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Abstract
Low-lying quadrupole shape dynamics is a typical manifestation of large-amplitude collective
motion in finite nuclei. To describe the dynamics on a microscopic foundation, we have
formulated a consistent scheme in which the Bohr collective Hamiltonian for the five-
dimensional quadrupole shape variables is derived on the basis of the time-dependent
Hartree–Fock–Bogoliubov theory. It enables us to incorporate the Thouless–Valatin effect
on the shape inertial functions, which has been neglected in previous microscopic Bohr
Hamiltonian approaches. Quantitative successes are illustrated for the low-lying spectra in 68Se,

−30 34Mg and −58 64Cr, which display shape-coexistence, shape-mixing and shape-transitional
behavior.

Keywords: quadrupole shape motion, microscopic Bohr Hamiltonian, adiabatic selfconsistent
collective coordinate method, local quasiparticle random phase approximation

(Some figures may appear in colour only in the online journal)

1. Introduction

Recent nuclear structure studies have developed significantly
in moving far from the stability line as they are boosted by the
RI beam facilities and the advanced detector technologies.
Low-lying quadrupole collectivity is one of the highlights, as
characteristic spectra suggesting onset of large deformation
and coexistence of different shapes are often observed in new
regions of the experimental studies. A typical example is

neutron-rich nuclei around 32Mg, in which the lowering of the
+2 energy and the increase of ( )B E2 with increase of the

neutron number indicate unusual onset of quadrupole col-
lectivity at the magic number N = 20. Recent identification of
the second +0 states at very low excitation energy ∼1 MeV [1]
poses further questions on the nature of this state: for instance,

whether it suggests the coexistence of spherical and prolately
deformed states or not. Such a new region of quadrupole col-
lectivity is also found in neutron-rich Cr isotopes.

The theoretical description of excitation spectra asso-
ciated with the shape coexistence and the shape transition is
not a simple issue. It is customary to consider the deformation
energy surface by considering mean-field states with various
shapes in the β–γ plane. However, the deformed states can
rotate and the deformation may evolve from one local mini-
mum to others. One needs to describe this large-amplitude
dynamics. Bohrʼs five-dimensional quadrupole coordinates

μ = − −μ ( )a 2, 1, 0, 1, 22 , or equivalently the β–γ variables

and the three Euler angles [2, 3] are suitable degrees of
freedom for this purpose, but one then has to construct the
collective Hamiltonian on the basis of the nucleon many-body
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Hamiltonian. This is a central problem in this collective
Hamiltonian approach, and several theories have been
developed.

The Bohr collective Hamiltonian consists of the collec-
tive potential β γ( )V , and the kinetic energy term related to

the rotational and shape degrees of freedom, represented by
the three moments of inertia β γ ( ),k , with =k 1, 2, 3 being

the principal axes of the deformation, and the three shape
inertial functions β γββ ( )D , , β γγγ ( )D , , and β γβγ ( )D , , which

govern the kinetic energy originating from the shape motion.
In previous theories of the microscopic Bohr Hamiltonian
[4–10], however, the Inglis–Belyaev cranking approximation
is often adopted to evaluate the inertial functions, i.e. the
velocity-dependent and time-odd mean fields induced by
the collective motion are neglected. This leads to an
underestimate of the inertial functions, and consequently
to an overall stretching of excitation spectra compared with
the experimental observation [5, 10]. If one includes the
time-odd effect (the Thouless–Valatin effect) on the
rotational moments of inertia, the description of the yrast
spectra is improved [11–13], but leaves the problem in the
yrare states such as the second +0 state. Clearly one should
also consider the Thouless–Valatin effect on the shape inertial
functions.

We have developed a microscopic theory of the quad-
rupole collective dynamics which satisfies the above men-
tioned requirements [14–19]. It is based on a general theory of
the large-amplitude collective motion, called the self-
consistent collective coordinate (SCC) method [20, 21].
The SCC method starts with the time-dependent Har-
tree–Fock or time-dependent Hartree–Fock–Bogoliubov
(TDHFB) theory, that is powerful to describe many-body
time-evolution of nuclei, including large-amplitude motions
such as a low-energy heavy-ion collision [22, 23]. It provides
a scheme to extract the collective submanifold from the
whole space of the TDHFB state vectors, and hence
define consistently collective coordinates and a collective
Hamiltonian associated with the collective submanifold.
Applying this method to the quadrupole shape dynamics, we
succeeded in constructing the Bohr Hamiltonian from the
microscopic many-body Hamiltonian [14]. After briefly
reviewing this theoretical scheme, we illustrate how the the-
ory solves the problem of the stretched spectra, and works
well for quantitative description of the quadrupole shape
dynamics.

