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§1. Introduction

In the preceding chapter, we have obtained a conclusion that, in almost
all spherical odd-mass nuclei, the dressed three-quasi-particle (3QP) states
with spin /=(j—1) are expected to appear in the neighbourhood of the 1QP
states with spin 7=5/2. Furthermore, we have emphasized that the roles of
the 3QP correlations should be regarded not only as to bring about the general
presence of the (f—1) states but also as to play an essential role in characterizing
the low-energy excitation structure in almost all spherical odd-mass nuclei.

This conclusion leads us inevitably to change the customarily used
‘“‘phonon-plus-odd-quasi-particle picture’” in which elementary modes of
excitation (characterizing low-lying states in spherical odd-mass nuclei) are
assumed to be odd-quasi-particle modes and phonon modes.1»? In the
conventional quasi-particle-phonon-coupling (QPC) theory,1:? as is well
known, the phonons are described by random-phase approximation (RPA)
assuming them to be ideal bosons (and hence are commutable with the odd
quasi-particles). Boson expansion methods for odd-mass nuclei®~% can
also be regarded as perturbational approaches to describe the system starting
from these (independent) elementary excitation modes.

In contrast to these approaches, the theory developed in Chap. 2 (which
may be called the “method of new-Tamm-Dancoff (NTD) space”) is free from
introducing the concept of phonon to odd-mass nuclei and, furthermore,
includes the QPC theory as a specially approximated version (in which the
kinematical effects due to the Pauli principle among quasi-particles more than
two are all neglected). The proposed theory enables us to classify both the
complicated ‘“‘anharmonicity effects’” and the roles of residual interactions in
a systematic way. Furthermore, by using the theory, we are able to investigate
the mutual relationships between various aspects of ‘“‘anharmonicity effects.”
Thus it now becomes possible to investigate the microscopic structure of break-
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ing and persistency of the conventional ‘‘phonon-plus-odd-quasi-particle
picture,” from the new point of view obtained in the previous chapters. In
this chapter, special emphasis will be put on extracting (from the complicated
“anharmonicity effects’’) the essential correlations which necessarily lead us to
adopt a new picture for the low-lying collective excited states in spherical
odd-mass nuclei.

In §2, starting from the basic picture of the QPC theory, some criteria for
investigating the breaking and persistency of the conventional phonon picture
in spherical odd-mass nuclei are set up. In §3, characteristics of the collective
3QP correlations in many j-shell model are discussed exemplifying the results
calculated for odd-proton 133Cs and 135La nuclei. Here, with the aid of the
criteria set up in §2, various aspects of the 3QP correlations are investigated
by paying attention to their relation with shell structure. It will be shown
that, although simple phonon picture is drastically changed due to the action
of collective 3QP correlations, one element of the phonon picture which is
characterized by the concept of “phonon-band” can persist under a certain
condition of shell structure. In §4, we briefly discuss the roles of correlations
between proton- and neutron-quasi-particles (in characterizing the dressed
3QP modes) by showing the results calculated for Mo and 195Pd nuclei. The
results calculated for 117Sn and 115Cd nuclei are also presented in §5 in order
to supplement the statement given in §4 and to show the possibility of complete
breakdown of the phonon-band character under another situation in shell
structure.

In §6, after the investigations on the microscopic structure of the
eigenmodes themselves, we turn to estimate the effect of the interactive force
Hy. In the conventional QPC theory, as is well known, the coupling between
the odd quasi-particle and the phonon comes entirely from the interactive force
Hp and plays a role changing the number of phonons by one. However, in
this section, an important difference between the evaluation of the A effect in
the ““ideal-boson-fermion space” (implicitly assumed in the QPC theory) and
that in the “quasi-particle NTD space” (characterizing the proposed theory)
will be shown.

In order to keep a close contact with the conventional QPC theory, all
discussions in this chapter will be made by adopting the pairing-plus-quadru-
pole (P4 QQ) force model.®

§2. Criteria for breaking and persistency of phonon-bands

In this section, in order to investigate the microscopic structure of breaking
and persistency of ‘‘phonon-plus-odd-quasi-particle picture,” we first re-
capitulate the characteristics of the excitation spectrum and of E2-transition
properties given by the unperturbed Hamiltonian ((® of the QPC theory.1)2
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The P+ QQ Hamiltonian can be divided into the following parts in the
quasi-particle representation:
H=Hy+:Hpp:, }
1Hog: =Hx+ Hy+Hy,

@1

where Ao denotes the free quasi-particle Hamiltonian and each part of : Hpp:
is schematically represented in Fig. 1. In the conventional QPC theory, two-
quasi-particle (2QP) correlation diagrams originated from the A x- and A, -type
interactions are summed up to all orders in the sense of NTD approximation.
Then the part, Ho+H x+ H,, is transformed into the free Hamiltonian
which describes a system composed of (non-interacting) odd quasi-particle
plus phonons. On the other hand, the part Zy is considered to give rise to the
coupling between the odd quasi-particle and phonon in the ‘‘ideal-boson-
fermion space.” Thus the model Hamiltonian of the conventional QPC theory
takes the following form:

=IO J( ),
HO =X Eyildat 3 (BatEp)AGulad) A ilab)
= TM(T*2)
+ 2 § o, Iy (T 520(v),
I = 5 5 XepO) {5570+ L)} iy

(2:2)
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Fig. 1. Graphic representation of the matrix
elements of the quadrupole force. Part
Hx represents a scattering of the pair of
quasi-particles coupled to /7=2+, while
part Ay represents a pair-creation and a
pair-annihilation of quasi-particles coupl-
> ed to /*=2+, Parts Hx and Hy are
=2 called the comstructive force. Part Hy
represents a creation and an annihilation
of the quasi-particles coupled to J==2+,
accompanying a scattering of a quasi-par-
ticle. Part Ay is called the interactive
Sorce.

Hy
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where al, A'(ab) and Ty (v)= 34 h,(ab) Ab1(ab)— p,(ab) A53/(ab)} represent
the creation operators of ideal-odd-quasi-particle, ideal boson corresponding to
quasi-particle pair and ideal-phonon, respectively. In Eq. (2-2), the Greek
letter v distinguishes various eigensolutions of phonon modes and, as an
additional approximation,1-2 non-collective phonons have often been neglected
together with the second term of K. In the same way the mass-quadrupole
operator is expressed as

Qowr= 2 QuW{T () + T ()} + % gu(af)didg, 23)

where Q,(v) and ¢,(af) represent the collective and single-quasi-particle
matrix elements, respectively. A theoretical foundation for deriving the
model operators in the QPC theory has been known as boson expansion methods
in odd-mass nuclei,®"% in which the unperturbed Hamiltonian 4((® and the
expression (2:3) are considered as a zeroth-order approximation for boson
expansion.

Now, one of the characteristics of the basis states given by H(® is that
they are classified into definite sets of states each of which can be called @
phonon-band. The phonon-bands are distinguished with one another by the
quantum numbers of the single-particle orbit a=(#n//), to which the odd
quasi-particle belongs. As illustrated in Fig. 2, each phonon-band consists of
a series of degenerate multiplets in which the odd quasi-particle is coupled
with some number of phonons. The excitation spectrum and the £2-transition
properties obey the well known pattern of the harmonic oscillators. It should
be emphasized here that the £2 transitions between different phonon-bands
(inter-band transitions) are forbidden if we neglect the second term in (2-3).
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Fig. 2. Schematic representation of the concept of phonon-bands.
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In particular, the inter £2 transitions from the multiplet (composed of the odd
quasi-particle ¢» the orbit a coupled with one phonon) to the band-head (the
odd quasi-particle state in z4e orbit b) which belongs to the other phonon-bands
are strictly forbidden.

Starting from this zeroth-order picture of the QPC theory, let us switch on
the 3QP correlations and follow up the process of breaking of the picture.
Then we can consider two cases for the way of the breaking;

A) the case where the 3QP correlation among quasi-particles in the same

single-particle orbit plays a predominant role (Fig. 3-A),

B) the case where the 3QP correlation among quasi-particles in different

single-particle orbits plays a predominant role (Fig. 3-B).

A typical example of case A is the AC states. As was shown in Chap. 3,
in the case of the AC states the triggering effect of the 3QP correlations (which
strongly violate the concept of phonon in odd-mass nuclei) is restricted among
quasi-particles in a specific high-spin and unique-parity orbit, because of the
parity-selection property of the quadrupole force. Hence, in this case, we can
look into the breaking of the simple phonon picture within a “(isolated) single
phonon-band.” (See Fig. 16(a) in Chap. 3, which shows the splitting of the
““quintet” composed of the gq,5 0dd quasi-particle coupled with the 2+ phonon.)

As was discussed in Chap. 4, we can also expect the other situation which
belongs to case A, that is, in spite of the fact that many orbits with the same
parity lie close and equally active for the 3QP correlations, effect B is highly
reduced compared to effect A. An important characteristic in this case is that,
although the energy splittings of the multiplets are very large (due to effect A),
the £2 transitions between different phonon-bands (the inter-band transitions)
are hindered compared to the intra-band transitions. (See Fig. 4.) In this
sense, we can say that the concept of phonon-band is preserved in case A.

case A case B

Fig. 3. Illustrations for two types of the 3QP correlations.
case A: 3QP correlation among quasi-particles in the same orbit.
case B: 3QP correlation among quasi-particles in different
orbits (axb=c¢, axb=c, a=b=c or bxc=a).
The subscript 7 (=1, 2,..., 5) of a is used to specify the single-particle
states with different magnetic quantum numbers in the same orbit a.
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The situation belonging to case A seems to resemble to that given by the
phenomenological core-excitation model,” in the point that the inter-band
transitions are forbidden approximately. However, there exist important
differences, which are; 1) the center of gravity theorem is violated, 2) the
B(E2) values for the transitions from the multiplet to their band-head (one-
quasi-particle) state are different from one another and 3) they are also not
equal to the phonon transition B(£2; 2+—0%) in the even-even core. This is
because of the fact that, from our viewpoint, the microscopic structure of the
core excitation (phonon) itself is changed in a way which depends on the spin
7 of the multiplet, due to the 3QP correlation at a specific orbit.

On the other hand, in case B, the members with the same spin which
belong to different phonon-bands couple with one another strongly (due to the
3QP correlation among different orbits), as is evident from Fig.3-B. Then the
(approximate) selection rule for the £2 transitions mentioned above is violated
and, therefore, in this case we cannot identify the phonon-bands. It should
be emphasized that such an effect of “band-mixing’’ never occur in the con-
ventional QPC theory. Namely the “band-mixing’’ due to the 3QP correlation
is a ‘“‘direct mixing’’ originated from the A, and A interactions, whereas in
the QPC theory the ““band-mixing” can occur only through “indirect mixing”’
mediated by the coupling to the 1QP states (originated from the /4 interaction).

The way and the extent of the breaking of the “phonon-plus-odd-quasi-
particle picture’” will depend on various conditions. For instance, depending
on shell structure and on the spins of collective states, there may exist a phonon-
band which couples easily (or hardly) to the other bands. Therefore, we will
investigate, in the following sections, the microscopic structure of breaking
and persistency of the ‘“‘phonon-plus-odd-quasi-particle picture’” with the aid
of the criteria given here.

§3. Persistency of phonon-band character and breaking
of simple phonon picture

In the theory of the intrinsic excitations in spherical odd-mass nuclei,
which is formulated in Chap. 2, the original 2+ QQ Hamiltonian is transcribed
into the ‘“quasi-particle NTD space” as follows:

H=H®O | Hnt)
HO=1-(Hy+ Hx+ Hy)1= Zs: E ,a}a, +75_:‘me YirkYurx, ¢ 1)
H(int):].'Hy'].: E Vint(d, n])'{Y;z[Kaa—{‘ag Y’n[K},
811K
where @} and Y}, denote the creation operators of the 1QP and dressed 3QP

modes in the space, respectively. Here we have adopted the projection operator
onto the “‘quasi-particle NTD subspace,” 1, by which the modes with trans-
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ferred seniority higher than three are neglected.

In the same way as in the conventional QPC theory, we have a free
Hamiltonian H(© for the new type of elementary excitation modes if the
(original) interactive force Ay is neglected. However, since the collective
3QP correlations have already been taken into account in constructing the
dressed 3QP modes, the spectra given by H® now acquire abundant
structures. The dressed 3QP mode can of course be decomposed into a phonon
coupled with an odd quasi-particle in the limit where various 3QP correlation
diagrams are all neglected. Hence, by comparing the characteristics of the
low-energy excitation structures given by H( with those of # (0, we can see
the breaking and persistency of the phonon-band in the QPC picture due to
the collective 3QP correlations.
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Fig. 4(a). Result of the calculations for the dressed 3QP states in 138Cs. They are
presented to show the breaking and persistency of the quintet structures based on
the 1QP states with orbits 147,2 and 2ds,a. The presented level energies are
those measured from the correlated ground state. The numbers appearing on the
transition arrows give the B(£2) values in unit of £210~-5° cm4, which are calculated
with polarization charge 8¢=0.5¢ and with harmonic-oscillator-range parameter
52=1.041/3, The adopted value of y, is related with the quadrupole-force
strength y through y,=x4445/3 (MeV). For simplicity, the £2 transitions smaller
than 0.1 and the other higher-lying states are both omitted from the figure.
The parameters of the shell-model space used in this calculation are the same as
those adopted by Kisslinger and Sorensen.?
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With this aim, the calculated excitation spectra for odd-proton 133Cs and
185La are presented in Fig. 4. In this figure, the calculated B(£E2) values are
also written on the transition arrows. Method of calculations and the adopted
parameters are the same as are described in §2-Chap. 4. The quadrupole-
force strengths are fixed so as to reproduce, by means of the RPA, the average
energies of the 2+ phonon states in the adjacent even-even nuclei. It should
be noted here that the numerical examples are presented for 133Cs and 135La
whose even-even neighbours are considered as exhibiting vibrational spectra.

The format of Fig. 4 is made so that the relationship to the spectrum
characterized by the concept of phonon-band is visible. In odd-proton 133Cs
and 135La, the 1¢,,, and 245, orbits lie near the chemical potential of protons.
In this figure we are able to identify two families of states which belong to the
phonon-band based on the 1g¢,,- and the 2d;,-1QP states, respectively.
Needless to say, the two ‘“‘quintets” (composed of the 2+ phonon coupled with
the g¢,,5- and Jjy;p-odd-quasi-particle, respectively) should be degenerated in
energy in the hatched regions, if we neglect the collective 3QP correlations
completely.

From Fig. 4, we can see the following characteristics:

(1) The energy-splittings of the quintets are very large, i.e., the level structure
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Fig. 4(b). Result of calculation for the dressed 3QP states in 135La. Notations and
parameters used are the same as in Fig. 4(a).
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shows a drastic change from that of the simple phonon picture. The magni-
tudes of the splittings are comparable to (or even larger than) the excitation
energies of phonons themselves. Clearly we are in a situation far from the
zeroth-order picture of the QPC theory. Of course, from the viewpoint of the
boson expansion methods, this fact implies that the couplings between the
ideal-odd-quasi-particles and the ideal-phonons are too strong to be treated
within a perturbational method.

(2) The splitting of the quintet which belongs to the ground band is larger
than that of the excited band. The magnitude of the splitting decreases as
the excitation energy of the band-head 1QP state becomes higher.

(3) Corresponding to the changes in level structure, the £2-transition prob-
abilities (from the quintet to their band-head) also become different among the
members of the quintet. As a gross property, the lower the excitation energy
of the level, the larger the B(£2) value.

(4) 1In each quintet with band-head spin 7, the sum of B(£2), 33,B(E2; I—),
becomes smaller than 5X B(E2; 2+—07%) of the phonon transition calculated
by means of the RPA. (In the phenomenological core-excitation model, we
have ¥ ,B(E2; I—j)=5X B(E£2; 2+—01).)

In spite of these drastic changes of the excitation structure which evidently

show the breaking of the simple phonon picture, we can still find the following
characteristic:
(5) The property (characterizing the concept of phonon-band) that the inter
E2 transitions are hindered compared to the intra Z2 transitions is seen to
persist rather well (aside from the 3/2% states of 133Cs in which the inter-transi-
tions compete with the intra-transitions).

In the region of Cs and La isotopes, the low-energy-excitation structure is
determined mainly by the competitions among the three effects; effect A (shown
in Fig. 3-A) in the orbit ¢, effect A in the orbit &y,; and effect B (shown in
Fig. 3-B) involving the orbits ¢,,, and dy,,. Therefore, characteristic (5) sug-
gests that, according to the criterion given in §2, effects A are dominant to
effect B.

We can find the origin of this trend as follows: In the 3QP correlations
among quasi-particles in different orbits (the effects B), the one which couples
the ¢g,,,-band to the d5,,-band contains, as a major part, the spin-flip matrix
element (d5/21172Y3(l¢7/) which is considerably smaller than the diagonal
matrix elements, (¢;2172Y;11¢72) and (ds;ll72Y,lld5ss), contributing to
effects A. Therefore, in spite of the drastic breaking of the simple phonon
picture mentioned as characteristics (1)~(4), the concept of phonon-band is
expected to persist in such a situation for shell structure. It is also interesting
to recall that this condition of shell structure is common to that for the
appearance of the dressed 3QP modes having ACS-like structure, e.g., the
5/2§ states in Cs and La isotopes.
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10| —r ACS EXACT Fig. 5. Comparison between the result of exact
. ( d¥,)-band calculation (“EXACT?”) and that of approxi-
72 mated one (“ACS”) for the dressed 3QP
:\CS )Eiﬂg states in 133Cs. See the text for interpretation.
97, 1=bal

Figure 5 has been made to show the dominant role of effect A. Here the
result of the exact calculation for the dressed 3QP modes is compared with that
of the approximated one in which effects B are completely neglected. When
effects B are neglected, the eigenvalue equation for the dressed 3QP modes is
reduced to Eq. (3-23) of Chap. 3 with the orbit » now denoting the orbit of each
band-head 1QP mode. We call such an approximation as ‘single-band
approximation’ or “ACS approximation.” From Fig. 5, we can see that the
excitation structure is determined in a major way by effects A, that is, the
characteristics coming from effects A persist clearly even when effects B are
included.

Then, as shown in §3-Chap. 3, the splitting of the multiplet depends on
three factors; (i) the enhancement factor #;z; in the orbit ;7 of the band-head
1QP mode, (ii) the enhancement factors (#v,+vy2%,) in the core and (iii) the
value of spin ; of the band-head 1QP mode which is involved in the 3QP-correla-
tion factor defined by Eq. (3-22) of Chap. 3.

Among these, an important consequence of the effect (i) is seen as the
characteristic property (2) mentioned above. Remembering the fact that the
more the orbit 7 of the odd quasi-particle becomes close to the chemical potential
A the larger the #v; factor becomes, we can easily understand the origin of
this property. Thus the role of the 3QP correlations, especially the one among
quasi-particles in the same orbit lying near the chemical potential, is essential
to determine the low-energy-excitation structure and becomes less important
for high-energy excitations.

In concluding this section, however, it should also be stressed that the
competition between effects A and B depends rather sensitively on the spin
of the dressed 3QP mode™® and the quasi-particle-energy difference between

*) For instance, notice that effect A in the orbit &5 2 is forbidden for the modes with spins 1/2, 5/2 and
7/2.
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the shell-model orbits of interest.

For instance, the breaking of the band
structure for the specific states with spin 3/2+ in Cs isotopes can be understood
to be a result of the balance of these effects.

In fact, by comparing Fig. 4(a)
with Fig. 4(b), we can see that the band character for the 3/2+ states is enhanced

in La isotopes where effect A in the orbit &5,2 becomes dominant for the first
3/2+ state (i.e., the ACS-like structure of the 3/27 state is realized).

§4. Roles of correlation between proton- and neutron-quasi-particles

In this section, we investigate the microscopic structure of the dressed
3QP modes from the viewpoint of correlation between proton- and neutron-
quasi-particles. At first, it should be mentioned that a strong correlation
between proton- and neutron-quasi-particles is implicitly assumed in setting up
the criterion given in §2. When we consider the difference in the effective
charges of protons and neutrons, it is easy to understand that, without this
strong correlation, the criterion given in conjunction with Z2-transition prop-
erty cannot be applied irrespective of odd-proton or odd-neutron nuclei.

The reason is based on the fact that the motions of proton-quasi-particle-pairs

and of neutron-quasi-particle-pairs are coupled strongly with each other due
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Fig. 6(a). Result of calculation for the dressed 3QP states in 9"Mo.

Notations and
parameters used are the same as in Fig. 4(a).
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to the QQ force and the ground-state correlations play a role to enhance the
cooperative effect between the motions of proton- and neutron-quasi-particle-
pairs. This situation is just the same as in the case of the 2+ phonon modes
(in the doubly open even-even nuclei) described by means of the RPA with the
P4-QQ force. Hence, as long as the shell structures in the vicinity of the
chemical potential (for odd-number nucleons) are the same, we expect similar
E2-transition property irrespective of odd-proton or odd-neutron nuclei.
Figure 6 shows the calculated results for odd-neutron 9"Mo and 105Pd
nuclei. The orbits participating most actively in the 3QP correlations in 9"Mo
and 105Pd are the 2dj,, and lg,,, orbits which are the same as in 133Cs and
185La nuclei discussed in §3. By comparing the excitation structure shown
in Fig. 6 with that of the odd-proton 1338Cs and 135La nuclei shown in Fig. 4,
we can see that the characteristics similar to those described as (1)~(5) in §3
hold also in the case of odd-neutron %7Mo and 195Pd nuclei. For 195Pd nucleus,
the picture of core-excitation model? has sometimes been used in interpreting
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Fig. 6(b). Result of calculation for the dressed 3QP states in 105Pd. Notations and
parameters used are the same as in Fig. 4(a) except the following:
neutron single-particle energies;
€(ds/2)=0.0, e(g7/,2)=1.6, e(s1,2)=1.9,
E(}L11/2)=2.0 and E(d3/2)=2.5.
pairing-force strengths;
Gp=29/4 and Gn=21/4. (all in MeV)
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the experimental data.®:9 From the present point of view, however, it is
clear that such experimental facts can be considered to reflect the persistency
of phonon-band character in 195Pd and never to imply a realization of the
weak coupling picture underlying the core-excitation model.

Now let us consider in more detail the role of proton-quasi-particles in the
dressed 3QP modes in odd-neutron nuclei. (The same consideration can also
be made for the role of neutron-quasi-particles in odd-proton nuclei.) As was
already emphasized, the 3QP correlations can be regarded, in the lahguage
of quasi-particle-phonon-coupling picture, as arising from Pauli principle
between the neutron-odd-quasi-particle and the quasi-particles constructing
the phonon. Consequently, because of the absence of Pauli principle between
proton- and neutron-quasi-particles, the triggering effects of the 3QP correla-
tions (which violate the concept of phonon in odd-mass nuclei) are restricted
within the neutron-quasi-particles. The following fact should be noted
however. In the dressed 3QP mode, the component i, ,(po; a) and ¢, (pc; a),*
composed of proton-quasi-particle-pair (po) plus a neutron-quasi-particle a 7
the orbit a, can couple with the component of the same type, ¢y,,(po; B) and
¢ns(po; B), having the neutron-quasi-particle B iz the orbit 4 different from the
orbit a(6a).**) This kind of “coupling” is mediated by the 3QP correlations
among neutron-quasi-particles. (See Fig. 7.) Since the motion of proton-
quasi-particles couples strongly with that of neutron-quasi-particles (through
the QQ force), the magnitude of the mixing among the components, ,,(po; @)
and ¢y,(po; o) with various @, depends quite obediently on the magnitude of
effects B in the 3QP correlations among neutrons. In this way, the fact that
there exists a strong correlation between proton- and neutron-quasi-particles
makes it possible to say as follows: “If effects B in the 3QP correlations are
sufficiently strong among neutron-quasi-particles, then we can observe the
breaking of the phonon-band structure in terms of the £2-transition properties.”’
We can confirm this point from the comparison between Fig. 6(b) and Fig.
8(b). As will be discussed in §5, effect B in odd-neutron 115Cd nucleus is
considerably stronger than that in odd-neutron 105Pd nucleus. As a con-

B
B
Fig. 7. Illustration of the 3QP correlation discussed
in the text. Here, a, B, y, .... denote the
quantum numbers of the single-particle states
£ for neutrons and p, o, .... those for protons.

*) For definition of the amplitudes of the dressed 3QP mode, see Eq. (2.1) in Chap. 4.
*¥) Within the limit of neglecting the 3QP correlations, these two sets of components belong to dif-
ferent multiplets in the QPC theory, (41.I'};)1x|0) and (@hT14)1x|0), characterized by the quan-
tum numbers @ and &, respectively.
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sequence, we can see that the inter-band transitions in 118Cd are larger than
those in 105Pd.

Now, recalling the enhancement factor (ii) mentioned in §3 (which is
applicable for both cases A and B, of the 3QP correlations), we can say as
follows: The major role of the proton-quasi-particles in the odd-neutron
dressed 3QP mode is to enhance the collectivity of the mode, accompanying
a rapid growth of the ground-state correlation. The growth of the collectivity
due to such an effect is clearly seen by comparing the spectrum of single-closed-
shell nucleus 117Sn (Fig. 8(a)) with that of 115Cd (Fig. 8(b)) in which two
proton-holes are added to 117Sn. Thus, although the proton-quasi-particles
do not produce any 3QP correlations by themselves, they play an indispensable
role to form the concept of dressed 3QP mode (in odd-neutron nuclei) as a
collective mode of excitation.

§5. Case of low-spin orbits

Let us consider the calculated result for 115Cd shown in Fig. 8(b). In
this nucleus, the chemical potential for neutrons lies in the vicinity of the orbits
3s1,2 and 2d3,e. Since effects A are strictly forbidden in the orbit with spin

MeV

30

|.O ~ '/2+ (d5/2)

(SI/Z)

Fig. 8(a). Result of calculation for the dressed 3QP states in 117Sn. Notations and
parameters used are the same as in Fig. 4(a) except the following:
neutron single-particle energies;
e(d52)=0.0, e(g7,2)=1.27, e(s1,2)=2.55,
€(h11,2)=3.25, e€(ds,2)=3.24. (all in MeV)
‘These values are taken from Ref. 10). The unit of B(£2) values is £2-10~51 cm4,
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7<5/2, effects B are expected to manifest themselves, in a relatively pure form,
in the dressed 3QP modes which largely involve the low-spin orbits such as
3515 and 2d3,. In fact, Fig. 8(b) shows that we cannot definitely classify
these dressed 3QP modes in terms of the criterion given in §2, since the many
inter-band transitions are of the same order in magnitude with the intra-band
transitions.*) This implies that, for the collective excitations standing on the
1QP states with low-spin (j<<5/2) and with normal parity, the concept of
phonon-band is broken down completely due to effect B.

It is noticeable in Fig. 8(b) that the ‘““doublet’ with spins 3/2* and 5/2t,
belonging to the s1,2 phonon-band, is considerably shifted up in energy. The
reason is understood as follows: In nuclei in which the 51,2 orbit lies close to
the chemical potential, the 2+ phonon is largely composed of the quasi-particle-
pair involving the s1,2 quasi-particle. When the odd quasi-particle is lying
just at the s1/2 orbit, however, the excitations of such quasi-particle-pairs are
strictly forbidden. This is easily understood when we recall the fact that the
3QP configurations with seniority v=3 are forbidden due to the Pauli principle
if there exist zwo quasi-particles at the s1,2 orbit. Thus, the excitation of the

MeV
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30 | 48Cd67
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20 - 32| 5
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27 4.5 ) H3
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1O | 72

Fig. 8(b). Result of calculation for the dressed 3QP states in 115Cd. Notations and
parameters are the same as in Fig. 4(a).

*) Since the phonon-bands are difficult to identify in this case, the dressed 3QP states are classified
in a rather arbitrary way in Fig. 8.
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2% phonon of the core is highly hindered when there already exists the s12
odd quasi-particle. Furthermore, in this case, we can expect the following
trend: The microscopic structure of the 2+ phonon itself should be changed
drastically, since the main components of the 2+ phonon are forbidden. As a
consequence, the 3QP correlation among quasi-particles in different orbits
tends to play an increasingly important role.

We have seen two typical examples in which either effect A or effect B is
playing an essential role to govern the low-energy-excitation spectrum: In
nuclei in which the orbits with spin 7=5/2, such as &5/, and ¢, lie in the vicinity
of the chemical potential, the 3QP correlation in the same orbit plays a dominant
role (case A). On the other hand, in nuclei in which the orbits with spin 7<5/2,
such as sy, and &, lie in the vicinity of the chemical potential, the 3QP
correlation among different orbits plays a dominant role (case B). The degree
of the breaking of the phonon-band character is determined by the competition
between effects A and B. Although present accumulation of the experimental
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Fig. 9(a). Energy shifts due to the coupling effects between the dressed 3QP- and
1QP-modes in 138Cs. The energy levels denoted by H(® show the result calculated
by neglecting the coupling effects, while those denoted by H(®+ H(nt) show the
result calculated by taking the coupling effects into account. The experimental
energy levels denoted by EXP are taken from Ref. 11). The parameters of the
calculations are the same as in Fig. 4(a) except that the adopted quadrupole-force
parameter Y, is a little stronger.
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data on the E2 transitions between excited states is not sufficient to allow
us a systematic comparison with the theoretical calculations, the current rapid
progress in the measurement of these transitions is expected to elucidate further
many interesting structures of the 3QP correlations.

§6. Couplings between dressed 3QP- and 1QP-modes

So far, we have neglected the effects originating from the interactive force
Hy. The essential role of this type of interactions is to produce couplings
between different kinds of elementary excitation modes. In the QPC theory,
the effects are represented by nt) in Eq. (2-2), which change the number of
phonons by one accompanying a scattering of odd quasi-particle. On the
other hand, in the theory developed in Chap. 2, the effects manifest themselves
as couplings between the dressed 3QP modes and the 1QP modes, HGnt in
Eq. (3-1), in the quasi-particle NTD subspace. Since in the QPC theory, the
change of excitation spectrum from that given by 4 (9 is attributed entirely to
this special type of couplings H (2t and also since the low-lying spectrum given
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Fig. 9(b). Energy shifts due to the coupling effects between the dressed 3QP- and
1QP-modes in 135La. Notations are the same as in Fig. 9(a). The experimental
energy levels are taken from Ref. 12). The parameters of the calculation are the
same as in Fig. 4(b) except that the adopted quadrupole-force parameter y, is a
little stronger.
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by H®+ H@n) corresponds to that given by (O + K0 if we neglect the
3QP correlations completely, the problem of how the effects of A} are changed
(from those evaluated in the QPC theory) by the inclusion of the 3QP correla-
tions will be of great significance.

Figure 9 and Tables I and II show the calculated results for 133Cs and
135L.a. From the comparison between the spectrum of H( and that of
H©O - Hint) we can see that H(@mY) does not change the low-energy-excita-
tion spectrum given by H( so drastically, except for some states with low-
spins 1/2+ and 3/2+. This is because of the newly arised reduction effect which
is absent in the QPC theory and makes the effects of A interaction to be less
important for low-lying states.

The mechanism of this reduction effect can be understood as follows: Let
us consider two sets of diagrams (with @2¢4) shown in Fig. 10. In the QPC
theory, each sum of the diagrams, Figs. 10(a) and 10(b), contributes
separately to the effective coupling strength, Xs;(v) or Xs;(v), in S Unb),
However, when we take the 3QP correlations into account, these two sets of
diagrams éot/ contribute to the single effective coupling strength Vin(d; #7)
in HinY,  As is seen from the expression of Vinyd; 7#/) given by (4-3) in

Table I. Calculated B(Z2) values for 133Cs. The states in the first column are
labeled according to the level ordering given in Fig. 9(a). The parameters used
are the same as in Fig. 9(a). The B(£2) values calculated by neglecting the
coupling effects are listed in the second column, while those calculated by taking
account of the coupling effects are listed in the third column. They are compared
to the experimental values listed in the fourth column. The unit is ¢2-10~50 cm4.
The polarization charge 8¢=0.5¢ and the harmonic-oscillater-range parameter
52=1.041/3 are used in the calculation. Experimental data are taken from

Ref. 11).
transitions B(£2)V B(E2)» B(E2)exp
5/25 —7/2¢ 11.69 11.62 10.4x+1.2
11/2f - 7/2¢ 4.25 4.21 10.0+1.1
3/2;5 = 7/2¢ 2.41 3.83 1.4+0.2
9/2% —7/2¢ 3.09 3.06 7.4+0.8
7/25 —7/2¢ 1.94 1.90 1.42+0.17
3/2f = 5/2¢ 9.48 9.52
9/2f —5/2¢ 5.94 5.10
1/2f —5/2} 5.89 7.27
7/2% —5/2¢ 5.24 4.46
5/23 —5/2f 4.28 1.42
3/2% —5/2¢ 1.27 0.11
3/2f = 7/2f 1.33 0.31 7.2+0.8
5/2; —5/2¢ 0.46 0.35

5/21 — 7/2% 0.02 0.27
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Table II. Calculated B(Z£2) values for 188La. Notations and the parameters used
are the same as in Table I and Fig. 9(b), respectively. Experimental data are
taken from Ref. 12).

transitions B(E2)D B(E2)» B(E2)=xp

5/25 — 7/2¢ 18.86 18.13 22.6

11/2} — 7/2% 5.45 5.21

3/25 - 7/2F 5.47 7.47

9/23 = 7/2¢ 4.55 4.35

7/28 —7/2¢ 4.16 1.37
3/2t —5/2¢ 15.41 14.09 =4.9

9/2¢ —5/2¢ 6.46 5.79

7/23 = 5/2¢ 5.78 5.18
1/27 —5/2¢ 6.07 7.68 =20.2

5/2% —5/2¢ 4.71 2.85

3/2y —»5/2¢ 0.62 0.32
3/2t - 7/2¢ 1.15 0.002 =0.1
5/2; = 5/2f 0.92 0.25 1.7
5/2t — 7/2% 0.003 0.31 1.8

7 b4
L g LA
phd Y
s/ 2y |& uf2*\v |g
{a) (b)

Fig. 10. Two sets of the matrix elements of interactive force Zy. The sets (a) and
(b) are distinguished with each other by the difference in one of the shell-model
orbits, i.e., a#4. The quantum numbers written in this figure, a=(a, ma)=
(nalaja, ma), B, 7y,... can be interpreted as; for instance, @, 8 and y denote
the quantum numbers of the single-particle states for neutrons and p and v those
for protons. The diagrams in the sets (a) and (b) contribute separately to the
effective coupling strength %,, and ¥,4, respectively, in the QPC theory. On the
other hand, they both contribute simultaneously to the effective coupling strength
Vint (¢; »/7) in the proposed theory.

Chap. 4, the phase relations between the matrix elements belonging to different
sets of diagrams (each of which is represented in Fig. 10(a) or Fig. 10(b))
are governed by the relative phases of the amplitudes, e.g., ¢y, /[7s(2)2] and
$as[7s(2)8], and also by the quadrupole matrix elements, R(ad)=5"12 (g2
Yolld)-(suguy—v4vg) and R(6d). Consequently, even when all the diagrams
belonging to a single set (with definite &) contribute in phase, we have no
guarantee of the coherent property among different sets of diagrams (with
various @). In fact, the calculated results show that they contribute generally
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in random phase, namely, they cancell one another. This is the case especially
for the lowest-lying mode with a given spin />1/2.

Additional reasons to weaken the effective coupling strength Vin(d; #./)
were already stated in §4-Chap. 4.

Now let us recall the characteristic dependence of the A interaction on
the reduction factor, (#zugs—v4v4). This factor is small for the quasi-particles
lying near the chemical potential. In the special cases where a pair of orbits
a and d are occupied just so as to make the factor nearly zero, e.g., each just
half full, the effect of A} vanishes. Within the framework of the QPC theory,
a consequence of such a property has indeed been confirmed experimentarily
in the E2-transition properties between the low-lying states which are both
mainly composed of the IQP states.® Since this property of A is endowed
to the effective coupling strengths, both in the QPC theory and in the present
theory, it is evident that the latter conserves the major success of the former.
Furthermore, in the proposed theory, we have the (afore-mentioned) new
reduction effect originated from the 3QP correlations which depend on the
enhancement factor (#,v4-+v4%4) becoming large in the neighbourhood of
the chemical potential. Obviously, this fact magnifies the above-mentioned
property of reducing the A effect.

