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The microscopic dynamics of oblate-prolate shape coexistence/mixing phenomena in 68Se
and 72Kr are studied by means of the adiabatic self-consistent collective coordinate (ASCC)
method in conjunction with the pairing-plus-quadrupole (P+Q) Hamiltonian, including the
quadrupole pairing interaction. A quantum collective Hamiltonian is constructed, and exci-
tation spectra, spectroscopic quadrupole moments and quadrupole transition properties are
evaluated. The effect of the time-odd pair field on the collective mass (inertia function) of
the large-amplitude vibration and the rotational moments of inertia about three principal
axes is evaluated. It is found that the basic properties of the shape coexistence/mixing
are qualitatively reproduced. The results of the calculation indicate that the oblate-prolate
shape mixing decreases as the angular momentum increases.

§1. Introduction

Obtaining a microscopic understanding of nuclear collective dynamics is one
of the goals of nuclear structure theory. The quasiparticle random phase approx-
imation (QRPA), based on the Hartree-Fock-Bogoliubov (HFB) mean field, is a
well-known theoretical approach to the collective dynamics, but it is applicable only
to small-amplitude collective motion around the local minima of the potential en-
ergy surface.1)–5) Nuclei exhibit a variety of large-amplitude collective processes such
as anharmonic vibrations, shape coexistence, and fission. Though the challenge to
construct microscopic theories of large-amplitude collective motion has a long his-
tory,6)–42) some important problems remain unsolved.

The self-consistent collective coordinate (SCC) method12),23) is a microscopic
theory of large-amplitude collective motion. This method, with the (η∗, η) expansion
technique, enables us to extract the collective variables from the many-dimensional
phase space associated with the time-dependent Hartree-Fock-Bogoliubov (TDHFB)
state vectors, and to derive the collective Hamiltonian starting from a microscopic
Hamiltonian. The SCC method has been successfully applied to various kinds of
non-linear phenomena in nuclei, such as anharmonic γ-vibrations,43)–46) shape phase
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transitions,47)–50) two-phonon states51) and collective rotations.52)–54) The (η∗, η)
expansion is not necessarily convenient, however, for large-amplitude collective mo-
tion like shape coexistence/mixing phenomena, in which a microscopic description
of the many-body tunneling effect between different local minima in the collective
potential energy surface becomes the major task.

The adiabatic SCC (ASCC) method55) is an alternative way of solving the basic
equations of the SCC method, assuming that the large-amplitude collective motion
of interest is slow (adiabatic). Under this assumption, the basic equations of the SCC
method are expanded up to second order with respect to the collective momentum,
but the collective coordinate is treated non-perturbatively. Quite recently, we have
given a rigorous formulation of the ASCC method in which the gauge invariance
with respect to the particle number fluctuation degrees of freedom is taken into
account.56)

As is well known, in contrast to the significant progress in the calculation of
the collective potential energy, the present status of the microscopic theory is quite
unsatisfactory with regard to the evaluation of the collective mass (inertia function)
associated with the collective kinetic energy. Although the Inglis-Belyaev cranking
mass is widely used, it violates self-consistency by ignoring the effect of the time-
odd component of the moving mean field.1) The time-odd mean-field effect is taken
into account in the collective mass derived with the QRPA, but its application is
restricted to small-amplitude collective motion around equilibrium states. Concern-
ing large-amplitude collective motion, though the effect of the time-odd component
generated by the residual particle-hole interaction was investigated a few decades
ago,14) the time-odd effect generated by the residual pairing interaction has not yet
been studied. Quite recently, we showed, using the ASCC method in conjunction
with the schematic model Hamiltonian,58)–61) that the time-odd pair field increases
the collective mass.57) It remains to be seen, however, how it affects the shape
coexistence dynamics discussed below.

Let us consider recent experimental data of interest. The shapes of nuclei
along the N = Z line change significantly as the numbers of protons and neutrons
change.62)–66) The HFB calculation67) indicates that various shapes will appear along
the N = Z lines: a triaxial ground state for 64Ge, oblate ground states for 68Se and
72Kr, strongly deformed prolate ground states for 76Sr, 80Zr and 84Mo. Furthermore,
oblate and prolate states may coexist in these nuclei, other than64Ge. In 68Se and
72Kr, the ground and excited states corresponding to oblate and prolate shapes have
been found experimentally.63)–65) From the viewpoint of collective dynamics based
on the mean-field theory, it is expected that the oblate and prolate shapes are mixed
by the many-body tunneling effect through the potential barrier lying between the
two local minima in the potential energy landscape. The low-lying states in 68Se and
72Kr have been investigated using various theoretical approaches beyond the mean-
field approximation: large-scale shell model calculations for 68Se using the pfg-shells
outside the 56Ni core,68) shell model Monte Carlo calculations for 72Kr employing
the pf-sdg shells,69) configuration mixing calculations for 72−78Kr on the basis of the
particle number and angular momentum projected generator coordinate method,70)

and the EXCITED VAMPIR variational calculation for 68Se and 72Kr.71)–73) Quite
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recently, Almehed and Walet36)–39) discussed collective paths connecting the oblate
and prolate minima in 68Se and 72−78Kr by means of an approach similar to the
ASCC method.

The ASCC method was first tested74) in a schematic model58)–61) and then it
was applied75) to oblate-prolate shape coexistence phenomena in 68Se and 72Kr with
use of the pairing-plus-quadrupole (P+Q) Hamiltonian.76)–79) In both nuclei, the
one-dimensional collective path connecting the two local minima of the potential
is extracted. It was found that the collective path runs approximately along the
valley of the potential energy surface lying in the triaxial deformed region. This
indicates that the triaxial degree of freedom is essential for the description of large-
amplitude shape mixing in 68Se and 72Kr. In Ref. 75), however, requantization of the
collective Hamiltonian was not carried out, and excitation spectra, electromagnetic
transition probabilities, and shape mixing probabilities in individual eigenstates were
not evaluated.

This paper presents the result of the first application of the gauge invariant for-
mulation56) of the ASCC method to nuclear structure phenomena. Thus, its major
thrust is directed at examining the feasibility of the gauge-invariant ASCC method
for describing the shape coexistence/mixing phenomena. Hereafter, we call this new
version the “ASCC method”, dropping the adjective “gauge-invariant” for simplic-
ity. A more detailed investigation of experimental data and comparison with other
approaches are planned for the future. We derive the quantum collective Hamil-
tonian that describes the coupled collective motion of the large-amplitude vibration
responsible for the oblate-prolate shape mixing and the three-dimensional rotation
of the triaxial shape. To evaluate the rotational moments of inertia, we extend the
well-known QRPA equation for rotational motion, which yields the Thouless-Valatin
moment of inertia,80) to non-equibrium states that are defined in the moving-frame
associated with large-amplitude vibrational motion. To clarify the role of the time-
odd pair field in shape mixing dynamics, we investigate, with use of the P+Q Hamil-
tonian including the quadrupole pairing interaction, its effects on the collective mass
of large-amplitude vibration, the rotational moments of inertia, the energy spectra,
transition probabilities, and shape mixing probabilities in individual eigenstates.

This paper is organized as follows. The basic equations of the ASCC method are
summarized in §2. The quasiparticle representation of the microscopic Hamiltonian
is given in §3. The procedure for solving the ASCC equations is presented in §4. The
collective Schrödinger equation is derived in §5. Results of numerical calculations
for energy spectra, spectroscopic quadrupole moments and quadrupole transition
probabilities of low-lying states in 68Se and 72Kr are presented and discussed in §6.
Concluding remarks are given in §7.

A preliminary version of this work was previously reported in Ref. 81).
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§2. The ASCC method

2.1. Basic equations of the ASCC method

We first summarize the basic equations of the ASCC method. The TDHFB state
|φ(t)〉 is written in terms of the collective variables as

|φ(t)〉 = |φ(q, p, ϕ, n)〉 = e−i
P

τ ϕ(τ)Ñ(τ) |φ(q, p, n)〉 , (2.1)

where q and p represent the one-dimensional collective coordinate and the collective
momentum, respectively. The variables ϕ = (ϕ(n), ϕ(p)) and n = (n(n), n(p)) denote
the gauge angles in particle number space and number fluctuations, respectively,
which correspond to the canonical coordinates and momenta of the pairing rotation
restoring the particle number conservation broken by the HFB approximation. The
operator Ñ (τ) ≡ N̂ (τ) − N

(τ)
0 represents the particle number measured with respect

to the reference value N
(τ)
0 , which is set to the number of the valence protons (τ = p)

and neutrons (τ = n) in the model space.
The intrinsic state with respect to the pairing rotation is written |φ(q, p, n)〉 =

eiĜ(q,p,n) |φ(q)〉, where |φ(q)〉 ≡ |φ(q, p = 0, n = 0)〉. Assuming that large-amplitude
collective motion is adiabatic, that is, the collective momentum p and the number
fluctuation n are small, we expand the one-body operator Ĝ(q, p, n) with respect to
p and n(τ) and consider only the first order:

|φ(q, p, n)〉 = eipQ̂(q)+i
P

τ n(τ)Θ̂(τ)(q) |φ(q)〉 . (2.2)

Here, Q̂(q) is a time-even one-body operator, while Θ̂(τ)(q) is a time-odd one-body
operator. Using the quasiparticle creation and annihilation operators, a†α(q) and
aα(q), defined with respect to a moving-frame HFB state |φ(q)〉, which satisfy the
condition aα(q) |φ(q)〉 = 0, they can be written as

Q̂(q) = Q̂A(q) + Q̂B(q)

=
∑
αβ

(
QA

αβ(q)a†α(q)a†β(q) + QA∗
αβ(q)aβ(q)aα(q) + QB

αβ(q)a†α(q)aβ(q)
)

, (2.3)

Θ̂(τ)(q) =
∑
αβ

(
Θ

(τ)A
αβ (q)a†α(q)a†β(q) + Θ

(τ)A∗
αβ (q)aβ(q)aα(q)

)
. (2.4)

Note that the operator Q̂(q) contains the B-part (the third term in the r.h.s.), in
addition to the A-part (the first and second terms) in order to satisfy the gauge-
invariance of the ASCC equations.56) In the following, we omit the index q in the
quasiparticle operators for simplicity.

The basic equations of the SCC method consist of the canonical variable con-
ditions, the moving-frame HFB equation, and the moving-frame QRPA equations.
Below we summarize the lowest-order expressions of these equations with respect to
expansion in p and n. (See Ref. 56) for their derivations.) The canonical variable
conditions are given by

〈φ(q)| P̂ (q) |φ(q)〉 = 0, (2.5)
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〈φ(q)| Q̂(q) |φ(q)〉 = 0, (2.6)

〈φ(q)| Ñ (τ) |φ(q)〉 = 0, (2.7)

〈φ(q)| Θ̂(τ)(q) |φ(q)〉 = 0, (2.8)

〈φ(q)| [Θ̂(τ)(q), Ñ (τ ′)] |φ(q)〉 = iδττ ′ , (2.9)

〈φ(q)| [Q̂(q), Θ̂(τ)(q)] |φ(q)〉 = 0, (2.10)

〈φ(q)| ∂Q̂

∂q
|φ(q)〉 = −1, (2.11)

where P̂ (q) is the local shift operator, defined by

P̂ (q) |φ(q)〉 = i
∂

∂q
|φ(q)〉 . (2.12)

Differentiating (2.6) and (2.7) with respect to q and using (2.11) and (2.12), we
obtain

〈φ(q)| [Q̂(q), P̂ (q)] |φ(q)〉 = i, (2.13)

〈φ(q)| [Ñ (τ), P̂ (q)] |φ(q)〉 = 0. (2.14)

Equations (2.5), (2.6), (2.7) and (2.8) ensure that the constant terms of those oper-
ators are zero in their quasiparticle representations, while Eqs. (2.9), (2.10), (2.13)
and (2.14) guarantee orthonormalization of the collective mode and the number fluc-
tuation modes. Equation (2.11) defines the scaling of the collective coordinate.