2. Adiabatic SCC method: theoretical backbone

The time-evolution of the TDHFB state vector (a generalized

determinantal state) ϕ t( ) is given by the time-dependent

variational principle

δ ϕ ϕ∂
∂

− ˆ =t i
t

H t( ) ( ) 0. (1)

The SCC method [20] then assumes that the collective motion

under consideration corresponds to a subset of solutions of
this equation, and that there exist collective coordinates and

momenta = −( ) ( )q p i M, 1
i i

that describe the collective

motion. This means that the time-evolution of the state vector

is described via the time-evolution of ( )q p,
i i

, which para-

metrize the TDHFB state vectors, i.e.

ϕ ϕ= ( )t q t p t( ) ( ), ( ) . The parametrized TDHFB state

vectors ϕ{ }q p( , ) are called the collective submanifold.

The time-evolution is governed by the collective Hamiltonian

ϕ ϕ≡ ˆ q p q p H q p( , ) ( , ) ( , )coll and the canonical

equation of motion = = −∂
∂

∂
∂

 ,
dq

dt p
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dt q
i
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i

i

coll coll . Then, the time-

dependent variational principle equation (1) is transformed to
the equation of the collective submanifold

⎛
⎝
⎜⎜

⎞
⎠
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ϕ

∂
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∂

∂
ˆ
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where P̂
i
and Q̂

i
are displacement operators defined by

ϕ ϕˆ = ∂
∂P q p i q p( , ) ( , )

i

qi
and ϕˆ =Q q p( , )

i

ϕ− ∂
∂i q p( , )
pi

, and they are one-body operators thanks to

the Thouless theorem. Equation (2) is selfcontained.
To solve the equation, we introduce an expansion with

respect to the collective momenta p, assuming that the col-
lective Hamiltonian has a natural form

= +− q p D q p p V q( , )
1

2
( ) ( ), (3)ij i jcoll

1

consisting of the kinetic energy of the collective motion with
the inertial function D q( )ij and the collective potential

function V(q). The state vector is expressed as

ϕ ϕ= ˆ( )q p pQ q q( , ) exp i ( ) ( )
i

i
using the Thouless

theorem. Expanding the equation of collective submanifold
(2) with respect to the powers of p, we obtain the
following set of equations: (i) the moving-frame HFB
equation

δ ϕ ϕˆ − ∂
∂

ˆ =q H
V

q
Q q q( ) ( ) ( ) 0, (4)

i

i

(ii) the moving-frame QRPA equation

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

δ ϕ ϕ

δ ϕ

Δ ϕ

ˆ ˆ − ˆ =

ˆ ˆ − ˆ

− ∂
∂

ˆ =

−q H q Q q D q P q i q

q H q P q iC q Q q

V

q
Q q q

( ) ( ), ( ) ( ) ( ) ( ) 0,

( ) ( ), ( ) ( ) ( )

( ) ( ) 0, (5)

M

i

ij

j

M

i

ij

j

j

j

i

1

together with the definitions of the collective potential

ϕ ϕ= ˆV q q H q( ) ( ) ( ) , the collective inertial function

ϕ= −−D q q( ) ( )ij
1 ⎡

⎣⎢ ⎡⎣ ⎤⎦ ⎤
⎦⎥ ϕˆ ˆ ˆH Q q Q q q, ( ) , ( ) ( )

i j
, and the
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moving-frame Hamiltonian ˆ = ˆ − ˆ∂
∂H q H Q q( ) ( )M
V

q

i

i
. Apart

from the curvature term ΔQ̂ q( ), equation (5) is similar to the

QRPA equation determining a normal mode. Note that Q̂ q( )
i

also plays the role of a constraining operator in the moving-
frame HFB equation, and hence the two equations are cou-
pled. These are basic equations of the adiabatic SCC (ASCC)
method [21]. The ASCC method is a natural extension of the
RPA theory, with which one can extract normal modes of
small amplitude oscillation.

