pairs. The one-body operator G ,ˆ ( )*h h is
determined by the time-dependent variational principle

t
H, i , 0 9( ) ( ) ( )* *d f h h f h h

¶
¶

- =

with

t
, 10

i
i

i
i

i

˙ ˙ ( )
⎛
⎝
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⎞
⎠
⎟⎟*
*å h

h
h

h
¶
¶

=
¶
¶

+
¶
¶

and the canonical variable conditions.
Making a power-series expansion of Ĝ with respect to , ,( )*h h

11G G G G G G,
i i i i i ij ij i j ij i i ij i j

10 01 20 11 02( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
* * * * *å åh h h h h h h h h h= + + + + + ¼

and requiring that the time-dependent variational principle holds for every power of (η, η*),
we can successively determine the one-body operators G

m n,ˆ ( )
with m+ n= 1, 2, 3 .... This

method of solution is called the (η, η*) expansion method. The collective Hamiltonian is
defined by the expectation value of the microscopic Hamiltonian with respect to , .( )*f h h
Because (η, η*) are canonical variables, they are replaced by boson operators after canonical
quantization. The lowest linear order corresponds to the QRPA. Accordingly, the collective
variables ,i i( )*h h correspond to specific QRPA modes in the small-amplitude limit. It is
important to note, however, that the microscopic structure of Ĝ changes as a function of

,i i( )*h h due to the mode-mode coupling effects among different QRPA modes in the higher
order. In this sense, the SCC method may be regarded as a dynamical extension of the boson
expansion method [32]. Thus, the SCC is a powerful method of treating anharmonic effects to
the QRPA vibrations originating from mode–mode couplings, as shown in its application to
the two-phonon states of anharmonic γ vibration [13, 33]. The SCC method was also used for
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derivation of the 5D quadrupole collective Hamiltonian and analysis of the quantum phase
transition from spherical to deformed shapes [34], and for constructing diabatic representation
in the rotating shell model [35].

2.2. Solution with adiabatic expansion

The ,( )*h h expansion about an HFB equilibrium point is not suitable for treating situations
such as shape coexistence, where a few local minima energetically compete in the HFB
potential energy surface. For describing adiabatic LACM extending over different HFB local
minima, a new method has been proposed [36]. In this method, the basic equations of the
SCC method are solved by an expansion with respect to the collective momenta. It is called
‘adiabatic SCC (ASCC) method.’ Similar methods have been developed also by Klein et al
[37], and Almehed and Walet [38].

Let us assume that the TDHFB state vector can be written as

q p q, e . 12p Q qi
i i

i

∣ ( ) ∣ ( ) ( )ˆ ( )f f= å

Here, Q q
iˆ ( ) are one-body operators, called infinitesimal generators, and q( )f is an intrinsic

state at the collective coordinate q, called a moving frame HFB state.
We determine the microscopic structures of Q q

iˆ ( ) and q( )f by the time-dependent
variational principle

q p
t

H q p, i , 0. 13( )∣ ˆ ∣ ( ) ( )d f f
¶
¶

- =

Making power-series expansions with respect to the collective momenta p and retaining
terms up to the second order in p, we obtain

moving-frame HFB equation

q H q q 0, 14M( )∣ ˆ ( )∣ ( ) ( )d f f =

moving-frame QRPA equations (local harmonic equations)

q H q Q q B q P q
V
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Q q Q q q,
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=
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where H qM
ˆ ( ) represents the Hamiltonian in the frame attached to the moving mean field,

H q H
V

q
Q q , 17M

i
i

iˆ ( ) ˆ ˆ ( ) ( )å= -
¶
¶

and is called ‘moving-frame Hamiltonian.’ The displacement operators P qî ( ) and Cij(q) are
defined by

P q q
q

qi 18i i
ˆ ( )∣ ( ) ∣ ( ) ( )f f=

¶
¶
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The double-commutator term in equation (16) arises from the q-derivative of the infinitesimal
generators Q q

iˆ ( ) and represents the curvatures of the collective submanifold.
Solving these equations self-consistently, we can determine the microscopic expressions

of the infinitesimal generators Q q
iˆ ( ) and P qî ( ) in bilinear forms of the quasiparticle creation

and annihilation operators defined locally with respect to q .( )f The collective Hamiltonian
is given by

q p q p H q p

V q B q p p

, , ,
1

2
21

ij

ij
i j

( ) ( )∣ ˆ ∣ ( )

