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Abstract 

Low-energy intrinsic K” = l+, O-, l-, 2-, and 3- states in the even-even proton-rich 
Sr, Kr, and Zr nuclei are investigated using the quasiparticle random-phase approximation. 
In the 2 = N nuclei the lowest-iying 1’ states are found to carry unusually large B(M1) 
strength. It is demonstrated that, unlike in the heavier nuclei, the octupole collectivity in the 
light zirconium region is small and, thus, is not directly correlated with the systematics of 
the lowest negative-parity states. 

Key words: NUCLEAR STRUCTURE 76~78*80~82Sr, 72*74,76,787s%r, 80782Zr; calculated levels, 
B(A). Quasiparticle RPA. 

1. Introduction 

It has been shown experimentally [l-3] that shape coexistence, large deforma- 
tions, the presence of well-deformed intruder orbitals, quenching of pairing 
correlations, low-lying octupole states, and dramatic shape changes induced by 
rotation are quite common phenomena in the zirconium region (Z = iV = 40). The 
microscopic reason for such a strong variation of collective properties is the low 
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Fig. 1. Neutron single-particle levels in 78Kr as functions of the quadrupole deformation & (PA = 0). 
The Nilsson states are labelled by means of the asymptotic quantum numbers, [Nn,ALQ 
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single-particle level density in these medium-mass nuclei. Because of spectacular 
shape effects, relatively small size, and high collectivity, the nuclei from the A N 80 
mass region have become favorite testing grounds for various theoretical ap- 
proaches. Calculations based on the mean-field approach applied to nuclei in the 
light-Zr region suggest an interpretation of experimental data in terms of well-de- 
formed prolate shapes, weakly-deformed oblate shapes, and spherical (shell-model) 
configurations [4-61. 

There exist a number of mean-field calculations for the light-Zr region (for 
references, see review [3]). In most cases calculations give similar equilibrium 
deformations, but they differ in their predictions for excitation energies of shape- 
coexisting states. Best examples of the ground-state shape isomerism in nuclei in 
the light-Zr region are the Ge-Kr isotopes with A N 70. Calculations suggest the 
interpretation in terms of two competing configurations: one at an oblate shape, 
and the other at a prolate shape. Oblate ground states are predicted for Ge- and 
Se-isotopes and for most Kr-isotopes. For light Sr-isotopes the prolate configura- 
tion lies lower in energy. Because of the mutual interaction (of the order of a few 
hundred keV [ll> the prolate and oblate bands are strongly disturbed in the 
low-spin region. 

The single-particle diagram representative of the discussed nuclei is shown in 
Fig. 1. In the A N 80 region both protons and neutrons lie in the same (~i,~, P~,~, 
f5,2, g,,,) shell. For T, N 0 systems, the proton and neutron shell corrections add 
coherently and, consequently, dramatic shape effects are expected. A beautiful 
experimental signature of large prolate deformations in the A N 80 region, at- 
tributed to the large single-particle gaps at Z, N = 38 and 40, was observation of 
very collective rotational bands in neutron-deficient Sr and Zr isotopes 17-91. 
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The investigation of the medium-mass N = 2 nuclei has been the proprietary 
niche of groups who made investigations using the Daresbury Recoil Separator. 
Pioneering works from Daresbury include the spectroscopy of @Ge, @Se, 72Kr, 
76Sr, *‘Zr, and 84Mo (see ref. [lo]). These studies confirmed earlier theoretical 
predictions of shape transition from strongly oblate shapes in @Se and “Kr to 
strongly prolate shapes in 76Sr, and *‘Zr (actually, “Sr and *‘Zr are, according to 
calculations, very deformed, with the ground-state deformation around & = 0.4). 
The nucleus 84Mo is the heaviest Z = N system known so far. 

Spectroscopy in the light-Zr region will certainly become one of the main arenas 
of investigations around the proton drip line. The physics of exotic nuclei with 
T, < 0 is one of the fastest developing subjects in nuclear physics, thanks to exotic 
(radioactive) ion beam (RIB) facilities currently under construction in Europe, 
USA, and Japan. In particular, the combination of RIB and the new-generation 
multidetector arrays should open up many new avenues of exploration [ill. 

The main motivation of this paper is to make predictions for low-energy 
collective Ml and E3 excitations around ‘%r. Since the Ml collectivity of low-lying 
It states increases with deformation (though the energies of those states may 
increase), it is anticipated that in some well-deformed nuclei in the A * 80 mass 
region the strong magnetic dipole strength should lie low in energy. The existence 
of coliective octupole states in this region is a long-standing question. The 
low-lying negative-parity states, often interpreted as octupole vibrations, can be of 
a single-particle character [X2]. To shed some light on both issues we performed 
calculations based on the quasiparticle random phase approximation (QRPA). We 
hope, that those predictions will stimulate experimental investigations of medium- 
mass nuclei around the N = Z line. 

2. Deformations and pairing correlations in the A - 80 mass region 

Calculations of equilibrium deformations of A N 80 isotopes were previously 
performed [4] within the Woods-Saxon-Strutinsky model [13]. In this work, new 
calculations have been carried out using the same single-particle model but the 
Yukawa-plus-e~onential mass formula of ref. [ 141. The panicle-particle interac- 
tion was approximated by the state-independent monopole-pairing hamiltonian. 
The pairing energy was computed using the approximate particle-number projec- 
tion in the Lipkin-Nogami version. The pairing strengths and the average pairing 
energy were taken according to ref. [15]. The calculated equilibrium deformations 
for selected Kr, Sr, and Zr isotopes are shown in Table 1. It is seen that the 
deformed + spherical shape transition is expected to occur around N * 44. Worth 
noting are very large equilibrium p2 deformations (N 0.4) of the lightest Kr, Sr, 
and Zr isotopes. 

In several nuclei around 82Sr highly-deformed and superdeformed bands (p2 > 
0.4) have been predicted to become yrast at high spin [4,5,16,17]. For example, in 
82Sr well-deformed nearly-prolate bands involving h11,2 neutrons are expected to 
become yrast at I > 32% ~erimentally, a weak ridge-valley structure with a 
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Table 1 
Calculated equilibrium shape deformations & and p4, and proton and neutron pairing gaps, A,, and 
A, (in MeV), at selected ablate and prolate configurations of Kr, Sr and Zr isotopes. According to 
calculations, the oblate Z = 0 minima lie lower in energy than the prolate Z = 0 minima in 72v74,78Kr, 
‘*Sr, and ‘*Zr. For ‘*Sr the calculations were also performed at superdeformed configuration with 
p* = 0.45. 

Nucleus Oblate Prolate 

Z N P2 P4 A, An P2 P4 A, A, 

36 36 -0.31 - 0.010 1.34 1.23 0.35 0.016 1.40 1.31 
38 - 0.30 - 0.016 1.26 1.46 0.37 0.0 1.31 1.12 
40 -0.25 - 0.036 1.32 1.54 0.36 - 0.016 1.24 1.25 
42 - 0.24 - 0.050 1.28 1.48 0.32 - 0.023 1.18 1.46 
44 - 0.23 - 0.050 1.24 1.46 

38 38 0.39 - 0.016 1.14 0.99 
40 0.39 - 0.029 1.01 1.04 
42 0.37 - 0.030 0.93 1.34 
44 - 0.22 - 0.065 1.35 1.37 0.28 - 0.020 1.15 1.48 
44 0.45 0.0 0.83 1.45 

40 40 0.40 - 0.037 1.06 0.88 
42 - 0.22 - 0.078 1.39 1.31 0.39 - 0.038 0.96 1.26 

width of AE, = 150 keV has been seen in the EY-EY correlation map [18]. This 
ridge corresponds to p2 N 0.5 for a deformed rigid motor. However, no discrete 
band that could be associated with this ridge-valley was identified so far. Theoreti- 
cally, the superdeformed band in “Sr is expected [4] to have deformation & N 0.45, 
see Table 1. 

The most important interaction, beyond the single-particle deformed mean 
field, is the short-ranged pairing interaction. This force is often approximated by 
means of a state-independent monopole pairing interaction. The general feature of 
the pairing interaction is that the pair correlation energy is anticorrelated with the 
shell correction. A smaller pairing gap results from a smaller density of single-par- 
ticle levels around the Fermi level, which are available for pair correlation. For 
deformed A N 80 nuclei the weakest pairing is expected around the deformed gaps 
at N (or Z> = 38-42 [5]. A further reduction of pairing can occur in excited 
configurations, due to blocking. 

In the A N 80 mass region are several good examples of very regular, rigid 
rotational bands. Among them there are negative-parity bands in 76Kr and 78Kr 
built upon the first I” = 3- state at 2258 keV and 2399 keV, respectively. These 
bands are among the best nonnalZy-deformed rotors, with remarkably large and 
nearly constant moments of inertia, 9 (I) c: g@) [19,20]. Theoretically, those bands 
are associated with two-quasiparticle excitations built upon the proton [431 %I X 

[312 :] Nilsson orbitals which happen to occur just below the strongly deformed 
subshell closure at Z = 38. (The proton character of those bands was recently 
confirmed by the g-factor measurement [21].) Another good example is the 1312 $1 
band in 77Rb [22] or the [422 z] band in *iY [23] having unusually large moments of 
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inertia. In all those cases the BCS calculations [5] suggest the dramatic reduction 
(or collapse) of the static pairing. 

Weak pairing has important consequences for the low-energy electromagnetic 
transitions. Since the B(M1) values involving the ground state of even-even nuclei 
are proportional to the BCS factor (u~u, - u~u,)*, weaker pair correlations en- 
hance the low-lying Ml strength. For electric transitions, the related BCS factor is 
(u~,u,, + u~uJ*. On the average, pairing correlations enhance the collectivity of the 
low-lying E3 transitions from/to the ground state in the Sr-Zr region (see sect. 4). 

3. Magnetic dipole states 

The deformation dependence of 1 + states is a current subject of both experi- 
mental [24,25] and theoretical [26-291 studies. The low-energy B(M1) strength 
(defined as the summed strength over a given energy interval, e.g., 2-4 MeV in the 
rare-earth nuclei) increases with quadrupole deformation as, roughly, p,“. Re- 
cently, it was demonstrated in ref. [29] that the sum of B(M1) values in the region 
of E, < 10 MeV at heavy superdeformed nuclei around i5*Dy and 19*Hg was 
several times larger than that at normal deformations. The reason for this en- 
hancement is twofold. Firstly, the proton convection current contribution to B(M1) 
increases with deformation and at strongly deformed shapes becomes comparable 
to the spin-flip contribution in the low-energy region. Secondly, as discussed in 
sect. 2, the B(M1) strength increases if the pair correlations are weak, i.e., exactly 
what is expected at SD shapes [30]. 