3. CHFB plus local QRPA approach: a practical
implementation

Our scheme to derive the Bohr collective Hamiltonian is a
practical and approximate implementation of the ASCC
method [14]. We first perform a standard constrained Har-
tree–Fock–Bogoliubov (CHFB) calculation to obtain mean-

field states ϕ β γ( ),
CHFB

with various quadrupole deforma-

tions in the β–γ plane. We assume that the collective sub-

manifold states ϕ| q( ) have a one-to-one mapping to the

CHFB states ϕ β γ( ),
CHFB

by a coordinate transformation.

The collective potential is then the deformation energy of the

CHFB states β γ ϕ β γ ϕ β γ= ˆ( ) ( ) ( )V H, , ,
CHFB CHFB

. For

the moving-frame QRPA equation (5), we neglect the cur-

vature term ΔQ̂ and replace Ĥ q( )M with the constrained

Hamiltonian ĤCHFB, and we solve

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

δ ϕ β γ ϕ β γ

δ ϕ β γ ϕ β γ

ˆ ˆ − ˆ =

ˆ ˆ − ˆ =

−H Q D P i

H P i CQ

( , ) , ( , ) 0,

( , ) , ( , ) 0. (6)

i

i

i

i

i

i

CHFB CHFB
1

CHFB

CHFB CHFB CHFB

We call these local QRPA (LQRPA) equations. They deter-

mine the displacement operators Q̂
i
and P̂

i
, and hence the

vibrational collective coordinates ( )q p,
i i

, which are ortho-

normal locally at each β γ( ), point. (Cij and
−Dij

1 are diagonal

then, and for simplicity we often choose the scale satisfying
=D 1i .) Among various QRPA solutions we select two

which are most effective to change the quadrupole
deformations. The collective coordinates of the normal

modes ( )q p,
i i

=( )i 1, 2 can be related to the Bohr

quadrupole shape variables = ˆ = ˆa c Q a c Q,20 20 22 22

via

⎡⎣ ⎤⎦ϕ β γ ϕ β γ
∂
∂

= ˆ ˆa

q
c Q P i( , ) , ( , ) . (7)m

i

m

i2
CHFB 2 CHFB

The vibrational kinetic energy = + =( )T p p 2vib 1
2

2
2

˙ + ˙( )q q 2
1
2

2
2 is then expressed in the Bohr coordinates

as

∑

β γ ββ β γ βγ β γ γγ

= ˙ ˙

= ˙ ˙ + ˙ ˙ + ˙˙ββ βγ γγ
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a
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i
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and the inertial functions ββ βγD D, and γγD are derived from

′Mmm by a straight variable transformation from a a( , )20 22 to

β γ( ), . We also calculate the rotational moments of inertia by

using the local QRPA equation

δ ϕ β γ Θ

ϕ β γ

ˆ ˆ

− ˆ =−
H

I i

( , ) [ , ]

( , ) 0, (10)

k

k k

CHFB CHFB

1
CHFB

=( )k 1, 2, 3 for the rotation around the three principal axes,

and obtain the rotational kinetic energy

β γ ω= ∑  ( )T , .
k k krot

1

2
2

We do not neglect any residual interactions in solving the
LQRPA equations; i.e. we take into account all the induced
fields, including the time-odd ones, associated with the col-
lective rotations and the β–γ shape motions. The Thou-
less–Valatin effects are thus taken into account for all the
inertial functions ββ βγ   D D, , , ,x y z and γγD . If the residual

interactions were neglected in solving equations (6) and (10),
the approximation would lead to the Inglis–Belyaev inertial
functions. Although the Thouless–Valatin effect on the rota-
tional moments of inertia is widely known, and is taken into
account in a recent approach [11–13], the systematic inclusion
of the Thouless–Valatin effect on the vibrational inertia is
achieved in our approach for the first time.

