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We calculate the response functions for octupole vibrations in superdeformed nuclei by means of
the RPA using a large configuration space composed of 9 major shells. The strongly collective
octupole vibrations with K =1 and 2 are predicted to appear very low in excitation energy, as well
as those with K=0, if an appreciable amount of pairing correlation is present in superdeformed
nuclei. Numerical examples are presented for *Hg and *Gd.

. Last year, a new region of superdeformed nuclei was found in '7*Hg.D?
Moreover, many excited configurations of the superdeformed shape have been
identified® both in the Hg region and the previously known® Gd-Dy region.. Thus a
new field of yrast spectroscopy for nuclear structure, called “superdeformed spectros-

“copy” is just opening.” ,

As is well known, properties of nuclear vibrations are intimately connected to the
shell structure. Because of the new shell structure called “the 2:1 shell structure” in
superdeformed nuclei, which is drastically different from that of ordinary deformed
nuclei, we expect that new properties emerge for the collective vibrations-about the
superdeformed equilibrium shape.

In a previous paper,” we suggested that strongly collective octupole vibrations
with K=0 appear very low in excitation energy in superdeformed nuclei that have
magic numbers for the 2: 1 shell structure. In the previous calculation we neglected
the pairing correlations, since the static pairing gap 4 for Dy discussed there is
expected to be negligibly small because of the pronounced 2:1 shell gap. In this -
paper, we consider superdeformed nuclei which have relatively small shell gaps and,
consequently, have finite value of 4. The superdeformed bands in Hg region are
suggested to have such properties.'**™® The result of calculation predicts that collec-
tive octupole vibrations with K =1 arid 2 also appear below about 2 MeV in excitation
energy in such superconducting superdeformed nuclei. In this paper, we report the
result of calculation for the case that the rotational frequency wro: is-zero. The case
of finite wro: is deferred to a future publication.

We start from the familiar Nilsson plus BCS Hamiltonian,

h:hNﬂsson_AZ(CiTCij+.Cicf) (1)

with 4 being the pairing gap, and use the doubly-stretched octupole-octupole interac-
tions as residual interactions:
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H=h— Ssx@% Qi (2)

where @3k are the octupole operators defined in terms of the doubly-stretched coordi-
nates x.”=(w:wo)x: with =1, 2 and 3. Here (w:/wo) denotes the ratios of the
frequencies of the deformed harmonic-oscillator potential to that of the spherical one.
The importance of the doubly-stretched multipole-multipole interactions for deformed
nuclei was first pointed out by Kishimoto” in connection with the deformation split-
ting of the giant quadrupole resonances. ' The force-strengths ys«x can be determined
from the selfconsistency conditions between the potential and the density, once the
single-particle potential at the equilibrium is given. They are given, for the deformed
harmonic oscillator potential, by

Hoe =T Mo <) o +-2a— KB ot (TR = 67)+ 12X PY )9

where P denotes the Legendre polynomial. The detailed derivation can be found in
a recent paper by Sakamoto and Kishimoto.® We evaluate the expectation values
appearing on the r.h.s. by using the calculated ground-state configurations for the
Nilsson plus BCS Hamiltonian 2. We then treat the residual interactions in the RPA,
and calculate the strength functions for the doubly stretched octupole operators @5k

S(Qk; 0)=28(wn— w)|[<n| Q3|0 : 4)

where the |#)> are the excited states obtained in the RPA. It should be noted that,
although we call the modes associated with the Q$x=(r*Ysx)” operators “octupole
modes” for brevity, they are in fact linear combinations of the ordinary octupole fields
Qax=7%Y3x and the compressional dipole fields 7*Yix. It should also be mentioned
‘that'the spurious center of mass motions associated with the »Yix operators are also
separated out in the same way as in Ref. 9). In order to calculate, for example, the
B(E3) values, we need the transition amplitudes <#|@Qsx|0> for the true octupole
_operators @sx. These quantities are easily obtained from those for the doubly
stretched operators, (#°Ysx)” and (#%Yix)”, by means of a linear transformation.

The procedure of numerical calculation is essentially the same as in Ref. 10).
The parameters v and vy, of the Nilsson Hamiltonian are the same as in Ref. 11),
except that we use the doubly-stretched coordinates also for the (/-s)- and /*-terms,
and neglect the hexadecupole deformation. For the RPA calculation with the use of
the theoretical equation, Eq. (3), a large model space is needed for treating octupole
correlations. Thus, we use 9 major shells; Nosc=2—10 for neutrons and Nosc=1—9 for
protons. The equilibrium deformation desc and the pairing gap 4 are determined by
means of the conventional procedure of the Strutinsky method,'® except that, follow-
ing Ref. 13) we use A=14.0A7"* MeV instead of 4=12.0A7"> MeV for the smoothed
pairing gap parameter. The pairing gaps 4 determined in this way are 0.8~1.0 MeV
for *Hg and *Gd presented below. The values of 4, 4, and Sosc for individual
nuclei are given in figure captions. The calculated value of osc for Gd seems
somewhat small in comparison with those evaluated by Aberg for nuclei in this
region. Thisis because we have used a different single particle potential, namely, the
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doubly stretched (/-s)- and /% terms and neglect of the hexadecupole deformation.
However, we believe that this difference is not important for the consideration on the
properties of collective vibrations presented below. Also, modification of the pairing
gap 4 of the order 10~20% will not change the essential point of this paper.

Figure 1 shows the strength functions for the doubly stretched octupole operators
with K=0, 1, 2 and 3, calculated for **Hg which is a closed-shell nucleus for the
superdeformed shape. The upper columns display the RPA strength functions, while
the lower columns the unperturbed ones without the octupole-octupole interactions.
We see prominent peaks below 2.5 MeV for all the K components, which correspond
to the collective octupole vibrations. The calculated B(E3) values for these peaks
are written in the figure in units of the Weisskopf unit. These values indicate that
they are strongly collective in character. In fact, the calculated B(E3) values are
much larger than the largest known value B(E3; 37 »0%)=40 w.u. of the 3~ state in
ZOSPb. E

The K=0 octupole vibration -splits into two peaks. This is due to the two
quasiparticle poles at about 2.2 MeV in the unperturbed response functions. Aside
from such datails, the major character of the K =0 components is the same as that
discussed for ***Dy in our previous paper.®’ Namely, they are mainly composed of
one-particle-one-hole excitations across the closed shells associated with the 2:1 shell
structure, which transfer the asymptotic quantum numbers (#s, /1) of the Nilsson
diagram by duns;=1 and 44 =0, and the shell quantum number Nsuen defined as Nenen
:27’L_|_+ N3 by ANshen:]... .