Thus we can say that the couplings of the dressed 3QP modes to the 1QP
modes are significantly hindered if they are both in low-lying states near the
ground state. This fact is in accord with the general principle: “If eigen-
modes were properly chosen, couplings to different eigenmodes should be
weak.”

On the other hand, for the higher excitations, the (above-mentioned)
mechanism becomes less effective. Thereby, if the 1QP modes lie in higher
excited states, their couplings to the dressed 3QP modes (lying below them)
become relatively significant. This is the case for the 1/2+ and 3/2* states in
133Cs and 185La nuclei shown in Fig. 9.

A tentative comparison between the calculated results and the experi-
mental data (Fig. 9) shows that the proposed theory can reproduce qualitative
characteristics of the low-energy excitations quite well. Here it should be
stressed that we have adopted no systematical fitting-procedures by adjusting
parameters. Therefore, in view of the rapid accumulation of experimental
data, more detailed analysis based on the proposed theory should be very
promising.

We conclude this section by observing the following point which is ex-
ceptional to this promising results of calculations: Although level structures
are nicely reproduced, the calculated excitation energies of the dressed 3QP
states are, in average, higher than the corresponding experimental ones, if we
choose the strength of the QQ force so as to fit the average energy of 2+ phonons
in the adjacent even-even nuclei, @y+(V, 2)=1/2{wy+(N, Z —1)+wy+(N, Z+1)}.
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This rather general tendency may be due to the present limited truncation
of the quasi-particle NTD space, that is, the neglect of modes with transferred
seniority higher than three. In addition to this, the following fact should also
be emphasized: What we have discussed up to now is the intrinsic excitation
modes in the quasi-spin space, and the couplings between intrinsic- and (pair-
ing-) collective-modes have been completely neglected.

§7. Concluding remarks

Microscopic structure of breaking and persistency of the conventional
“phonon-plus-odd-quasi-particle picture’” has been investigated by putting
special emphasis on the deviations of E2-transition properties from those
expected by the concept of phonon-band. It has been demonstrated that the
simple phonon picture for spherical odd-mass nuclei is seriously broken due to
the collective 3QP correlations among quasi-particles lying near the chemical
potential. In particular, the breaking and persistency of the phonon-band
character have been shown to be essentially dependent on the characteristics of
the 3QP correlation. The effect of A interaction has also been shown to be
significantly affected by the inclusion of this correlation. The microscopic
structure of the 3QP correlation depends, in turn, on details of the shell structure
in the vicinity of the chemical potential. Accordingly, results of the calculation
have been exemplified for two classes of nuclei in which either high-spin or
low-spin orbits lie near the chemical potential. From these investigations, it
is now clear that the 3QP correlation should be regarded as an elementary
correlation in low-energy excitations. In fact, a large body of experimental
data illuminating rich aspects of the many-quasi-particle correlations is now
accumulating. (See, for instance, the progress report by Meyer.13))

The effects of the 3QP correlation (based on the Pauli principle between the
odd quasi-particle and the quasi-particles composing the phonon) have so far
been neglected by the argument that a phonon contains only a small amplitude
for the presence of any particular quasi-particle.®) However, this argument
is not correct. The 3QP correlation is essentially different from the “static”
effects such as the blocking effect. Rather, it is a ‘“‘dynamical” correlation
induced by the presence of the odd quasi-particle: In such low-energy-ex-
citation mode as the 2+ phonon, as is well known, the quasi-particles lying near
the chemical potential play an essential role in constructing the mode. When
the ‘““odd quasi-particle” is also added near the chemical potential, the
quadrupole force (A x and H ) acts upon both the quasi-particles constructing
the 2+ phonon and the ‘““odd quasi-particle” without discrimination. There-
fore, the collective 3QP correlation also tends to grow significantly, as the
collective 2QP correlation becomes stronger (,i.e., as the excitation energy of
the 2% phonon becomes smaller). What we have investigated from Chap. 3
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to this chapter can be regarded as clarifying the actual physical situation for
this process. The conclusions obtained here are, therefore, closely connected
with the dynamics of the P4 QQ force model.®) Accordingly, the problem
whether they are specific to the P+ QQ force model or more general will be
examined in the succeeding chapter.

Of course, these conclusions do not exclude a possibility of a decomposition
among many-quasi-particles if, e.g., some of them lie far from the chemical
potential: In some cases of physical situations in shell structure, there may be
frequent occurrence of a possibility that the dressed z-quasi-particle mode with
n>3 can be approximately decomposed into the correlated cluster in the valence
shell and the phonons of the “core.” Recall here that such a possibility was
already pointed out in Chaps. 3 and 4 in relating the picture of the dressed 3QP
mode to that of the Alaga model.19-15)
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§ 1. Introduction

From Chap. 3 to Chap. 5, microscopic structure of collective excitations
in spherical odd-mass nuclei has been discussed with the use of the pairing-
plus-quadrupole (P4 QQ) force. Since we have widely employed charac-
teristic properties of the quadrupole force, it is indispensable to examine
whether or not the conclusions obtained from Chap. 3 to Chap. 5 are specific
to the P+ QQ force. The aim of this chapter is to examine the effects of the
other components of residual interaction which are neglected in the P+ QQ
force model. With this aim, we make a comparison between the results calcu-
lated by using the quadrupole force and those calculated by using the central
force with Gaussian radial dependence. In §§2 and 3, comparisons between
the results of the P4+ QQ force and those of the Gaussian force are made for
the case of collective excited states with positive parity in Se isotopes. These
states provide a good example in which we can see the effects of the other
components of residual interaction in a relatively simple way. In §4, as an
alternative example, we present the results for single closed shell Sn isotopes
in which quadrupole collectivity of the excited states is not so strong as in the
case of Se isotopes. Hence, we can learn from these examples the relative
importance of the neglected components of residual interaction in relation to
the quadrupole collectivity of the states of interest. Needless to say, the
theory developed in Chap. 2 is applicable for any residual interaction. How-
ever, we do not extend our present purpose to looking into the details of residual
interactions themselves. In §5, we add a few remarks concerning further
refinements of the analysis.

§ 2. Dressed three-quasi-particle 7/2+ states in Se isotopes

We solve the eigenvalue equation for the dressed three-quasi-particle (3QP)
mode given by Eq. (3-3) of Chap. 2 with the use of conventional Gaussian
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force. The full expression of the matrix elements entering into the eigenvalue
equation is given in Appendix 6A. The Gaussian force adopted here is the
one without any exchange mixture, i.e.,

V(r)=—"V,yexp(—7%/73) 21

with »=|ri—r3l. As usual, the matrix elements of the Gaussian force are
calculated by using harmonic oscillator wave functions with Zw=414"1/
MeV. Then the matrix elements depend only on the ratio of the force-range
7o to the range-parameter of the harmonic oscillator potential é=(%/Mw)’2.
We adopt the method of Horie and Sasakil in calculating these matrix
elements.

Figure 1 shows the result of calculations for the ‘“‘anomalous coupling”
7/2% states in Se isotopes as the dressed 3QP states. The shell-model space
adopted here is composed of the orbits {lfy/e, 2p3/5, 2p1/5, 19,5} for both
protons and neutrons. The single-particle energies used are the same as those
of Kisslinger and Sorensen.?) In the conventional treatment, where we use
the Gaussian force as an effective interaction, the BCS equation determining
the quasi-particle energies £, and the coefficients of the Bogoliubov trans-
formation (#,, v,) is also solved by using the Gaussian force. However,
in this calculation, we have used the constant pairing force in the BCS equation,
since our aim is to compare the results of the Gaussian-force case with those
of the P+ QQ force case. This implies that the Gaussian force is regarded

MeV
----- TDA
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\\ —— NTDA
_---\\\‘\ ~§"“~~_____
-\ Vo= 22 MeV
00 \ — V°= 23 MeV
_ .
N= 41 43 45

Fig. 1. Excitation energies of the dressed 3QP 7/2+ states in Se isotopes calculated
with the use of the Gaussian force. The energies are measured from the 1QP
9/2+ states. The range parameter of the Gaussian force defined by (2-1) is fixed
at 2.0 fm, while the calculated results for two choices of the force-strength 7o,
ie., Vo=22MeV and 23MeV, are shown. The solid lines represent the results
in the new-Tamm-Dancoff approximation, while the broken lines in the Tamm-
Dancoff approximation. The symbol X denotes the occurrence of complex
eigenenergy.
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here as a residual interaction among quasi-particles. This is in accord with
our present aim of looking into the difference between the Gaussian and
quadrupole forces in characterizing the microscopic structure of the dressed
3QP mode.

From Fig. 1, we can see that the 7/2% states become the lowest-lying
dressed 3QP states for a reasonable choice of the force-range parameter 7q.
The reason for this particular favouring of the 7/2+ state is very similar to that
in the P+ QQ force model (discussed in detail in Chap. 3): Since the square
cfp of the type [72(2), 7; 1} 73; 7 v=3]? takes the maximum value when /=
J—1, the 7/2% state involves the component {¢3,5(/=2)¢g/s} ;=72 as the
maximum one among the components of the type <{¢3,5(/)¢on},* Ac-
cordingly, the 7/2+ state has a large energy gain due to the relatively large
matrix elements of the force, G((vgq/2)? (v¢9/2)2; 2) and F(rs(vgys)?; 2).**)
The matrix element G( (vg9,5)2 (vggs5)?; 2) mainly contributes to increase the
diagonal matrix element in the eigenvalue equation (3-3) of Chap. 2, while
the matrix elements F(rs(vgy,5)%; 2) mainly contributes to increase the com-
ponents of the type {7s(2t)vgy,}.

One of the important characteristics of the quadrupole force is the special
parity-selection property, i.e.,

(all72Y,]16)=0 when (—)letl=—1. (2-2)

This property of the quadrupole force plays an efficient role in the discussion
of the 7/2+ state in terms of the P+ QQ force, owing to the special situation
of shell structure in which the high-spin, unique-parity orbit is being filled
with odd-number nucleons. In fact, the parity-selection property greatly
simplified the discussions in Chap. 3. In the case of the Gaussian force, we
have no such property. Accordingly, the dressed 3QP 7/2* mode under
consideration contains various kinds of components, for example, the compo-
nents corresponding to the p;,, quasi-particle coupled with the 3~ phonon.
In spite of the inclusion of such kinds of components into the eigenvalue
equation, we can see that the predominant role of the quadrupole correlation
in characterizing the microscopic structure of the 7/2+ state does not change
in any significant way. Namely, these components neglected in the P+ QQ
force model contribute only as a small perturbation to the low-lying 7/2+
state.

Now, in order to see the effect of the backward-going diagrams (originated
from the ground-state correlation) on the excitation energy of the 7/2+ state,
let us consider the quantity

*) The components of the amplitudes of the dressed 3QP modes are defined in Appendix 6A; see
also Appendix 4A for the method of providing the orthonormal basis vectors in the coupled-angu-
lar-momentum representation.

**¥) The matrix elements of the force, G and 7, are defined in Appendix 1A.
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SB— Wrp—WNTD

3E—wpp 2:3)

where £ denotes the energy of the g¢4,, neutron quasi-particle and wzp(wy7p)
the energy of the (dressed) 3QP mode in the (new) Tamm-Dancoff approxi-
mation. For the parameters Vo=23 MeV and 79=2 fm, the ratio of 8B
(Gaussian) to 68 (quadrupole) takes the following value:

8B(Gaussian)  0.21
8B(quadrupole)” 0.94

=0.22 (2:4)

for the 7/2+ state in 79Se. Thus, in the case of the Gaussian force, the effect
of the backward-going diagrams becomes smaller compared to the case of
the quadrupole force. However, it should be emphasized that they sensitively
affect both the excitation energy and the amplitudes (of the dressed 3QP
mode), since the 7/2% states lie very near to the critical point for the instability
of the spherical BCS vacuum.

Figure 2 shows the main amplitudes of the dressed 3QP 7/2+ mode under
consideration. In this figure, the corresponding amplitudes calculated by using
the quadrupole force are also written for the sake of comparison. We can see
that the correspondence between the amplitudes given by the Gaussian force
and those given by the quadrupole force is remarkable in both their relative
phases and magnitudes.®) For instance, the main components are, for both
cases, of the types {(¢9/2)3}, {a6(2*)g9s} and {rs(2*)gg,s}. Furthermore,
their relative magnitudes show the similar trend for both cases.

As for the difference between the two cases, we can see in Fig. 2 that, in
the 79Se nucleus, the backward-going amplitudes in the case of the quad-
rupole force are larger than those in the case of the Gaussian force.
Correspondingly, the forward-going amplitudes in this case are amplified as
a whole. In Fig. 2, we can also see that the backward-going amplitude of
the type {(¢49,2)%} becomes notably smaller in the case of the Gaussian force.
The reason for this may be found in the fact that, in the Gaussian-force case,
the G-type and F-type matrix elements cancel each other® in the submatrix
A in the eigenvalue equation (3-3) of Chap. 2. Therefore, the phase relation
among different components connecting neutron-quasi-particle pairs in the
submatrix A becomes quite random in comparison with that among corre-
sponding components in the submatrix D for the forward-going amplitudes.
This trend is similar to that in the RPA with the use of the Gaussian force
(for the single-closed shell nuclei). However, we should be careful in the fact
that the relative magnitude of the G-type and F-type matrix elements depends
sensitively on the range parameter 7. On the other hand, such a destructive

*) In the comparison, we should be careful in treating the phase convention of the single-particle
wave-functions.
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Fig. 2. Main amplitudes of the dressed 3QP 7/2* modes in Se isotopes. The results

calculated with the Gaussian force are connected by solid lines, while those with
the quadrupole force are connected by broken lines.

The range parameter and
force strength of the Gaussian force are fixed at 70=2.0 fm and Vp=23MeV,
respectively.

(These values are always adopted in the discussion in §§2 and 3.)
The P+ QQ force-parameters are; G=24/A4 MeV for both protons and neutrons,

x0=230 MeV. The definition of the amplitudes is given in Appendices 6A and
4A. In this figure, the following abbreviation is used to specify the shell-model
orbit:

1=@2p1s2), 2=(@pss3), 3=(1fss2), 5=(1gss2).

effect between the G-type and F-type matrix elements is absent in the matrix
elements connecting proton and neutron quasi-particle pairs.3

Consequently,
the backward-going amplitudes of the type {rs(2%)gq,} become significantly

large in the Gaussian-force case as well as in the quadrupole-force case.
Although we can find such a few differences in fine structure which are

dependent on details of the force, the correspondence of the main amplitudes
between the two cases is remarkable.

Thus, we can conclude that the micro-
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scopic structure of the collective 7/2+ state in the Gaussian-force case is very
similar to that in the quadrupole-force case.

§ 3. Other collective states with positive
parity in Se isotopes

Next, let us consider other collective states with positive parity in Se
isotopes. These states are the ones corresponding to the quintet composed
of one-quasi-particle and one-phonon in the quasi-particle-phonon-coupling
theory. Considering these states also as the dressed 3QP states, we have
carried out the calculation with the use of the Gaussian force. The parameters
used are the same as in the preceding section.

Figure 3 shows the result of the calculation. In this figure, the result
obtained by using the quadrupole force is also shown for the sake of com-
parison. We can clearly see that the calculated level sequence is the same as
that in the case of the quadrupole force. This fact indicates that the micro-
scopic structure of these states obtained by using the Gaussian force is very
similar to that obtained by using the quadrupole force. The main amplitudes
of the dressed 3QP modes are shown in Figs. 4 and 5. In Fig. 4 are shown
the main amplitudes of the 5/2+ mode. From the comparison between the
Gaussian-force case (solid line) and the quadrupole-force case (broken line),
we can say that the correspondence between the two cases holds fairly well not

MeV
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/ //—”/2
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Vo=23.MeV, r,=2.fm

Fig. 3. [Excitation energies of the dressed 3QP states with positive parity in Se
isotopes. Results calculated by using the Gaussian force are compared with
those by the quadrupole force. Parameters used are the same as in Fig. 2.
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Fig. 4. Main amplitudes of the dressed 3QP 5/2+ modes in Se isotopes. Notations
and parameters used are the same as in Fig. 2.

only for the forward-going amplitudes but also for the backward-going
amplitudes. The main amplitudes of the modes with spins from 5/2% to 13/2+
are compared in Figs. 5 () and 5 (b). Figure 5 (a) shows the result calculated
by using the quadrupole force, while Fig. 5 (b) shows the result calculated
by using the Gaussian force. In these figures, the magnitudes of the ampli-
tudes of the modes with spins from 5/2% to 13/2* are collectively shown on
each position representing a specific component of the amplitudes. From
these figures, we can see that, in each component, the relative magnitudes
among the amplitudes of the modes with spins from 5/2* to 13/2+ are similar
between the Gaussian-force and quadrupole-force cases. This fact shows the
reason why we have obtained the same level sequence irrespective of the forces
adopted.

It has been expected that the neutron-proton short-range interaction,
which has been neglected in the P+ QQ force model (except for its field
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producing parts),becomes important in the region 28<CZ< 50 and 28<C N <50.2
The effect of this kind is automatically taken into account in this calculation
with the Gaussian force. The result of this calculation shows, however,
that the effect does not bring about appreciable differences from the result
of the P+ QQ force case, at least for low-lying collective states with positive
parity in Se isotopes.

As for the difference between the two cases, we can point out that the
energy-splitting of the ‘“quintet” in the Gaussian-force case is somewhat
smaller than that in the quadrupole-force case. The main reason for this
is that the effect of the backward-going diagrams is especially strong for the
7/2% state in the quadrupole-force case. (See the values in (2-4) which show
the difference between the two cases in lowering the energy of the 7/2+ state.)
Another different point is that the mass-number dependence of the excitation
energies becomes smooth in the Gaussian-force case, compared to that in the
quadrupole-force case. This is the trend similar to that well known in the
RPA for even-even nuclei. Therefore, its origin may be attributed to the
fact that, in the Gaussian-force case, not only the force-element of the type
F(abed; 2%) but also of the type G(abed;]) are effective. (The F and G type
force-elements are defined in Appendix 1A.) The more detailed differences
between the two cases can be seen when we look into the fine structure of the
amplitudes. For example, in the Gaussian-force case, the backward-going
component ¢[(¢q/2)3] in the 5/2+ mode becomes very small (in 75Se) and has
even the phase opposite to that in the quadrupole-force case (in 79Se). (See
Fig. 4.) Besides this, in the 9/2} state in 79Se which lies in the relatively
higher energy region, the forward-going component {(mpg/smfs/2)a+vgess} in
the Gaussian-force case becomes non-negligible, i.e., $[23(4)5]=0.109.

Although we can find some differences between the two cases as mentioned
above, it should be emphasized that the correspondence of the main amplitudes
between the two cases does hold fairly well. Thus we can say that the nature
of the dressed 3QP modes discussed in terms of the P+ QQ force model is
also maintained in the Gaussian-force model, as long as they are low-lying
in energy.

§4. Collective excited states in Sn isotopes

In the preceding sections, we have seen that the characteristics of the
dressed 3QP mode derived from theoretical calculations are essentially the
same between the quadrupole-force case and the Gaussian-force case. This
conclusion implies that, for such collective states as the low-lying excited states
in Se isotopes, the quadrupole collectivity is so dominant that the other cor-
relations do not play significant roles. Accordingly, the other components
of residual interaction which are neglected in the P+ QQ force model are
expected to play appreciable roles when we consider the nuclei in which the
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(a) The quadrupole-force case.

Fig. 5. Main amplitudes of the dressed 3QP modes with positive parity in 79Se.
The magnitudes of the amplitudes of the modes with spins from 5/2+ to 13/2+
are collectively shown on each position representing a specific component of
the amplitudes. The set of states with spins from 5/2* to 13/2+* corresponds to
the “quintet” composed of the 1QP 9/2+ mode coupled with the 2t phonon in
the quasi-particle-phonon-coupling theory. For the sake of comparison, the
corresponding amplitudes of the 2+ phonon calculated by the RPA in 78Se are

quadrupole collectivity is not strong. In this section, in order to show this
possibility, we present the results for single-closed shell 117Sn and 119Sn
calculated by using the Gaussian force. As was pointed out in § 5-Chap. 5,
the Sn isotopes belong to the situation where the chemical potential lies near
the low-spin orbits so that the phonon-band character is expected to be broken
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(b) The Gaussian-force case.

shown by the symbol o connected with broken lines. The strengths of the
quadrupole force and of the Gaussian force are chosen to approximately
reproduce the experimental excitation energies of the 7/2+ and 2+ states, i.e.,
the energy difference between the collective 7/2+ and 1QP 9/2+ states in 79Se
and the excitation energy of the 2+ state in 78Se. They are; xo=230 (MeV)

for "9Se, Xo=220 (MeV) for 8Se, V=23 MeV and 70=2.0 fm for 7®Se, Vo
=21 MeV and 79=2.0 fm for "8Se.

remarkably. If this is the case, then we can also expect that the relative

magnitude between the inter and intra phonon-band £2 transitions is sensi-
tively dependent on details of many conditions, for example, such as relative
occupation probabilities among shell-model orbits. Because of this situation
and also because of the relative weakness of the quadrupole collectivity, we
can expect that the properties of the collective excited states in Sn isotopes

169
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are very sensitive to details of the wave functions.

Figures 6 and 7 show the calculated results for 117Sn and 119Sn. These
figures are made in a form in which the breaking and persistency of the phonon-
band character is easy to see. By comparing the results of the Gaussian-force
case to those of the quadrupole-force case, we see that the level sequence within
a ‘“‘phonon-band” is almost the same between the two cases. Although the
gross structure of the excitation spectra displays some similarity, the energy
shift due to the ground-state correlation differs in magnitude between the two
cases. For example, the energy shift for the 3/2§ state in 119Sn is about
300 keV in the quadrupole-force case, while the corresponding energy shift
is reduced to about 40 keV in the Gaussian-force case. This reduction of
energy shift in the Gaussian-force case is rather special for the single-closed
shell nuclei such as Sn isotopes under consideration, since, as we have seen in
§ 3, the ground-state correlation in the Gaussian-force case is mainly caused
by the F-type matrix elements between proton and neutron quasi-particle pairs.

A more interesting difference between the two cases is found when we

— ipt
MeV 5 — 52t
+
30 s
5|5
a3
5/2+
10
20t L 3t
5 (g7/2)
3wt
1.O}F
(s ')

Fig. 6(a) Case of the P4 QQ force with parameters;
G=0.205, Xo=Xx5°45/3=321.0 (MeV)

Fig. 6. Results of calculation for the dressed 3QP states with spin 7 < 5/2+ in 117Sn. They are
presented to show the breaking and persistency of the multiplet structures standing over the
1QP states with orbits 3s1,2, 2ds,2 and lgr,s. The presented level energies are those
measured from the correlated ground state. The numbers appearing on the transition arrows
give the B(Z£2) values in unit of ¢210-51 cm¢4, which are calculated with polarization charge
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compare the magnitudes of the inter-band transitions. These figures show
that many inter-band transitions compete with intra-band transitions. This
trend is clearly seen for both 117Sn and 119Sn in the quadrupole-force case
(Figs. 6(a) and 7(a) ). Similar trend is seen for 119Sn also in the Gaussian-
force case (Fig. 7(b)). On the other hand, the inter-band transitions are
relatively smaller for 117Sn in this case (Fig. 6(b) ). In this way, the nucleon-
number dependence of the inter-band transitions seems to be very sensitive
to the residual interaction adopted. (Similar property is seen in the relative
magnitudes among some inter-band transitions.) Such a situation is exactly
the expected one: Since the magnitude of the inter-band transition depends
sensitively on the relative magnitudes among many components of the ampli-
tudes of the dressed 3QP mode, the magnitude of the inter-band transition
tends to change significantly from one isotope to another isotope. The fine
structure of the relative magnitude among many components, in turn, depends
on the details of the residual interaction. (Note that the (%, v) dependence
is more complex in the Gaussian-force case than in the quadrupole-force case,
since, in the former case, G-type and F-type matrix elements enter into the

—_— T
MeV st

30

wt
(d%)
20}~ 772+
11 7sn
(b)
10—

Fig. 6(b) Case of the Gaussian force with parameters;
Vo=35 MeV, #0=1.720 fm.

S¢=1.0 and harmonic-oscillator-range parameter 42=1.041/3. For simplicity, the £2
transitions smaller than 1.0 (in case (a)) or 0.5 (in case (b)) and other higher-lying states are
omitted from the figure. The single-particle energies are taken from Ref. 5):

8(ds 2)=0.0, &(g7,2)=0.83, &(s1,2)=2.29, e&(k11,2)=3.53, &(ds2)=3.26. (allin MeV)
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Fig. 7(a) Case of the P+ QQ force with parameters;
G=0.227, X0=322.3. (MeV)

Fig. 7. Result of calculation for the dressed 3QP states with spin 7 < 5/2+ in 119Sn, Notations
are the same as in Fig. 6. The single-particle energies are taken from Ref. 5):
&(ds2)=0.0, &(g7,2)=0.75, e(51,2)=2.39, e(h11,2)=3.15, &(da 2)=2.87.
(all in MeV)

eigenvalue equation with different (%, v) dependence.)

Some inter £2 transitions between the s;,, and dg,; phonon-bands have
been measured by Stelson et al.¥ For the inter E2 transition between the
5/2+ state (belonging approximately to the dg, ‘‘phonon-band’) and the
1QP 1/2+ state, the data indicate that its magnitude drastically changes from
117Sn to 119Sn; i.e., the ratio B(E2; 5/2%3,» — 1/20)/B(E2; 5/2{3,/»—
3/27) is smaller than 0.1 in 117Sn, whereas it is about 0.9 in 119Sn.  Concerning
this specific transition, the result calculated by the Gaussian force agrees with
the data better than the result calculated by the quadrupole force. For the
inter £2 transitions from the 3/2% and 5/2* states (belonging approximately
to the sy, “phonon-band”) to the 1QP 3/2+ states, the calculated B(£2)
values, especially in the quadrupole-force case, seem to be larger than the
corresponding experimental data.#® We furthermore see that the splitting
of the “doublet” (3/2+ and 5/2%) is very small in the Gaussian-force case and
seems to agree better with the data. However, it does not necessarily imply
that the ‘“weak-coupling character” holds, since the inter-band transitions
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Fig. 7(b) Case of the Gaussian force with parameters;
Vo=35 MeV, 70=1.725 fm.

to the 1QP 7/2+ and 3/2+ states can become large even in this case. (See
Fig. 7(b).) Even when the inter-band transitions become relatively smaller
as in the case of Fig. 6(b), the structure of the excited states under consideration
differs from that of the odd-quasi-particle plus 2+ phonon; this property is
merely a consequence of the dominance of the component {vs;s(v%;1/9)%}
in this case. Thus, the definite conclusion for the properties of a particular
state should be made only after we carefully examine the parameters to be
adopted in the calculation. Furthermore, the coupling effect of the pairing-
collective excitations and also the coupling effect between the dressed 3QP-
and 1QP-modes should be taken into account, since the effects of such kinds
are expected to be appreciable for the states under consideration.®

§ 5. Further refinements

So far, we have seen that the effects of the other components which are
neglected in the P+ QQ force model are not appreciable, if the states of interest
are of sufficiently (quadrupole-) collective character. However, when we
consider a physical quantity which sensitively reflects such small components,
we must be careful in treating the fine details of such components and their
relations to the dominant components (i.e., here the quadrupole components).
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In this section, we briefly discuss such a situation by exemplifying the cases
of treating allowed Gamow-Teller (GT) beta decay between odd-mass nuclei
and of calculating the M1 moments.

The P4 QQ force model is by itself not capable of accounting for the
retardation of GT transition rates which are regularly observed in medium-
mass nuclei. It has been shown that the proton-neutron residual interaction
of charge-exchange and spin-flip type, i.e., (¢-0)(z-7) type, is responsible
for the hindrance of non-/-forbidden GT transition rates between one-quasi-
particle states.” The (@-0)(z-7) type residual interaction (which is called
the GT force hereafter) brings about the coupling of the “/"=1+" proton-
neutron quasi-particle pairs to the one-quasi-particle state. Although the
mixing of this kind of quasi-particle pairs in the one-quasi-particle state is
small, they contribute so coherently that their effects on the beta-decay rate
become significant.”? Thus, we are forced to simultaneously take account
of both the GT type correlation and the quadrupole correlation, since we are
interested in the GT transition between (non-deformed) odd-mass nuclei
exhibiting the quadrupole collective character.

A simple way of simultaneously treating these two kinds of correlations
may be to introduce the GT force in addition to the P+ QQ force. In the
method of quasi-particle-phonon-coupling theory, the “/"=1+" phonon
composed of proton-neutron quasi-particle pairs is introduced by treating the
GT force with the unlike-particle RPA (describing the odd-odd nuclei).®)
With this method, the effect of the GT force is treated independently to that
of the quadrupole force responsible for the low-lying 2+ phonon. Con-
sequently, a difficulty of this method arises from the non-commutability between
the (higher-lying) 1* phonon and the (low-lying) 2+ phonon. It should be
noted here that the excitation of the “/"=1*" quasi-particle pairs takes place
mostly in the same shell-model space as that for the ‘/"=2%" quasi-particle
pairs. (When the shell-model space is enlarged so as to include the spin-
orbit partners of all single-particle orbits in the filling major shell, the shell-
model space becomes exactly the same for these excitations.) The difficulty
in evaluating the GT matrix element (, for example, between the one-proton-
quasi-particle state and the one-neutron-quasi-particle-plus-one-2+-phonon
state,) is closely connected with the basic approximation of treating the two
correlations independently.® This is seen when we attempt to unambiguously
expand the GT transition operator in terms of the quasi-particle, 2¥ phonon
and 1* phonon operators which are assumed to be mutually commutable.

The difficulty of this kind can be overcome when we adopt the method
developed in Chap. 2. With this method, by introducing the GT force in
addition to the P4 QQ force, we can simply achieve the aim of treating the
GT and quadrupole correlations on an equal footing.!® When calculation
of this kind is performed by this method, the /"=1* proton-neutron quasi-
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particle pairs participate in the dressed 3QP mode as one of the constituents.
Then we have a new dressed 3QP state predominantly exhibiting the GT
correlated character at a higher energy region. On the other hand, the low-
lying dressed 3QP states which predominantly are of quadrupole character
remains essentially the same as in the P+ QQ force model except for a small
perturbative effect due to the GT force. Of course, the one-quasi-particle
state couples with both kinds of the dressed 3QP states. After diagonalizing
the effective Hamiltonian defined by (5-11) of Chap. 2 in the quasi-particle
new-Tamm-Dancoff space, we can evaluate any GT transition matrix element
between the obtained eigenstates by making use of the transcription rule
developed in § 5-Chap. 2. This procedure is exactly the same as in the case
of evaluating the electromagnetic transition matrix elements. As for the
difference of nucleon numbers between the initial and final states, we can take
it into account by using the method described in Appendix 6B. For details
of this kind of application, see Ref. 10).

An analogous situation occurs in the case of evaluating the /1 moments.
In the calculation of M1 moments, we used the effective spin ¢ factor, g¢!f,
in Chaps. 3 and 4. The use of ¢¢! is regarded as representing the effect of
coupling of the /"=1*% quasi-particle pairs to the one-quasi-particle mode
(i.e., the effect of M1 core polarization). As is well known, one of the im-
portant assumptions in using such an “effective quantity’’ is that the excitation
of the /"=1% quasi-particle pairs is approximately independent of the other
kind of excitations. On the other hand, we can explicitly take into account
such a kind of excitations by adopting, for example, a delta-function force
with suitable spin-dependence in the calculation.ll) In this case, the (M1-
type) /"=1% quasi-particle pairs participate in the dressed 3QP mode as one
of the constituents. Consequently, we will have a new dressed 3QP state
predominantly exhibiting the M1-type correlated character at a higher energy
region, and the 1QP state couples with this state. (In this calculation, of
course, the shell-model space should be chosen so as to include the spin-orbit
partners of all single-particle orbits in the filling major shell.) Then there
may be no need to use the “effective quantity”” such as ¢%'!. Hence, the
investigation in which this A/1-type correlation is explicitly taken into account
- together with the quadrupole correlation will enable us to examine the validity
of the use of the effective spin g factor g§*f. Of course, the introduction
of such small components (representing the /"=1+ quasi-particle pairs) will
bring about no essential change in the nature of the low-lying dressed 3QP
states which have been described in terms of the P+ QQ force model. We
can expect this trend from the results in §§2 and 3, since the calculation
with the use of the Gaussian force have already included such small com-
ponents. The detailed investigation into the direction remarked here remains
to be done.
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§6. Concluding remarks

With the use of a central force with Gaussian radial dependence, we
have investigated whether or not the nature of the dressed 3QP modes in the
P+ QQ force model is essentially dependent on the special properties of the
quadrupole force. It has been shown that the microscopic structure of the
dressed 3QP modes obtained by the Gaussian force is very similar to that
obtained by the P+ QQ force, at least for the low-excited states with positive
parity in Se isotopes. Thus we expect that the conclusions obtained in Chaps.
3, 4 and 5 do not always rely on the special properties of the quadrupole force
but possess more general significance. On the other hand, we also expect
that other types of correlation which cannot emerge from the P+ QQ force
model itself becomes appreciable when we consider, for example, the excited
state in which the dominant role of the quadrupole correlation is relatively
relaxed.

It should also be noted that the situations, in which the quadrupole
collectivity is dominant but the simple phonon-band character tends to be
broken, remain to be investigated in more details for both the P+ QQ force
case and the Gaussian-force case. Needless to say, the framework of the
proposed theory is general enough to be used with any residual interaction.
Thus, it is very interesting to investigate the relation between the effective
interaction and the microscopic structure of the dressed 3QP mode by adopting
more complex effective interactions than the P+ QQ force or the Gaussian
force without any exchange mixture.

Appendix 6A. Matrix elements of the secular equation
for the dressed 3QP modes in the coupled-
angular-momentum representation

Here, we give the explicit form of the matrix elements of the secular
equation for the dressed 3QP modes, Eq. (3:3) in Chap. 2, in the coupled-
angular-momentum representation. We can straightforwardly obtain the
explicit form by transforming the matrix elements (in the m-scheme) given
in Appendix 2B into the coupled-angular-momentum representation.

6A-1 The case of general interaction

In this representation, the creation operator of the dressed 3QP mode
given by Eq. (3:1) in Chap. 2 is represented as

1
Chix= :/‘?T ZaverPnr[ab([)ec] 2 mam,gmyM(jaj vmamgl M)

X (JjeMmy| IK )atahal,
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+ E(rs)cl‘ﬁ—‘nJIIL’:;(s/JZMmem’vM(jfjsum’ | /M) JjeMm,| IK )alaldl,
rs

1
+:/ﬁ X ardiaal/)a] Zmalma,Ma,M(Ja]amuxmaz |/M)
X (JjaMma,| IK) 7, 3/2,—1/2(a10903)
1 ..
+W Z(gi]c)‘ﬁg'l)[aa(]) e EmalmagmM(]a]ammmuz /M)

X (JjeMmy | IK)T 10(@1a9)a;

$ilab(/); c]
T 2 (ag;c \/ 1 + 8ab

@)
+ 2 rsres %QS—C] L mpmomyst( JrJsomo | JM) (JjeMm,| IK )alasa,

EmamBmyM(jaj vmamgl JM) (JjeMm, | IK )al'a&“ﬁ

g res$B7 s ) Syt JI) (JjoMim, | 1K)

X Tro(prpa)as
+ Z‘(g:a{ ¢(3)[r"{] ); s] ZmpmomyM(Jr]cumv JM) (JjsMm,| IK )av“ﬂaw

(6A-1)
where the Greek letters a=(a, ,), B, y,-- are used to designate the single-
particle states for neutrons (protons), and p=(r, m,), o=(s, m,),--- for protons
(neutrons). In the text, we have called, for example, the amplitudes
Yurlrs(J)e] and ¢F[rs(/ )] the components of the type {rs(2)vgys} when ¢
denotes the 1gy,, orbit for neutrons and /=2. (In this case, » and s denote

the orbits for protons.) The antisymmetric properties of the three-body
correlation amplitudes are then expressed as follows:

Yaus[ab())e)=Zarwe 1 Pr(ab([)c|a't' (] ) Wons[a'8'(J )],
ilaa(/)al= 2P (aa(])alaa(] Ya)$aa( ] )al,

Baa(); A= T2 IECD s 1y, 4, 6A2)

$it[ab(/]); cl=— (=Yt (1—8,;0)p[ba(/]); €,

¢ rs()); = — (=Yt 18 ;0@ s7(]); €],
where the projection operators P (ab(/)c|a'6’'(/')c") defined in Appendix 2A
are used.

