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Abstract:  The isomeric states in Po, At and Rn isotopes are described as independent particle states in a 
deformed potential which is symmetric with respect to the direction of the angular momentum. 
The known parts of the yrast lines of these nuclei are found to be well described by the model. 
In particular all observed isomeric states are reproduced as "traps". The variation of the shape 
along the yrast line is studied. In most of the nuclei considered a gradual rise of oblate deformation 
takes place. This can be understood from simple qualitative considerations. The relation of the 
present approach to a description within the spherical shell model with residual interactions is 
discussed. 

1. Introduction 

Within the last few years there has been a remarkable progress in the study of  
isomeric states with large angular momenta.  

A classical example of  such a state, known for about fifteen years ~), is the 45 s 
isomer in 2 ~ 2po with spin and parity 16 + or 18 ÷. Although the exact structure of  this 
state remains uncertain, all suggested interpretations 2,3) agree in so far as they 
involve an alignment of  the angular momenta of  the valence particles. Extensive 
experimental work carried out in the seventies has shown that the region of  nuclei 
with a few particles or holes in excess of  the double-closed-shell 2°spb core is indeed 
rich in isomeric states with such a structure. The highest spin of  an isomer in this 
category so far observed is J = 30, measured recently 4) in 2t2Rn. 

Another group of  high-spin isomers is constituted by the "K-isomers" observed 
in well-deformed nuclei. The 4 s and 31 y isomers s) in ~ 78Hf, which can be interpreted 

as respectively a K s = 8-  and a K" = 16 ÷ band head, are classical examples of  
isomers of  this kind. Also this family has been considerably extended within the last 
few years. Thus, the highest spin of  an isomer in this category is now J = 22 measured 
[ref. 6)] in 176HF. 

An important step forward was taken with the introduction of  an experimental 
technique which enables one to scan a large area of  the N-Z  plane for the appearance 
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of high-spin isomeric states. Using this technique, Pedersen et al., employing the 
facilities of the Gesellschaft ffir Schwerionenforschung, Darmstadt, were able to 
make the first experimental verification 7) of the existence of an "island" of isomers 
with multiplicities 10-20 in the region of neutron deficient isotopes of light rare earth 
elements. [Some single isomers belonging to the island were found independent- 
ly 26,  27) by other groups.-] The likelihood of the appearance of high-spin isomers in 
this region had been suggested earlier by Anderson et al. 8) on the basis of calcu- 
lations within a deformed independent particle model of yrast states. 

In a previous paper 9), we analysed the structure of the "trap configurations" 
described by the model of Anderson et al. This analysis revealed the close relationship 
between the presumable structure of most of the isomers of the Darmstadt experi- 
ment and that of the afore-mentioned isomers in the region of 2°spb. It is therefore 
natural to raise the question to what extent the same model is able to reproduce the 
properties of these well-known isomers. An answer to this question is of obvious 
importance for the degree of confidence one could have in predictions based on this 
model in other regions of the periodic table. 

In the present paper, we apply the independent particle model in a calculation of 
the yrast spectra of Po, At and Rn. Apart from examining the ability of the model in 
reproducing the experimental data, we aim at shedding light on the mutual relation- 
ships between angular momentum alignment, deformation and shell structure. In 
particular, we discuss the implications of the fact that in the independent particle 
model the isomers in the 2°Spb region have finite (but small) deformations. It will 
be shown that in fact the deformation energy is the factor which in this model 
stabilizes the isomeric configurations. The variation of the deformation along the 
yrast line is examined and interpreted in terms of simple qualitative considerations. 

Conventionally, the spectroscopic properties of nuclei in the vicinity of 2°Spb are 
discussed in terms of the spherical shell model with residual interactions. Some 
calculations based on this approach have been able to account for the measured 
excitation energies with an accuracy which is extraordinary in nuclear physics. [See 
ref. 10) and references therein.] The relation of the present approach to the spherical 
shell model is a recurrent theme in our paper. 

In particular we attempt to identify the parts of the shell-model residual inter- 
action energy which are taken into account through the deformation energy in the 
independent particle model. 

Calculations similar to ours for the nucleus 212Rn were performed 11) by Leander. 
His detailed assumptions deviate somewhat from those employed in the present 
paper. Aberg has investigated 12) the applicability of the deformed independent 
particle model to the description of the K-isomers in 172-18OHf" 
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2. Model 

2.1. BASIC PRINCIPLES 

The deformed independent particle model of yrast states in the regime of axial 
symmetry with respect to the direction of the angular momentum is discussed in 
detail in the original paper by Anderson et al. 8). The extension of this model by 
inclusion of pairing was considered by Cerkashi et al. 13). For completeness we give 
below a brief account of its basic principles. The explicit formulas may be found in 
the papers quoted above. 

The model deals with independent particle configurations in an axially symmetric 
deformed potential. The sum of single-particle angular momenta along the symmetry 
axis is taken as a measure of the total angular momentum of the nucleus. The energy 
is calculated by the Strutinsky method 14). In our case, this amounts to evaluating 
in the BCS approximation the independent particle plus pairing energy blocking the 
levels occupied by unpaired particles. From this the smooth energy of the ground- 
state configuration is subtracted and replaced by the liquid drop energy. As shown 
in ref. 25) this is a correct procedure for the Woods-Saxon potential where the average 
increase of energy, as a function of the angular momentum, closely corresponds to a 
rigid rotation of a homogeneous ellipsoid with the same deformation. 

The deformation is determined separately for each configuration so as to yield 
the minimal energy. 

2.2. SINGLE-PARTICLE ENERGIES 

As a model of the single-particle field we use the deformed Woods-Saxon potential 
as defined by Pashkevich 15) with the parameters suggested by Pauli 16). The 
deformation space is restricted -to purely ellipsoidal shapes and is thus described by 
the single parameter e = 3(q-1)/(2q+ 1), where q denotes the ratio between the 
distance of the "poles" and the diameter of the "equator". 

It is well known 16) that in this model the empirical single-particle energies in 
2°spb are reproduced only with an accuracy, of 1-2 MeV. Since the calculated yrast 
spectra are very sensitive to the single-particle energies, we modify in the vicinity of 
the Z = 82 and N = 126 gaps the Woods-Saxon energies so as to have for e = 0 
the empirical values. This is done by means of constant shifts independent of the 
deformation. 

2.3. PAIRING FORCE 

The strength parameters Gp and G n of the pairing force are determined by the 
average gap method 14) applied to the ground-state configuration of the nucleus 
considered. For the average gap we use the conventional value ~ = 12A -½ MeV. 
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2.4. LIQUID DROP MODEL 

Following Myers and Swiatecki 17) we use as expression for the liquid drop energy 
(in MeV) 

ELD = 17.9439A ~ 1 -- 1.7826 (B s -  1 ) + 0 . 7 0 5 3 ~ ( B  c -  1), (2.1) 

where B s and B c denote, respectively, the surface and the Coulomb potential energy 

in units of  the spherical values assuming a homogeneous charge distribution bounded 
by a sharp ellipsoidal surface. 

3. Application to the 2°sPb region 

3.1. DEFORMATION AND D E F O R M A T I O N  ENERGY 

Fig. 1 shows for a couple of  independent particle configurations the dependence of  
the energy on the deformation parameter  e. As examples we have chosen the con- 
figurations corresponding to two alternative interpretations of  the 45 s isomer in 
2 1 2 p o  given in the literature. Thus for example the configuration indicated by 
,U = 16 + consists of  the 2°spb core plus two protons in the states emerging from the 

spherical orbitals h~, m = 7 and 9, and two neutrons in the states emerging 
from g~, m = ~ and 9. In other words it is equal in the limit e ~ 0  to the 
shell-model state 3) (n(h~)2v(g~)2)j.M_ 16 + 16. In a similar way the configuration 
indicated by J~ = t8 + converges in the spherical limit into the shell-model state 2) 

(n(h~)2v(g~i~,))s - M= ls~ 18- 
One sees in these examples various characteristic features. In both cases the 

equilibrium deformation is oblate and of the order % ~ - 0 . 0 3  (respectively, 
% = -0 .025  and e0 = -0 .035  in the two cases). The energy gained by distorting 

LU 

212po ~-I 0 

I 

-0.05 0.00 
E 

-I1 

Fig. 1. Calculated energies of  two possible configurations of  the 45 s isomer in 212po plotted against 
deformation. The configurations are described in subsect. 3.1. Energies are measured relative to the 

energy of  the spherical liquid drop. 
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the spherical shape by this amount is of the order 1 MeV (respectively 0.52 MeV 
and 0.88 MeV). These features may be qualitatively understood in terms of simple 
considerations related to Rainwater's arguments 1 a) for the appearance of deformed 
shapes between the closed spherical shells. 

If we neglect the pairing energy we can write in a good approximation for small 
deformations (Igl < 0.05) 

Edef(g ) = E{i}(g)--E{i}(o ) 
(3.1) 

= ( Z  Ci)e + ½Co %2.  
i 

Here the first term involves a summation over the particles and holes of the con- 
figuration {i} considered. The coefficients C i are given by 

C i = _ \ d~ -e /~=o  = -k-~j, \ J i ( J i+  1) 

where e~(g) denotes the single-particle energy, and the upper and lower sign refers to 
respectively particles and holes. These expressions are valid since neither the smooth 
part of the independent particle energy in the ground-state configuration nor the 
liquid drop energy contribution to the linear term in the Taylor expansion of Ud~f(g). 

In (3.2) m~ is the projection of the single-particle angular momentum on the symmetry 
axis, and j~ is the usual angular momentum quantum number in the limit g ~ 0. 
The factors ctj, which are related to the radial matrix elements of the gradient of the 
single-particle potential, have positive values of the order 30 MeV (see fig. 2). The 
coefficient Co t~ has values of the order of 1-2 GeV, reflecting mainly the stiffness 
of the Z°8pb core. Thus for the doubly closed shell configuration Co = 1.6 GeV, 
while in aligned valence configurations (see below), the extra particles contribute 
typically 0.1-0.2 GeV. 

From (3.1) we get the following expressions for the equilibrium deformation go 
and corresponding deformation energy Edef(gO) : 

go = - ( ~  Ci)/Co, (3.3) 
i 

Eaef(go) = _~Cog o l  2 = - ( ~  Ci)2/2Co . (3.4) 
i 

These expressions are seen to reproduce the sign and order of magnitude of both 
qu~intities found by the exact calculation. 