A remarkable new feature of these strength functions, which is absent in the case
of ¥*Dy, is the existence of the K=1 octupole vibrations below 2 MeV. Comparing
the RPA strength function with the unperturbed one, we see that it emerges from
many two-quasiparticle excitations distributing above 2MeV. The octupole
strengths of the individual two-quasiparticle excitations are rather small, but they
coherently contribute to form the strongly collective K=1 octupole vibration. To
understand the microscopic structure of this vibration, we show in Fig. 2 the major
part of the unperturbed particle-hole configurations in the Nilsson potential, which
correnpond to the two-quasiparticle excitations with K=1. We see that they trans-
fer the quantum numbers (Nsnen, #3, /1) by dNshen=0, dns=2 and 4A=1. In the limit
of the deformed harmonic-oscillator potential, they correspond to those within the
same Nsnen shell of the 2:1 shell structure, and are therefore forbidden at the closed
shell nucleus. This feature persists also for the Nilsson potential, and thus the
low-lying K=1 octupole vibration is absent in the closed shell nuclei, as we have
examined® for **Dy. However, if the pairing gap 4 is finite as is the case for **Hg,
nucleon distribution over the 2:1 shell closure becomes smooth and the two-
quasiparticle excitations corresponding to such 0%z w: excitations are allowed. Their
unperturbed excitation energies distribute starting just above the pairing gap 24=2
MeV, since their excitation energies in the Nilsson potential are very small. Due to
the attractive octupole-octupole residual interactions, their energies are lowered, and
coherently contribute to form the collective vibrations at about 1.6 MeV. Thus, the
existence of a finite pairing gap seems essential for the appearance of the low-lying K
=1 octupole vibrations.
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Fig. 1. Strength functions for the doubly stretched octupole operators Q4% with K=0, 1, 2 and 3
calculated for **Hg. The upper columns display the RPA strength functions for the energy range
below 3.0 MeV, while the lower columns the unperturbed ones up to 7.0 MeV. The equilibrium
deformation Jesc and the pairing gaps 4, and 4. for protons and neutrons are evaluated by means
of the Strutinsky method: They are Jose=0.44, 4p,=0.94 MeV and 4,=0.85MeV. The unit is
(7/Mwo)®. The calculated B(E3) values for the main peaks are written in units of the Weisskopf
unit. :
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Fig. 2. Particle-hole configurations of the Nilsson potential, which correspond to the two-quasiparticle
excitations constituting the collective K=1 octupole vibrations in **Hg. The set of numbers

indicated for each level is the familiar asymptotic quantum numbers [ Nosc, #3s, 4, 2] of the Nilsson
diagram. Note that Nosc are different from the shell quantum number Nswen discussed in the text.

It should be emphasized that this mode of excitation exhibits truly a new feature
of the 2:1 shell structure in which the major shell is evenly composed of both positive
and negative-parity single-particle orbits. It is also worth emphasizing that this
mode is the first example of the isoscalar shape vibrations with K=1, since the
isoscalar dipole and quadrupole modes correspond to the zero-frequency Nambu-
Goldstone modes, i.e., translations and rotations, respectively.

In Fig. 1 we see that the octupole strength for the low-lying K=2 vibration is also
very strong. In the previous calculation® for **Dy, we obtained a low-lying K=2
vibration composed mainly of the 4Nswen=1 particle-hole excitations across the closed
shell. Its excitation energy was about the same with that of the X =0 vibrations, but
its octupole strength was much weaker than the latter. In the present calculation for
Hg. due to the presence of the finite pairing gap 4, we have appreciable contribu-
tions from the two-quasiparticle excitations within the same major shell, in addition
to these across the magic numbers. In contrast with the K=1 octupole vibration
discussed above, there is no dNsnen=0 excitation for the K=2 mode. However, due
to the (/+s)- and /*terms, there exists many ANswen=1 excitations within the same
major shell for the Nilsson potential corresponding to the superdeformed shape.
These excitations are allowed for the closed shell nuclei when 4=+0. Both types of
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Fig. 3. Same as Fig. 1, but for *Gd. The RPA strength functions are drawn for the energy range
below 3.5 MeV, while the unperturbed ones are shown up to 7.0 MeV. Calculated values for s, )
Ay and 4, are 042, 1.00 MeV, and 1.04 MeV, respectively.
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two-quasiparticle configurations, i.e., those across the major shells and those within
the major shells, correlate coherently due to the octupole-octupole interaction. Thus,
the strongly collective K=2 octupole vibration is formed.

Concerning the K =3 octupole vibrations, their collectivities are relatively weak
in comparison with the K=0, 1 and 2 modes discussed above, when they are measured
in terms of the octupole strength functions. It should be noted here that, although the
transition amplitudes [<#|@Qix|0>] with the doubly-stretched coordinates are of the
same order of magnitude for all K values, those for the true octupole operators are
considerably scaled down especially for the K=3 components relatively to the other
components. Thus, as the B(E3) values indicate, those for the true octupole opera-
tors, [<n]|Qsk|0>|, are in fact smaller, for the K =3 component, than they look in Fig. 1.
It should also be noted that the number of low-lying two-quasiparticle K=3
configurations are relatively smaller than those of the other modes, since both the
ANshen=0 and 1 excitations are absent for the case K=3.

As an example of the calculation for superdeformed nuclei away from the closed
shell, we show in Fig. 3 the octupole strength functions calculated for '*Gd. We
again see the existence of the low-lying collective octupole vibrations for all the K
components. Their characteristics are very similar to those discussed above for
%2Hg. We have carried out the same calculation for a number of nuclei both in the
Hg region and in the Gd-Dy region, and found similar results as long as the calculated
pairing gaps are not negligibly small. Thus, we expect that the statements made
above for ?Hg apply also for other superdeformed nuclei.

In this paper, we have reported the result of calculation for the case that the
rotational frequency wrot is zero. It is an interesting subject to investigate how the
characteristics of the low-lying octupole vibrations discussed here change when the
pairing gap 4 becomes small with increasing wro.. We plan to discuss this problem
in a future publication. ' _

Finally, we mention that the octupole softness of the superdeformed nuclei is also
suggested in the potential-energy calculation in Refs. 14) and 15). Quite recently, the
first experimental evidence supporting the prediction for strong octupole correlation
in superdeformed nuclei is reported for **Hg'® and for *'Gd."”

The computer calculation has been financially supported in part by the Grant-in-
Aid for Scientific Research of the Japan Ministry of Education, Science and Culture
(No. 01540245), and in part by Research Center for Nuclear Physics, Osaka University,
and done partly by using the computer center of Institute for Nuclear Study, Univer-
sity of Tokyo.
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Properties of low-lying octupole vibrations (with K=0, 1, 2 and 3) built on superdeformed
rotational bands are investigated by means of the RPA in a uniformly rotating frame. Large
configuration space composed of 9 major shells is used. Numerical examples are presented for the
superdeformed band in "**Hg as a typical case where appreciable amount of static pairing correlations
remains at finite values of the rotational frequency. We obtain strongly collective low-frequency
octupole vibrations with K=0, 1 and 2. It is shown that the properties of the K=1 octupole
vibrations are especially sensitive to the static pairing correlations. The Coriolis-mixings among
these soft octupole vibrations are shown to become important when the rotational frequency wrot
20.2 MeV /7.