4. Quadrupole dynamics with the LQRPA inertial
functions

In applications of the CHFB+LQRPA, we have to solve the
QRPA equations for all the CHFB states with various
deformations. To construct the CHFB states and the QRPA
solutions, we employ the pairing plus quadrupole model. Two
major shells are adopted as a model space for each of neutrons
and protons. The single-particle energies, the force parameters
of the monopole pairing interaction and the quad-
rupole–quadrupole interaction are adjusted to reproduce the
results of the Skyrme–HFB calculation. The quadrupole
pairing interaction is also taken into account, since it is known
to bring about the Thouless–Valatin effect [24]. We use the
selfconsistent strength of the quadrupole pairing, with which
the Galilean invariance of the pairing interaction is recovered

[24]. We first obtain the CHFB states ϕ β γ( ),
CHFB

for

60 × 60 mesh points, discretized both for β β= −0
max
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(typically β = 0.6
max

) and for γ π= −0 3. The QRPA

equations are then solved the same number of times.
To obtain the excitation spectra of the quadrupole

dynamics, we requantize the Bohr Hamiltonian using the
standard Pauli prescription:

Ψ β γ Ω Ψ β γ Ωˆ + ˆ + =α α α{ }T T V E( , , ) ( , , ). (11)IM I IMvib rot

Expressing the collective wave function Ψ β γ Ωα ( ), ,IM

Φ β γ Ω= ∑ α ( ) IMK,
K IK directly on the 60 × 60 mesh

points in the β–γ plane, we diagonalize a Hamiltonian matrix
in the mesh representation. Ω is the Euler angle, and

Ω IMK is the rotational function.

4.1. Spectra in 68Se and the Thouless–Valatin effect

The first application of the CHFB+LQRPA approach was

performed for 68Se [14], in which the experimental spectra
suggest possible coexistence of oblate and prolate shapes. The
calculated CHFB potential energy surface indeed shows two
minima at prolate shape β γ∼ =0.3, 0 and at oblate shape
β γ π∼ =0.3, 3, but the potential energy surface is soft with
respect to the γ direction with an energy difference of several
hundred keV and a few hundred keV barrier.

The Thouless–Valatin effect is examined by comparing
the LQRPA inertia, for instance, ββD , with the same quantity

ββD( )IB evaluated in the Inglis–Belyaev cranking approximation.

We have found that the ratio ββ ββD D( )IB is typically 1.3–1.5 in a

large part of the β–γ plane, where the deformation energy is
not large. At larger deformation β ≳ 0.4 it takes values
around 2. Concerning the rotational moment of inertia, the

ratio   ( )IB
1 1 takes a value around 1.2–1.5 at small and

modest deformation, but it decreases to ∼1.1 at large defor-
mations. The deformation dependence is different between
the LQRPA inertia and the IB inertia. Also the six inertial
functions have different deformation dependences.

The Thouless–Valatin effects on the inertial functions
have an impact on the excitation spectra. When we perform a
calculation using the Inglis–Belyaev cranking inertia, the
excitation energies of the yrast states are

=+ + +( ) ( ) ( )E E E2 , 4 , 6 0.991, 2.3101 1 1 , 3.891MeV, which are

systematically larger than the corresponding experimental
values 0.854, 1.942, 3.304 MeV by about 20%. This defi-
ciency is improved in the CHFB+LQRPA calculation, pro-

ducing =+ + +( ) ( ) ( )E E E2 , 4 , 6 0.810, 1.951, 3.348 MeV1 1 1 ,

in much better agreement with the experiment. The
improvement is also achieved for the yrare states; the CHFB
+LQRPA description gives the second +2 state at

=+( )E 2 1.536 MeV2 , consistent with the experimental value

=+( )E 2 1.593 MeV2 , and much better than the calculation

=+( )E 2 1.883 MeV2 using the Inglis–Belyaev inertia.

4.2. Collective wave function and shape fluctuation in neutron-
rich isotopes near 32Mg

The nature of the quadrupole collectivity can be examined by
analyzing the collective wave function, equation (11), and its
distribution in the β–γ plane. An interesting example is neu-
tron-rich Mg isotopes around A = 32 [17]. The region of these
isotopes is known as an island of inversion, since a large
quadrupole collectivity is observed in spite of the neutron
magic number N = 20. Indeed, a steep change of the energy

ratio, =+ +( ) ( )E E4 2 2.231 1 , 2.64 and 3.21 in experiment and

2.37, 2.82 and 3.26 in theory for A = 30,32 and 34, indicates a
dramatic evolution from vibrational to rotational behaviors.

The yrare +02 state is also observed in 30,32Mg, at very low

energies close to +( )E 21 . The calculation reproduces well the

energies of the yrast +21 and +41 states and the yrare +02 state;

they are 0.744, 2.099 and 0.986MeV in 32Mg, compared with
the experimental values 0.885, 2.322 and 1.058MeV,
respectively.