The moving-frame HFB equation is given by

δ 〈φ(q)| ĤM (q) |φ(q)〉 = 0, (2.15)

where

ĤM (q) = Ĥ −
∑

τ

λ(τ)(q)Ñ (τ) − ∂V

∂q
Q̂(q) (2.16)

represents the moving-frame Hamiltonian with the chemical potential λ(τ)(q) and
the collective potential V (q) defined by

λ(τ)(q) =
∂H

∂n(τ)


p=0,n=0,�I=�0

= 〈φ(q)| [Ĥ, iΘ̂(τ)(q)] |φ(q)〉 , (2.17)

V (q) =H(q, p, n, 
I)


p=0,n=0,�I=�0
= 〈φ(q)| Ĥ |φ(q)〉 . (2.18)

The moving-frame QRPA equations are given by

δ 〈φ(q)| [ĤM (q), iQ̂(q)] − B(q)P̂ (q) |φ(q)〉 = 0, (2.19)

δ 〈φ(q)| [ĤM (q), P̂ (q)] − iC(q)Q̂(q)

− 1
2B(q)

[[
ĤM (q),

∂V

∂q
Q̂(q)

]
, iQ̂(q)

]
− i

∑
τ

∂λ(τ)

∂q
Ñ (τ) |φ(q)〉 = 0, (2.20)
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where B(q) and C(q) represent the inverse collective mass and the local stiffness,
respectively. They are defined by

B(q) =
∂2H
∂p2


p=0,n=0,�I=�0

= 〈φ(q)| [[Ĥ, iQ̂(q)], iQ̂(q)] |φ(q)〉 , (2.21)

C(q) =
∂2V

∂q2
+

1
2B(q)

∂B

∂q

∂V

∂q
. (2.22)

Note that the ASCC equations, (2.15), (2.19) and (2.20), are invariant under
the following transformation:56)

Q̂(q) → Q̂(q) + α(τ)Ñ (τ),

λ(τ)(q) →λ(τ)(q) − α(τ) ∂V

∂q
(q),

∂λ(τ)

∂q
(q) → ∂λ(τ)

∂q
(q) − α(τ)C(q). (2.23)

Therefore, it is necessary to fix the particle number gauge for neutrons and protons
in order to derive the unique solution of the ASCC equations. The algorithm to
find simultaneous solutions of Eqs. (2.15), (2.19) and (2.20) satisfying the canonical
variable conditions and the gauge-fixing condition is described in §4.

In this paper, we take into account the rotational motion as well as the large-
amplitude vibrational motion by considering the collective Hamiltonian defined as
follows:

H(q, p, n, 
I) = 〈φ(q, p, n)| Ĥ |φ(q, p, n)〉 +
3∑

i=1

1
2Ji(q)

I2
i

=V (q) +
1
2
B(q)p2 +

∑
τ

λ(τ)(q)n(τ) +
3∑

i=1

1
2Ji(q)

I2
i . (2.24)

The first and the second terms represent the potential and kinetic energies of the
large-amplitude collective vibration, respectively, while the third and the fourth
terms represent the energies associated with the particle-number fluctuations and
the three-dimensional rotation of triaxially deformed mean fields, respectively. The
three rotational moments of inertia, Ji(q), are defined with respect to the principal
axes associated with the moving-frame HFB state |φ(q)〉 and evaluated as

δ 〈φ(q)| [ĤM (q), Ψ̂i(q)] − 1
i
J−1

i (q)Îi |φ(q)〉 = 0, (2.25)

〈φ(q)| [Ψ̂i(q), Îj] |φ(q)〉 = δij , (2.26)

where Ψ̂i(q) and Îi represent the rotational angle and the angular momentum opera-
tors, respectively. These equations reduce to the well-known QRPA equations giving
the Thouless-Valatin moments of inertia80) when |φ(q)〉 is an equilibrium state corre-
sponding to a local minimum of the collective potential energy, V (q). We call them
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“Thouless-Valatin equations”, although they are in fact extensions of the QRPA
equations for collective rotation to non-equilibrium HFB states |φ(q)〉. Note that
ĤM (q) appears in Eq. (2.25) instead of Ĥ. We remark that Eqs. (2.24)–(2.26) have
been introduced intuitively, leaving a full derivation of them as a challenging subject
for future.

§3. Hamiltonian

We adopt the following Hamiltonian consisting of the spherical single-particle
energy, the monopole and the quadrupole pairing interactions, and the quadrupole
particle-hole interaction:

Ĥ =
∑

k

εkc
†
kck −

∑
τ

G
(τ)
0

2
(Â(τ)†Â(τ) + Â(τ)Â(τ)†)

−
∑

τ

G
(τ)
2

2

2∑
K=−2

(B̂(τ)†
2K B̂

(τ)
2K + B̂

(τ)
2KB̂

(τ)†
2K ) − χ

2

2∑
K=−2

D̂†
2KD̂2K . (3.1)

Here, the monopole pairing operator Â(τ)†, the quadrupole pairing operator B̂
(τ)†
2K ,

the quadrupole particle-hole operator D̂2K are defined by

Â(τ)† =
∑

(k,k̃)∈τ

c†kc
†
k̃
, (3.2)

B̂
(τ)†
2K =

∑
kl∈τ

D
(τ)
2K(kl)c†kc

†
l̃
, (3.3)

D̂2K =
∑

τ=n,p

∑
kl∈τ

D
(τ)
2K(kl)c†kcl, (3.4)

where c†k is the nucleon creation operator, and k denotes the set of quantum num-
bers of the single-particle state (Nk, jk, lk, mk). The operator c†

k̃
represents its time-

reversal state,

c†
k̃

= (−1)jk+mkc†−k, (3.5)

where the index −k represents (Nk, jk, lk,−mk). The quadrupole matrix elements
are given by

D
(τ)
2K(kl) = α2

τ 〈k| r2Y2K |l〉 , (kl ∈ τ) (3.6)

where the factors α2
n = (2N/A)2/3 and α2

p = (2Z/A)2/3 are multiplied to yield the
same root mean square radius for neutrons and protons. For N=Z nuclei, such as
68Se and 72Kr, these factors are unity. Following Baranger and Kumar,78) we employ
a model space consisting of two major oscillator shells (with the total quantum
number of the lower shell denoted by NL and that of the upper shell denoted by
NL + 1), and multiply the quadrupole matrix elements D

(τ)
2K(kl) of the upper shell

by the reduction factor ζ = (NL + 3/2)/(NL + 5/2).
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Following the conventional prescription of the P+Q model, we ignore the Fock
terms. Accordingly, we use the abbreviation “HB” in place of “HFB” in the following.

We rewrite the Hamiltonian (3.1) into the form

Ĥ =
∑

k

εkc
†
kck − 1

2

∑
s

κsF̂
(+)
s F̂ (+)

s +
1
2

∑
s

κsF̂
(−)
s F̂ (−)

s , (3.7)

where the Hermite operators F̂
(+)
s and the anti-Hermite operators F̂

(−)
s are defined

by

F̂ (±)
s =

1
2
(F̂s ± F̂ †

s ), (3.8)

F̂s=1−15 = {Â(n), Â(p), B̂
(n)
20(+), B̂

(n)
21(+), B̂

(n)
21(−), B̂

(n)
22(+), B̂

(n)
22(−),

B̂
(p)
20(+), B̂

(p)
21(+), B̂

(p)
21(−), B̂

(p)
22(+), B̂

(p)
22(−), D̂20, D̂21, D̂22}. (3.9)

Here we use

B̂
(τ)†
2K(±) ≡

1
2
(B̂(τ)†

2K ± B̂
(τ)†
2−K) (K ≥ 0) (3.10)

in place of B̂
(τ)†
2K for the quadrupole pairing operators. The interaction strengths κs

are given by

κs=1−15 = {2G
(n)
0 , 2G

(p)
0 , 2G

(n)
2 , 4G

(n)
2 , 4G

(n)
2 , 4G

(n)
2 , 4G

(n)
2 ,

2G
(p)
2 , 4G

(p)
2 , 4G

(p)
2 , 4G

(p)
2 , 4G

(p)
2 , χ, 2χ, 2χ}. (3.11)

This Hamiltonian is invariant under a rotation by π about the x-axis. The quantum
number associated with this is called the signature, r = e−iπα. The single-particle
basis with definite signatures is defined by

dk ≡ 1√
2
(ck + ck̃), r = −i

(
α =

1
2

)
,

dk̄ ≡ 1√
2
(ck̃ − ck), r = i

(
α = −1

2

)
, (3.12)

where k denotes the single-particle basis whose magnetic quantum number satisfies
the condition mk − 1/2 = [even]. The operators F̂

(±)
s can be classified according to

their signatures and K-quantum numbers, as shown in Table I.
The large-amplitude collective vibration responsible for the oblate-prolate shape

mixing is associated with the K = 0 and 2 components of the interactions in
the positive-signature (r = +1) sector. Thus, the infinitesimal generator of large-
amplitude collective motion, Q̂(q), can be written in terms of the single-particle basis
with definite signature as

Q̂(q) =
∑

τ

∑
kl∈τ

′ (
Q

(τ)
kl (q)d†kdl + Q

(τ)

k̄l̄
(q)d†

k̄
dl̄

)
, (3.13)
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Table I. Classification of the one-body operators F̂
(±)
s in terms of the signature r (or α) and K

quantum numbers.

r = +1(α = 0) r = −1(α = 1)

K = 0 {Â(±)
n , Â

(±)
p , B̂

(n)(±)
20(+) , B̂

(p)(±)
20(+) , D̂

(+)
20 } −

K = 1 {B̂(n)(±)

21(−) , B̂
(p)(±)

21(−) , D̂
(−)
21 } {B̂(n)(±)

21(+) , B̂
(p)(±)

21(+) , D̂
(+)
21 }

K = 2 {B̂(n)(±)
22(+) , B̂

(p)(±)
22(+) , D̂

(+)
22 } {B̂(n)(±)

22(−) , B̂
(p)(±)
22(−) , D̂

(−)
22 }

where
∑′ represents a sum over the signature pairs (k, k̄), and Q

(τ)
kl = Q

(τ)

k̄l̄
. The

K = 1 component of the interaction in the r = +1 sector and the K = 1 and
2 components in the r = −1 sector contribute to the Thouless-Valatin equations
(2.25).

§4. Solution of the ASCC equations for separable interactions

4.1. The ASCC equations for separable interactions

For the separable interactions given in (3.7), the ASCC equations are writ-
ten55),56)

δ 〈φ(q)| ĥM (q) |φ(q)〉 = 0, (4.1)

δ 〈φ(q)| [ĥM (q), Q̂(q)] −
∑

s

f
(−)
Q,s (q)F̂ (−)

s − 1
i
B(q)P̂ (q) |φ(q)〉 = 0, (4.2)

δ 〈φ(q)|
[
ĥM (q),

1
i
B(q)P̂ (q)

]
−
∑

s

f
(+)
P,s (q)F̂ (+)

s − ω2(q)Q̂(q)

−
∑

s

f
(+)
R,s (q)F̂ (+)

s − 1
2

[[
ĥM (q),

∂V

∂ − q
Q̂(q)

]
, Q̂(q)

]

+
∑

s

[
F̂ (−)

s ,
∂V

∂q
Q̂(q)

]
f

(−)
Q,s (q) −

∑
τ

f
(τ)
N (q)Ñ (τ) |φ(q)〉 = 0, (4.3)

where ω2(q) = B(q)C(q) is the moving-frame QRPA frequency squared, and ĥM (q)
denotes the self-consistent mean-field Hamiltonian in the moving frame, defined by

ĥM (q) = ĥ(q) −
∑

τ

λ(τ)(q)Ñ (τ) − ∂V

∂q
Q̂(q), (4.4)

with

ĥ(q) = ĥ0 −
∑

s

κsF̂
(+)
s 〈φ(q)| F̂ (+)

s |φ(q)〉 . (4.5)

In the above equations, the summation over s is restricted to the operators with
K = 0 and 2 in the positive-signature sector. We also define the quantities

f
(−)
Q,s (q) = −κs 〈φ(q)| [F̂ (−)

s , Q̂(q)] |φ(q)〉 , (4.6a)
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f
(+)
P,s (q) = κs 〈φ(q)| [F̂ (+)

s ,
1
i
B(q)P̂ (q)] |φ(q)〉 , (4.6b)

f
(+)
R,s (q) = −1

2
κs 〈φ(q)|

[[
F̂ (+)

s ,
∂V

∂q
Q̂(q)

]
, Q̂(q)

]
|φ(q)〉 , (4.6c)

f
(τ)
N (q) = B(q)

∂λ(τ)

∂q
. (4.6d)

Note that all matrix elements are real and 〈φ(q)| F̂ (−)
s |φ(q)〉 = 0.