§1. Introduction

Quite recently, many excited configurations as well as yrast states of super-
- deformed rotational bands have been found in both the Hg region and the Gd-Dy
region.”™® Their microscopic structures are now lively discussed. mainly in terms of
the particle-hole excitations from the yrast configurations for rotating deformed
potentials. Thus, a new field of yrast spectroscopy for nuclear structure, called
“superdeformed spectroscopy” is just opening.®

We are interested in the question which kind of collective vibrations could be
built on such superdeformed rotational bands. As is well known, properties of
nuclear vibrations are intimately connected to the shell structure. Because of the
new shell structure called “the 2 : 1 shell structure” in superdeformed nuclei, which is
drastically different from that of ordinary deformed nuclei, we expect that new
properties emerge for the collective vibrations about the superdeformed equilibrium
shape.
‘ In Refs. 6) and 7), we suggested that strongly collective octupole vibrations with
K=0 could appear very low in excitation energy in superdeformed nuclei that have
magic numbers for the 2 : 1 shell structure. In Ref. 8), we also suggested that octupole
vibrations with K=1 and 2 could appear below about 2 MeV in excitation energy, in
addition to the K=0 modes, if appreciable amount of static pairing correlations is
present in superdeformed nuclei. This work was, however, restricted to the case that
the rotational frequency wrot was zero.

In this paper, we extend our previous calculation® to finite values of wrot, and
investigate how the characteristics of these'low-lying octupole vibrations change
when the pairing gaps 4 decrease with increasing wroe. Since the superdeformed

*) Present address: Institute for Nuclear Study, University of Tokyo, Tanashi 188.
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bands in the Hg region are considered to have finite values of 4, we shall discuss the
case of **Hg as a typical example.

For this purpose, we solve the RPA equations based on the cranked Nilsson plus
BCS potential, using a large configuration space composed of 9 major shells (for both
protons and neutrons). The calculational procedure is summarized in § 2. To get a
rough idea about the properties of different K components of the octupole vibrations
built on the superdeformed shape, we consider in § 3 the simple case of the deformed
harmonic-oscillator potential with axis ratio 2:1. Results of the large-scale numeri-
cal calculation are presented and discussed in §4. In §5, conclusions are given and
some future problems are mentioned.

§2. Method of calculation

Basic framework of our calculation is the RPA based on the cranked Nilsson plus
BCS potential, which has been extensively used in order to investigate the properties
of the gamma vibrations at high spin.!® This framework is easily applicable also to
the octupole vibrations built on the superdeformed rotational bands.

We start from the cranked Nilsson plus BCS Hamiltonian,

h’:hNilsson—‘AZ(CzTC}-‘*‘C{éi)—ﬂﬁ—wrotjx ‘ (2'1)

~with 4 and A being the pairing gap and the chemical potential, respectively, and use
the doubly-stretched octupole-octupole interactions as residual interactions:

'th'—%;xs,(@g; I ) (2-2)

where Qix are the octupole operators defined in terms of the doubly-stretched coordi-
nates z7=(w:/wo)x: with i=1, 2 and 3. Here (w:/wo) denote the ratios of the fre-
quencies of the deformed harmonic-oscillator potential to that of the spherical one.
We use K to denote the components of angular momentum on the symmetry axis of
the potential. The force-strengths y:x can be determined from the self-consistency
conditions between the potential and the density,'” once the single-particle potential
at the equilibrium is given. They are given,'" for the deformed harmonic oscillator
potential, by

o= Moo <) ot — KO P o

A (RTR =6 +T2K(P) %) (2-3)

where P, denotes the Legendre polynomial. We assume that the above expression
can be used also for the cranked Nilsson plus BCS Hamiltonian %', and evaluate the
expectation values appearing on the r. h. s. by using the calculated ground-state
configurations for #’. Thus, the values of xsx are determined as functions of @ret. In
fact, however, the dependence of ys3x on wre is very weak. We then treat the residual
interactions in the RPA, and calculate the strength functions in the rotating frame for
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the doubly stretched octupole operators Qsx

S(Qx; @)=S8(wn—w)<nl Qi |0, | (2-4)

where the |#> and |0> are respectively the one-phonon excited states and the vacuum
state obtained in the RPA, and w. are the RPA excitation energies. It should be
noted that, although we call the modes associated with the @Qix=(#*Yzx)" operators
“octupole modes” for brevity, they are in fact linear combinations of the ordinary
octupole fields @sx=7°Y:x and the compressional dipole fields #%Yik. In order to
calculate, for example, the B(E3) values, we need the transition amplitudes <7|Qsx|0>
for the true octupole operators @:x. These quantities are easily obtained from those
for the doubly stretched operators, (#»*Ysx)” and (#°Yix)”, by means of a linear
transformation. In the case of deformed harmonic-oscillator potential, the spurious
motion of center of mass is exactly decoupled by the use of the doubly-stretched
octupole-octupole interactions.'” Because of the 1% and I-s terms, however, this
decoupling is not exactly guaranteed in realistic calculations. We found in fact the
effect of the spurious mode on the octupole strength function is less than few percent,
so that it is not important. s

Procedure of numerical calculation is essentially the same as described in
Ref. 10). The parameters vis and v of the Nilsson Hamiltonian are the same as
those given in Ref. 12), except that we use the doubly-stretched coordinates also for
the (I-s)- and I*terms, and neglect the hexadecupole deformation. For the RPA
calculation with the use of the theoretical force-strength, Eq. (2-3), a large model
space is needed for treating octupole correlations. Thus, we use 9 major shells; Nosc
=2-10 for neutrons and Nose=1-9 for protons. The equilibrium deformation Susc is
determined at wrot=0 by means of the conventional procedure of the Strutinsky
method,"” and assumed to be constant at finite wro. The ANpse=2 parts of the
cranking term are neglected for simplicity. The pairing-force strengths for protons
and neutrons, G» and G, are determined by means of the smoothed gap equation
method. For the smoothed pairing gap parameter 4 appearing in this method, we
use, following Ref. 14), the value 14.0 A~ MeV instead of 12.0 A~ MeV adopted in
Ref. 13). The actual values of the pairing gaps for protons and neutrons, 4y and 4,
for individual nuclei are calculated as functions of wrot by solving the gap equations
with the force-strength G determined above. In fact, these values cannot be precisely
determined by comparison with the experimental data available for the superde-
formed states in Hg, so that there are 10~20 % ambiguities in the calculated
gap parameters. Therefore, we aim in § 4 at drawing qualitative conclusions from
the result of numerical calculations, which will be unaffected by small modifications of
Ay and 4.

§3. Qualitative considerations
Before discussing the result of large-scale numerical calculations, it is instructive