( ) ( ) ( )



å

f f=

= +

with

V q q p B q
p p

, , , 22p
ij

i j
p0

2

0( ) ( )∣ ( ) ∣ ( )


= =
¶
¶ ¶

= =

where V(q) and Bij(q) represent the collective potential and the reciprocals of collective inertial
mass, respectively. They are functions of the collective coordinate q. Note that equations (14)–
(16) reduce to the HFB and QRPA equations at equilibrium points, where V q 0;i¶ ¶ =
namely, they are natural extensions of the HFB-QRPA equations to non-equilibrium states.

Let us note the following points.

• Difference from the constrained HFB equations. The moving-frame HFB equation (14)
resembles the constrained HFB equation, but the infinitesimal generators Q q

iˆ ( ) are here
self-consistently determined together with P qî ( ) as solutions of the moving-frame QRPA
equations (15) and (16) at every point of the collective coordinate q. Thus, contrary to
constrained operators in the constrained HFB theory, their microscopic structures change
as functions of q. In other words, the optimal ‘constraining’ operators are locally
determined at every point of q. The collective submanifold embedded in the TDHFB
phase space is extracted in this way. The canonical quantization of the collective
Hamiltonian described by a few collective variables (q, p) is similar to the quantization of
constrained system [30], but the ‘constraints’ are here generated by the dynamics of the
quantum many-body system under consideration.

• Meaning of the term ‘adiabatic’. It is used here in the meaning that we can solve the time-
dependent variational equation (13) in a good approximation by taking into account up to
the second order in an expansion with respect to the collective momenta p. It is important
to note that the effects of finite frequency of the LACM are taken into account through the
moving-frame QRPA equations. No assumption is made like that the kinetic energy of
LACM is much smaller than the lowest two-quasiparticle excitation energy at every point
of q.

• Physics of collective inertial mass. The collective inertial mass represents the inertia of
the many-body system against an infinitesimal change of the collective coordinate q
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during the time evolution of the mean field. It is a local quantity and varies as a function
of q. As the single-particle-energy spectrum in the mean field changes as a function of q,
level crossing at the Fermi energy successively occurs during the LACM. In the presence
of the pairing correlation, the many-body system can easily rearrange the lowest-energy
configurations at every value of q, i.e., the system can easily change q. The easiness/
hardness of the configuration rearrangements at the level crossings determines the
adiabaticity/diabaticity of the system. Since the inertia represents a property of the
system trying to keep a definite configuration, we expect that the stronger the pairing
correlation becomes, the smaller the collective inertial mass becomes [39]. It remains as
an interesting subject to investigate how the self-consistent determination of the optimal
directions of collective motion and the finite frequency ω(q) of the moving-frame QRPA
modes affect the level-crossing dynamics of the superfluid nuclear systems.

2.3. Consideration of gauge invariance

In the QRPA, the ANG modes such as the number-fluctuation (pairing rotational) modes are
decoupled from other normal modes and thereby the QRPA restores the gauge invariance
(number conservation) broken in the HFB mean field [8]. It is desirable to keep such a merits
of the QRPA beyond the small-amplitude approximation. Otherwise, spurious number-fluc-
tuation modes would unexpectedly mix in the LACM of interest. We can take into account
the gauge invariance in the following way [40]. Introducing the number-fluctuation variables
n( τ) and the gauge angles j( τ) conjugate to them, we write the TDHFB state vector (12) in a
more general form:

q p n q p n, , , e , , 23Ni∣ ( ) ∣ ( ) ( )˜( ) ( )
f j f= å j- t

t t

with

q p n q, , e 24G q p ni , ,∣ ( ) ∣ ( ) ( )ˆ ( )f f=

and

G q p n p Q q n q, , . 25
i

i
i

n p,

ˆ ( ) ˆ ( ) ˆ ( ) ( )( ) ( )å å= + Q
t

t t

=

Here N N N0
˜ ˆ( ) ( ) ( )º -t t t are the number-fluctuation operators measured from