Since some of the A N 80 nuclei are very well deformed in their ground states, 
their equilibrium deformations exhibit rapid isotopic and isotonic variations, and 
their pairing correlations are predicted to be weak due to deformed subshell 
closures (Table 1). Because the Kr, Sr, and Zr isotopes have these characteristics, 
they are ideally suited for investigations of the low-energy Ml strength and its 
deformation dependence. (The lighter and heavier systems, such as Ge, Se, and 
MO, are less deformed and y-soft.) 

The properties of the K” = l+ states have been investigated using the QRPA 
hamiltonian 

where the single-particle hamiltonian, 

h,,,,= c ( Ei - A)& 
i 

(2) 

is an axially deformed Woods-Saxon hamiltonian of ref. [31] (see ref. [32] for 
parameters), 

Vpair = -A C (COCK + ClCi) 
i 



338 T. Nakatsukasa et al. /Nuclear Physics A573 (1994) 333-355 

is the monopole-pairing field, V, is a long-ranged residual interaction (mainly of 
quadrupole-quadrupole type), and V,, is the spin-spin residual interaction. In 
Eq. (1) 

V,, = - + c K&F,, (4) 
T=O,l 

where the isoscalar and isovector fields F are given by 

and 

F,= A[hgi., j?)], 7 = n, P, 

while the residual spin-spin interaction is written as 

where 

&=(I = 5, + s,, s,=,=s,-s,. 

The strength of V,, is taken [33] as x0 =x1 = 100/A MeV. 

(8) 

The residual interaction V,, gives rise to isoscalar and isovector shape oscilla- 
tions. The isoscalar-coupling constant, Kg, is determined by the condition [34] that 
the lowest RPA frequency for the isoscalar mode vanishes, since the lowest-lying 
mode with K” = l+ is spurious and corresponds to a uniform rotation of the 
system. The value of 5 in (5) is determined by the requirement [35] that the 
spurious component should be absent in the RPA solutions with non-zero frequen- 
cies. We have numerically checked that the summed probability of the spurious 
component, IS) a j, Ig.s.), remaining in the RPA solutions with non-zero fre- 
quency is less than 10p6. 

The isovector coupling constant, K~, is taken from the self-consistency condition 
for the harmonic-oscillator model [36], K~ = -3.5~~. In RPA calculations we take 
into account all two-quasiparticle configurations with excitation energies less than 
26 MeV, and have checked that the configuration space is sufficiently large so as to 
include all Ml strengths. 

The B(Ml)-values have been calculated using the strong coupling scheme [36]. 
They are given by 

B(M1; O,&,+ l+; n) = 21 (l+; IZ I dl ]O,‘ls.> I’, (9) 

where II+; n) is the K” = l+ QRPA phonon and Gl = dml+X7=n,p(g,,71T + 
gs,& is the usual magnetic-dipole operator. As a representative example, results 
of calculations for Sr isotopes are shown in Fig. 2, which shows the excitation 
energies of the low-lying K” = 1 + states. The values B(M1; g.s + 1’) (in &> are 
indicated. The upper diagram was obtained by using the standard pairing gaps of 
Table 1. According to sect. 2, pairing correlations in the excited states of Sr-Zr are 
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Fig. 2. Predicted excitation energies of low-lying 1” states of prolate ~nfiguratioos in 76*7880~82Sr, 
oblate minimum in “Sr [82(o)], and the superdeformed configuration in *‘Sr [SZ(SD)I. The numbers 
indicate the B(M1; g.s. -+ I”) values (in pi) for transitions greater than 0.5 &+ Only states with 
B(M1; p.s. -+ 1+ ) > 0.1 & are shown (solid lines: B(M1) > 0.3 &, dashed lines: B(M1) < 0.3 &. The 
upper portion shows the results obtained with standard pairing, ASed, see Table 1. The results obtained 
with pairing reduced by 50% are displayed in the lower portion. 

expected to be seriously quenched. Therefore, we performed a second set of 
calculations with A, and A, reduced by 50% with respect to the standard values. 
As discussed in refs. 127,293, reduced pairing leads to increased collectivity of the 
low-lying l+ states; as seen in Fig. 2 the B(M1) values calculated in the “weak 
pairing” variant are appro~mately twice as Iarge as the Ml rates obtained in the 
“standard pairing” variant. 

The best candidate for low-lying enhanced 1 + states in the A - 80 mass region 
is the N= 2 nucleus “?!&. Its ground state is very we11 deformed due to the 
coherent superposition of proton and neutron shell effects associated with the 
deformed gap at the particle number 38. In Fig. 3 we show the B(M1; g.s. + 1’) 
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Fig. 3. B(M1; g.s., K” = O+ + K” = If) values for ‘% calculated in RPA as a function of the 
excitation energies of 1’ states. The summed values per 1 MeV energy bin are plotted as a histogram 
(solid lines). For reference, the NM11 values (9) associated with spin part only (g, = 0, dotted line) or 
orbital part only (g, = 0, dashed line) are also shown. The g-factors used are g, = gp and g, = 
(0.85)gfree. The upper (lower) diagram represents the “standard pairing” (“weak pairing”) variant of 
the cal&lations. 

strengths of the calculated K” = l+ RPA excitation modes in 76Sr (at the ground- 
state deformation), as a function of excitation energy. The upper (lower) diagram 
corresponds to the standard (weak) pairing variant. The Ml strength arising from 
only the proton convection current (i.e., g, = 0) and the Ml strength from only the 
spin part (i.e., g, = 0) are also plotted in Fig. 3. In both pairing variants of 
calculations, there appears only one low-lying l+ state which has unusually strong 
Ml collectivity. In the “weak pairing” variant this state is predicted at 2.2 MeV 
and the corresponding B(M1; g.s. + l+) transition is 2.16 &. The main compo- 
nents of the wave function of the l+ state in 76Sr are the rr(g,,,)* and v(g,,,)* 
excitations involving the two Nilsson orbitals [431 :I and 1422 $1. The largest 
components of the low-lying l+ states in 76Sr in the energy range of 4-5 MeV are 
the [431 31 x [431 31 (spin-flip) and [301 31 x [310 $1 two-quasiparticle excitations. 
The main contribution to the peak in the Ml distribution seen in the energy range 
of 7-9 MeV in Fig. 3 comes almost exclusively from the spin-flip f7,* + fs,* and 
g,,, --j g7,* transitions. 

The contribution to the B(M1) strength coming from the unique-parity high-j 
excitations, such as (h11,2)2 or (gg,*)*, has a simple shell-model interpretation (in 
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Fig. 4. Similar to Fig. 2 (standard pairing) but for the Kr isotopes. 

terms of a single-j shell) and cannot be viewed as coming from a collective 
“scissors” mode (see discussion in ref. [331X The synthetic orbital scissors state is 
defined as 

I R) =J@(z!“)- ffI!p’) Igs.), (10) 

where .N is a normalization factor and the parameter (Y is determined by the 
requirement that the mode (10) is orthogonal to the spurious reorientation mode 
[29,37,38], i.e., 

cy = (g.s. ] ~~)~~) /g,s.)/{g.s. 1 j?)lSp’ tg.s>. (11) 

The calculations show that for the lowest 1+ state in 76Sr the overlap between its 
RPA wave function and the state (10) is only about 12%. Consequently, although 
this state is predicted to carry an unprecedented Ml strength, it cannot be given a 
geometric interpretation of the “scissors” mode. The K” = l+ isovector giant 
quadrupole resonance in ‘& lying at E,__ = 32 MeV carries a significant Ml 
strength ( rv 4 &I and contains a major component of the “scissors mode” (around 
50%). 

Figs. 4 and 5 show the calculated l+ states in Kr and Zr isotopes, respectively. 
As seen in Figs. 2, 4 and 5 when moving away from 76Sr, the low-energy Ml 
strength becomes more fragmented. Good prospects where to find large Ml 
strength at Iow energies are the welt-defo~ed prolate nuclei ‘*Sr (where the l+ 
state is built mainly from the +rr([431 f] 0 [422 %I> and r&422 $1 tg, 1413 f]) 
two-quasiparticle excitations), *OSr, 8oZr (&[422 g] QD [413 $1) and v([422 z] @ 
1413 ;]>I, **Zr, and 74Kr. The most promising oblate-shape candidate is the N = 2 
nucleus “Kr. Similar to ‘?Sr, the l+ state in 72Kr has a (g,,,j2 character. 
However, in this case the main contribution comes from the high-f2 substates, i.e., 
~([413 $1 Q [404 ;I> and v([413 318 [404 ;I>. 
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Fig. 5. Similar to Fii. 2 (standard pairing) but for the Zr isotopes. 

As discussed in sect. 2, the best prospects for superdeformation in the A u 80 
region are in the nuclei around 82Sr. The calculations performed for superde- 
formed configuration of 82Sr predict two states (around 3 MeV and 4 MeV) that 
carry a large Ml strength (see Fig. 2). They can be associated with the 7r([431 $18 
[422 $1, ~([422 $18 [413 S]> and v([541 $1 QS, [550 $1) two-quasiparticle excitations. 

4. Octupole correlations 

In the light zirconium region octupole correlations can be associated with the 
g,,2 and p3,* subshells. Because of their rather large energy separation and a 
small number of coupling matrix elements, no pronounced octupole instability is 
expected. In addition, the small number of active subshells makes the octupole 
effect more sensitive to quadrupole distortion than in heavier nuclei around “&Ba 
or “‘Th [39]. 

The systematics of the lowest 3 - excitations in the Zr-region is shown in Fig. 6. 
It is seen that E3- tends to decrease when approaching the nucleus 76Sr. On the 
other hand, the shell correction calculations [12,40,41] predict octupole softness 
only in the transitional isotopes of Zn-Se with N G 36. Is the presence of low-lying 
negative-parity state always a good fingerprint of octupole collectivity? The answer 
to this question is negative. There are many nuclei that possess relatively high-lying 
negative-parity excitations but still are considered as good examples of systems 
with strong octupole correlations. In fact, the systematics of experimental B(E3) 
values in the light-Zr region [12,42] indicates that no correlation can be found 
between the behavior of the lowest negative-parity states shown in Fig. 6 and the 
B(E3; g.s. -+ 3-j strength. 
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Fig. 6. The lowest 3- energy level (in keV), observed e~riment~ly for doubly even nuclei from the 
light zirconium region. The dashed contour lines represent the lowest contours, at 2.2 and 2.3 MeV. 
The upper dashed curve marks the proton-drip line. 