4.2. Overview of the procedure to solve the ASCC equations

The infinitesimal generators Q̂(q) and P̂ (q), which are represented with respect
to the quasiparticle vacuum |φ(q)〉, are the solutions of the moving-frame QRPA
equations, while the quasiparticle vacuum |φ(q)〉, which depends on Q̂(q), is a so-
lution of the moving-frame HB equation. In order to construct the collective path,
we have to obtain a self-consistent solution for the quasiparticle vacuum and the
infinitesimal generators. This requires a double iterative procedure for each value of
q, because the moving-frame HB equation is also solved by iteration.

Step 0: Starting point
The shape coexistence phenomena imply that there exist several solutions of the
static HB equation representing different local minima in the potential energy
surface. We can choose one of the HB solutions and assume that it is on the
collective path. This starting state is denoted by |φ(q = 0)〉. In the calculation
for 68Se and 72Kr presented in this paper, we choose the HB state at the lowest
minimum, which possesses an oblate shape. As discussed in Ref. 56), gauge fixing
is necessary to solve the moving-frame QRPA equations. We choose the “ETOP”
gauge.

Step 1: Initial setting
Assume that the solution of the ASCC equations at q − δq is obtained. In order
to calculate the solution at q, we start by solving the moving-frame HB equation
(4.1). As an infinitesimal generator in the moving-frame Hamiltonian, we use
an initial trial generator Q̂(q)(0) constructed from the lowest two solutions of the
moving-frame QRPA equations at q − δq of the form

Q̂(q)(0) = (1 − ε)Q̂1(q − δq) + εQ̂2(q − δq), (4.7)

where Q̂1(q−δq) and Q̂2(q−δq) denote the lowest and the second-lowest solutions
of the moving-frame QRPA equations at q−δq, respectively. The mixing parameter
ε is set to 0.1. This choice is crucial to find a symmetry-breaking solution in
the moving-frame QRPA equations when the moving-frame HB state |φ(q − δq)〉
and the moving-frame QRPA mode Q̂1(q − δq) possess the axial symmetry.75) [If
Q̂2(q − δq) is also axially symmetric, then we choose, for the second mode, the
lowest one among the axial symmetry-breaking QRPA modes.] The quantity δq
is set to 0.0157 in the present calculations.
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Step 2: Solving the moving-frame HB equation
Using the operator Q̂(n−1)(q) (n ≥ 1), we solve the moving-frame HB equation at
q,

δ
〈
φ(n)(q)

∣∣∣ Ĥ −
∑

τ

(λ(τ)(q))(n)Ñ (τ) − ∂V

∂q

(n)

(q)Q̂(n−1)(q)
∣∣∣φ(n)(q)

〉
= 0, (4.8)

with three constraints from the canonical variable conditions,〈
φ(n)(q)

∣∣∣ Ñ (τ)
∣∣∣φ(n)(q)

〉
= 0, (4.9)〈

φ(n)(q)
∣∣∣ Q̂(q − δq)

∣∣∣φ(n)(q)
〉

= δq. (4.10)

This step is discussed in §4.3 in detail.

Step 3: Solving the moving-frame QRPA equations
Using the moving-frame HB state

∣∣φ(n)(q)
〉

and the Lagrange multipliers (λ(τ)(q))(n)

and ∂V/∂q(q)(n) obtained in the previous step, we solve the moving-frame QRPA
equations with the gauge-fixing condition used for the HB state in Step 0. This
determines the infinitesimal generator Q̂(n)(q) as the lowest solution of Eqs. (4.2)
and (4.3). Details of this step are described in §4.4 and Appendix B.

Step 4: Realizing self-consistency
Updating the operator Q̂(n)(q), we return to Step 2, and repeat Steps 2 and 3 until
all quantities at q converge.

Step 5: Progression
Change q to q + δq and return to Step 1.

Carrying out Steps 1-5, we obtain a collective path starting from the HB mini-
mum in one direction (q > 0). We then change the sign of δq and repeat the above
procedure in the opposite direction (q < 0). In this way, we obtain an entire collective
path.

After obtaining the solutions of the ASCC equations, we solve the Thouless-
Valatin equation, (2.25), at every point on the collective path using the moving-
frame HB state |φ(q)〉 to evaluate the rotational moments of inertia Ji(q). Details
of this calculation are described in Appendix C.

4.3. The moving-frame HB equation in the quasiparticle representation

The quasiparticle operators a†µ(q) and aµ(q) associated with the moving-frame
HB state |φ(q)〉 are written in terms of the nucleon operators, d†k and dk̄, with definite
signature as (

a†µ(q)
aµ̄(q)

)
=
∑

k

′
(

Uµk(q) Vµk̄(q)
Vµ̄k(q) Uµ̄k̄(q)

)(
d†k
dk̄.

)
. (4.11)

Its inverse transformation is(
d†k
dk̄

)
=
∑

µ

′
(

Ukµ(q) Vkµ̄(q)
Vk̄µ(q) Uk̄µ̄(q)

)(
a†µ(q)
aµ̄(q)

)
. (4.12)
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The U and V matrices are determined by solving the moving-frame HB equation
(4.1). Note that superscripts τ (= n, p) for U , V , and the Fermion operators are
omitted for simplicity.

The moving-frame Hamiltonian is written

ĥM (q) =
∑

τ

∑
kl∈τ

′ (
(h(τ)

M )kl(q)(d
†
kdl + d†

k̄
dl̄) − ∆

(τ)

kl̄
(q)(d†kd

†
l̄
+ dl̄dk)

)
, (4.13)

where the particle-hole part and the particle-particle part of the moving-frame Hamil-
tonian are given by

(h(τ)
M )ll′(q) = h

(τ)
ll′ (q) − λ(τ)(q)δll′ − ∂V

∂q
(q)Q(τ)

ll′ (q), (4.14)

h
(τ)
ll′ = ε

(τ)
l δll′ −

∑
s∈ph

κs 〈φ(q)| F̂ (+)
s |φ(q)〉 (l|F̂ (+)

s |l′), (4.15)

∆
(τ)

ll̄′ =
∑

s∈pp,hh

κs 〈φ(q)| F̂ (+)
s |φ(q)〉 (0|F̂ (+)

s |ll̄′). (4.16)

The matrix elements (k|F̂ (+)
s |l) are defined by

(l|F̂ (+)
s |l̄′) = (0|dlF̂

(+)
s d†

l̄
|0), (0|F̂ (+)

s |ll̄′) = (0|F̂ (+)
s d†l d

†
l̄′ |0), (4.17)

where |0) denotes the vacuum for nucleon operators.
The moving-frame HB equation is thus written∑

ll′∈τ

′ (
(h(τ)

M )ll′(q)Ul′k(q) + ∆
(τ)
ll′ (q)Vl′k(q)

)
=E

(τ)
k Ulk(q), (4.18a)

∑
ll′∈τ

′ (
∆

(τ)
ll′ (q)Ul′k(q) + (h(τ)

M )ll′(q)Vl′k(q)
)

= − E
(τ)
k Vlk(q), (4.18b)

where E
(τ)
k denotes the quasiparticle energy. These equations are solved under the

following three constraints:

〈φ(q)| N̂ (n) |φ(q)〉 = N
(n)
0 , (4.19)

〈φ(q)| N̂ (p) |φ(q)〉 = N
(p)
0 , (4.20)

〈φ(q)| Q̂(q − δq) |φ(q)〉 = δq. (4.21)

The Lagrange multipliers λ(n)(q), λ(p)(q) and dV/dq(q) are determined such that
these constraints are satisfied. The expectation values in the moving-frame Hamil-
tonian are updated using Ulk and Vlk thus obtained until self-consistency is realized.

In the quasiparticle representation, the moving-frame Hamiltonian, ĥM (q), the
neutron and proton number operators, Ñ (τ), and the operators F̂

(±)
s with K = 0

and 2 in the r = 1 sector are written in the following forms:

ĥM (q) = 〈φ(q)| ĥM (q) |φ(q)〉 +
∑
µ

′
(Eµ(q)Bµµ(q) + Eµ̄(q)Bµ̄µ̄(q)) , (4.22)
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Ñ (τ) =
∑
µν̄

′
N

(τ)
A (µν̄)(A†

µν̄(q) + Aµν̄(q)) +
∑
µ

′
N

(τ)
B (µµ)(Bµµ(q) + Bµ̄µ̄(q)),

(4.23)

F̂ (±)
s = 〈φ(q)| F̂ (±)

s |φ(q)〉 +
∑
µν̄

′
F

(±)
A,s (µν̄)(A†

µν̄(q) + Aµν̄(q))

+
∑
µν

′
F

(±)
B,s (µν)(Bµν(q) + Bµ̄ν̄(q)), (4.24)

where

A†
µν̄(q) = a†µ(q)a†ν̄(q), Aµν̄(q) = aν̄(q)aµ(q), Bµν(q) = a†µ(q)aν(q). (4.25)

Explicit expressions for the matrix elements N
(τ)
A , N

(τ)
B , F

(±)
A,s and F

(±)
B,s are given in

Appendix A.
We define the monopole-pairing gaps ∆

(τ)
0 (q), the quadrupole-pairing gaps

∆
(τ)
2,K=0,2(q), and the quadrupole deformations D

(+)
2,K=0,2(q) by

∆
(τ)
0 (q) = G

(τ)
0 〈φ(q)| Â(τ)(+) |φ(q)〉 , (4.26)

∆
(τ)
2,K=0,2(q) = G

(τ)
2,K=0,2 〈φ(q)| B̂(τ)(+)

2,K=0,2(+) |φ(q)〉 , (4.27)

D
(+)
2,K=0,2(q) = 〈φ(q)| D̂(+)

2,K=0,2 |φ(q)〉 . (4.28)

4.4. The moving-frame QRPA equations

The infinitesimal generators Q̂(q) and P̂ (q) are represented in the quasiparticle
representation as

Q̂(q) = QA(q) + QB(q)

=
∑
µν̄

′
QA

µν̄(q)(A
†
µν̄(q) + Aµν̄(q)) +

∑
µν

′
QB

µν(q)(Bµν(q) + Bµ̄ν̄(q)), (4.29)

P̂ (q) = i
∑
µν̄

′
Pµν̄(q)(A

†
µν̄(q) − Aµν̄(q)). (4.30)

In the following, we discuss the method for obtaining the n-th solution of the moving-
frame QRPA equations in Step 3 assuming that the (n − 1)-th solution Q̂(n−1)(q) is
already known. For later convenience, we introduce the one-body operator

R̂(±)
s =

[
F̂ (±)

s ,
∂V

∂q
Q̂(n−1)(q)

]

= 〈φ(q)| R̂(±)
s |φ(q)〉 +

∑
µν̄

′
R

(±)
A,s(µν̄)(A†

µν̄ ∓ Aµν̄) +
∑
µν

′
R

(±)
B,s(µν)(Bµν + Bµ̄ν̄),

(4.31)

with

R
(±)
A,s(µν̄) =

∂V

∂q

∑
ρ

′ (
F

(±)
B,s (µρ)(QA

ρν̄)
(n−1) ± (QA

µρ̄)
(n−1)F

(±)
B,s (ρ̄ν̄)
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−(QB
µρ)