N q N q ,0 ( ) ˆ ( )( ) ( )f fºt t with the suffix τ distinguishing protons and neutrons, and

qˆ ( )( )Q t
infinitesimal generators for the pairing-rotation degrees of freedom. The state vector

q p n, ,( )f may be regarded as an intrinsic state to the pairing rotation. Using q p n, , ,( )f j
in place of q p,( )f in equation (13) and expanding it in n( )t as well as p up to the second

order, we can determine qˆ ( )( )Q t
simultaneously with Q q

iˆ ( ) and P qiˆ ( ) such that the moving-
frame HFB + QRPA equations become invariant against the rotation of the gauge angle .( )j t

The gauge invariance of the resulting equations implies that we need to fix a gauge in
numerical applications. A convenient procedure of the gauge fixing is discussed in [40].

3. Microscopic derivation of the 5D quadrupole collective Hamiltonian

For collective submanifolds of two dimensions (2D) or more, large-scale numerical com-
putation is needed to find fully self-consistent solutions of the ASCC equations. Then, a
practical approximation scheme, called local QRPA (LQRPA) method, has been developed
[41–43]. This scheme may be regarded as a first step of iterative solution of equations (14)–

J. Phys. G: Nucl. Part. Phys. 43 (2016) 024006 K Matsuyanagi et al

8



(16). With use of it, we can easily derive the 5D collective Hamiltonian. We first derive the
2D collective Hamiltonian for vibrational motions corresponding to the ,( )b g deformations,
and then consider the three-dimensional (3D) rotational motions.

First, we solve the constrained HFB equation

H, , , 0 26CHFB( )∣ ˆ ( )∣ ( ) ( )d f b g b g f b g =

with

H H N D, , , ,
m

m mCHFB
0,2

2
ˆ ( ) ˆ ( ) ˜ ( ) ˆ( ) ( ) ( )

å åb g l b g m b g= - -
t

t t

=

+

where , ,( )( )l b gt ,m ( )m b g and D m2
ˆ ( )+

are the chemical potentials, the Lagrange multipliers,
and the quadrupole operators, respectively. The quadrupole deformation parameters ,( )b g are
defined by

D Dcos , , , 2720 20( )∣ ˆ ∣ ( ) ( )( ) ( )
b g h h f b g f b g= =+ +

D D
1

2
sin , , , 2822 22( )∣ ˆ ∣ ( ) ( )( ) ( )

b g h h f b g f b g= =+ +

where η is a scaling factor [1, 44].
Next, we solve

H Q
i

P i, , , ,
1

, , 0, 1, 2 29
i

iCHFB( )∣ ˆ ( ) ˆ ( ) ˆ ( )∣ ( ) ( ) ( )⎡⎣ ⎤⎦d f b g b g b g b g f b g- = =

H
i

P C Q i, , ,
1

, , , , 0. 1, 2

30

i i
i

CHFB( )∣ ˆ ( ) ˆ ( ) ( ) ˆ ( )∣ ( ) ( )

( )

⎡
⎣⎢

⎤
⎦⎥d f b g b g b g b g b g f b g- = =

These are the moving-frame QRPA equations without the curvature terms and called local
QRPA (LQRPA) equations. Making a similarity transformation such that the collective
masses corresponding to the collective coordinates (q1, q2) become unity, we can write the
kinetic energy of vibrational motions as

T p q
1

2

1

2
31

i
i

i

i
vib

1,2

2

1,2

2( )( ) ˙ ( )å å= =
= =

without loss of generality. Changes of the quadrupole deformation due to variations with
respect to q q,1 2( ) are given by

D
D

q
q md d . 0, 2 32m

i

m
i

i
2

1,2

2 ( ) ( )( )
( )

å=
¶
¶

=+

=

+

Thus, the kinetic energy of vibrational motions is given in terms of time derivatives of the
quadrupole deformation,