The simple equations (3.2)-(3.4) enable one to make additional conclusions. 
Consider for definiteness a nucleus with a few particles in excess of the closed shells. 
A large total angular momentum is obtained in the aligned configurations, i.e. in 
configurations where the unpaired particles occupy within each subshell a number of 
states with the maximally possible values of re. The configurations in 212 Po considered 
above are examples of such aligned configurations. Using the valence particles the 
nucleus can build up in this way angular momenta up to a certain maximum. 
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In order to get higher values of  the angular momentum it is necessary to involve 
particle-hole excitations of the core. The largest additional angular momentum due 
to a particle-hole pair is obtained when both ~he particle and the hole have large 
values ofm.  However, we see from (3.2) that this combination leads to a cancelation 
in the numerator  of (3.4). Therefore such configurations tend to be non-yrast. From 
an energetical point of  view it is more favorable to combine particles with large m 
and holes with m ~ 0. 

The configurations composed of  particles with large m and holes with m ~ 0 
are therefore expected to play a significant role in the yrast spectra of nuclei with 
particles in excess of 2°spb. From (3.3) we expect such configurations to have an 
oblate equilibrium deformation. Furthermore,  since both the deformation and the 
angular momentum are increasing functions of the number of particle-hole pairs 
involved, the deformation is expected to increase along the yrast line. In nuclei 
below the closed shells we expect a similar trend, except that there the deformations 
are prolate. [-This shows that the trends discussed above are genuine effects of the 
shell structure. Incidentally, the trend towards increasing oblate deformation with 
increasing angular momentum found in the nuclei above the closed shells resembles 
that of  a classical liquid drop 1o). However, the contribution of the classical forces 
to the equilibration of the shape in these states is negligible.] 

As shown in ref. 9) the configurations giving rise to yrast traps for weakly deformed 
oblate shapes have exactly the afore-mentioned structure composed of  aligned 
particles and holes with m ~ 0. In the examples considered in sect. 4 we shall see 
that indeed the yrast states of  this kind are often traps. We define here a trap in the 
same way as in previous works 8), namely as a configuration which cannot decay by 
an El,  MI,  E2 or M2 single-particle transition. Usually, these yrast states are also, 
in the terminology of Andersson et al. 8), "optimal" ,  i.e. their configurations are 
obtained by occupying all single-particle states below a titled Fermi surface in the 
single-particle states below a titled Fermi surface in the plot of single-particle ener- 
gies against m. (See e.g. fig. 8). 

In the cases considered in sect. 4 the holes are often produced by emptying the p½ 
neutron orbital. The large quadratic term in the dependence of  the energy of this 
orbital on ~: (see fig. 2) then enhances the trend towards oblate deformations, since 
it gives a negative contribution to the stiffness parameter C~o i~. 

With increasing deformation the discussion in terms of  particles and holes relative 
to the spherical closed shells gradually looses sense, and it becomes more relevant 
to consider the shell closures in the deformed potential like those with neutron 
numbers 124, 120 and 114, indicated in fig. 2. The emptying of the p~ orbital men- 
tioned above may thus alternatively be viewed as a transition to a regime of  p__rticle 
configurations relative to the neutron shell closure at N -- 124. In a similar way the 
configurations with particles above the N = 120 and N = 114 gaps are expected to 
enter the yrast spectra of  somewhat more neutron deficient nuclei than those con- 
sidered in the present paper. The rather narrow gap at e ~ - 0 . 3  and N = 114 is 
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Fig. 2. Neutron single-particle energies in the Woods-Saxon potential. 

analogous to the N = 76 gap discussed in ref. 9). As shown there such deformed 
shell closures may give rise to trap configurations with a structure very similar to 
that discussed above. The consideration of  such strongly deformed states is, how- 
ever, beyond the scope of  the present study. 

3.2. ANGULAR MOMENTUM 

Following the prescription of  Andersson et al. 8) we take the sum of  single-particle 
angular momenta along the symmetry axis of  the average potential as a measure of  
the total angular momentum of  the system (cf. subsect. 2.1). This could correspond 
an interpretation of  the states described by the model as lx=-nd heads of  rotational 
bands. 

Evidently this interpretation is not meaningful for small deformations. This does 
not, however, cause any problems as far as aligned configurations are concerned. 

Evidently this interpretation is not meaningful for small deformations. This does 
not, however, cause any problems as far as aligned configurations are concerned. 
In these configurations we have by definition M = ~im i = "/max, where Jmax is the 
maximal angular momentum that can be built from the particles in the spherical 
subshells occupied in the limit ~ ~ 0. As seen in the examples discussed in the 
beginning of subsect. 3.1 the deformed configuration converges in this case into a 
spherical state with the good angular momentum J = Jmax = M. 



~E
 

0.
4 

0.
2 

-0
.2

 

-0
./.

 

-0
.6

 

-0
.8

 

rc
 (

h9
12

 
il3

~Z
) 

VT
= 

1 

• , 
/ 

', 
~,

, 
t 

I 

i # 

# 1-
 

,V
 

! i 
i 

2 

0.
2 

0.
2 

0.
4 

-1
.i,

 

-1
.E

 

11
: (

 h
 9

/2
 )2

 

> t.
_,

 

.V
T=
 I
 

E 
de

f 

E
pa

ir 
i 

I 
I 

I 
I 

0 
~ 

8 

(b
) 

1.
0 

0.
5 

-0
.1

 

-0
.2
 

-0
.3
 

( 
n:

h9
/2

 
v 

i3
/2

) 

'p
 -h

 

i 
i 

I 
t 

4 
' 

I 
i 

, 
, 

t 
i 

i 
i 

ii0
 

4 
6 

8 
10

 
2 

4 
6 

8 
3 

J 
(a

) 
(c

) 
Fi

g.
 3

. 
E

m
pi

ri
ca

l 
m

at
ri

x 
el

em
en

ts
 o

f 
th

e 
re

si
du

al
 i

nt
er

ac
ti

on
 a

cc
or

di
ng

 t
o 

Sc
hi

ff
er

 a
nd

 T
ru

e 
2o

) 
an

d 
ca

lc
ul

at
ed

 d
ef

or
m

at
io

n 
en

er
gi

es
 E

de
 f 

fo
r 

so
m

e 
si

m
pl

e 
co

nf
ig

ur
at

io
ns

. 
F

or
 d

et
ai

ls
 s

ee
 s

ub
se

ct
. 

3.
3.

 (
a)

 T
he

 m
ul

ti
pl

et
 ~

(h
91

2i
13

/2
). 

T
he

 a
ve

ra
ge

 m
at

ri
x 

el
em

en
t 

V
 is

 d
ef

in
ed

 b
y 

eq
. 

(3
.5

). 
(b

) 
T

he
 m

ul
ti

pl
et

 ;
z(

h9
/2

) 2
. 

T
he

 p
oi

nt
 l

ab
el

le
d 

"E
pa

lr
" 

sh
ow

s 
th

e 
pa

ir
in

g 
en

er
gy

 i
n 

th
e 

sp
he

ri
ca

l 
gr

ou
nd

 s
ta

te
 o

f 
2t

°P
o.

 (
c)

 T
he

 m
ul

ti
pl

et
 g

(h
9/

x)
v(

i1
3/

2 
)-

 1
. 

K
 

> c .<
 

> z > 



HIGH-SPIN ISOMERS 261 

The non-aligned configurations (M < Jmax) have in the limit ~ ~ 0 wave functions 
corresponding to a distribution of J in the interval M < J =< Jmax" It cannot be gener- 
ally assumed that the component with J = M is the dominating component of this 
wave function. In some cases it even does not exist. Since, however, we consider in the 
following mostly states for which it causes no troubles to assume J = M, we adopt 
in the present paper this conventional assumption of the model considered. In the 
few cases where this leads to manifestly spurious results we make a comment. 

3.3. DEFORMATION ENERGIES OF SIMPLE CONFIGURATIONS 

In the absence of pairing the excitation energies calculated by our model in the 
limit e ~ 0 are equal to the unperturbed excitation energies of the spherical shell 
model. Hence, apart from a constant depending only on the nucleus considered, 
the deformation energy of a given configuration corresponds to the shell-model 
interaction energy. It is therefore interesting to make a comparison of these quantities. 

In the present section we consider some simple two-particle and particle-hole 
configurations. Thus in fig. 3 we show the empirical interaction matrix elements in 
the shell-model configurations n(h~) 2, n(h~i¥) and n(h~)v(i¥) -1 as extracted 20) 
from the spectra of 21°po  and 2°8Bi. For comparison the deformation energy at 
equilibrium of the corresponding independent particle configurations are also shown. 
(For J < "/max the configuration with lowest energy built from states in the relevant 
subshells is taken.) 

Obvious differences between the behaviour of  the two quantities are seen in fig. 3. 
We notice in particular: 

(i) The T = 1 interaction is generally weak, except in the pairing force channel 
J l  = J2, J = 0. Furthermore it has a repulsive component. The T = 0 interaction 
is much stronger and attractive. On the other hand, the deformation energy is practic- 
ally charge independent. In particular it always has a minimum for J = "/max, even 
in the case T = 1, Jx = J2, in which case the shell-model interaction is maximally 
repulsive for J = Jm,x" 

(ii) The particle-hole interaction in the multiplet n(h~)v(i~) -~ is repulsive and 
strongly peaked at J = Jml. and J = Jm~" The deformation energy has a weak 
variation and is (by definition) always negative. 

(iii) The shell-model interaction energy exhibits when considered as a function of 
J a staggering, which has no counterpart in the deformation energy. 

It is instructive, however, to consider the average of  the T = 0 and T = 1 particle- 
particle interactions, 

i7 1 3 = ~VT=o+~VT=,  = ½(Vpp+ Vp.), (3.5) 

corresponding to the isoscalar part of the particle-hole interaction. The behaviour 
of F~ in the configuration h~i¥ is shown in fig. 3a. Averaging out the staggering, 
the behaviour of F s is seen to be amazingly close to that of  Edef(%). In configurations 
other than h~i¥ the situation is similar. 
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Making a somewhat ambitious extrapolation from these simple configurations 
one might expect the deformation energy to account for the major part of  the shell- 
model interaction energy in configuration, which: 

(i) Consist of  aligned particles (holes) in a possible combination with holes 
(particles) with m ~ 0, so that the attraction between aligned particles is maximally 
exploited and the strongly repulsive channels of  an aligned or anti-aligned particle 
and hole avoided. This is the typical structure of  trap configurations. 

(ii) Involve approximately equally many particles or holes of  both kinds so that 
the isospin dependence of the shell-model residual interaction is averaged out. 
This situation is generally approached at higher angular momenta, since in this 
limit the particles of both kinds tend to contribute equally to the total spin. 

In the examples studied in sect. 4 we shall see indeed a confirmation of these 

expectations. 
It could be noticed that most of  the left-out components of the two-body force 

are repulsive and therefore do not contribute to the stabilization of isomeric con- 

figurations. 

3.4. PAIRING 

Due to the blocking of unpaired levels in the BCS calculation the pairing gaps are 
rapidly decreasing functions of the angular momentum. For the nuclei considered 
in the present paper pairing is usually completely absent in configurations with 
seniority > 2. Hence the essential role of  pairing in our calculations consist in 
lowering the energy of configurations with seniority ~ 2 (typically the ground 
states) relative to the rest of  the spectrum. 