The matrix elements in the coupled-angular-momentum representation
are explicitly given as follows:
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3D, [ab([)ela't'(J)e'V=(Eat Ep+ E)Pr(ab([)cla''(J')e")
+3 Lo Zalplel s Pr(@b([)eclarb(J)er) V' (a1612361; J187.78¢.¢!
X P(a161(/1)er1a’6'(J ")),

3D,[ab ()l 1= T EamadP @b el e

X V(f)(alblr'sl;j )8010',

301[”(./)5 ] rlsl(/,)"l] = (Er+ E;+ Ec)srr'sss’scc’all’
2

(¢ ) !l 10 pp!
IRl m LA A
..|_(—)fs+fc+f:’+fc’jjl2]//(2]"—[—1){]" Js j”}{]r’ ]s /,r} V(f)(sc.s"g' 7.,“)8"‘
Je L J"'Wje I ]
+(—_)fs+fc+js’+fc'+j,jj’2jn(zj”+1){-7"']8 ]H}{].g’ Jr’ f”} V(f)(scr'c' ;j")srs’
Jel ] Wje 1]
+(—)fs+7c+73'+jc’+jjj'2/,,(2]”—|—]_){].8]" j"}{].r’ ]s’]”} V(f)(rt‘s’c' ;]”)881"
Je I " WG I ]
+(__)js+jc+js,+jc,+j+jtjjlzj”(zj11+ 1){].8.71' ./”}{].8/ ]r’ _/”} V(f)(rcr,c’;/'l)sssl],
Je L' WG 1 ]

(6A-3a)

dilaa([)ala’a’ (J")a'l=E.P(aa([)ald’'a’ (] )a')
+Zan el Pilaa([)alaya,(J1)ay) V(arara,a,; J 1)3],f§8a,a;
X P(ayay(JDarla'a’'([)a’),
dilaa([)ala'a’(J"); 1= —V2 L ;,Pi(aa(] )alaa( ] )a)
Njartier 7 7 ja’ja’]'
<y 0

4/ )ala'¥ ;1= 2 e Pl Nalaal) o) V(e a; [ P,

} VIAa'caa; ]1)3aa,

dlaalPalrs(]'); 1 = s e elaal [ )V Plrsaas [ o
d1{aa()); cla'a’(]"); € 1= Eduardad s+ A= Yertetit 32 JJ' 8 1 @) "+ 1)

X {ja Ja /"}{].al e ]“} V(f)(dlt"ac;j“)aa,a/,
Je L J" e I ]
JajaJ

2 B Yy ’
deal); a8 ); )= gt [ (20 N et T o
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dlaa)y; clrs()")s 1= — g (= yersert {0 7o/
148 je I ]

d1[ab(]); €|’ (J'); €1=(Ea+t Ep— Ec)SaaSovdcerd 1 1

N 2
VA+8,5)A+84%)

} V(f)(r.mc; jl)sa,c’,

V‘f)(a'b'ab ’ /)8/}/8601,
r ’ 2
d[ab([); clrs(J"); ¢ ]=m VP(rsab; J)87r8ee,

ars(/); 5|7,3,(]'); "I]:(Er+Es—Ec)arr’ass'a'cc’sll’
N 2
‘/(1 + Srs) (l +6y 8 )

dilrr(]);elr’ v’ (J"); €1=E Brprdoerd j jr+2(—Yrtiettntie JJ'S5 1,(2] " +1)
Jrde J \[Ir T’
G T
Al e )= = 2=yt 77 T
Je I ]
dilre(]); s17'd'(J"); s'1=(E+ Ec— E5)8rp80e858 7 y1+2 VIr'c're; ])8 ) p/8ss,
(6A-3b)
A lab([)ela'a'(J)a' 1 =V3 DaiersPr(ab([)clab(J e )V P (ab,a'a’; ") o
X P/(a'a'(J")a'la'a'(J")a'),
A,[ab(])c!a'a'(/'); CI]= _‘/6Zmbw:/”Pl(ab(])c|axbx(]”)cx)<_)h,+jc,+j”.i'j"

X {]a’ i }V(b)<d1614'5';/ ")Beats

VIr's'rs; J)8778cers

[rengere 8,

freoetens 1%,

Je 7 j "’
Al[ab(/)clalbl(jl); c,]=m~_/_*———’g—,b,zmbmeI(ab(j)claibx<jl>cl) V(b)(axblalb';jl)scw’)
Al[ab(])tlrs(jl); CI]=#% Za:bxmpl(ab(j)claxbx(/l)cl) Vm)(“lbxrs‘;jl)smc':

Ailrs()ela'a’(J)a'l= JT%, V®rsa'a’; J)ew Pr(a'a’(J)a'|a'a'(J')a),

ja’ja’ /'
Je 7 ]
2

Al[rs(])‘:lalbl(jl); CI]=\/(1+8,.3) (1+8a’b’) V(b)<rsa,b';])8//’scc’y

A rs(J)ela’a'(J"); 1=~ 2 (=Yatietl ] VO(rsa'c'; J)ew
V1+8,,

vy r ’ 2 )
A[[?T(])Clr.? (j ); c]=‘/(1+8r8) (1+8r’8') V(b)(rsrs ;])8]]/8001,
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Alrs(Nelr'r’(J"); 1= J1+ s Yrtettnr s JJ

X2 A2/ +1) [{J; _'77: ;,,}{];,]],: ;:,} V®(scr'c"; J')8pp
S T e
Ars(Delr e (J; 1=~ ﬁ(—)ﬁﬂﬁf’f’/‘[{ﬁ g j} VO scr'e'; [
+ (—)/{’} j : ; } VO(rer'e /’)8“’}, (6A-3c)

where /=v2/+1. We have used the following notations for the matrix ele-
ments of the interaction:
VI abed; [)=— (ugtttsta+vavyvva)Glabed; )
—(ugvyrtcva+ veuyvug) F(abed; J)
+ (=Yt (vupt,vg+ ugvyvng) F(bacd; [),
V®(abed; )= — (squyvevg+ vavpuoung)Glabed; ])
+ (uavpv 4+ vartyucva) F (abed; J)
— (=Yt (vuyv g+ uqvyttevy) F (bacd; [),

(6A-4)

where the G and F type matrix elements are defined in Appendix 1A. In
the text, we have expressed, for example, F(rsaa; J) as F(rs(vgq,5)?; 2) when
a denotes the 14§, orbit for neutrons and /=2.
6A-2 The case of pairing-plus-quadrupole force

When we adopt the pairing-plus-quadrupole force, the matrix elements

are simply obtained from Eq. (6A-3) by the following replacement:

VI abed; J)=— VP (abed; ])
: (6A-5)
= —o5xQab)Q(cd)3 s,

where

Oab) == all 2 ¥ | B) (- vty
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Appendix 6B. Method of calculating transition matrix elements
between nuclei with different nucleon numbers?)

In the case of evaluating beta-decay matrix elements or nucleon-transfer
matrix elements, we must calculate the matrix elements between nuclei with
different nucleon numbers. Since the quasi-particle representation is intro-
duced by solving the BCS equations, i.e., (3:5) in Chap. 1, with given nucleon
numbers (proton and neutron numbers) corresponding to a specific nucleus
of interest, we must know the method of calculating transition matrix element
between the states expressed by different quasi-particle representations. Here,
within the intrinsic subspace in the quasi-spin space, we give a method suitable
for this purpose.

Since Bogoliubov transformation is nothing but the rotation of the co-
ordinate system around the y-axis in the quasi-spin space (composed of the
direct product of quasi-spin subspace defined in each single-particle orbit),
any quasi-particle representation is characterized by the set of rotation angles
0=(0,, b, ---), 0, being the rotation angle for the subspace in the orbit a.
(See Chap. 1.) The initial and final state vectors are therefore represented
by |I''D, 0% and |, ), respectively. Here, I'® and I'‘"> denote
the sets of quantum numbers characterizing the initial and final states, re-
spectively, and 6 and @ the corresponding sets of rotation angles.
In the intrinsic subspace (in the quasi-spin space), these states satisfy the
condition

S‘S!)(a)ll"‘“, 0(¢)>=S‘(_f)(a)|1"(f>’ 6> =0, (6B-1)

where superscript (¢) or (f) of the quasi-spin operator S_(z) denotes that it is
represented in terms of the quasi-particle representation corresponding to the
initial or final states, respectively. (See Chap. 1.)

Let us first notice that the initial state vector can also be expressed in the
quasi-particle representation corresponding to the final state as

l]"(i), 0(f)>:R<0(f>__0(i))|]"(i)’ 0<i)>’ (6B'2)

where R(@)=exp{iX0,54@)}. (Since Sy(a) is invariant under this trans-
formation, the superscript (7) or (f) is unnecessary for Sy(z).) The condition
(6B-1) for the initial state is then re-expressed as

SW(@) | TP, <75 =0 (6B-3)
for all $(z). Let O be the transition operator which is generally written as

0A=0A([€Ta], [L'E]) "ty [L“Y]y [CS]a "')
={aB | Olyd+-> cheh+-cyey.
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When O is expressed in terms of the quasi-particle operators in the represen-
tation corresponding to the final state, the transition matrix element under
consideration takes the following form:

KD, 900\ ID, o>
=D, 0‘f)|@([u&f)agf’*+v;f)agf)],
(40P +v‘cf)a§;f)7], ORGP — 60| D, 6>,
(6B-4)
where we have used the inverse transformation of (6B-2). In the above
expression, all quasi-particle operators refer to the representation corresponding
to the final state. By making full use of the conditions (6B-1) and (6B-3) with
the aid of the identity
exp[40,{S+(2)—S—(2)} /2]
=exp[S(a)tan(db,/2)]-exp[—2S(@)log cos(46,/2)]
X exp[—S_(a)tan(46,/2)], (6B-5)
we finally obtain the expression suitable for the present purpose:
<I"(f>, 0(f)|0|1"(1:)’ 0(i)>:<1"<f)’ 0|@|I"(t)’ 0>, (6B‘6)
O=O([u D(a)tat+ v as], -+,
[u(cf)dv+ ‘Z/(an@)-laI’]) . )'é
=G-O([uPai+vP D(@)as), -+,
[P D()~tay+v$Pal)], ) (6B-7)
with
G—exp[—2 ZuSo(@log D(a),
where D(a)=cos(40,/2)=uPuf+vPv, 40, being defined by 46,=03
—6.

In the right-hand side of Eq. (6B-6), we have omitted the superscript (f)
for the set of rotation angles @ and the quasi-particle operators; since, as is
easily proved by the same procedure as above, the set of rotation angles to
which we refer in evaluating the transition matrix element can be chosen
arbitrarily. Thus, by replacing O with the “effective transition operator”
O, we can exactly take account of the difference of nucleon numbers between
the initial and final states. In the actual calculations, it may be sufficient to

consider only the first order terms in 46,. Then, the effective operator o
takes much simplified form:
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O~O0([uPat+v{as), -, [u§ ‘a,+vPal], ). (6B-8)
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§ 1. Introduction

In the preceding chapters we have shown that the low-lying collective
excited states in spherical odd-mass nuclei can be successfully described in
terms of the dressed QP modes prescribed by the concept of transferred
seniority. Since the dressed #QP modes are defined in the “intrinsic space,”
which does not involve any /=O0-coupled quasi-particle pair, they are in-
dependent of the “collective” modes of pairing correlation within the NTD
approximation. In this chapter we investigate the coupling between such
independent modes of excitation.

Now, according to the canonical transformation method developed in
Chap. 1, we can regard the space of states in terms of quasi-particles as a
product space consisting of the “‘intrinsic’”’ space and the ‘“collective” (boson)
space. In this representation, the original quasi-particle interaction is classified
into three types: The first represents an interaction causing the mixing among
the “intrinsic’”’ states, the second among the “collective’ states and the last
between ‘‘collective’” and “‘intrinsic” states. As has been shown in §2 of
Chap. 2, the first-type interaction in the intrinsic space can furthermore be
divided into two parts, i.e., the constructive force which is responsible for
constructing the dressed #QP modes, and the interactive force which manifests
itself as the coupling among the different QP modes. What we have in-
vestigated in Part III as the coupling effect is nothing but the effect originating
from this interactive force.

The other new type of coupling effect may arise from the third-type
interaction which causes the mixing between the collective and intrinsic states.
Since the collective space involves all of the quantum fluctuations of the
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pairing field, i.e., the excitation modes of /=0-coupled quasi-particle pairs,
the third-type interaction manifests itself as a coupling between the pairing
vibrational modes and the dressed QP modes. In treating the mutual
interweaving of such composite modes of excitation, there are well-known
difficulties such as the overcompleteness in the degrees of freedom and the
violation of Pauli principle. However, the independency of the “collective”
pairing modes and the dressed #QP modes enables us to overcome these
difficulties.

The main purpose of this chapter is to investigate the formal structure
and physical implication of this coupling, leaving the detailed analysis of its
effect in comparison with experiment as a next subject.

§ 2. The pairing Hamiltonian in collective representation

The original quasi-particle interaction Hint given by Eq. (1:3:4)* may
be divided into two parts:

Hiny=H P+ H®, (2-1)
where the first-kind interaction H{Y, satisfies

[8(2)2, H{L]=0 for each orbit «, (2-2)
and the second-kind interaction is defined by

[S(a)?, H{Z:]#O0. 23)
Here 8(a)? is the quasi-spin operator of orbit «,

8(@2=S1(@)S(@)+So(@)2—S(a),

where S.(a) and So(a) are defined in Eq. (1-2:18). Since the quasi-spin
quantum number S(¢) is known to be related to the seniority number v, of
orbit & through

S@=5 @, (@=juty),

Egs. (2-2) and (2-3) imply that the first-kind interaction A {£; does not violate
the seniority number v, of each orbit, while the second-kind interaction
H®, changes the seniority number vg.

In this section, we investigate the coupling between the “‘collective”
and “intrinsic” degrees of freedom which originates from the first-kind inter-
action H{};. A typical example of the first-kind interaction is known to be
the pairing interaction. Therefore, we adopt the pairing Hamiltonian given

*) We cite the equations in different chapters by adding the chapter number to the first place of the
equation number.
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by Eq. (1B-2) in Appendix 1B as an illustrative example. As a matter of
convenience, we here leave the parameters (%, v,) of Bogoliubov trans-
formation undetermined, although it is custom to determine the parameters
(#qy vg) sO as to eliminate the ‘‘dangerous term” H{P in Eq. (1B-2).

Applying the canonical transformation (1-5-8), we obtain the pairing
Hamiltonian in the collective representation:

H?P=UPD 4+ HP+HP+H®,, 2-4)
UP=3,20, {(’%+ % GU%) vE— ‘%—”avad} )
H =3, {na(ud —v})+2u,v,4} {ﬁa+2ﬁ<a)} )

Hip)= a{z"laua”a—’ (u% - y%)A} {bL\/Qa,’" ﬁa-N(a)‘*‘\/-Qa_ﬁu"'N(a) ba},
H=HP+ HP -+ HP+HZo,

where
Ne=¢€s—A—GvE, Q,=jo+ ; y,  A=G X Rquav,,
N 25)
”a.=2m41aldm N(ﬂ)zbaba,
and

HP = — G o+ o302V Qu—ita— N (@) V o—i1,— N () by},

HP— 7Gzac(u‘zv§+vuuc){b* VQ@y—ha—N(a) b R,—r—N(0) +h.c},
— . (2:6)

HP =G Sa(1 — 3 )eeolbhV Qu—rg—N(a) {1+ 2N () +h.c],

HEZ exeh = =—G Zacua'yaucvc[ {na,+2N<a)} {”0+2N(5)} - {na+2N<“)} 8«w]

In this collective representation, the boson operators (b}, b,) and the quasi-
particle operators (al, a,) describe the collective and intrinsic degrees of
freedom respectively, and therefore their mutual interweaving is clearly
visualized. Needless to say, the quasi-particle number 7, of each orbit ¢ in
this representation must be the same as the seniority number v,, because of
the supplementary condition (1:6-10) for the ‘“‘intrinsic” state. In the case
of the Hamiltonian with the first-kind interaction satisfying (2- 2), therefore,
we always have

[72a, H®]=0, -7

which shows that the “intrinsic”’ state |@intr) must be an eigenstate of the
quasi-particle number 7, of each orbit, i.e.,

| pintr) =1 5(a), So(@)=—S(a); S(8), Se(6)=—S5@); ;') (2:8)

where I' denotes a set of additional quantum numbers to specify the intrinsic
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eigenstate. This implies that the Tamm-Dancoff basis vectors in the “intrinsic”
space discussed in §2-1 of Chap. 2 themselves become the intrinsic eigenstates
of the Hamiltonian with the first-kind interaction, and they are never mixed
with each other through their interweaving with collective pairing modes.

Now, according to the method developed in § 6 of Chap. 1, let us expand
the pairing Hamiltonian (2-4) in terms of the creation and annihilation ope-
rators of the pairing vibrations

X.=3, {lpu(a)btt + d’u(“)ba} ’

29)
X, =2, {‘pu(‘z)ba““ ‘?S#(a)btl} s

the details of which are given in Appendix 1B. Then, the expanded
Hamiltonian takes the form given by Eq. (1-6:7):

H® = e+ HP+HP, (210)
HBe—hp,
HP = S XU W+ XAR W),

HE= 1 5 AXLXUE )+ X XA )+ 2X L XKD ()}

where we have consistently neglected all terms which involve commutators
of H® with X}, (or X,) higher than double. The operators 4% only involve
the intrinsic degrees of freedom represented in terms of the quasi-particles and
are defined by Eq. (1-6-8). According to the same procedure as used in
deriving Eq. (1-6-14b), the pairing Hamiltonian (2:-10) can be effectively
reduced to the form

HP—=H®, +HP+HP, 11

HBu= HP— & s @$ @[ X [P, X))+

— 3 Dab @K, [X, HPNH[ED, X1, XL,
HP =3 AXL[X,, AP+ XA, X1},
HE= J S XL XX, [X, ZPT+ XX[A, X1, X1]
+2XLX,[X,, [HP, XI]}.

In the case of the pairing Hamiltonian, the commutators of A® with
X (or X,) which appear in Eq. (2-11) are easily calculated: Provided that
the supplementary condition (1-6-10) is always kept to be satisfied properly,
we obtain
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[X,, Z7®) =[P, X])]
=2l {‘)bu(a) - ¢u<a)} {2%%% - (u% - vtzl)j’} ‘/‘Qa — g , (2123')

a

. ‘il a1 ¢v
[X., [P, X1]]=(¢E, ¢5)[ . }[ }, (2-12b)
a d ¢

$]

\

’

D

[X., [X,, PN =[[AP, X]], Xl]=—(gF, 5){ ‘J{%} (212¢)
v d) g

where the matrices @’ and d’ are defined by

dap=2(E o — GuBv3)dap— G(uduy+ v3v3W(Qy—715) (Rp— 1)
213)

Gap =2Gu3v380p— G(udv% +v3ud W (R —724) (Rp—72)
with
J’EG > auava(ga - ﬁa):

. . (2-14)
Eo=n,(2 —v2)+2u,0,4".

At this step, let us self-consistently determine the parameters (u,, v,)
of Bogoliubov transformation and the amplitudes ($.(@), $.(@)) of the pairing
vibrational modes in Eq. (2:7). The parameters (#%,, v,) are determined, with
the aid of the intrinsic eigenstate (2-8), by the condition

<¢intl‘ I H&p) ! ¢intr> = O, (2' 15)

2"747'%7}0,"_ G(”% - UE)Zb('Qb—”b)%bvaO: (216)

which is just the gap equation with the blocking effects. The amplitudes
(fu(a), ¢u.(a)) are then determined in order to diagonalize the matrix

<¢intr| H(IZP | ¢intr>, i.e.,

d a g &
R [ T
—a —d ¢lz

(3|

where the ¢c-number matrices @’ and d’ are given by replacing the quasi-particle
number operator 7, in the matrices @’ and d’ with its eigenvalue 7, in the
intrinsic eigenstate (2-8). Equation (2-17) is just the eigenvalue equation
of the pairing vibrational modes with the blocking effects. Here it is worthy
of note that, in spite of the inclusion of the blocking effects, Eq. (2-17) certainly
has the zero-energy solution just as the usual eigenvalue equation (without
the blocking effects) does.

It is now clear that the main effects of the coupling between the ‘“‘collective”’
and “intrinsic’’ degrees of freedom, which originates from the first-kind
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interaction A {¥;, can be renormalized into both the quasi-particle field and
the pairing vibrational modes.

§3. Expressions of the Hamiltonian and electromagnetic
multipole operators in terms of pairing vibrational
modes and dressed nQP modes

In this section we develop a theory in which the mutual interweaving of
the “collective’” and “‘intrinsic’”’ degrees of freedom can be treated in terms
of the “‘collective’”’ pairing vibrational modes and the “intrinsic”’ dressed
7#QP modes. The independency of the pairing vibrational modes and the
dressed #QP modes (within the NTD approximation) enables us to overcome
the well-known difficulties in determining the coupling between composite
modes, such as the overcompleteness in the degrees of freedom and the violation
of Pauli principle.

3-1 Coupling Hamiltonian

Contrary to the first-kind interaction A {;, the second-kind interaction
H§®, changes the seniority number of each orbit. Hence the second-kind
interaction remarkably affects the structure of the “intrinsic’’ space, the basis
vectors of which are characterized by the seniority number v, of each orbit.
In fact, as shown in Part II, this kind of interaction constitutes the main part
of the quasi-particle interaction in the intrinsic Hamiltonian Hjutr given
by Eq. (1:6-14). In Part III we have investigated the various effects on the
structure of the “intrinsic” states, that are caused mainly by the second-kind
interaction, and shown that many properties of the spherical odd-mass nuclei
are characterized by these effects. Also in the coupling between the ‘col-
lective” and “intrinsic” degrees of freedom, we expect that the second-kind
interaction causes more complex effects than those originating from the first-
kind interaction.

When the second-kind interaction becomes effective, the eigenvector of
the quasi-spin operator (2:8) is no longer the eigenvector of the intrinsic space.
In this case, the coupling between the collective and intrinsic degrees of
freedom, which originates from the first-kind interaction, becomes difficult
to be simply renormalized into the quasi-particle field or the pairing vibrational
modes. Therefore, in this section we treat the original quasi-particle inter-
action as a whole, without insisting on such a separation of the interaction
into the first- and second-kind interactions.

We start our discussion with the collective representation of the original
Hamiltonian Z given by Eq. (1-6-14):

H —> const+ Heo1+ Hintr+ Heoupt,
Hcol= ZywuXLXu;
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Hue=H— ; Zonabu @)X, Z]+hc}

L S (X, Z 20 XTI

Heon=Su X120+ X.Z)+ & Tul2XLX[X,, Z)]
L XXX, Z+ X, X,[Z, X1]},

where Z denotes the interaction which is neglected in constructing the pairing
vibrational modes within the RPA, and where all terms which involve the
commutators of Z, (or Z}) with X}, (or X,) higher than single are neglected.
In § 5-2 of Chap. 2, we have given the transcription rule, by which any physical
operator depending only on the intrinsic degrees of freedom can be unambigu-
ously transcribed into the quasi-particle NTD space. With the aid of the
transcription rule, the intrinsic Hamiltonian Hiutr has already been expressed
in terms of the dressed QP modes (see § 5-3 of Chap. 2). Now we express
the coupling Hamiltonian Hcoup1 in terms of the pairing vibrational modes
and the dressed #»QP modes. The parts written by thin letters in the coupling
Hamiltonian Hcoup1 only involve the intrinsic degrees of freedom represented
in terms of the quasi-particle operators. Thus, with the aid of the transcrip-
tion rule, these parts can also be transcribed into the quasi-particle NTD
space as the intrinsic space: With the creation and annihilation operators of
the dressed #QP modes (Y1, V), we have

Heoupt —> ZSAS'A';L<¢0|Y8)\ZM YTs'/\’|(D0>(YTsA YS’A'Xu+h-C->
+ D aswimw{Pol| Yrl Xy Zu] Vg | P> X LY Y X,
1
-l_if 20 a8 N <(Do| YS/\[Z;L':XL] YE’/\’|¢0>(YT9>\ YS’A’Xu’Xu+ h.c.). (3'1>

The matrix elements in the above expression are then easily evaluated using
the transcription rule (2-5-8).

Thus, the original Hamiltonian is expressed in terms of the pairing
vibrational modes and the dressed #QP modes as follows:

H —> const+ Heo1+ Hintr+ Heoupr, (32a)
H(ZOI:Z/J.CUMXLXM,
Hintr: ZU_Eualaa—}‘ ZAU)/\YRY/\“}— Za,\Vint(a, A><Y1)‘\aa+az. Y/\)) (3.2b)

Heoupt = 3 o Eo() (X LA+ Xala,+ 230 Vint(u; A, A) (Y Yy X, +h.c.)
+ X o Vint(p; A, o) (Y@, Xu+hoc)+ 2o Vint(p; a, ) (aLY, X, +h.c.).

In the above expression we have adopted the same quasi-particle NTD sub-
space as employed in § 5 of Chap. 2, which consists of the 1QP and dressed
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3QP modes, and furthermore we have given explicitly the effects of lowest
order of the coupling between the collective and intrinsic degrees of freedom.
The explicit forms of E4(u) and Vint(w; ---) are given in Appendix 7A.

3-2 Effective electromagnetic multipole operators in collective-intrinsic-
coupled system

For the investigation of the system in which the collective and intrinsic
modes are coupled to each other, it is necessary to express physical operators
such as electromagnetic multipole operators in terms of the collective and
intrinsic modes of excitation. This is easily performed in the same way as
was done for the Hamiltonian. Any physical operator £ is first transformed
into the collective representation in terms of the pairing-vibration modes
(X1, X.):

= Ucar’ 13‘ U Eol
= F+ S A XUX,, F1+ X[F XL+ 3-3)

where Ueo is the canonical transformation defined by Eq. (1-5'8) and 2
denotes the operator extended into the extended quasi-spin space discussed
in §4 of Chap. 1. The first term depends only on the intrinsic degrees of
freedom represented in terms of the quasi-particle operators. Therefore, in
the same way as was done in § 5-3 of Chap. 2, the first term can be expressed
in terms of the dressed #QP modes by the use of the transcription rule. The
parts written by thin letters in the second term are composed of the quasi-
particle operators representing the intrinsic degrees of freedom. Consequently,
these parts can also be easily expressed in terms of the dressed #QP modes,
with the aid of the transcription rule (2:5-8). Here, we give the expression
for the case where the operator /' represent the electromagnetic multipole
operator O%: In this case, the term corresponding to the first term of Eq.
(3-3) has already been expressed by Eq. (2:5:14). For the corresponding
second term, we obtain

S XX, OE]+ X [0%), X
— Dol Polaf X, Of1ah| Pod> Xlalas
+<{ Py 2 [OF, X1]ah| DodalasX,}
+ Dl B | Vi[ X, OR) Y1/ o) XYY
+{By| Vi[O, X[V Doy VY X}, (3-42)
S A XX, OB+ X[0%, X 1T}
— Dol Dy| V)[X,, OF]al | Do) X Y {a,
+{By|a[ X, O Y] 1Po> XaL Y}
+ X audlDy| Y3[05, XMal|1Do>Ya X,
+{ By |20, X1 V}|Dopal Y\ X,}. (3-4b)
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The explicit forms of the matrix elements in the above expressions are given
in Appendix 7B.

Thus we have derived all necessary expressions for the Hamiltonian
and the electromagnetic multipole operators, in terms of the “collective”
pairing vibrational modes and the “‘intrinsic” dressed #»QP modes. In this
way, we have obtained a theory, by which we can systematically study the
structure of the coupling between the pairing vibrational modes and the
dressed #QP modes.

§4. Concluding remarks

We have studied some physical implications of the coupling between the
“collective’” and “intrinsic”’ degrees of freedom, according to the method
developed in § 6 of Chap. 1. In this method, all physical operators such as
the Hamiltonian and the electromagnetic multipole operators are expressed
in a form of expansion in terms of the creation and annihilation operators of
the pairing vibrational modes. When the interaction of the original Hamil-
tonian does not violate the seniority number v, of each orbit, the coupling
between the collective and intrinsic degrees of freedom becomes very simple.
We have shown by adopting the pairing Hamiltonian that the coupling can
be renormalized into both the quasi-particle field and the pairing vibrational
modes as the blocking effects. On the other hand, as shown in Part III, the
interaction which does change the seniority number v, of each orbit causes
various significant effects on the structure of the intrinsic states. Such a kind
of interaction causes also the coupling between the collective and intrinsic
degrees of freedom bringing about abundant effects on the structure of the
spherical odd-mass nuclei.

Since the dressed QP modes are defined in the intrinsic space, which does
not involve any /=0-coupled quasi-particle pair, they are independent of the
““collective’” modes of pairing correlation within the NTD approximation.
This independency of the dressed QP modes and the pairing vibrational modes
enables us to overcome the well-known difficulties in treating the mutual
interweaving of the composite modes, such as the overcompleteness in the
degrees of freedom and the violation of Pauli principle. Thus, using this
independency, we have developed a theory, by which the coupling between the
collective and the intrinsic degrees of freedom can be systematically studied
in terms of the interplay between the pairing vibrational modes and the dressed
7nQP modes.

Recent accumulation of various kinds of experimental data is illuminating
the structure of the couplings among composite modes of excitation. In the
light of experimental development, the method of mode-mode coupling becomes
one of hopeful approaches to understand the mechanism of the change in the
structure of nuclei. The ‘“collective’” pairing vibrational modes represent
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just the fluctuation of the ‘‘spherical”’ quasi-particle field. Hence, the
coupling between the ‘““collective’’ pairing vibrational modes and the “intrinsic”
dressed #QP modes is expected to provide a wealth of information on the
mechanism of the change of the ‘“‘spherical” quasi-particle field into, for
example, a ‘““‘deformed’ field. Thus, it is one of the subjects of growing
interest to systematically study the coupling between the pairing vibrational
modes and the dressed »QP modes in comparison with experimental data.

Appendix 7A. Coupling between pairing vibrational
modes and dressed nQP modes

We give the explicit forms of the matrix elements appearing in the
coupling Hamiltonian, Heoup1, defined by Eq. (3-2Db).

TA-1  Coupling originating from part Hy of original interaction

The coupling originating from the part Ay of the original interaction
Hint given by (1-3-4) is obtained by using the commutator of Ay with the
pairing vibrational mode X (or X,):

[(Hy, X1]=24 Ea(w)ite+ H x(0)+ Hyp(w), (7A-1)
H () =3 upys V x(1; afyd)alalasa, ,
Hy(W)y=3 opys{Vr1(s; ap78)alalalal+ V ya(p; afyd)aasasas},

where the following notations are used;

E(m)y=—V 2 T, [{Vy(e12200) + 2V (ae1085)} {thu(ere) —Pu(E1Z2)}], (TA-22)

1
Valp; aBy®)=— 75 e {Vi(r8a21)8g.,— Vi (y8BE1)80ss} Yuleres)

—{ V3 (aBye)8s,— V- (afd8)8ye,} Pu(8182)],  (TA-2b)
Vi (aBy8)=Vy(aByd)+ Vy(8ayB)— Vy(8Bya),

VVI(F‘; 0»13’73)5— J% e Vy(alg51s)8m“ Vy(aBe17)ds..} ‘/’u(slez), (7A'2C>

Vya(p; afyd)=— % Zerea{ Vi(0Ber?)ds,— Vi(aPer8)dye} du(erzs).  (TA-2d)

Here the amplitudes of the pairing vibrational modes, i.(e1e2) and ¢,(e1¢2), are
related to those defined by Eq. (1B-9) in Appendix 1B through

l/"M-($182) = (jejemslmeg | OO)![‘,,,(é) ’

bu(erea)=(Jesememe,100)$.(e),

and the matrix element of the original Hp-type interaction, Vy(aByd), are
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given after Eq. (1-3-4). In Eq. (7A-1), we have adopted the notations similar
to those for the original Hamiltonian, such as £,, Ay and H,, paying at-
tention to their formal similarity. However, it should be noted that, contrary
to the original Hamiltonian, the A y(u) and A, (u) are not hermitian and
hence the order of the indices of the matrix element V y(u; afyd) and the indices
¢ of Vi,i(u; aByd) have important meanings.

In the same way as in the case of the intrinsic Hamiltonian, the tran-
scription of the operator (7A-l) into the quasi-particle NTD space can be
easily performed by the use of the transcription rule (2:5:8). Using the
matrices D?, d? and A? defined in Appendix 2B, the matrix element Vint(u;
A, A) in Eq. (3:2b) is given by

Vint(}b; }\, X)=<¢o| Y,\[HY, XH Y;/](D0>

7 i ke A3
—(‘b"w{(—fw a L} Y

with the following replacements in the matrix elements of Df, d! and A?

(7=1,2):

EL > EJp), Vs > 2Vx(p; aByd), Viyi(ayd) = Vii(w; afys),
Via(aByd) = Vya(u; afyd). (TA-4)

TA-2  Coupling originating from parts Hy and Hy of original interaction

The coupling resulting from the parts Ay and /) of the original
interaction Hint is derived from the commutator of A x+ A, with X} (or X,):

[(Hx+Hy, X1] 2 Zagrs{Vyi(p; afyd)alalala, + Via(p; aByd)alazapa.t,
=Hy(w), (TA5)
where

Vip; aﬁ'yS) =-2/2% cresl Vx(aPyer)dseibu(ees)
—{V(aferd)+ Vi (e8aP)} 8, u(eita)], (TAGa)

VY2(”' > O'-B'}'S)Ez‘/j 2 5152[ VX(a/gyel)8852¢l‘(§1§2)
—{V(aBe1d)+ Vi (e186B)} 8. ipulercs)], (TA:6b)

and the matrix elements of the original Hy- and H,-type interactions,
Vx(aBy8) and V,(aPys), are given after Eq. (1-3-4). Needless to say, the
operator Hp(w) is not hermitian.

Paying attention to the formal similarity of A, (u) to Ay, we can express
the operator (7A-5) in terms of the 1QP and dressed 3QP modes, with the
aid of the transcription rule (2-5-8). Using the vector B(a) defined in
Appendix 2C, the matrix elements Vint(u; A, @) and Vint(u; a, A) in Eq. (3-2b)
are given by
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Vit(; A, 0)=<Py| YV\[H x+ H, X1]al| Do)
=(¢7, 7)-B(a), (TA-Ta)
Vint(}l«; a, }\)=<¢0 laa[HX‘|‘HVy XL] Y];. | Cbo>
=BT(a)-[ # } (7A-7b)
D

with the following replacements in the elements of B(a):

Vy1(aByd) = Vyi(w; afyd), Vya(afyd) > Viya(u; afys), (7TA-8)
for the former relation (7A-7a), and

Vyi(aByd) = Vya(w; afyd), Vya(aByd) > Vii(u; afys), (TA-9)
for the latter relation (7A-7b).

Appendix 7B. Matrix elements of electromagnetic multipole
operators in collective-intrinsic-coupled system

For the study of the system in which the collective and intrinsic modes
of excitation are coupled to each other, it is necessary to express the electro-
magnetic multipole operators in terms of the collective and intrinsic modes
of excitation. Here, we give the explicit forms of the matrix elements involved
in the expressions (3-4a) and (3-4b).