T M D M D D M D
1

2

1

2
, 33vib 00 20

2
02 20 22 22 22

2˙ ˙ ˙ ˙ ( )( ) ( ) ( ) ( )⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦= + ++ + + +

where

M
q

D

q

D
, . 34mm

i

i

m

i

m1,2 2 2

( ) ( )( ) ( )åb g =
¶

¶
¶

¶
¢

¢=
+ +
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It is straightforward to rewrite the above expression using the time derivatives of (β, γ).
Subsequently we solve the LQRPA equations for 3D rotational motions at every point on the
(β, γ) plane to obtain the inertial functions Dk(β, γ) and the moments of inertia

D k, 4 , sin 2 3k k
2 2( ) ( ) ( ) b g b b g g p= - determining the rotational energy Trot. This step

is the same as in Thouless and Valatin [45], except that the procedure is applied for non-
equilibrium points of (β, γ) as well as the equilibrium points in the potential energy surface V
(β, γ).

After quantizing in curvilinear coordinates (so-called Pauli prescription) [46], we obtain
the quantized 5D quadrupole collective Hamiltonian,

H T T V , , 35coll vib rotˆ ˆ ˆ ( ) ( )b g= + +

whose vibrational kinetic-energy term takes the following form:

T
WR

R

W
D

R

W
D

2

1
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3
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- ¶
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⎪

⎪

⎡
⎣⎢

⎛
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where

W D D D, , , , 382( ) ( ) ( ) ( )b g b g b g= -bb gg bg

R D D D, , , . 391 2 3( ) ( ) ( ) ( )b g b g b g=

If the inertial functions D D D D D, , , ,1 2 3( )bb gg are replaced by a common constant D and Dβγ

by 0, the above expression is reduced to

T
D2

1 1

sin 3
sin 3 . 40vib

2

4
4

2
ˆ ( )

⎛
⎝⎜

⎞
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b b

b
b b g g

g
g
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¶
¶

¶
¶

+
¶
¶

¶
¶

Such a drastic approximation may be valid only for small-amplitude vibrations about a
spherical HFB equilibrium.

Writing the collective wave functions as

IMK, , , , 41IM
K

IK
even

( ) ( ) ∣ ( )åb g b gY W = F Wa a
=

IMK
I2 1

16 1
42

K
MK
I I

M K
I

2
0( )∣ ( ) ( ) ( ) ( )⎡⎣ ⎤⎦ 

p d
W =

+
+

W + - W-

and solving the eigenvalue equation for vibrational wave functions

T V IMK T IMK E, , , , ,

43

IK
K

IK I IKvib
even

rotˆ ( ) ( ) ∣ ˆ ∣ ( ) ( )

( )

⎡⎣ ⎤⎦ åb g b g b g b g+ F + ¢ F = Fa a a a
¢=

¢

we obtain quantum spectra of quadrupole collective motion. The symmetries and boundary
conditions of the vibrational wave functions are discussed in [47].
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4. Illustrative examples

We here present some applications of the LQRPA method for deriving the 5D collective
Hamiltonian. In the numerical examples below, the pairing-plus-quadrupole (P + Q) model
Hamiltonian [48] (including the quadrupole-pairing interaction) is employed in solving the
CHFB + LQRPA equations. The single-particle energies and the P + Q interaction strengths
are determined such that the results of the Skyrme-HFB calculation for the ground states are
best reproduced within the P + Q model (see [42, 49] for details). The LQRPA method is
quite general and it can be used in conjunction with various Skyrme interactions or modern
density functionals. A large-scale calculation is required, however, and such an application of
the LQRPA method with realistic interactions/functionals is a challenging future subject. A
step toward this goal has recently been carried out for axially symmetric cases [50]. More
examples can be found in [41, 51] for 68–72Se, [42] for 72,74,76Kr, [52] for the 26Mg region,
[49] for 30–34Mg, [50] for 58–68Cr, [43] for 58–66Cr, and [53] for 128–132Xe and 130–134Ba.