to consider at wro:=0 the simple case of the deformed harmonic-oscillator potential
with axis ratio 2:1. By writing the octupole operators Qsx=#°Yax in terms of the
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creation and annihilation operators of the oscillator quanta, we can classify the
particle-hole excitations associated with these operators in the following way. The
particle-hole excitation energies for the X =0 modes are classified into four cases: w.,
20w, — Wz, 3wz or 2w, + wz, where w. and w- denote the harmonic-oscillator frequencies
perpendicular and parallel to the symmetry axis, respectively, and where we put 7%
=1. In a similar manner, those for the K=1 modes are classified into four cases:
WL 2wz, i, ©1+2w; and 3w,. Likewise, the K=2 modes are classified into .,
20w, — wz and 2w, + @z, and the. K=3 modes are divided into w. and 3w.. Following
Ref. 15), let us now define the shell quantum number Nsn by Nen=an.+ bns and the
spacing of the shells ws» by wsh=w./a=w:/b, for a deformed axially symmetric
oscillator potential with a rational ratio a: b between the frequencies w, and @-.
In the case of axis ratio 2:1 under consideration, they are given by Nen=2n,+ s
=2 Nose— #3 and wsn= @z, respectively. Thus the K=0 octupole modes consist of wsn,
two kinds of 3wsn, and 5ws, excitations, which transfer the shell quantum number Nen
by 4dN«w=1, 3 and 5, respectively. In a similar way, the K=1 octupole modes consist
of 0, 2wsn, 4wsn and 6wsn excitations which correspond to 4ANsw=0, 2, 4 and 6, respec-
tively. Likewise, the K=2 modes consist of 4Ns»=1, 3 and 5 excitations, and the K
=3 modes AN:w=2 and 6 excitations. For a doubly closed shell nucleus where the
single-particle levels are completely filled up to a certain number of N (for both
protons and neutrons), the 4N:=0 excitations appearing in the K=1 octupole modes
are forbidden by the Pauli principle. Thus, the lowest-energy particle-hole excita-
tions are those with 4Ns»=1 which occur for the octupole modes with K=0 and 2.
Due to the attractive octupole-octupole residual interactions, collective octupole
vibrations with K=0 and 2 constituted from coherent superpositions of the ANex=1
particle-hole excitations are shifted down in energy much below their unperturbed
energies ws»~5MeV. This is the basic reason why we obtained in Ref. 7) very
collective K=0 octupole vibrations below 2MeV in *Dy. The reason why the
collectivity measured by the octupole strength is much higher for the K=0 modes
than for the K=2 modes is discussed below by means of the sum-rule consideration.

Next let us consider the case where appreciable amount of static pairing correla-
tions is present even at the doubly closed-shell nucleus for the superdeformed shell
structure with axis ratio 2:1. In this case, two-quasiparticle excitations within the
same major shells (having the same shell quantum number Ne), which are character-
ized by AN:»=0, are allowed near the Fermi surface. Therefore, possibility of
producing a low-energy K=1 octupole vibration arises. This is just the point we
intend to explore in § 4. Here, a striking characteristic of the 2:1 shell structure
should be noticed. Namely, each major shell is composed of single-particle levels
with both positive and negative parities in almost equal weights. This situation is
quite different from the familiar harmonic-oscillator shell structure at the spherical
shape, in which each major shell is entirely composed of single-particle levels with
either positive or negative parities. Thus, once the K=1 octupole excitations within
the same major shell are allowed, they tend to form a very collective vibration, since
a large number of such degenerate two-quasiparticle configurations are correlated by
attractive octupole-octupole interactions. In this respect, the low-lying K=1
octupole vibration is expected to have some similarities with the low-frequency
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quadrupole vibrations in open-shell nuclei.

Superdeformed open-shell nuclei having valence particles (holes) outside (inside)
of the magic numbers associated with the 2:1 shell structure are expected to have
finite pairing gaps 4. Therefore, we can apply the above consideration for the K=1
octupole modes also to such cases. On the other hand, the shell structure energy,
which is responsible for the existence of the superdeformed equilibrium shape, is
expected to decrease with increasing number of valence particles (holes). It is thus
an interesting subject to investigate the region of existence of the K=1 octupole
vibrations and to see how their properties change as the number of valence particles
(holes) changes.

Lastly, let us evaluate the energy-weighted sum rule value

'Sl(K)EZn]a)n!(M Q3K|0>|2:%<0|[Q3K9 [H, Q«]110>

for the octupole operators @sx. For doubly closed-shell nuclei with respect to the
axially symmetric harmonic-oscillator potential, they are analytically calculable.
Under the approximation that the density o(r) is isotropic in the doubly stretched
coordinates z7, they are given by'”

SI(K)_ Zlh ( CUz4+2 >< " for K=0, (3.1).
( 2’2 Zz+5;“ji)<$c"4> for K=1, (3-2)

SZZ (oot for k=2, 59
:%<;’)§><x"4> for K=3, (3-4)

where M is the nucleon mass. At the superdeformed shape with w,=2w., their ratios
are given by

Si(K=0): Si(K=1): Si(K=2): S(K=3)=50:39:15:5. (3-5)

Thus, the octupole strengths are appreciably concentrated on the modes with lower
values of K. This is an important characteristic of the superdeformed states, which
we should keep in mind when discussing collectivities of the vibrational modes built
on them.

At finite wrot, these octupole vibrations with different values of K are mixed with
each other by the Coriolis term @rot Jz=. The mixing effects are discussed in the next
section for the realistic case using the Nilsson potential.

§4. Results of calculation
We now discuss the results of calculation for ?Hg based on the cranked Nilsson-

plus-BCS potential.
The calculated pairing gaps are 0.94 and 0.85 MeV for protons and neutrons,
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Fig. 1. The RPA strength functions for the electric octupole operators @&’ with K=0, 1, 2 and 3
calculated at Zwra=0.05MeV for **Hg. Only the low-energy parts below 3 MeV are shown.
These are normalized so that the abscissas indicate the octupole strength [<#|@Q$2|0>|? in Weisskopf
units. Note that they are defined in the intrinsic frame. The left-hand side shows the positive-
signature sector, while the right-hand side the negative-signature sector. The equilibrium defor-
mation Jesc and the pairing gaps 4» and 4, for protons and neutrons are evaluated by means of the
Strutinsky method.

respectively, at wr=0. They diminishes at wr:<0.4 MeV. As we mentioned in § 2,
this result should be taken in a qualitative sense. The calculated deformation
parameter Oosc=0.44 is almost the same with the values usually adopted,’ and is
fairly smaller than 0.6 which corresponds to the axis ratio 2:1. Thus, together with
the effects of the 2 and [-s terms in the Nilsson potential, we should expect some
deviations of the actual shell structure from that discussed in § 3 for the harmonic-
oscillator potential with axis ratio exactly 2:1.

Figures 1~6 display the octupole strength functions calculated in RPA at @rot
=0.05, 0.10, 0.15, 0.20, 0.30, 0.40, respectively. These strength functions are normal-
ized so that abscissas indicate the |<#|@$2]|0>|* values in Weisskopf units, where Q4§
denote the electric octupole operators. Together with the K-value, the strength
functions are classified in Figs. 1~6 in termnis of the signature quantum number which
represents the transformation property with respect to the rotation of n about the
rotation axis. The left (right)-hand sides of these figures show those with signature
r=+1(—1). As is well known, the signature remains as a good quantum number
although the K-values are mixed in the RPA eigenmodes at finite wro.. Thus the K
=1, 2, 3 parts of the left-hand sides show the properties with respect to the operators
Q$2-1 55 of the same RPA modes belonging to the »=-1 sector, although poles of
non-collective RPA modes that have little octupole strengths are not always visible. .
In the same manner, the K=0, 1, 2, 3 parts of the right-hand sides show those
belonging to the »=—1 sector. At finite wrot, properties of the RPA modes are
expected to depend on the signature quantum number. In fact, we can see some
differences, for instance, between the K=1 octupole strength functions with r=+1
and —1. However, generally speaking, such signature dependence is not very strong
in the range of rotational frequency under consideration.