According to the energy systematics presented in Fig. 6, the lowest negative-par- 
ity states are observed in strongly deformed nuclei with particle number (N or 2) 
close to 38. For example, in the nucleus ‘%r two negate-Paris rotational bands 
built upon the (3-j (2258 keV) and (2-j (2227 keV) band heads are known. 
However, the coexisting prolate and oblate minima in this nucleus are predicted 
[12] to be fairly rigid with respect to the reflection-asymmetric distortion. In ref. 
[43], based on energy systematics, it has been argued that some negative-parity 
bands in well-deformed nuclei from the A N 80 mass region can be interpreted as 
collective (aligned) octupole bands. However, it is not the excitation energy of the 
negative-parity band itself that determines the collective character of the underly- 
ing intrinsic configuration. In T = - bands pairing correlations are usually re- 
duced due to blocking and there is also significant Coriolis mixing. Consequently, 
these bands have usually larger moments of inertia than ground bands and, in 
some cases, can become yrast at high spins. In our opinion, the observed lowering 
of negative-Paris states around the particle number 38 does not necessarily 
indicate strong octupole correlations as suggested in ref. [433 but rather has a 
non-collective origin, see below. 

In order to clarify the issue of octupole collectivity around 2 = 38, N = 38 we 
performed the RPA calculations with the hamiltonian 

where bs.+ is a single-particIe Nilsson hamiltonian, Vpair is given by (31, and 
et;, = (r3Y3&- [I& = (rY,,y’l are the doubly-stretched octupole (dipole) opera- 
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tors [44]. A large configuration space composed of 7 major shells (for both protons 
and neutrons) was used when solving the coupled RPA equations. The octupole 
isoscalar coupling strengths, xc”, were determined by the self-consistency condi- 
tion for the harmonic-oscillator model [36,44], 

X3K 
==o = ;pMO;{((r4)“>, + 3(4 -K*)((r4p,)“)o 

+&[K2(7K2-67) +72]((r4P,)“)o}-1. 

The strength of the isovector octupole mode was taken from ref. [45] 

while for the isovector dipole mode we used the value [36,441, 

(13) 

(14) 

with VI = 140 MeV. A similar model has been used recently [46,47] to discuss 
octupole excitations built upon superdeformed shapes. The doubly-stretched mul- 
tipole interaction can be viewed as an improved version of the conventional 
multipole-multipole force. Namely, it has the following desirable properties in the 
limit of the harmonic-oscillator one-body potential. Firstly, it satisfies the nuclear 
self-consistency condition [36] rigorously even if the system is deformed. Secondly, 
it yields the zero-energy RPA spurious modes, i.e., it automatically separates the 
translational and reorientation modes. Last but not least, for the doubly-stretched 
multipole interaction the dipole-octupole coupling terms disappear [44]. 

The B(E3)-values have been calculated using the strong coupling scheme. They 
are given by 

B(E3; 0;s. +1=3, K; n) = & I(3K; n 1 e;Kl’;s.)l*, 

where 13K; n) = I n) is the QRPA phonon and Qg, = <r3Y3K>, is the charge 
(proton) octupole operator. It is worth noting that, because we use the doubly- 
stretched Q$Q& interactions, there is no simple correlation between the number 
of two-quasiparticle configurations contributing to an excited state and the corre- 
sponding B(E3) value. That is, an excitation which looks fairly collective in terms 
of the RPA amplitudes (i.e., appreciable size of backward-going amplitudes), it still 
can have a very small B(E3) value. Indeed, the ordinary octupole strengths 
I (n ) Q3K IO) I * are quite different from the doubly-stretched octupole strengths 
l(nle’~K10>12 in well-deformed nuclei. For example, in case of the prolate 
superdeformed harmonic-oscillator potential (w I = 2w,), ratios of the energy- 

Fig. 7. Predicted excitation energies of low-lying intrinsic K” = O-, l-, 2-, and 3- states in 76V7s*80~82Sr. 
The numbers indicate the B(E3; g.s. --, K-1 values in s.p.u. (1 s.p.u. = 0.416X10W6 A2e2b3, cf. ref. 
[421). They are shown for the states with B(E3) > 1 s.p.u. Other states represent non-collective r = - 
excitations. The solid lines correspond to states with B(E3) > 3 s.p.u. while the dashed lines correspond 
to states with B(E3) < 3 s.p.u. The results were obtained with standard pairing, Astd, see Table 1. 
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Pig. 8. Absolute values of forward RPA ~plitudes of the lowest K” = O-states built upon prolate 
minima in the Sr isotopes versus the quasiparticle configuration (numbered according to their excitation 
energies) for neutrons (solid lines) and protons (dashed lines). All amptitudes whose absolute values 
greater than 5 X lo-’ are indicated. (Note that due to the time-reversal symmetry each amplitude 
contributes to the intrinsic wave function twice.) The results were obtained with standard pairing, Astd, 
see Table 1. 
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weighted sum rule values S,, (for Q3K operators) and Sl;, (for Q!& operators) are 
given by [481 

(5O:ll for K=O 
for K= 1 
for K=2 
for K= 3, 

(17) 

0.7 , I, , , , , , , , , , , , , , , 
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Fig. 9. Similar to Fig. 8 but for the lowest K” = l- states in the Sr isotopes. 
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while in the oblate superdeformed case (wl = 2w ,_I, 

for K=O 
for K= 1 
for K= 2 
for K=3. 

0.7 , , , , , , , , , , , , 1 I I I, I, 
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Fig. 10. Similar to Fig. 9 but for the lowest K” = 2-states in the Sr isotopes. 
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Therefore, in the well-deformed prolate Coblate) configurations, B(E3) values 
overestimate (underestimate) the collectivity (in the sense of the RPA with 
doubly-stretched interaction) for the K” = O- and l- states, while they underesti- 
mate (overestimate) the “doubly-stretched” octupole collectivity of the K” = 3- 
states. 
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Fig. 1. Similar to Fig. 9 but for the lowest K” = 3- states in the Sr isotopes. 



350 T. Nakatsukasa et al. /Nuclear Physics A573 (1994) 333-355 

The results of calculations for the Sr isotopes are shown in Fig. 7, which displays 
the predicted excitation energies of intrinsic K" = O-, l-, 2-, and 3- states and 
the corresponding B(E3) values (in s.p.u.). The forward RPA amplitudes for the 
O-, l-, 2-, and 3- states built upon prolate configurations in 76178,80*82Sr are 
plotted in Figs. 8-11, respectively. In none of the nuclei considered, the low-lying 
negative-parity excitations can be considered as highly-collective states. 

In the N = 2 nucleus 76Sr the lowest negative-parity excitations with K = 1 and 
2 can be considered as weakly collective. The K = 1 octupole phonon has a large 
component of the two-quasiparticle [312 $1~ [422 $1 neutron configuration, see 
Fig. 9. The K" = 2- mode is less collective but it lies lower in energy. As seen in 
Fig. 10, the main contribution to its wave function comes from the [310 $18 [422 $1 
proton and neutron excitations. The lowest K" = O- excitation is mainly built 
upon the [312 s] @ [431 %I excitations. The K" = 3- state is predicted to be a 
non-collective [310 i] 8 [422 $1 state, see Fig. 11. Of course, all those intrinsic 
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Fig. 12. Similar to Fig. 7 but for the lowest T = - states in oblate configurations in the 72T74376Kr 
isotopes. 
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states are expected to be mixed through the Coriolis interaction [49]. In the 
“weaker pairing” variant of the calculations, the B(E3; g.s. + 1-j rate is reduced 
by a factor of N 3. This is because the “particle-particle” and “hole-hole” 
components such as [301 $1 o [422 $1 or [310 318 [431 t] have much less effect. A 
similar quenching is calculated for the O- state, which becomes a pure particle-hole 
excitation if pairing is reduced. On the other hand, the characteristics of the 2- 
state are only weakly influenced by pairing. 
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Fig. 13. Similar to Fig. 7 but for the lowest T = - states in prolate configurations in the 72974,76Kr 
isotopes. 
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The lowest K” = O- excitations in prolate configurations of 78980982Sr carry a 
rather weak collectivity. Like in ‘?Sr, in the “weak pairing” variant those states 
become almost pure particle-hole excitations. A similar situation is predicted for 
the K” = l- and 3-states. The K” = 2- modes are found to be slightly more 
collective compared to other modes with K = 0, 1, and 3. They are expected to 
appear at about E, = 2.7 MeV and they carry E3 strength around 6 s.p.u. On the 
other hand, if pairing is reduced those states become less collective, 
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The most collective octupole excitations in the oblate configuration of “Sr are 
the K” = l- and 2- states [E,, - 2.7 MeV, B(E3) N 7 s.p.u.1. The calculations 
also predict a low-lying weakly-collective K” = l- excitation in the superdeformed 
configuration of 82Sr (E;,, - 2.3 MeV, B(E3) - 10 s.p.u.). 

Figs. 12 and 13 display calculated low-lying negative-parity states built upon the 
oblate and prolate configurations in the Kr isotopes, respectively. On the average, 
negative-parity states in Kr’s are slightly more collective than those in Sr’s. The 
K" = O- prolate excitations are almost pure two-quasiparticle states. The K" = l- 
states and the K" = 2- oblate states resemble octupole vibrations; they have 

&X - 2.5 MeV, B(E3) - 7 s.p.u. The most collective octupole state in the Kr 
isotopes is the K" = 3- excitation (E,, - 3.2 MeV, B(E3) - 10 s.p.u.) in “Kr built 
upon the oblate minimum. However, when pairing is reduced this state becomes 
almost a pure particle-hole excitation. 

Finally, the results for the Zr isotopes are shown in Fig. 14. The lowest 
negative-parity excitations in “Zr and “Zr (prolate configuration) have a two-qua- 
siparticle character. The K" = O-, l-, and 2- modes in the oblate minimum of 
82Zr are weakly collective, with B(E3) - 5-9 s.p.u. Interestingly, the B(E3) rates 
for these states do not depend strongly on pairing. This is because their dominant 
two-quasiparticle components are the particle-like (g9,& 3,2,5,2 orbitals and the 
hole-like negative-panty p3,2 d f5,2 levels with a = i and i. 

5. Conclusions 

In the light zirconium region there are many excellent candidates for the 
low-lying If states with unusually large B(M1; O+-+ l+) rates, around l-2 &. 
The best prospects are the 2 = N nuclei, such as 76Sr (prolate), “Zr (prolate), and 
%r (oblate), where protons and neutrons contribute equally strongly to the Ml 
collectivity. Interestingly, the unusually strong low-energy Ml strength in those 
nuclei has a simple interpretation in terms of (g,,,)’ excitations, i.e., it does not 
result from a simplistic scissors mode. Also, it does not resemble the strong Ml 
transitions known in the light 2 = N nuclei [50], mainly of the spin-flip origin. 

