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Damping of quantum vibrations revealed in deep sub-barrier fusion

Takatoshi Ichikawa1 and Kenichi Matsuyanagi1,2

1Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
2RIKEN Nishina Center, Wako 351-0198, Japan

(Received 28 February 2013; revised manuscript received 18 April 2013; published 22 July 2013)

We demonstrate that when two colliding nuclei approach each other, their quantum vibrations are damped near
the touching point. We show that this damping is responsible for the fusion hindrance phenomena measured in the
deep sub-barrier fusion reactions. To show those, we, for the first time, apply the random-phase-approximation
method to the two-body 16O + 16O and 40Ca + 40Ca systems. We calculate the octupole transition strengths for
the two nuclei that adiabatically approach each other. The calculated transition strength drastically decreases
near the touching point, which strongly suggests the vanishing of the quantum couplings between the relative
motion and the vibrational intrinsic degrees of freedom of each nucleus. Based on this picture, we also calculate
the fusion cross section for the 40Ca + 40Ca system by using the coupled-channel method with a damping factor
that simulates the vanishing of the couplings. The calculated results reproduce the experimental data well,
which indicates that the smooth transition from the sudden to the adiabatic processes indeed occurs in the deep
sub-barrier fusion reactions.
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Heavy-ion fusion reactions at low incident energies serve
as an important probe for investigating the fundamental
properties of the potential tunneling of many-body quantum
systems. When two nuclei fuse, a potential barrier, called the
Coulomb barrier, is formed because of the strong cancellations
between the Coulomb repulsion and the attractive nuclear
force. The potential tunneling at incident energies below this
Coulomb barrier is called the sub-barrier fusion. One important
aspect of the sub-barrier fusion reactions is couplings between
the relative motion of the colliding nuclei and the nuclear
intrinsic degrees of freedom, such as collective vibrations
of the target and/or projectile [1]. Those couplings result in
the large enhancement of the fusion cross sections at the
sub-barrier incident energies as compared to the estimation of
a simple potential model. The coupled-channel (CC) model,
which takes the couplings into account, has been successful in
explaining this enhancement [2,3].

Recently, it has been possible to measure the fusion cross
sections down to extremely deep sub-barrier incident energies
[4–7]. The unexpected steep falloff of the fusion cross sections,
compared to the standard CC calculations, emerges at the
deep sub-barrier incident energies in a wide range of mass
systems. These steep falloff phenomena are often called the
fusion hindrance. The emergence of the fusion hindrance
shows the threshold behavior, which is strongly correlated
with the energy at the touching point of the two colliding
nuclei [8,9]. In this respect, it has been shown that a key
point for understanding this fusion hindrance is the potential
tunneling in the density overlap region of the two colliding
nuclei (see Fig. 1 in Ref. [8]).

To describe the fusion hindrance phenomena, many the-
oretical models to extend the standard CC model have been
proposed. Based on the sudden picture, Mişicu and Esbensen
have proposed that a strong repulsive core exists in the inner
part of the Coulomb barrier due to nuclear incompressibility
[10]. This model can reproduce the fusion hindrance from
the light- to heavy-mass systems well [7,10–12]. Dasgupta

et al. proposed the concept of the quantum decoherence
of the channel couplings [5], but there are only simple
calculations with this model [13]. Based on the adiabatic
picture, which is the opposite limit to the sudden approach,
Ichikawa et al. introduced the damping factor in the standard
CC calculations to smoothly join between the sudden and the
adiabatic processes [14]. This model can reproduce the fusion
hindrance better than the sudden model. However, the physical
origin of the damping factor was still unclear.