(n−1)F
(±)
A,s (ρν̄) − F

(±)
A,s (µρ̄)(QB

ρ̄ν̄)
(n−1)

)
. (4.32)

We can express the matrix elements QA
µν̄(q) and Pµν̄(q) using Eqs. (4.2) and (4.3)

as

(QA
µν̄(q))

(n) =
∑
µ′ν̄′

′
g2(µν̄, µ′ν̄ ′)

{∑
s

(
F

(+)
A,s (µ′ν̄ ′)f (+)

PR,s(q) − R
(−)
A,s(µ

′ν̄ ′)f (−)
Q,s (q)

)

+
∑

τ

N (τ)(µ′ν̄ ′)f (τ)
N (q)

}
+ g1(µν̄, µ′ν̄ ′)

∑
s

F
(−)
A,s (µ′ν̄ ′)f (−)

Q,s (q), (4.33)

Pµν̄(q) =
∑
µ′ν̄′

′
g3(µν̄, µ′ν̄ ′)

{∑
s

(
F

(+)
A,s (µ′ν̄ ′)f (+)

PR,s(q) − R
(−)
A,s(µ

′ν̄ ′)f (−)
Q,s (q)

)

+
∑

τ

N (τ)(µ′ν̄ ′)f (τ)
N (q)

}
+ g4(µν̄, µ′ν̄ ′)

∑
s

F
(−)
A,s (µ′ν̄ ′)f (−)

Q,s (q), (4.34)

where f
(+)
PR,s(q) ≡ f

(+)
P,s (q) + f

(+)
R,s (q). The metrics gi (i = 1 − 4) are defined by

g1(µν̄, µ′ν̄ ′) ≡ (M−1E)µν̄,µ′ν̄′ , g2(µν̄, µ′ν̄ ′) ≡ (M−1)µν̄,µ′ν̄′ , (4.35)

g3(µν̄, µ′ν̄ ′) ≡ (EM−1)µν̄,µ′ν̄′ , g4(µν̄, µ′ν̄ ′) ≡ (EM−1E)µν̄,µ′ν̄′ − δµµ′δν̄ν̄′ ,

(4.36)

where M and E are given by

Mµν̄,µ′ν̄′(ω2(q)) = {(Eµ + Eν̄)2 − ω2(q)}δµµ′δν̄ν̄′

+ δµµ′

(
1
2
Eµ′ + Eν′ − 1

2
Eν̄

)
(QB

ν̄′ν̄)
(n−1) ∂V

∂q
(q),

+ (QB
µµ′)(n−1)

(
Eµ′ − 1

2
Eµ +

1
2
Eν̄′

)
δν̄ν̄′

∂V

∂q
(q), (4.37)

Eµν̄,µ′ν̄′ = (Eµ + Eν̄)δµµ′δν̄ν̄′ . (4.38)

The quantities given in (4.6) and the canonical variable condition (2.14) can be
expressed in terms of (Q̂A(q))(n) and P̂ (q) as

f
(−)
Q,s (q) = − κs 〈φ(q)| [F̂ (−)

s , Q̂(n)(q)] |φ(q)〉 = −2κs(F
(−)
A,s , (QA(q))(n)), (4.39)

f
(+)
PR,s(q) = κs 〈φ(q)| [F̂ (+)

s ,
1
i
B(q)P̂ (q)] |φ(q)〉

− 1
2
κs 〈φ(q)|

[[
F̂ (+)

s ,
∂V

∂q
Q̂(n−1)(q)

]
, Q̂(n)(q)

]
|φ(q)〉

= 2κs(F
(+)
A,s , P (q)) − κs(R

(+)
A,s , (Q

A(q))(n)), (4.40)

〈φ(q)| [N̂ (τ), P̂ (q)] |φ(q)〉 = −2i(N (τ)
A , P (q)) = 0, (4.41)
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where

(X, Y ) ≡
∑
µν̄

′
X(µν̄)Y (µν̄). (4.42)

Substituting Eqs. (4.39), (4.40) and (4.41) into Eqs. (4.33) and (4.34), we derive the
dispersion equation

S · f =
∑
s′τ ′




SQ,Q
ss′ SQ,PR

ss′ SQ,N
sτ ′

SPR,Q
ss′ SPR,PR

ss′ SPR,N
sτ ′

SN,Q
τs′ SN,PR

τs′ SN,N
ττ ′







f
(−)
Q,s′(q)

f
(+)
PR,s′(q)

f
(τ ′)
N (q)


 = 0, (4.43)

where the matrix elements of S are given by

SQ,Q
ss′ = 2(F (−)

A,s , F
(−)
A,s′)g1 − 2(F (−)

A,s , R
(−)
A,s′)g2 −

1
κs

δss′ , (4.44a)

SQ,PR
ss′ = 2(F (−)

A,s , F
(+)
A,s′)g2 , (4.44b)

SQ,N
sτ ′ = 2(F (−)

A,s , N
(τ ′)
A )g2 , (4.44c)

SPR,Q
ss′ = 2(F (+)

A,s , F
(−)
A,s′)g4 − 2(F (+)

A,s , R
(−)
A,s′)g3

+ (R(+)
A,s , F

(−)
A,s′)g1 − (R(+)

A,s , R
(−)
A,s′)g2 , (4.44d)

SPR,PR
ss′ = 2(F (+)

A,s , F
(+)
A,s′)g3 + (R(+)

A,s , F
(+)
A,s′)g2 −

1
κs

δss′ , (4.44e)

SPR,N
sτ ′ = 2(F (+)

A,s , N
(τ ′)
A )g3 + (R(+)

A,s , N
(τ ′)
A )g2 , (4.44f)

SN,Q
τs′ = (N (τ)

A , F
(−)
A,s′)g4 − (N (τ)

A , R
(−)
A,s′)g3 , (4.44g)

SN,PR
τs′ = (N (τ)

A , F
(+)
A,s′)g3 , (4.44h)

SN,N
ττ ′ = (N (τ)

A , N
(τ ′)
A )g3 . (4.44i)

The parentheses in the above matrix elements are defined by

(X, Y )gi =
∑

µν̄µ′ν̄′

′
X(µν̄)gi(µν̄µ′ν̄ ′)Y (µ′ν̄ ′). (i = 1 − 4) (4.45)

As mentioned above, the ASCC equations are invariant under the gauge transfor-
mation associate with number fluctuations. The quantities

f
(−)
Q,s=1,2(q) = −2G

(τ=n,p)
0 〈φ(q)| [Â(τ=n,p)(−), Q̂(q)] |φ(q)〉 (4.46)

and f
(τ)
N (q) are transformed under (2.23) as

f
(−)
Q,s=1,2(q) →f

(−)
Q,s=1,2(q) − 4α(τ=n,p)∆

(τ=n,p)
0 (q), (4.47)

f
(τ=n,p)
N (q) →f

(τ=n,p)
N (q) − α(τ=n,p)ω2(q). (4.48)
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Thus, we have to fix the gauge when solving the dispersion equation (4.43). For both
neutrons and protons, we choose the “ETOP” gauge,56)

f
(−)
Q,s=1(q) = 0, f

(−)
Q,s=2(q) = 0. (4.49)

This gauge-fixing condition reduces the dimension of the dispersion equations. We
can then use the submatrix S0 of S, where terms related to the anti-Hermite part
of the monopole pairing operators, (F̂ (−)

s=1,2), are dropped. From Eq. (4.43), the
moving-frame QRPA frequency squared, ω2(q), is determined by the condition

det S0(ω2(q)) = 0. (4.50)

The solution with the smallest value of ω2(q) (including negative values) is regarded
as the most collective mode at q. Note that we consider imaginary ω(q) solutions
as well as real ones. Once ω2(q) is determined, f(q), (QA

µν̄(q))
(n) and Pµν̄(q) can be

obtained by use of the normalization condition

〈φ(q)| [(Q̂A(q))(n), P̂ (q)] |φ(q)〉 = 2i((QA(q))(n), P (q)) = i. (4.51)

§5. Requantization of the collective Hamiltonian

5.1. Requantization and construction of wave functions in the laboratory frame

Solving the basic equations of the ASCC method and the Thouless-Valatin equa-
tions, we obtain the collective Hamiltonian (2.24); we can set the collective mass
B(q)−1 to unity without loss of generality, because it merely defines the scale for
measuring the length of the collective path. We also set the number fluctuation n to
zero. Requantization is carried out simply by replacing the classical variables with
the quantum operators:

p → �

i

∂

∂q
, Ii → Îi, (5.1)

where Îi are three components of the angular momentum operator acting on three
Euler angles that define the orientation of the principal axes with respect to the lab-
oratory frame. The Schrödinger equation for the requantized collective Hamiltonian
is (

−1
2

∂2

∂q2
+

3∑
i=1

Î2
i

2Ji(q)
+ V (q)

)
ΨIMk(q, Ω) = EI,kΨIMk(q, Ω). (5.2)

The collective wave function in the laboratory frame, ΨIM,k(q, Ω), is a function of
the collective coordinate q and the three Euler angles Ω, and it is specified by the
total angular momentum I, its projection M on the laboratory z-axis, and the index
k distinguishing different quantum states having the same I and M . Note that the
three components Îi of the angular momentum operator are defined with respect to
the principal axes (1, 2, 3) ≡ (x′, y′, z′) associated with the moving-frame HB state
|φ(q)〉.
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Using the rotational wave functions DI
MK(Ω), we can write the collective wave

functions in the laboratory frame as

ΨIMk(q, Ω) =
I∑

K=−I

Φ′
IKk(q)

√
2I + 1
8π2

DI
MK(Ω) (5.3)

=
I∑

K=0

ΦIKk(q) 〈Ω|IMK〉 . (5.4)

Here, Φ′
IKk are intrinsic wave functions that represent the large-amplitude collective

vibrations responsible for the oblate-prolate shape mixing. They are specified by the
projection K of the angular momentum on the intrinsic z′-axis, instead of by M .
We assume that the intrinsic states have positive signature. Then, their K and −K
components are connected by

Φ′
IKk(q) = (−)IΦ′

I−Kk(q). (5.5)

Accordingly, it is convenient to use new rotational wave functions, defined by

〈Ω|IMK〉 =
1√

2(1 + δK0)

√
2I + 1
8π2

(
DI

MK(Ω) + (−)IDI
M−K(Ω)

)
, (5.6)

and new vibrational wave functions,

ΦIKk(q) =
√

2
1 + δK0

Φ′
IKk(q) = (−)I

√
2

1 + δK0
Φ′

I−Kk(q), (5.7)

in place of Φ′
IK,k. Because the D functions are normalized as

∫
dΩDI∗

MK(Ω)DI′
M ′K′(Ω) =

8π2

2I + 1
δII′δMM ′δKK′ , (5.8)

the normalization of the vibrational wave functions is given by

∫
dq

I∑
K=0

Φ∗
IKk(q)ΦIKk′(q) = δkk′ . (5.9)

5.2. Boundary conditions

Multiplying the Schrödinger equation (5.2) from the left by a rotational wave
function 〈Ω|IMK〉 and integrating out the Euler angles Ω, we obtain the collective
Schrödinger equation for large-amplitude vibration:

(
−1

2
∂2

∂q2
+ V (q)

)
ΦIKk(q) +

I∑
K′=0

〈IMK| T̂rot

∣∣IMK ′〉ΦIK′k(q) = EI,kΦIKk(q),

(5.10)

where T̂rot =
∑

i Î2
i /(2Ji(q)).
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The boundary conditions can be specified by projecting the collective path onto
the (β, γ) plane and by using the well-known symmetry properties of the Bohr-
Mottelson collective Hamiltonian.5),79) The deformation parameters β and γ are
defined by

β(q) cos γ(q) = χ′ 〈φ(q)| D̂(+)
20 |φ(q)〉 /(�ω0b

2), (5.11)

β(q) sinγ(q) =
√

2χ′ 〈φ(q)| D̂(+)
22 |φ(q)〉 /(�ω0b

2), (5.12)

and they measure the magnitude and triaxiality of the quadrupole deformation of
the HB mean field in the moving-frame as functions of the collective coordinate q.
Here, �ω0 denotes the frequency of the harmonic-oscillator potential, χ′ ≡ χb4, and
the harmonic-oscillator length parameter b is related to the radius parameter r0 by

b2 =
4
5

(
2
3

) 1
3

r2
0A

1
3 . (5.13)

The boundary conditions for the vibrational collective wave functions are spec-
ified according to the form of the collective path in the (β, γ) plane. As we discuss
in §6.3, the collective path for 68Se passes through the γ-direction (see Fig.1). In
this case, the following boundary conditions are employed in the prolate and oblate
limits. In the prolate limit, γ(qpro) → 0◦, the vibrational wave functions must satisfy

ΦIKk(qpro − q) = (−)
K
2 ΦIKk(qpro + q), (5.14)

which is equivalent to

ΦIKk(qpro) = 0, (K = 2, 6, · · · ) (5.15)
dΦIKk

dq


q=qpro

= 0. (K = 0, 4, · · · ) (5.16)

In the oblate limit, γ(qob) → 60◦, the HB mean field is symmetric about the intrinsic
y′-axis, and thus the boundary conditions are given by79)

ΦIKk(qob − q) = (−)
K
2

∑
K′

2√
(1 + δK0)(1 + δK′0)

DI
KK′

(π

2
,
π

2
, π
)

ΦIK′k(qob + q).