In ?Sr and neighboring nuclei, the 1 + excitations are predicted to appear just 
above the r = - intrinsic states. Generally, the K" = O-, l-, 2-, and 3- band 
heads are calculated to be very weakly collective in well-deformed proton-rich Kr, 
Sr, and Zr nuclei (except maybe 72Kr). Namely, the low-lying negative-parity states 
have a dominant two-quasiparticle character when they are built on an intrinsic 
state with a large quadrupole deformation. There is no clear correlation between 
the excitation energy of the 3- state and the magnitude of the B(E3) t value in the 
nuclei from the proton-rich Sr-Zr region. 

The results of our calculations are quite sensitive to the strength of pairing 
interaction. In general, the weaker the pairing correlations, the more (less) 
collective are the Ml (E3) excitations. There exists some indirect experimental 
evidence supported by calculations, see sect. 2, that pairing is seriously reduced in 
some excited states of well-defo~ed nuclei from the A - 80 mass region, We 
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hope that future measurements of excited states in the well-deformed nuclei 
around 76Sr, especially their lifetimes, will shed new light on the collectivity of Ml 
and E3 states and, indirectly, on the magnitude of pairing correlations in this mass 
region. 
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Abstract 

RPA calculations, based on the cranked shell model, are performed for superdeformed “*Dy in which five excited bands 
have been found recently. We show that characteristic features of the observed dynamical moments of inertia are well 
accounted for by explicitly taking the octupole correlations into account. importance of the interplay between rotation and 

octupole vibrations is stressed, and it is suggested that one of the observed excited bands might be a collective octupole 

vibration built on the superdeformed yrast band. 

The discovery of superdeformed (SD) rotational 

bands has opened many new avenues in studies of nu- 
clear structure at the extremes of rapid rotation and 

large deformation. Recent experimental developments, 
especially large y-ray detector arrays (Eurogam, Gam- 
masphere, Ga.Sp, etc.), have offered better observa- 

tional limits which help in clarifying many aspects of 
high-spin nuclear structure. 

Recently, five excited SD bands (Bands 2-6) have 
been observed in “*Dy in a Eurogam experiment [ I]. 
According to various theoretical calculations [ 2-41, 

15*D Y has a SD doubly-closed-shell configuration cor- 
responding to the large single-particle gaps at Z = 

66 and N = 86. Since the pairing correlations in SD 

’ Present address: AECL Research, Chalk Rivet Laboratories, 
Chalk River, Ontario KOJ 1 JO, Canada. 

‘On leave of absence from Institute of Theoretical Physics, 
Warsaw University, Warsaw, Poland; Institute of Physics, Warsaw 

University of Technology, Warsaw, Poland. 

bands in the A = 150 region are expected to be seri- 

ously quenched due to the low level-density of single- 

particle states and rapid rotation, the angular momen- 
tum variations in the dynamical moments of inertia, 
J(*) = dZ/dw, are mainly due to the intrinsic angular 

momentum alignment of single-particle orbitals, espe- 
cially high-N intruder orbitals [ 2-41. Consequently, 
the J(*) moments of inertia carry important exper- 

imental information about single-particle configura- 
tions in SD bands. 

The excited SD bands in 15*Dy, observed by Dag- 

nail et al. [ I], have a very low intensity relative to the 
yrast SD band. This might be related to the predicted 

SD magic structure in 15*Dy. Due to its magic struc- 

ture, collective excitation modes are expected to influ- 
ence the properties of near-yrast SD bands in ‘52Dy. 
In this context, octupole vibrations play a very special 
role. According to the RPA calculations based on the 
cranked shell model [ 5,6], low-lying octupole vibra- 
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tions are more important than low-lying quadrupole 
vibrations built on the SD shape. Strong octupole cor- 

relations in SD states have also been suggested theoret- 

ically in Refs. [7-151. The calculations of Ref. [ 161 

demonstrate that the inclusion of the coupling between 

quasiparticle and octupole vibrational modes is impor- 

tant for understanding the experimental data for SD 
193Hg [ lo]. 

In this Letter, we discuss octupole correlations in 
excited SD bands of 152Dy. Comparing our results 

with the experimental data, we propose a plausible 

scenario for the microscopic structure of excited SD 
bands in ‘52Dy. This scenario is compatible with the 

discussions by Dagnall et al. [ l] but the influence of 

octupole correlations is explicitly considered. Indeed, 

one of the excited SD bands is suggested to have a 

collective octupole vibrational character. If this inter- 

pretation is correct, this is the first case in which the 
collective vibrational mode at SD states in the A = 150 

region has been observed experimentally. 3 
In order to investigate the influence of octupole vi- 

brations on the excitation spectrum of SD “‘Dy, the 
RPA treatment has been carried out. The model Hamil- 
tonian has been assumed to be of the form: 

H = h:.p. - i c x~KQ;;Q;K 
K 

1 
c 

I, 
_- 

2 X1K(73~1K)"+(~,hK) , (1) 
K 

where h&,, is a cranked single-particle Nilsson Hamil- 

tonian, h&, = hN&on - w,&, and QiK = (r3fiK)” 

and D;;( = (r&K) " are, respectively, the dou- 

bly stretched octupole and dipole operators defined 
by coordinates xi = zxi [ 181. The equilibrium 
quadrupole deformations have been determined by 

means of the shell correction method. A large con- 
figuration space composed of nine major shells for 

both protons and neutrons has been used for solving 
the coupled RPA dispersion equations. The spurious 
velocity dependence associated with the l2 and 1 . s 
terms in the Nilsson potential are removed by means 
of the method proposed in Ref. [ 191. We note that 
the obtained single-particle routhians are similar to 
those for the Woods-Saxon potential [ 31. The pairing 

3 An excited band in SD 190Hg has been interpreted in terms of 

octupole vibrations [ 171. 

gaps Ap and An are assumed to be zero: Although 
dynamical pairing fluctuations never vanish, relative 
energy spectra and relative alignments are known to 

be well described by the simple cranked shell-model 
routhians without pairing at w,,,~ > 0.3 MeV/fi, i.e., 

in the region where the experimental data are avail- 

able 120,211. In order to determine the isoscalar 
coupling strengths, X3K, we have carried out the 

systematic RPA calculations for the low-frequency 
I” = 3- states in medium-heavy nuclei. Guided by 

these calculations, we use ~3~ = 1.05~~~ where 

x!$? are the selfconsistent values for the harmonic 
oscillator potential [ 181. For the isovector dipole 

COUphg strengths we use XIK = -TV /( ( r2)“) with 

VI = 140MeV [22]. 

Fig. 1 (a) shows the RPA eigenvalues as functions of 
rotational frequency o,,*. The lowest excitation mode 
with signature (Y = 1 (dotted line) can be associ- 
ated with the collective octupole vibrational band. The 
band has K = 0 at mrOt = 0, but the K-mixing due to 
the Coriolis force is significant at high rotational fre- 

quencies. The B( E3) -values calculated at tirOt = 0 in 

the strong coupling scheme are around B(E3; 3- -+ 

0+> M 35 W.U. By comparing Fig. 1 (b) and (c), we 

see that the octupole collectivity carried by the low- 
est (Y = 1 band decreases gradually with w~,,~. On the 

other hand, collectivity of the lowest excitation mode 

with cy = 0 (solid line) is weak and this mode has a 
dominant lp-lh configuration at high frequency. The 

excitation energy of this band drastically decreases 
in the high-frequency region and its alignment, i = 

-dE,/do, is evaluated to be about 5ti. Since this band 

has much lower excitation energy at high frequency 

than the octupole vibrational LY = 1 band, it may be 
populated with higher intensity. 

Calculations show that the neutron N = 86 single- 

particle shell gap persists at high frequencies, while 
the proton 2 = 66 shell gap vanishes at high angu- 

lar momenta where the proton N = 7 ((u = -l/2) 
orbital crosses the fourth N = 6 (0 = -l/2) orbital 
(see Fig. 2 and discussion in Ref. [ 11) . The lp- 1 h 
excitation associated with these two orbitals gives rise 
to the lowest excited state with signature LY = 0. The 
alignment of this lp-lh excitation is equal to ip - ih M 
4.5fi; i.e., the large alignment of the band comes from 
the intrinsic angular momentum of the proton intruder 
N = 7 orbital. In contrast, the lowest Ip-lh excitation 
with cy = 1 is associated with the proton N = 7 (cu = 
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Wot [ MeVA=ll Oct.strength [ W.U. ] 

Fig. 1. Results of RPA calculations at quadrupole deformation a,, = O.S9. (a) Calculated RPA eigenvalues (in MeV) for SD 15’Dy, plotted 

as functions of rotational frequency wlol (in MeV/h). Solid (dotted) lines indicate negative-parity states with signature (Y = 0 (CI = 1). 

The lowest a = 1 state has K = 0 in the limit mr,,t = 0. (b) Electric octupole strength c, 1 (nl f ( 1 + ~~)Q~KIO) I* at urOt = 0.3 MeV/A in 

Weisskopf units (IO) and In) denote the RPA ground state and excited states, respectively). Solid and dotted lines indicate the a = 0 and 

a = 1 states, respectively. The vertical axis represents the excitation energy as in (a). (c) The same as (b), except for trot = 0.6 MeV/ti. 

arot [ MeVml 

46 

___-.-- 
____c--- 

0.0 0.2 0.4 0.6 0.8 

wot [ MeVml 
Fig. 2. Neutron and proton single-particle routhians as functions of rotational frequency wrO,. The Nilsson parameters (K, p) are adopted 

from Ref. 1231, and the spurious velocity dependence associated with 1* and 1. s terms are removed according to a prescription developed 

by Kinouchi and Kishimoto [19]. Orbitals having parity and signature, (T,(Y) = (+, l/2), (+,-l/2), (-, l/2), and (-,-l/2) are 

shown by solid, dashed, dotted, and dash-dotted lines, respectively. The oscillator quantum number, Nose, is indicated for “high-w’ orbitals. 

-l/2) and the third N = 6 (a = l/2) orbital. Its ex- 

citation energy is about 1 MeV higher than that of the 
a = 0 band in the highest frequency region. Because 
of this effective energy gap, the collective mode with 
a = 1 survives up to rather high frequencies. Since 
the alignment of the collective octupole phonon is less 
than 3fi, the lowest (Y = 0 band carries a larger align- 
ment and becomes lower at high frequency. 