Let us first discuss the case of relatively small values of the rotational frequency,
ie., wo<0.15 MeV, displayed in Figs. 1~3. These are extensions of the calculation
at wrt=0 reported in Ref. 8). We see prominent peaks below 2.5 MeV for all the: K
components, which correspond to the collective octupole vibrations. The octupole
strengths of many of these peaks are much larger than the largest known value B(E3;
37 —0")=40 w.u. of the 3™ state in ?®Pb. Thus, they are strongly collective in charac-
ter. It is seen that the octupole strength functions are gradually modified by the
effects of the Coriolis term. However, the effects are rather weak, and the octupole
vibrations may still be approximately characterized by the K values (in spite of the
K-mixings). Thus, essentially the same considerations as in the case w::=0% apply
also to Figs. 1~3. '

There appear prominent peaks at about 2 MeV for the K=0 strength functions.
They are associated with the octupole vibrations that have approximate quantum
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Fig. 2. The same as Fig. 1 but for Zwr=0.10 MeV.
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number K=0. Aside from such splittings of the “K=0" mode into two or three
peaks, which sensitively depend on the details of the two-quasiparticle poles in the
unperturbed response functions, the major character of the K=0 components is the
same as that discussed for "Dy in Ref. 6). Namely they are mainly composed of
one-particle-one-hole excitations across the superdeformed shells which transfer the
shell quantum number Nsn by 4New=1, and the asymptotic quantum numbers (73, A)
of the Nilsson diagram by A4ns=1 and 44 =0.

The unperturbed energies of such excitations constituting the “A=0" modes are
clustered at about 5MeV, i.e., at almost the same energy expected for the case of
harmonic-oscillator potential discussed in § 3. This is because relative single-particle
energies for the particle-hole configurations with dns=1 and 4A=0 are rather
unaffected in spite of the large shifts in individual energies due to the I? and (I-s)
terms in the Nilsson potential. For example, the relative energy between the Nilsson
levels [770 %] and [880%] remains approximately constant although their energies are
both considerably affected by the I”> and (I-s) terms. Owing to the attractive
octupole-octupole interactions, these particle-hole excitations coherently contribute to
generate the “K'=0" collective vibrations at about 2 MeV.

A remarkable new feature of these strength functions, which is absent in the case
of Dy, is the existence of the octupole vibrations having the approximate quantum
number K=1 below 2 MeV. Comparing the RPA strength function with the unper-
turbed one, we see that it emerges from many two-quasiparticle excitations distribut-
ing above 2 MeV which transfer the quantum numbers (Nesn, %3, A) by ANsw=0, Ans=2
and dA==1. The octupole strengths of these individual two-quasiparticle
configurations are rather small, but they coherently contribute to generate the strong-
ly collective K=1 octupole vibration. In the limit of the deformed harmonic-
oscillator potential, these excitations correspond to those within the same Nsx shell of
the 2 :1 shell structure, and are therefore forbidden at the closed shell nucleus. This
feature persists also for the Nilsson potential, and thus the low-lying “soft K=1
octupole” vibration is absent in the closed shell nuclei, as we have examined” for
52Dy. However, if the pairing gap 4 is finite as is the case for *?Hg, nucleon distribu-
tions over the superdeformed closed shells become smooth and the two-quasiparticle
excitations corresponding to such 0% wsn excitations are allowed. Their unperturbed
excitation energies distribute starting just above the pairing gap 24=2 MeV, since
their excitation energies in the Nilsson potential are very small. Due to the attrac-
tive octupole-octupole residual interactions, their energies are lowered, and coherent-
ly contribute to form the collective vibrations at about 1.5 MeV. Thus, the existence
of a finite pairing gap seems essential for the appearance of the low-lying “soft K=1"
octupole vibrations. :

It should be emphasized that this mode of excitation exhibits truly a new feature
of the superdeformed shell structure in which the major shell is.evenly composed of
both positive and negative-parity single-particle orbits. It is also worth emphasizing
that this mode. is the first example of the isoscalar shape vibrations with K=1, since
the isoscalar dipole and quadrupole modes correspond to the zero-frequency Nambu-
Goldstone modes, i.e., translations and rotations, respectively.

In Figs. 1~3 we see that the octupole strengths for the low-lying “K =2 vibration
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are also very strong. In the case of Dy, we obtained in Ref. 7) a low-lying K=2
vibration composed mainly of the one-particle-one-hole excitations across the closed
shell, which transfer the quantum numbers (Ne, #3, A) by AdNew=1, Ans=1 and 4A
=12, Its excitation energy was about the same with that of the “K =0 vibrations,
but its octupole strength was much weaker than the latter. In the present case of
¥2Ho due to the presence of the finite pairing gaps 4. and 4p, we have appreciable
contributions from two-quasiparticle excitationé within the same major shells, in
addition to those across the magic numbers, both for protons and neutrons. In
contrast with the “K'=1" octupole vibration discussed above, there is no 4Nux=0
excitation for the “K=2" mode. However, due to the (I-s)- and I>-terms, there exist
" many ANs»=1 configurations with low-energies, some of which come even within the
same major shells for the Nilsson potential corresponding to the superdeformed
shape. For example, the Nilsson level [624 %] goes down so that it comes close to the
[512%] level. Thus, there is no essential difference between both types of two-
quasiparticle configuration with KX=2, i.e., those across the major shells and those
within the major shells, and they correlate coherently due to the octupole-octupole
interactions. In this way, the strongly collective “K=2" octupole vibration is gener-
ated. ‘

Concerning the “K=3" octupole vibrations, their collectivities are relatively
weak in comparison with the X=0, 1 and 2 modes discussed above, when they are
measured in terms of the octupole strength functions. The main reason is that the
octupole strengths are considerably shifted from the high-K components to the low-
K components, as is analytically shown in terms of the energy-weighted sum rule for
the case of the harmonic-oscillator potential. In addition, the number of low-lying
two-quasiparticle K=3 configurations are relatively smaller than those of the other
modes, since both the ANs»=0 and 1 excitations are absent in the case K=3.

Let us proceed to the case of larger values of wro: displayed in Figs. 4~6. With
increasing wrot, the mixing effects between different K components become stronger,
and the classification of the RPA eigenmodes in terms of the approximate K quantum
number 'gradually becomes inappropriate. For instance the peaks seen at about 1.1
MeV in both the K=1 and 2 components in the negative-signature sector (the right-
hand side) of Fig. 4 are associated with the same RPA eigenmode, in which the K
=1 and K =2 octupole vibrations discussed in connection with Figs. 1~3 are appre-
ciably mixed with each other. In a similar manner, the peaks seen at about 1.3 MeV
in both the K=0 and 1 components in the same figure are associated with the
eigenmode in which the K=0 and 1 octupole vibrations are fairly mixed. Due to such
K-mixing effects, the octupole strength for each component is shared among many
different octupole vibrations. Thus, for example, the number of peaks below 2 MeV
in the K=0 component in Fig. 5 (which is calculated at wrt=0.3 MeV) is appreciably
increased in comparison with that in Fig. 1 at w:=0.05 MeV. Apparently, many
among these peaks are associated with those in the K=1 and 2 components. As a
consequence of the K-mixing effects, the heights of individual peaks in each K-
component tend to decrease. It remains to be more thoroughly investigated whether
this decrease indicates an onset of fragmentation of collectivities or simply indicates
that the octupole operators with definite K (whose quantization axis are taken along
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Fig. 7. The strengths 21.Kn|Q$%|0> in Weisskopf units for the electric octupole operators Q§2,
summed over the RPA eigenmodes: lying below 3MeV. The symbols a, b, ¢, d, e, f in the
ordinates dénote the calculations at % re:=0.05, 0.10, 0.15, 0.20, 0.30, 0.40, respectively. Parameters
used in these calculations are the same as in Figs. 1~6. Vertical lines in each rectangle divide
contributions from individual eigenmodes except for the uppermost parts where integrated values
of a large number of modes with very.small strengths are shown.

the symmetry axis of the Nilsson potential) are no longer the appropriate quantities
to measure the collectivities of the RPA modes at high-spin, or both.