(5.17)

In the case of 72Kr, the collective path connecting the oblate and prolate shapes
is not periodic with respect to the γ-direction (see Fig. 3). Accordingly, we set the
box boundary conditions at the edge of the path:

ΦIKk(qmin) = ΦIKk(qmax) = 0. (5.18)

The matrix elements 〈IMK| T̂rot |IMK ′〉 of the rotational kinetic energy oper-
ator in Eq. (5.10) can be easily calculated:

〈IMK| T̂rot |IMK〉 = a(q)I(I + 1) + b(q)K2, (5.19)

〈IMK| T̂rot |IM, K + 2〉 = 〈IM, K + 2| T̂rot |IMK〉
= c(q){(I + K + 2)(I + K + 1)(I − K)(I − K − 1)}− 1

2 ,
(5.20)
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where

a(q) =
1
4

(
1

J1(q)
+

1
J2(q)

)
, (5.21)

b(q) =
1
4

(
2

J3(q)
− 1

J1(q)
− 1

J2(q)

)
, (5.22)

c(q) =
1
8

(
1

J1(q)
− 1

J2(q)

)
. (5.23)

The other matrix elements are zero.

5.3. Electric quadrupole moments and transitions

To evaluate the electric quadrupole (E2) moments and transition probabilities,
we need to derive expressions for the E2 operator in the collective subspace. This
can be easily done by using the procedure we used to derive the quantum collective
Hamiltonian. As described below, we first evaluate the expectation values of the E2
operators with respect to the moving-frame HB state |φ(q, p)〉 and then apply the
canonical quantization procedure.

In accordance with the quadrupole operators (3.4), we define the E2 operators
in the model space under consideration as

D̂′(E2)
µ =

∑
τ

e
(τ)
eff

∑
kl∈τ

D
(τ)
2µ (kl)c†kcl, (5.24)

D̂
′(E2)
µ+ =

1
2
(D̂′(E2)

µ + D̂
′(E2)
−µ ), (5.25)

where e
(τ)
eff are the effective charges. Their expectation values in the collective sub-

space are expanded up to second order in the collective momentum p as

D
′(E2)
µ+ (q, p) = 〈φ(q, p)| D̂′(E2)

µ+ |φ(q, p)〉
=D

′(E2)
µ+ (q) +

1
2
D

′′(E2)
µ+ (q)p2, (5.26)

where

D
′(E2)
µ+ (q) = 〈φ(q)| D̂′(E2)

µ+ |φ(q)〉 , (5.27)

D
′′(E2)
µ+ (q) = − 〈φ(q)| [[D̂′(E2)

µ+ , Q̂(q)], Q̂(q)] |φ(q)〉 . (5.28)

The quantities D
′(E2)
µ+ (q, p) are called collective representations of the E2 operators.

Note that these are defined in the intrinsic frame associated with the moving-frame
HB mean field. We now apply the canonical quantization to them. Then, the collec-
tive coordinate q and the collective momentum p become quantum operators acting
on the vibrational wave functions ΦIKk(q). We call the requantized E2 operators
“collective E2 operators” and denote them D̂

′(E2)
µ+ . Thus, the E2 matrix elements

between two collective vibrational states are evaluated as

〈ΦIKk| D̂′(E2)
µ+ |ΦIK′k′〉 =

∫
dq Φ∗

IKk(q)
(

D
′(E2)
µ+ (q) − 1

2
d

dq
D

′′(E2)
µ+ (q)

d

dq

)
ΦIK′k′(q).

(5.29)
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We need to calculate these integrals only for vibrational states which satisfy the
selection rules of the E2 operators. (As shown in §6, the contribution from the
second term in the r.h.s. of Eq. (5.29) is negligible, so that the ordering problem in
the canonical quantization procedure is not important here.)

The collective E2 operators D̂
′(E2)
µ are defined in the intrinsic frame, and those

in the laboratory frame D̂
(E2)
µ are obtained as

D̂(E2)
µ =

∑
µ

D2
µµ′(Ω)D̂′(E2)

µ′ . (5.30)

As is well known, B(E2) values and spectroscopic quadrupole moments Q(Ik) are
given in terms of reduced matrix elements 〈Ik||D̂(E2)

+ ||Ik〉 as

B(E2; Ik → I ′k′) = (2I + 1)−1
∣∣∣〈Ik||D̂(E2)||I ′k′〉

∣∣∣2 , (5.31)

Q(Ik) =

√
16π

5
〈I, M = I, k| D̂(E2) |I, M = I, k〉

=

√
16π

5

(
I 2 I
−I 0 I

)
〈Ik||D̂(E2)

µ ||Ik〉. (5.32)

These reduced matrix elements can be evaluated by using the Wigner-Eckart theo-
rem,

〈I, M = I, k| D̂(E2)
0

∣∣I ′, M = I, k′〉 =
(

I 2 I ′
−I 0 I

)
〈I, k||D̂(E2)||I ′, k′〉, (5.33)

and calculating the left-hand side as79)

〈I, M = I, k|D̂(E2)
0

∣∣I ′, M = I, k′〉
=

√
(2I + 1)(2I ′ + 1)

8π2

∑
KK′µ

〈
Φ′

IKk

∣∣ D̂′(E2)
µ

∣∣Φ′
I′K′k′

〉 〈
DI

IK

∣∣D2
0µ

∣∣∣DI′
IK′

〉

=
√

(2I + 1)(2I ′ + 1)
∑

KK′µ

〈
Φ′

IKk

∣∣ D̂′(E2)
µ

∣∣Φ′
I′K′k′

〉

(−)I−K

(
I 2 I ′

−I 0 I

)(
I 2 I ′

−K µ K ′

)
. (5.34)

In the intrinsic frame, the µ = ±1 components of the collective E2 operator vanish,
and those for the µ = ±2 components are equal. Thus we obtain

〈Ik||D̂(E2)||I ′k′〉

=
√

(2I + 1)(2I ′ + 1)(−)I
∑
K≥0

[(
I 2 I ′

−K 0 K

)
〈ΦIKk| D̂′(E2)

0+ |ΦI′K′k′〉

+
√

1 + δK0

{(
I 2 I ′

−K − 2 2 K

)
〈ΦI,K+2,k| D̂′(E2)

2+ |ΦI′Kk′〉

+
(

I 2 I ′

K 2 −K − 2

)
(−)I+I′ 〈ΦIKk| D̂′(E2)

2+

∣∣ΦI′,K+2,k′
〉}]

. (5.35)
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§6. Results of numerical calculation and discussion

6.1. Details of numerical calculation

In the numerical calculations, we considered two major shells (Nsh = 3, 4) for
protons and neutrons and used the same values for the single-particle energies,
the monopole pairing strength G

(τ)
0 , and the quadrupole particle-hole interaction

strength χ as in Ref. 75). The single-particle energies are listed in Table II. The
interaction strengths were adjusted to approximately reproduce the pairing gaps and
the quadrupole deformations obtained with the Skyrme-HFB calculation carried out
by Yamagami et al.67) These values are G

(n)
0 = G

(p)
0 = 0.320 and χ′ ≡ χb4 = 0.248

MeV for 68Se and G
(n)
0 = 0.299, G

(p)
0 = 0.309 and χ′ = 0.255 MeV for 72Kr. The

oscillator frequency and the radius parameters were set to �ω0 = 41.2A1/3 MeV and
r0 = 1.2 fm. For the quadrupole pairing strength, we used the self-consistent value
derived by Sakamoto and Kishimoto,82)

G
(τ)self
2K =


∑

αβ∈τ

1
4

(
1

Eα
+

1
Eβ

)
|D(τ)

2K(αβ)|2


−1

, (6.1)

where Eα is the quasiparticle energy evaluated using the BCS approximation in the
case of spherical shape. Accordingly, we have Gself

20 = Gself
21 = Gself

22 .
The effective charges e

(τ)
eff are written as e

(n)
eff = δepol for neutrons and e

(p)
eff =

e + δepol for protons. For simplicity, we use the same polarization charge, δepol =
0.905e, for protons and neutrons, which is chosen to reproduce the experimental
B(E2;2+

1 → 0+
1 ) value66) in 72Kr. Only these data are available for E2 transitions

among low-lying states in 68Se and 72Kr. This value of δepol seems slightly too large
and needs further investigation. We take into account the momentum-dependent
term in the collective representation of the E2 operators, Eq. (5.26), although nu-
merical calculations indicate that it gives only a few percent correction, at most, to
the main term.

In the present calculation, we ignored the curvature terms [the fourth, fifth and
sixth terms in Eq. (4.3)] in order to reduce the CPU time. We have verified that
their contributions are negligible.

In the numerical calculations, careful treatment is necessary in the prolate limit,
as the moment of inertia about the symmetry axis, J3(q), vanishes there. Actually,
this does not cause a problem, because the K 	= 0 components of the vibrational
wave function also vanish there. To avoid numerical instability, however, we set
J3(q) = 10−13

�
2 (MeV)−1 in the prolate limit, and we confirmed that this works

well without losing numerical accuracy. We applied this recipe also in the oblate
limit, where J2(q) vanishes. Actually, the y′-axis component of the vibrational wave
function also vanishes there, although this is not directly seen from Eq. (5.10), in
which the wave functions are decomposed with respect to the K quantum numbers,
choosing the z′-axis as the quantization axis.
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Table II. Energies in units of MeV of the spherical single-particle levels used in the calculation.

These values are taken from Ref. 75).

orbits 1f7/2 2p3/2 1f5/2 2p1/2 1g9/2 2d5/2 1g7/2 3s1/2 2d3/2

neutrons −9.02 −4.93 −2.66 −2.21 0.00 5.27 6.36 8.34 8.80

protons −8.77 −4.23 −2.41 −1.50 0.00 6.55 5.90 10.10 9.83

6.2. Properties of local minima in 68Se and 72Kr

In Table III we list the results of the calculations for the properties of the HB
equilibrium states (local minima in the potential energy surface). For both 68Se and
72Kr, the lowest HB minimum possesses an oblate shape, while the second minimum
is prolate. The energy differences between the oblate and prolate minima evaluated
using the P+Q Hamiltonian with (without) the quadrupole pairing interaction are
300 keV (196 keV) for 68Se and 827 keV (626 keV) for 72Kr. We thus find no
qualitative change in the mean-field properties due to the inclusion of the quadrupole
pairing interaction.