In the following, we discuss the dynamical moments 

of inertia of Bands 2, 3, and 6 for which octupole cor- 

relations are calculated to be important. Characteristic 
features of Bands 2, 3, and 6, determined in Ref. [ 11, 
can be summarized as follows: (i) Jc2) of Band 2 
(Band 3) has a bump (dip) at urOt = 0.5 MeVlti; 
(ii) Bands 2 and 3 are populated with higher intensity 
compared to other excited bands (Bands 4-6); (iii) 
,7(2) of Band 6 is larger than that of the SD yrast band 
and is almost constant as a function of rotational fre- 



22 T. Nakatsukasa et al. /Physics Letters B 343 (1995) 19-24 

80 

Wrot [ MeVkl 
Fig. 3. Calculated (solid lines) and experimental (symbols) dynamical moments of inertia for excited SD bands (Bands 2, 3, and 

6) in IS2Dy. Dotted lines indicate Tt2) for the yrast SD band, which is approximated by the Harris formula Ti2) = (Y + po2 with 

a = 88.Sti2 MeV-’ and p = - 11 .9ti4 MeV-s. See text for details 

quency; (iv) At low values of w,,,i Band 6 shows a 
decay branch into the yrast SD band. 

On the basis of the above observations, we pro- 

pose a scenario in which the lowest and the second 

lowest excited cy = 0 states (solid lines in Fig. 1 ), 
and the lowest (Y = 1 state (dotted line) correspond 
to Bands 2, 3, and 6, respectively. Firstly, the J(2) 
bump in Band 2 and the dip of Band 3 occurring at 

the same frequency can be associated with crossing 
between the two lowest cy = 0 states, see Fig. 1. Sec- 

ondly, the high intensity of Bands 2 and 3 indicates 

that at high frequency these bands have lower exci- 
tation energy than the other bands. Our conjecture is 

consistent with the intensity data for Band 2. ’ Thirdly, 

weak w,,,-dependence of J(‘) in Band 6 suggests an 

almost constant curvature d’E,/dw’ of the routhian 

(see Eq. (2)). Finally, the partial decay of Band 6 
into the yrast SD band indicates that Band 6 may be a 
collective band possessing significant (El ) transition 
matrix elements into the yrast SD band. 

In order to make the comparison with experimental 
data quantitative, we calculate the dynamical moments 
of inertia 3 (2) They can be decomposed as . 

4 On the other hand. calculations suggest that intensity of Band 
3 should be weaker than that of Band 2 whereas experimentally 

it is similar: this weakens our interpretation of Band 3. 

p = $2’ + I = J-m d=Ex 
dw 0 dw= ’ (2) 

where get=’ denotes the dynamical moment of inertia 
of the yrast SD band of 152Dy (RPA vacuum). We ap- 

proximate the experimental ,$J2’ by the Harris expan- 
(2) sion, go = LY + ,Bo2, with LY = 88.5h2 MeV-’ and 

p = - 11 .9tt4 MeV3. Calculated and experimental 
values of J7”) are compared in Fig. 3; it is seen that 

the characteristic features of the experimental data are 

well reproduced. It is worth noting that the octupole 

correlations are also important for reproducing exper- 

imental J(2) values for Bands 2 and 3. 

In order to discuss the collectivity of octupole cor- 
relations, we show in Fig. 4 the forward RPA ampli- 

tudes” &,((wp) for Bands 2, 3, and 6. We see that 

Bands 2 and 3 correspond to simple Ip-Ih excitations 

at the highest frequency region; i.e., proton N = 6 + 
N = 7 and proton N = 6 4 N = 5 excitations, respec- 
tively. Bands 2 and 3 cross at wi:j M 0.5 MeVJfi. For 
wrOt < w,(l/, collective components in both bands are 
significant. In fact, the interaction matrix element be- 
tween Bands 2 and 3 would be too small to reproduce 
the observed bumps and dips of J(2) if octupole cor- 

5Sums of the squared backward RPA amplitudes. 

C,p Ic+l(aP)12, at wrot = 0.3 MeVlf are 0.13. 0.11 and 0.48 

for Bands 2, 3 and 6, respectively. 
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arot 1 fVW/h 1 
Fig. 4. Absolute values of the forward amplitudes, I& (cyp) 1. of the lowest and the second lowest RPA solutions in the a = 0 sector 

(portions a and b), and the lowest RPA solution in the a = I sector (portion c). corresponding to Bands 2, 3, and 6, respectively. Solid 

(Dashed) lines indicate neutron (proton) amplitudes. All amplitudes whose absolute values are greater than I .5 x 10-l are displayed. 

The characteristic p-h excitations are indicated. 

relations were turned off. On the other hand, Band 6 
has vibrational character in the whole range of rota- 

tional frequency. The octupole collectivity of this band 

decreases with rotational frequency. 
In summary, we have investigated the effects of oc- 

tupole correlations in excited SD bands of “‘Dy by 
means of the RPA based on the cranked shell model. 
We found that a low-lying octupole vibrational band 

((Y = 1) appears near the yrast band (E, z 1 MeV) . 

According to our scenario, Bands 2, 3, and 6 have 

negative parity. Band 2 (3) is the lowest (second low- 
est) (Y = 0 band. Band 6 is the octupole vibrational 

(Y = 1 band. The collectivity of Band 6 is expected 

to gradually decrease with W,,t, while Bands 2 and 3 

cross each other at @rot z 0.5 MeV/ti. The calculated 

Jc2) values reflect the w,,,-dependence of the internal 

structures of these bands, and seem to agree well with 
major characteristics found experimentally. 
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Abstract 

The correspondence between classical periodic orbits and quantum shell structure is investigated 
for a reflection-asymmetric deformed oscillator model as a function of quadrupole and octupole 
deformation parameters. The periodic orbit theory reveals several aspects of quantum level struc- 
ture for this non-integrable system. Good classical-quantum correspondence is obtained in the 
Fourier transform of the quantum level density, and the importance of periodic orbit bifurcation is 
demonstrated. A systematic survey of the local minima of shell energies in the two-dimensional 
deformation parameter space shows that prominent shell structures do emerge at finite values 
of the octupole parameter. Correspondences between the regions exhibiting strong shell effects 
and the classical bifurcation lines are investigated, and the significance of these bifurcations is 
indicated. 

1. Introduct ion  

Shell structure is one of  the important aspects of  finite quantum many-body systems. 

In the single-particle level density, one may generally find some regular patterns like 

shells consisting of  dense and thin regions. This pattern changes with deformation, and 

the system favors the shape which makes the level density at the Fermi surface lower. 

Predictions of  the superdeformed (extremely large quadrupole deformations with axis 
ratio about 2:1) and the hyperdeformed (the axis ratio about 3:1) nuclear states, which 

are hot current topics of  high-spin nuclear structure physics, had been based on the 
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above kind of consideration. Strong shell effects which appear at ellipsoidal shapes with 
the axis ratios about 2:1 and 3:1 play essential roles in stabilizing such exotic shapes. 
Reflection-asymmetric degrees of freedom are also one of the most exciting subjects 
in the current high-spin physics. Superdeformed potentials possess remarkable single- 

particle level structures where levels with different parities approximately (exactly in 
the harmonic oscillator limit) degenerate in the same major shell, which may bring 
about strong octupole correlations [ 1-3]. The recent remarkable development of large 
T-ray detector arrays encourages us to find such exotic shapes like reflection-asymmetric 
superdeformations, and to investigate the mechanism of producing them. Recently micro- 
cluster physics has also attracted much attention, and many nuclear physicists have been 
contributing to this new field. Shell structures and deformations of clusters are very 
interesting subjects - their shapes can actually be seen with an electron microscope - 
and one can apply almost the same theoretical framework to both nuclei and micro- 
clusters [4-6] .  

A clear understanding of the origin of shell structure may be obtained by the use of 
semiclassical theory. Correspondences between quantum spectra and classical dynamical 
properties of Hamiltonian systems have been extensively investigated for two limiting 
cases, namely, for integrable and strongly chaotic situations. Most physical systems are 
situated in the midst of these limits, however, and belong to what we call "mixed" sys- 
tems. The semiclassical theory for mixed systems is difficult and only a few aspects have 
been clarified up to now. This difficulty is associated with the periodic-orbit bifurcations 
(characteristic to the mixed systems) where the stationary phase approximation (SPA) 
and the conventional trace formula for representing the quantum spectrum in terms of 
classical periodic orbits breaks down. Fortunately, however, an approach in the inverse 
direction sometimes works and one can extract the periodic orbit information from the 
quantum spectrum by means of the Fourier transformations. This approach is very useful 
to understand the shell structure of the quantum spectrum. We take this approach and 
clarify some aspects of a mixed system, directing our attention to the influence of the 
bifurcations of short periodic orbits on the gross structure of the quantum spectrum. 

In this paper, we investigate the classical-quantum correspondence for an axially- 
symmetric deformed oscillator model with reflection-asymmetric terms. This is a non- 
integrable model and chaotic behavior gradually emerges in the dynamics as the octupole 
deformation becomes large. The role of periodic orbit bifurcations will be emphasized. 
In Section 2, basic elements of the semiclassical theory relevant to our analysis are 
briefly reviewed. Special attention will be paid to the classical bifurcation phenomena 
and their effects on the quantum spectra. In Section 3 our model is introduced and several 
aspects of it are summarized. In Sections 4-7, we will present numerical results of the 
semiclassical analysis and discuss their implications. It will be shown that prominent 
shell structures emerge for finite octupole deformations superposed on the prolate shapes. 
Origins of such new shell structures will be clarified. Section 8 is devoted to summary 
and conclusion. 
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2. Basic formulae 

II 

2.1. Classical Hamiltonian system 

Let us consider a Hamiltonian system with f degrees of freedom. The equation of 
motion (EOM) for a 2f-dimensional phase space vector Z = ( p, q) is expressed as 

(Oo,) d Z = A - - ,  A =  (1) 
dt OZ 1 ' 

where 0 and I denote the f-dimensional zero and identical matrices, respectively. Now 
consider a bundle of trajectories around a certain solution Za( t )  and write them as 
Z ( t )  = Z~( t )  + 8 Z ( t ) .  Then the EOM for 8 Z ( t )  is given by 

d a 2 H ( Z )  
- - S Z  = A T - [ ( Z a ( t ) ) S Z ,  ~ ( Z ) i j =  - -  (2) 
dt OZiaZ.j 

up to the first order in 8Z. 7-/ is called Hessian matrix. One can easily integrate the 
above differential equation and obtain the following solution: 

10 

where 2r~ denotes that the exponential is defined by time-ordered product. 8~ is called 

the stability matrix of the trajectory a, whose eigenvalues determine its stability. 