Above wr:=~0.3 MeV, the pairing.gaps are considerably reduced. In Fig. 6
calculated at wrot=0.4 MeV, the neutron gap 4 is zero, and the proton gap 4, is only
about 0.4 MeV. The decrease of the static pairing correlation affects most strongly
on the K=1 component of the strength function. This is because, as discussed in § 3,
the low-energy K =1 excitations are largely forbidden in the superdeformed closed-
shell nuclei when the pairing gaps are diminished.

The dependence of the K=1 excitations on the pairing gaps is clearly seen in
Fig. 7 which displays the sums of strengths [<#|@Q$2|0>]> associated with the RPA

eigenmodes lying below 3 MeV. Here Q¥ denote the electric octupole operators.
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Fig. 8. The energy-weighted transition strength for the doubly-stretched octupole ‘operators @3k,
2swa|<n| Q3k|0>F, summed over the RPA eigenvalues lying below 3 MeV. Notations and parame-
ters used are the same as in Fig. 7.

Note that different scales are used in the abscissa for different K components. - Thus,
the sums are about 200, 100, 60 and 20 Weisskopf units for K =0, 1, 2 and 3, respective-
ly. In this figure, the ordinates indicate the different values of wro, 1., the symbols
a, b, c, d, e, f denote the cases wro:=0.05, 0.10, 0.15, 0.20, 0.30, 0.40 MeV, respectively.
It is seen that the strength of the K=1 component in fact drops from about 100 to
about 60 at wr:=0.4 MeV, where the neutron pairing gap vanishes and the proton
pairing gap is also largely diminished. A similar phenomenon is seen also for the K
=2 component, but with smaller extent. Figure 8 displays the energy-weighted
transition strengths 31.wx|<#|Qix|0>|* summed over the RPA eigenmodes lying below
3MeV. They are found to carry about 24.4 %, 11.7 %, 11.9 %, 9.6 % of the total sum
rule values given by Eqs. (3-1)~(3-4) for the harmonic-oscillator potential, for K=0,
1, 2 and 3, respectively. (It should be noted here that the total sum rule values
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actually calculated in "“?Hg for the Nilsson plus BCS potential are about 105 % of
those for the harmonic oscillator case.) These values are larger than the fraction of
the energy-weighted sum rule value carried by the low-lying quadrupole vibrations,
which are known to be less than about 10 9. Similarly to Fig. 7, we can see the
decrease of these quantities mainly for K=1 and 2, at wre:=0.4 MeV.

§5. Concluding remarks

We have suggested that strongly collective, low-frequency octupole vibrations
with K=+0 could be built, in addition to those with K=0, on superdeformed high-spin
states, provided that appreciable amount of the static pairing correlations exists.
The octupole vibrations built on superdeformed shapes are expected to have different
characteristics according to the approximate quantum number XK. The low-lying K
=( octupole vibrations are composed mainly of one-particle-one-hole excitations with
ANsn=1 across the closed shells of the superdeformed shell structure. Therefore,
they are expected to exist independent of the pairing correlations. In contrast, the
low-lying K=1 octupole vibrations are composed mainly of two-quasiparticle excita-
tions with 4dN:»=0 within the major shells. This kind of excitations are allowed in
doubly-closed shell configurations only when the superdeformed states have finite
pairing gaps. In this paper, we have explored this possibility by considering the
superdeformed rotational band in 'Hg as a typical case. We have seen that they
have large octupole strengths reflecting the fact that each major shell at the super-
deformed shape consists of about equal numbers of positive- and negative-parity
levels. The low-lying K=2 octupole vibrations are formed by superpositions of the
particle-hole excitations across the closed shells and the two-quasiparticle excitations
within the major shells. Thus, their characters are intermediate between the K=0
and 1 vibrations discussed above. The collectivity of the low-lying K=3 octupole
vibrations measured by B(E3) values is weaker than those with K=0, 1 and 2,
because of the reasons discussed in §3.

The above classification of the octupole vibrations in terms of the approximate K
quantum number may be valid when the rotational frequency wrot is small. With
increasing wrot, the Coriolis effects in a rotatihg potential play increasingly important
roles, and different K components will eventually be mixed with each other. In our
calculation for **Hg, the K mixing effects are found to be very important for wrot
=0.2 MeV.

Although we have reported the result of a large-scale numerical calculation for
2o quantitative details should not be taken too seriously, since we have not
attempted any optimal choice of parameters appearing in our model Hamiltonian.
For example, we have used the octupole-force strengths ysx that are theoretically
derived for the case of the harmonic-oscillator potential. Details of the excitation
energies of individual states could be sensitive to a slight modification of the ysx
values.

The octupole strength functions calculated in this paper are those defined in the
intrinsic frame associated with the uniformly rotating Nilsson plus BCS potential. In
order to evaluate the B(E3) values, we should of course carry out a transformation
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into the laboratory frame. To do this on the basis of the cranking model, it is
convenient to choose the quantization axis of the octupole operator along the rotation
axis (instead of the symmetry axis of the potential). Such a representation is
expected to be better suited to characterize the octupole vibrations at large values of
wrot. This will be done in our next paper.

It is well known that the octupole vibrations in deformed nuclei decay mainly by
electric dipole transitions (rather than octupole).” Since B(E1) values in deformed
nuclei are proportional to 8. B(E3), we expect that the dipole transitions associated
with the octupole vibrations play important roles in superdeformed nuclei. Accord-
ing to our preliminary calculations,'® the B(E1) values are of the order 107* to 10~
in Weisskopf units, and therefore the decay probability of the octupole vibrations by
E1l is, of the order 10° to 10%, larger than that by E3. The calculation of B(E1) is in
progress by taking into account the coupling effects with the giant dipole resonances.

The octupole softness of the superdeformed rotational bands has been sug-
gested' ™% also in the potential-energy calculations by means of the Strutinsky
method. In these calculations, only the K=0 component of the octupole degrees of
freedom has been taken into account. In view of the results discussed in this paper,
it is strongly desired to extend such calculations to include the components with K=1
and 2.

Finally, we mention that the first experimental data suggesting strong octupole

correlations in superdeformed rotational bands are recently reported for **Hg*” and
T 147Gd.21)
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Properties of the RPA solutions for the octupole vibrations (with K=0, 1, 2, 3) in the prolate

- harmonic-oscillator-potential model with the frequency ratio 2:2:1 are investigated. Special atten-

tion is directed to their dependence on the K-quantum number and on the shell-quantum number Nex

(characterizing the 2:1 shell structure). This analysis suggests that strongly collective, soft K=1

octupole vibrations exist in open-shell superdeformed configurations, and that they strongly couple
with the quasiparticle modes in odd-A nuclei.