We first take the commutator of the electromagnetic operator O, with
the pairing vibrational mode X} (or X,):

(O, Xi1=C &)+ ZosOLit(s; af)alas, (7B-1a)
(0%, X{1=Das{OFu(u; eBalaht O5Pu(; aP)agas},  (7B-1b)

where 0%, and 0%, denote the first and second terms of 0% defined by
Eq. (1-5-12), respectively, and the following notations are used;

CEU=AT Do OFUere2) Whlere) Fhulerm)t 15T, (7B-2a)
(f“ ’ O'IB) :Fz F Z 16z {O(i) (gllé)suulﬁu(El%) =+ O(i) (gla>8552¢u<5152)} ’

(7B-2b)

Oh(t; 9B)= o Ters OF ae s~ OFU B b, (TB20)

O5ai3 B)=— iy T OFiep0— OEU Beucd ulests).  (TB:20)



196 A. Kuriyama, T. Marumori, K. Matsuyanagi, F. Sakata and T. Suzuki

Here we have used notations similar to the original electromagnetic multipole
matrix elements 0%)(af) and O$y(af) defined by Eq. (1:5-13). It should
be noted, however, that the time-reversal property of the quantities defined by
Eq. (7B-2) is different from that of the original matrix elements O%3,(aB)
and O%)(aB).

In the same way as was done in § 5-3 of Chap. 2, the operators (7B-la)
and (7B‘1b) can be easily expressed in terms of the 1QP and dressed 3QP
modes, because they involve only the intrinsic degrees of freedom represented
in terms of the quasi-particle operators. Thus, using the matrix elements
explicitly defined by Eq. (2D-3) in Appendix 2D, the matrix elements in
the expression (3-4) are given by

(DB Vi[OG, X 1]al|@p>=(D,| Vi FEal | Dy, (7B-3a)
(Poa,[OF, X1 VD> =L Py|a.F' Y|Py, (7B-3b)

(By|a[OFr, X 1)ah|Bo>=CENwB.s+ Dol a,FEyal| Do
— CE5()3ua+ OFi(w; o), (7B-3¢)
(Bo| V;[O%, XLV Y| Bod=CGi(wdp+ <Dy Y, EE, Y| Do>  (TB-3d)

with the following replacements in the matrix elements of A and F¢):
F2u(aP) = On(u; of),  Fi(a) > OFu; ab). (7B-4)

The other matrix elements in the expressions (3-4a) and (3:4b) are given in a
similar form.
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A new method treating the interplay of pairing and intrinsic modes of excitation is
proposed. In this method, the pairing mode associated with the J=0-coupled nucleon pairs
is represented by pairing bosons and the intrinsic mode characterized by the seniority
quantum number is explicitly treated by ideal quasi-particle operators. We obtain a closed
expression of the single-nucleon operator in terms of pairing bosons and ideal quasi-particles.
As a simple illustration, the superconducting system is treated by introducing the coherent
state of pairing bosons and the relation to the Bogoliubov transformation is discussed. The
relation between this method and the canonical transformation method with auxiliary variables
is also clarified.

§ 1. Introduction

Recent investigations on the anharmonicity effects in low-excited states in tran-
sitional even-even nuclei seem to suggest peculiar properties of the “two-phonon”
0* states:"® A typical example is the anomalous excited 0" states in Ge, Se and
Mo isotopes which appear in the vicinity of the one-phonon 2% states. Very re-
cently, Iwasaki, Marumori, Sakata and Takada® showed that the dressed four-
quasi-particle 0% states (which approximately correspond to the two-phonon 0F
states in the conventional phonon model) couple strongly to the pairing vibrational
states in nuclei with N or Z==40, and that this drastic coupling explains the special
lowering of the excited 0" states. They have also shown® that the concept of
quadrupole phonon is seriously broken down in some excited states if the pairing
degree of freedom is not excluded from the model space. Thus it becomes one
of the important subjects in the current nuclear study to develop the mode-mode
coupling theory which systematically deals with the interplay of the pairing and
quadrupole modes of excitation.

The microscopic investigation on the interplay of different modes of collective
excitation is in a very early stage. One of the reasons is due to the well-known
difficulties, i.e., the overcompleteness in the degrees of freedom and the violation
of the Pauli principle, which are essentially related to the composite nature of the

# A preliminary report of this work has been published in this journal, 55 (1976), 1680.
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collective modes of excitation. In recent years, however, interest has greatly in-
creased in the investigation to overcome such difficulties.” Under such circum-
stances, the authors with Kuriyama, Marumori and Sakata® have proposed a theory
which enables us to deal with mutual interweaving of pairing and intrinsic modes
of excitation. In this theory, using the canonical transformation method with aux-

iliary collective variables,”"®

the pairing mode of excitation associated with the
J=0-coupled quasi-particle pair is represented by the auxiliary bosons and the
intrinsic mode of excitation characterized by the seniority quantum number is de-
scribed in the quasi-particle state space independent of the quantum fluctuation of
the pairing field. Thus, in this theory we are not faced with the above-mentioned
difficulties.

The main purpose of this paper is to propose an alternative method which
can give a rigorous expression for the coupling Hamiltonian between the pairing
and intrinsic modes of excitation (a typical example of the latter is the quadrupole
mode). The essence of this method is to introduce explicitly the concept of “ideal
quasi-particles” which are independent of the pairing phase transition (from normal
to BCS vacuum) and hence independent of the quantum fluctuation of the pairing
field. It will be shown that the number of the ideal quasi-particles is equivalent
to the seniority number. Accordingly the ideal quasi-particle can be regarded as
substantiation of the concept of seniority. On the other hand, keeping the basic
idea of Ref. 6), we can represent the pairing degree of freedom by boson operators.
As is well known, the introduction of boson operators inevitably brings about the
unphysical effect: Since there is nothing to prevent operating again and again on
a state with a boson creation operator, the Pauli principle is eventually violated.
However, in this method we are assured to be always in the physical subspace
corresponding to the original fermion state space.

Whereas in Ref. 6) the Bogoliubov transformation was used from the outset,
we here develop the method starting from the original nucleon operators. Ac-
cordingly we can deal with both normal and superconductive nuclei in a unified
manner.

In § 2 the pairing and intrinsic degrees of freedom are defined through the
quasi-spin formalism.” In § 3, extending the idea of the boson expansion method
of Marumori and Yamamura,'” " we transcribe the nucleon system into the “ideal
boson-quasi-particle space” composed of the ideal quasi-particles and the pairing
bosons. Here, only the pairing degree of freedom is represented by the boson
operators and the intrinsic degree of freedom is explicitly treated in terms of the
ideal quasi-particle operators. In §4 the relation between this method and the
canonical transformation method of Marumori” used in Ref. 6) will be clarified.
In §5, as a simple illustration, we deal with the superconducting system by intro-
ducing the coherent state of pairing bosons and discuss the relation between the
ideal quasi-particle and the conventional quasi-particle defined by the Bogoliubov
transformation.
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§ 2. Pairing and intrinsic degrees of freedom in quasi-spin space

2-1. Quasi-spin space

Let us define the quasi-spin operators of the single-particle orbit a as

S.(@) = /% 3V (Gume juma,|00pch.ch, ,

2 LT
S_ (d) :/\/% n Zm <ja7na1janlagloo>cazc“1 >
1

Su(@ =1 (Deea= 0, L=iat @D

where ¢, and ¢, are the creation and annihilation operators of a nucleon in the
single-particle state @.® These operators then satisfy the same commutation rela-
tions as those of the angular-momentum operators:

[S:(@),5-(@)]1=25(), [Si(),S.(@)]==%8.@). (2-2)

The state vectots are specified by the quantum numbers S(a) and S;(a), which
are the eigenvalues of the quasi-spin S(a)’=S, (a)S-(a) +S,(a)?—S;(a) and its
projection S,(a), respectively. They span the quasi-spin subspace of the orbit a:

{IS(@), Se(a)>; 1Si(a) |=S(a)}. (2-3)

The physical meanings of the quantum numbers S(a) and S,;(a¢) are known to
be related simply to the seniority number and the nucleon number, respectively,
through the relations

S((Z) zf(‘ga—"‘a) and S0<a) :%<na_‘ga)? (24>

where «, and 7, stand for the seniority number and the nucleon number in the
orbit a, respectively.

With the quasi-spin operators (2-1) we can define irreducible tensor operators
in the quasi-spin subspace of the orbit a, as usual, by the commutation relations

[Se(@), The(@) =0T (a),
[S.@),Th(@]=VtTa) (kg +1) T} 1ui(a),

where T}, (a) is the g-component of an irreducible tensor of rank % The single-

2-5)

nucleon operators c,! and ¢z are then regarded as spinors in the quasi-spin subspace:
Tipin(a) =cit, T -1(@) =ca=( _>ja_maca . (2-6)

Using the Wigner-Eckart theorem, we thus obtain the following useful relations

* In this paper we adopt the spherical j-j coupling shell model and use the following nota-
tions : &= {1, lo, ja, Ma}, @={Na, la, jao» —Ma}, @= {4, Lo, jo} and f(&) = (=)7e"™e f(@), where f(a)
is an arbitrary function of a. The subscript =1, 2,--- of @ is used for distinguishing different
single-particle states within the same orbit a.
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for the matrix elements of the irreducible tensors:”
{(S(a), Si(a) | Ty (@) S (@), S (@)

_ S @8 @kalS@S@) g4y 87 (@) | Ty @S (@), S (@)
<S’ (LZ) S()”/ (a)kq/|S(a) SO// ((Z>> < ( )’ (d) | q ( ) | ((l)9 (((12>>7)

Since the quasi-spin operators in different orbits commute with each other,
the quasi-spin space for the general many j-shell case is simply expressed as the
direct product composed of the quasi-spin subspace of each orbit. Therefore, from
now on to §4, we discuss the case of a single j-shell and omit the subscript a for
the simplicity of notation.

2-2. Definition of pairing and intrinsic degrees of freedom

With the use of quasi-spin quantum numbers S and S,, state vectors in the
nucleon state space are generally denoted as |S, Sy; I, where I denotes a set of
other quantum numbers such as ordinary angular momentum. Here it should be
noted that the quasi-spin operators S* and S, commute with the ordinary angular-
momentum operators J. and J;. Now by the definition of the state |S, Sy= —.S; >
we obtain

S_|S, S,=—S;I'>=0, (2-8)

which means that there is no J=0-coupled nucleon pair in this state. Equation
(2-4), therefore, implies that the seniority number « coincides with the nucleon
number 7z in this state. Following Ref. 6), we hereafter say that a class of states
|S, So=—S;I"> involves only the ‘“‘intrinsic”’ degree of freedom. On the other
hand, a class of states |S=8£/2,S;; "> consists of only J=0-coupled nucleon pairs,
i.e., involves only the “pairing” degree of freedom. In general, the states |S52/2,
Sy==—S; 1" involve both “intrinsic” and “pairing” degrees of freedom.

Needless to say, the nucleon vacuum |vac) is the state with z=«=0 and
is given by

vacy=[S=8/2, Sy=—2/2; T>. (2-9)

§ 3. Transcription of the nucleon system into the
“ideal boson-quasi-particle space”

3-1. Introduction of “ideal boson-quasi-particle space”

In order to separate uniquely the pairing and intrinsic degrees of freedom in
the nucleon state space, we first introduce the “ideal boson-quasi-particle space”
and transcribe the original nucleon state space into this space. The basis vector
of the “ideal boson-quasi-particle space” is defined as the direct product state com-
posed of the “intrinsic” state |S, /") and pairing boson state |N):

S, Se=—=S+N; I")=IS,I")-|N), (3-1)
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where

1

N} VN!

(6H"10), |0)=0. (3-2)

Here the boson operators b' and b are introduced to represent the motion of
J=0-coupled nucleon pairs and the intrinsic state |S, I") is introduced to represent
the original nucleon state |S,S;=—S;I">. The space spanned by the intrinsic
states is called “intrinsic space” and the space spanned by the pairing boson states
is called “pairing space”. Thus, the “ideal boson-quasi-particle space” is the direct
product of these spaces and is spanned by the set of states

(S, So=—S+N;TY; S=0,1/2, ---, 2/2 and N=0,1,2, --- oo}. (3-3)

The original fermion space spanned by the nucleon states |S, Sy;/") is mapped
into the physical subspace of the ideal boson-quasi-particle space by the following
T-transformation:

2/2 N
T=3 3 318,85 1)<S, S T 3-4)

So=—

From the structure of this transformation, it is obvious that we have a one-to-one
correspondence between the original nucleon states and the direct product states

|S, Sy; Iy with |S;]<S belonging to the physical subspace in the ideal boson-quasi-
particle space, i.e.,

IS, So; I'Yy="T|S, So; I'>.  (|:S|=.5) (3-5)
The T-transformation satisfies the following properties:
TTT:g ES:Z_’S[S’ Sy IS, Sos I'| =1 (3-6)
in the nucleon state space, and
TT1=31 5 33 |8, 85 1S, S I|=Ps, 3:7)

where Pjs is the projection operator into the physical subspace in the ideal boson-
quasi-particle space. It is convenient to rewrite Pg as

Py=Y 1P|S, I)(S, T 3-8)
with
Pe=3 [N)(N]. 39

In this form, Pg can be regarded as the projector operating first to the intrinsic
states |S, I") and giving the “eigenvalue” P, which then operates to the pairing
space.

From the property (3-6), it is clear that any operator A in the nucleon state
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space is transcribed into the operator 4 in the ideal boson-quasi-particle space as
A—>A=TAT"
2/2 S

=23 2 2] Z S, 80 DNALS, S5 IS, S THES”, S5 17].(3-10)

8,87=0 I'T* 8,==8 8y’==58
3-2. Transcription of single-nucleon operators

Now we perform the transcription of single-nucleon operators ¢, into the
ideal boson-quasi-particle space. This is done in the following way:
ct=TcTT
2/2-1/2 s
=20 2 2488 IMe|S+1/2,8—1/2; "), So; I')

$=0 I'T’ Sg=—58
X{S+1/2,8—1/2; 1|
S
Z >0 LS, S Del|S—1/2,8,—1/2; IS, Sy; T
I'T’ So=—8+1
xX{S—-1/2,S,—1/2;I""|, (3-11)
where we have used the quasi-spin spinor property of the operator ¢,/. To extract

the pairing degree of freedom from the above matrix elements, we can utilize the
formula (2-7) and obtain

(S, S Ilegl|S+1/2, 8,-1/2;, I

S—S,+1 ' ’
“ogi1 S =S Iled|S+1/2, —S—1/2;, 17>,

=1/2

(S, Sy: Iledt|S—1/2, So—1/2, ">

—N/S+S<S Sy IealS—1/2, —S+1/2, I,

in which only the matrix elements of ¢,' and ¢z between the states satisfying the

condition Sy= —S§ appear. Consequently, Eq. (3-11) may be rewritten as
2/2-1/2

ed= S 53 SUNYNIIS, IS, — S5 Tle1S+1/2, —S—1/2, "

x(S+1/2,I |~/1—2S;1

2/2

3 -y s o

§=ip T2 F=1 .

XS, =S IMea|S—=1/2, —=S+1/2, 7"YS—1/2,. 1’|,
where we have used the definition S;=—S+N (see (3:1)). Let us here replace
the boson number N in the first term by the operator b'6 and (N—1|VN in the

second term by (N|b'. Furthermore let us define the
S operating on the intrinsic states through

SIS, I'y=S|S,I"y. (3-12)

quasi-spin operator’
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Then, making use of the projection operator (3-8), we finally arrive at the impor-
tant result:

b'b bt
o =Ps Q*N/l—ﬁ S a}. -1
c S{a 23+\/2Sa (3-13a)
In the same way, we obtain
cx=Tc;T"
b N/Wﬁlﬁ

=l—a —— 1—"—ay Ps= (¢5))' . .1

{—at o N 1-Tgan Pem (o) (3-13b)

Here we have introduced the creation and annihilation operators a,' and ay defined
in the intrinsic space as

aaTETinCaTTitl )

a&ETinc&TiE = (a&T)T (3 : 14)
with
2/2
TinEQ;IS,F»<S,SO:—S;FI.' (3-15)

3-3. Properties of the ideal quasi-particle operators a, and as

Using the similar procedure to in the preceding subsection, we can prove the
following “anticommutation relations” for the operators a,' and a, defined by
(3-14):

{auT> aa'T} + = {aa’ aa’} + =0 > (3 : 163-)
¢ 1

{aaa aa’f} + = 6&5&’ —dy 5§aﬁ’/ . (3 N 16b)

We can also show that the quasi-spin operator S defined by (3-12) is explicitly
written in terms of the number operator of the “particles” a,' and a, as

28=0-Y aja,=02—n. (3-17)

113

This relation implies that the number of the “particles”, a,' and ag, just coincides
with the seniority number «. Hence, we hereafter call these “particles” “ideal
quasi-particles”. The ideal quasi-particle operators possess all the properties neces-
sary for substantiation of the concept of seniority:

1) They cannot form a J=0-coupled pair,

Sataz =0. (3-18)

2) The number of their product cannot exceed £, i.e.,

alal,--al, =0 for n>Q. (3-19)
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3) They transfer a definite quasi-spin, i.e., senority,
[S,al]=—ta., [S, az]=}bas. (3-20)
Here it should be noted that the explicit knowledge of the intrinsic states |S, I")
is unnecessary in deriving Eqs. (3:16) ~(3-20). Furthermore, once these equa-
tions are set up, we can construct the intrinsic states from the operators a', without
using the defining equations (3-14) and (3-:15). This is shown in § 3-5.
3-4. Transcription of nucleon pair operators
Let us see how the products of nucleon operators c,' and ¢, are transcribed.
From Eq. (3:6) we have in general
T(AB)T'=TAT"TBTT", (3-21)
where A and B are arbitrary nucleon operators. Therefore, all necessary expres-
sions can be derived directly from the expression (3-13); for example, we obtain

TS, T1=13" elest =Psb'V2S —b'b .

TS Tt=1% 3 e, = V25 —b'b-bPs (3-22)
and for the nucleon number operator
T (mz cle)TT= ; cle,=Ps(n+2b'b). (3-23)
Here we have used the following properties of Psg:
[Ps, b'b] = [Pg, §]=0, (3-24)
a.'Ps=Ps.ipa), aiPs=Ps_paz, (3-25)
b'Ps=Ps.,,b", bPs=P;_,,b (3-26)
and
T (3-27)
Ps.vp, (k<0)
where

2/2
P§+k/zE§ ; Ps+k/2|S, T})((S, ]—'|

2/2 S+k

=32 Z‘S,So',r»«S,So;rl, (3-28)

§=0 T Sy=—8

% being an integer.

Formal structures of Egs. (3-13), (3:22) and (3:23) are very similar to
those given by Marshalek™ in the boson expansion method for odd and even
nuclear systems. However, it should be emphasized that the number of “ideal
quasi-particles” is here allowed to change from zero up to £, whereas in the boson
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expansion method the number of “odd particle” is restricted to zero or one. This
is because only the pairing degree of freedom (associated with the J=0-coupled
pairs) is represented by boson operators in our case.

3-5. Structure of the intrinsic space

Let us see the structure of the intrinsic space more explicitly. The nucleon
vacuum defined by (2-9) is mapped by the T-transformation as

Ivac)=T|vac)=|S=8/2, I'})| N=0)=[0)-10), (3-29)

where |0) and |0) represent the vacua for the ideal quasi-particles and pairing
bosons, respectively;

a.,0y=0, bJ0)=0. (3-30)

Using the property (3-21) of the 7-transformation, any nucleon state cf, ¢, «
cl,lvac)y is then transcribed into the state ¢f, ¢l, --- ¢l |vac). With the aid of the
expression (3-13) for the single-nucleon operator ¢,’, the latter state can be
represented as a linear combination of the product states

1, +
|k ccte -ty | N)) Eﬁ“iﬁ“j@' ~ag,|0)-|N) (3-31)
with 2=7n—2N2>=0 and 0XN=<2. Here |N) denote the pairing boson states which

are already orthonormalized.

In order to elucidate the physical meaning of the intrinsic states |k; a,ct, - ),
let us define the overlap Jl, as

Th(a' s aucty--ao) =Cks i/ a’ - a” [k -t (3-32)
As is evident from (3-16a) and (3-18), Jl, is an antisymmetric function with
respect to (@ ,---a;) and (aa,’---a;’) having the property

DI (e adiasa - a) =0, (3-33)

From the “anticommutation relations” (3-16), the following relation is derived by
mathematical induction:
o to_ k N : t
a.al,al,-al,= (=)aldl, -ala,+ kI (s ) Oue,al,al, al,

E(R—1) 5

_a&r%uzz (ot -ty { o al,al,al, + kal,alz-“almam}, (3-34)

where A stands for the antisymmetrizer defined by
1 =
Al -anf (e a) =2 35 (=) Ff (@) (3-35)
with >]p denoting the sum over all permutation P with respect to (i@, ),

and (—)% the parity of the permutation. Substituting (3-34) into the definition
(3-32), we obtain the recursion relation for Jl,:
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mk (a1/a2/’ . ’CY;C/ 3 QG Cﬁ;,;)
= A (s a) [6%41/5],6,1 (e’ oy’ e s+ aty)

k—1

L, S/ RN A= ] 3.36
2(!2_1_2 /C) kl(azas s & aty) ( )

From this recursion relation we obtain the explicit expressions for the overlap Jl;;
for example,

Il (Ch/; CKI) = 6a1a1’ 5

N 1. o
3/12 (Ofl,sz, 5 Oﬁlaz) = <_}ZZ (a1a2> LJQ (Ch/afg/) {6a1al/0a2a’2’ - ”@‘Oﬁlazoal’a[} s

373 (Ch/Ct’z/a/s/; a’lazas) = (a1a2a3> A (al/a2/a3/) {6a1a1’6a2a2'6a3a3’

Jay ™ o
- QTHO&M?O&{M’O%&S’} ’
Ny () e’ o’ s ancesasen) = A (caceasee) A (o’ a’ e’ o) {&M,é‘a?az,(?aaaa,@mé,

3 > Y JaY 3
6d1u20 &,'a»’o asag’o agey’

6 3¢ 6&1/,12/6&3’11,’} ’
02 : Taemn @2
ete. (3-37)

</2

With the aid of (3:36), we can furthermore prove the following relation by
induction:

Z jzk (al/az/ . .ak/; a,ll/az// .. .a}c//> mk (a,l//az// . 'ak”; s 'ak)

a ey ag”
:ﬂ/Zh‘(al/az/'”akl; Q0 ) (3-38)

This indicates that the overlap Jl, are nothing but the matrix elements of the
projection operator P which removes all the J=0-coupled components from the
k particle states. In fact, the coupled-angular-momentum representations of Egs.
(3-37) exactly coincide with the projection operators given in Ref. 13). Therefore,
the orthonormal basis of the intrinsic space is obtained by diagonalizing the overlap
J1i; the eigenvector with the eigenvalue -1 is the ordinary coefficients of fractional
parentage in the seniority coupling scheme.

Now it is easily seen from Egs. (3-33), (3:34) and (3-36) that
P“(cl,cl, el [vac)

= Z 3zk (aldg"'ak; al/az/"'ak/) CLI'CLZ""CL;:’

aydy ey

=al,al, -ailvac) . (3-39)
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This relation shows that the % ideal quasi-particle state is equivalent to the nucleon
state projected to have a definite seniority «=*k.

§4. Relation to the canonical transformation method
with auxiliary variables

In this section we show the relation between the method proposed in § 3 and
the canonical transformation method with auxiliary variables used in Ref. 6).%

4-1. Canonical transformation U into collective representation

In the use of the canonical transformation method with auxiliary variables,
we first introduce boson operators &' and b in the original fermion space and
characterize the state vectors in the quasi-spin space by

5, 8i= =S84 Ny = 1018, 5= =), 4D

5|8, Sy=—S8>=0. 4.2)

As is discussed in Ref. 6), such an introduction of the boson operators is made
in terms of the Holstein-Primakoff representation,™ but inevitably requires the

extension of the quasi-spin space in such a way that the allowed values of S,
become infinite:

{|S?SO>1S0:;S’ _S+1>> +OO} (4'3)

Secondly, we introduce redundant bosons (i.e., auxiliary bosons) b' and b which
are independent of the nucleon operators (c.!, c.) and the boson operators (&', 0):

[b, c./]=[b",c.]=[b",0"]=[b",06]=0. (4-4)

In order to compensate the over-completeness in the degrees of freedom due to
the introduction of the auxiliary bosons, we impose on the state vectors a sup-
plementary condition

bb| 7> =0, (4-5)

which physically implies that we are only considering the subspace with no auxil-
iary bosons.

At this stage, let us define the following canonical transformation:**
U=exp % (b'b—0b'D). (4-6)

The following relations are then easily derived:

® In this paper the boson operators represent the J=0-coupled nucleon pairs, whereas in
Ref. 6) they are used for representing the J=0-coupled Bogoliubov quasi-particle pairs. Needless
to say, the proof given in this section holds regardless of such a difference.

#9 The equivalence between the U of (4:6) and the Ucq of Ref. 6) is shown in the Appendix.
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UbtU*'=b*, UbU'=b,
Ub"U'=—-b", UbU'=-b. 4-7)

This implies that, in the representation after the canonical transformation which
we call “collective representation”, the boson operators (bf,5) are completely re-
placed by the auxiliary bosons (b, b). On the other hand, Eq. (4-5) becomes

after the canonical transformation as
b'o\¥) =0, |¥)=U|?>. (4-8)

By comparing this supplementary condition with Eq. (4-2), we can see that in
the collective representation the degree of freedom associated with the nucleon
operators merely describes the intrinsic modes of the system (recall the definition
of intrinsic modes in § 2-2). Thus, the Hilbert space in this representation may
be characterized as the direct product of the boson space (associated with the
auxiliary bosons b' and b) and the intrinsic space composed of the “intrinsic”’ states
|S, Sy=—S)>; The basis vectors can be represented as

S, 8, =5+ M) =IND-1S, 8= =) = (0710)-15, §i= =8 (49
By identifying the auxiliary bosons b' with those introduced in § 3, we can here
notice the similarity between these basis vectors and those defined by (3:1) in
the “ideal boson-quasi-particle space”.

An arbitrary nucleon operator A is transformed by U as follows:

) k
UAU- 1= Y Agﬂfﬁ@i , (4-10)
K l=0 k! !
where
A= ([0, [b, - [b, [, [, - [bF, AT]---])™. (4-11)
k [

Here the upper index “in” denotes that the degree of freedom associated with

the boson operators (%, 5) is completely removed from the operator in the paren-
thesis. Explicitly, it is written down as follows:

(O>m — mi ( — bi)m

=0 !

[b’ [b, [[)’ [[7’!, [bT’ [b’r, O]] ](b_>‘n R <4.12)

m 7

where O stands for an arbitrary nucleon operator. In fact, we can directly prove
that

[0y, 6']=[(O)", 6] =0. (4-13)

Therefore, carrying out the inverse transformation to (4-10), we obtain

co ) T\ K . l
A=U(UAUHU= 31 Al (Z];) '(_zi@" (4.14)
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4-2. Relation between the T- and U-transformations
With the aid of Eqgs. (4-1) and (4-14), we can rewrite the transcribed form
of an arbitrary nucleon operator A as follows:
2/2 28 287

TAT'= >3 33 3% 3[S,I)IN)

8,8’=0 I'r” N=0 N’=0

_ g. @NV . in(b]‘)lc (—b)l (b+ v r Q. ’ ’ ’
x (S, S’erk,lZ:oA“ 0 i \/N/T]S, S IS, T |(N].

(4-15)
Here we have used the fact that the set of quantum numbers I specifying the
nucleon state together with the quasi-spin quantum numbers S and S, is not
affected at all by the U-transformation. In the matrix element of Eq. (4-15),
let us extract the part dependent on &' and 4, and replace it with the matrix
element (N|(b)*(—b)!|N")/kl. Then Eq. (4-15) becomes

2/2

TATT:S S’/ =0 FZI‘/ kiols, ]—'>><S, MS’ ]—'iAlkl”S/’ _-S/, I—',><<S/’ r,|
s 2, DY (—b) e
30 3 N B vy v
= 0 BN
2/2 )
= 3 SUPS, ICS, —S; TIUAU IS, =S/ TS, I Py
= P, (UAU ) T3Py, (4-16)

where we have used Eq. (4-10) and the projection operators Pg and Pg are defined
by (3-8) and (3-9), respectively. In this equation, T}, is defined by (3-15) and
merely denotes the one-to-one correspondence between the intrinsic state [S, ")
and the nucleon state |S, —S;7">. Note here that, in the transformed operator
UAU™, the pairing degree of freedom is completely replaced by the auxiliary
bosons. Thus the 7T-transformation is equivalent to the U-transformation, aside
from the fact that the former automatically cuts down the “unphysical states”
with N >2S in the pairing boson space. Here it may be worth emphasizing that
in the use of the T-transformation it is unnecessary to introduce the boson oper-
ators 6 and b in the original fermion space.

§ 5. BCS approximation and pairing vibrational modes

5-1. Relation between the Bogoliubov quasi-particle and the ideal quasi-parti-
cle

It is very important to clarify the similarities and differences between the
conventional Bogoliubov quasi-particle and the ideal quasi-particle defined by (3-14).
For this purpose, let us consider the superconductive nuclei in which pairing phase
transition takes place. In this case, we replace the pairing boson operators b,
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and b, with their expectation values in the pairing space as follows:¥
b (b ="25,0,,
b <b.> =250, (5-1)

where v, is a parameter. This means that we are considering the coherent state
of pairing bosons as the ground state in the pairing space. In (5-1) we have
expressed the expectation values as dependent on the quasi-spin operators S, so
that we can include the blocking effect due to the excitation of ideal quasi-particles.
(Note that S, operates on the inirinsic states.) If we neglect the projection
operator Pg, the expression (3:13) for the single-nucleon operators in the “ideal
boson-quasi-particle space” is reduced to

ct=vV1—vla +v.ax,
o= —veat +V1—vlas, (5-2)
which is just the same form as the Bogoliubov transformation.

In spite of the above-mentioned similarity to the Bogoliubov transformation,
the following difference should be emphasized: In our case, the symmetry breaking
due to the pairing phase transition takes place only in the pairing space so that
the concept of ideal quasi-particle is completely independent of the phase tran-
sition.

As is well known, one of the important motives for introducing the quasi-
particle basis in the BCS theory is to characterize the excited states in terms of
the seniority number in such a way that the number of quasi-particles is equivalent
to the seniority. In a rigorous sense, however, the quasi-particle defined by the
Bogoliubov transformation cannot be regarded as carrying a definite seniority. This
is because the Bogoliubov quasi-particle can form a J=0-coupled pair which carries
no seniority number and represents the fluctuation of the pairing field. On the
other hand, the ideal quasi-particle introduced in this paper is completely independ-
ent of the fluctuation of the pairing field. Hence they are forbidden to form a
J=0-coupled pair (recall Eq. (3-18)). Thus the ideal quasi-particle can be regard-
ed, in a rigorous semse, as substantiation of the seniority concept.

5-2. Pairing vibrational modes

In order to illustrate simply how we treat the dynamical problems, we here
take up the case of the conventional pairing Hamiltonian. A more general case

will be treated in a forthcoming paper. The pairing Hamiltonian is given by
H=3(c,~Delea—G 2 8. (@) S_ (D), (5-3)
@ ab

where ¢,, 1 and G denote the single-particle energy, the chemical potential and the

* In this section we deal with the case of many j-shell. Therefore subscripts a, b,--+ are
used for distinguishing different orbits. It is easily seen that the ideal quasi-particles in different
orbits obey the ordinary anticommutation relations.
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strength of the pairing force, respectively.
After the transcription into the ideal boson-quasi-particle space, the pairing
Hamiltonian becomes

H->THT'=P;HP;,
H=3 (c,~ 1) {fa+2b.1b} —G 3 b,V28,—b,'b, V28, —b,'by by, (5-4)
a ab
where fi,=>, a./a, and 2S5, =82,—fi,. To deal with the situation in which the pair-

ing phase transition takes place, we adopt the following transformation introducing
new boson operators &,' and &q:%

baT: \/E‘UG_{_éaT ) ba: \/Eava"l—éa . (55>

It is clear that the new boson operators (&,',4,) represent the effect of the
fluctuation of the pairing field. Let us expand the square root in (5-4) into the
power series of £7'% and take up the terms in the Hamiltonian to the order of
unity. Then we obtain

H= W+ Hintr + Hpair ) <5 N 6)

W=312(e,—2) 20— 4/G, (5-6a)

Hye =3 (= 2+ 224 )i, (5-6b)
a U,

Hpair = }Ip@xzr + Hp(alzr + Hp(gir ) (5 : 66)

Q=3[ 2c0— D bbat 20¥5 2 (0. bl
a U,
b Qut 007 (bl bader) }], (5-6d)

Hl:%)lr: Z \/‘Qa {2ua7}a (Ea - }L) - (uaz - vug) A} (éaT + Aa) H (5 : 66)

a Ua

M= -G 5 oy @u = o) b0 )
ab

2u,

X {(2ub2—‘z'bz>£b_'UbZébT}, (56f)
where 4=G > ,2.u,v, and u,=+1—v,2. At this stage, we determine the para-
meters v, so as to minimize the constant term W:

oW _ 29,

Lugv,(ea—2) — (' —v,) 4} =0. 57
0ve Ug

This condition coincides with the one for eliminating the ‘“dangerous term” HS

* In Eq. (5-5) we can replace the constant term with V28, v, as was done in (5-1). In
this case we obtain the BCS equation and the pairing vibrational modes in which the blocking
effect is already taken into account.”



Interplay of Pairing and Intrinsic Modes of Excitation in Nuclei. I 1171

and yields the ordinary BCS gap equation. Then Hiy, becomes
Hntr = Z Eaﬁa 5 Ea = “/(eal )52 IA_Z 5 (5 ‘ 8)

which implies that the energy of the ideal quasi-particle is the same as that of
the Bogoliubov quasi-particle. Next, let us diagonalize HS): by the following uni-
tary transformation:

BaT = él’.é'(lT + ﬁaéa b
f= b ), = —wy). (5-9)

Then H), becomes to be

o4
Hi= =3 5Bt 3 2E816. (5-10)

and H(). reduces to the form
Hw= —G 2V 0V 2B — 0 Ba {n*Bo—vi’By'}, (5-11)

which coincides with the conventional residual interaction generating the pairing
vibrational modes in the RPA. In this way we obtain from H,,, the usual pairing
vibrational modes including a special zero-energy solution, while the terms higher
than the order of unity give the anharmonicity effects of the pairing vibrational
modes and the coupling to the intrinsic modes represented by the ideal quasi-
particle operators (a., a.).

§ 6. Concluding remarks

By introducing the concept of “ideal boson-quasi-particle space” we have achiev-
ed the exact separation of pairing and intrinsic degrees of freedom. In particular,
we have obtained the closed expression of the single-nucleon operator in terms of
the pairing bosons and the ‘“ideal quasi-particles”. Since the multiplication law is
always assured in the 7-transformation, any product of the nucleon operators
can be transcribed in a systematic way into the ideal boson-quasi-particle space.
Thus the interplay of the pairing and intrinsic modes of excitation can be explicitly
treated in this space. Furthermore, since the concept of ideal quasi-particle is
completely independent of the pairing phase transition, we can treat both the
normal and superconducting systems in a unified way. This point will be con-
cretely developed in a forthcoming paper.

In this paper, we have developed the method starting from the original nucleon
operators and treated the superconducting system by introducing the coherent state
of the pairing bosons. Of course, the method is also applicable to the case starting
with the Bogoliubov quasi-particle. In this case we must transcribe the Bogoliubov
quasi-particle into the ideal boson-quasi-particle space. Then we will again reach
the concept of ideal quasi-particle. This point will also be discussed in a forthcom-
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ing paper.
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Appendix
The equivalence between the U defined by (4-6) and the canonical transfor-
mation U, of Ref.6) is seen as a special case of the following identities:

U(G)zexp(i-tan%-pq)exp(~i'sin 0-pq)exp<i-tan%-pq> (A-1a)

=exp i0(pq—pq) (A-1b)
=exp 0(b'6—b'b) (A-1c)

=exp <tan % . bTb> exp(—sin 0-07b) exp <tan % . b"b) R (A-1d)

where 0 is a parameter and the canonical conjugate variables are related to the
boson operators through

1 z
P—=—— b+bT, - b*bT,
b= ( ), a 73 ( )
1
V2
For 0=n/2, (A-1la) reduces to U, of Ref.6) while (A-1lc) reduces to our U.