4.1. Oblate–prolate shape coexistence and fluctuations in 72Kr

The collective potential V(β, γ) depicted in figure 1 exhibits two local minima. The oblate
minimum is lower than the prolate minimum. This is expected from the deformed shell
structure which gives rise to an oblate magic number at Z = N = 36. This figure also shows
that the valley runs in the triaxially deformed region and the barrier connecting the oblate and
prolate minima is low. Accordingly, one may expect large-amplitude quantum shape fluc-
tuations to occur along the triaxial valley. In fact, the vibrational wave function of the ground
01
+ state peaks around the oblate potential minimum, but its tail extends to the prolate region.
The vibrational wave function of the excited 02

+ state consists of two components: one is a
sharp peak on the oblate side and the other is a component spreading around the prolate
region somewhat broadly. It is interesting to notice that, as the angular momentum increases,
the localization of the vibrational wave functions in the (β, γ) deformation plane develops;
namely, the rotational effect plays an important role for the emergence of the shape-coex-
istence character.

We note that not only the vibrational inertial masses shown in figure 1 but also the
rotational inertial functions (D1, D2, and D3) and the pairing gaps significantly change as
functions of , .( )b g Due to the time-odd contributions of the moving HFB self-consistent
field, the collective inertial masses calculated with the LQRPA method are 20%–50% larger
than those evaluated with the Inglis–Belyaev cranking formula. Their ratios also change as
functions of ,( )b g [42]. As a consequence, as shown in figure 2, the excitation spectrum
calculated with the LQRPA masses is in much better agreement with experimental data than
that with the Inglis–Belyaev cranking masses.

4.2. Quantum shape transitions and fluctuations in 30,32,34Mg

This is a new region of quantum shape transition currently under live discussions toward
understanding the nature of the quadrupole deformation in these neutron-rich isotopes as well
as the mechanism of its emergence.

Figure 3 shows the collective potentials V(β, γ) and the vibrational wave functions
squared, , ,

K IK
2( )å b gFa of the 0 , 2 ,1 1

+ + and 02
+ states in 30,32,34Mg. It is clearly seen that

prolate deformation grows with the neutron number. The deformed magic numbers, Z = 12 of
protons and N = 20, 22, 24 at different values of β of neutrons [56] act cooperatively for the
appearance of the prolate minima. Interestingly, the vibrational wave functions of the 21

+ state
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are noticeably different from those of the 01
+ state in 30Mg and 32Mg, while they are similar

in 34Mg.
In figure 4, we display the probability density of finding a shape with a specific value of

β.

P Gd , , . 44I K0, 0
2 1 2( ) ∣ ( )∣ ∣ ( )∣ ( )òb g b g b g= Fa = =

Note that the volume element with G W R, 4 , , sin 38 2( ) ( ) ( )b g b b g b g g= is taken
into account here. Let us first look at the ground 01

+ states. The peak position moves toward a
larger value of β in going from 30Mg to 34Mg. The distribution for 32Mg is much broader than
those for 30Mg and 34Mg. Next, let us look at the excited 02

+ states. In 30Mg, the bump at β ;
0.1 is much smaller than the major bump at β ; 0.3. In this sense, we can regard the 02

+ state
of 30Mg as a prolately deformed state. In the case of 32Mg, the probability density exhibits a

Figure 1. Application of the LQRPA method to the oblate–prolate shape coexistence/
fluctuation phenomenon in 72Kr (from [42]). (a) Collective potentialV , ,( )b g (b) ratios
of the collective inertial masses D ,( )b gbb to the Inglis–Belyaev cranking masses.
(c) Same as (b) but for D , .( )b ggg Vibrational wave functions squared,

, ,
K IK

4 2( )å b b gFa for (d) the 01
+ state, (e) the 21

+ state, (f) the 41
+ state, (g) the

02
+ state, (h) the 22

+ state, and (i) the 42
+ state. For the 4b factor, see the text.
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very broad distribution extending from the spherical to deformed regions up to β = 0.5 with a
prominent peak at β ; 0.4 and a node at β ; 0.3.

Thus, the shape coexistence picture that the deformed excited 02
+ state coexists with the

spherical ground state approximately holds for 30Mg. On the other hand, large-amplitude
quadrupole-shape fluctuations dominate in both the ground and the excited 0+ states in 32Mg,
in contrast to the interpretation of deformed ground and spherical excited 0+ states [57] based
on a naive picture of crossing between the spherical and deformed configurations. To test
these theoretical predictions, an experimental search for the distorted rotational bands built on
the excited 02

+ states in 30Mg and 32Mg is strongly desired.