Let X denote a ( 2 f  - 2) dimensional hypersurface in the phase space with fixed 
energy E. It defines a time-discretized mapping .M : X ~ X with classical trajectories, 
which is called the Poincard map. Periodic orbits 2 are defined as the fixed points of 
A,4, namely, by . M ( Z )  = 2. The linear part Mr (with respect to 82)  of .A,I about a 

periodic orbit 2~ is called "monodromy matrix" and describes the stability of the orbit: 

M ( 2 r q - S Z )  =2r- t -Mr¢~Z -q- O(~Z2).  (4) 

The monodromy matrix is a symplectic matrix satisfying 

A Mr T A -  l = M~-  I, (5) 

and this property restricts its eigenvalues as follows. Let A be one of the eigenvalues 

of Mr. Relation (5) guarantees that the reciprocal of ,~ is another eigenvalue of Mr. 
Furthermore, Mr is a real matrix so that the complex conjugates of these eigenvalues 
are also eigenvalues. Thus the eigenvalues of the monodromy matrix generally appear 
in quartets (e+~±i#). In the two-dimensional case, they appear in a pair. 

Let us now proceed to a discussion on bifurcations of stable periodic orbits. Consider 
a trajectory that emerges at q with energy E and returns to the initial point, q~ = q. 
This kind of trajectory certainly exists for any q. The condition for this trajectory to 
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be periodic is that the initial and final momenta coincide; namely, p~ = p. Using the 
Hamilton-Jacobi equation, this condition can be rewritten as 

OS(ql,q;E) ( O S ( q ' , q ; E ) )  OS(q) (6) 
O = pl - p - aq I aq - aq-  ' 

where S(q) denotes the action integral along the closed path under consideration. Thus, 

the periodic orbit is the stationary point of this action integral. Let us expand S(q) 
about the periodic point ~: 

1 ~ jO2S(q ,q )  
S(~l+6q) = S ( ~ l ) + ~  ~t 0 - ~  6 q + . . .  

-- S +  ½ 6qr136q + . . . .  (7) 

After some simple matrix rearrangements, one can express 13 in terms of the quadrants 

of the monodromy matrix as 

13 = B - ( 1 -  A ) C - I ( 1 -  D) ,  

Note that 

det(1 - M) = - d e t [ C ]  det[/3]. 

M_~ C " (8) 

(9) 

The above relations provide us with a clear understanding of the connection between 
eigenvalues of  the monodromy matrix and the bifurcation of periodic orbits. Suppose 

that one of the eigenvalues of  M becomes unity. Then the curvature tensor/3 for the 
action S has a zero eigenvalue. This means that the stationary points of S (periodic 
orbits) locally form a continuous set and a bifurcation can occur hereafter; namely a 

(few) new stationary point(s) can emerge. 

2.2. Trace formula 

By means of the semiclassical theory, we can relate properties of the quantum spec- 
trum with those of  the corresponding classical system. For non-integrable Hamiltonian 

systems, Gutzwiller's trace formula [7-9] represents the quantum level density g(E) = 
~ i  6(E - El) as a sum over classical periodic orbits: 

g(SC)(E) = g (E)  + Z A n r ( E )  cos "~lZnr • (10) 
r , / I  

~(E)  is called Weyl term (or Thomas-Fermi approximation), which is a monotonic 
function of energy. The sum is taken over all primitive periodic orbits r and their 
multiple traversals. Sr = fr P" dq is the action integral along the orbit r, and/Zr denotes 
the Maslov phase. Several numerical application of this formula to strongly chaotic 
systems have shown its effectiveness. As is well known, however, exact reproduction 
of a quantum spectrum is not an easy task, because one has to treat a huge number 
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of periodic orbits which show exponential proliferation as a function of energy. On the 
other hand, since our purpose is to understand the gross structure of the spectrum we 

need only a finite number of periodic orbits which have rather short periods. If one is 
interested in the gross structure with energy resolution BE, the change of the phase in 
Eq. (10) must be less than 27r for the change of energy by BE. Namely, 

OSr(E) 6E = nTr•E ~ 27rh, ( 11 ) nSr(E + 6E) - nSr(E) "~ n ~  

which leads to the relation 

27rh 
nTr < Tmax= BE" (12) 

Thus, we need only short periodic orbits whose periods are less than Tmax defined 
above. Although much efforts have been devoted to reproduce individual eigenenergies 
by calculating millions of periodic orbits, gross structures of the level spectra have 
rarely been discussed in connection with periodic orbits for non-integrable systems. 
(For integrable systems, there are several works; see for instance, Refs. [4,10-13] .) 

2.3. Bifurcations 

Let us next discuss the condition for the amplitude factor Ant in the trace formula 
(10) to take a large value. In the stationary phase approximation, the amplitude factor 

is expressed for isolated orbits as 

1 Tr (13) 
A,r = ~'h X/[ det(1 - M r n ) [  " 

For degenerate orbits with degeneracy 1, it is represented by 

47r B~ f [O~°(t+Tr)]-1/2-O--pp~'-(tS ] 
A , r -  (2~h)3/2x/ldet( l_Mrn)[,  Br=  d t [ '  , (14) 

0 

where q~ and p~o denote an ignorable variable in the Hamiltonian and its canonically 
conjugate momentum, respectively (see the appendix in Ref. [ 14] ). From the difference 
in order of h, one sees that the contribution of degenerate orbits is more important than 

that of isolated ones. 
Another important factor, which plays an essential role in our analysis below, is 

the stability factor det(1 - M,~). Its value is independent of the point chosen on the 

periodic orbit. As discussed above, eigenvalues of the monodromy matrix Mr appear 
in pairs ( + / - ) ( e a , e - a ) ,  A being real or pure imaginary, or in quartets (e+~+i~). 
One should note that the periodic orbit generally appears in at least one parameter 
family, so that the monodromy matrix always has two unit eigenvalues. Other pairs of 
unit eigenvalues correspond to the global continuous symmetries which the Hamiltonian 
possesses but the orbit itself does not. These degrees of freedom are responsible for 
the degeneracy and, as seen in Eq. (14), can be separated out from the definition of 
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Mr appearing in the stability factor. In the case of three-dimensional systems with axial 
symmetry, the monodromy matrix has (except for isolated non-degenerate orbits) four 
unit eigenvalues, and the remaining two appear in a pair ( + / - ) ( e a , e - a ) .  Thus, Mr 

may be reduced to a (2x2)  matrix for most orbits. ,~ is purely imaginary for stable 
orbits, and real for unstable ones. The stability factor for each case becomes 

det(1 - Mr) = 2 - TrM, 

with 

2cos(/3) stable, a =i/3, 
TrMr = ± 2 c o s h ( a )  unstable, ,t = or. (15) 

Thus, the stability of orbit is determined by the value of Tr M. 
If a parameter in the Hamiltonian is continuously varied, the periodic orbits change 

their shapes and the values of A also change continuously. It may occur that the/3 for a 
certain stable orbit becomes a fraction of 27r, namely,/3 = 2~rm/n with n and m being 
relatively prime integers. At this point Tr Mr n becomes 2, and the amplitude factor Anr 

suffers divergence. This singularity corresponds to the period n-upling bifurcation of 
the orbit r. Near the bifurcation point, the stationary phase approximation breaks down. 
It is then necessary to take into account higher-order fluctuations about the classical 
orbit to extract a finite value of Ant [ 15]. Although we leave this task as a challenging 
future subject, we expect that the amplitude factor takes a large value in the bifurcation 
region. It will result in a large-amplitude oscillation in the level density, leading to an 
enhancement of the shell effect. 

3. The model and its scaling properties 

3.1. The model 

We adopt a model Hamiltonian consisting of an axially deformed harmonic oscillator 
and a reflection asymmetric octupole deformed potential: 

H = ~--~ + ~ ' ~ P 2  Mw2ix2i2 h3oMo92o Jr2 Y3o (/'2) ]"  (16) 

i 

Here, the double primes denote that the variables in square brackets are defined in terms 
t !  of the doubly-stretched coordinates x i = ( ¢ o i / ( . o o ) x i ,  where Coo -= (WxWy~Oz)1/3 being 

determined so that the volume conservation condition is satisfied [ 16]. For simplicity, 
we define dimensionless variables as follows: 

P i ' ~ MV/-'M-~o p i , 

qi - - - '  v / -£ /Mo~oq .  
H---~ho~oH. 

(17) 
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Then, the Hamiltonian is written as 

H = ½p2 + ½[r2( 1 - 2A30Y30(/2)) ] 't. ( 18 )  

Since the radial dependence of the octupole potential is quadratic, the Hamiltonian 
obeys the following scaling rule: 

H(ap, aq) = a2H(p, q). (19) 

Thanks to this property, if one solves the Hamilton equations of motion at a certain 
energy E0, the solution at any energy E is obtained by just scale transforming the 
solution at E0 as Z(t; E) = v/-E/Eo Z(t; Eo), Z denoting a phase space vector (p, q}. 

In the cylindrical coordinates (p, z, ~p), the above Hamiltonian (18) is written as 

H= 71(p2 + p2) + V(p,z;p¢) 

p~+ p2 Z 2 7 2Z3--3zp 2 
V(p,z;p~) = ~ - ,~30 16~r (20)  

Thus, we can treat the system as a two-dimensional one with fixed angular momentum 
p~. This reduction enables us to make use of the Poincar8 surface of section in order 
to survey the classical phase space profile. Note that X =- p~/E is a scaling-invariant 
parameter and, therefore, classical properties are the same for the same X- 

In the following sections, we shall investigate how the properties of the quantum 
spectrum for the Hamiltonian (16) changes as the two deformation parameters, 6oso = 
(w± - w z  )/6J and As0, are varied. We shall then discuss the physical origins of these 
changes by means of the periodic orbit theory reviewed in Section 2. 