The QRPA collective modes at the oblate and prolate minima can be classified
in terms of the projections of the angular momenta on the symmetry axis, Ky and
Kz ≡ K, respectively. Table IV lists the properties of the QRPA collective modes at
the oblate and prolate minima. In 68Se, the lowest modes are γ-vibrational (Ky or
Kz=2), and the second lowest modes are β-vibrational (Ky or Kz=0), both at the
oblate and the prolate minima. It is seen that the quadrupole pairing interaction
lowers their excitation energies without changing their ordering. In 72Kr, the lowest
QRPA modes at the two minima are both β-vibrational if the quadrupole pairing
interaction is ignored. Note, however, that the Kz = 0 and 2 modes at the prolate
local minimum are close in energy, and their ordering changes when the quadrupole
pairing interaction is taken into account, whereas the lowest mode at the lowest
oblate minimum is always β-vibrational.

6.3. Collective path connecting the oblate and prolate minima in 68Se

We start by solving the basic equations of the ASCC method from the oblate
minimum (q = 0) and progressively determine the collective path, following the
algorithm outlined in §4.2. Figure 1 illustrates the collective path thus obtained by
projecting it onto the (β, γ) potential energy surface. The path connects the two local
minima passing through a potential valley lying in the triaxial deformed region. The

Table III. The quadrupole deformations and the pairing gaps ∆
(τ)
0 (in MeV) and ∆

(τ)
2K (in MeV

fm2) at the HB local minima in 68Se and 72Kr, calculated using the P+Q Hamiltonian, including

the quadrupole pairing interaction.

(G2 = Gself
2 ) β γ ∆

(n)
0 ∆

(p)
0 ∆

(n)
20 ∆

(p)
20 ∆

(n)
22 ∆

(p)
22

68Se (oblate) 0.30 60◦ 1.17 1.26 0.08 0.09 0.10 0.11
68Se (prolate) 0.26 0◦ 1.34 1.40 0.14 0.15 0 0
72Kr (oblate) 0.35 60◦ 0.92 1.06 0.05 0.06 0.06 0.07
72Kr (prolate) 0.38 0◦ 1.14 1.27 0.19 0.19 0 0
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Table IV. The excitation energies ω (in MeV) and the K quantum numbers of the lowest two

QRPA modes at the oblate and prolate minima in 68Se and 72Kr. The results of the calculation

with (G2 = Gself
2 ) and without (G2 = 0) the quadrupole pairing interaction are compared. The

K quantum numbers here represent Ky or Kz, according to the shape (oblate or prolate).

G2 = 0 G2 = Gself
2

ω1 K1 ω2 K2 ω1 K1 ω2 K2
68Se (oblate) 1.555 2 2.342 0 1.373 2 2.131 0
68Se (prolate) 1.015 2 1.915 0 0.898 2 1.369 0
72Kr (oblate) 1.150 0 1.909 0 1.239 0 2.010 2
72Kr (prolate) 1.606 0 1.674 2 1.644 2 1.714 0

Fig. 1. The collective path for 68Se calculated with the P+Q Hamiltonian including the quadrupole

pairing interaction. The path is projected onto the (β, γ) potential energy surface. The dots in

the figure indicate the HB local minima. Equipotential lines are drawn every 100 keV.

collective path for 68Se obtained with the P+Q Hamiltonian including the quadrupole
pairing interaction is very similar to that obtained in Ref. 75), in which its effect
was ignored. As solutions of the ASCC equations, we obtain various quantities: the
canonical collective coordinate q, the quadrupole deformations β(q) and γ(q), the
monopole and quadruple pairing gaps ∆

(τ)
0 (q) and ∆

(τ)
2K(q), the collective potential

V (q), the collective mass M(s(q)), the moving-frame QRPA frequency squared ω2(q),
and the three rotational moments of inertia Ji(q). These quantities are plotted in
Fig. 2 as functions of γ(q). It is seen that the quadrupole deformation β(q) is almost
constant along the collective path, while the triaxial deformation γ(q) varies and
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Fig. 2. Results of the calculation for 68Se. The monopole pairing gap ∆
(τ)
0 (q), the quadrupole

pairing gaps ∆
(τ)
20 (q) and ∆

(τ)
22 (q), the collective potential V (q), the collective mass M(s(q)), the

rotational moments of inertia Ji(q), the lowest two moving-frame QRPA frequencies squared

ω2(q), the axial quadrupole deformation β(q), and the canonical collective coordinate q are

plotted as functions of γ(q). The results of the two calculations using the P+Q Hamiltonian

with (G2 = Gself
2 ) and without (G2 = 0) the quadrupole pairing interaction are compared.

changes from an oblate shape to a prolate shape. It is seen that the quadrupole
pairing interaction slightly increases the values of β(q) for all values of γ(q).

The collective mass M(s(q)) plotted in Fig. 2 is defined as a function of the
geometrical length, ds =

√
dβ2 + β2dγ2, in the (β, γ) plane:

M(s(q)) = M(q)/{(dβ/dq)2 + β2(dγ/dq)2}. (6.2)

As explained in §5.1, we can set M(q) = B(q)−1 = 1MeV−1 here. We have found that
the quadrupole pairing interaction increases the collective mass. This enhancement
takes place almost independently of γ(q), and it is mainly due to the decrease of
dγ/dq along the collective path.

Because the HB mean field becomes symmetric about the y′- and z′-axes in
the oblate and prolate limits, respectively, the rotational moment of inertia about
the y′ (z′)-axis vanishes, and the other two moments take the same values at the
oblate (prolate) minimum. Their γ dependence is similar to that of the irrotational
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moments of inertia. It is found the rotational moments of inertia increase by about
20−30% through the effect of the quadrupole pairing interaction. This enhancement,
as well as that of the inertial functions M(s(q)), is due to the time-odd pair field
generated by the quadrupole pairing interaction.

6.4. Collective path connecting the oblate and prolate minima in 72Kr

We have determined the collective path for 72Kr starting from the oblate min-
imum. The collective path projected onto the (β, γ) plane is shown in Fig. 3, and
various quantities defined along the collective path are plotted in Fig. 4 as functions
of q. The collective paths calculated with and without the quadrupole pairing inter-
action are similar. Because the lowest mode of the moving-frame QRPA equations is
β-vibrational around the oblate minimum, the path first goes along the axially sym-
metric line. Then, around (β, γ) = (0.2, 60◦), the nature of the lowest mode changes
to γ-vibrational, and thus the path deviates from the axially symmetric line. When
the collective path reaches the γ = 0◦ line, the nature of the lowest mode again
changes to β-vibrational. Approaching the prolate minimum, the nature of the low-
est mode changes once more to γ-vibrational, and the collective path deviates from
the γ = 0◦ line.

We note that the lowest two modes at the prolate local minimum are very close,
and their ordering with respect to energy may be sensitive to the interactions used.
We examined whether, for example, the lowest mode at the prolate local minimum
becomes β-vibrational if the quadrupole pairing interaction is switched off, and in

Fig. 3. The same as Fig. 1, but for 72Kr.
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Fig. 4. Results of the calculations for 72Kr. The notation here is the same as in Fig. 2, except

that the quantities are plotted as functions of q along the collective path. The point q = 0

corresponds to the oblate minimum, while the prolate local minimum is located near q = 3.3

(q = 3.1) for the calculation using the P+Q Hamiltonian with (without) the quadrupole pairing

interaction.

this case the axial symmetry breaking takes place at a larger value of β beyond the
prolate local minimum. In such a situation, two collective coordinates may be needed
to describe the collective dynamics more effectively. This is an interesting subject
for future investigation. It should be emphasized that such a problem arises only
locally in a small region in the (β, γ) plane, and the collective path is well-defined
globally.

In the region of large β beyond the oblate minimum (q < 0) along the γ = 60◦
line, the lowest K = 0 mode exhibits a strong mixture of β-vibration (fluctuation
of an axially symmetric shape) and neutron pairing vibration (fluctuation of pairing
gaps), and the calculation to determine the collective path eventually stops when
the neutron monopole pairing collapses.

We have found that the collective mass and the rotational moments of inertia
increase also for 72Kr, due to the time-odd pair field generated by the quadrupole
pairing interaction. We note that the collective mass M(s(q)) diverges for large
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deformations. This behavior, found also in previous works,57),74),75) is associated
with the disappearance of the pairing gaps.

6.5. Excitation spectra and quadrupole transitions in 68Se

The collective Schrödinger equation (5.2) was solved with the boundary con-
ditions (5.14) and (5.17) for 68Se to obtain energy spectra, quadrupole moments
and transition probabilities. The results of the calculations are displayed in Fig. 5.
The calculations yield the excited prolate rotational bands as well as the oblate
ground state band. It is seen that the inter-band E2 transitions are weaker than
the intra-band E2 transitions, indicating that the oblate-prolate shape coexistence
picture is valid. The results of the calculation suggest the existence of an excited
0+ state which has not yet been found in experiments. The spectroscopic quadru-
pole moments presented in Fig. 6 are also consistent with the oblate-prolate shape
coexistence picture: The yrast states possess positive spectroscopic quadrupole mo-
ments, indicating oblate deformation, while the second lowest states for each angular
momentum have negative values indicating prolate deformation. In Fig. 5, the ex-
citation spectra calculated with and without the quadrupole pairing interaction are
compared. We see that the quadrupole pairing plays an important role in decreas-

Fig. 5. Excitation spectra and B(E2) values of low-lying states in 68Se calculated with the ASCC

method. In the left (middle) panel, the quadrupole pairing is ignored (included) in the micro-

scopic Hamiltonian. Experimental data63) are displayed in the right panel. The B(E2) values

larger than 1 W.u. are indicated in the parentheses beside the arrows in units of e2 fm4.
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Fig. 6. Spectroscopic quadrupole moments of low-lying states in 68Se. The left and right panels

plot the spectroscopic quadrupole moments of the yrast states and of the second lowest states

in each angular momentum, respectively. The units for the right panels are indicated beside

the right vertical lines. The results of the calculations with (without) the quadrupole pairing

interaction are indicated by the filled (open) squares.

ing the excitation energies. This is because the time-odd pair field generated by
the quadrupole pairing enhances the collective mass and the rotational moments of
inertia.

In Fig. 7, the vibrational wave functions are presented. It is seen that the
behavior of the 0+ states is significantly different from that of the I 	= 0 states: The
vibrational wave functions of the lowest and the second lowest 0+ states spread over
the entire collective path, indicating that the oblate and prolate shapes are strongly
mixed via the triaxial degree of freedom. In contrast to the 0+ states, the I 	= 0
wave functions contain K 	= 0 components, which realize their maximum values in
the oblate limit. We can see this trend more clearly by plotting the collective wave
functions squared. This is done in Fig. 8. The vibrational wave function of the
ground 0+ state spreads over the entire region of γ, while that of the excited 0+

state exhibits prominent peaks both in the oblate and prolate limits. By contrast,
the vibrational wave functions of the I 	= 0 yrast states are localized around the
oblate shape, while those of the second lowest states (for each angular momentum)
are localized around the prolate shape. This localization becomes stronger with
increasing angular momentum. In the yrast states, all the K 	= 0 components realize
the maxima at the oblate shape, while the K = 0 component dominates at the
prolate shape in the second lowest states.

In order to evaluate the oblate-prolate shape mixing in a more quantitative
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Fig. 7. Vibrational wave functions ΦIKk(q) of the yrast states (left) and the second lowest states

for each angular momentum (right) in 68Se. In each panel, different K components of the

vibrational wave functions are plotted as functions of γ(q). The calculation was performed with

the P+Q Hamiltonian including the quadrupole pairing interaction.

manner, we define the oblate and prolate probabilities as

Pob(I, k) =
∫ q0

qmin

dq

I∑
K=0

|ΦIKk(q)|2, Ppro(I, k) =
∫ qmax

q0

dq

I∑
K=0

|ΦIKk(q)|2, (6.3)

where we assume qmin ≤ qob < q0 < qpro ≤ qmax. The “boundary” between the
oblate and the prolate regions is set to the top of the potential barrier between the
two minima, or at γ = 30◦. Figure 9 displays these probabilities for 68Se. The oblate
and prolate states are strongly mixed in the 0+ states. It is clearly seen that the
shape mixing rapidly decreases as the angular momentum increases.