5. Some remarks on other approaches

In section 2, we reviewed the basics of a microscopic theory of LACM focusing on new
developments achieved after 2000. In this section, we give short remarks on other approaches
to LACM. Typical approaches developed by 1980 are described in detail in the textbook of
Ring and Schuck [22], and achievements during 1980–2000 are well summarized in the
review by Do Dang, Klein, and Walet [58].

5.1. Constrained HFB + adiabatic perturbation

Historically, the Inglis–Belyaev cranking masses derived from the adiabatic perturbation
theory [22] have been widely used in conjunction with phenomenological mean-field models,
e.g. for the study of fission dynamics [59]. In recent years, it has become possible to carry out
such studies using self-consistent mean fields obtained by solving the constrained HFB
equations [60]. The Inglis–Belyaev cranking masses have also been used for low-frequency
quadrupole collective dynamics [61–64]. At present, a systematic investigation on low-lying
quadrupole spectra is underway using the 5D collective Hamiltonian with Inglis–Belyaev
cranking masses and the relativistic (covariant) density functionals [65–71].

Figure 2. Excitation spectra and B E2( ) values calculated for 72Kr by means of the CHB
+ LQRPA method (denoted by LQRPA) [42] and experimental data [54, 55]. For
comparison, the results calculated using the Inglis–Belyaev cranking mass are also
shown. Only B E2( ) larger than 1 Weisskopf unit are shown in units of e fm .2 4
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A problem of the Inglis–Belyaev cranking formula is that time-odd mean-field effects are
ignored and it underestimates the collective masses (inertial functions) [72]. Moving mean
fields possess time-odd components that change sign under time reversal operation, but the
cranking formula ignores their effects on the collective masses. By taking into account such
time-odd corrections to the cranking masses, one can better reproduce low-lying spectra [53].

Figure 3.Application of the LQRPA method to the low-lying states in 30,32,34 Mg (from
[49]). (a) Collective potential V ,( )b g for 30Mg. The HFB equilibrium points are
indicated by red circles. (b)–(d) Vibrational wave functions squared, , ,

K IK
2( )å b gFa

of the 0 , 2 ,1 1
+ + and 02

+ states in 30Mg. Contour lines are drawn at every tenth part of the
maximum value. (e)–(h) and (i)–(l): same set of figures but for 32Mg and 34Mg,
respectively.
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5.2. Adiabatic TDHF theory

Attempts to self-consistently derive the collective Hamiltonian using adiabatic approximation
to time evolution of mean fields started in 1960s [44, 73]. In these pioneer works, the
collective quadrupole coordinates (β, γ) were defined in terms of expectation values of the
quadrupole operators and the 5D collective Hamiltonian was derived using the P + Q force
model [48]. During 1970s this approach was generalized to be applicable to any effective
interaction. This advanced approach is called adiabatic TDHF (ATDHF) [74–76].

In the ATDHF theory, the density matrix ρ(t) is written in the following form and
expanded as a power series with respect to χ(t).

t te e 45t ti
0

i( ) ( ) ( )( ) ( )r r= c c-

t t t t t ti ,
1

2
, , . 460 0 0( ) ( ) ( ) ( ) ( ) ( ) ( )⎡⎣ ⎤⎦ ⎡⎣ ⎡⎣ ⎤⎦⎤⎦r c r c c r= + - + 

Baranger and Vénéroni [74] suggested a possibility to introduce collective coordinates as
parameters describing the time evolution of the density matrix ρ0(t) and discussed an iterative
procedures to solve the ATDHF equations. But this idea has not been realized until now. We
note that the ATDHF does not reduce to the RPA in the small-amplitude limit if a few
collective coordinates are introduced by hand. In fact it gives a collective mass different from
the RPA [77].