3.2. Fourier transformation of quantum level density 

As we will see in the following numerical analyses, the Hamiltonian above becomes 
chaotic with increasing octupole deformation parameter A30. But considerable parts of the 
phase space remain regular and the system is considered as a so-called "mixed system". 
The trace formula based on the stationary phase approximation (SPA) does not work 
well in such situations. The amplitude factors suffer divergences at the bifurcation points 
of stable periodic orbits because of the breakdown of SPA. Consequently, we cannot 
directly use the conventional semiclassical expression to analyze the quantum spectrum. 
Fortunately, we can avoid the above difficulty by using the Fourier transformation 
technique for the quantum level density. Suppose that the level density is characterized 
by the classical periodic orbits and is expressed as 

o(sc) ( E'~ = Z Z a n r ( E )  c o s  - oos~ . - .  ~ g . r  , ( 21 )  
n=l r 

without specifying the concrete expression of the amplitude factor Ant (E) which may 
be obtained by going beyond the SPA. Since our model obeys the scaling rule (19), 
energy dependence of the classical variables entering Eq. (21) is factored out as follows: 
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St(E) =Err, 
-- 17a'/2 A (O) (22) Anr( E) . . . .  nr , 

where dr is the effective degeneracy of the orbit, and equal to 1 for most orbits due to 
the axial symmetry. For isolated orbits, dr --- 0 and we expect that their contributions to 
the level density may be small. The degeneracies are integers in the classical dynamics, 
but in the quantum mechanics this restriction is relaxed and dr changes continuously in 
the bifurcation regions [ 15,9]. Using the above relations, Eq. (22) is expressed as 

dr/2 (O) ( n ~ r  q'g ) gfSC)(E) = ~ ( E )  + Z E  Anr cos " ~ n r  • (23) 
r , / I  

Now let us consider the Fourier transformation of the level density, defined by 

F ( s )  = - ~  dE eiSe/nE-a/Zg(E)  exp - ~ . (24) 

Here the Gaussian damping factor is used for energy cut-off, and we shall put d = 1 in 
order to cancel the energy dependence of the amplitude factors for most orbits. Inserting 
the quantum level density g ( E )  = y ] i S ( E  - Ei) and the semiclassical one (23) into 
Eq. (24), we obtain quantum mechanical and semiclassical expressions for F ( s ) :  

F(qm)(s ) = ~ - ~  . ~ 

F(SC)(s)'~p(s)q-~-'~A (0) 1 [ 1 ( s - n T r )  2] 
-- n~ Vr2--~zls exp - ~ls ' (25) 

r,?l 

respectively, where As = h/Emax. F (qm) is calculated from the single-particle spectrum 
obtained by diagonalizing the Hamiltonian with deformed oscillator basis. The result 
is compared with the semiclassical expression F Csc). In Eq. (25), F (s )  corresponds 
to the Weyl term which is regarded as a contribution from orbit of zero-length, and 
it has peak at s = 0. The remaining part has a functional form exhibiting successive 
peaks at the periods of classical periodic orbits and their heights are proportional to the 
amplitude factors of the corresponding orbits. By comparing the calculated F(qm)(s) 
with F (se) (s) ,  we carl thus extract information about periodic orbits from the quantum 
spectrum. 

4. Shell structure energy calculation 

A useful quantitative measure of shell structure is the shell structure energy which is 
defined as the fluctuation part of the sum of single-particle energies, i.e., 

N 

gsh(N) = Z Ek - g(N), (26) 
k=l 
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Fig. 1. Local minima of shell structure energy in the two-dimensional deformation parameter space (6osc, A30). 
The size of each disc represents the absolute value of the shell structure energy normalized as Esh/N 1/3 . Plotted 
data are for even N in the range 16 ~< N ~< 160. 

where Ek's represent eigenvalues of the single-particle Hamiltonian. The second term 
E(N)  is obtained by smoothing the first term by means of the Strutinsky method; it is 
a smooth function of particle number N and of other potential parameters. The shell 
structure energy takes a large negative value when the single-particle level density at the 
Fermi surface is low. 

We have carried out a systematic calculation of the shell structure energy for the 
Hamiltonian (16) as a function of the deformation parameters 8osc (quadrupole defor- 
mation), A30 (octupole deformation) and of the particle number N. Fig. 1 shows a 
map of the local minima of shell structure energies in the two-dimensional deformation 
parameter space calculated for particle numbers in the range 16 ~< N ~< 160. The centers 
of discs show the loci of local minima (corresponding to different values of N) and 
the sizes of the discs represent the absolute values of shell structure energies. As the 
order of magnitude of the shell structure energy is roughly proportional to N 1/3 in the 
harmonic oscillator case [ 19], we normalize them by multiplying N -1/3 in order to 
compare system with different values of N. 

For A30 = 0, it is well known that strong shell structure exists at 6osc = 0 (spherical), 
3/5 (prolate superdeformed), 6/7 (prolate hyperdeformed), - 3 / 4  (oblate superde- 
formed) and so on. The distribution of discs is actually dense around such points. We 
find in Fig. 1 that, in addition to such known cases, prominent shell structure emerges 
also at finite values of octupole deformation. Their shell-structure energies are compa- 
rable, in magnitude, to (sometimes larger than) those for the purely quadrupole shapes. 
The most remarkable region is that of A30 = 0.3 ~ 0.4 and 6osc -~ 0.1. Using the 
semiclassical theory, let us analyze in the following sections the mechanism which cre- 
ates the above new shell structures for the combination of the quadrupole and octupole 
deformations. 
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5. Semiclassical analyses 

In this section, we investigate how the structure of the quantum spectrum changes 
as the octupole deformation parameter A30 is increased, fixing quadrupole deformation 

parameter 6osc at several positive values (between the spherical and the prolate superde- 
formed shapes). Fig. 2 shows the single-particle spectra as functions of ~30 for the 
Hamiltonian (16) with ~osc = 0.1, 0.3 and 0.5. The corresponding axis ratios W_L/W z 

are 31/28, 11/8 and 7/4, respectively. They are not in simple ratios so that there is 

no prominent shell structure at A30 = 0. However, new shell structures emerge at finite 
values of h30. To see features of these spectra, we show in Fig. 3 the Fourier transforms 

of the level density defined by (25). As discussed in Section 3.2, one sees prominent 
Fourier peaks at the periods of classical periodic orbits. It means that the fluctuation 

of the spectrum is characterized by the periodic orbits, demonstrating a beautiful ap- 
plicability to our model of the semiclassical method in Section 2.2. For elucidating the 

features of shell structure, it is essential to understand the behavior of these Fourier 
peaks with respect to the deformation parameters. As discussed in the previous sections, 

short periodic orbits play important roles for the formation of gross structure of quan- 
tum spectrum. There are various periodic orbits of various topologies in each part of 
the deformation parameter space and the same type of orbits change their characters as 
the parameters change. This fact is clearly seen in the Fourier transforms where peaks 

corresponding to certain orbits change their heights. The heights of the peaks represent 
nothing but the strengths of  the shell structures. Let us discuss in the following what 

kind of periodic orbits exist and how they determine the features of quantum spectra in 

several regions on the (~osc, .~-30) plane. 

5.1. The case Of ~osc=O.1 

Let us first take up the case of Sosc = 0.1, where we obtain especially strong shell 
structures at finite ~30 values in the shell structure energy calculation (see Fig. 1 ), and 
let us discuss which orbits are responsible for these shell structures. Fig. 4 shows, for 

several values of  ,~30, some planar periodic orbits in the plane including the symmetry 
axis. We use the Monodromy Method developed by Baranger et al. [ 17] to calculate 

periodic orbits and their monodromy matrices. At ,~30 = 0, the most important orbit 
family is the ellipse-shaped one in the ( x , y )  plane. The next orbit family is 31:28 
Lissageous. They are very long orbits and unimportant for the gross shell structure. 
Adding the octupole deformation, new types of orbits are born. Orbit PR appears at 
,~30 = 0.12 by the isochronous bifurcation of the orbit PA, and PA becomes unstable 
after this bifurcation. At A30 = 0.24, the orbit PA becomes stable again and a new orbit 
PM appears. 

To see these bifurcations, the Poincar6 map is a very convenient implement. As our 
Hamiltonian has axial symmetry, we can treat it as a two-dimensional system with 
fixed angular momentum p~. Fig. 5 is the Poincar6 map (Z, Pz) for the "projected" 
Hamiltonian (20) with p~ = 0. Here the surface is defined by pp = 0 and pp < 0. In 
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Fig. 2. Single-particle spectrum of the Hamiltonian (16)  with deformation parameter 8osc - 0.1, 0.3 and 0.5 
as functions of the octupole parameter ,t3o. Dashed and solid curves represent the levels whose K quantum 
numbers are zero and nonzero, and the latter degenerate in two due to the time-reversal symmetry. 
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IF(s)( 

(b) 

IF(s)l 

Fig. 3. Fourier transforms IF(s)[ of the level densities for the Hamiltonian (16) with 8osc = 0.1, 0.3 and 0.5, 
plotted as functions of the action s and the octupole parameter a3o. 

the top panel, the center of the main torus corresponds to the orbit PA. In the middle 

panel, the orbit PA becomes an unstable saddle and a new pair of  island is created. 

These islands correspond to the orbit PR. In the bottom panel the orbit PA comes back 

to a stable one and creates a new pair of saddles confronting horizontally. These saddles 
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correspond to the orbit PM, 

Fig. 3 --continued. 

U 5 

As is well known, stabilities of periodic orbits are determined by the monodromy 
matrices. Fig. 6 shows the traces of the two-dimensional monodromy matrices for orbits 
associated with the above bifurcations. The bifurcation occurs at Tr M = 2 where the 

monodromy matrix has the unit eigenvalues (1, 1). Period n-upling bifurcations occur 
at T rM n = 2. Higher order (large n) resonances occur at every points of the torus 

and new orbits bifurcate from them, but they are of rather long periods and are related 
with more detailed structure of the spectrum. In the Fourier transform Fig. 3a, the peak 
corresponding to the orbit PA with period T ~ 27r/to.L strongly enhances at/130 ~- 0.2. It 

mainly characterizes the shell structure seen in the spectrum Fig. 2a at A30 = 0.2 ,-~ 0.3. 

Z3o=0.2 

;~o=O.3 

Fig. 4. Some short planar periodic orbits of the Hamiltonian (16) with ~osc = 0.1. 
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Fig. 5. The Poincar~ surface of section (z, p= ) for the Hamiltonian (20) with p~ = 0. The surface is defined 
by pp = 0 and pp < 0. 

This enhancement is related with the above bifurcations of PA at/~30 = 0.128 and 0.227. 

5.2. The case Of &osc=0.3 

Next let us discuss the case of Sosc = 0.3. Some important classical orbits are drawn 

in Fig. 7. Orbit PO is born out of the period-doubling bifurcation of the orbit IL at 

,~30 = 0.215. Orbits PP and PQ are created by the saddle-node bifurcation (pair creation 

of stable and unstable orbits from nothing) at ,~30 = 0.221. Orbit PR emerges from the 

isochronous bifurcation of the orbit PA at ,~30 = 0.338. In the Fourier transform Fig. 3b, 

the enhancement of the peak with s _~ 1 is related with the isochronous bifurcation. 

The orbits associated with the period-doubling and saddle-node bifurcations mentioned 

above are of similar periods and contribute to the same peak with s _~ 2.75 in the 

Fourier transform. It also shows strong enhancement in the bifurcation region. 

2 , 6 "  /./ 

J 2.4- / 

2.2 / 
PA i p 

1.8 

1.6 

1.4 
0.1 0.2 0.3 0.4 

Fig. 6. Traces of the monodromy matrices at &osc = 0.1 for some short periodic orbits plotted as functions of 
the octupole deformation parameter h3o. 
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Xao=0.3 

~L30=0.4 

Fig. 7. Some short planar periodic orbits for the Hamiltonian (16) with 6osc = 0.3. 