In this Rapid Communication, we show the physical origin
of the damping factor proposed in Ref. [14]. In the standard CC
model, it has been assumed that the properties of the vibrational
modes do not change, even when two colliding nuclei touch
with each other. However, in fact, the single-particle wave
functions drastically change in the two nuclei by approaching
each other. This results in the damping of the vibrational
excitations, that is, the vanishing of the couplings between
the relative motion and the vibrational excitations of each
nucleus. To show this, we, for the first time, apply the
random-phase-approximation (RPA) method to the two-body
16O + 16O and 40Ca + 40Ca systems and calculate the octupole
transition strength B(E3) as a function of the distance between
the two nuclei. We below show that the obtained B(E3) values
for the individual nuclei are indeed damped near the touching
point.

To illustrate our main idea, we first discuss a disappear-
ance of the octupole vibration during the 16O + 16O fusion
process. We calculate the mean-field potential with the folding
procedure that uses the single Yukawa function to conserve
its inner volume [15]. In the two-body system before the
touching point, we assume the two sharp-surface spherical
nuclei. After the touching point, we describe the nuclear shapes
with the lemniscatoids parametrization as shown in Ref. [16].
By using this, we can describe the smooth transition from the
two- to the one-body mean-field potentials. The depths of the
neutron and proton potentials are taken from Ref. [17]. We
use the radius for the proton and neutron potentials R0 with
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FIG. 1. (Color online) Nilsson diagram for the neutron single-
particle states versus the distance between 16O + 16O. The solid
and dashed lines denote the positive- and negative-parity states,
respectively. The gray area denotes the overlap region of 16O + 16O.
The solid and dashed arrows denote the main p-h excitations
that generate the octupole vibration. The single-particle density
distributions for these p and h states are given in the insets from
(a) to (d) and (a′) to (d′).

R0 = 1.26A1/3 fm, where A is the total nucleon number. In
the calculations, the origin is located at the center-of-mass
position of the two nuclei. The above procedure works well
because Umar and Oberacker found that the double-folding
potential with the frozen density agrees almost perfectly with
the density-constrained time-dependent Hartree-Fock (TDHF)
approach for distances R � 6 fm [18].

By using the obtained mean-field potentials, we solve the
axially symmetric Schrödinger equation with the spin-orbit
force. Then, the parity π and the z component of the total
angular momentum � are the good quantum numbers. The
details of the model and the parameters are similar to those in
Refs. [15,17]. We calculate the single-particle wave functions
of both the projectile and the target by using the one-center
single Slater determinant. We expand the total single-particle
wave function by many deformed harmonic-oscillator bases
in the cylindrical coordinate representation. The deformation
parameter of the basis functions is determined so as to cover
the target and projectile. The basis functions are taken with
their energy lower than 25h̄ω.

Figure 1 shows the Nilsson diagram for the obtained
neutron single-particle energies versus the distance between
16O + 16O. The solid and dashed lines denote the positive-
and negative-parity states, respectively. The gray area denotes
the overlap region of the two nuclei. The distance R = 6.4 fm

corresponds to the touching point. Some densities for the
obtained single particles at R = 14 and 6.4 fm are given in the
insets from (a) to (d) and (a′) to (d′) in Fig. 1, respectively.
At R = 14 fm, we see that the positive (negative) parity
indicates the symmetric (asymmetric) combinations of the
single-particle states that refer to the right- and left-sided 16O.
Thus, the positive- and negative-parity single-particle states
are degenerate for large R. With decreasing R, these single-
particle states smoothly change to those for the composite 32S
system.

We can now easily extend the RPA method [19] to the
two-body system because the wave functions of both the one-
and the two-body systems are described with the one-center
Slater determinant. We can directly superpose all combinations
of the particle (p) and hole (h) states for the obtained single
particles in a unified manner for both the one- and the two-
body systems. We solve the RPA equation at each center-of-
mass distance between 16O + 16O. At large R values, the RPA
solutions with �π = 0+ and 0− represent the symmetric and
asymmetric combinations of the states where the RPA modes
are excited in either the right- or the left-sided 16O. When the
R values decrease below the touching point, they smoothly
change to excitation modes in the composite 32S system. In
the calculations, we only take into account the p-h states with
the excitation energies below 30 MeV. We use the residual
interaction as the density-dependent contact one taken from
Ref. [20]. The strength of the residual interaction is determined
at each R such that the lowest �π = 0− solution of the RPA
appears at zero energy. We have developed a new scheme
based on the Tomonaga theory of collective motion [21,22] that
enables us to separate the center of mass, the relative motion,
and the intrinsic degrees of freedom. It is a generalization of
the known procedure in the RPA [23]. It is also interesting to
compare our results with the TDHF dynamics [24].