It is interesting to note that U() may be regarded as the operator generating
the rotation 20 around the y-axis in the abstract spin space composed of two kinds

p=—_(b+bY), q:j—'_z_@—b*). (A-2)

of boson.”®
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Structure of Yrast Traps

T. Dgssing. K. Neergird, K. Matsuyanagi, and Hsi-Chen Chang(®

The Niels Bohv Institute, University of Copenhagen, DK-2100 Copenhagen @, Denmark
(Received 11 July 1977)

An “island” of isomeric states with high multiplicities found in a recent experiment
are interpreted as “yrast traps” in deformed nuclei rotating around a symmetry axis.
According to our interpretation, a group of trap states for neutron numbers around 82
and angular momenta below 40 is connected with the nuclear shell structure for weakly
deformed potentials. A second group of traps situated in a more narrow region around
neutron number 82 and with angular momentum around 50 is attributed to the occurence

of shell structure for a ratio of axes 2:3.

Recently a search for high-spin isomeric states
(“yrast traps”) was reported! by a joint group
from the Niels Bohr Institute and Gesellschaft
fiir Schwerionenforschung. Several isomers with
multiplicities between 8 and 20 were found, all
belonging to nuclei situated in a specific part of
the investigated area of the N-Z plane around the
neutron number 82,

According to a suggestion® by Bohr and Mottel-
son, yrast traps may appear when, for certain
values of the angular momentum, the single-par-
ticle potential becomes axially symmetric with
respect to the spin direction. The reason is that,
with this symmetry of the potential, there is no
organization of the individual levels of the yrast
region into rotational bands parallel to the yrast
line. The electromagnetic transitions which car-
ry off angular momentum have single-particle
character. Under such circumstances a given
configuration of the independent-particle system
may be unable to decay through a transition with
low multipolarity and in this way becomes a trap.

Numerical calculations based on this idea were
carried out®* by the Lund-Warsaw group. The
present theoretical “search” for trap states is
more extensive as to the set of nuclei and defor-
mations considered and covers the experimental-
ly investigated region.” We find as a result of
this search new classes of traps connected with
strongly oblate and weakly prolate shapes, which
were not predicted in the earlier studies. We al-
so attempt to get a deeper qualitative insight into
the general structure of the trap configurations.

For most even nuclei in the experimentally in-
vestigated area we have calculated by the Strutin-
sky method®%® the energy at various angular mo-
menta as a function of the deformation parame-
ters s and y. Our deformation space and parame-
ters are the same as in Ref. 6. In particular, a
Woods -Saxon single-particle potential was used.

From the results of this calculation we have ex-

tracted the difference between the minimal energy
with restriction to shapes that rotate around the
symmetry axis and the minimal energy for the
total deformation space. The shapes with rota-
tion around the symmetry axis included in the de-
formation space extend from weakly prolate
shapes (ratio of axes 1,08:1) through the spherical
shape to very strongly oblate shapes (ratio of
axes 1:2.5). The energy differences calculated in
this way are shown in Fig. 1 on a N-Z diagram
for a number of angular momenta. In the white
areas of the diagram the equilibrium shape cor-
responds to rotation around the symmetry axis;
hence, for these values of N, Z, and I, traps are
possible. We define a trap state in the same way
as in Ref. 3, namely, as a state which cannot de-
cay through an E1, M1, E2, or M2 single-parti-
cle transition. In addition we require that it be
an yrast state. For all combinations of N, Z,

and I within the white areas of Fig. 1 we search
for independent-particle states which satisfy
these conditions. The angular momenta of theo-
retical trap states found in this way are shown as
encircled numbers in Fig, 1.

The theoretical traps fall into several groups
with different deformation. For I<40 and neutron
numbers 80, 84-88, and 114, the deformation is
small (8<0.15). The shape is prolate for N=80
and 114, and oblate for N=84-88. The traps cal-
culated by the Lund-Warsaw group®# all belong to
the small oblate deformation. For neutron num-
bers 82-84 we predict a number of traps belong-
ing to a strongly oblate shape with ratio of axes
approximately equal to 2:3 (8=0.4). This defor-
mation comes into play only for 7>40 and all the-
oretical traps with 7>40 belong to it. The groups
mentioned so far (except for N=114) build up an
“island” of theoretical traps with N=80-88, Z
=62-70, the contour of which approximately cor-
responds to that of the empirical “island.”! Our
model gives traps also in the adjacent odd-A nu-
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FIG. 1. Contour diagram of the minimal energy with
restriction to shape that rotate around the symmetry
axis measured relative to the minimal energy in the
whole p—y plane. This energy is shown for even-even
nuclei and for the three values 20, 40, and 60 of the an-
gular momentum. The encircled numbers are the spins
of theoretical traps, grouped into the inervals 20 <7
=29, 30=I=<49, and I=50. The dashed line shows the
approximate contour of the empirical “island” of iso-
mers (Ref. 1) assuming that four neutrons were evapor-
ated.

clei.

For neutron numbers 98-110 the deformation
is oblate with 8§=0.25. Some of the nuclei belong-
ing to this group were investigated in the experi-
ment, but no isomers were found. A possible
reason is that when the hexadecapole degree of
freedom is taken into account most of these nu-
clei may be found to have at the spin values con-
sidered a shape deviating from oblate symmetry.
In fact, in calculations” for /=0 the hexadecapole
degree of freedom is decisive for producing pro-
late shapes of the W—Os nuclei.

The main pattern in the occurence of trap states
can be understood in terms of simple systematic
features of the single-particle spectrum. As a
first example we consider the case of weakly ob-
late shapes (N=84-88, Z=64-70),
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FIG. 2. Single-neutron energies e for the oblate de-
formation f=0.1 vs the angular momentum $ with re-
spect to the symmetry axis. The quantum numbers
given are those of the spherical level towards which
each state converges in the limit of f— 0. The neutron
Fermi surfaces of the trap configurations in the region
N=84—-88, Z=64—"T70 are shown.

The single-particle energies for neutrons in
the oblate potential with deformation g=0.1 are
plotted in Fig. 2 versus the angular-momentum
projection. (Note that by definition § is the pro-
jection on the direction of the total angular mo-
mentum, and therefore the sum of single-parti-
cle Q is equal to 1.) In a corresponding plot for
the spherical potential the dots would lie on hori-
zontal lines labeled by the quantum numbers (nlj).
Turning on an oblate deformation these lines are
bent into a bell shape. Still, for the small defor-
mation 8=0.1 a gap remains at N=82,

Configurations with neutron numbers N=84-86,
88 and increasing angular momentum can be ob-
tained by filling particles into levels above the
N=82 gap. None of the configurations shown can
decay with a single-particle transition without
changing the angular momentum by at least three
units. Hence they are trap configurations. The
neutron configurations formed in this way are in-
volved in the trap states for N=84-88, Z=64-170.
They are composed of particles in high-{ mem-
bers of the subshells f, ,, g, and i,,.

In order to have a trap state of the total nuclear
system both the neutrons and the protons must be
in trap configurations. The proton configurations
for Z=64-170 in the weakly oblate potential are
built from particles in high-$ 4., ,, states and
holes in low-Q d,,, states. Quite generally, when
holes are involved in a trap configuration for an
oblate shape they must have low §2. (This rule
may be inferred from a study of the neutron spec-
tum in Fig. 2.)



VoLUME 39, NUMBER 22

PHYSICAL REVIEW LETTERS

28 NOVEMBER 1977

T T T o T T T . . T T T o T T T
-5F ° °
. Nep™2 e e, .
IR N841-36
: 3 N-82,1=27
: e e * N80120
1ok o Nyl oo it
o 0
0 ° N=781-11
. .
@ — N=76
¢ ¢ s Ny=I0
B
-5 o o . 7
Nsp=9 .

ot
lo -
MO =
N
S

FIG. 3. Single-neutron energies for the oblate defor-
mation =0.40. The closed points belong to even val-
ues of the shell quantum number N; and the open
points to odd Nyy,. The Fermi surfaces discussed in the
text are shown.

For a prolate potential we can make a similar
discussion exchanging the words “particle” and
“hole.” Prolate configurations involving high-
members of the #,,,, and 4,;,, shells enter the
traps with N=80 and N=114. Generally, however,
the dominance of orbits with low j in the upper
end of the major shells makes the prolate single-
particle spectra less suitable for building traps.

The neutron configurations discussed above for
the small oblate deformation have a structure
similar to that of known isomers above 2*®Pb com-
posed of particles in aligned spherical orbits
with large j. The special stability of these aligned
configurations is usually discussed in terms of
the properties of the residual interaction.®

It is worth noting that in fact the density distri-
bution of such a configuration is oblate with sym-
metry axis along the direction of the total angular
momentum. If holes are added to the aligned con-
figuration the particle-hole interaction favors
hole states having low density along the “equator”
thus contributing to the oblateness of the total
density. In the present model the special stabil-
ity of this type of configurations results from the
lowering of the energies of the high-{; particles
and low-§ holes in an oblate potential. The rela-
tion between the two approaches will be further
discussed in a separate publication.®

The trap states for N=82 and 84, Z=62-"0,
and I =44 exhibit another single-particle struc-

ture of particular interest. These nuclei aquire
at 7 ~50 a strongly oblate shape with a ratio of
axes close to 2:3. The occurence of this deforma-
tion appears to be connected with the shell struc-
ture associated with the quantum number' N
=3n,+2n,, where n, and n, are the usual asymp-
totic quantum numbers describing the number of
oscillations parallel and perpendicular to the
symmetry axis. As shown in Fig. 3, the neutron
number N=176 completes the N, =10 shell, and
above N="T6 we get trap configurations with N="78,
80, 82, and 84, similar to those described above
for the small oblate deformation. Among these,
only the N=82 and 84 configurations have a suf-
ficient neutron spin to come into play at I~50.
They can, for Z=62-70, combine with proton
configurations analogous to those discussed above
for the weakly oblate case being built from a few
particles in high-Q states with N;,=11 and 12,

and several holes in low-Q states with N, =10.

The systematics of the 2:3 shell structure
points to the possible existence of similar traps
connected with the completion of other shells
with even value of N, for example, for nucleon
numbers above 48 (N, =8) or 114 (N, =12).
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Abstract: The isomeric states in Po, At and Rn isotopes are described as independent particle states in a
deformed potential which is symmetric with respect to the direction of the angular momentum.
The known parts of the yrast lines of these nuclei are found to be well described by the model.
In particular all observed isomeric states are reproduced as *“‘traps”. The variation of the shape
along the yrast line is studied. In most of the nuclei considered a gradual rise of oblate deformation
takes place. This can be understood from simple qualitative considerations. The relation of the
present approach to a description within the spherical shell model with residual interactions is
discussed.

1. Introduction

Within the last few years there has been a remarkable progress in the study of
isomeric states with large angular momenta.

A classical example of such a state, known for about fifteen years !), is the 45 s
isomer in 2!2Po with spin and parity 16* or 18*. Although the exact structure of this
state remains uncertain, all suggested interpretations ?3) agree in so far as they
involve an alignment of the angular momenta of the valence particles. Extensive
experimental work carried out in the seventies has shown that the region of nuclei
with a few particles or holes in excess of the double-closed-shell 2°8Pb core is indeed
rich in isomeric states with such a structure. The highest spin of an isomer in this
category so far observed is J = 30, measured recently %) in 2'2Rn.

Another group of high-spin isomers is constituted by the ““K-isomers” observed
in well-deformed nuclei. The 4 s and 31 y isomers °) in ! 78Hf, which can be interpreted
as respectively a K™ = 8~ and a K™ = 16" band head, are classical examples of
isomers of this kind. Also this family has been considerably extended within the last
few years. Thus, the highest spin of an isomer in this category is now J = 22 measured
[ref. ©)] in !7°Hf.

An important step forward was taken with the introduction of an experimental
technique which enables one to scan a large area of the N-Z plane for the appearance

! On leave of absence from Department of Physics Kyoto University, Kyoto, Japan.
" Present address: Max-Planck-Institut fiir Kernphysik, Heidelberg, West-Germany.
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of high-spin isomeric states. Using this technique, Pedersen et al., employing the
facilities of the Gesellschaft fiir Schwerionenforschung, Darmstadt, were able to
make the first experimental verification 7) of the existence of an “island” of isomers
with multiplicities 10-20 in the region of neutron deficient isotopes of light rare earth
elements. [Some single isomers belonging to the island were found independent-
ly 26-27) by other groups.] The likelihood of the appearance of high-spin isomers in
this region had been suggested earlier by Anderson et al. ®) on the basis of calcu-
lations within a deformed independent particle model of yrast states.

In a previous paper °), we analysed the structure of the “‘trap configurations”
described by the model of Anderson er al. This analysis revealed the close relationship
between the presumable structure of most of the isomers of the Darmstadt experi-
ment and that of the afore-mentioned isomers in the region of 2°®Pb. It is therefore
natural to raise the question to what extent the same model is able to reproduce the
properties of these well-known isomers. An answer to this question is of obvious
importance for the degree of confidence one could have in predictions based on this
model in other regions of the periodic table.

In the present paper, we apply the independent particle model in a calculation of
the yrast spectra of Po, At and Rn. Apart from examining the ability of the model in
reproducing the experimental data, we aim at shedding light on the mutual relation-
ships between angular momentum alignment, deformation and shell structure. In
particular, we discuss the implications of the fact that in the independent particle
model the isomers in the 2°®Pb region have finite (but small) deformations. It will
be shown that in fact the deformation energy is the factor which in this model
stabilizes the isomeric configurations. The variation of the deformation along the
yrast line is examined and interpreted in terms of simple qualitative considerations.

Conventionally, the spectroscopic properties of nuclei in the vicinity of >°*Pb are
discussed in terms of the spherical shell model with residual interactions. Some
calculations based on this approach have been able to account for the measured
excitation energies with an accuracy which is extraordinary in nuclear physics. [See
ref. 19) and references therein.] The relation of the present approach to the spherical
shell model is a recurrent theme in our paper.

In particular we attempt to identify the parts of the shell-model residual inter-
action energy which are taken into account through the deformation energy in the
independent particle model.

Calculations similar to ours for the nucleus 2'2Rn were performed '!) by Leander.
His detailed assumptions deviate somewhat from those employed in the present
paper. Aberg has investigated '?) the applicability of the deformed independent
particle model to the description of the K-isomers in ‘72~ '8°Hf.
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2. Model
2.1. BASIC PRINCIPLES

The deformed independent particle model of yrast states in the regime of axial
symmetry with respect to the direction of the angular momentum is discussed in
detail in the original paper by Anderson et al. ). The extension of this model by
inclusion of pairing was considered by Cerkashi et al. ). For completeness we give
below a brief account of its basic principles. The explicit formulas may be found in
the papers quoted above.

The model deals with independent particle configurations in an axially symmetric
deformed potential. The sum of single-particle angular momenta along the symmetry
axis is taken as a measure of the total angular momentum of the nucleus. The energy
is calculated by the Strutinsky method '#). In our case, this amounts to evaluating
in the BCS approximation the independent particle plus pairing energy blocking the
levels occupied by unpaired particles. From this the smooth energy of the ground-
state configuration is subtracted and replaced by the liquid drop energy. As shown
in ref. 2°) this is a correct procedure for the Woods-Saxon potential where the average
increase of energy, as a function of the angular momentum, closely corresponds to a
rigid rotation of a homogeneous ellipsoid with the same deformation.

The deformation is determined separately for each configuration so as to yield
the minimal energy.

2.2. SINGLE-PARTICLE ENERGIES

As a model of the single-particle field we use the deformed Woods-Saxon potential
as defined by Pashkevich !°) with the parameters suggested by Pauli '¢). The
deformation space is restricted to purely ellipsoidal shapes and is thus described by
the single parameter ¢ = 3(¢—1)/(2¢+1), where ¢ denotes the ratio between the
distance of the “poles” and the diameter of the “‘equator”.

It is well known ') that in this model the empirical single-particle energies in
208pp are reproduced only with an accuracy. of 1-2 MeV. Since the calculated yrast
spectra are very sensitive to the single-particle energies, we modify in the vicinity of
the Z = 82 and N = 126 gaps the Woods-Saxon energies so as to have for ¢ = 0
the empirical values. This is done by means of constant shifts independent of the
deformation.

2.3. PAIRING FORCE

The strength parameters G, and G, of the pairing force are determined by the
average gap method '*) applied to the ground-state configuration of the nucleus
considered. For the average gap we use the conventional value 4 = 124~% MeV.



256 K. MATSUYANAGI et al.
2.4, LIQUID DROP MODEL

Following Myers and Swiatecki ') we use as expression for the liquid drop energy
(in MeV)

. N-2Z\? z?
E,p, = 1794394% <1—1.7826 (T) )(Bs—1)+0.7053;ﬁ(BC—1), 2.1)

where Bg and B denote, respectively, the surface and the Coulomb potential energy
in units of the spherical values assuming a homogeneous charge distribution bounded
by a sharp ellipsoidal surface.

3. Application to the 2°®Pb region

3.1. DEFORMATION AND DEFORMATION ENERGY

Fig. 1 shows for a couple of independent particle configurations the dependence of
the energy on the deformation parameter ¢. As examples we have chosen the con-
figurations corresponding to two alternative interpretations of the 45 s isomer in
212po given in the literature. Thus for example the configuration indicated by
J® = 16" consists of the 2°8Pb core plus two protons in the states emerging from the
spherical orbitals hy, m = 7 and 3, and two neutrons in the states emerging
from g,, m = ] and 4. In other words it is equal in the limit ¢ - 0 to the
shell-model state ) (n(hy)*v(g5)%)=ps = 16+ 16- In @ similar way the configuration
indicated by J* = 18" converges in the spherical limit into the shell-model state 3
(n(h%)zv(g;i%)b* M=18*18"

One sees in these examples various characteristic features. In both cases the
equilibrium deformation is oblate and of the order g ~ —0.03 (respectively,
gy = —0.025 and ¢, = —0.035 in the two cases). The energy gained by distorting

212p4 -LI 0

E [(MeV]

'
-0.05 0.00
€

Fig. 1. Calculated energies of two possible configurations of the 45 s isomer in *'?Po plotted against
deformation. The configurations are described in subsect. 3.1. Energies are measured relative to the
energy of the spherical liquid drop.
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the spherical shape by this amount is of the order 1 MeV (respectively 0.52 MeV
and 0.88 MeV). These features may be qualitatively understood in terms of simple
considerations related to Rainwater’s arguments '#) for the appearance of deformed
shapes between the closed spherical shells.

If we neglect the pairing energy we can write in a good approximation for small
deformations (e} < 0.05)

Ele) = E¥(e)— EV(0)

. (3.1
= (L Ce+4C,"e
Here the first term involves a summation over the particles and holes of the con-
figuration {i} considered. The coefficients C; are given by

L (defe) m? _l>
Ci=2 (?> = (ji(j,-+1) A (-2

where e,(g) denotes the single-particle energy, and the upper and lower sign refers to
respectively particles and holes. These expressions are valid since neither the smooth
part of the independent particle energy in the ground-state configuration nor the
liquid drop energy contribution to the linear term in the Taylor expansion of E{!(e).
In (3.2) m, is the projection of the single-particle angular momentum on the symmetry
axis, and j; is the usual angular momentum quantum number in the limit ¢ — 0.
The factors «;, which are related to the radial matrix elements of the gradient of the
single-particle potential, have positive values of the order 30 MeV (see fig. 2). The
coefficient C§' has values of the order of 1-2 GeV, reflecting mainly the stiffness
of the 2°8Pb core. Thus for the doubly closed shell configuration C, = 1.6 GeV,
while in aligned valence configurations (see below), the extra particles contribute
typically 0.1-0.2 GeV.

From (3.1) we get the following expressions for the equilibrium deformation &,
and corresponding deformation energy E, ¢(g,):

&0 = _(Z C)/Co, (3.3)

E,.ileg) = _%COS(Z) = —(Z C,.)Z/ZCO. (34

These expressions are seen to reproduce the sign and order of magnitude of both
quantities found by the exact calculation.

The simple equations (3.2)-(3.4) enable one to make additional conclusions.
Consider for definiteness a nucleus with a few particles in excess of the closed shells.
A large total angular momentum is obtained in the aligned configurations, i.e. in
configurations where the unpaired particles occupy within each subshell a number of
states with the maximally possible values of m. The configurations in 2*?Po considered
above are examples of such aligned configurations. Using the valence particles the
nucleus can build up in this way angular momenta up to a certain maximum.
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In order to get higher values of the angular momentum it is necessary to involve
particle-hole excitations of the core. The largest additional angular momentum due
to a particle-hole pair is obtained when both the particle and the hole have large
values of m. However, we see from (3.2) that this combination leads to a cancelation
in the numerator of (3.4). Therefore such configurations tend to be non-yrast. From
an energetical point of view it is more favorable to combine particles with large m
and holes withm ~ 0.

The configurations composed of particles with large m and holes with m ~ 0
are therefore expected to play a significant role in the yrast spectra of nuclei with
particles in excess of 2°®Pb. From (3.3) we expect such configurations to have an
oblate equilibrium deformation. Furthermore, since both the deformation and the
angular momentum are increasing functions of the number of particle-hole pairs
involved, the deformation is expected to increase along the yrast line. In nuclei
below the closed shells we expect a similar trend, except that there the deformations
are prolate. [This shows that the trends discussed above are genuine effects of the
shell structure. Incidentally, the trend towards increasing oblate deformation with
increasing angular momentum found in the nuclei above the closed shells resembles
that of a classical liquid drop '®). However, the contribution of the classical forces
to the equilibration of the shape in these states is negligible. ]

As shown in ref. °) the configurations giving rise to yrast traps for weakly deformed
oblate shapes have exactly the afore-mentioned structure composed of aligned
particles and holes with m &= 0. In the examples considered in sect. 4 we shall see
that indeed the yrast states of this kind are often traps. We define here a trap in the
same way as in previous works ®), namely as a configuration which cannot decay by
an E1, M1, E2 or M2 single-particle transition. Usually, these yrast states are also,
in the terminology of Andersson et al. ®), “optimal”, i.e. their configurations are
obtained by occupying all single-particle states below a titled Fermi surface in the
single-particle states below a titled Fermi surface in the plot of single-particle ener-
gies against m. (See e.g. fig. ).

In the cases considered in sect. 4 the holes are often produced by emptying the p,
neutron orbital. The large quadratic term in the dependence of the energy of this
orbital on ¢ (see fig. 2) then enhances the trend towards oblate deformations, since
it gives a negative contribution to the stiffness parameter CJ'.

With increasing deformation the discussion in terms of particles and holes relative
to the spherical closed shells gradually looses sense, and it becomes more relevant
to consider the shell closures in the deformed potential like those with neutron
numbers 124, 120 and 114, indicated in fig. 2. The emptying of the p, orbital men-
tioned above may thus alternatively be viewed as a transition to a regime of p_rticle
configurations relative to the neutron shell closure at N = 124. In a similar way the
configurations with particles above the N = 120 and N = 114 gaps are expected to
enter the yrast spectra of somewhat more neutron deficient nuclei than those con-
sidered in the present paper. The rather narrow gap at ¢ * —03 and N = 114 is
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Fig. 2. Neutron single-particle energies in the Woods-Saxon potential.

analogous to the N = 76 gap discussed in ref. ®). As shown there such deformed
shell closures may give rise to trap configurations with a structure very similar to
that discussed above. The consideration of such strongly deformed states is, how-
ever, beyond the scope of the present study.

3.2. ANGULAR MOMENTUM

Following the prescription of Andersson et al. ®) we take the sum of single-particle
angular momenta along the symmetry axis of the average potential as a measure of
the total angular momentum of the system (cf. subsect. 2.1). This could correspond
an interpretation of the states described by the model as band heads of rotational
bands.

Evidently this interpretation is not meaningful for small deformations. This does
not, however, cause any problems as far as aligned configurations are concerned.

Evidently this interpretation is not meaningful for small deformations. This does
not, however, cause any problems as far as aligned configurations are concerned.
In these configurations we have by definition M = Y m, = J,,,, where J,_, is the
maximal angular momentum that can be built from the particles in the spherical
subshells occupied in the limit ¢ — 0. As seen in the examples discussed in the
beginning of subsect. 3.1 the deformed configuration converges in this case into a
spherical state with the good angular momentum J = J_, = M.
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The non-aligned configurations (M < J,_,,) have in the limit ¢ — 0 wave functions
corresponding to a distribution of J in the interval M < J < J_,,. It cannot be gener-
ally assumed that the component with J/ = M is the dominating component of this
wave function. In some cases it even does not exist. Since, however, we consider in the
following mostly states for which it causes no troubles to assume J = M, we adopt
in the present paper this conventional assumption of the model considered. In the
few cases where this leads to manifestly spurious results we make a comment.

3.3. DEFORMATION ENERGIES OF SIMPLE CONFIGURATIONS

In the absence of pairing the excitation energies calculated by our model in the
limit ¢ — 0 are equal to the unpérturbed excitation energies of the spherical shell
model. Hence, apart from a constant depending only on the nucleus considered,
the deformation energy of a given configuration corresponds to the shell-model
interaction energy. It is therefore interesting to make a comparison of these quantities.

In the present section we consider some simple two-particle and particle-hole
configurations. Thus in fig. 3 we show the empirical interaction matrix elements in
the shell-model configurations n(h,)?, n(hyi,) and n(hy)v(i)~' as extracted *°)
from the spectra of ?!°Po and 2°®Bi. For comparison the deformation energy at
equilibrium of the corresponding independent particle configurations are also shown.
(For J < J,,,, the configuration with lowest energy built from states in the relevant
subshells is taken.)

Obvious differences between the behaviour of the two quantities are seen in fig. 3.
We notice in particular:

(1) The T = 1 interaction is generally weak, except in the pairing force channel
Ji = ja» J = 0. Furthermore it has a repulsive component. The T = 0 interaction
is much stronger and attractive. On the other hand, the deformation energy is practic-
ally charge independent. In particular it always has a minimum for J = J_,,, even
in the case T = 1, j, = j,, in which case the shell-model interaction is maximally
repulsive for J = J,,.
(i) The particle-hole interaction in the multiplet n(h,)v(i J’i)‘1 is repulsive and
strongly peaked at J = J,;. and J = J_,.. The deformation energy has a weak
variation and is (by definition) always negative.

(iii) The shell-model interaction energy exhibits when considered as a function of
J a staggering, which has no counterpart in the deformation energy.

It is instructive, however, to consider the average of the T = 0 and T = 1 particle-
particle interactions,

I7 = %VT=O+%VT=1 = %(VPP+ Vpn)’ (3.5)

corresponding to the isoscalar part of the particle-hole interaction. The behaviour
of ¥, in the configuration hsi,, is shown in fig. 3a. Averaging out the staggering,
the behaviour of 7, is seen to be amazingly close to that of E,(¢,). In configurations
other than h,i,, the situation is similar.
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Making a somewhat ambitious extrapolation from these simple configurations
one might expect the deformation energy to account for the major part of the shell-
model interaction energy in configuration. which:

(i) Consist of aligned particles (holes) in a possible combination with holes
(particles) with m x 0, so that the attraction between aligned particles is maximally
exploited and the strongly repulsive channels of an aligned or anti-aligned particle
and hole avoided. This is the typical structure of trap configurations.

(ii) Involve approximately equally many particles or holes of both kinds so that
the isospin dependence of the shell-model residual interaction is averaged out.
This situation is generally approached at higher angular momenta, since in this
limit the particles of both kinds tend to contribute equally to the total spin.

In the examples studied in sect. 4 we shall see indeed a confirmation of these
expectations.

It could be noticed that most of the left-out components of the two-body force
are repulsive and therefore do not contribute to the stabilization of isomeric con-
figurations.

3.4. PAIRING

Due to the blocking of unpaired levels in the BCS calculation the pairing gaps are
rapidly decreasing functions of the angular momentum. For the nuclei considered
in the present paper pairing is usually completely absent in configurations with
seniority < 2. Hence the essential role of pairing in our calculations consist in
lowering the energy of configurations with seniority S 2 (typically the ground
states) relative to the rest of the spectrum.

When present the pairing energy should be added to the deformation energies for
a relevant comparison with the interaction energies in the spherical shell-model (see
e.g. fig. 3b).

4. Examples

4.1. THE NUCLEI 2°°-2!°Pg AND ?'°-2!'A¢

In figs. 4 and 5 we show a comparison between calculated and empirical yrast levels
of the nuclei 299-21°Po and 2!9-2!! At. The configurations are described in tables 1
and 2 in a notation indicating the number of states in each spherical subshell occupied
in the limit ¢ — 0. Paired particles or holes are indicated as occupying states in the
first available subshell.

As seen from these configurations the yrast spectra of 2°9:21°Po and 2'%:2''At
have a closely interrelated structure. It is therefore reasonable to encompass them
in a common discussion.

In most cases the calculated and measured yrast energies agree within 100-200
keV. The considerably larger deviation found in a case like the J = &2 state in ?*°Po
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Fig. 4. Yrast levels in 2°°-21°Po. In the upper part of the figure, calculated excitation energies are indicated

by horizontal bars and empirical excitation energies by open or filled circles for respectively odd and

even parity. An arrow indicates a calculated trap or observed isomer. In cases where the probable con-

figuration of the observed yrast state deviate from the calculated one the calculated excitation energy of

the former configuration is shown by a dashed line. The deformations and deformation energies are

displayed in the lower part of the figure. The empirical quantity shown together with the deformation
energy is defined in subsect. 4.1, Empirical data from refs. 2!':22),

TABLE 1

Calculated yrast configurations *-%) in 209-210pg

200p,, 210p,

3 nthg )?vprh 07-8* n(hy,,)

3" n(hg’,z)zvp;f,lz 97117 (hg 5l 3)2)

3 n(h9fz)2"f5_le 127,137 n(h9/z)z"(p;/lzg9/2)
%7*57 "(hoxz)z"p;,/lz 14~ “(he/z)z"(P;xlzin/z)
RS m(hg 2)*vfs ) 157 nhy,2)*¥(F5 580/2)

23+ n(hg 5i,5,,)vP] 16* (hg 51, 5,,)v(p;

3 9/2113;2)VP1 2 alhg5153,,)¥(P1280,2)
%+*%+ n(herz)z"ifalf'z 17* n(hg,zixs,‘z)v(pl_/lzixer)

&) nhg iy 5, 0vE5
ElE “(h9rzi13rz)"if31,/z

&) n(he,‘zinsxz)"{(Pl,/2)_2g9/z}

) The notation used to describe the configurations is explained in subsect. 4.1.
®) A spin and parity given in parenthesis correspond to a dashed line in fig. 3.
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Fig. 5. Same as fig. 4 for 2'™2''At. Empirical data from refs. 23.24)
TABLE 2
Calculated yrast configurations *) in 2!%- 211 At
210p4 2UIAL
4* 5% n(hg ) vpi b } -3 n(h,,)*
6%, 7" a(hy,;) vfs i wi(hy 2)*f; )
8 117 ”(ho,'z)J"pl-ylz 27“"27(” ”:(horz)zix;z:

127 "{(hvxz)zfv;z}"Pflz Ea n:(ils‘z)zht)rz}

13* n{h9,2)3\'f;,'2 (3?+) n(hq,z)J"(pr,rlzggrz)
147,15° “'{(hg,'z)zilsyz}"p;rlz (%W n{(hefz)szz:"(Pfylzgq,'z)
167,17 JT(}1<),r2)3"i1_:»l,".3. 3757*% n{(he/z)zilJrz:"(Pl_,rlzgqq)

(167,177) "{(htyxz)zins,z}"fsi/lz 477 ":(hg,‘z)zilJrz:"(Plv"zillf'z)
18~ "{(h9/z)2f7rz}"ifsl,r2

197 "{(hwz)ziu,z:(pl/z)vzgo,'z}

207 “{(hqu)zils,z}"if;a

) See comments > °) to table 1.



HIGH-SPIN ISOMERS 265

is easily understood from the discussion of the proton-neutron particle-hole inter-
action in subsect. 3.3. A similar situation appears for the J = 32 state in this nucleus
and the J = 17 and J =20 states in ?!°At.

The J = 1, 3, 5 and 7 states in *!°Po and the J = 1?2 state 2!'At are manifestly
spurious products of the model.

Several isomeric states are observed in these nuclei. All of them are reproduced
as traps in our calculation. The calculated configurations of the J = 12 and J = 13
states in '°Po correspond to respectively an anti-parallel or parallel coupling of the
p, hole to the aligned particle configuration (7z(h%)2v(g%))25 12+~ The exact degeneracy
of these configurations, which makes both of them traps according to our definition,
is clearly a spurious effect of the model. From the trend of the empirical interaction
matrix elements 2°) involving the neutron p; hole one would expect the actual
energy of the J = 12 state to be somewhat higher than the J = 13 state. Similar
remarks apply to the J = 14 and J = 15 states in 2'°At.

The energy of isomeric states involving only valence protons or valence protons in
combination with a single p, hole is generally underestimated by a few hundred
keV. Clearly, this is a trend to be expected from the discussion in subsect. 3.2, since
in these configurations most or all of the interacting pairs have T = 1, and the inter-
action in this channel is weak and partly repulsive.

In the lower parts of figs. 4 and S the calculated deformation energies of the yrast
states are shown. The general trend seen in these figures is easily understood from the
discussion in subsect. 3.1.

For the yrast states which have a well-established interpretation in the spherical
shell model we show in figs. 4 and 5 for comparison with the calculated deformation
energies the empirical interaction energy. Since only the relative values are relevant
for such a comparison we have rather arbitrarily normalized the interaction energy
of the first aligned configuration (e.g. the 8* state in 2!°Po) to zero. Furthermore,
we have subtracted for the configurations involving two holes in the neutron p
shell the empirical pairing energy of 2°°Pb, — B[2°°Pb]+2B[?°"Pb] — B[2°®Pb] =
—0.64 MeV, where B[ ] denotes the binding energy.

It is obvious from this comparison that the deformation energy accounts for the
main trend in the variation of the empirical interaction energy along the yrast line.
In particular, the model is seen to account quite well for the order of magnitude
(= 1 MeV) of the amount of interaction energy gained by adding a neutron particle-
hole pair to a given valence configuration (e.g. the relative energy of the J = 42 and

= 22 states in 2!'At). However, the empirical value of this quantity tends to be
generally about 0.5 MeV larger than calculated. We return in subsect. 4.3 to a dis-
cussion of this deviation.
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TABLE 3

Calculated yrast configurations ®) in *'*Rn

212Rp
o -12* n(hg/z)“
13%,14* n{(h9/2)3f7/,2}
157177 ”{(hg,rz)aila/z}
187 "{(hg/z)szziufz}
19%,20* ”{(h9/2)2(i13/z)2
(197) n{(hg/2)3f7/2}v(p;,‘12g9,2)
21%,22¢ n{(hg/z)ai‘3/2}v(pf,,12g9’,2)
23* "{(hg/z)szzil3/2}V(P1_/lzg9,'z)
24 ﬂ{(hg/z)lfwzi]3/2}V(P1_/lzi1 12)
257 “{(h9/z)2(i13/2)2}"(171_/1289/2)
267 ﬂ{(h9/2)2f7/2i13,!2}V(P1_/l7_il5/‘2)
27 "{(hQ/z)z(il3/2)2}"(P1‘flzix5]2)
27" ﬂ{(h9/z)3i13/2}"{(P1;2)7239/2i11/2}
28~ "{(h9,'2)2f7/2i13/2}"{(131,'2)4239,'1“ 1f'2}
29* n{(h9,’2)3ilB/Z}V‘{(pl,’2)72g9fli15/2}
30" n{(ho/z)szzil3/2}"{(P1 r‘Z)ing,’LiIS,’Z}

%) See comments > °) to table 1.
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4.2, THE NUCLEUS 2'?Rn

Data and calculated results for the nucleus 2!*Rn are shown in fig. 6 and table 3.