6.6. Excitation spectra and quadrupole transitions in 72Kr

For 72Kr, the collective Schrödinger equation is solved under the boundary con-
ditions (5.18). The result of the calculation exhibits two coexisting rotational bands.
[See the energy spectra and the B(E2) values displayed in Fig. 10.] The spectro-
scopic quadrupole moments presented in Fig. 11 indicate that the yrast band is
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Fig. 8. Vibrational wave functions squared |ΦIKk(q)|2 the yrast states (left), and the second lowest

states at each angular momentum (right) for 68Se. In each panel, different K components

are plotted as functions of γ(q). The solid (dashed) lines represent the results of calculations

using the P+Q Hamiltonian with (without) the quadrupole pairing interaction. Note that the

vibrational wave functions are normalized as in Eq. (5.9) with respect to the collective coordinate

q, so that they are multiplied by the factor dγ/dq when integrating with respect the triaxial

deformation parameter γ. The dγ/dq values calculated with the quadrupole pairing interaction

are larger than those without it for all values of q.

oblate, while the excited band is prolate. For all states, including the 0+ states, the
inter-band B(E2) values are smaller by about one order of magnitude than the intra-
band B(E2) values, and they rapidly decrease as the angular momentum increases.
This indicates that the oblate-prolate shape mixing is rather weak in 72Kr.

In Fig. 12, the vibrational wave functions are plotted. It is seen that the wave
function of the 0+

1 state is strongly localized in the oblate region, while that of
the 0+

2 state exhibits a major peak in the prolate region. In the yrast states with
I 	= 0, localization about the oblate shape further develops for all K-components of
the vibrational wave functions. The extent of this localization is larger for higher
K. Contrastingly, the collective wave functions of the second lowest states in each
angular momentum are essentially composed of the K = 0 component, which is
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Fig. 9. The oblate and prolate probabilities evaluated for individual eigenstates of 68Se. The upper

(lower) panel plots the probabilities calculated using the P+Q Hamiltonian without (with) the

quadrupole pairing interaction. The probabilities defined by setting the boundary at the barrier

top (γ = 30◦) are indicated by squares (circles).

localized in the prolate region. Figure 13 plots the vibrational wave function squared.
Rather weak oblate-prolate shape mixing is seen only for the excited 0+ state, and
other members of the rotational bands possess well-defined oblate or prolate forms.
The oblate and prolate probabilities are presented in Fig. 14. It is seen that the
shape mixing in the 0+ states is much weaker than for 68Se, and it almost vanishes
at finite angular momentum.

§7. Concluding remarks

Shape coexistence/mixing phenomena in low-lying states of 68Se and 72Kr were
investigated using the ASCC method. The excitation spectra, the spectroscopic
quadrupole moments and the E2 transition properties of the low-lying states were
evaluated for the first time using the ASCC method. We have derived the quantum
collective Hamiltonian that describes the coupled collective motion of the large-
amplitude vibration responsible for the oblate-prolate shape mixing and the three-
dimensional rotation of the triaxial shape. The calculations yielded the excited pro-
late rotational band as well as the oblate ground-state band. The basic pattern of the
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Fig. 10. The same as Fig. 5, but for 72Kr. The experimental data are taken from Refs. 64)–66).

Fig. 11. The same as Fig. 6, but for 72Kr. (See the caption of Fig. 6.)
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Fig. 12. Vibrational wave functions ΦIKk(q) of low-lying states for 72Kr plotted as functions of q.

(See the caption of Fig. 7.)

shape coexistence/mixing phenomena has been qualitatively reproduced using the
one-dimensional collective path in the two-dimensional (β, γ) plane. This collective
path was self-consistently extracted from the many-dimensional TDHB manifold.
Thus, the result of calculation indicates that the TDHB collective dynamics of the
shape coexistence/mixing phenomena in these nuclei is essentially controlled by the
single collective coordinate microscopically derived by means of the ASCC method.

We have also shown that the low-lying states can be described significantly more
effectively by including the quadrupole pairing interaction. The reason for this is
that the time-odd component of the mean field generated by the quadrupole pairing
interaction enhances the collective mass of the vibrational motion and the moments of
inertia of the rotational motion, and this lowers the energy of the collective excitation.

The present calculations clearly indicate that the oblate-prolate shape mixing
decreases as the angular momentum increases. This implies that the rotational
dynamics play the important role in realizing the localization of vibrational wave
functions around the oblate and prolate minima in the situation that the barrier be-
tween these local minima is very low. We shall attempt a more detailed investigation
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Fig. 13. Vibrational wave functions squared |ΦIKk(q)|2 of low-lying states for 72Kr plotted as func-

tions of q. (See the caption of Fig. 8.)

of the dynamical reason why the rotational motion hinders the oblate-prolate shape
mixing in a separate paper.
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Fig. 14. The same as Fig. 9, but for 72Kr.

Appendix A
Quasiparticle Representation of One-Body Operators

Because the moving mean field |φ(q)〉 has positive signature, the conditions

Ukµ = Uk̄µ̄, Vkµ̄ = −Vk̄µ, (A.1)

hold. The matrix elements of the pairing one-body operators F̂
(±)
s=1,2,3,6,8,11 with

K = 0 and 2 and r = +1 (Â(τ)(±), B̂
(τ)(±)
20(+)

, and B̂
(τ)(±)
22(+)

) given in Eq. (4.24) are

〈φ(q)| F̂ (+)
s |φ(q)〉 =2

∑
k̄l

′
(0|F (+)

s |lk̄)
∑

µ̄

′
Uk̄µ̄(q)Vlµ̄(q), (A.2)

F
(±)
A,s (µν̄) =

∑
kl̄

′
(0|F (±)

s |kl̄)(Vkν̄(q)Vl̄µ(q) ± Ukµ(q)Ul̄ν̄(q)), (A.3)

F
(±)
B,s (µν) =

∑
kl̄

′
(0|F (±)

s |kl̄)(Vl̄µ(q)Ukν(q) ± Ukµ(q)Vl̄ν(q)). (A.4)
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The matrix elements of the particle-hole operators with K = 0 and 2 and r = +1
(D̂(+)

20 and D̂
(+)
22 ) appearing in Eq. (4.24) are

〈φ(q)| F̂ (+)
s=13,15 |φ(q)〉 =2

∑
kl

′
(k|F (+)

s=13,15|l)
∑
µ

′
Vkµ̄(q)Vlµ̄(q), (A.5)

F
(+)
A,s=13,15(µν̄) =

∑
kl

′
(k|F (+)

s=13,15|l)(Ukµ(q)Vlν̄(q) − Uk̄ν̄(q)Vl̄µ(q)), (A.6)

F
(+)
B,s=13,15(µν) =

∑
kl

′
(k|F (+)

s=13,15|l)(Ukµ(q)Ulν(q) − Vk̄ν(q)Vl̄µ(q)). (A.7)

The matrix elements of the particle number operators given in Eq. (4.23) are

N (τ)(q) = 〈φ(q)| N̂ (τ) |φ(q)〉 = 2
∑
k∈τ

′∑
µ̄

′
Vkµ̄(q)2, (A.8)

N
(τ)
A (µν̄) =

∑
k∈τ

′
(Ukµ(q)Vkν̄(q) − Uk̄ν̄(q)Vk̄µ(q)), (A.9)

N
(τ)
B (µν) =

∑
k∈τ

′
(Ukµ(q)Ukν(q) − Vk̄ν(q)Vk̄µ(q)). (A.10)

The constraint on the Q̂(q − δq) operator expressed by (4.21) in the moving-frame
HB equation is written

〈φ(q)| Q̂(q − δq) |φ(q)〉 =
∑
kl

′
Qkl(q − δq)

∑
µ

′
Vkµ̄(q)Vlµ̄(q). (A.11)

Appendix B
Determination of the B-Part of Q̂(q)

In this appendix, we show that the B-part of the operator (Q̂(q)) can be deter-
mined through its A-part, (Q̂A(q)), which is obtained by solving the moving-frame
QRPA equations. In terms of the quasiparticle operators, a†i and ai, defined by the
Bogoliubov transformation (

c
c†

)
=
(

U V
V ∗ U∗

)(
a
a†

)
, (B.1)

the Hermitian operator Q̂(q) is written

Q̂(q) =
∑
ij

Qij(q)c
†
icj

=
∑
ij

(
QA

ij(q)a
†
ia

†
j + QA∗

ij (q)ajai + QB
ij(q)a

†
iaj

)
, (B.2)

where

QA = U †QV, QB = U †QU − V †QV. (B.3)
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Thus, the matrices Q and QB can be written in terms of QA as

Q = (U †)−1QAV −1, (B.4)

QB = QAV −1U − V †(U †)−1QA. (B.5)

We cannot directly use these relations, however, to determine Q and QB, because
the matrices Q and QB calculated using (B.4) and (B.5) are not Hermitian. For
this reason, we have to construct Hermitian matrices Q and QB from QA. This is
done by adding a symmetric matrix S to the solution of the moving-frame QRPA
equation, which we here write QA

0 , as

QA = QA
0 + S. (B.6)

For this matrix, Q is written

Q = (U †)−1(QA
0 + S)V −1 = Q0 + (U †)−1SV −1, (B.7)

Q† = (V †)−1(QA
0 + S)†U−1 = Q†

0 + (V †)−1S†U−1. (B.8)

From the Hermicity condition, Q = Q†, we obtain the following equation for S:

(V †)−1S†U−1 − (U †)−1SV −1 = Q0 − Q†
0. (B.9)

This determines the symmetric matrix S. Explicitly, the above equation is given by∑
kl

{(V −1)ki(U−1)lj − (U−1)ki(V −1)lj}Skl =(Q0)ij − (Q0)ji, (B.10)

where we assume that all quantities are real. The number of unknown quantities and
the number of equations are the same, N(N + 1)/2, N being the dimension of the
matrix. Therefore, it is possible to determine the matrix S by solving this equation.