When present the pairing energy should be added to the deformation energies for 
a relevant comparison with the interaction energies in the spherical shell-model (see 

e.g. fig. 3b). 

4. Examples 

4.1. THE NUCLEI 2°~'2~°Po AND 2H)'2~At 

In figs. 4 and 5 we show a comparison between calculated and empirical yrast levels 
of  the nuclei 2o9, 2 10po and 2 lo, 2 x 1At. The configurations are described in tables 1 

and 2 in a notation indicating the number of  states in each spherical subshell occupied 
in the limit ~ ~ 0. Paired particles or holes are indicated as occupying states in the 
first available subshell. 

As seen from these configurations the yrast spectra of  2o9.2 ~Opo and 210, 2 ! ~At 

have a closely interrelated structure. It is therefore reasonable to encompass them 
in a common discussion. 

In most cases the calculated and measured yrast energies agree within 100-200 
keV. The considerably larger deviation found in a case like the J = ~ state in 2°9po 
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Fig. 4. Yrast levels in 209, 2JOpo" In the upper part of the figure, calculated excitation energies are indicated 
by horizontal bars and empirical excitation energies by open or filled circles for respectively odd and 
even parity. An arrow indicates a calculated trap or observed isomer. In cases where the probable con- 
figuration of the observed yrast state deviate from the calculated one the calculated excitation energy of 
the former configuration is shown by a dashed line. The deformations and deformation energies are 
displayed in the lower part of the figure. The empirical quantity shown together with the deformation 

energy is defined in subsect. 4.1. Empirical data from refs. 2~'22L 

TABLE 1 

Calculated yrast configurations a, b) in 209.210po 

2O9po 

n(h9/2)2vpl/12 
- n ( h 9 / 2 ) 2 v p 3 / ~  

#2 n(h 9,2) 2 vf~-~ 
~Z- n(ho,2)2vp;/~ 

17-51  - ~z(ho,2)2vf;:~ 
23+ 
2 n ( h 9 , 2 i l  3,2) ' (P i-/~ 

25+ 29+ i7312 2 2 n ( h 9 , 2 )  2v 
(z~+) . , 1 n(ho~2113,2)~ f5,2 

~ -  325 n(h9,2il 3,2)vi~-31/2 
(31 - ) n(hg,2il 3/2 )~' I ( P l / 2 )  - 2g9/2 } 

21Opo 

0 + 8 + ~z(h9/2) 2 

9 -  11-  n(h9/2i1312 ) 
12- ,  13-  n(h9/z)ZV(p 1/1g9i2) 

14 7z(ho/z)2v(P L'lil 1/2) 

15 r[(ho/2)Ev(f5/12g9/2) 
16 + n(h9/2i13/2)v(pl/~gg/2) 
17 + n ( h o / 2 i l  3 /2)v(P  ~-/~i1112) 

a) The notat ion used to describe the configurations is explained in subsect. 4.1. 
b) A spin and parity given in parenthesis correspond to a dashed line in fig. 3. 
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Fig.  5. S a m e  as  fig. 4 for  z)o.2~ ~At. E m p i r i c a l  d a t a  f r o m  refs.  23,24) .  

TABLE 2 

C a l c u l a t e d  y r a s t  c o n f i g u r a t i o n s  ") in 2 ~ o. 2, ~ A t  

21OAt 

2 1 -  4+,  5+ n(ho. '2)3vp/,~ ~ T 
6 + ' 7 + n(hg,2)3vf~,~ _223 

29+ 8 + II + n(ho,2)3vp~-~ ~5+_.2 
12 + ~ 2 ~ 1 31-  ~a-  nL(ho,2) f7 2)vPl 2 
13 + / ~ , h g i 2 ) 3 v f 5 , ~  ( ~ i + )  

f 2" ) , I 1 4 - ,  15 -  /r~(h9,2) I13,2)IPi ,2  (323+) 
16 , 17 :g(hg,2)3vi1312 325 329 

( 1 6 - , 1 7 - )  ~ 2. ~, t 41 n ~(h9 ,2)  113,211' f5,'2 2 

18 - /'~ I (h9 /2 )2  f7,2} %'J131/2 

19 + •I(h9/2)2il  3,2 ](P)<z) - Zgo,,2 )J 
~ h  2. i," 1 20 + n~(9/2) 113,21~113,2 

2 1 ' A t  

~(h9,2) 3 

rcl(ho 2)2f-r 2] 

rcl(ho,2)2i13 2~j 
7r ~l (i 13,2)2h,~,2 ~ 

n(hoiz)3v(pl ,~gg~2) 
n I(h9i2)2 f-/.2 1 v(p | /~g9/2) 

nl(ho/2)2i~ 3,2 ]v(pl-:~g9/2) 
n l (hg :2)2 i l  312~ v(PT.~il l/2) 

a) See c o m m e n t s  a. b) to t ab le  1. 



HIGH-SPIN ISOMERS 265 

is easily understood from the discussion of  the proton-neutron particle-hole inter- 
action in subsect. 3.3. A similar situation appears for the J = ~ state in this nucleus 
and the J = 17 and J = 20 states in 2 ~OAt . 

The J = 1, 3, 5 and 7 states in 21°po and the J = ½9 state 211At are manifestly 
spurious products of  the model. 

Several isomeric states are observed in these nuclei. All of  them are reproduced 
as traps in our calculation. The calculated configurations of the J = 12 and J = 13 
states in 21°po correspond to respectively an anti-parallel or parallel coupling of the 
p,~ hole to the aligned particle configuration (Tz(h~)2v(g~))25/2 ÷. The exact degeneracy 
of  these configurations, which makes both of them traps according to our definition, 
is clearly a spurious effect of the model. From the trend of the empirical interaction 
matrix elements zo) involving the neutron p½ hole one would expect the actual 
energy of the J = 12 state to be somewhat higher than the J = 13 state. Similar 
remarks apply to the J = 14 and J = 15 states in 21°At. 

The energy of isomeric states involving only valence protons or valence protons in 
combination with a single p½ hole is generally underestimated by a few hundred 
keV. Clearly, this is a trend to be expected from the discussion in subsect. 3.2, since 
in these configurations most or all of  the interacting pairs have T = 1, and the inter- 
action in this channel is weak and partly repulsive. 

In the lower parts of  figs. 4 and 5 the calculated deformation energies of  the yrast 
states are shown. The general trend seen in these figures is easily understood from the 
discussion in subsect. 3.1. 

For  the yrast states which have a well-established interpretation in the spherical 
shell model we show in figs. 4 and 5 for comparison with the calculated deformation 
energies the empirical interaction energy. Since only the relative values are relevant 
for such a comparison we have rather arbitrarily normalized the interaction energy 
of  the first aligned configuration (e.g. the 8 + state in 2~Opo ) to zero. Furthermore,  
we have subtracted for the configurations involving two holes in the neutron p½ 
shell the empirical pairing energy of  2°6pb, - B[2°6pb] + 2B[2°Vpb] - B[2°aPb] = 
- 0 . 6 4  MeV, where B[ ] denotes the binding energy. 

It is obvious from this comparison that the deformation energy accounts for the 
main trend in the variation of  the empirical interaction energy along the yrast line. 
In particular, the model is seen to account quite well for the order of  magnitude 
( ~  1 MeV) of the amount  of  interaction energy gained by adding a neutron particle- 
hole pair to a given valence configuration (e.g. the relative energy of  the J = ~ and 
J = ~ states in 2~At).  However, the empirical value of this quantity tends to be 
generally about 0.5 MeV larger than calculated. We return in subsect. 4.3 to a dis- 
cussion of  this deviation. 
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Fig. 6. Same  as fig. 4 for 212Rn. Empir ical  da ta  f rom ref. 4). 

TABLE 3 

Calcu la ted  yrast  conf igura t ions  a) in 2 ~ 2Rn 

212Rn 

0 + 12 + 
13 + , 14 + 

1 5 - - 1 7 -  

18-  
19 + , 20 + 

(19 - )  
21 +, 22 + 

23 + 
24 + 

25 -  
26 -  
27 -  
27-  
28 -  
29 + 

30 + 

g(h9/2) 4 
g{(h9/z)3fT/2] 

~t{(h9/2)3il 3/2} 
rt{(h9/2)2fv/2iz3/2] 
7~{(h9/2)2(il 3/2) 2 

n{(hg/2)3f7/2} v(Pl/xg9/2) 

rt{(h9/2)ail3/2 }v(Pi-/~gg,2) 
n{(h9/2)2f7/2il 3/2 }v(PT/~g9;2) 
~{(hg/2)2fT/2 i13 /2}v(p l / l i l l /2 )  
7~{(h9/2)2(i13/2)2}v(pl/12g9/2) 
~{(h9i2)2fv/2iz3/2}v(pl/~Jls/2) 
n{(h9/2)2( i l  3/2)2}v(Pl/~Jl 5/2) 
n{(hg/2)3i~ 3/2}vl(P~.,2)- 2g9/2i~/2} 
rt {(hg/2)2f7/2il 3/2 } v ((P1:2)- 2g9/2il t ,,2} 

~{(h9/2)3i l  3/2 }v'[(P 1/2) 2g9/2J 15/2} 
T~{(hg/2)2fv/2i13/z}v{(Pl;2) 2gg/2J 15/2] 

a) See c o m m e n t s  a. b) to table 1. 
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4.2. THE NUCLEUS 2S2Rn 

Data and calculated results for the nucleus 2 1 2 R n  a r e  shown in fig. 6 and table 3. 
In the yrast spectrum of this nucleus for J __< 22 we see all the same features as 

discussed above for the nuclei 2°9'21°po and 21°'2ZlAt. 
(i) The calculated and measured yrast energies agree in general within a few 

hundred keV. 
(ii) The observed isomeric states are reproduced as yrast traps. Concerning the 

J = 21 state the situation is the same as for the J = 12 state in 21°po. 
(iii) The energy of the isomeric states involving only valence protons is generally 

underestimated. 
(iv) The deformation energy accounts for the main trend in the variation along t h e  

yrast line of the empirical interaction energy. 
(v) The gain of interaction energy due to an additional neutron particle-hole pair 

is underestimated by about 0.5 MeV. (See the relative energy of the J = 17 and 
J -- 22 states.) 

We shall discuss here in particular the structure of the three observed isomeric 
states 4) with their suggested spins and parities of, respectively, 25-, 27- and 30 +. 

For the 25- state Horn et al. suggest the assignment 7z((h~k)3ih~) v((p½)-.tjl 5/2)" This 
configuration is found in our calculation 0.2 MeV above the yrast level. The experi- 
ment seems not, however, to rule out the calculated yrast configuration (table 3). 
This is a trap configuration provided we consider the M2 transition from the i?  
to the f} shell as/-forbidden due to t h e  c l o s e n e s s  to  t h e  spherical limit (see fig. 8). 