In the yrast spectrum of this nucleus for J < 22 we see all the same features as
discussed above for the nuclei 2°%2!°Po and 2!9-2!1A¢,

(i) The calculated and measured yrast energies agree in general within a few
hundred keV.

(ii) The observed isomeric states are reproduced as yrast traps. Concerning the
J = 21 state the situation is the same as for the J = 12 state in 2!°Po.

(iii) The energy of the isomeric states involving only valence protons is generally
underestimated.

(iv) The deformation energy accounts for the main trend in the variation along the
yrast line of the empirical interaction energy.

(v) The gain of interaction energy due to an additional neutron particle-hole pair
is underestimated by about 0.5 MeV. (See the relative energy of the J = 17 and
J = 22 states.)

We shall discuss here in particular the structure of the three observed isomeric
states 4) with their suggested spins and parities of, respectively, 257, 27~ and 30*.

For the 25~ state Horn et al. suggest the assignment n((h%)"’i P V((Py)” Yis 12)- This
configuration is found in our calculation 0.2 MeV above the yrast level. The experi-
ment seems not, however, to rule out the calculated yrast configuration (table 3).
This is a trap configuration provided we consider the M2 transition from the i,
to the f; shell as /-forbidden due to the closeness to the spherical limit (see fig. 8).

For the 27~ and 30" states Horn er al. suggest configurations involving aligned
particle-hole pairs like v((i J!l)’lg%)lﬁ or v((fy)™'j;5,2)10+- Due to the repulsive

Yy 717 r r rr 17 T r Tt 7

%%8n, 7 :130

E [MeV]
[g]

=0.1 -0.05
€

Fig. 7. Plot similar to fig. 1 for some configurations with J = 30 in 2!2Rn. The configurations are: (a)
m{(hg 2)*F5,2113,20{(P2) 2820151205 (D) n{(h9/z)z_(lixa/z)2}v{(Px/z)_zngix1/2}- (¢ 7‘{(hsa/z)z(ila/z)z}
v{(iy3,2) " '8o)2)-
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interaction between aligned particles and holes (cf. subsect. 3.3) the strong attraction
in these configurations assumed by Horn et al. appears, however, somewhat unlikely.
More probably these states involve 2p-2h excitations of the core.

It is seen, in fact, from table 3 that such configurations enter the yrast line just
around J = 27. Thus the two configurations with this angular momentum listed in
the table are practically degenerate. One of these is a 1 p-1h configuration. The second
is a 2p-2h configuration. While the former is not a trap the latter is. We consider
therefore the 2p-2h configuration in table 3 as a likely candidate for the structure
of the 27 isomer.

As seen from fig. 7 the 2p-2h configurations with J = 30 have about 1 MeV lower
equilibrium energies than the 1p-1h configurations with this spin. Fig. 8 displays the
structure of the configurations labelled (a) and (b) in fig. 7.

The configuration (a) can decay by M2 to the calculated yrast trap at J = 28,
Since B(M2; j,5,, — i) is known from 2°°Pb we can estimate the half-life of this
transition to be about 15 ns. Assuming that the actual energy distance between the
J = 28 and J = 30 state is 35 % lower than calculated, the measured 152 ns E3
transition to the 27~ isomer would thus be able to compete with the M2 transition
to the 28~ state.

The configuration (b) is a trap using the same criterion as applied above for the
257 state, and it could thus be an alternative candidate for the structure of the
observed 307 state.

Adopting these interpretations we see that the rules (i)—(v) formulated above
remain valid considering configurations involving 2p-2h neutron excitations of the
core. In particular the major part of the interaction energy in these configurations,
—4 MeV, is seen to be accounted for as deformation energy. We see also that the
tendency of our model to underestimate the gain of interaction energy due to an
additional particle-hole pair by about 0.5 MeV, which was observed already in
connection with the 1p-1h configurations, remains in the transition from the 1p-1h
to the 2p-2h configurations. (Note that this supports the assignment of a 2p-2h
configuration to the J = 27 yrast state.)

In the 2p-2h configurations wehave g, & —0.1. Weare thus in these configurations
approaching a region of deformations where rotational bands built on the isomeric
states could be expected to exist.

4.3. SURVEY OF ISOMERS IN Po, At AND Rn

Table 4 gives a survey of calculated and measured excitation energies of observed
isomeric states in the nuclei considered above. We have included in the table also the
classical example of isomeric states in this mass region, the 45 s isomer in 2!2Po.
The J™ = 16 interpretation ) of the latter is adopted here. As mentioned above
other interpretations involving J™ = 18" have been suggested in the literature 2).
(See also the discussion of fig. 1 in subsect. 3.1.) While the J* = 16* configuration
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TABLE 4

Observed isomers iu isotopes of Po, At and Rn

Jr Configuratior ?) EX. " EX ©) E.." Ey®)
209pg 11- nthy,5)?vpy Y 1.47 1.23 0.0 —-0.26
23+ n(hg,5i, 5,201} 2.77 2.52 -0.30 —0.60
- m(hg 51,5,V P ) 28, ) 427 4.76 —1.61 —1.30
2i0pg 8" n(hg ,)? 1.56 1.31 0.0 —0.17
1= m(hg,4i,5.5) 2.85 2.71 —0.31 -0.39
13- n(hg,,) v(p; bgs 5) 4.37 4.30 —-0.63 —~0.64
16* m(hy, i 5,2)%(P; 58e.2) 5.06 5.46 —1.54 —1.13
212pg 16* m(hs,,)¥(gs, ;) 293 2.44 —~0.52
2I0AL I+ n(hy ,)%vp; L 1.36 1.23 0.0 -0.20
15~ nithg 5) %50 P b 2.55 2.30 —0.41 -0.78
19* ity )50 pL ) 28e.s ) 4.03 4.01 —1.74 -1.99
2 AL - n(hy )} [.42 1.21 0.0 —0.13
22+ nithg )2 s.,) 2.64 2.48 —0.38 —-0.50
2= mi{(hg 1) i15.. ) v(PT 58 5) 4.82 5.1 —1.64 —1.37
212Rn 8* n(hy.,)* 1.67 1.53 —0.06
12+ n(h, 5)* 2.86 2.50 .0 ~0.05
17- mi(hg,5)i, 55! 4.04 3.78 ~0.42 —0.44
22+ mi(hg )% 5, 0(PT 5805 6.18 6.45 -1.72 —1.26
25° m{(hy 2)*(13,,)% v(py b8 2) 7.11 7.51 ~2.39 —1.68
27 mi(hy 1), 5.5 008 (py ) 728, 2y 7.85 8.82 —-3.63 -2.52
30* ”{(hogz)zf«zils‘z;":(pl ) Bondis ) 855 9.34 —4.47 —3.54

*) See comment ) to table 1.

®) Observed excitation energy.

¢) Calculated excitation energy.

%) Empirical quantity defined in subsect. 4.1.
€) Calculated deformation energy.

with the structure indicated in table 4 is a trap in our calculation the configuration
with J™ = 18* is not.

Some general trends already discussed in subsects. 4.1 and 4.2 are very clearly
displayed in table 4. Thus we can distinguish isomers having a valence configuration
of the type n(h,)" v(p,) " or n((h,)"~ li,TJ) v(p;) "™ and core-excited isomers obtained
from these by adding one or two particle-hole pairs of the type v((py) ! g;) or
v((py) isi2)

The excitation energies of the isomeric states are generally well reproduced by our
model. This means that the relative shell-model interactions energies in these con-
figurations are accounted for mainly by the differences in deformation energy.
(Only the 8" isomer in ?'?Rn has some pairing.) In this way the expectations
formulated at the end of subsect. 3.3 are seen to be confirmed by the detailed calcu-
lations.
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TABLE 5

Predicted yrast traps with J < 40 in isotopes of Po, At and Rn

Jr EX® Configuration ®)
2i2pg 197 3.74 ”(hf)rzixs/z)"(go,/z)z

29~ 7.33 (hg 211 3,2)¥(P 2802111 126 1572)
2HAL e 7.45 n{(hg, )% 3,2}V {(P1/2) " Bojai11 s}

"—25* 11.04 ﬂ{(hg,z)zilg/z}"{(Pl,rz)izf;/lzgt)/zi\1,'2j15,'2}
2134 45+ 3.36 m{(hg2)% 5,2 v(8s 2)?

85+ 6.80 7l'{(hg,rz)zi13/2}"(P1_/12g9,'2ix 1diss2)

- 8.60 ﬂ{(hg/z)zim;z}v{(plfz)_z(ggfz)zill/zjlsle
21%Rn 37° 12.18 m{(hg,2)*f5 511 3,2} 9(Py,2) " 520" 8or2lyiiadisig)
212Rp 35° 12.40 "{(hggz)szzh3,'2}V'{(P1/z)izfs_,r‘zgo,zix1fz,i15rz}
214Rp 19” 3.68 n{(hs,2)*i 13,2} 9(8s/2)°

20* 3.71 n(hg,,)*v(gs,5)’

25~ 4.77 ﬂ{(hg,/z)3i|3;2}"(g9/2)2

35° 8.17 ﬂ{(hg,rz)Si13,/2}V(P1_/lzg9/zil1/zj15/2)

36~ 8.21 n-{(h9’,2)2f7/2i13f2}\’(p;’,;g9’,2i11/les/z)

39 9.87 1i(ho,2)2 0 20132 WP 2) (B2 11 2 isa)
218Rn 21° 322 n(h‘;/z)“"{(ge/z)zix Ladisia)

24+ 4.16 ﬂ(hg‘,‘z)“"{(gogz):’ix1/2}

277 4.73 ﬂ(h9/z)4"{(g9/z)2i11/2)15/2}

30* 5.50 n{(hg,,)*f; 2 }v{(8e,2) 11 12}

3t 5.30 n{(hgxz)ail3/2}"{(39/2)2ix1,/les/z}

33° 6.07 ﬂ{(hgfz)si13,/2}V{(g9/z)3i11/2}

357 6.13 n{(hg“,z)afwz}V{(gf;/z)zil1f';i15/2}

38* 6.66 H{(hg/z)ai13/2}V{(gg/2)2i1 1/2j15/2}

39+ 6.73 n{(hg/z)zfv/zi;3/2}"{(89x2)2i11/7_i15/2}

?) Calculated excitation energy.
®) See comment ?) to table 1.

The agreement between theory and experiment is particularly good when we
consider the relative energies within each group of isomers mentioned above, valence
configuration, 1p-1h states, and 2p-2h states. The typical deformation energy in each
of these groups is respectively —0.5, —1.5 and —4 MeV. As mentioned already the
empirical difference in interaction energy between the groups tends to be about 0.5
MeV larger than given by these numbers. Several effects may contribute to this
deviation.

(i) Tt is well known %) that the absolute value of the shell correction energy of
208py, as calculated by the Strutinsky method using empirical single-particle levels
is about 50 9 larger than measured. The origin of this discrepancy is not well under-
stood. (See the detailed discussion in ref. '*).) It seems likely, however, that the too
strong binding of 2°8Pb implies that we have also a too large stiffness of the double-
closed-shell core. As it follows immediately from the discussion in subsect. 3.1, this
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would involve the observed trend of a too small gain of interaction energy per added
particle-hole pair. If this explanation is correct we also expect that our calculated
deformations are somewhat too small.

(ii) From the discussion in subsect. 3.3 we expect the deformation energy to account
for the interaction energy due to an average residual interaction like ¥ defined by
(3.5). In the valence configurations we have, however, a surplus of T = 1 bonds
between the particles. This was mentioned already in subsect. 4.1 as a likely explana-
tion of the underestimate of the energies of these configurations. In the core-excited
configurations there is an opposite tendency. Hence the actual gain of interaction
energy per particle-hole pair should be larger than given by the average interaction.

(iii) The configuration v((p;)~ lg%)s_ is the main component of the collective 5~
state in 2°8Pb, which is shifted 0.25 MeV below the particle-hole energy.

(iv) In the configuration v((p %)_Zg%)% . the pairing energy vanishes for ¢ & —0.05
due to the rapid rise of the energy of the p, state with increasing deformation. (See
fig. 2.) A more accurate treatment of pairing might change this picture.

In fig. 5, we have listed some additional isomers predicted as traps in our model.
In particular the nucleus 2'®Rn with four protons and four neutrons outside the
closed shells seems to provide very rich possibilities for producing isomeric states
with relatively high spin (/ ~ 40) and low excitation energy (E* ~ 7 MeV).

Edef [MeV]

0 4 8 12 16 20 24 28 32 36 40

Fig. 9. Equilibrium deformations (dashed line) and deformation energies (solid line) along the yrast
line of 210~ 216Rp,
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4.4. RISE OF OBLATE DEFORMATION - THE EVEN Rn ISOTOPES

As an instructive example of the features discussed in subsect. 3.1 we show in fig. 9
the calculated deformations and deformation energies in the yrast states of the even
isotopes 2107 216Rn,

The yrast line of 2'°Rn is characterized by a gradually increasing oblateness
(frome = OforJ = 0toe ~ —0.07 for J = 40). Going from 2'%Rn to the neutron
closed shell nucleus ?!2Rn, the slope gets steeper. This is because a smaller maximal
angular momentum can be built up by aligning the valence particles (J = 20 in
212Rn as compared with J ~ 40 in 2!Rn), and therefore excitations of the neutron
core enter the yrast configurations at a lower angular momentum.

In contrast to 2!272!°Rn the nucleus 2!°Rn with two neutron holes does not
display a steady variation of the yrast deformation. This is because neutron con-
figurations with holes in the large-j orbital i, intervene into the yrast line involving
a tendency towards prolate deformations. Thus, we have in this nucleus competing
trends in the proton and neutron parts of the system. However, the maximal angular
momentum which can be built from the six valence particles and holes is equal to 33.
Therefore, around this value of J particle-hole excitations start to take place. These
enhance the “particle character” of the system and consequently we get from this
point a development similar to that of the heavier isotopes.

5. Relation of the present approach to a shell-model description

Some of the isomeric states discussed above have been interpreted previously in
terms of calculations based on the spherical shell model with residual interactions.
In particular, calculations of this kind using empirical matrix elements of the inter-
action have proved extremely successful in reproducing the excitation energies in
these and other cases. [See ref. '%) and references therin.]

We have seen above that the major part of the interaction energy in the isomeric
states can be understood within the independent particle model as a deformation
energy associated with a (in most cases relatively small) quadrupole distortion of
the single-particle potential. This is not really surprising when we consider the typical
structure of the isomeric configurations and the mechanism giving rise, from a shell-
model point of view, to the appearance of a deformation of the nuclear shape.

As usual we discuss for definiteness the case of nuclei with a few particles outside
the closed shells, i.e. the case characterized by oblate deformations. As shown by
several authors (see references in the review by Schiffer and True 2°)), the residual
interaction between two such particles is characterized by the angle 6 between their
angular momentum vectors. Thus in particular the T = 0 interaction is strongly
attractive for values of this angle approaching 0 and =. Examples of this feature are
seen in figs. 3a and b. Since the angles § = 0 and 8 = r correspond to maximal
overlaps of the density distributions in the interacting orbitals, this behaviour of the
matrix elements is the typical signature of a short-range attractive interaction.
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Obviously, it leads to a stabilization of high-spin configurations composed of particles
with aligned angular momenta.

The density distribution of such an aligned configuration is oblate, and the sym-
metry axis of the oblate shape is parallel to the direction of the total angular mo-
mentum. If holes are added to the aligned configuration, the orientation of their
angular momenta giving the most stable configurations is that perpendicular to this
direction. Thus, in the most stable configurations involving holes, these cooperate
in making the total density distribution oblate.

It is seen that the configurations which are most stabilized by the residual inter-
action are just those with the typical structure of traps described in subsect. 3.1,
and that quite generally these configurations have an oblate density distribution.
The polarization of the core induced by the short-range attraction between valence
and core nucleons enhances the oblate deformation. The mean field is then also
oblate. Since, as it was seen in subsect. 3.1, the same configurations are stabilized by
an oblate distortion of the single-particle potential we have in these configurations
a good approximation to self-consistency. This implies, however, that a major part
of the interaction energy is absorbed in the Hartree-Fock energy and therefore also
in the Strutinsky renormalized independent particle energy, which according to the
energy theorem '%) may be considered as an approximation to the Hartree-Fock
energy.

As seen in sect. 4, the yrast lines of the isotopes of Po, At and Rn considered are
characterized by a growth of the oblate deformation with increasing angular mo-
mentum. With increasing deformation the shell-model description of the yrast states
must be expected to become increasingly complicated due to configuration mixing.
This is particularly the case for configurations involving the single-particle state
emerging from the vp, orbital. Already at small deformations, ¢ * —0.05, this state
contains large components of the states vp, and »f;, and its structure is best de-
scribed by the asymptotic quantum numbers.

It seems that with the present experimental capacity one is about to reach a region
of deformations where such difficulties of the shell-model approach might be
expected to become serious. The advantage of the deformed independent particle
model in spite of its minor accuracy in the regime of very small distortions from the
spherical shape is that it can be used for all deformations, from the smallest ones
discussed in the present paper to the largest, being of the same order of magnitude
as the prolate deformations encountered in the fission process. In addition it provides
a stimulatingly simple physical picture ®) of the structure of yrast traps in this entire
range of deformations.

6. Summary

Considering the independent particle model of yrast states in the regime of axial
symmetry with respect to the direction of the angular momentum we have studied.
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the yrast spectra of isotopes of Po, At and Rn. With the exception of some well-
understood cases of larger deviations the model was found to reproduce the empirical
excitation energies in the lower part of the yrast line within an accuracy of the order
of a few hundred keV. In particular, the energies of all isomeric states are well repro-
duced, and all of them correspond to calculated traps.

The deformation energies of isomers involving 2p-2h excitations of the core tend
to be underestimated by about 1 MeV out of a total deformation energy E, ¢ ~ —4
MeV. Possible reasons of this were discussed in subsect. 4.3.

The recently observed isomers in 2!2Rn with J* = 257, 27" and 30" were inter-
preted in subsect. 4.2 within our model.

In most of the nuclei studied we find a gradual increase of oblate deformation
along the yrast line. This feature may be understood from simple arguments con-
sidered in subsect. 3.1.

Special attention has been payed to the relation between our model and the
spherical shell model. It has been shown that the deformation energy associated with
a quadrupole distortion of the single-particle potential accounts for the major part
of the shell-model interaction energy in the isomeric configurations. A qualitative
understanding of this result is furnished by the considerations made in subsect. 3.3
and sect. 5.

We acknowledge discussions with staff members and guests at the Niels Bohr
Institute and NORDITA, particularly Aage Bohr, Sven Bj¢rnholm, and B. R.
Mottelson. One of us (K.M.) is indebted to the Nishina Memorial Foundation, the
Scientific Research Council of the Danish State, and the Commemorative Association
of the Japan World Exposition for financial support.
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Using the single j-shell model with the pairing plus quadrupole force, we show that

1) the transition from vibrational to rotational excitation structure can be reproduced within
the collective model space built up from the J=0- and J=2- coupled nucleon pairs,

2) change of the monopole pair field due to many-quasiparticle excitations does accelerate
the transition; this fact indicates the importance of taking explicit account of the cou-
pling between pairing rotation and many-phonon excitations in transitional nuclei.

§ 1. Introduction

In the conventional approach to the anharmonicity effects associated with low-
frequency quadrupole phonon modes, one first introduces the quasiparticle represen-
tation through Bogoliubov transformation. Absorbing in this way the correlation
responisible for the Cooper pairing into the static pair field, one then treats the
anharmonicity effects as interactions between quadrupole phonons. The physical
picture implicitly assumed in this approach is that the static pair field is stable enough
not to be drastically affected by the phonon excitations (which are built up from
quasiparticle excitations). Namely, phonon-phonon interactions are treated on the
assumption that the change of pair field due to the phonon excitations is negligible.

This assumption cannot be justified, however, in a situation where the number
of quasiparticles v composing phonons is no longer a small fraction of £, where
£ is the effective pair-degeneracy of the valence shell. This is because the BCS
approximation is justified only when O(v/£)<1. Hence, in such a situation, one
should expect dynamical couplings between pairing and quadrupole modes of excita-
tion.

In fact, recent studies on the anharmonicity effects appear to indicate the
necessity of dynamical treatment of their couplings. In the superconducting nuclei,
the couplings may be classified into two kinds;

1) coupling between pairing vibrations and quadrupole phonons,
2) coupling between pairing rotations and quadrupole phonons.
Recently, Twasaki, Marumori, Sakata and Takada®? have shown that the former

G D Present address: Institut fiir Kernphysik, Kernforschungsanlage Jiilich, D-5170 Jilich, West
ermany.
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effect is indeed very strong already at the two-phonon 0" states. On the other
hand, taking the latter effect into account is equivalent to restore the symmetry
(nucleon-number conservation) broken by the BCS approximation.® Although we
already know that the broken symmetry is restored in the RPA order,” no in-
vestigation has been done up to now for the case of treating anharmonicity effects
associated with many-phonon excitations.

In this series of papers, we investigate the role of dynamical couplings between
pairing and quadrupole modes in characterizing the excitation structure of transi-
tional nuclei. Special effort will be put on restoring the symmetry broken in
the BCS approximation. In this first paper, we adopt the single j-shell model
with the pairing plus quadrupole (P+QQ) force.” Although the model is schema-
tic, 1t is useful for the present purpose in the following reasons: -

1)  The model is able to reproduce the transition from vibrational to rotational
excitation structures.

2) The coupling effect between quadrupole phonons and pairing rotations may be
evaluated exactly, since there is no pairing vibration mode in this case.

In §2, a model for collective quadrupole excitations is formulated in the
nucleon-number conserving representation. In this model, the low-frequency collec-
tive dynamics are assumed to be well described in terms of the nucleon-pair opera-
tors with J=0 and J=2.* The formulation of model is based on a combined use
of the “quantized” Bogoliubov transformation proposed in Ref. 6) and the method
for describing many-phonon states proposed by Holzwarth, Janssen and Jolos,” and
Twasaki, Sakata and Takada.?

In § 3, adopting an additional approximation which leads to the SU(6) scheme
of Janssen, Jolos and Dénau,” we transcribe the model into boson representation.
The resulting boson representation bears a resemblance to the sd-boson model of
Arima and Jachello.” In §4, we first show that our model is capable of repro-
ducing the basic pattern of the transition from vibrational to rotational excitations.
Then, the result of number-conserving treatment is compared with that of BCS
approximation. The comparison will exhibit a dramatic effect of blocking (associa-
ted with phonon excitations) to the pair field.®

In a succeeding paper,” we shall present a more systematic analysis of band
structure in the transitional region. There, the coupling between phonon excita-
tions and pairing rotations will be explicitly treated in the quasiparticle representa-
tion.

§ 2. Formulation of model
2.1. Basic assumption

Let us first define the nucleon-pair operators as

* A similar idea has also been developed by Arima et al.!®~* in their attempt to give a
microscopic foundation of the phenomenological sd-boson model.'®
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1 .
AB#:\T?‘ mZm gmagms| I 1) chm hm, (2-1a)
BY,=— 2 {gmyjma|J 1) chm, ¢4 m, (=) 77" (2-1b)

The operators Bj, with J=0,1 and 2 have simple physical meanings as

9] =+/22B},, (nucleon number) (2-2a)
f#: N/g (22— 123 22+1) Bi,, (angular momentum) (2-2b)
Q,=q-Bl,, (quadrupole moment) (2-2¢)

where 2=7+4+1/2 and ¢={|7Y.|7>/vV 5.

As is well known, nuclear superconductivity implies a condensation of the
J=0-coupled nucleon pairs, so that the state vector of Jl =even nucleon system
is written in the form (A%.)??]0>. Condensation of the J=2-coupled nucleon
pairs may occur in association with the action of quadrupole field, as is expected
from the commutation relation [B],, A}] = \/ZTQAL. A competition of pairing and
quadrupole correlations in nuclei might therefore suggest a condensate of the form
(Af_y+BAS_)™*0>, or more generally Y C, ., |nn,> with

1

' (AT ™ (A5 ™ 0) . (ni+n,=T1/2) (2:3)

NNy =
s V! 7!

This is, however, not self-evident, because higher multipoles with J=>4 might play
important roles with increasing quadrupole correlation. Nevertheless, it is tempt-
ing to assume that the state vectors of collective model space are explicitly con-
structed as in (2-3) in terms of only nucleon-pair operators with J=0 and J=2.
This is the basic assumption of the model we are going to consider.

The direct use of state vectors of the form (2-3) is not convenient, since
they are highly non-orthogonal: Because of the Pauli principle, the J=2-coupled
pair operators themselves do not uniquely represent the quadrupole degree of
freedom. Thus, we have to construct our model space so that the pairing and
quadrupole degrees of freedom are precisely specified. This is readily achieved by

adopting the well-known quasi-spin formalism,™

As we shall see in the following,
this formalism leads us to the concept of pairing and intrinsic subspaces in the

quasi-spin space.

2.2.  Pairing and intrinsic degrees of freedom in quasi-spin space

The operators S, =V R2AlL, S_=+v2A, and gozé(ﬁ — ) are known to satisfy
the quasi-spin algebra. With the use of quasi-spin quantum numbers, S and S,, we
can denote any nucleon state as |S,Sy; I'>, where [ stands for a set of other
quantum numbers such as ordinary angular momentum JM. A class of states
[S, Sy= —S8;I"> has a special physical meaning, since
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S_IS, S,=—S;I>=0, (2-4)

which implies that there is no J=0-coupled nucleon pair in this class of states.
Racah’s seniority v is equivalent to the nucleon number of the state [S,S;=—3S;
I'>. Starting with these states we can readily construct all nucleon states as
@eS—p)! 5
IS, So=—S+p; T>=~/“@W(S+)p|5, Sy==8;17,

»=0,1,--,2S) (2-5)

the nucleon number of which is given by Jl =wv+2p. Thus, the quasi-spin quantum
numbers, S and S,, are simply related to the seniority and nucleon numbers by

S=1(2—v) and S,=34 (T —9). (2-6)

Following Ref. 14), we call the modes which transfer the seniority quantum
number “intrinsic” modes. On the other hand, the modes which transfer no seni-
ority are called “pairing” modes. The above procedure itself suggests that we can
transcribe the nucleon state space into an ideal space in which the interplay of
intrinsic and pairing modes is explicitly visualized.

2.3, Transcription of nucleon system into “ideal boson-quasiparticle space”

Let us introduce direct-product states [S, I')|p) so that these states keep the
following correspondence to the original nucleon states,

where [p) denotes the pairing-boson state defined by
1
=L ®"70), bl0)=0. 2.8
|p) \/P!()I) 10) (2-8)

The boson operators, b' and b, represent the pairing modes and correspond to the
J=0-coupled nucleon pairs, Af, and Ay, The intrinsic state |S,I"> in (2-7) has
been introduced to represent the original nucleon state |S, S;=—S;I">. We shall
call the space spanned by the direct-product states |.S; I">[p) “ideal boson-quasipar-
ticle space”. As shown in Ref. 6) the original nucleon operators are then tran-
scribed into the ideal space as

m—alna + 9asy,

2-9)

Cim—> A +a'0 ,

where

a:N/1—b*£’, p=_2_, (2-10)
28 V23

2S=0-Y dna;=02—i, (2-11)
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and az=a;_, (—)""™. Note that @' +9'=1. The intrinsic operators (@}, a;,)
which we call “ideal quasiparticles” satisfy the following “anticommutation rela-
tions”

{a}m, aEm’} = {afm, aim’} =0 >

{@jm, @t = 0o — 251 1aT A, (2-12)
and 1) vanish identically if they couple to a pair of J=0, 2) wvanish if their
number exceeds 2, 3) transfer the seniority quantum number by one unit. The ideal
quasiparticles may be regarded as a field-theoretical embodiment of the seniority
concept. In fact, the kideal quasiparticle state is equivalent” to the nucleon state
projected to have a definite seniority v=4%% We can thus explicitly construct the
intrinsic state |.S; "> in terms of the operators al, and ayp,.

It is interesting to note that (2-9) takes the same form as the Bogoliubov
transformation if we replace the pairing bosons, b' and b, with cnumbers. In
this sense we may call this transformation “quantized” Bogoliubov transformation.

By making use of (2-9), we can transcribe the nucleon-pair operators into
the “ideal boson-quasiparticle space” as

Al V205000 — /20 ABY, + A2 A — 00T A7, (J =even) (2-13)
2= V280,00, + (a2 —9'9) BY, + 2 Ab,8'9 + V29’ Az,
(J =even) (2-14)

and
B}, —~B, for J=odd, (2-15)

where # and 9 are defined by (2-10) and
W = / 1— bb
25 -1

The operators, AY,, Aj, and B, appearing in Egs. (2-13) ~(2-15) are the pair
operators acting in the intrinsic space;

=7

and

b .
b 2.16
V251 (2-16)

A= \/ 5 » <J77zljmz[J/z>a,m1aJm , (2-17a)
Bj,=—-> (majms|d 1yab, ap, . (2-17h)

2.4. Collective quadrupole subspace in the intrinsic space

The formulation presented above is exact. We now introduce collective quad-

* Consequently, we have no need of the seniority-projection operator used by Arima et
al. 1~
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rupole subspace in the intrinsic space. This collective subspace is built up from
the quadrupole pair operators Af,, defined by (2-17a), which transfer the seniority
quantum number by two units;

1
V!

where ¢ denotes a set of quantum numbers necessary to classify these states. We

l naJM>unnorm = (A2T> ZJMI O> ’ (2 * 18)

call these states “many-phonon states”.

Our model space is thus spanned by the direct-product states [p) - [naJM >umorms
1 . n
|9) |2 MY anmorm= -~ (b")? (A &yar|0) - 107, (2:19)
Vplal

the nucleon numbers of which are given by J1=2(p+n). We call this model
space “collective subspace”. Since the treatment of the pairing boson b, b) is
trivial, let us discuss how to calculate the matrix elements of physical interest in
the collective quadrupole subspace defined by (2-18). For this purpose let us
adopt the method of Holzwarth et al.” which corresponds to the first-order ap-
proximation of Ref. 8). We, however, replace the ordinary fermion anticommuta-
tion relation with (2-12), since the collective quadrupole subspace has been defined
in the intrinsic space. The use of (2-12) guarantees the orthogonality of the
many-phonon states to the pairing space.

First, we note that the many-phonon states (2-18) are neither normalized nor
orthogonalized. Therefore, we have to diagonalize the norm matrix in principle.
However, as shown in Ref. 15), the many-phonon states satisfy the orthogonality
property very well when they are classified by the representation of the group
O(5), ie., in terms of a= (v,7) where v is the boson seniority and 7 an additional

quantum number. Thus, our task is reduced to calculating the normalization con-
stants

N wer=<nccJ M |nctJ M dunnorm - (2-20)
The recursion relation for J1,.; is obtained™™® as

mna’J: ;V(d"*l (“/J/> CZ‘} dﬂa‘]) 23’1 n—1,a’J’

X [1=3{F (naJ) —F(n—1,a’J)}], (2-21)
where
F (na) = <lco—-2-c2+-3—c4> (n—) (n+v+3)
5 7 35

+ (%—Cz‘}‘ %C4> ‘n(n—1)

—_17—(02—04) {(J(J +1) —6n} (2-22)
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and (" '(a'J)d|}yd*aJ) is the cfp for quadrupole bosons. In (2-22), Ci_y,5, are

important quantities which measure the deviation of two-phonon norms from unity;
C=1={n=2,2pln=2, MDumorm, (A=0,2 and 4) (2-23)

where [72=2, 2/ umom are the unnormalized two-phonon states with angular momen-
tum Zz#. The explicit expression for C, is

100 @221 5 i
+(1—61o)g_2{j F j} g1 - (2-24)

JjJ2
=50¢7 7 2
227

Once we have calculated the normalization constants with the help of recursion
relation (2-21), matrix elements of “phonon” operator A}, are immediately given
as

{nad |Af|n—1, 2’J">
=Vn V2T +1(@ (' T dy TV N ar) Tn s, s (2-25)
where [naJM > are the normalized many-phonon states,
|naJM> = 3’2;;{72 lnaJM>unnorm . (2 . 26)
In the same way, we obtain
{nad | Bt na’J ">
L 7 22 L
= —5() QLD @ +1) (2] +1){ }<~/§)7

nad _I_/\/j/lnaJ)

na’J’

22 L
JJ/J//

X (d @ Idlydral ). (L=0,1,2,3 and 4) (2-27)

xn 3 (= )“”"”{ } @ (" J”yd|}d a)

2.5. Transcribed Hamiltonian
Let us now introduce the P+QQ Hamiltonian,

H:H0+HP+HQQ, (228)

=(e—2) Z mCim= (e =) V22B}, , (2-28a)

Hy=—GS8,.8_=—GRALA,,, (2-28b)

HQQ = —% }_, Q TQ/I 2 Z B;ﬂBZ/l 5 (2'28(:)
“ “

where 1 is the chemical potential. After the “quantized” Bogoliubov transforma-
tion (2-9) into the ideal boson-quasiparticle space, the P+QQ Hamiltonian be-
comes
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H—>H=H,+Hy,+Hy, (2-29)
H,= (¢ —1) - (i +2b'b), (2-29a)
H,= —G2b'b+ Gb'b'bb + Giib'b (2-29b)
Hy,=Hgo+ Hgo+ Hyg (2-29¢)
Hgo = — 270" (9727) 2 Al Ay, (270, (2-29d)

HY,= — V2 3¢*{(aa —9'9) Y A}B,,(a’9) +h.c),  (2-29)
un
Hyy= —2q° 21 {A},.(2'9) A (2'9) +h.c.}, (2-291)
]

where the recoupling terms of the quadrupole force are neglected. Note that the
above expression reduces to the ordinary quasiparticle Hamiltonian if we replace
the operators #, &’ and @ with c-numbers; ie., Z—u, &’—u, 9—v.* The opera-
tors, # and ¥ in (2-29d) ~ (2-29{), bring about dynamical couplings of the pairing
modes to the quadrupole modes. They are diagonal with respect to the number
of ideal quasiparticles i =) a,a;p,.

It is convenient to define the intrinsic Hamiltonian in the following manner:

hothy= (e =D i—21q" 3 A} A,,, (2-30a)
“
hy=—+/2yq S {A},B,,+he}, (2-30b)
“
hy=—yq® Y {4}, A+ hel. (2-30c)
y/2

Their matrix elements in the intrinsic space are easily calculated by adopting the
same procedure as in 2. 4;

{natd M| (hy+ hy) lna JM

=100ue +3 1 (1=1) 0 33 3 Cx@) (d (@ T) & Dy d'ae)*, (2-31a)
nad M byln—1, o’ IM>

= (n—1)V nCy/ Wﬁjﬁij;a;ﬂ (@ ("I dlyd" o’ J)

X (a2 (" ") & (A=2) [} d"a), (2-31b)
nad M\ hy|ln—2, ¢/ TM>

=V (1) CoV Tnar/ N, (A2 T) (A =0) |} d"aT), (2-31c)

where

™ This is equivalent to the replacement b'— V28 v. By furthermore replacing the operator
V9§ with +/@, ie., with its expectation value in the seniority-zero state, we obtain the ordinary
BCS approximation. If a finite-seniority state is used instead of the above in the latter step, we
obtain the blocking BCS approximation.
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0=2(e=1) — 24, (2-32a)
2000 jiL
Cx(l) :4XQ2C1~ qu Z (2L—}—1>|: ] J 9
l_Cx L>4 297
2 (L2222
1— « e . . .
e 6“):2—2{1 j J} {] j j}:l (2-32b)
222 100/Z, 7 99
Cr=10y72 { } 1002, o5 { }
b vz X‘Z]JJ 1 sz Z(L—I—l) 5
7oL 2 (L221222
[é ] [T a2 2{1' J j} {j j JH (2-32¢)
Cv=—V574. 2-324)

§ 3. Boson represeniation

3.1. Mapping of collective quadrupole subspace onto boson space

Corresponding to the fermion many-phonon states (2-26), let us introduce the
normalized boson states as

|na M) =V% (@) 2] 0), (3-1)

where d,' are the quadrupole boson operators with magnetic quantum numbers /.
Then, a guiding principle’® to find boson representation of the fermion operators is
to establish the one-to-one correspondence between the matrix elements in fermion
space and those in boson space. One may notice that the reduced matrix elements
of pair operators, (2-25) and (2-27), are rewritten as

{nald || Af|n—1, &’ = (nad |d|n—1, ' T YV Npas/ Nwrws (3-2)

(e | Byl na’ J’ = —5(~)* {? 3 f}( 37ff+~/m”“’>

% (nel || (did) | na’ J"). (3-3)

The matrix elements of the intrinsic Hamiltonian listed in Eq. (2-31) are also
rewritten in a similar manner. Thus, one can easily obtain boson representation
in the same way as was performed by Lie and Holzwarth.™

3.2. SU(6) approximation

In general, boson representation of fermion operators takes a form expanded
in terms of boson creation and annihilation operators. However, one can perform
an approximate summing up of all orders of the expansion.