§1. Introduction

We have-suggested? in terms of the RPA calculation based on the cranked
Nilsson model, that strongly collective octupole vibrations with K=0, 1, 2, 3 could be
built on superdeformed rotational bands having prolate shapes with the axis ratio
approximately 2:1. Recently, a similar suggestion has been obtained in the calcula-
tion® in terms of the parity-projected generator-coordinate method (though this
calculation has been restricted to the K=0 mode only). Octupole instability of some
superdeformed rotational bands have also been suggested in the potential-energy
calculations®™” utilizing the Strutinsky method. Thus, octupole correlations in
superdeformed nuclei have become one of the current issues in superdeformed
spectroscopy.® '

In this paper, we summarize the properties of the RPA solutions for the octupole
vibrations in the superdeformed harmonic-oscillator-potential model which is char-
acterized by the rational ratio 2:1 between the frequencies along the minor and the
major axes. We shall also discuss the case where the frequency ratio slightly
deviates from 2:1, and call the shell structure associated with the harmonic-oscillator
potential whose frequency ratio is approximately 2:1 “superdeformed shell structure”.
Needless to say, the harmonic-oscillator-potential model is not very realistic. Still,
we believe that some interesting properties of the octupole vibrations obtained in this
model have relevance to realistic situations. In fact, we know, at least, some cases
where the major characteristics of realistic calculations can be easily understood in
connection with the properties of the harmonic-oscillator potential.””?

We use the doubly-stretched octupole interactions proposed by Sakamoto and
Kishimoto® as the residual interactions to be treated in the RPA. It is recapitulated
in §2. In §3 we discuss the equilibrium deformations of the closed-shell
configurations for the superdeformed shell structure, and analytically derive the RPA
dispersion equations. In § 4 energy-weighted sum rules are given both for the ordi-
nary and doubly-stretched octupole operators. In § 5 numerical examples of the RPA
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octupole vibrations are presented. In § 6 we extend the discussion to the case where
the superdeformed states are uniformly rotating with the rotational frequency wrot
#0. In § 7 we discuss the open-shell superdeformed configurations and suggest that
soft K=1 octupole vibrations will appear. In §8 the octupole vibration-quasi-
particle couplings in odd-A superdeformed configurations having finite pairing gaps 4
are discussed. Main conclusions of this work is summarized in § 9.

§2. The doubly-stretched octupole interaction
‘We start from the harmonic-oscillator-potential model
A
tho“2{2M+ Mszxz} , (2-1)

and introduce the doubly-stretched octupole interactions® as residual interactions.
Namely, we consider a model Hamiltonian

H=hyo— 2x3K2Q"*(/e>Q (1), (2-2)

where the doubly-stretched octupole operators @5k are obtained from the ordinary
octupole operators @sx by replacing the coordinates x; with x7=(w:/wo)x:. The
doubly-stretched multipole-multipole interactions are natural extensions of the famil-
iar multipole-multipole interactions to the cases where equilibrium shapes of the
single-particle potential have qdadrupole deformations. Use of these interactions
guarantees us to fulfill the selfconsistency between the shape of density distribution
and that of the vibrating potential at any instant of time. Importance of this selfcon-
sistency has been discussed in detail by Sakamoto and Kishimoto.” They have
systematically investigated low-lying collective states and high-frequency giant reso-
nances in spherical and ordinary deformed nuclei by the use of the doubly-stretched
multipole interactions. These interactions were used also by Neergard and Vogel,'®
and by Marshalek.'” In the following, we shall make use of the results obtained by
Sakamoto and Kishimoto.” We shall call the vibrational modes associated with the

;¥ Qik interactions “octupole vibrations” for simplicity, although Q§x are in fact
linear combinations of the ordinary octupole operators #®Yzx and the compressional
dipole operators 7°Yix.

. The RPA dispersion equations determining the frequency @ of the octupole
vibrations about the quadrupole deformed shape can be written as

| JES(AE3K) .
Tt 3% (AEY — (o) 29

with
S(AE; 3K)= 33 Kil (@6l < (2-4)

where [0> and |7> are the ground state and the particle-hole excited states of the
single-particle Hamiltonian Awo. The quantity X(4E; 3K) represents a partial sum of
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particle-hole strengths with a definite excitation energy 4E=E;—E,. The force-
strengths xsx are determined from the selfconsistency condition as

ox :47”MWO2{<(74)">0+%(4—K2)<(74P2)”>0

-4 K2<7K2—67)+7z><(r4p4>~>0}"1 (2-5)

with P; being the Legendre polynomial. Here, the double primes denote the quan-
tities written in terms of the doubly-stretched coordinates, and < > the expectation
values with respect to the ground state |0>, where the summation 241 is implied
although it is omitted for simplicity of notation.

The frequencies w: of the deformed harmonic-oscillator potential are to be
determined such that they satisfy the well-known equilibrium condition'?

A ' A A
a)1_2<k§=_‘.1(x12)k>0= w22<§1(x22)k>o: (1)32<k§1(l‘32)k>0 . (2 ¢ 6)

§3; Closed-shell conﬁgurations with the axis ratio 2:1

For the axially-symmetric case, the equilibrium condition (2-6) can be written as

o (3(543),), =0 (3(5-44)), =0 (B(m43)), - @0

where oy=w2=w, and (Zx(7++(1/2))>0, etc. denote the expectation values of the
oscillator quanta in the ground-state configuration (see the Appendix).

Let us consider the cases where w, ~2ws and introduce the quantum number Nsn
defined by™®

Nsh-=2n_L+ #3, . (3'2)

where #z,=m+#, denotes the number of oscillator quanta perpendicular to the
symmetry axis. When w,=2ws, the single-particle energies are given by e=7#®sn{Nen
+(5/2)) with wss= ws, and the degenerate single-particle states having the same value
of Nu constitute a major shell. From the volume conservation condition @} ws=w.’,
where wo is the frequency of the spherical oscillator, we obtain wsn=0.63 wo when w.
=2ws, which is about 4.8MeV /% for N=Z=80. Let us consider a closed-shell
configuration in which all single-particle states are completely filled up to the major
shell with (Nsn)max=Ne. The expectation values <21:(#+)x)0, etc. with respect to the
closed-shell configuration are calculated in the Appendix and given by (A-11).
Inserting these expressions in Eq. (3-1) we find that the equilibrium condition is in fact
fulfilled at w.=2ws; when Nr is odd.. Namely, the quadrupole shape with the axis
ratio 2:1 is selfconsistent for the closed-shell configuration with odd-Ns. On the other
hand, we obtain
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w, (B(rg),),
“ o (2(mrg),),

when Nr is even. Namely, the equilibrium deformations for such closed-shell
configuration somewhat deviate from the 2:1 shape. Accordingly, the single-particle
energies belonging to the same N shell somewhat split in this case, although the
superdeformed shell structure remains and is well characterized by the shell quantum
number Nsp.

The difference in equilibrium deformation noted above is related with the super-
shell structure discussed by Bohr and Mottelson,'® and recently by Nazarewicz et al.'¥
(see also Refs. 15) and 16)). Namely, we can rewrite the shell quantum number Nsn
as

Ne?+6No+6 |
N+ 6Ne+12 3-3)

=2

Neo=2n+p (#=0,1,2, ) (3-4)

with p=0 or 1, and regard the shell structure in the case w.=2ws as consisting of two
kinds of spherical harmonic oscillator with the same frequency 2ws but with different
“internal” quantum number p. When Nk is odd, both families (p=0 and 1) are evenly
occupied. In contrast, when Nr is even, one more major shell is filled in the p=0 '
family in comparison with the p=1 family. The magic numbers (4, 16, 40, 80, ---)
belong to the odd-Nr case, while (2, 10, 28, 60, ---) to the even-Nr case (these numbers
are multiplied by factor 2 taking the spin degree of freedom into account).