For the 27- and 30 + states Horn et al. suggest configurations involving aligned 
particle-hole pairs like v((i¥)-lg.~)lt + or v((ft)-zj15/2)1o +. Due to t h e  r e p u l s i v e  

I • 1212R n ,  , , I ' ' ' 
] ' = 3 0  

-3  

W - -l, 

a 

I i i i 1 i , , , -5 
-o.1 -0.05 

t~ 

Fig. 7. Plot similar to fig. 1 for some configurations with J = 30 in 2i2Rn. The configurations are: (a) 
g{(h9/2)2fT/2ila/2}v{(pl/2)-2gg/2j15/2}, (b) ~{(h9/2)2(i~3/2)2}v{(p~/2)-2gg/2i~/2}, (c) r~{(h9/2)2(i13/2) 2} 

v{(i~3/2)- Xgg/2}- 
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Fig, 8, The Fermi surfaces of  the configurations (a) (solid) and (b) (dashed) of  fig. 7 displayed in a plot 
of  single-particle energies against m for ~ = -0 .09 .  The single-particle energies are those used in the 

calculations, cf. subsect. 2.2. 
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interaction between aligned particles and holes (cf. subsect. 3.3) the strong attraction 
in these configurations assumed by Horn et al. appears, however, somewhat unlikely. 
More probably these states involve 2p-2h excitations of  the core. 

It is seen, in fact, from table 3 that such configurations enter the yrast line just 
around J = 27. Thus the two configurations with this angular momentum listed in 
the table are practically degenerate. One of  these is a 1 p-1 h configuration. The second 
is a 2p-2h configuration. While the former is not a trap the latter is. We consider 
therefore the 2p-2h configuration in table 3 as a likely candidate for the structure 
of  the 27- isomer. 

As seen from fig. 7 the 2p-2h configurations with J = 30 have about 1 MeV lower 
equilibrium energies than the 1 p-1 h configurations with this spin. Fig. 8 displays the 
structure of the configurations labelled (a) and (b) in fig. 7. 

The configuration (a) can decay by M2 to the calculated yrast trap at J = 28. 
Since B(M2; J15/2 --} i~) is known from 2°9pb we can estimate the half-life of  this 
transition to be about 15 ns. Assuming that the actual energy distance between the 
J = 28 and J = 30 state is 35 ~o lower than calculated, the measured 152 ns E3 
transition to the 27- isomer would thus be able to compete with the M2 transition 
to the 28- state. 

The configuration (b) is a trap using the same criterion as applied above for the 
25-  state, and it could thus be an alternative candidate for the structure of the 
observed 30 + state. 

Adopting these interpretations we see that the rules (i)-(v) formulated above 
remain valid considering configurations involving 2p-2h neutron excitations of  the 
core. In particular the major part of the interaction energy in these configurations, 
- 4  MeV, is seen to be accounted for as deformation energy. We see also that the 
tendency of  our model to underestimate the gain of interaction energy due to an 
additional particle-hole pair by about 0.5 MeV, which was observed already in 
connection with the I p-1 h configurations, remains in the transition from the 1 p-1 h 
to the 2p-2h configurations. (Note that this supports the assignment of a 2p-2h 
configuration to the J = 27 yrast state.) 

In the 2p-2h configurations we have e o ~ - 0.1. We are thus in these configurations 
approaching a region of deformations where rotational bands built on the isomeric 
states could be expected to exist. 

4.3. SURVEY OF  ISOMERS IN Po, At A N D  Rn 

Table 4 gives a survey of  calculated and measured excitation energies of  observed 
isomeric states in the nuclei considered above. We have included in the table also the 
classical example of  isomeric states in this mass region, the 45 s isomer in 212po. 
The J~ = 16 + interpretation 3) of  the latter is adopted here. As mentioned above 
other interpretations involving J~ = 18 + have been suggested in the literature 2). 
(See also the discussion of fig. 1 in subsect. 3.1.) While the J~ = 16 + configuration 
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TABLE 4 

Observed  i somers  i ,  i so topes  of  Po, At  and  Rn 

2O9po 

2 ~ Opo 

212po 

2 ~ OAt 

2JJAt 

212Rn 

J~ Conf igu ra t i ov  ") E~*p b) 

17- T rr(hg,z)ZvP~,~ 1.47 
23+ 2 r r ( h g , z i 1 3 , 2 ) v p ~  2.77 

" , [  2 ) 3L- n(hg,2113.2Bl(Pl 2) gq2~ 4.27 
8 + n(hg.2) 2 1.56 

II  n(h9,2il3 2) 2.85 

13- ~(hg.2)Zv(p~.~g9 2) 4.37 

16 + 7r(h,L2i13,2)v(pl ~g92) 5.06 

16 + /'c(ho,2)2 v(g9 2) 2 2.93 

l l + ~(h9 2)3vp~.~ 1.36 
7[l lh ~2 I, 1 15 t" 9 2 /  13 21 'Pl ,2 2.55 

19 + ~ 2. ) ,~ 2 ) n d h , . 2 )  l 3 2 J ~ ( P  2) g,.2 4.03 
21.- r~(h9 2)3 1.42 
29+ t 2" I 
2 n~(hg, 2) 1132) 2 .64  

39 ~ h  ~2i ivt -1 ,, 2 ~', 9,2 / 1321 xPl 2 g 9 2 /  4.82 
8 + rc(hg,2) 4 1.67 

12 + ~z(h, 2) 4 2.86 

17 7z~(h9 2)3i13 I 4.04 

22 + 7r It (no 2)3il 3 2)) v(pl- l g9  2) 6.18 
25 ( z • 2~ ~(h92) (1132) , v ( p ~ g 9  2) 7.11 
27 ~ 3" ,~ 2 • I /~t(hg,2) I 3,2 " I ( P l  2) g l  2111 21 7.85 

30+ n[(hg..2)2f,.2i132))v~t(P 2 )  2 g 9 2 J l 5  2] 8 .55 

1 . 2 3  

2.52 

4.76 

1.31 

2.71 

4.30 

5.46 

2.44 

1 . 2 3  

2.30 

4.01 

1.21 

2.48 

5.11 

1.53 

2.50 

3.78 

6.45 

7.51 

8.82 

9.34 

Ei m d) 

0.0 

- 0 . 3 0  

- 1.61 

0.0 

0.31 

- 0 . 6 3  

- 1.54 

0.0 

--0.41 

- 1.74 

0.0 

0.38 

- 1.64 

0.0 

- 0 . 4 2  

- 1.72 

- 2 . 3 9  

- 3 . 6 3  

- 4 . 4 7  

Edcf c ) 

- 0 . 2 6  

- 0.60 

- 1.30 

- 0 . 1 7  

- 0 . 3 9  

- 0.64 

- I . 1 3  

- 0 . 5 2  

- 0 . 2 0  

- 0 . 7 8  

- 1.99 

0.13 

- 0 . 5 0  

- 1.37 

- 0.06 

- 0 . 0 5  

- 0.44 

- 1.26 

- 1.68 

- 2 . 5 2  

- 3 . 5 4  

a) See c o m m e n t  ") to table  I. 
b) Observed  exc i ta t ion  energy. 
c) Ca lcu la ted  exc i ta t ion  energy. 
'~) Empi r i ca l  quan t i t y  def ined in subsect.  4.1. 
") Ca lcu la ted  de fo rma t ion  energy. 

with the structure indicated in table 4 is a trap in our calculation the configuration 
with J~ = 18 + is not. 

Some general trends already discussed in subsects. 4.1 and 4.2 are very clearly 
displayed in table 4. Thus we can distinguish isomers having a valence configuration 
of  the type n(h~)" v(p~)-" or n((h_~)" ~i~) v(p~)-m and core-excited isomers obtained 
from these by adding one or two particle-hole pairs of  the type v((p 0 -  ~ g~) or 
v((p½) i J15/2). 

The excitation energies of  the isomeric states are generally well reproduced by our 
model. This means that the relative shell-model interactions energies in these con- 
figurations are accounted for mainly by the differences in deformation energy. 
(Only the 8 + isomer in 2~2Rn has some pairing.) In this way the expectations 
formulated at the end of  subsect. 3.3 are seen to be confirmed by the detailed calcu- 
lations. 
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TABLE 5 

Predicted yrast traps with J < 40 in isotopes of Po, At and Rn 

271 

212po 

21 ~At 

213At 

21ORn 
2~2Rn 
214Rn 

2t6Rn 

j n  E*l ~) Conf igura t ion  b) 

19 3.74 
29 7.33 
49+ 7.45 
6s + 11.04 
45+ 3.36 
6~+ 6.80 2 
71 - 8.60 2 
37- 12.18 
35 12.40 
19- 3.68 
20 + 3.71 
25 4.77 
35-  8.17 
36-  8.21 
39 + 9.87 
21 - 3.22 
24 + 4.16 
27-  4.73 
30 + 5.50 
31 ÷ 5.30 
33-  6.07 
35-  6.13 
38 + 6.66 
39 + 6.73 

/t(h9<2il 3/2)v(g9!2) 2 
~(h9/2i 13/2)v(P 1/1g9/2i i l/2J 15/2) 
n{(hg/2) 2i , 3!2 }v{(P~ ~2)- 2g9/zi~,/2} 
g[(hg/2)2i13/zlV{(Pl/2)  /fs/lgg/2ill/2Jls/21 
n I(h9/2)2il 3i2}v(g9/2) 2 

7t { (h9:2)2il 3/2] v(p[/~gg!2il l/2J 15/2) 
n [(h9/2)2il 3:2}v{(p~/2) - 2(g9J2)2i~,/zi, s/2 l 
n{(hg/2)afv/2ils:2}v{(Pl/2)-2(fs/2) 3g~..2il l.:Jis:2} 
7t{(h,:2)2fv/2i~3:2}v{(p,!2) 2f~-/~gg/2i~ ~ ~2J~ s 21 
x{(h9/2)3i1312 } v(g912) 2 
lt(hg / 2)4 v(g9 / 2 ) 2 
g{(h9/2)ail ai2}v(g9/2) 2 

g{(h9/2)ail 3!2 }v(P[/12g9/2il l/2J 15/2) 
n{(h9!2)2fv/2i|a/2]v(pl!lg9!zill/2Jls/2) 
n{(h9iz)2fT/2il s/2} v{(Pl/2)- 2(g9/2)2ili/2Jl sl2} 
7t(h9/2)4v{(g9/2)2il t/Zil 5!2] 
n(h9/2)av{(g9,,2)3il 1/2 } 
~'(hg/2)av{ (g9/2)2i i l !2J 15/2} 
n{(hg/2)sfv/z}v{(gg!2)3il 1 ,,2} 
n{(h,~/2)3it 3/2 } v{(gg/2)2ii 1/2J 15/2 } 
~{(h9/2)3it3/2}v{(g9/2)3ill/2} 
n{(hq/2)3fv/2}v{(g9!2)2il L.2J, 5!2} 

~'{(h9/z)3it3/2}v{(gg/2)2ill/2Jls/2} 
x{(h9/2)2fv/2i13/2}v{(g9/2)2il!/2Jls/2} 

a) Calculated excitation energy. 
b) See comment a) to table I. 