Let us consider the recursion relation (2-21) for the fermion norm. Then,
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we notice that

Fad) =C-n(n—1), (3-4)

if C,=C,=C,=C. Namely, in this case F(naJ) is independent of both « and J.

Hence we obtain™?®

mnaJ:nEl{l—(nz——l)C}. (3-5)
Inserting this into (3-2) and (3-3), we see that
Ay, —>d V1—-Ciyg, (3-6)
22 L, 5 (a.
B, —>—10(—)" {”J}(dcz)“, (3:7)

where 7i,=13",d,'d,. The approximation C,=C,=C; thus leads to the SU(6) boson
model of Janssen, Jolos and Dénau.® Now, the exact calculation® for the two-
phonon norm indicates that C,~C,=~2/82. Combining with the fact that the maxi-
mum number of d-bosons should be £2/2, the half of the maximal possible fermion
seniority, it seems quite reasonable to take C=2/82. Although realistic calcula-
tions™ indicate considerably larger values for C, than C, and C,, we adopt in the
following the approximation (3-5) with C=2/2 for simplicity.

3.3. sd-boson representation

Once we adopt the approximation (3-5), it is straightforward to transcribe the
model formulated in § 2 into the language of the sd-boson model of Arima and
Tachello:® By changing the notation of our pairing boson (b',b) into the s-boson
(s, s) and noting that fi =27, one can express the nucleon-pair operators as™®

Af QA;F:N/@EH—MH)(‘? I —74+2)g 1

2p

2(Q—2n4+1)
222 VQ—I—g+1 g g
+1o¢2{] - J} gt s @ay,,
,71 — (s'shdy, (3:8)
V2@ —2n,—1
B B — { 2@~ —na+D) (gtsy, 4 (std K/Z("Q - nd—!—l)}
b B = W T gty Dt G D T g sy 10
B Npf2 2 LN (@—1T—7y) — (— VI —#q) ;5
10(=)* {J J ]} Q—27, (') ns
(L=1,2,3 and 4) (3-9)

® Recently, Otsuka et al.'®®® have derived a boson representation through a similar proce-
dure. Tt is interesting to note that they also obtained'® the same expression as (3-9), though they
adopted somewhat different approximation scheme for the matrix elements in the intrinsic space.
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where
na=3d/}d, #,=s's, A+n.=IT (3-10)
¥

with /I being half of the nucleon number J] of the final state, ie., II=J1/2.
The square-root operators in the above expressions come from the # and 9 opera-
tors involved in the expressions (2-13) and (2-14). Together with the s-bosons,
they represent the blocking effects to the pair field due to the presence of d-bosons.
It is interesting to note that, in the final expressions (3-8) and (3-9), the square-
root operator «/ﬁm) fig in (3-6) has exactly cancelled out the same operator
contained in the denominator of the # and % operators.

The P+QQ Hamiltonian takes the following form:

H—H=w,4,+ G, +2Ghy- 7,
+ D+ 4 ; Fx ) (d'd?) . (dd) n
y/3

+{fr 2(d'd") o (ds) s+ hoc )

3

+{Fr (d'd") oo (s5) o+ hc}, (3-11)
where
0, =2(e—2) —G(R+1), (3-11a)
a2 (1) —2ygr T =7 (@—I—7) :
We=2(e—21) —2y%q (@—209) (2—27,— 1 (3-11b)
2Oy . T —74g) (2—1T—7y,) )
J)x=Cx(2) (@25 (0 27,1) (3-11¢)
?y:Cy'(‘Q;]I)—_H M, (3-11d)
220, N QW@—27,+1)
fo=Cy. | @—I—n+1)YQ—1 — 714 +2) )
e CVN/ P2 —2a,+1) (@—27,+3) (3-11e)

This expression has been obtained by directly making the mapping of the intrinsic
Hamiltonian (2-30) into the d-boson space, and not via the repeated use of the
expressions (3-8) and (3-9) for the nucleon-pair operators. This is in accord with
the spirit of the modified Marumori method developed by Lie and Holzwarth.®
The expression (3-11) is convenient because it shows the relation to the
conventional quasiparticle picture in a transparent way. Indeed, by replacing the
s-bosons with c-numbers and neglecting 7, in the square-root operators, we can
regard the d-bosons as corresponding to the conventional quasiparticle pairs with
J7=27. It is interesting to notice that the energy of d-boson (J=2-coupled pair)
manifests itself as an operator @, in the nucleon-number conserving representation;
namely, the “unperturbed energy term” @47, in effect involves an interaction be-
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tween s- and d-boson (rewrite (3-11b) using I —#,=7#%,). Thus, our d-boson is
not correlated at all in the two-particle system; the d-boson can be viewed as a
correlated pair only when one goes to many-particle system.

In the same sense, the interactions between d-bosons in (3-11) are in fact
the many-body interactions mediated by the s-bosons. Hence, it is impossible to
fully express the quadrupole force between like nucleons as two-body interactions
(between bosons) with constant coupling strengths. In this sense, the present
model should be distinguished from the phenomenological sd-boson model of Arima
and Iachello.”

§ 4. Numerical examples

The Hamiltonian (3-11) has been diagonalized within the sd-boson space
{1/ nng) (sH™(d") 2310) s ng+ng=I=J1/2}. Typical examples are shown in
Fig. 1(a), Fig. 2 and Fig. 3(a). It is seen that the model under consideration
produces a gradual change, as a function of y¢, of excitation spectrum from vibra-
tional to rotational pattern (Fig. 1(a) and Fig. 2). In particular, a formation of
excited band structure with J*=2%, 3%, 4%, -+ is exhibited in Fig. 3(a). On the
other hand, if one makes the BCS approximation (replacement of the #, ¥ operators
with c-numbers), then it becomes hard to reproduce the rotation-like excitations
and the formation of band structure (see Fig. 1(b), Fig. 2 and Fig. 3(b)).

Two important effects, which are lost due to the BCS approximation and are
responsible for the above-mentioned difference, may be found when one examines the

structure of (2-29) or (3-11):

E MeVE (b)
MeV (@) 8 j=29/2, N=12,6=20
7+ j=29/2,N=12,60=20 ot SU (6) approx.
BCS case

SU(6) approx.
NC case

(continued)
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E Fig. 1. Calculated energy eigenvalues for the yrast
MeV (c) and the second 0%, 2* states for j=29/2 and
7+ ) nucleon number J1=12 system, as functions of
J=29/2, N=12,60=20 the quadrupole force strength x¢®. Pairing force

5 SUI(G)cpprox. strength G is fixed at 2/2=0.133 which corre-
NC’ case sponds to the quasiparticle energy of 1 MeV in

the BCS approximation. Many-phonon norm
matrices are evaluated under the SU (6) approxi-
mation. (a) The case where the pairing force
and the operators #, 9 in the quadrupole force
(Egs. (2:29)) are exactly evaluated. (NC case)
(b) The case where the pairing field is fixed at
the seniority-zero state. In this case, pairing
bosons b*, b and @, 9 operators in Eqs. (2-29)
are replaced by c-numbers. (BCS case) (c) The
case where only the factor 2'4—9'9 in Hq (Eq.
(2-29¢)) is replaced by c-number. Other factors
dependent on the pairing variables are exactly
evaluated. (NC’ case)

=29/2,N=12,6Q=20
EWD/ERD SU (6) approx.

[ae]
T

e — —

e —

—_

— -
/'/,;'/BCS case

—

] '/‘ﬁ‘/'NC'cctse
L L N N | 2

R A
Fig. 2. Various quantities which characterize the
B(E2:2,~2,")/B(E2:2, =0, band structure, as functions of the quadrupole
2r NC’ case force strength xg*: excitation energy ratio
. E(4,*)/E(2.:*): absolute value of the spectro-
1 \i\'\_BCS case scopic quadrupole moment for the first 2+ state
NC case Y~ T — (arbitrary unit) : ratio of the reduced transition
0 ' —— Y probabilities B(E2; 2,*—2*)/B(E2; 2:*-50:).

Adopted parameters are the same as in Fig. 1.

~

1) The operators, & and @, appear in the Hamiltonian as products #% or (aa
—%'0). The product 29 depends rather weakly on the d-boson number (fermion
seniority), while (22 —9'0) depends strongly. Consequently, effects of the Y-type
interaction, which accompanies (22 —9'9) and is written as fyz,, (d'd") 4, (ds),, in
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£
MeVf -1 GO- MeV§
| J=29/2,N=12,60=20 SL J=29/2.N=12,60=20 “
2 _
X?=5.0 X9%=5.0 o
o SU (6) approx. 6 SU(6) approx.
NC case BCS case |
5l 5r 10.39
J @ VI o o)
3k i
2k di
1= '
o- OL

/=0 2 3 4 5 6 7 8

Fig. 3. Excitation energy versus angular momentum for the yrast and yrare states. Quadrupole
force strength xg® is fixed at 5.0. Other parameters are the same as in Fig. 1. Numbers on
the arrows denote the B(E2) values in unit of B(E2; 2*—>0%) value in the Tamm-Dancoff
approximation. (a) NC case. (b) BCS case.

the boson Hamiltonian (3-11), increase with increasing d-boson number (note the
denominator of fy given by (3-11d)). This enhancement of the Y-type interaction
results from the blocking effect to the pair field and is neglected in the BCS ap-
proximation. The importance of keeping the operator form of ]?y is seen by com-
paring Fig. 1(a) with Fig. 1(c). In the latter calculation, the operator & —o'0
=(Q2-=2I)/(2—27, in #y is replaced by the constant (22—v%) = (2—2IT) /2.
2) In the BCS approximation, unperturbed energies for the many-phonon states
are considerably overestimated mainly due to the neglect of a decrease of the
pairing correlation with increasing fermion seniority.

Thus, the numerical examples presented here clearly indicate the necessity of
taking explicit account of the change of pair field due to many-phonon excitations,
which has been neglected in the conventional quasiparticle description.
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We develop a microscopic method to treat the mode-mode couplings between many-
quasiparticle excitations and pairing rotations. The canonical transformation method with
auxiliary number- and angle-variables is employed to extract the pairing rotational degree of
freedom without violating the Pauli principle. In the case of single j-shell, the mode-mode
couplings can be treated exactly, the analytical expressions of which are used to test the
convergence of the perturbative expansion of the couplings in terms of 1/2.

§ 1. Introduction

In a preceding paper,” referred to as I, we suggested the importance of taking
explicit account of the couplings between pairing rotations and quadrupole modes
of excitation in transitional nuclei. Characteristic properties of the pairing plus
quadrupole (P+QQ) force model were analyzed in I for the case of single j-shell.
This was done by using the nucleon-number conserving basis states, without ex-
plicit reference to the concept of pairing rotations. In this paper, we consider the
same model by starting with the quasiparticle representation, and develop a micro-
scopic method to explicitly treat the dynamical couplings between pairing rotations
and many-quasiparticle excitations (which are responsible for the quadrupole
modes).

The pairing rotation is a collective mode to restore the nucleon-number con-
servation (the gauge invariance) broken by the deformation of the pair field,
while the quasiparticle mode is a single-particle mode in the deformed pair poten-
1.2~®  Thus, the mode-mode coupling under consideration may be formulated
in a manner quite analogous to the (phenomenological) particle-rotor model for

the collective rotations in the ordinary coordinate space. For the latter case, there
5),6)

tia

are already some attempts to the microscopic description of the particle-rotor

couplings, in which the collective rotation is described as a special zero-energy

mode”™® associated with the spontaneous breakdown of rotational symmetry in the

Nilsson potential. On the other hand, the microscopic description of the pairing

D Present address: Institut fiir Kernphysik, Kernforschungsanlage Jilich, D-5170 Jiilich, West
(Germany.
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rotation has been considered by several authors'®™® for the case where residual
interactions do not change the seniority quantum numbers, i.e., for the case where
there is no dynamical coupling to the quadrupole modes of excitation. Thus, we
develop in this paper a microscopic formulation of the pairing rotation such that
the dynamical couplings of this kind can be treated in a simple and systematic way.
This formulation of the two-dimensional rotation in gauge space, in turn, may shed
a light on the problems of particle-rotor couplings in the ordinary coordinate space.
In §2 we introduce exact number- and angle-operators to describe the pairing
rotation, and compare the RPA treatment with the exact one. We then derive
in §3 an effective Hamiltonian and effective operators for the model space in which
state vectors take the same form as those in the particle-rotor model. In this
derivation, the canonical transformation method with auxiliary variables™* is used:
hence, there is no overcompleteness in the degrees of freedom and mno violation
of the Pauli principle in this formulation. Namely, the intrinsic modes (quasipar-
ticle excitations) are exactly orthogonal to the pairing rotational mode. In the
case of single j-shell, the diagonalization of the mode-mode coupling Hamiltonian
leads to the results which are completely the same as those given in I where
nucleon-number conserving representation was adopted. On the other hand, in the
general many j-shell case, the pairing vibrational modes come into play in addition
to the pairing rotations under consideration. In this general case to be treated
in a succeeding paper, we shall adopt a perturbative expansion of the mode-mode
couplings in terms of the expansion parameter 1/8, where &£ is the effective pair-
degeneracy of the valence shell. Thus, we present in § 4 some numerical examples
for the single j-shell which suggest a fast convergence of such an expansion.

§ 2. Pairing rotation, number- and angle-operators

2.1. Division of monopole boson into static- and fluctuating-parts

We consider a condensate of the monopole bosons, which corresponds to a
condensate of the J=0-coupled nucleon pairs. Thus, it is convenient to divide
the monopole bosons (b',b) into static- and fluctuating-parts as

b'=VQRv+b,
b=vVQRv+b, (2-1)

where v is a real parameter to be determined later, and (b', b) are the boson
operators representing the fluctuation of the deformed pair field. Equation (2-1)
implies an introduction of the coherent state |coh) satisfying the property

blcoh) =0. (2-2)

Inserting (2-1) into the pairing Hamiltonian expressed in the ideal boson-quasipar-
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ticle space, (I-2-29),* we obtain
H+He=WH+ {(¢—2) + G2 a
+1{2(e =) —GRw—)} N
+GN*+GaN , (2-3)
where #'+v*=1, 2=j+1/2, and
W=2(ec —2) Q0" — G2+, (2-4)
N=vVR2v(b'+b) +b'b . (2-5)

Obviously, the pairing Hamiltonian can be written entirely in terms of the ideal-

quasiparticle-number operator 7 and the boson-number-fluctuation operator N =b'b
—RP=N— 0",
The parameter v and the chemical potential 4 in (2-3) are determined as

usual by the conditions W /9v=0 (which is equivalent to eliminating the dangerous
term linear in N) and

(coh|N|coh) =2v*=1T, (2-6)

where /I is half of the nucleon number J7, ie., IT=7J1/2. Then, the pairing
Hamiltonian becomes

H,+ Hy =W+ Ef+GN*+GaN (2:7)
with

E=V(e-2)'+4=4G2, (quasiparticle energy) 2-8)

4=GRuv . (energy gap) 2.9

2.2, Pairing rotation under the RPA

In this subsection, we briefly review the concept of pairing rotation defined
under the RPA. To make the connection to the conventional formulation® trans-
parent, we introduce new boson operators (§',3) through®

b +b=u(f+p).
b'—b=u'(B—p). (2-10)
The vacuum for the (-boson is related to the coherent state by

Ibo) =exp & Inu- (BB —Bb) |coh),  Blg,) =0. (2-11)

¥ We cite the equations in Ref. 1) by adding I to the first place of the equation number.
In Ref. 1) are also given full accounts of the notations adopted in this paper. Note that the
Hartree-Fock contribution of the pairing force is dropped in the expression (2-3).
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Expanding (2-7) in terms of the small parameter £ and retaining the terms

*)

up to the order unity,™ we obtain

H,+-H, =W+ En
L 2ER'B—GR (1! + 0" B3+ G0 (B3 + 37) . (2-12)

This is nothing but the pairing Hamiltonian in the RPA, and the S-boson corre-
sponds to the J=0-coupled quasiparticle pair in the conventional description. It
is well known that the RPA treatment of (2-12) results in a special eigenmode
with zero-energy, called pairing rotation. In order to correctly obtain the rotational
energy, the number- and angle-operators, N and @, are introduced through a
set of equations,

[0°, N"] =i, (2-13a)
[H,+H,", N®]=0, (2-13b)
[Hy+ H,O, i) = - N© (2-13¢)

&

The solution of this set of equations is
NO=VQuv (8 +3), (2-14a)

- 1 - .,
PO= —— (3P, 2.14b
2iVQ uv(l A ( )

and Y=1/2G. Then, (2-12) is written as

Hy+ Hy" =W + Ei+ L (N®)? (2.15)
29

The last term of (2-15) represents the energy of the pairing rotation. The RPA

ground state |¥,”) may be determined by the condition

N(o)tg/o(o)) =0, (2-16)

which leads to the solution of the form”'*

DY = T e 08 | o) = Tlghi ¢ 708" | coh), 2-17)

The condition (2-16) is required in order that |#,”) should be consistent with the
fact that the RPA treatment of the pairing Hamiltonian restores the nucleon-
number conservation broken by the BCS approximation. However, the normaliza-
tion factor Jlgpa in (2-17) diverges, which has been known to be the main difficulty

of the RPA.Y"?

* We regard G&£ as order unity.
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2.3. Exact number- and angle-operators

In order to go beyond the RPA and to describe the quasiparticle-pairing
rotation couplings, let us now introduce exact number- and angle-operators as*’

= 1
1= EZcmc,m—bTb—(— 2n N—}—En (2-18)
=8, L oy L 2-19)
V5§, pee
which satisfy the commutation relation
[, ] =c°. (2-20)

Note that 1] is the sum of the monopole boson number N and the pair-number
of ideal quasiparticles } n, while ¢ depends only upon the monopole boson degree
of freedom. One may formally write the angle operator @ as®

@\:

l {In b —1In b}, 2-21)
Z

[0, 1T]=:. (2-22)

Once the deformation of the pair field takes place, the angle-operator 0, (2-21),
acquires a definite physical meaning. Indeed, inserting (2-1) into (2-21),

can in this case expand @ in terms of 27 as follows:"?

@:%{m(uj%z}) _h](HV%J)}

1 1 5 T
=S . (b'—b)————. b'b"—bb
27 .Q‘U< ) 4i!2v2( )
1 .
+ ~_ (b'b'b*—bbb) + -
612V 820° ( )
=0 + higher order terms. (2-23)
In the same way, we obtain
IT=I+N+1in, (2-24)
N=NO+bb. (2-25)
The operators N and @ satisfy
* Strlctly speaklng, the operator ei? is not unitary, because (¢t?) (¢f%)"=1—0) (0] although

(et9)1(ei%) =1, where [0) is the vacuum for the monopole boson, b]0) =0. Nevertheless, we regard
¢'% as a unitary operator, since we are interested in a condensate of the monopole bosons. Also,
we disregard the projection operator onto the physical space in the expressions (2-18) and (2-19);
see Ref. 16).
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[0, N]=i, (2-26)

[H,+Hy, N]=0. (2-27)
Thus, N and o may be regarded® as the exact canonical variables representing
the pairing rotational mode, the leading-order terms of which correspond to N©

and @ introduced through the RPA. In place of (2-16), one can now determine
the ground state |¥,) by the condition

N7, =0. (2-28)
The solution of (2-28) is
¥y) =¢"°]0)
=12 exp {— %iﬂ?* + »371]713%*13* -+ } |coh) (2-29)
with
I .
N = (2-292)

which is correctly normalized, (%|%,) =1. By comparing (2-29) with (2-17),
we see that the divergence in the norm of the RPA ground state |¥,”) stems
from the fact that N is approximated in the RPA by N©.

2.4. P+QQ Hamiltonian in the quasiparticle representation

Next, we express the quadrupole interaction as well as the pairing interaction
in terms of the boson-number fluctuation operator N and the angle operator @

introduced above. Then, the P4+ QQ Hamiltonian defined by (I-2-28),

Hi+Hp+ Hog= (e — 1) \/EQBEO_GIQA;OAOO_%qu 2. BB,
o

may be written for the superconducting system under consideration as follows:

H:H0+HP+HQQ, (2‘30)
Hy+ Ho=W + Ein+ 213 (V) + 2167"N , (2. 30a)
Hoo=Hg+Ha+ HY, , (2-30b)

* We consider it appropriate to define the pairing rotational mode within the monopole-
boson space, because it is a mode associated with the monopole-boson condensation. Corresponding
to (2-13a) ~(2-13¢), we have now the set of equations, (2:26), (2:27) and [H,-- Hp, i@]=(l/¢7)ﬁ
+(1/29)n. According to the above definition, the second term (1/24)f should be regarded as
representing the coupling effects to the intrinsic quasiparticle modes.
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2 (20°+ N) (Qu* —h— N)

HE= -2
WETHET g—a) (@—a-1)

— +
L A'}.,MAZ,M >
1]

2—n Al Q—a+1) (@—n+2)

P S IO B ELNICEES ER TS E2)

X e 0N ALB,, + h.cl} , (2-30¢)
"

(@0 + N+ 1) (@0 + N +2)(@u’ —a— N +1) (2’ —a— N +2)
@—n+1) (2—7+2) (2—na+3) (2—a+4)

Hc'{QZ—Xq2{

XS AL A+ h.c.} , (2-30d)
o

where A4j, and B,, are the pair operators in terms of the ideal quasiparticles,
defined by (I-2-17). If we neglect the third and fourth terms in (2-30a), and
if we also neglect the terms involving powers of 1/£ after expanding (2-30b)
~(2-30d)in terms of 1/£, then the Hamiltonian (2-30) reduces to the conventional
P+ QQ Hamiltonian in the BCS approximation. We note that the exact expression
(2-30) always accompanies the angle operators, e ® etc., whenever the Hamil-
tonian changes the seniority quantum numbers represented by the ideal quasiparticle
numbers. In other words, the presence of the angle operator is here playing the
role of assuring the nucleon-number conservation. This is readily understood by

noting that
[H,[11=[H,N]+[H, {na]=0, (2-31)
whereas [H, ZV] #0 and [H, n]=0.

§ 3. Use of canonical transformation method with auxiliary variables

3.1. Introduction of auxiliary number- and angle-operators

We are now in a stage to transform our state vectors and the Hamiltonian
into a representation which is analogous to the one in the particle-rotor model.
For this purpose, we use the canonical transformation method with auxiliary varia-

bles 14), 15)

First, we introduce redundant number- and angle-variables (i.e., auxiliary varia-

bles), 1T and 43, which satisfy the canonical commutation relation
[0, 1] =1, (3-1)

and are independent of the ideal quasiparticle operators (a.', @,) and the monopole
boson operators (b, b):

(0, a,]=[0,a,]=1[0,b]=[0,b]=0.
(I, a.]=[II,a,) =[H, b7 =[I.0b]=0. (3-2)



Dynamical Interplay of Pairing and Quadrupole Modes 697

In order to compensate for the overcompleteness in the degrees of freedom
due to the introduction of the auxiliary variables, we impose on the state vectors
a supplementary condition

O7>=0. (3-3)
Since the original Hamiltonian H is independent of the auxiliary variables introduced,
ie.,
[H.1]=[H. 0]=0. (3-4)
the Schrédinger equation
HIY>=E\¥> (3-5)

with the supplementary condition (3-3) is exactly equivalent to the starting Schro-
dinger equation without auxiliary variables.

3.2. Canonical transformation

Now, let us define the following canonical transformation:

U=UUU, .
U =expi®ll, U,=exp —illd, (3-6)

where IT and @ are given by (2-24) and (2-23), respectively. The following
relations are then easily derived:

URU =11, UBU =0,

UNU~" = — 11, UOU'=—0. (3-7)
This implies that, in the representation after the canonical transformation, the

number- and angle-operators II and @ are completely replaced by the redundant

variables IT and O, respectively. After the canonical transformation, the Schrédin-
ger equation (3:5) becomes

|y =EIW> (3-8)
with the supplementary condition
o1¥>=0, (3-9)
where
H=UHU", [¥>=UT>. (3-10)

Equation (3-4) is transformed into

(9, 0] =[%,0]=0, (3-11)



698 T. Suzuki, M. Fuyuki and K. Matsuyanagi

which implies that the number- and angle-degrees of freedom (ﬁ, @\) involved
implicitly in the original Hamiltonian H are completely replaced by the auxiliary

variables (Icf, d;). Explicitly, the boson operators are transformed as
UbtU ' = — I+ VIT—ba et (3-12)
UNU-'=JI—1I) —in (3-13)

while the following operators are invariant under the U-transformation:

UaU'=q, (3-14)
UB} .U '=Bj,, (3-15)
Ue AL ) U '=eA}, . (3-16)

3.3. Transformed state wvectors

The original state vectors expressed in the ideal boson-quasiparticle space,
(I-2-19), are rewritten in terms of the angle-operator e as

1

vl - (Az’) e (B 710510) = = (A Gy €705 [0)

J

\/*‘ (e‘mAZD adM 61”6 l O> |0>

x/_(e“”’Az*)am}ONQ’o) (n+p=II) (3-17)
After the canonical transformation U, they are transformed into the form

\/ (Az JM|O>®‘31M]O> (3-18)

which takes precisely the same form as in the particle-rotor model: The part
(n!) 72 (A,") 2;%10> represents the intrinsic wave function while the part ei”’;|6)
stands for the rotating wave function, with |0) being the transformed boson vacu-
um, |0) =U]0). In obtaining (3-18), we have used the supplementary condition

" that is, it expresses

(3-9). The physical meaning of this condition is now clear;
the requirement that, after the canonical transformation, the ideal quasiparticle
excitation should be confined in the body-fixed frame.

Combining the relations (3-13) and (3-14) with the representation (3-18)
we see that the following analogy to the well-known particle-rotor model holds
in the representation after the canonical transformation; the monopole-boson-number
fluctuation operator, ﬁzﬁ—ﬂ, corresponds to the angular momentum R of the
collective rotation, the auxiliary nucleon-pair number measured from 17, ]OI—IT, to

the total angular momentum I, and the number of ideal quasiparticle pairs, } n,
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to the intrinsic angular momentum j of the particle-rotor model.

If we only consider a system with fixed nucleon-pair number [/, then the
rotational wave function ei”516) is common to all intrinsic states and therefore
does not play any role. At the same time, the nucleon-number conservation is
always assured by the use of the effective Hamiltonian obtained after the canonical
transformation, even when we only consider the intrinsic state vectors

j 1

l/’"y'(A-?T)ZJMiO,\?’ 71:0, 1’2,“',111 (319>
Vol

l ’
in which the number of ideal quasiparticle pairs is not¢ conserved.

3.4. Transformed Hamiltonian

After the canonical transformation, the P+QQ Hamiltonian (2-30) takes the
following form:

ﬂ[:UHUﬁIZj[o'{‘J]{P“I‘(%QQ, (320)
_ ~ 1 /n? )
o+ Ip=W + Ed 25(5) : (3-202)

Hoq=IHga+ Hoa+ IHa,

(20 —1n)(Qu’ —1in) «
E = — 9y G0 —5n) (" —5n) A}, A,,, 3.20b
QQ M @—n) (@—n—1) o Aleds (3-200)

REe — STyl =Y [0+ 1) (e’ —$a+1) s g L, }
R @ntD) @—nry & AwBethey,

(3-20¢)

o= — xqz{ (@0 —§n+1)(Qv° —$n+2) (Qu’—$n+1) (Qu*—4n+2)
@-n+1)@—na+2)(@—n+3)@—n+4)

x5 Al AL+ h.c.} . (3-20d)

In the course of obtaining the above equation, 1) we have dropped the operator
¢7% and 2) replaced the operator 1T and (.Q—ﬁ) by their eigenvalues [[=2v
and 2 —1II =24, respectively. This is because the state vectors on which Y oper-
ates always take the form (3-18) satisfying the supplementary condition (3-9).
The transformed Hamiltonian (3-20) may be regarded as an effective intrinsic
Hamiltonian (for the system with nucleon number J] =2II) acting on the intrinsic
state vectors (3-19). If we neglect the third term of (3-20a), and if we also
neglect the higher-order terms involving powers of 1/£ after expanding Hqq in
terms of 1/8, then (3-20) reduces to the conventional quasiparticle Hamiltonian
in the BCS approximation.
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3.5. Transformed nucleon-pair operators

In the same way as above, the nucleon-pair operators defined by (I-2:1) are
expressed after the U-transformation as

Ay V20T ) (@I —da D) oy,

L @I —3h 1)@ —3h+2) iy
N @—-a+D)@—n+2) *

@ sy @3- 1) iy 2
N @R @—a-1 O 21
B}, — QV(E‘,ZA_,A?D Bi,
—n
+/2(Qv2—%ﬁ+1) @u*—$n+1) 4
@—a+1)(@—a+2)
1 [2(@v %) (Qu'—3h) 4 (3-22)

R—-a)(@—n—-1)

In (3-21), we have retained the operator IOT, instead of replacing it by its eigen-
value as in (3-22), in order to emphasize that it operates on the final state. The
appearance of the angle operator ¢ in (3-21) expresses the fact that Aj, increases
the nucleon-pair number I by one unit. Needless to say, in the representation
after the canonical transformation, the change in the number of ideal quasiparticles
(in the intrinsic space) does not interfere at all with the requirement of nucleon-
number conservation.

§ 4. Convergence of perturbative expansion

4.1. Expansion in terms of 1/8

The formulation presented above is exact. Therefore, the diagonalization of
the effective Hamiltonian (3-20) within the intrinsic states (3-19) is equivalent
to the diagonalization of the original Hamiltonian (I-2-29) in the number-conserv-
ing basis states (3-17). Thus, in the rather special case of single j-shell, the
interplay between the pairing and intrinsic (quasiparticle) modes of excitation can
be treated exactly in either representation. On the other hand, in the general
many j-shell case, the pairing vibrational modes come into play in addition to the
pairing rotations under consideration. In this case, it appears more appropriate
to adopt the quasiparticle representation (rather than the original nucleon repre-
sentation), and to develop the mode-mode coupling theory in a form of perturba-
tive expansion in terms of the small parameter 1/0.

In the single j-shell model, one can estimate the convergence of this expansion
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as follows. The pairing Hamiltonian, #,+ 9y, terminates at the order 1/82; thus
giving the exact solution already at this order. As for the quadrupole force, the
coupling effects are originally contained in the operators #% and (2'2 —9'0), see
(I-2-29). After the canonical transformation, they take the following forms:

a5 Qv =3 +1) (24" —3n)
2—n
2 2\ 2 -~
R S Cl A }’ 4.1
uv{ 2u'vt 29 2!2v2+ -
ata — @T@ﬁg,(fﬂ)_
2—n
-~ 2
= () {1+%+<%> +} (4-2)

We immediately see that n/2 is a crucial quantity which determines the conver-
gence property of this expansion: (4-2) is strongly dependent upon n/£2, whereas
(4-1) only weakly depends especially in the middle of the j-shell. Namely, (4-2)
greatly increases compared with its BCS value, (#*—%%), and approaches unity as
the seniority U =n increases towards the maximum value Up..=J1.* Consequent-
ly, the coupling effect is expected” to manifest mainly through the enhancement
of Jltq as well as the 1/2 effect of the pairing force; see the explicit expression

of Hgq in (3-20c¢).
4.2, Numerical examples

With the same approximation scheme as described in I, the effective Hamil-
tonian (3-20) may be transcribed into the boson representation (A-1) given in
the Appendix. In obtaining the boson Hamiltonian (A-1), approximations have
been introduced only for the intrinsic matrix elements, and thus the dynamical
couplings to the pairing rotation are taken into account to the infinite order. Con-
sequently, the diagonalization of (A-1) within the d-boson space gives the same
results as Figs. 1(a), 2 and 3(a) presented in I. Now, we compare these results
with those of the perturbative treatment of the mode-mode couplings. The pertur-
bation implies the expansion of (A-1) in terms of 1/£, with the order unity cor-
responding to the conventional BCS approximation. Figures 1~3 show the results
of calculation in which the coupling effects are taken into account to the order
1/82 or 1/£°. The adopted parameters are the same as in I, i.e., j=29/2, 91 =12
and GZ=2[MeV]. The excitation spectra, Figs. 1 and 2, should be compared
with Figs. 1 and 3 in I, respectively. Figure 3 shows a closer comparison among
the results of the perturbative calculation (to the order 1/2 and 1/82%), of the

* We here assume that J7 is smaller than 2. If J7 is larger than £, then 7 should be
replaced by (2—77).
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MeV

J=29/2,N=12,GN=2.0
SU (6) approx.
order 1/

Fig. 1. Energy eigenvalues of the yrast and the
second 0%, 2 states in the j=29/2, J1=12
system, calculated as functions of the quadru-
pole-force strength xg®. The effects of pair-
ing rotation are taken into account to the
order 1/£2. The pairing-force strength G is
fixed at 2/2=0.133(MeV) which corresponds
to the quasiparticle energy of 1MeV in the
BCS approximation. The many-phonon
norm matrices are evaluated under the
SU (6) approximation.”

j=29/2,N=12, GR=2.0
EWERD) SU(6) approx.
10/3F === === === oo

I Voo

2 B gl
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1 L L 1 2
2 3 4 5 ¢
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E
MeVy 22972, N=12, G =20
6r xG*=5.0
SU (6) approx.
5 order 170
L
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2 -
/
Q,/ 0.26
I+ o/
//,
O L

J=0 2 3 4 5 6 7 8

Fig. 2. Excitation energy versus angular momen-
tum for the yrast and yrare states, calculated
by taking into account the effects of pairing
rotation to the order 1/2. The quadrupole-
force strength xg* is fixed at 50 (MeV).
Other parameters are the same as in Fig. 1
Numbers on the arrows denote the B(E2)
values in unit of the B(E2; 2*—0%) value
in the Tamm-Dancoff approximation.

Fig. 3. Various quantities which characterize the
band structure, calculated as functions of the
quadrupole-force strength xg*: Excitation ener-
gy ratio E(4*)/E(2:*) : Absolute value of the
spectroscopic quadrupole moment for the first
2% state (arbitrary unit) : Ratio of the reduced
transition probabilities B(E2; 2:*—2,*)/B(E2;
2:*—>0:"). Adopted parameters are the same
as in Fig. 1. Dotted line shows the results in
the BCS approximation; dash-dotted line those
including the effects of the pairing rotation to
the order 1/8; dash-doubly-dotted line to the
order 1/2%, solid line to the infinite order (.e.,
in the number-conserving case).
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BCS approximation (to the order unity), and of the nucleon-number conserving
case (to the infinite order). As emphasized in I, the transition from vibrational
to rotational excitation patterns is greatly enhanced by the coupling effects. Figure
3 shows that this enhancement is clearly seen already when the leading-order
coupling effect, the order 1/8, is taken into account. If the coupling effects are
considered further to the order 1/£% then the perturbative treatment almost re-

produces the results of number-conserving treatment also quantitatively.