Figure 4. (a) Probability densities integrated over γ, P d( ) òb g=

G, , ,I K0, 0
2 1 2( ) (b g b gFa = = for the ground 01

+ states in 30,32,34 Mg plotted as
functions of β (from [49]). (b) Same as (a) but for the excited 02

+ states.
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The ATDHF theory developed by Villars [78] aims at self-consistent determination of the
optimum collective coordinates on the basis of the time-dependent variational principle. This
approach, however, encountered a difficulty that we could not get unique solutions of its basic
equations determining the collective path. This problem was later solved by treating the
second-order terms of the momentum expansion in a self-consistent manner [37, 79]. It was
shown that, when the number of collective coordinate is only one, a collective path maximally
decoupled from non-collective degrees of freedom runs along a valley in the multi-dimen-
sional potential-energy surface associated with the TDHF states.

To describe low-frequency collective motions, it is necessary to take into account the
pairing correlations. In other words, we need to develop the adiabatic TDHFB (ATDHFB)
theory. This is one of the reasons why applications of the ATDHF have been restricted to
collective phenomena where pairing correlations play minor roles such as low-energy colli-
sions between spherical closed-shell nuclei [80] and giant resonances [77]. When large-
amplitude shape fluctuations take place, single-particle level crossings often occur. To follow
the adiabatic configuration across the level crossing points, the pairing correlation plays an
essential role. Thus, an extension to ATDHFB is indispensable for the description of low-
frequency collective excitations.

In the past, Dobaczewski and Skalski [81] tried to develop the ATDHFB theory
assuming the axially symmetric quadrupole deformation parameter β as the collective
coordinate. Quite recently, Li et al [82] tried to derive the 5D quadrupole collective
Hamiltonian on the basis of the ATDHFB. The extension of ATDHF to ATDHFB is not
straightforward, however. This is because, as discussed in section 2, we need to decouple the
number-fluctuation degrees of freedom from the LACM of interest and respect the gauge
invariance with respect the pairing rotational angles.

5.3. Boson expansion method

Boson expansion method is well known as a useful microscopic method of describing
anharmonic (non-linear) vibrations going beyond the harmonic approximation of the QRPA.
In this approach, we first construct a collective subspace spanned by many-phonon states of
vibrational quanta (determined by the QRPA) in the huge-dimensional shell-model space, and
then map these many-phonon states one-to-one to many-boson states in an ideal boson space.
Anharmonic effects neglected in the QRPA are treated as higher-order terms in the power-
series expansion with respect to the boson creation and annihilation operators. Starting from
the QRPA about a spherical shape, one can thus derive the 5D quadrupole collective
Hamiltonian in a fully quantum mechanical manner. The boson expansion method has been
successfully applied to low-energy quadrupole excitation spectra in a wide range of nuclei
including those lying in regions of quantum phase transitions from spherical to
deformed [83, 84].

In the time-dependent mean-field picture, state vectors in the boson expansion method are
written in terms of the creation and annihilation operators ,i i( )†G G of the QRPA eigen-modes,
or, equivalently, in terms of the collective coordinate and momentum operators Q P, ,i i( ˆ ˆ )

t t texp 47
i

i i i i 0( )∣ ( ) ( ) ( ) ( )†
⎡
⎣⎢

⎤
⎦⎥*åf h h f= G - G

i p t Q q t Pexp . 48
i

i i i i 0( )( ) ˆ ( ) ˆ ( )
⎡
⎣⎢

⎤
⎦⎥å f= -
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With increasing amplitudes of the quadrupole shape vibration ti ( )h (values of the collective
coordinate qi(t)), anharmonic (non-linear) effects become stronger. Strong non-linear effects
may eventually change even the microscopic structure of the collective operators Q P,i i( ˆ ˆ )
determined by the QRPA. In such situations, it is desirable to construct a theory that allows
variations of microscopic structure of collective operators as functions of qi(t). It may be said
that the SCC method has accomplished this task.