The agreement between theory and experiment is particularly good when we 
consider the relative energies within each group of isomers mentioned above, valence 
configuration, 1 p-1 h states, and 2p-2h states. The typical deformation energy in each 
of these groups is respectively -0 .5 ,  - 1.5 and - 4  MeV. As mentioned already the 
empirical difference in interaction energy between the groups tends to be about 0.5 
MeV larger than given by these numbers. Several effects may contribute to this 
deviation. 

(i) It is well known ~*) that the absolute value of the shell correction energy of 
/°Spb as calculated by the Strutinsky method using empirical single-particle levels 
is about 50 ~o larger than measured. The origin of this discrepancy is not well under- 
stood. (See the detailed discussion in ref. 14).) It seems likely, however, that the too 
strong binding of z°spb implies that we have also a too large stiffness of the double- 
closed-shell core. As it follows immediately from the discussion in subsect. 3.1, this 
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would involve the observed trend of a too small gain of interaction energy per added 
particle-hole pair. If this explanation is correct we also expect that our calculated 
deformations are somewhat too small. 

(ii) From the discussion in subsect. 3.3 we expect the deformation energy to account 
for the interaction energy due to an average residual interaction like V defined by 
(3.5). In the valence configurations we have, however, a surplus of T = 1 bonds 
between the particles. This was mentioned already in subsect. 4.1 as a likely explana- 
tion of the underestimate of the energies of these configurations. In the core-excited 
configurations there is an opposite tendency. Hence the actual gain of interaction 
energy per particle-hole pair should be larger than given by the average interaction. 

(iii) The configuration v((p~)-~g~)5- is the main component of the collective 5- 
state in 2°8pb, which is shifted 0.25 MeV below the particle-hole energy. 

(iv) In the configuration v((p½)-2g~_)_~ + the pairing energy vanishes for e ~ -0 .05 
due to the rapid rise of the energy of the p~ state with increasing deformation. (See 
fig. 2.) A more accurate treatment of pairing might change this picture. 

In fig. 5, we have listed some additional isomers predicted as traps in our model. 
In particular the nucleus 2~6Rn with four protons and four neutrons outside the 
closed shells seems to provide very rich possibilities for producing isomeric states 
with relatively high spin (I ~ 40) and low excitation energy (E* ~ 7 MeV). 

IE 

- I  

-2  

- 3  

i:f -I 

0 

 i2,0.o ......... t0, 

212Rrl ~ .......... i ....... """ .............. " -0.1 

I I [ I I 
W 

-0.1 

I I i I I I I I ~ , 1 /  

6 12 16 20 2/. 28 32 36 /,0 

Fig. 9. Equilibrium deformations (dashed line) and deformation energies (solid line) along the yrast 
line of 21°-216Rn. 
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4.4. RISE OF OBLATE DEFORMATION - THE EVEN Rn ISOTOPES 

As an instructive example of the features discussed in subsect. 3.1 we show in fig. 9 
the calculated deformations and deformation energies in the yrast states of the even 
isotopes 21o- 216Rn" 

The yrast line of 216Rn is characterized by a gradually increasing oblateness 
(from e = 0 for J = 0 to e ~ -0 .07  for J = 40). Going from 216Rn to the neutron 
closed shell nucleus 2~2Rn, the slope gets steeper. This is because a smaller maximal 
angular momentum can be built up by aligning the valence particles (J ~ 20 in 
2~2Rn as compared with J ,~ 40 in 2~6Rn), and therefore excitations of the neutron 
core enter the yrast configurations at a lower angular momentum. 

In contrast to 212-216Rn the nucleus 2f°Rn with two neutron holes does not 
display a steady variation of the yrast deformation. This is because neutron con- 
figurations with holes in the large-j orbital i¥ intervene into the yrast line involving 
a tendency towards prolate deformations. Thus, we have in this nucleus competing 
trends in the proton and neutron parts of the system. However, the maximal angular 
momentum which can be built from the six valence particles and holes is equal to 33. 
Therefore, around this value of J particle-hole excitations start to take place. These 
enhance the "particle character" of the system and consequently we get from this 
point a development similar to that of the heavier isotopes. 

5. Relation of the present approach to a shell-model description 

Some of the isomeric states discussed above have been interpreted previously in 
terms of calculations based on the spherical shell model with residual interactions. 
In particular, calculations of this kind using empirical matrix elements of the inter- 
action have proved extremely successful in reproducing the excitation energies in 
these and other cases. [See ref. 10) and references therin.] 

We have seen above that the major part of the interaction energy in the isomeric 
states can be understood within the independent particle model as a deformation 
energy associated with a (in most cases relatively small) quadrupole distortion of 
the single-particle potential. This is not really surprising when we consider the typical 
structure of the isomeric configurations and the mechanism giving rise, from a shell- 
model point of view, to the appearance of  a deformation of the nuclear shape. 

As usual we discuss for definiteness the case of nuclei with a few particles outside 
the closed shells, i.e. the case characterized by oblate deformations. As shown by 
several authors (see references in the review by Schiffer and True 2o)), the residual 
interaction between two such particles is characterized by the angle 0 between their 
angular momentum vectors. Thus in particular the T = 0 interaction is strongly 
attractive for values of this angle approaching 0 and ft. Examples of this feature are 
seen in figs. 3a and b. Since the angles 0 = 0 and 0 = n correspond to maximal 
overlaps of the density distributions in the interacting orbitals, this behaviour of the 
matrix elements is the typical signature of  a short-range attractive interaction. 
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Obviously, it leads to a stabilization of high-spin configurations composed of particles 
with aligned angular momenta. 

The density distribution of such an aligned configuration is oblate, and the sym- 
metry axis of the oblate shape is parallel to the direction of the total angular mo- 
mentum. If holes are added to the aligned configuration, the orientation of their 
angular momenta giving the most stable configurations is that perpendicular to this 
direction. Thus, in the most stable configurations involving holes, these cooperate 
in making the total density distribution oblate. 

It is seen that the configurations which are most stabilized by the residual inter- 
action are just those with the typical structure of traps described in subsect. 3.1, 
and that quite generally these configurations have an oblate density distribution. 
The polarization of the core induced by the short-range attraction between valence 
and core nucleons enhances the oblate deformation. The mean field is then also 
oblate. Since, as it was seen in subsect. 3.1, the same configurations are stabilized by 
an oblate distortion of the single-particle potential we have in these configurations 
a good approximation to self-consistency. This implies, however, that a major part 
of the interaction energy is absorbed in the Hartree-Fock energy and therefore also 
in the Strutinsky renormalized independent particle energy, which according to the 
energy theorem 14) may be considered as an approximation to the Hartree-Fock 
energy. 

As seen in sect. 4, the yrast lines of the isotopes of Po, At and Rn considered are 
characterized by a growth of the oblate deformation with increasing angular mo- 
mentum. With increasing deformation the shell-model description of the yrast states 
must be expected to become increasingly complicated due to configuration mixing. 
This is particularly the case for configurations involving the single-particle state 
emerging from the vp~ orbital. Already at small deformations, e ~ - 0.05, this state 
contains large components of the states vp~ and vf~, and its structure is best de- 
scribed by the asymptotic quantum numbers. 

It seems that with the present experimental capacity one is about to reach a region 
of deformations where such difficulties of the shell-model approach might be 
expected to become serious. The advantage of the deformed independent particle 
model in spite of its minor accuracy in the regime of very small distortions from the 
spherical shape is that it can be used for all deformations, from the smallest ones 
discussed in the present paper to the largest, being of the same order of magnitude 
as the prolate deformations encountered in the fission process. In addition it provides 
a stimulatingly simple physical picture 9) of the structure of yrast traps in this entire 
range of deformations. 

6. Summary 

Considering the independent particle model of yrast states in the regime of axial 
symmetry with respect to the direction of the angular momentum we have studied. 
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the yrast  spectra o f  isotopes o f  Po, At  and Rn. Wi th  the exception o f  some well- 

unders tood  cases o f  larger deviations the model  was found  to reproduce the empirical 
excitation energies in the lower par t  o f  the yrast  line within an accuracy of  the order  
o f  a few hundred  keV. In particular,  the energies o f  all isomeric states are well repro- 

duced, and all o f  them correspond to calculated traps. 
The deformat ion  energies o f  isomers involving 2p-2h excitations o f  the core tend 

to be underest imated by about  1 MeV out  o f  a total deformat ion  energy Ede f ~ - 4  

MeV. Possible reasons o f  this were discussed in subsect. 4.3. 
The recently observed isomers in 212Rn with J~ = 2 5 - ,  27 -  and 30 + were inter- 

preted in subsect. 4.2 within our  model.  
In most  o f  the nuclei studied we find a gradual  increase o f  oblate deformat ion  

along the yrast  line. This feature may  be unders tood  f rom simple arguments  con- 

sidered in subsect. 3.1. 
Special at tention has been payed to the relation between our  model  and the 

spherical shell model.  It has been shown that  the deformat ion  energy associated with 
a quadrupole  distort ion o f  the single-particle potential  accounts  for the major  part  

o f  the shell-model interaction energy in the isomeric configurations.  A qualitative 
unders tanding o f  this result is furnished by the considerat ions made  in subsect. 3.3 

and sect. 5. 
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Abstract: Closed forms for the many-body matrix elements of the pairing-plus-quadrupole hamiltonian can 
be obtained within the framework of the nuclear field theory, making the ansatz that pairs of 
fermions can only couple to 1 = 0 and i = 2. This ansatz, which otherwise is hardly justified, leads 
to strong simplifications in the calculations. The resulting model seems to be very similar to a 

microscopic version of the interacting boson model. 

1. Introduction 

The treatment of the interplay between collective and fermion degrees of freedom 
provided by the nuclear Geld theory ’ 3 2, (NFT) is perturbative and graphical. T*us, 
no diagonalizations are to be performed but the different transitions as well as 
energies are to be calculated by summing up the corresponding graphical con- 
tributions to the order t in l/C2 desired. The basis states are product states of the 
collective vibrational modes observed in nature, i.e. surface modes, pairing 
vibrations, spin and isospin modes and of single particles Pt. 

The central feature of the NFT is that fermions and bosons are treated on par. Thus,. 
the Pauli principle is properly taken care of at every order of perturbation. 