§$5. Concluding remarks

We have developed a microscopic method to treat the mode-mode couplings
between many-quasiparticle excitations and pairing rotations. The canonical trans-
formation method with auxiliary number- and angle-variables has been employed
to extract, without violating the Pauli principle, the pairing rotational degree of
freedom. In the special case of single j-shell, the mode-mode couplings can be
treated exactly, the analytical expressions of which have been used to test the
convergence of the perturbative expansion of the couplings in terms of 1/£2. The
numerical examples presented in § 4 indicate that the major effect of the pairing
rotations may be included by only taking the low-order coupling effects into ac-
count. Thus, in a succeeding paper, we shall extend the formulation presented
here into the general many j-shell case in a form suitable for such a perturbative
expansion.
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Appendix

If the effective Hamiltonian (3-20) is mapped onto the boson space such that
there is a one-to-one correspondence between the many-phonon states and the d-
boson states, i.e.,

, 1 » n
m;;/f\_/? (AzT aJMI0> “’ﬁ (df) aJM‘ 0),

and if the SU(6) approximation” to the norm Jl,. of the many-phonon states is
adopted, then we obtain the boson Hamiltonian given below:

ﬂf—-—nﬂ? =W — 215’ (fl d) 2+ (/l\)d, “7lg
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L 5 2 I ) (d'dY) 1, (dd)

+{F (@) gud, + hc)

+ /v (d'dYw+he), (A-1)
where
2 (Ru—7y) (2v'—7y) .
SR 0 ay (@—27,—1)° (A-1a)
Zr0ay — C(RuP—7y) (20— 7y) .
Sx' () =Cx () @—230) (@28, 1) (A-1b)
7=, 2@ =0 J(Qut =7+ 1) (@0 — A, +1) (A-1c)

2-2a, 2(@Q—2m,+1) ’

:CVN/(,.Quz—ﬁd-l-1)(.Qu2~ﬁd+2)(.9v2—ﬁd—l-l) (Qv'—n4+2) (A-1d)
Z@—20,+1) (@—27,+3)

Evidently, this is equivalent to the boson Hamiltonian (I-3-11) which operates on
the sd-boson space {(mlngl) "V2(s")™ (d") 24, |0)}.
In the same way, we obtain boson representations of the nucleon-pair operators,
Al, and Bj,, a
A;ﬂﬁfh#:&/(ﬂu —nq+1) (Qu*—7i,+2) md +
2R—2n,+1)

_ (R0 —7g) (QvP—7,+1) ”’d~
2@—-2n,-1)

+10/2 {222} V(@0 —n4) (Qu*— 7, + 1) zm(dfd)2
Jiii 2—2a, z
(A-2)

t S 2RV —n,+1)(Qu® —nd—i—l)r]*
BiBi=/ 2@ 2n,+ 1)

220 —7y) (Qut—7y) 4.
+“/ 2&—-27,-1) i
222 2(u*—2% .
jjj}—g—zﬁufd)u, (A-3)

—10{

which are equivalent to (I-3-8) and (I-3-9), respectively. In the expression of
the two-nucleon transfer operator, (A-2), the «, v factors are those pertinent to the
final states.
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Abstract: Closed forms for the many-body matrix elements of the pairing-plus-quadrupole hamiltonian can
be obtained within the framework of the nuclear field theory, making the ansatz that pairs of
fermions can only couple to A = 0 and 4 = 2. This ansatz, which otherwise is hardly justified, leads
to strong simplifications in the calculations. The resulting model seems to be very similar to a
microscopic version of the interacting boson model.

1. Introduction

The treatment of the interplay between collective and fermion degrees of freedom
provided by the nuclear field theory ! %) (NFT) is perturbative and graphical. Thus,
no diagonalizations are to be performed but the different transitions as well as
energies are to be calculated by summing up the corresponding graphical con-
tributions to the order ¥ in 1/Q desired. The basis states are product states of the
collective vibrational modes observed in nature, i.e. surface modes, pairing
vibrations, spin and isospin modes and of single particles ',

The central feature of the NFT is that fermions and bosons are treated on par. Thus;
the Pauli principle is properly taken care of at every order of perturbation.

In the present paper we attempt to extend the scope of the NFT to deal with some
non-perturbative situations, in particular with moderately anharmonic nuclear

t The small parameter of the NFT is the ratio n/Q of the number of active pairs of particles n, and
the degeneracy of the single-particle subspace in which they move.
* Note that the elementary modes of excitation which can be viewed as building blocks of the nuclear
spectrum are: (a) single particles %), (b) shape vibrations and rotations 4), (c) spin and isospin modes 2),
and (d) pairing vibrations and rotations 2’ %),

237
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spectra. This is done by utilizing the result that particles moving in single-particle
orbitals and interacting through a pairing and a quadrupole force display the main
properties of rotational, vibrational and transitional spectra’). We also use the
simplifying ansatz of the quadrupole phonon model [QPM; cf. refs. > !%)] and of
the interacting boson model [IBM: cf. ref. ®) and references therein].

2. The rules of the game

The basic mechanism determining the properties of the nuclear spectrum is the
competition between the shell structure and the pairing and quadrupole correlations.
Many model studies of these correlations have been carried out in single j shells.
Recently, special attention has been paid ®~1°) to solutions in which the residual
interaction is allowed to act only among pairs of fermions coupledto A = 0or 1 =2
[cf. also sect. 3 of ref. ®)]. The results compare well with full shell-model diagonaliza-
tions [cf. pages 93 and 121 of ref. ©), and refs. 1% 11)], for a choice of the parameters
leading to vibrational and to moderately anharmonic spectra. In this case, many of
the low-lying levels lie within the A = 0, 2 fermion subspace, (SD subspace), and the
overlap between the approximate and “exact” wave functions is ~ 0.95. For param-
eters leading to more rotational spectra the wave function overlaps become smaller,
and a larger number of levels lie outside the SD subspace 11).

In the rest of the present paper we thus assume that the SD subspace model provides
an adequate description of some of the basic properties of vibrational and moderately
anharmonic complex nuclear spectra. Our first task is then that of identifying the
NFT graphs which give rise to the pairing-plus-quadrupole matrix elements obtained
in the SD space.

In refs. °19) it has been shown that there exists a mapping ' between the SD sub-
space and the sd subspace spanned by the states of the type |n, n;> = N(s*)™
(d*)"|0), the pair of operators s*, s and d™, 4 fulfilling exact boson conmutation
relations. The corresponding matrix elements of the different physical operators
can be obtained within the framework of the NFT utilizing the following rules 1
[cf. also ref. 14)]:

(a) The basis states are monopole and quadrupole pairing modes or single-
particle states (odd case) which are determined by the energy and particle-vibration
coupling strength.

* The operators A%, = \/%[cfc;']m (J=0,2) and B}, (J' =0, 1, 2, 3, 4) of the SD fermion
subspace, which do not form a closed algebra, can be mapped into the 35 generators (d*s), (s*d) and
(d*d) ., of the group SU(6). The mapping allows one to write the pairing-plus-quadrupole hamiltonian
in terms of these generators. The calculation of matrix clements in the sd subspace is much simpler
than in the SD space. Note that the approximation ¢, = ¢, = ¢, is introduced ) in working out the
SD — sd mapping. The relation of this approach to the SU(6) approximation '), to the interacting
boson model 6) and to related approaches ') has been touched upon in ref. ®) and will thus not be
discussed here.

tt In the calculation of each diagram all the standard NFT rules *) of course apply.
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(b) All graphs of order 1/Q leading to interactions between the phonons as well
as of the phonons with the eventual odd particle have to be considered. In the case
that the d-phonons do not interact in lowest order with the s-bosons, the next order
graphical contributions have to be included.

(¢) The contribution of each graph associated with processes in which particle
number is not changed has to be symmetrized by replacing (r,+a) by (n,+a)
x (1 —(n,—a)/), Q = Q—2n, being the effective degeneracy left for the correlation
of the monopole Cooper pairs.

(d) Graphical contributions to a transition amplitude which also can be obtained
by the combined effect of an already included transition amplitude graph, plus the
energy diagonalization, are to be excluded.

The above rules have been empirically obtained and are still lacking a “first
principle” derivation.

s s s s
2ws 2Gg
(a)
s ssHsH s s s s
Ns Ws ———nS(gs_]) 2Gs
(b)

Fig. 1. Lowest-order contributions to the energy of a set of monopole pairing phonons. The single-
arrowed lines represent fermions, while the doubled-arrowed lines represent pairing phonons. In (a) the
graphs associated with the two-phonon system are shown, and the contributions are written below each
graph. The first graph corresponds to the unperturbed propagation of the phonon. The second, to the
Pauli principle correction contribution where the phonons exchange particles. The higher-order
contributions can be shown *°) to be zero for the case of a single j-shell. The extension to the case of many
phonons shown in (b) is straightforward. The problem is similar to the previous one, but now there are
in(n,—1) pairs of phonons interacting.



240 R. A. Broglia et al. | Nuclear field theory

2.1. PARTICLES MOVING IN A SINGLE j-SHELL AND INTERACTING THROUGH THE
MONOPOLE PAIRING FORCE

Defining the pairing hamiltonian as

H= —G,QA45, A0, ey
where
Ago = ) ¢ Lo, 2
the TD correlation energy associated with a two-particle system is
o, = — G 3
The quantity
Q=j+4, 4)

is the number of pairs that the j-shell admits.

For a system of four particles, the exact correlation energy is obtained in the NFT
already to order 1/Q (cf. fig. 1a), the higher-order contributions being identically
zero '5). For a system with n, pairs of particles we obtain (cf. fig. 1b)

AE= nw,+[3n(n,—1)]2G,

(5
= —3G,NQQ—N+2), )

where N = 2n_is the total number of particles. This again is the exact answer of the

problem [cf. e.g. ref. 1)].

2.2. PERTURBATIVE AND EXACT TRANSITION AMPLITUDES, SYMMETRIZATION

The diagonal matrix element of the quadrupole operator is, in zeroth order,
equal to (cf. fig. 2a)

(Qz(d - d))zemth = <nsndvl(x,; I/”QZHnsndex; I>

= ngSy,

(6)

where S, contains statistical factors and fractional parentage coefficients [cf.
appendix A, eq. (A.30)].

Through the diagonalization, the d-bosons feel the presence of the condensator of
s-bosons, before and after the electromagnetic field has acted, but not during the
time it acts (cf. fig. 2d). According to the rules (b) and (c) one has to calculate all
contributions until the lowest-order coupling to the s-phonon condensate is also
included. This is achieved in the next order of perturbation [(1/€, cf. fig. 2b]. The
analytic expression of this contribution is

(©:(d > @)y 0 = 278 s, ©
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s s ]d s s d 2
R = - UtU-vTV
Q Q Q
d 2
S d
e —— scatt term
condens condens
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(a) (b) (c)
.
Q
s s .d s s d >e~~<>«
Q Q *"*XQ
pair creation
s s s
— —_—
condens condens ’n
(e) (f) (9) d °
A2 (d)
3
1 -
2
A
(h)

Fig. 2. Graphical contributions to the static quadrupole moment and to the quadrupole electromagnetic
transition amplitude. The single-arrowed lines represent particles while the double-arrowed lines
represent multipole pairing phonons. The dotted horizontal lines stand for the single-particle electro-
magnetic field.

In (a) the quadrupole field induces a transition between two quadrupole pairing phonons which during
this process, propagate without realizing the presence of the pairing condensate. This coupling is taken
care of by graph (b), where exchange of particles takes place between the condensate and the quadrupole
phonon which is affected by the external quadrupole field. Coupling between the d-phonons and the
condensate before and after the action of the external field are included in a straightforward way through
the diagonalization process (cf. fig. 2d).

Graphs 2¢ and 2f are associated with the quadrupole transition amplitude. Coupling to the condensate
takes place already in zeroth order.

Graphs (c) and (g) represent the processes under discussion in the standard quasiparticle representation.

Substituting 2 = Q—2n, for Q, the sum of the contributions is equal to
0,(d - d) = —n,(1-2n/Q2)S,
= —n(U*=V?)S,, ®
which coincides ' with the sd subspace result °). The quantities
U= (1-nJQ)t, ®
V = (n/Q)* (10)
t Note that in writing (8), we have made the substitution 2 —» @' = @ 2n,, n, being the number of

quadrupole phonons. The blocking produced by the presence of the d-phonons arises, in the NFT,
from diagrams where d- and s-bosons interact to higher order in 1/Q.
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are the BCS occupation parameters, when pairs of particles coupled to zero and to
two are simultaneously present T

In the standard quasiparticle language the sum of graphs (a) and (b) gives the
static quadrupole moment of the two-quasiparticle (particle-hole) phonon (cf. fig. 2¢).
In this process the external field acts on a particle with a weight V2 In the
representation used in the present paper, graph 2a contributes a factor of 1 while
graph 2b contributes a factor It —2V2 Thus 1-2V? = U?—- V2,

In the case of the matrix element associated with the quadrupole transition
amplitude displayed in fig. 2e, one obtains,

(Q,(d = 9)),.0om = <mgve; T1Qs|In+ 1, ng—~Lv'a'; I
11
= (n,+ 1)'%(nd)’2’*S1. an

In this case the d-phonon couples, already in zeroth order, with the s-phonon
condensate. Using rule (c) we make the replacement

n, 1)‘% _ ((ns+1)((9'—ns)+1))%

o o (12)

(ns+1)%~>(ns+1)%(1—g, 7

and obtain the result of the algebraic treatment of ref. ) (sd subspace) [cf. eq. (A.34)].
In quasiparticle language the graph of fig. 2e contributes a factor ¥ while the graph
of fig. 2f is proportional to —1/2¥ 3. These are the first two terms in the expansion

VU =VJ/T=VTV = V(1 =¥V ¥V)+...). All the matrix elements and quadrupole
transition amplitudes are discussed in appendix A and collected in table 1.

3. The parameters of the model

Because we carry out a microscopic pairing-plus-quadrupole diagonalization,
admittedly in a non-standard way, there are no free parameters in the model
In fact, Z, = GQ is the correlation energy of a pair of particles interacting through
a monopole pairing force. It is also equal to twice the pairing gap 4 determined. by
the even-odd mass difference. The quantity Z, is the correlation energy of a pair of
particles coupled to angular momentum two *7), and interacting through a quadru-
pole pairing force. Finally i = 120/4%3 (Mw,/h) is the seli-consistent value of the
particle-hole quadrupole force ). This force actsbetween like aswell asbetween un-
like particles. Although in the present calculations we have made no distinction
between the strengths associated with the (=, %), (v, v) and (=, v) channels (where
n: proton and v: neutron), a detailed analysis of experimental data '®) leads to
K 2k,, ~ 2k,, We note that the difference between «,,, x,, and x, plays a

~
ht:2 vy

central role in the IBM ©).

t Note that the NFT calculations do conserve the number of particles. The reference to BCS occupation
number parameters is made only for illustration, and to connect with the standard quasiparticle picture.

1 Note that toeach s-phonon can be associated a factor (n/Q")'/? which properly written in operator
form is equal to %) (s7s{(Q— 24 )" 2.
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4. Applications

The model discussed in the previous sections has been utilized to calculate the
spectrum and electromagnetic transition probabilities T of 8 Kr. This nucleus displays
a rather complex spectrum typical of transitional nuclei ).

The value of the parameters used in the calculations are

120 [Mw\?
K=W T MeV,

Z, =2 MeV, Z;=03MeV.

(13)

No isospin dependence was given to these coupling strengths. The resulting spectrum
and transition probabilities are shown in figs. 3 and 4 in comparison with the
experimental data. The quality of the fittings is typical.

In what follows we discuss these results in term of the extreme rotational and
vibrational limits.

5. Comparison with the rotational and with the vibrational limits

In fig. 5 we show schematically how the multiphonon states associated with the
vibrational limit are related in terms of bands. This classification has been shown %)
to be useful to order the states of the nuclear spectrum, in particular for soft and
transitional nuclei. The predictions for the extreme rotational and vibrational
models are shown in fig. 6, in comparison with the model predictions.

In what follows we focus our attention on the ground-state band and on the quasi-y-
band. The ability of a model to reproduce the structure of the side bands is a
sensitive criterion of its validity. In this sense the study of the quasi-g-band is of
similar relevance. However, because of the central role played in this case by the
many j-shell structure, and by the pairing vibrations ® 2! ~23) the eventual success
or failure of the single j-shell model for the quasi-g-band is not very relevant '*.

The predicted excitation pattern of the y-band (cf. fig. 6) is typical of a transitional
situation in which both the vibrational and the rotational features coexist. In
particular, the intensity pattern of the quadrupole transition probabilities with
Al = —1 and Al = —2 within the quasi-y-band (odd-even staggering), shows
properties typical of both rotational and vibrational nuclei.

The predicted B(E2) values within the ground-state band show an attenuation
in the high-spin region '7 (I < 10). Although this trend resembles that of the data,
one should be wary of overinterpreting it. In fact, it is possible that there exists a

t Calculations for the Kr isotopes utilizing a phenomenological version of the IBM have been reported
m refs. 1°-29),

1t The extension to the many j-shell situation and the inclusion of other monopole pairing phonons
(pairing vibrations) should lead to a more realistic model.
1 1t is noted that we only consider relative transition probabilities.
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TaBig 1

Matrix elements of the pairing-plus-quadrupole hamiltonian and quadrupole transition amplitudes
calculated in the NFT utilizing the rules of sect. 2; the corresponding diagrams are displayed in figs. 2 and 8

Matrix elements of H = H,  +H{a = [2,A = O+Ha = 2,1 = D+ Ha=0,1= 2)

Graph 8b and term proportional to Z_ of graph 8c
{aggve; HHnpgoa; Iy = -G ~Gn[(Q—2n)~n]

Graphs 8d and 8h
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TasLg 1 {continued)

Matrix elements of the quadrupole operator

Contributions of graphs 2a and 2b

" 2.2 2
{ngngv'el s Il Qolingngva; I = — (1— %) na103/354Q21 + D21+ 1) {j j j}

. £2 2 2
X A‘EMP}(—_ I}I*f { . 1} (nd‘”l v"nt";I"E }ﬂdv:av;}-s){ﬁd_i 3)”&”;1”} }ndﬁa;l)

Contribution of graph 2e
<ﬂsndl’u’ IngzR’& +1 By i ?)’G{’, Ir}

_ \/2{21+1)q = D@m=t 1) o v 1) s,
Q Q2 —2ny

Note that the factor in curly brackets in the contribution from graph 8f as well as the full contribution
of graph 8k were taken from the results of ref. %).
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Fig, 3. Predicted energy spectrum of J¢Kr,,. Two groups of levels connected by strong quadrupole

transition probabilities can be identified. They correspond to the ground state and quasi-y-band. The

identification of the third group of states {quasi-f-band) is much more tentative. The experimental levels
are also displayed.
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Fig. 4. In-band and inter-band transition probabilities associated with the ground state and with the
quasi-y-band. The corresponding experimental data are also displayed (cf. also fig. 3).
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Fig. 5. Schematic representation of the group of levels leading to the ground, quasi-y- and quasi-f-bands,

in the vibrational and rotational limit. The transitions within the ground-state rotational band and the

y-band are normalized to the electromagnetic transition probability B(E2; 2] — g.s.). The transitions

between the y-band and the ground-state band are normalized to B(E2; 2 — 27 ). Note that all these

transitions involve an off-diagonal matrix element of the quadrupole operator whose relation to the

intrinsic quadrupole moment associated with the ground-state rotational band depends on the detailed
motion of the nucleons and thus is arbitrary in the macroscopic model.

band crossing in the region of angular momenta I = 10-12 [cf. ref. 24)]. Note also
that the accuracy of the model is expected to become poorer closer to the band
termination point (I,,,, = 16 in the present case).

6. Conclusions

The pairing-plus-quadrupole particle-hole model in a single j-shell in a basis of
pairs of fermions coupled to A =0 and 1 = 2, has a mapping onto a space of
monopole and quadrupole pairing phonons. It is possible to find a set of rules such
that the mapped matrix elements can be calculated in the framework of the NFT.
The model contains some of the features of transitional nuclei as well as the
vibrational and, in some very approximate way, the rotational patterns. The model
being fully microscopic, contains no free parameters, but the known strengths of the
monopole and the quadrupole pairing forces as well as the strength of the quadrupole
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Fig. 6. Transition probabilities associated with the ground band and quasi-y-band in both the vibrational.
and rotational limits. The asymptotic limits are indicated by dotted lines, The NFT predictions are also
given,
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particle-hole interaction. The resulting fits cannot reproduce essential features of
the nuclear system like, for example, the energy splitting between the pair of states
3*-4* 5%-67, etc., belonging to the quasi-y-band. Because of the single j-shell
approximation and thus the absence of pairing vibrational modes, the observed
features of the quasi-f-band are poorly reproduced.

7. Prospects

The two obvious extensions of the model lie in the inclusion of many j-shells and
in the treatment of odd nuclei [cf. refs. 14-25-26)]. The first step would allow,
among other things, the introduction of a second monopole pairing boson (s’-
boson) associated with the fluctuations of the pairing gap (pairing vibrations), and
thus for a more realistic description of the f-vibrational modes.

Discussions with A. Bohr, C. H. Dasso, F. Iachello, E. Maglione, B. R. Mottelson,
O. Scholten and T. Suzuki are gratefully acknowledged. We are indebted to
E. Maglione for his help in different steps of the calculations, and to F. Sakata
for the comparisons between the exact and the SD space calculations.

Appendix A

In this appendix we collect the different expressions of the matrix elements and
transition amplitudes associated with a system of pairs of particles coupled to
2 =0 and A = 2 which move in a single j-shell and interact via a monopole and
quadrupole pairing force and a quadrupole particle-hole force. A résumé is given in
table 1.

The monopole and quadrupole pairing modes are defined, in the NFT, as solutions
of the random phase approximation equations. Thus, the dispersion relation
through which the energies are determined is [cf. e.g. ref. )]

21_ _y <I<klll71!|kz>l2 1 ) LY ( Kl Tlliz> 1 1 > (Al)
TGy kS \Eip, — W2, 2) 14+6(1,2) E,.,—W(—24) 1+4(1,2)

ir2iz

where the multipole operator is given by
T,, = Y, (%), (A.2)

that is, we have chosen a constant for the form factor. It has been empirically shown
that such a choice leads to a strength value %)

G, ~ 27/A MeV, (A.3)

which is almost independent of 4 for A = 0, 2, 4 and 6. This result has been given
firmer theoretical grounds, in terms of the surface §-force 27).

The index k stands for the quantum numbers of a particle moving above the
Fermi surface, while i is associated with the quantum numbers of a particle moving
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below the Fermi surface. In a single j-shell, only the sum over & ’s is possible, and it
reduces to a single term, that is,

Z,=¢e~-W, = 27TG,1|<j||T,1||j>|27 (A.4)

where ¢ = E; ;, is the energy of the two-particle configuration, and W, = W(2, 4)
the phonon energy.
The RPA amplitude associated with forwards scattering is

A,28) k|1 T;l1k2>

dn(klkZZ)“) = (1 +5(1, 2))% Ek — Wn(zi) ’

(A.S)
1k2
which for a j-shell leads to

Z, = e=W, = SEAGIT,5D. (A.6)

Thus the quantity Z, determines both the particle-vibration coupling strength A,
and the energy denominator ¢ — W, of all graphs involving pairing vertices (cf. fig. 7).

The order of magnitude of the different quantities in terms of the small parameter
1/Q can be estimated for the case of 4 = 0. Using the results:

Tl = 0@, (A7)
e—W, =01, (A.8)
we obtain:
A, = O(1/Q%), (A.9)
G, = 0(1/2). (A.10)

To calculate matrix elements of a two-body interaction we make use of the boson
fractional parentage coefficients, and write the basis states in the following alternative
ways

nggoa; Iy = |ny|ngvo; I

= Jnln,—1ln, = Dlngva; 1

= Jnalny Y (na—10/o; I'ngwos Dilng—10'a’; Iy lng = 15},

v'a'l’
= JInn,—Din,—25n, = 2>Ingva; 1) (A.11)
= /npgln—Ding = 1) Y (ng—1v'a’; I' |}ngva; T)
v'a'l’
x{lng = 1Wo'; I'Dingy = 1)},
= Vi, —Dny 3 (=20 g = A0 Wmgou: 1)

x{lng—2v'0"; Ylng = 2, I} .
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Fig. 7. Schematjc representation of the multipole pairing particle vibration coupling. The strength of this
coupling is A, (JIT, D [of. ref. )] while the correlation energy of the collective mode is 6 — W,
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Fig. 8. Graphical representation of the pairing-plus-quadrupole matrix elements. Graphs (b)~(i) corre-

spond to the 1/Q contributions. The horizontal dotted line represents the particle-hole quadrupole

interaction. Both graphs (j) and (k) are of higher order. In (1) we display the coupling associated with
action of quadrupole particle-hole force in graphs (g)-(1).
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The quantities (n,— Lv'a’; I'[}ngva; ) and  (ng—20'; I, ng = 20"} ngoa; I) are
the single and double fractional parentage coefficients associated with the d-boson.

The graphs leading to the same matrix elements of the pairing-plus-quadrupole
hamiltonian as obtained with the algebraic method of ref, °) (sd subspace) are
collected in fig. 8. The basic structure common to all the butterfly-like diagrams
(Pauli principle diagrams) is shown in fig. 8a. It is equal to

<{§: i éz}hg s }4}32}3!{{ Ji ;3}33[ iz 34}3,4;;>
= — (i) Usidhes T i) Asliaidda I

jl j’}. /%1
— (@A A DA+ DL+ DD LGy Je AL . (A12)
Ay by T

In table 2 we collect the values associated with a single j-shell and the different
possible combinations of the phonon angular momenta.

In what follows we give the contribution associated with each graph calculated
according to the standard rules of the NFT supplement by rules (a)}(d) presented
in sect. 2 [cf. also ref. '%)].

SYMMETRIZED EXPRESSIONS FOR ENERGY MATRIX ELEMENTS AND TRANSITION
AMPLITUDES; PAULI PRINCIPLE CORRECTION MATRIX ELEMENTS

Contribution of graph 8b and contribution proportional to Z, of graph 8c. The
contribution of graph 8b is

nn,—1) -z-gf , (A.13)
while that of 8¢ proportional to Z is
- ‘% (A14)
To these contributions we should add the energy of the unperturbed s-phonons
ne,. (A.15)
The sum of these terms is equal to (¢ = 0)
{nggoo; IH oo Iy = —Gu—GaJ(Q—2n)~n], (A.16)

and coincides with the result obtained using the algebraic method of ref. ) (sd
subspace}.
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TABLE 2

Value of the recoupling coefficient —{(j, ;)4 (J3/)4;; JIU173)45 U244 /> associated with the Pauli
diagrams (cf. fig. 8)

A 2, Ay Ay
(j Jj 2
d d d d —25{j j 2
2 2 Jj
d s d d 5 22 2
J5
- 8J,0
s s d d (2j+1)( )
d s s d
d s d s )
s d d s 2j+1
s d s d
s 3 $ 3 _5(J’0)
2i+1

Contribution of graph 8d. The symmetrized contribution associated with graph
8dis

77 (Q—n—ng+1)(Q—n—ny+2)
. ] H 2 ...2 Y I;I ={—=5 d 2 5
npgoas IHin +2,ny—2,0'0 ;1) (Zs+Zd>{ V5 (2—2ny)?

% J(n—ng+2)n—ny+1)/Q% \/nn,— Ding—20'«’, I';ny = 20)] }ndvocl)} . (AID

This expression coincides with the corresponding sd-subspace matrix elements °),
aside from differences like (2 —n—n4+2) instead of (@ —n—ny+ 1), which in any
case are of order 1/Q smaller than the main contribution. The identification to be
made is

zZZ,
Z+2Z,
where (2, 2) is the strength of the pairing quadrupole force as defined in ref. ).
A subtle difference between the sd subspace matrix elements and those calculated
in the NFT, are that the latter depend on both the monopole and quadrupole pairing

strengths, while the former only on the quadrupole pairing strength. The reason
for this is to be traced back to the energy denominators of the NFT expressions. They

= x(2, 2), (A.18)
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display the typical asymmetry associated with the Rayleigh-Schrédinger perturbation
theory due to the difference between initial and final states. A way to average this
asymmetry out is by setting Z, = Z, in which case

Z, = 2x(2, 2). (A.19)
Contribution of the graph 8e. The symmetrized contribution of graph 8¢ is
16Z5Z 2 2 2
(ngngvos I Hing+1ng—10'o/; 1) = — —— 2‘1 s 2{\/2-20 -
(9Zd—Zs)(Zs+Zd) J J ]

(Q—n—ng+1)n—ny+1)
(Q—2nyQ

(na—\/ng ¥ (ng—20"0"1";n, = 2| }ngval)
a’I”
x (ng—20"a"I"| Ing—1 v’cx’l')} . (A20)

which differs from the exact expression by a factor (1—2n/Q) = U*-V?2
Identifying the factor outside curly brackets in (A.20) with x(2, 2) we obtain, for
Z. =2Z,,Z, = 2x(2, 2).

Contribution of the graph 8f and contribution proportional to Z, of graph 8c. The
contribution of the component proportional to Z, of graphs 8c and 8f are equal to

Q-—n-—ny 2
{ngngvo; I Hinngoo; I = —Z, {1 - —g—_nfq? 0 ns} Ry (A.21)

{nagvas I Hngpgv's s I

=3Z;n(ng—1)100 ) (ng—20"0", I";ng = 2(I'"")|}ngv'a; I)

et ot I

JJ?2
(nd_zv//a//I//;nd — 2(1///)I}ndua; I) J J 2

22 I”’J , (A.22)
respectively. The factor in the curly brackets in (A.21) can be written as
Q—n—ny 2 04
1- 7 2, Uy auv2 (L), (A23)
Q-2n, Q Q

and should be compared with the exact expression U*+V* = 1-2U?V2. The
difference is thus higher order in 1/Q.

Turning now to the matrix element (A.22) we note that it does not contain the factor
n,. The d-bosons propagate without interacting with the s-boson condensate, as is
obvious from graph 8f. The expression obtained with the algebraic method ) (sd
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subspace) differs from (A.22) by the factor
1-202V2. (A.24)

The correction —2U?V'? should arise from the graph (k). We have however not
calculated it in detail but empirically incorporated the factor (A.24) in (A.22).

Contributions to quadrupole transition amplitudes of graphs 2a and 2b. The basic
structure of the zeroth-order diagrams is given in fig. 2h and is equal to

e ef Tt Qalef et lids) = (— 1P+ 43502, + ){] y j} (A29)
1

1

where

=3 2 N ef el (A.26)
i
For a single j-shell we obtain

Lefef 1ol{@alef ¢ ator = GO, (A.27)

\/2 +1

<[c;c;]2|{gz[c;c,~+]z}z>=—fﬁ ’ 2}<Jngznj>. (A2%)

The contribution of graph 2a is equal to

{ngngv'a’; I'|Q,lIngngvo; Iy = ~ngS,, (A.29)
where
2.2 2 2 2 2
=1 21’+1)%(21+1)5{_ , } (—1yf+r { Y }
* i u§1 rrri

X (ng— 10", I"| Yngv'o; I'ng— 1 v"a" s 1| Yngvo; DEJIQLN 7D, (A30)

G = G2 Y117 (A.31)

The contribution of graph 2b for all those time orderings in which the external field
acts within the four vertices is equal to

2
(ngngv'a’; I'N|Q, | Ingngvos I = nygng — o S;. (A.32)

The sum of the two contributions is then
{nngv'a; I'|Q, | ngngvo; I = (1-2n/2)S,, (A.33)

to be compared with the exact expression (1—2n/Q")S,. The difference is again
of higher order in 1/Q.
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Contribution of the quadrupole transition amplitude of graph 2e. The symmetrized
expression of the contribution of graph 2e to the quadrupole transition amplitude is

<J|IQ3H_1>
V2+1

x\/(nmnd+g(gl;n—"d"‘I)ﬁ;(wl)hr’(nd__}Ufa';[’i }ndva;I), {A.34)
—ely

{ngngva, HQ,lIn+ 1 ng—1 v, I'Y = 2, /521 + 1)

and coincides with the result of the algebraic method of ref. ®} (sd subspace).
Quadrupole particle-hole matrix elements. The quadrupole particle-hole matrix
elements are displayed in figs. 8g-8;. The first three are separable (cf. figs. 81 and 9)
and can be calculated in terms of the quadrupole transition amplitudes displayed in
figs. 2a and 2e,
Defining the quadrupole particle-hole hamiltonian

Hy = —xy (=1Y'Q5,05 (A.35)

and setting Z, = Z, we obtain the following result

- 2
graph (g)  graph (h) _ graph () _ k¢’ (A.36)

graph (¢) graph(d) graph(e)  Z,~

The quantity ¢ is defined as

q = JE 0. (A37)

The result (A.36) coincides with the result obtained utilizing the algebraic method of
ref. %) (sd subspace).

To incorporate the contribution of graphs 8g-8i in the general mairix elements we
can make the replacements

—(Z4—2xg?)  ineq. (A21),

- xqz) in eq. (A.17),

Zzy (2.2
Z+zZ, \Z.+Zz,

16237, 162327,
©

— —xg* |, in eq. (A.20
OZ~ZNZ+Z,)} Zi-ZNZ A+ 2ZY xq) e (420
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Fig. 9. Separability of some of the quadrupole particle-hole graphs. To the extent that the energy of the
initial state w,;+w,, is approximately equal to that of the final state @, +w,,, the four-point vertex
graph can be weritten as a product of two transition diagrams [cf. ref. 2)].

In the results of the algebraic method °) (sd subspace) there exists one quadrupole
matrix element more which is equal to

L 1@ —ny)

Sngngv’e’; I\ Hglngngoo; I = 4xq mnd(nd”l)

x ¥ c(ng—20", I'"; ng = 2(A)}ngva; I)
Aa’ T

X(ng—2a", I"; ng = 2A)Ingv'el’; I), (A.38)

where
S 21 100 (2 2 2 5
=50 i j o2 +l—5/'LOm 0 .
9 JJ (1—4(2,0)) { i J} +8(/, )Q(Q % (A.39)

2 2 4]

Because it is an exchange type of graph, and because it has a term linear in n,, it
means that the two d-bosons interact with the s-bosons already in lowest order.
The graph corresponding to this process is displayed in fig. 8j. Although this graph
can be calculated we have in the present paper directly used the expression (A.38).

Appendix B
THE HAMILTONIAN

The particles moving in a single j-shell interact through the multipole (1 = 0, 2)
pairing force and through the quadrupole particle-hole interaction. The multipole
pairing hamiltonian is defined as in ref. ') and reads

H() = —G,2A+1) Y P}P,, (B.1)

where, for a single j-shell

P = (2/1 +1) ATNDLef ¢ T2 (B.2)
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As mentioned in appendix A, assuming 7, = Y, , one obtains G, ~ 27/A MeV
(4 =0,2and 4).
The particle-hole quadrupole hamiltonian is equal to

H, = _KZ (—D*Q,,0,_, (B.3)
where
05, = VEGIQ,IDLe} ¢T3, (B.4)
2
K= %13 (th) MeV. (B.5)

The hamiltonian (B.1) is used to define the monopole and quadrupole pairing
phonons, i.e. to determine the collective energies W, and the particle vibration
coupling vertices A,.

No phonon is ascribed to Hy,. This residual interaction couples the pairing phonons
pairwise, by scattering fermions in the intermediate states.

Appendix C

According to the rule (c), the contribution of each graph associated with
processes in which the particle number is not changed, has to be symmetrized by
making the replacement

(n,+a)— é (n+a) Q' —n +a) = % [(n)+al[(Q —n)+a]

- (ns+a)(1—5+ﬁ>. C.1)

Q

In the second form for the substitution, the symmetry between pairs of particles n,
and pairs of holes (' —n,) is apparent.

Let us see how the prescription works in a concrete situation like, for example,
the contribution of graph (d) of fig. 8. The non-symmetrized contribution of this
graph is

{ngpgvo; IHng+2n,—2v'a; I

_zZz,
CZA4Z,

{2\/5 \/ (n,+2)(n+ Dny(ny—1)

X (ng—2v'e, I'; ny = 2, (0)|}ngval)}. (C2)
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Using (C.1) we obtain

Q—n—ng+1
,/ns+1—>\/(n—nd+1)——%~—, (C3)
]

Q—n—ng+2

g+ —>\/(; ng+2)——— 0-m, (C4

Making these replacements in (C.2) we obtain the final expression (A.17).
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