5.4. Generator coordinate method (GCM)

The GCM has been used for a wide variety of nuclear collective phenomena [85–87]. Using
the angular-momentum projector PIMK

ˆ and the neutron(proton)-number projector PN̂ (PẐ), we
write the state vector as a superposition of the projected mean-field states with different
deformation parameters (β, γ),

f P P Pd d , , . 49NZIM
i

K
NZIK
i

N Z IMK( ) ˆ ˆ ˆ ∣ ( ) ( )ò åb g b g f b gY =

Because the projection operators contain integrations, it has been a difficult task to carry out
such high-dimensional numerical integrations in solving the Hill–Wheeler equation for the
states ,( )f b g obtained by the constrained HFB method. In recent years, however,
remarkable progress has been taking place, which makes it possible to carry out such large-
scale numerical computations [88–93]. The HFB calculations using the density dependent
effective interactions are better founded by density functional theory (DFT). Accordingly, the
modern GCM calculation is referred to as ‘multi-reference DFT’ [88].

It is well known that one can derive a collective Schrödinger equation by making a
gaussian overlap approximation (GOA) to the Hill–Wheeler equation [94–96]. There is no
guarantee, however, that dynamical effects associated with time-odd components of moving
mean field are sufficiently taken into account in the collective masses (inertial functions)
obtained through this procedure. In the case of center of mass motion, we need to use
complex generator coordinates to obtain the correct mass, implying that collective momenta
conjugate to collective coordinates should also be treated as generator coordinates [22, 97].

A fundamental question is how to choose the optimal generator coordinates. With the
variational principle, Holzwarth and Yukawa [98] proved that the mean-field states para-
metrized by a single optimal generator coordinate run along a valley of the collective potential
energy surface. This line of investigation was further developed [99] and greatly stimulated
the challenge toward constructing a microscopic theory of LACM. In this connection, we note
that conventional GCM calculations parametrized by a few real generator coordinates do not
reduce to the QRPA in the small-amplitude limit, differently from the case that all two-
quasiparticle (particle–hole) degrees of freedom are treated as complex generator coordi-
nates [100].

It is very important to distinguish the 5D collective Hamiltonian obtained by making use
of the GOA to the GCM from that derived in section 3 on the basis of the ASCC method. In
the latter, the canonical conjugate pairs of collective coordinate and momentum are self-
consistently derived on the basis of the time-dependent variational principle. The canonical
formulation enables us to adopt the standard canonical quantization procedure. Furthermore,
effects of the time-odd components of the moving mean field are automatically taken into
account in the collective masses (inertial functions). In view of the above points, it is highly
desirable to carry out a systematic comparison of collective inertial masses evaluated by
different approximations including the ASCC, the ATDHFB, the GCM + GOA, and the
adiabatic cranking methods for a better understanding of their physical implications. In this
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connection, it is interesting to notice that the results of the recent GCM calculation for 76Kr
[92], using the particle-number and angular-momentum projected basis (49), are rather similar
to those obtained by use of the 5D collective Hamiltonian with the Inglis–Belyaev cranking
masses, except for an overall overestimation of the excitation energies by about 20%.

6. Challenges for future

As reviewed by Hyde and Wood [5], nature of low-lying excited 0+ states, systematically
found in recent experiments as well as those known from old days, is not well understood. It
is thus quite challenging to apply, in a systematic ways, the 5D collective Hamiltonian
approach to all of these data, from light to heavy and from stable to unstable nuclei, and
explore the limit of its applicability. Recalling that the importance of the couplings between
the quadrupole and pairing vibrations has been pointed out [14–16], one of the basic ques-
tions is ‘under what situations we need to extend the 5D collective Hamiltonian to 7D by
explicitly treating the proton and neutron pairing gaps as dynamical variables.’

Another interesting subject is to extend the collective Hamiltonian approach to a variety
of collective phenomena, for example, those observed in rapidly rotating nuclei, heavy and
super heavy nuclei, neutron-rich unstable nuclei, by taking into account the effects of rapid
rotation and/or continuum, from the beginning in the single-particle (HFB) Hamiltonian.
Macroscopic quantum tunnelings through self-consistently generated barriers, such as
spontaneous fissions and deep sub-barrier fusions, are, needless to say, longstanding yet
modern, fundamental subjects of nuclear structure physics.

It is a great challenge to develop the CHFB + LQRPA approach on the basis of the time-
dependent DFT. To efficiently solve the large-dimensional LQRPA equations containing
density-dependent terms, the finite-amplitude method recently developed in [101–104] may
be utilized.
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