In the present paper we attempt to extend the scope of the NFT to deal with some 
non-perturbative situations, in particular with moderately anharmonic nuclear 

+ The small parameter of the NFT is the ratio n/Q of the number of active pairs of particles n, and 
the degeneracy of the single-particle subspace in which they move. 

++ Note that the elementary modes of excitation which can be viewed as building blocks of the nuclear 
spectrum are: (a) single particles 3), (b) shape vibrations and rotations 4), (c) spin and isospin modes ‘), 
and (d) pairing vibrations and rotations ‘2 5). 
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spectra. This is done by utilizing the result that particles moving in single-particle 
orbitals and interacting through a pairing and a quadrupole force display the main 
properties of rotational, vibrational and transitional spectra ‘). We also use the 
simplifying ansatz of the quadrupole phonon model [QPM ; cf. refs. 12, ‘“)I and of 
the interacting boson model [IBM: cf. ref. 6, and references therein]. 

2. The rules of the game 

The basic mechanism determining the properties of the nuclear spectrum is the 

competition between the shell structure and the pairing and quadrupole correlations. 
Many model studies of these correlations have been carried out in single j shells. 
Recently, special attention has been paid ’ - lo) to solutions in which the residual 
interaction is allowed to act only among pairs of fermions coupled to A = 0 or A = 2 
[cf. also sect. 3 of ref. “)I. The results compare well with full shell-model diagonaliza- 
tions [cf. pages 93 and 121 of ref. 6), and refs. lo,“)], for a choice of the parameters 
leading to vibrational and to moderately anharmonic spectra. In this case, many of 
the low-lying levels lie within the I = 0,2 fermion subspace, (SD subspace), and the 
overlap between the approximate and “exact” wave functions is N 0.95. For param- 
eters leading to more rotational spectra the wave function overlaps become smaller, 
and a larger number of levels lie outside the SD subspace ’ ‘). 

In the rest of the present paper we thus assume that the SD subspace model provides 
an adequate description of some of the basic properties of vibrational and moderately 
anharmonic complex nuclear spectra. Our first task is then that of identifying the 
NFT graphs which give rise to the pairing-plus-quadrupole matrix elements obtained 
in the SD space. 

In refs. ‘, lo) it has been shown that there exists a mapping + between the SD sub- 
space and the sd subspace spanned by the states of the type (yls, nd) = No, 
(d+)“” IO), the pair of operators s+, s and d+ , d fulfilling exact boson conmutation 
relations. The corresponding matrix elements of the different physical operators 
can be obtained within the framework of the NFT utilizing the following rules + + 
[cf. also ref. ‘“)I : 

(a) The basis states are monopole and quadrupole pairing modes or single- 
particle states (odd case) which are determined by the energy and particle-vibration 
coupling strength. 

+ The operators AiM = &c:cjf],, (J = 0, 2) and B:CM. (J’ = 0, 1, 2, 3, 4) of the SD fermion 

subsoace. which do not form a closed algebra, can be manned into the 35 generators (d+s), (s+d) and 

(d+d),.M: 
__ 

of the group W(6). The mapping allows one to write the pairing-plus-quadrupole hamiltonian 
in terms of these generators. The calculation of matrix elements in the sd subspace is much simpler 
than in the SD space. Note that the approximation c o = cz = c4 is introduced 9, in working out the 

SD --) sd mapping. The relation of this approach to the SU(6) approximation 12), to the interactmg 
boson model 6, and to related approaches r3) has been touched upon in ref. 9, and will thus not be 

discussed here. 
++ In the calculation of each diagram all the standard NFT rules ‘) of course apply. 
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(b) All graphs of order l/Q leading to interactions between the phonons as well 
as of the phonons with the eventual odd particle have to be considered. In the case 
that the d-phonons do not interact in lowest order with the s-bosons, the next order 
graphical contributions have to be included. 

(c) The contribution of each graph associated with processes in which particle 
number is not changed has to be symmetrized by replacing (n, +a) by @,+a) 
x (1 -(n, - a)/Q’), L?’ = Sz - 2n, being the effective degeneracy left for the correlation 
of the monopole Cooper pairs. 

(d) Graphical contributions to a transition amplitude which also can be obtained 
by the combined effect of an already included transition amplitude graph, plus the 
energy diagonalization, are to be excluded. 

The above rules have been empirically obtained and are still lacking a “first 
principle” derivation. 

s s 

II il:-:’ + 
s 

2w: 
s 

2G: 
(a) 

. . . I! . . . + . . . .I II4 . . . 
n,w, [ ns(~s-‘)] 2G, 

(b) 
Fig. 1. Lowest-order contributions to the energy of a set of monopole pairing phonons. The single- 
arrowed lines represent fermions, while the doubled-arrowed lines represent pairing phonons. In (a) the 
graphs associated with the two-phonon system are shown, and the contributions are written below each 
graph. The first graph corresponds to the unperturbed propagation of the phonon. The second, to the 
Pauli principle correction contribution where the phonons exchange particles. The higher-order 
contributions can be shown i5) to be zero for the case of a singlej-shell. The extension to the case of many 
phonons shown in (b) is straightforward. The problem is similar to the previous one, but now there are 

&(n,- 1) pairs of phonons interacting. 
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2.1. PARTICLES MOVING IN A SINGLE j-SHELL AND INTERACTING THROUGH THE 
MONOPOLE PAIRING FORCE 

Defining the pairing hamiltonian as 

H = -G,SZA,+,A,,, (1) 

where 

AILl = &:c~lo, (2) 

the TD correlation energy associated with a two-particle system is 

a(), = -G&L? (3) 

The quantity 

a =j+$, (4) 

is the number of pairs that the j-shell admits. 
For a system of four particles, the exact correlation energy is obtained in the NFT 

already to order l/s2 (cf. fig. la), the higher-order contributions being identically 
zero 15). For a system with IZ, pairs of particles we obtain (cf. fig. lb) 

AE = nps + [:n,(n, - 1)]2G, 

= -$G,N(2LLN+2), 
(5) 

where N = 2n, is the total number of particles. This again is the exact answer of the 
problem [cf. e.g. ref. r6)]. 

2.2. PERTURBATIVE AND EXACT TRANSITION AMPLITUDES, SYMMETRIZATION 

The diagonal matrix element of the quadrupole operator is, in zeroth order, 
equal to (cf. fig. 2a) 

(6) 

where S, contains statistical factors and fractional parentage coefficients [cf. 
appendix A, eq. (A.30)]. 

Through the diagonalization, the d-bosons feel the presence of the condensator of 
s-bosons, before and after the electromagnetic field has acted, but not during the 
time it acts (cf. fig. 2d). According to the rules (b) and (c) one has to calculate all 
contributions until the lowest-order coupling to the s-phonon condensate is also 
included. This is achieved in the next order of perturbation [(l/C& cf. fig. 2b]. The 
analytic expression of this contribution is 

(QJd + d)),,, = 2 F S,. (7) 
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Y Q 

2’ 
scatt term 

(9) 

Q 
x 

Cd) 

(h) 

Fig. 2. Graphical contributions to the static quadrupole moment and to the quadrupole electromagnetic 
transition amplitude. The single-arrowed lines represent particles while the double-arrowed lines 

represent multipole pairing phonons. The dotted horizontal lines stand for the single-particle electro- 
magnetic field. 

In (a) the quadrupole field induces a transition between two quadrupole pairing phonons which during 
this process, propagate without realizing the presence of the pairing condensate. This coupling is taken 

care of by graph (b), where exchange of particles takes place between the condensate and the quadrupole 
phonon which is affected by the external quadrupole field. Coupling between the d-phonons and the 
condensate before and after the action of the external field are included in a straightforward way through 
the diagonalization process (cf. fig. 2d). 

Graphs 2e and 2f are associated with the quadrupole transition amplitude. Coupling to the condensate 
takes place already in zeroth order. 

Graphs (c) and (g) represent the processes under discussion in the standard quasiparticle representation. 

Substituting 9’ = 52 - 2n, for L2, the sum of the contributions is equal to 

Q2(d + d) = -n,(l-2n,/SZ’)S, 

= -rz,(CP- P)S,, 

which coincides + with the sd subspace result ‘). The quantities 

(8) 

u= (1 -nJs2/)$ (9) 

v = (n,/L?y (10) 

+ Note that in writing (8), we have made the substitution D + Q’ = D-2n,, nd being the number of 

quadrupole phonons. The blocking produced by the presence of the d-phonons arises, in the NFT, 
from diagrams where d- and s-bosons interact to higher order in I/Q. 
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are the BCS occupation parameters, when pairs of particles coupled to zero and to 
two are simultaneously present +. 

In the standard quasiparticle language the sum of graphs (a) and (b) gives the 
static quadrupole moment of the two-quasiparticle (particle-hole) phonon (cf. fig. 2~). 
In this process the external field acts on a particle with a weight V2. In the 
representation used in the present paper, graph 2a contributes a factor of I while 
graph 2b contributes a factor ++ -2P. Thus I-2V2 = U2--V2. 

In the case of the matrix element associated with the quadrupole transition 
amplitude displayed in fig. 2e, one obtains, 

In this case the d-phonon couples, already in zeroth order, with the s-phonon 
condensate. Using rule (c) we make the replacement 

and obtain the result of the algebraic treatment of ref. ‘) (sd subspace) [cf. eq. (A.34)]. 
In quasiparticle language the graph of fig. 2e contributes a factor Awhile the graph 

of fig. 2f is proportional to - l/Z V3. These are the first two terms in the expansion 
VU = VdFFF = V( 1 - 4( Vf V) + , . .). All the matrix elements and quadrupole 
transition amplitudes are discussed in appendix A and collected in table 1. 

3. The parameters of the model 

Because we carry out a microscopic pairing-ply-qua~upole diagonal~ation, 
admittedly in a non-standard way, there are no free parameters in the model. 
In fact, 2, = GQ is the correlation energy of a pair of particles interacting through 
a monopole pairing force. It is also equal to twice the pairing gap d determined. by 
the even-odd mass difference. The quantity 2, is the correlation energy of a pair of 
particles coupled to angular moments two l’), and interacting through a quadru- 
pole pairing force. Finally K: = 120/A”’ (~~~/~) is the self-consistent value of the 
particle-hole quadrupole force 2). This force acts between like as well as between un- 
like particles. Although in the present calculations we have made no distinction 
between the strengths associated with the (rc, n), (v, v) and (rc, v) channels (where 
7~: proton and v: neutron), a detailed analysis of experimental data 18) leads to 
Ic - 2X,, - ZK,,. We note that the difference between uxSr K,, and zc,, plays a 
c&tral role in the IBM 6). 

+ Note that the NFT calculations do conserve the number of particles. The reference to BCS occupation 
number parameters is made only for illustration, and to connect with the standard quasiparticle picture. 
++ Note that toeach s-phonon can be associated a factor (nJW)1’2 which properly written in operator 

form is equal to 9, (s+s/(Q-~$J)~‘~. 
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4. Applications 

The model discussed in the previous sections has been utilized to calculate the 
spectrum and electromagnetic transition probabilities t of 78Kr. This nucleus displays 
a rather complex spectrum typical of transitional nuclei lg). 