For the calculated results, the obtained first excited state
of the right-sided 16O is the octupole (3−) one with a large
B(E3) value. At R = 15 fm, the excitation energy and the
B(E3, 3−

1 → 0+
1 ) value are 5.29 MeV and 102.07 e2 fm6,

respectively. We have checked that those values are consistent
with the calculated results of the one-body 16O. Figure 2(a)
shows the calculated transition densities and currents [19]
for the first excited state with �π = 0+ at R = 14 fm. In
Fig. 2(a), we can clearly see the octupole vibrations in both
16O’s. At R = 8.0 fm, the transition density of the neck part
between two 16O’s develops [see Fig. 2(b)]. At R = 6.4 fm, the
octupole vibrations of each 16O become weak [see Fig. 2(c)].
The degenerating excitation energies of the first excited states
with �π = 0+ and 0− split below R = 8 fm. They become
5.82 and 4.83 MeV at R = 6.4 fm.

To more clearly see the damping of the octupole vibrations,
we calculate the B(E3) value for the right-sided 16O. We can
easily calculate it by taking a symmetric linear combination
of the octupole transition amplitudes for the positive- and
negative-parity RPA solutions. Figure 3(a) shows the calcu-
lated B(E3, 3−

1 → 0+
1 ) values versus the distance between

16O + 16O. In Fig. 3(a), we can see that the B(E3) value for
the right-sided 16O (the solid line) falls off at around R = 8 fm
with decreasing R, which indicates that the octupole vibrations
are strongly suppressed near the touching point.
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FIG. 2. (Color online) Transition densities and currents for the
first excited 3− state with �π = 0+ at (a) R = 14.0 fm, (b) R =
8.0 fm, and (c) R = 6.4 fm. The contour lines denote the transition
density. The arrows denote the current density. These two values are
normalized in each plot. The (red) thick solid line denotes the half
depth of the mean-field potential.

The damping of the vibrations originates from the change
in the single-particle wave functions. At R = 14 fm, the major
p-h excitations that generate the octupole vibration are those
from the p1/2 to the d5/2 single-particle states in 16O. In these
states, the degenerating positive- and negative-parity doublet
states contribute equally to generate the octupole vibration.
Those can be seen in the density distributions of the �π =
1/2+ and 1/2− states given in the insets from (a) to (d) in
Fig. 1. The corresponding p-h excitations are denoted by the
solid arrows from (a) to (b) and (c) to (d) in Fig. 1. When the two
nuclei approach each other, the features of these single-particle
wave functions drastically change. At R = 6.4 fm, the neck
formation takes place in the positive-parity states, whereas, it is
forbidden for the negative-parity states (that have nodes at the
touching point). Thus, the density distributions of those parity
partners become quite different from each other. [See the insets
from (a′) to (d′).] In the RPA calculation, the contributions from
the negative-parity states to the octupole vibration become
small at the touching point [see the solid and dotted arrows
from (a′) to (b′) and (c′) to (d′), respectively], which results in
the decreases in the B(E3) value.