In the case of the P+Q model, we start from the skew symmetric matrix QA
0 ,

(QA
0 )µν̄(q) =

1
2
QA

µν̄(q), (QA
0 )ν̄µ(q) = −1

2
QA

µν̄(q). (B.11)

The symmetric matrix Sµν̄ = Sν̄µ is determined by solving the equations,∑
µν̄

′{(V −1)ν̄k(U−1)µl − (U−1)µk(V −1)ν̄l}Sµν̄ = (Q0)kl − (Q0)lk, (B.12)

∑
µν̄

′{(V −1)µk̄(U
−1)ν̄ l̄ − (U−1)ν̄k̄(V

−1)µl̄}Sµν̄ = (Q0)k̄l̄ − (Q0)l̄k̄, (B.13)

where

(Q0)kl(q) =
∑
µν̄

′
(U−1)µk(QA

0 )µν̄(q)(V −1)ν̄l, (B.14)

(Q0)k̄l̄(q) =
∑
µν̄

′
(U−1)ν̄k̄(Q

A
0 )ν̄µ(q)(V −1)µl̄. (B.15)
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As the relation (QA
0 )µν̄ = (QA

0 )νµ̄ holds, the matrix S satisfies the relation Sµν̄ =
−Sνµ̄, and thus, Eqs. (B.12) and (B.13) are written∑

µν̄

′{−(V −1)ν̄k(U−1)µl − (U−1)νk(V −1)µ̄l}Sµν̄ =(Q0)kl − (Q0)lk. (B.16)

Using the transformed matrix QA′
(q),

QA′
µν̄(q) = (QA

0 )µν̄(q) + Sµν̄ , (B.17)

the Hermite matrices Q(q) and QB(q) are obtained as follows:

Qkl(q) =
∑
µν̄

′
(U−1)µkQ

A′
µν̄(q)(V

−1)ν̄l, (B.18)

Qk̄l̄(q) =
∑
µ̄ν

′
(U−1)µ̄k̄Q

A′
µ̄ν(q)(V

−1)νl̄, (B.19)

QB
µν(q) =

∑
kl

′
UkµQkl(q)Ulν − Vk̄µQk̄l̄(q)Vνl̄, (B.20)

QB
µ̄ν̄(q) =

∑
k̄l̄

′
Uµ̄k̄Qk̄l̄(q)Ul̄ν̄ − Vkµ̄Qkl(q)Vlν̄ . (B.21)

Appendix C
Calculation of the Rotational Moments of Inertia

For the separable interactions (3.7), the Thouless-Valatin equations (2.26) de-
termining the three rotational moments of inertia, Ji(q), about the principal axes in
a non-equilibrium state |φ(q)〉 can be written in the form

δ 〈φ(q)| [ĥM (q), Ψ̂i(q)] + i
∑

s

f
(+)
Ψi,s

(q)F̂ (+)
s −

∑
s

f
(−)
Ψi,s

(q)F̂ (−)
s

− 1
i
J −1

i (q)Îi |φ(q)〉 = 0, (C.1)

where

f
(+)
Ψi,s

(q) = iκs 〈φ(q)| [F̂ (+)
s , Ψ̂i(q)] |φ(q)〉 , (C.2)

f
(−)
Ψi,s

(q) = −κs 〈φ(q)| [F̂ (−)
s , Ψ̂i(q)] |φ(q)〉 . (C.3)

The quasiparticle representation of the angular momentum operators is expressed as

Îx =
∑
µν

′
IA,x(µν̄)(A†

µν̄ + Aµν̄) +
∑
µν

′
IB,x(µν)(Bµν − Bµ̄ν̄), (C.4)

iÎy =
∑
µν

′
IA,y(µν)(A†

µν − Aµν) + IA,y(µ̄ν̄)(A†
µ̄ν̄ − Aµ̄ν̄)

+
∑
µν

′
IB,y(µν̄)(Bµν̄ − Bµ̄ν), (C.5)
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Îz =
∑
µν

′
IA,z(µν)(A†

µν + Aµν) + IA,z(µ̄ν̄)(A†
µ̄ν̄ + Aµ̄ν̄)

+
∑
µν

′
IB,z(µν̄)(Bµν̄ + Bµ̄ν), (C.6)

where the matrix elements of IA,x, IA,y and IA,z are given by

IA,x(µν̄) =
∑
kl

′
(k|Ix|l)(Ukµ(q)Vlν̄(q) + Uk̄ν̄(q)Vl̄µ(q)), (C.7)

IA,y(µν) = IA,y(µ̄ν̄) =
∑
kl

′
(k|Iy|l)Ukµ(q)Vl̄ν(q), (C.8)

IA,z(µν) = − IA,z(µ̄ν̄) = −
∑

k

′
mkUkµ(q)Vk̄ν(q). (C.9)

The residual interactions with (r = +1, K = 1), (r = −1, K = 1) and (r = −1, K =
2) contribute to rotations about the x, y and z-axis, respectively. The quasiparticle
representation of the one-body operators having these quantum numbers is given by

F̂ (±)
s =

∑
µν̄

′
F

(±)
A,s (µν̄)(A†

µν̄ ± Aµν̄)

+
∑
µν

′
F

(±)
B,s (µν)(Bµν − Bµ̄ν̄), (r = +1, K = 1) (C.10)

F̂ (±)
s =

∑
µν

′
F

(±)
A,s (µν)(A†

µν ± Aµν + A†
µ̄ν̄ ± Aµ̄ν̄)

+
∑
µν

′
F

(±)
B,s (µν̄)(Bµν̄ − Bµ̄ν), (r = −1, K = 1) (C.11)

F̂ (±)
s =

∑
µν

′
F

(±)
A,s (µν){A†

µν ± Aµν − (A†
µ̄ν̄ ± Aµ̄ν̄)}

+
∑
µν

′
F

(±)
B,s (µν̄)(Bµν̄ + Bµ̄ν). (r = −1, K = 2) (C.12)

The matrix elements of the quadrupole pairing operators are

F
(±)
A,s=4,9(µν̄) = 2

∑
kl∈τ

′
(0|B(τ)(±)

21(−) |kl̄)(Vl̄µ(q)Vkν̄(q) ± Ukµ(q)Ul̄ν̄(q)), (C.13)

F
(±)
A,s=5,10(µν) =

∑
kl∈τ

′
(0|B(τ)(±)

21(+) |kl)(Vlµ̄(q)Vkν̄(q) ± Uk̄µ̄(q)Vl̄ν̄(q)), (C.14)

F
(±)
A,s=7,12(µν) =

∑
kl∈τ

′
(0|B(τ)(±)

22(−) |kl)(−Vl̄µ(q)Vk̄ν(q) ± Ukµ(q)Ulν(q)), (C.15)

F
(±)
A,s=5,10(µν) = F

(±)
A,s=5,10(µ̄ν̄), F

(±)
A,s=7,12(µν) = −F

(±)
A,a=7,12(µ̄ν̄). (C.16)

Note that the quadrupole operators D̂
(±)
21 and D̂

(−)
22 do not contribute to the moments

of inertia.
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The three Thouless-Valatin equations, appearing in (C.1), for a non-equilibrium
state can be solved independently. The angle operators Ψ̂x(q), Ψ̂y(q) and Ψ̂z(q) can
be written as

Ψ̂x(q) = i
∑
µν̄

′
ΨA,x(µν̄)(A†

µν̄ − Aµν̄) + (B − part), (C.17a)

Ψ̂y(q) =
∑
µν

′
ΨA,y(µν)(A†

µν + Aµν) + ΨA,y(µ̄ν̄)(A†
µ̄ν̄ + Aµ̄ν̄) + (B−part), (C.17b)

Ψ̂z(q) = i
∑
µν

′
ΨA,z(µν)(A†

µν − Aµν) + ΨA,z(µ̄ν̄)(A†
µ̄ν̄ − Aµ̄ν̄) + (B−part). (C.17c)

These matrix elements are easily obtained from Eq. (C.1) as

ΨA,x(µν̄) =
−1

Eµ + Eν̄

(∑
s

f
(+)
Ψx,s(q)F

(+)
A,s (µν̄) + J −1

x (q)IA,x(µν̄)

)
, (C.18a)

ΨA,y(µν) =
1

Eµ + Eν

(∑
s

f
(−)
Ψy ,s(q)F

(−)
A,s (µν) −J −1

y (q)IA,y(µν)

)
, (C.18b)

ΨA,y(µ̄ν̄) =
1

Eµ̄ + Eν̄

(∑
s

f
(−)
Ψy ,s(q)F

(−)
A,s (µ̄ν̄) −J −1

y (q)IA,y(µ̄ν̄)

)
, (C.18c)

ΨA,z(µν) =
1

Eµ + Eν

(
−
∑

s

f
(+)
Ψz,s(q)F

(+)
A,s (µν) − J −1

z (q)IA,z(µν)

)
, (C.18d)

ΨA,z(µ̄ν̄) =
1

Eµ̄ + Eν̄

(
−
∑

s

f
(+)
Ψz,s(q)F

(+)
A,s (µ̄ν̄) − J −1

z (q)IA,z(µ̄ν̄)

)
. (C.18e)

It is easy to confirm that f
(−)
Ψx,s(q) = 0, f

(+)
Ψy ,s(q) = 0 and f

(−)
Ψz,s(q) = 0. Substituting

(C.18) into the quantities f
(+)
Ψx,s(q), f

(−)
Ψy,s(q) and f

(+)
Ψz ,s(q) and the canonical variable

condition (2.26), we obtain

f
(+)
Ψx,s(q) = iκs 〈φ(q)| [F̂ (+)

s , Ψ̂x(q)] |φ(q)〉
= 2κs

∑
s′

(F (+)
A,s , F

(+)
A,s′)E+f

(+)
Ψx,s′(q) + 2κs(F

(+)
A,s , IA,x)E+J−1

x (q), (C.19a)

f
(−)
Ψy ,s(q) = − κs 〈φ(q)| [F̂ (−)

s , Ψ̂y] |φ(q)〉
=2κs

∑
s′

(F (−)
A,s , F

(−)
A,s′)E−f

(−)
Ψy,s′(q) − 2κs(F

(−)
A,s , IA,y)E−J −1

y (q), (C.19b)

f
(+)
Ψz,s(q) =iκs 〈φ(q)| [F̂ (+)

s , Ψ̂z(q)] |φ(q)〉
=2κs

∑
s′

(F (+)
A,s , IA,z)E−f

(+)
Ψz,s′(q) + 2κs(F

(+)
A,s , IA,z)E−J −1

z (q), (C.19c)

〈φ(q)| [Ψ̂x(q), Îx] |φ(q)〉 /i = −2
∑
µν̄

′
ΨA,x(µ, ν̄)IA,x(µν̄)
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= −2
∑

s

(F (+)
A,s , IA,x)E+f

(+)
Ψx,s(q) − 2(IA,x, IA,x)E+J −1

x (q)

= 1, (C.20a)

〈φ(q)| [Ψ̂y(q), iÎy] |φ(q)〉 = 2
∑
µν

′
ΨA,y(µν)IA,y(µν) + 2

∑
µ̄ν̄

′
ΨA,y(µ̄ν̄)IA,y(µ̄ν̄)

= 2
∑

s

(F (−)
A,s , IA,y)E−f

(−)
Ψy ,s(q) − 2(IA,y, IA,y)E−J −1

y (q)

= −1, (C.20b)

〈φ(q)| [Ψ̂z(q), Îz] |φ(q)〉 /i = −2
∑
µν

′
ΨA,z(µν)IA,z(µν) − 2

∑
µ̄ν̄

′
ΨA,z(µ̄ν̄)IA,z(µ̄ν̄)

= 2
∑

s

(F (+)
A,s , IA,z)E−f

(+)
Ψz ,s′(q) + 2(IA,z, IA,z)E−J −1

z (q)

= 1, (C.20c)

where

(X, Y )E+ =
∑
µν̄

′X(µν̄)Y (µν̄)
Eµ + Eν̄

, (C.21)

X(µν) = X(µν) − X(νµ), (C.22)

(X, Y )E− =
∑
µν

′X(µν)Y (µν)
Eµ + Eν

+
∑
µ̄ν̄

′X(µ̄ν̄)Y (µ̄ν̄)
Eµ̄ + Eν̄

. (C.23)

Equations (C.19) and (C.20) are linear equations with respect to f
(+)
Ψi,s

(q) and J −1
i (q),

and they can be rewritten as follows:

∑
s′

(
2κs(F

(+)
A,s , F

(+)
A,s′)E+ − δss′ 2κs′(F

(+)
A,s , IA,x)E+

2(F (+)
A,s , IA,x)E+ 2(IA,x, IA,x)E+,

)(
f

(+)
Ψx,s′(q)
J−1

x (q)

)
=
(

0
1

)
,

(C.24a)

∑
s′

(
2κs(F

(−)
A,s , F

(−)
A,s′)E− − δss′ −2κs(F

(−)
A,s , IA,y)E−

−2(F (−)
A,s , IA,y)E− 2(IA,y, IA,y)E−

)(
f

(−)
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y

)
=
(

0
1

)
,

(C.24b)

∑
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(
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(+)
A,s )E− − δss′ 2κs(F
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A,s , IA,z)E−

2(F (+)
A,s′ , IA,z)E− 2(IA,z, IA,z)E−

)(
f

(+)
Ψz ,s′(q)
J −1

z (q)

)
=
(

0
1

)
. (C.24c)
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