The value of the parameters used in the calculations are 

120 Mo 2 
“=A5/3 _h 

( > 
MeV, 

(13) 
Z, = 2 MeV, Z, = 0.3 MeV. 

No isospin dependence was given to these coupling strengths. The resulting spectrum 
and transition probabilities are shown in figs. 3 and 4 in comparison with the 
experimental data. The quality of the fittings is typical. 

In what follows we discuss these results in term of the extreme rotational and 
vibrational limits. 

5. Comparison with the rotational and with the vibrational limits 

In fig. 5 we show schematically how the multiphonon states associated with the 
vibrational limit are related in terms of bands. This classification has been shown 20) 
to be useful to order the states of the nuclear spectrum, in particular for soft and 
transitional nuclei. The predictions for the extreme rotational and vibrational 
models are shown in fig. 6, in comparison with the model predictions. 

In what follows we focus our attention on the ground-state band and on the quasi-y- 
band. The ability of a model to reproduce the structure of the side bands is a 
sensitive criterion of its validity. In this sense the study of the quasi-p-band is of 
similar relevance. However, because of the central role played in this case by the 
many j-shell structure, and by the pairing vibrations 8*21-23) the eventual success 
or failure of the singlej-shell model for the quasi-P-band is not very relevant ++. 

The predicted excitation pattern of the y-band (cf. fig. 6) is typical of a transitional 
situation in which both the vibrational and the rotational features coexist. In 
particular, the intensity pattern of the quadrupole transition probabilities with 
AZ = - 1 and AI = -2 within the quasi-y-band (odd-even staggering), shows 
properties typical of both rotational and vibrational nuclei. 

The predicted B(E2) values within the ground-state band show an attenuation 
in the high-spin region + + + (I S 10). Although this trend resembles that of the data, 
one should be wary of overinterpreting it. In fact, it is possible that there exists a 

+ Calculations for the Kr isotopes utilizing a phenomenological version of the IBM have been reported 
m refs. r9, 29). 

it The extension to the many j-shell situation and the inclusion of other monopole pairing phonons 
(pairing vibrations) should lead to a more realistic model. 
+++ It is noted that we only consider relative transition probabilities. 



Matrix elements of the pairing-plus-quadrupole hamiltonian and quadrupole transltlon amphtudes 
calculated in the NFT utilizing the rules of sect. 2; the corresponding diagrams are displayed m figs. 2 and 8 

<n,n,va; I~Hln,n,vff; I) = -Gn,-Gr@-2n,)-ffJ 

Graphs Sd and 8h 

Contribution of graph 8j 

.i i 2 2 

CA = 50 i j j 2 2 2 A 1 +(1--6(1,O))$f$ { t : : 1 +w 
5 

0)q& 1) 
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TABLE 1 ~~ontinued) 

Matrix elements of the qua~~ole operator 

Contributions of graphs 2~ and2b 

(n,n,v’a’; I’IIQzlln,nnm; 1) =: - 

Note that the factor in curly brackets in the contribution from graph 8f as well as the full contribution 
of graph 8k were taken from the results of ref. Q). 

3 . 

2 

I _ 

ai 

j’ - 

2’ - 10+- 9+- 

*- 
0 g+- 8*---- 

6‘- 5+---- 
5+- 

d f 
6-S---- 

* 
ii- L’----- 1’ 0*- 

3+- 3+====== 

C- 
t*- 

2+- 2+- 0+- 

L---“?-- 
Theory EXP. Theory 

2*_ 2*--- 

o+_ ,,+= y-band P-band 

W 

grounded 

Fig. 3. Predict& energy spectrum of :2Kr,2. Two groups of &vets connected by strong quadrupole 
transition probabilities can be identified. They correspond to the ground state and quasi-y-band. The 
identi~~tiou of the thiid group of states ~q~i-~-band) is much more tentative. The ex~~rnen~l levels 

are 5ko displayed. 
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,0~ B (E2) (e2fmL) 

E (MeV)j 

EXP. 

0 g-s 
AI = 0 
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0 ground band 

Theory 

7' 
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2+ 

n' 
-ground band 

Exp. 

Fig. 4. In-band and inter-band transition probabilities associated with the ground state and with the 
quasi-y-band. The corresponding experimental data are also displayed (cf. also fig. 3). 
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ROTOR 
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PHONONS 

y ’ r-band 
1 

0 

ground-band 

2+ 

0+ 

P-band 
2+ 

o+ 

/3-band 

ground band 

Fig. 5. Schematic represen~tion of the group of levels leading to the ground, quasi-y- and quasi-&bands, 
in the vibrational and rotational limit. The transitions within the ground-state rotational band and the 
y-band are normalized to the electromagnetic transition probability B(E2; 2,’ + g.s.). The transitions 
between the y-band and the ground-state band are normalized to B(E2; 2: + 2i.3 Note that all these 
transitions involve an off-diagonal matrix element of the quadrupole operator whose relation to the 
intrinsic quadrupole moment associated with the ground-state rotational band depends on the detailed 

motion of the nucleons and thus is arbitrary in the macroscopic model. 

band crossing in the region of angular momenta I = 10-12 [cf. ref. ““)I. Note also 
that the accuracy of the model is expected to become poorer closer to the band 
termination point (b,, = 16 in the present case). 

6. Conclusions 

The pairing-plus-quadrupole particle-hole model in a single j-shell in a basis of 
pairs of fermions coupled to 1 = 0 and d = 2, has a mapping onto a space of 
monopole and quadrupole pairing phonons. It is possible to find a set of rules such 
that the mapped matrix elements can be calculated in the framework of the NFT. 
The model contains some of the features of transitional nuclei as well as the 
vibrational and, in some very approximate way, the rotational patterns. The model 
being fully microscopic, contains no free parameters, but the known strengths of the 
monopole and the quadrupole pairing forces as well as the strength of the quadrupole 
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Fig, 6. Transition probabilities associated with the ground band and quasi-y-band in both the vibrational. 
and rotational limits. The asymptotic limits are indicated by dotted lines. The NFT predictions are also 

given. 
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particle-hole interaction. The resulting fits cannot reproduce essential features of 
the nuclear system like, for example, the energy splitting between the pair of states 
3+-4+, 5+-6+, etc., belonging to the quasi-y-band. Because of the single j-shell 
approximation and thus the absence of pairing vibrational modes, the observed 
features of the quasi-/?-band are poorly reproduced. 

7. Prospects 

The two obvious extensions of the model lie in the inclusion of manyj-shells and 
in the treatment of odd nuclei [cf. refs. 14,25,26)]. The first step would allow, 
among other things, the introduction of a second monopole pairing boson (s’- 
boson) associated with the fluctuations of the pairing gap (pairing vibrations), and 
thus for a more realistic description of the P-vibrational modes. 

Discussions with A. Bohr, C. H. Dasso, F. Iachello, E. Maglione, B. R. Mottelson, 
0. Scholten and T. Suzuki are gratefully acknowledged. We are indebted to 
E. Maglione for his help in different steps of the calculations, and to F. Sakata 
for the comparisons between the exact and the SD space calculations. 

Appendix A 

In this appendix we collect the different expressions of the matrix elements and 
transition amplitudes associated with a system of pairs of particles coupled to 
1 = 0 and n = 2 which move in a single j-shell and interact via a monopole and 
quadrupole pairing force and a quadrupole particle-hole force. A resume is given in 
table 1. 

The monopole and quadrupole pairing modes are defined, in the NFT, as solutions 
of the random phase approximation equations. Thus, the dispersion relation 
through which the energies are determined is [cf. e.g. ref. ‘)I 

1 

4nG, 
l<ulw%>1’ 

Ek,k2 - w,@, A) 1 +&1, 2) 

I&llTnll~2>12 1 
Ei,iz-K(-2A) 1+6(1,2) ’ 

(A.11 

where the multipole operator is given by 

L, = I&P), (A.2) 

that is, we have chosen a constant for the form factor. It has been empirically shown 
that such a choice leads to a strength value ‘*) 

G, N 27/A MeV, (A.3) 

which is almost independent of 1 for L = 0, 2, 4 and 6. This result has been given 
firmer theoretical grounds, in terms of the surface S-force 27). 

The index k stands for the quantum numbers of a particle moving above the 
Fermi surface, while i is associated with the quantum numbers of a particle moving 
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below the Fermi surface. In a singlej-shell, only the sum over k’s is possible, and it 
reduces to a single term, that is, 

Z, = s--WA = 2~G,I<.NY~)12, (A.41 

where E = Ejl j, is the energy of the two-particle configuration, and W, = w(2,L) 
the phonon energy. 

The RPA amplitude associated with forwards scattering is 

4(24 <kllT,llk,) 
dn(klkzA) = (1+&l, 2))+ Eklk2- W,(2;1) ’ (A.51 

which for aj-shell leads to 

Z, = s-W* = &L(m-Alla. ~‘4.6) 

Thus the quantity Z, determines both the particle-vibration coupling strength /1, 
and the energy denominator E- WA of all graphs involving pairing vertices (cf. fig. 7). 

The order of magnitude of the different quantities in terms of the small parameter 
l/s2 can be estimated for the case of 1, = 0. Using the results: 

<~ll~,lU) = we (A.71 

E-W, = O(l), (A.3 

we obtain : 

A, = 0(1/!3), (A.9 

G, = 0(1/Q). (A.lO) 

To calculate matrix elements of a two-body interaction we make use of the boson 
fractional parentage coefficients, and write the basis states in the following alternative 
ways 

In,yldzla; Z) = ln,)ln,?XX; Z) 

= Jn,Jn,-l)ln = l)ln,vcr. Z) 

= &In,> 1 (L- 1 ’ v’a; Z’()n,vcr; I){ In,- lv’cr’; Z’)ln, = l)}, 
v’a’l ’ 

= ~$$3jln,-2)(n, = 2)ln,va; Z) (A. 11) 

= &In,-l)Jn, = 1) c (n,-lv’a’; qn,w r) 
U’U’I’ 

x ((rzd = lv’a’; Z’)ln, = l)}, 

= d-l&) 1 (n,-2u’a’$‘, nd = 2(1”)l}n,v,a; ‘1 
“‘CZ’I’I” 

x { lnd- 20’a’; r)ln, = 2, I”>} 1’ 
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Fig. 7. Schematic representation of the multipole pairing particle vibration coupling. The strength of this 
coupling is A,( j 1) Tnl lj) [cf. ref. ‘)I while the correlation energy of the collective mode is E- W,. 
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Fig. 8. Graphical representation of the pairing-plus-quadrupole matrix elements. Graphs (b)-(i) corre- 
spond to the I/Q contributions. The horizontal dotted line represents the particlehole quadrupole 
interaction. Both graphs (j) and (k) are of higher order. In (1) we display the coupling associated with 

action of quadrupole particle-hole force in graphs (g)-(i). 
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The quantities (IZ~ - 1 v’m’; I’jfun,va; I) and (PI~--~u’cL’; I’, nd = 2(11”)1) n,m; I) are 
the single and double fractional parentage coefficients associated with the d-boson. 