The mechanism for the damping of the quantum vibration is
a general one, which is also valid for heavier-mass systems. We
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FIG. 3. Transition strengths B(E3) for the first excited state
versus the distance between (a) 16O + 16O and (b) 40Ca + 40Ca. The
solid line denotes the calculated results. The gray area denotes the
overlap region of the two colliding nuclei. In the bottom panel (b),
the dotted line denotes the damping factor of Eq. (2) in Ref. [14],
estimated from the experimental data of the fusion cross section.

have also performed the RPA calculations for the 40Ca + 40Ca
and 56Ni + 56Ni systems. In the calculations, we use R0 =
1.27 A1/3. We obtained the similar damping of the B(E3)
values for the both systems. In Fig. 3(b), the solid line
denotes the calculated result for the 40Ca + 40Ca system. The
calculated excitation energy and the B(E3, 3−

1 → 0+
1 ) value

for the 40Ca + 40Ca system are 3.24 MeV and 1253.17 e2 fm6

at R = 15.0 fm, respectively.
As shown above, the octupole vibrations are damped near

the touching point, which results in the vanishing of the
couplings between the relative motion and the vibrational
intrinsic degrees of freedom. This vanishing would lead to
the smooth transition from the sudden to the adiabatic process
as shown in Ref. [14]. It is clear that such an effect has not been
taken into account in the standard CC model. One candidate to
include is the introduction of the damping factor proposed
in Ref. [14]. To clearly see the effect of the vanishing of
the couplings, we calculate the fusion cross section for the
40Ca + 40Ca system by using the computer code CCFULL [25]
coupled with the damping factor based on the model of
Ref. [14].

In the calculations, we include the couplings to only the
low-lying 3− and 2+ states and to single-phonon and all
mutual excitations of these states. We take the energies and the
deformations of each state taken from Ref. [7] to reproduce
the experimental data well. We use the same deformation
parameters for the Coulomb and nuclear couplings. For the
parameters of the Yukawa-plus-exponential (YPE) model, we
use r0 = 1.191 and a = 0.68 fm.

It is remarkable that the damping factor strongly correlates
with the calculated B(E3) value for the 40Ca + 40Ca system.
To show this, we take λα = 0 in the damping factor of Eq. (2)
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FIG. 4. (Color online) Fusion cross section (upper panel) and
its logarithmic derivative (lower panel) for the 40Ca + 40Ca system
versus the incident energies. The solid circles denote the experimental
data taken from Ref. [7]. The solid and dashed lines denote the
calculated results of the coupled-channel method by using the YPE
potential with and without the damping factor, respectively. The
dotted line denotes the calculated result without the couplings.

in Ref. [14] for simplicity. We tune the parameters Rd and ad in
the damping factor so as to reproduce the experimental data of
the fusion cross section. We obtain Rd = 9.6 and ad = 0.9 fm
as the best fits to the data. In Fig. 3(b), the dotted line denotes
the obtained damping factor normalized at R = 15 fm.

Figure 4 shows the calculated fusion cross section (upper
panel) and its logarithmic derivative d ln(Ec.m.σfus)/dEc.m.

(lower panel) for the 40Ca + 40Ca system. The solid and dashed
lines denote the calculation with and without the damping
factor, respectively. The dotted line denotes the calculation
without the couplings. In Fig. 4, we can see that the calculated
results with the damping factor reproduce the experimental
data well, which is better than the sudden model [7,12].
In our model, the calculated astrophysical S factor has a
peak structure. We also performed the CC calculation for the
48Ca + 48Ca system, and the calculated result reproduces the
experimental data well. The CC calculations with the damping
factor also already reproduced the experimental data for the
64Ni + 64Ni, 58Ni + 58Ni, and 16O + 208Pb systems well [14].

To summarize, we have demonstrated the damping of the
quantum vibrations when two nuclei adiabatically approach
each other. To show this, we, for the first time, applied the RPA
method to the two-body 16O + 16O and 40Ca + 40Ca systems
and calculated the B(E3) values of each nucleus. We have
shown that the calculated B(E3) value is indeed damped near
the touching point. We have also shown that the damping factor
proposed in Ref. [14] strongly correlates with the calculated
B(E3) values and the calculations of the fusion cross section
coupled with the damping factor reproduce the experimental
data well. This indicates that the fusion hindrance originates
from the damping of the quantum couplings and strongly
suggests that the smooth transition from the sudden to the
adiabatic processes occurs near the touching point.
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