5.3. The case o f  ~osc=0.5 

Lastly, let us consider the case of  6os¢ = 0.5. This quadrupole deformation is almost 

equivalent to the case of  axis ratio x/3 : 1 treated in Ref. [ 18]. The feature of  the 

shell is rather weak at A30 = 0. However, one may notice in Fig. 2 that a remarkable 

shell structure emerges at ,~30 ~ 0.3. In the Fourier transform Fig. 3c, a significant 

enhancement of  the peak with s ~_ 1.75 is observed. It seems that this is the most 

typical example in our model, which clearly exhibits a new shell structure emerging at 

finite octupole deformation. 

Some short periodic orbits are illustrated in Fig. 8. At A30 = 0, the ellipse-shaped 

family in the (x, y)  plane characterize the structure of  the spectrum. Orbit PB is born 

out of  the isochronous bifurcation of  the orbit IL at A30 = 0.276, orbits PC and PD are 

created by the saddle-node bifurcation at h30 = 0.274. The Poincar6 maps and the traces 

of  the monodromy matrices are displayed in Figs. 9 and 10, respectively. The strong 

enhancement of  the peak with s ~ 1.85 at A30 " '  0.4 are related with the bifurcations 

mentioned above. Orbits associated with these bifurcations are of  similar periods and 

thus contribute to the same peak in the Fourier transform Fig. 3c. These bifurcations 

may be regarded as the mechanism which creates the prominent shell structure at finite 

octupole deformation. 
Orbits PE and PF are born associated with the period-tripling bifurcation of  the orbit 

PA at A30 = 0.376. A quantum signature of  this bifurcation is also seen in the Fourier 

peak with s _~ 3. Thus, we can conclude that the enhancement of  the Fourier peak in 

the bifurcation region is a general phenomenon. 

6. Bifurcation lines in the two-dimensional  parameter space 

In the preceding section, we presented several examples where bifurcations of  short 
periodic orbits play important roles in forming shell structures. In this section, let us dis- 
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~ B ~ D  ~ P F  

Fig. 8. Some short planar periodic orbits for the Hamiltonian (16) with 6osc = 0.5. 

cuss roles of the bifurcations varying two deformation parameters systematically. In the 
n-dimensional parameter space, bifurcation points generally form (n - 1 )-dimensional 
manifolds; they are 1-dimensional curves in the present case. We have evaluated these 
bifurcation lines for some short periodic orbits. The result of the calculation is presented 
in Fig. 11. These bifurcation lines always emerge at the points where the ratios ~o±/o~ z 

are rational and '~-30 ---- 0. Note that Sosc--0, 3/5, 6/7 and - 3 / 4  correspond to the spher- 
ical, prolate superdeformed, prolate hyperdeformed and oblate superdeformed shapes, 
respectively. The orbit PA causes isochronous bifurcations across the lines i and i i  (in 

c~ 

-1 

~o=0.27 2,.30=0.28 Z3o=0.30 

I = 

O. 

-I- 

-i ' 

1 - 

0. 

-1- 

P P P 
Fig. 9. Poincar6 surfaces of section for 6osc = 0.5 in the bifurcation region of short periodic orbits. The surface 
(P, Pp) is defined by z = 0 and Pz > O. 
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direction from the right to the left). As discussed in the case t~osc = 0.1, new orbits PM 
and PR are born after the bifurcations ± and i±, respectively. On the other hand, as 

discussed in the case t~osc = 0.5, the lines i ± ± ~ v i  are related with the orbits PB, PC, 
PD, IL and 2PA (double traversals of the orbit PA). The orbit IL causes isochronous 
bifurcation (from the left to the right) and produces the orbit PB (stable) across the 
line i±±, while the orbit PC (unstable) and PD (stable) are born out of the saddle-node 

bifurcation across the line i v  in the region tSosc < 0.5. As ~osc increases, orbit PB 
becomes unstable while orbit PC becomes stable across the line v and they annihilate 

into 2PA across the line v i .  Across the line v i i ,  the orbit PA causes period-tripling 
bifurcation (from the right to the left) and produces orbits PE and PF. 

According to the discussions in the preceding sections, we expect strong shell effects 
along these bifurcation lines. Prominent shell structures are known to exist for the 

spherical and superdeformed shapes (the end points of the bifurcation lines) where 
periodic orbit conditions for the harmonic oscillator potential are satisfied. Conditions 
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Fig. 1 I. Bifurcation lines for some short periodic orbits in the two-dimensional deformation parameter space 
(~ ,so, a~0 ) 
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for the emergence of pronounced shell structure in non-integrable systems are not well 
known, however. As is indicated in Fig. 1, shell structure energies at equilibrium shapes 
with finite A30 are comparable in magnitude to those of spherical and superdeformed 
shapes. The most remarkable one is the region with Bose "~ 0.1 and A30 = 0.3 ~ 0.4. 
The bifurcation map of Fig. 11 suggests that the strong shell effect in this region may 
be connected with the bifurcation of orbit PA (the lines i and i i ) .  In fact, we saw in 
the preceding section that the Fourier peak corresponding to the orbit PA is strongly 
enhanced by the bifurcation phenomena. It is worth emphasizing that such a strong shell 
effect can arise associated with classical orbit bifurcations in non-integrable systems. 

One should also note that most of the large discs in Fig. 1 at finite A30 locate in the 
prolate side (t~osc > 0). This is related with the property of the shortest periodic orbit: 
For prolate shapes, the shortest orbit is of the type-PA. It is degenerate and stable, so its 
contribution to the level density is important. On the other hand, the shortest orbit for 
oblate shapes is of the type-IL, which is isolated and, accordingly, its contribution to the 
level density is rather small. The orbit of type-PA, the second shortest orbit, is unstable 
against the octupole deformation, and less important in comparison with the prolate 
case. A more detailed discussion on the difference in stability between the oblate and 
prolate superdeformed shapes against octupole deformations will be given in the next 
section. The same problem was discussed also in [20,21] from a somewhat different 

point of view. 

7. Octupole deformation superposed on the prolate and oblate superdeformations 

Let us discuss the origin of the difference in octupole stability between the prolate and 
oblate superdeformed states. In Refs. [ 16,14] we have shown that the supershell effect in 
the prolate superdeformed states increases with increasing octupole deformation. As an 
underlying mechanism of that enhancement, we emphasized the importance of stability 
properties of two kinds of periodic orbit family and of their interference effect. The 
oblate case is similar to the prolate case in that there are two kinds of periodic orbit 
family whose periods are in the ratio 2:1. But the structure of the quantum spectrum 
is quite different for each of them. In Fig. 12 are compared the single-particle spectra 
for the prolate ( t o ± / w  z = 2) and oblate ( t o i / t o  z = 1/2) superdeformed oscillators as 
functions of the octupole deformation parameter A30. The way the degeneracy is solved 
is different between the two. The octupole operator Y30 has matrix elements between 
states in the same major shell in the oblate case and, therefore, it affects the spectrum in 
the first order perturbation, while it affects only in the second order in the prolate case. 
Let us discuss below how this difference be explained in terms of the classical dynamics 
point of view. For this purpose, representative periodic orbits with short periods are 
displayed in Fig. 14 for several octupole deformation parameters A30. 

We first compare the features of the two spectra without the octupole term. Fig. 13 
shows the oscillating level density smoothed to an energy width BE = Wsh/2 (Wsh being 
the energy spacing between adjacent major shells). A characteristic feature is that the 
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Fig. 12. Single-particle spectra for (a) prolate and (b) oblate superdeformed oscillators plotted as function., 

of  the octupole deformation parameter 3t3o. 
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Fig. 13. Oscillating level density of prolate and oblate superdeformed oscillators, which are smoothed to an 
energy width 8E = htOsh/2. 

prolate superdeformed spectrum has an undulating pattern (supershell structure) while 
the oblate one does not. This is due to the difference in degeneracies of contributing 
periodic orbits. As discussed in Ref. [ 14], two orbit families (corresponding to orbits 

(PB, PC) and orbit PA in the upper panel of Fig. 14, respectively) in the prolate 
superdeformed states have degeneracies 4 and 2. In the oblate case, the orbit family 

with period 2zr/to± (corresponding to orbits (PA, PL) in the lower panel of Fig. 14 has 
the maximal degeneracy 4, but the shortest orbit (the linear orbit IL along the z-axis) is 
isolated and has degeneracy 0. Thus the interference effect between these two families 

is so small that one cannot see the supershell effect in the spectrum. 
Fig. 15 compares the Fourier transforms of the level density for the prolate and oblate 

cases. One can hardly see the component at s = 1 in the oblate case and the oscillating 
pattern of  the spectrum is determined by the s = 2 component almost exclusively. 
Comparing the two figures, one notices that the reduction rate of the peak-height due to 
the octupole deformation is much greater in the oblate case. This rapid decline clearly 
corresponds to the rapid disappearance of the shell effect in the oblate case. 

The main reason for reduction of the shell effect with increasing octupole deformation 
is two-fold: The first is the reduction of degeneracy of the periodic orbit families, and the 
second is the change of stabilities. As the degeneracies are the same for the major orbit 
families in both cases (orbits PB, PC . . . .  in the prolate case and orbits PA, PL . . . .  in 
the oblate case), we expect that the differences are associated mainly with the stability 
properties. In Fig. 16 we show the stability factors X -- X,/I det( l - Mr)l calculated as 
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Fig. 14. Some short periodic orbits in the prolate (upper panel) and the oblate (lower panel) superdeformed 
potentials with octupole deformations. 

function of  A30. The stability factors for orbits in the oblate potential depend linearly 
on ?t30 for ~30 -~ 0 while they depend quadratically in the prolate case. Consequently 
the amplitude factors reduce much faster in the former case. This seems to be the main 
cause of the rapid reduction of  shells with octupole deformation in the oblate potential. 
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Fig. 15. Fourier transforms of the quantum level densities for the prolate (upper panel) and the oblate (lower 
panel) superdeformed oscillators with octupole deformations. 
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8. Summary and conclusion 

We have analyzed the gross structure of  single-particle spectra in reflection-asymmetric 

deformed oscillator potentials using the semiclassical method. Our model is nonintegrable 

and is regarded as a mixed system where regular and chaotic dynamics coexist. The 

periodic orbit theory, which is well established for regular and strongly chaotic lim- 

its, seems to be also applicable to such a situation. Fourier transforms of  the quantum 

level density reveal almost perfect correspondences with classical periodic orbits. The 

importance of  classical orbit bifurcations has been demonstrated in our model. Strong 

shell effects arise also for rather chaotic regions, and their strengths are comparable in 

magnitude to those of  regular regions. We obtain an interesting result which indicates 

that classical bifurcations may be responsible for the emergence of  shell structure in 

the mixed system. Applications of  the semiclassical theory of  shell structure to more 

realistic mean-field potential models and identifications of  classical orbits which play 

decisive roles in determining exotic shapes of  nuclei or micro-clusters remain as exciting 

future subjects. 
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