The obtained collective wave function for the ground +01

state exhibits a clear shape transition from a spherical state in
30Mg (a distribution concentrated around β ∼ 0) to a

well deformed state in 34Mg (a distribution around β ∼ 0.35,

γ ∼ 0). In 32Mg, the wave function of the ground state indi-
cates a significant fluctuation in the quadrupole shape as it is
widely spread over β = ∼0 0.4 along the γ = 0 line

(figure 1(a)). The nature of the +02 states is also interesting.

Experimentally, the +02 state in 32Mg is populated strongly by

the two-neutron transfer (t, p) reaction from 30Mg [1]. It has

been argued that the +01 and +02 states in 30,32Mg are coexisting
states, which are either spherical or deformed, and inter-
changing with each other across N = 20. Our theoretical
picture is different. The wave function of the +02 state is spread
over a large interval β = ∼0 0.45, but it has a node around
β ∼ 0.3 (figure 2(b)). It indicates a significant shape fluc-
tuation likewise in the ground state, and it contains to some
extent a feature of the β-vibration. (The character of the β-

vibration in the +02 state develops well in 34Mg.) This is far
from the simple shape coexistence picture.
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states in 32Mg. Dotted curves are contours for negative values.



4.3. Shape transition in neutron-rich Cr isotopes

Neutron-rich Cr isotopes with ≳A 60 are another example of
the new regions of deformation, which is suggested in recent
experiments. CHFB calculations using the Skyrme functional
(SkM*) for axial deformations indicate that a softening of the
deformation potential around N = 34 develops further with
increasing neutron number, producing a deformed but shal-
low minimum at β ∼ 0.3 for ⩾N 38 [18, 25]. The calculated
excitation energy of the +21 state decreases gradually with
increasing neutron number [19]. The energy ratio

+ +( ) ( )E E4 21 1 gradually increases from 2.12 at N = 34 to 2.68

at N = 40, and similarly in →+ +( )B E2; 2 01 1 , as shown in

figure 2. The isotopic trend of ( )B E2 values is in good

agreement with the data. The absolute values of the excitation

energy are also well described; =+ +( ) ( )E E2 , 4 0.502, 1.2281 1

MeV in theory versus 0.446, 1.180MeV in experiment for
62Cr.

From the above quantities one clearly sees the gradual
development of quadrupole collectivity. However, the yrast
spectra display a transitional behavior between the spherical
vibrator and the deformed rotor even in the isotopes with
N = 40, 42, having the largest collectivity. We can learn more
from the collective wave functions. Indeed, we found that the
wave functions of the yrast states + + +0 , 2 , 41 1 1 , especially at
lower spin members, spread largely from the prolate shape
β γ∼ ∼0.5, 0 toward the oblate shape. More significant
influence of the γ degrees of freedom is predicted in the yrare

=π +K 0 and +2 bands in 64Cr.

5. Conclusions and perspectives

The CHFB+LQRPA approach provides us with a scheme to
construct the Bohr collective Hamiltonian for the large-
amplitude quadrupole shape motion on the basis of the

microscopic many-body mean-field dynamics. A great
advantage of this approach is that the effect of the velocity-
dependent (time-odd) induced field on the inertia of the col-
lective motion, i.e. the Thouless–Valatin effect, is taken into
account not only for the rotational moments of inertia but also
for the vibrational inertia with respect to the β–γ shape
motion. This is achieved by solving the local QRPA equation
at each deformation. It seems to solve the problem of the
Inglis–Belyaev inertia, that often produces stretched spectra.

Further developments of the CHFB+LQRPA approach
are anticipated. We would like to perform calculations on the
basis of the selfconsistent Hartree–Fock–Bogoliubov models
using a modern energy density functional, for instance the
Skyrme functional. Constrained HFB calculations in two-
dimensional deformation spaces such as the β–γ plane are
numerically intensive, but manageable on reasonable com-
puters. A difficulty lies in the local QRPA part. The QRPA
calculation using a realistic density functional requires a large
single-particle space to guarantee selfconsistency, allowing, at
present, calculations assuming axially symmetric deforma-
tions. The QRPA calculation with non-axial deformations will
be very tough numerically, and we have to perform the cal-
culations for all the deformations. This is a challenge, but it
will become feasible in the near future thanks to the rapid
development of computer power. Application to spontaneous
fission will then be within scope.
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