The graphs leading to the same matrix elements of the pairing-pXus-quadrupole 
hamiltonian as obtained with the algebraic method of ref, 9, (sd subspace) are 
collected in fig. 8. The basic structure common to all the butterfly-like diagrams 
(Pauli principle diagrams) is shown in fig. 8a. It is equal to 

In table 2 we collect the values associated with a single j-shell and the different 
possible combinations of the phonon angular momenta. 

In what follows we give the contribution associated with each graph calculated 
according to the standard rules of the NFT suppfement by r&es (a)-(d) presented 
in sect. 2 [cf. also ref. ‘“>I_ 

SYMMETRIZED EXPRESSIONS FOR ENERGY MATRIX ELEMENTS AND TRANSlTION 
AMPLITUDES; PAUL1 PRINCIPLE CQRRECTION MATRIX ELEMENTS 

Contribution of graph 8b and cmtribution proportional to Z, of graph 8c. The 
contribution of graph 8b is 

(A.13) 

while that of 8c ~ro~o~~ona~ to 2, is 

pzn 22, s d 
s2’ 

(A.14) 

To these contributions we should add the energy of the unperturbed s-phonons 

v% 
The sum of these terms is equal to (e(O) = 0) 

(n,BdDcI ; 1 f H ]n,Pl,va ; I> = - G,pt, - G,??,f@ - 2n,) - pt, J, 

and coincides with the result obtained using the algebraic method 
subspace). 

(A.15) 

W-19 

of ref. 9) fsd 
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TABLE 2 

253 

Value of the recoupling coefficient -((j,j,)& ct,j$, ; JI~,j&, (&j.,)&, ; J> associated with the Pauli 
diagrams (cf. fig. 8) 

d d 

d 
s 

s 

s 

S 

S 

d 

d 
d 

d 

S 

d 

d 
d 

d 

s 

‘j j 2 

-25 j j 2 ! 1 (2 2 J,i 

fi -- 
(2j+ 1) 6(J’ ‘) 

4J, 2) -__ 
2j+ 1 

&J, 0) -~ 
2j+l 

Contribution of graph 8d. The symmetrized contribution associated with graph 
8d is 

x J(n-n,+2)(n-n,+ l),4FJ~(nd-2aW, f’; nd = 2(O)] )n,oaf) . (A.17) 

This expression coincides with the corresponding sd-subspace matrix elements ‘), 
aside from differences like (a--n - nd + 2) instead of (52 -n - nd + l), which in any 
case are of order I/a smaller than the main contribution. The identification to be 
made is 

zsz;, 
~ = K(2,2), 
zs+z* 

(A. 18) 

where rc(2, 2) is the strength of the pairing quadrupole force as defined in ref. ‘). 
A subtle difference between the sd subspace matrix elements and those calculated 

in the NFT, are that the latter depend on both the monopole and quadrupole pairing 
strengths, while the former only on the quadrupole pairing strength. The reason 
for this is to be traced back to the energy denominators of the NFT expressions. They 
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display the typical asymmetry associated with the Rayleigh-Schriidinger perturbation 
theory due to the difference between initial and final states. A way to average this 
asymmetry out is by setting Z, = Z, in which case 

z, = 242, 2). (A. 19) 

Contribution of the graph 8e. The symmetrized contribution of graph Se is 

x (nd - 2 v”C4’Z”l }yld - 1 u’a’l’) ) (A.20) 

which differs from the exact expression by a factor (l -2nJQ’) = U2 - V2. 
Identifying the factor outside curly brackets in (A.20) with ~(2, 2) we obtain, for 
Zs = z,, z, = 242, 2). 

Contribution of the graph Sf and contribution proportionul to Z, of graph 8c. The 
contribution of the component proportional to Z, of graphs 8c and 8f are equal to 

(n,n,va; ZlH(n,n,va; Z) = -Z, l- (A.21) 

(n,n,m; Z~Hln,n,v’a’; I> 

= fZ,n,(n, - 1) 100 I,,,,“:,,, 1,,(nd-2c”a”Y I”; nd = 2(1”‘)l)ndv’a’; I> 

(n, - 2v”a”I”; nd = 2(1”‘) I)n,vcc; Z) 

(A.22) 

respectively. The factor in the curly brackets in (A.21) can be written as 

i 
l- 

Q-n-n, 2 

Q-2n, 6”’ I 
= 1-2U2V2 ; ) 

0 
(A.23) 

and should be compared with the exact expression U4+ V4 = 1 -2iJ2V2. The 
difference is thus higher order in l/Q. 

Turning now to the matrix element (A.22) we note that it does not contain the factor 
It,. The d-bosons propagate without interacting with the s-boson condensate, as is 
obvious from graph 8f. The expression obtained with the algebraic method 9, (sd 
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subspace) differs from (A.22) by the factor 

l-2u2v2. (A.24) 

The correction -2U2V2 should arise from the graph (k). We have however not 
calculated it in detail but empirically incorporated the factor (A.24) in (A.22). 

Contributions to quadrupole transition amplitudes of graphs 2a and 2b. The basic 
structure of the zeroth-order diagrams is given in fig. 2h and is equal to 

<[cj:cj:ln,l(Qz[cj:cj:li,)n,> = (- lP+jz+‘llJm) { :, ;; ;I}, 64.25) 

where 

Q2p = fi C (.AIQ2III)[cjfCj]2p. (A.26) 
.ij 

For a singlej-shell we obtain 

<~c~c,‘lol(Q,~c,‘c,‘l,>,> = &dQ,lli)~ (A.27) 

<C~j’~j’lzl~QzC~j’~~‘12)2) = -$ (A.28) 

The contribution of graph 2a is equal to 

(n,n,v’a’; I’IlQ,IIn,n,ua; I) = -n,S,, 

where 

S, = lq21’+1)“(21+1)+ 

(A.29)1 

x (Izd - 1 ZI”,“; I”) } n&a’; I’)(n, - 1 CCC”; I”1 )~a; NjllQ211_h (A.301 

<_dlQ,llzi> = <.d~2Y211j>~ (A.31) 

The contribution of graph 2b for all those time orderings in which the external field 
acts within the four vertices is equal to 

(n,n,v’a’; Z’(lQ,jIn,n,ua; I> = n,& fj Sl. (A.32) 

The sum of the two contributions is then 

<n,ndU’cc’ ; I’1 IQ2 l ln$dva; 

to be compared with the exact expression 
of higher order in l/Q. 

Z) = (1-2n,/Q)S,, (A.33) 

(1 - 2nJsZ’)S,. The difference is again 



and coincides with the result of the algebraic method of ref. ‘) (sd subspace). 
~~~~r~~~~~ ~art~c~e-~~~ mmix ~~~~e~~~. The quadrupole ~art~c~~-ho~e matrix 

elements are dispkyed in figs. 8g-8j. The first three are separable (cf. figs. 81 and 9} 
and can be calculated in terms of the quadrupole transition amplitudes displayed in 
figs. 2a and 2e. 

Defining the qundrupole particle-hole hamiltonian 

and setting ZS = Za we obtain the following result 

The quantity q is defined as 

- 

(A.351 

w 
Zd 2 

(A.36) 

(A-37) 

The result (A.%) cokeides with the result obtained utilizing the algebraic method o$ 
ref. 9, (sd subspace). 

To incorporate the contribution of graphs 8g-S in the general matrix elements we 
can make the replacements 

2, -+ (Z, - 2Fq2) in eq* (A.21), 

- Kq2 
> 

in eq. (A.17), 
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Fig. 9. Separability of some of the quadrupole particle-hole graphs. To the extent that the energy of the 
initial state wi3 + oA4 is approximately equal to that of the final state wI1 +o,,, the four-point vertex 

graph can be weritten as a product of two transition diagrams [cf. ref. ‘s)]. 

In the results of the algebraic method ‘) (sd subspace) there exists one quadrupole 
matrix element more which is equal to 

where 

x (nd -2a”, I”; nd = 2(~)l}n,v'a'; I), (A.38) 

.ij 2 

C~ = 50 ( j j 2 1 100 

1J +(l-6(L,O))-- ( 

,J 2 22 

2 2 Q-2 j j j 1 

5 
+ s(n, 0) ___ Q(Q- 1). (A.39) 

Because it is an exchange type of graph, and because it has a term linear in n,, it 

means that the two d-bosons interact with the s-bosons already in lowest order. 
The graph corresponding to this process is displayed in fig. 8j. Although this graph 
can be calculated we have in the present paper directly used the expression (A.38). 

Appendix B 

THE HAMILTONIAN 

The particles moving in a single j-shell interact through the multipole (A = 0, 2) 
pairing force and through the quadrupole particle-hole interaction. The multipole 
pairing hamiltonian is defined as in ref. ‘) and reads 

H,(A) = - Gn(21+ I) C p&J’+, (B. I) 
P 

where, for a single j-shell 

P& = ( > & hYali>[c;c.:]~,~. 03.2) 
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As mentioned in appendix A, assuming T, = YAP, one obtains G, 
(A = 0, 2 and 4). 

The particle-hole quadrupole hamiltonian is equal to 

where 

MeV. (B-5) 

21/A MeV 

(B.3) 

(B.4) 

The hamiltonian (B.l) is used to define the monopole and quadrupole pairing 
phonons, i.e. to determine the collective energies W, and the particle vibration 
coupling vertices A,. 

No phonon is ascribed to H,. This residual interaction couples the pairing phonons 
pairwise, by scattering fermions in the intermediate states. 

Appendix C 

According to the rule (c), the contribution of each graph associated with 
processes in which the particle number is not changed, has to be symmetrized by 
making the replacement 

(n,+u) + ;(%+4w-ns+a) = ; [(n,)+a][(S2’-n,)+a] 

Cl) 

In the second form for the substitution, the symmetry between pairs of particles n, 
and pairs of holes (Q’ -n,) is apparent. 

Let us see how the prescription works in a concrete situation like, for example, 
the contribution of graph (d) of fig. 8. The non-symmetrized contribution of this 
graph is 

(nsn,va; ZlHln,+ 2n, - 20’~‘; Z) 

= a {2$ J(ns+ 2)(n, + l)n,(n, - 1) 
s d 

x (nd-2v’d, r; nd = 2, (o)~}ndvcrl))- (C.2) 
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Using (C. 1) we obtain 

&X+/w, 

(C.4) 

Making these replacements in (C.2) we obtain the final expression (A. 17). 
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