The partial sums of particle-hole strengths S(JE;3K) appearing in the RPA
dispersion equations (2+3), as well as the force-strengths xsx given by (2+5), can be
~ analytically evaluated for the closed-shell configurations. When Nr is odd, using the
relation w,=2ws we obtain the following equations determining the RPA frequency o
for the octupole vibrations with K=0,1,2 and 3:

2
40N+ 6N+ 10)=12(Ne — )N+ 52—

2
+5(3N:2+18Ne+ 23)%53%"17

. 2
+15(Ne2+6Ne+17) 5 10ws (3-5a)

Sws— w®

for the K=0 mode,

2
40N+ 6 Ne+11)=2(1LNG?+ 66Ne —37) e —

2 ‘ 8(()32
+16(N+6Ne+13) 7 7
126032

23N+ 18Ne +59) 55

"(3-5b)

for the K=1 mode,
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2
40( N2+ 6Ne+13)=10(Np— 1)(Ne+T)—22

ws'— &*

2 6‘0)32
+5(3N2+18N:+ 19)9»—0)32_—0)2

106()32

+25(Ne*+ 6N+ 17)m

(3:5¢)

for the K=2 mode,

) 2
40N+ 6N+ 13)=30(Ne— DN+ Ty

2 - 12w8° .
+10(3Ne*+18Ne +59) 55 (3-5d)

0 — @*
for the K=3 mode.

Obviously, each term on the r.h.s. represents the contributions from the particle-hole
configurations with the following excitation energies:

K=0 and 2; %hws, 3hws and 5has,
K=1;, 2hws 4hws and 6%ws,
K=3; 2hws and 67Zws. (3+6)

These are obtained by putting w,=2ws; in expression (A-9).

When Nr is even, the degeneracy of the single-particle energies in the major shell
is slightly lifted so that the RPA dispersion equation becomes more complicated.
Finally, we note that Egs. (3-5a)~(3+5d) possess the w=0 solutions, except for the
K=1 case, in the limit Ny— 0.

§4. Energy-weighted sum-rule values

Let us evaluate the energy-weighted sum-rule values

: S(o“)zg(En—Eo>|<nlO|0>|2=%<o|[O*, [H, O1li0> (4-1)
for the operator O=14-1(Qsx)» or 2x(Q%x)x, where |0> and |#> denote the ground
state and the excited states, respectively, and where Eo and E, their energies. Asis
well known, the RPA approximation conserves these sum rules. Replacing |0> with
the unperturbed ground state and assuming that its density distribution o(x) depends
only on the radial coordinate »” defined in terms of the doubly-stretched coordinates,
we can corisiderably simplify the expressions for S. Rigorously speaking, o(x) is not
isotropic even in the doubly-stretched coordinates and, accordingly, the expectation
values <(#*P5)">0 and <(#*P.)">¢ in Eq. (2-5) are not zero. However, their magnitudes
are of the order Ny 2 in comparison with the main term <»”*> so that we expect that
the above assumption holds in a good approximation.

‘Under thé approximation mentioned above, the energy-weighted sum-rule values
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'S”(3K) for the doubly-stretched octupole operators Qix are given in the axially-
symmetric deformed harmonic-oscillator-potential model as follows:

S”(30)=%{ < )+2< >}< ",
() o 2o
sr=H() o 2 e

5”(33)= ( o ) <ry, \ ' (4-2)

in units of (21%?/8xM). In the same way, the sum-rule values S(3K) for the ordinary
octupole operators §sx are given as

som=2p{2) 2o
o) 224
sn-3 ) () (2o

S@)=(-2) <rtn, - (4-3)

ko

in ‘units of (21%2/87xM), where the quantity <»”* is used for convenience of compari-
son with Eq. (4:2). When w,=2ws, their ratios for different K values are given by

S”(30): S”(31): S”(32): S”(33)=11:12:15:20,
S(30) : S(31): S5(32): S(33)=50:39:15:5. , (4-4)

We thus find an interesting property. Namely, the sum-rule values for the doubly-
stretched operators are larger for larger values of K, while those for the ordinary
octupole operators are larger for smaller values of K. This dependence on K
apparently stems from the large equilibrium deformation and is very strong: In fact,
we see that S(30) is ten times larger than S(33). Note also that S(32)=S"(32).

The matrix elements of the doubly-stretched operators are related to the ampli-
tudes of the RPA vibrations, while those of the ordinary octupole operators to the E3
transition strengths. Therefore, the above ratios indicate that the E3 transition
strengths may be considerably shifted to the octupole modes with lower values of K,
although the vibrational amplitudes of the modes with larger values of K may be
large.

§ 5. Octupole vibrations in dbubly-closed-shell
configurations with w, *2w; at wro:=0

In this section, we discuss the properties of the RPA solutions for octupole
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Fig. 1. (a) RPA octupole strength functions calculated at the doubly-closed-shell configurations with
N=Z7=80. The strengths [<#|Qsx|0>|* for the doubly-stretched octupole operators @4 are indicat-
ed by striped bars, while {<#|Q:«|0>|? for the ordinary octupole operators Q:x by open bars. The
unit is b’=(7%/Mwo).

(b) Unperturbed strength functions for the doubly-stretched octupole operators at the
doubly-closed-shell configuration with N=2Z=80. Compare with (a).

vibrations created on the doubly-closed-shell configurations with w,~2w; at wret=0.
In the following, we explicitly take into account the proton and neutron degrees of
freedom. Also, the degeneracy of the. single-particle states is multiplied by two
considering the spin-degree of freedom. Since, these extensions are stralghtforward
we shall not write down the resulting expressions.

Figure 1(a) shows the RPA octupole strength functions calculated at the doubly-
closed-shell configuration with the proton number Z=80 and the neutron number
N =80 (which belongs to the odd-Nr case). For reference, we also show the unpertur-
bed strength functions (obtained by setting xsx —0) in Fig. 1(b). As is expected from the
structure of the RPA dispersion equations (3-5a)~(3-5d) we obtain low-frequency,

“strongly collective octupole vibrations with K=0 and 2. Their excitation energies
are lowered to about 409 of the unperturbed particle-hole energy Zws. If we measure
the collectivity by the octupole strength [<#|@Q:x|0>|?, we find that it amounts to about
380 W.u. for the K=0 octupole vibration. Here, it is important to note that the
octupole strengths take considerably different values whether they are measured in
terms of the ordinary octupole operators &s:x or the doubly-stretched operators Qix.
Thus, the octupole strength [<#]Qs3|0>|? for the K =3 vibration is the smallest, although
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Fig. 2. Fractions of the energy-weighted sum-rule
values carried by individual octupole modes,
calculated at the doubly-closed-shell configura-
tions with N=Z=80.
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the doubly-stretched strength [<7|Q3|0>?
is the largest, among the octupole vibra-
tions with K=0,1, 2 and 3. By the same
reason, the octupole strength for K=0is
much stronger than that for K=2,
although the doubly-stretched strengths
are approximately the same for K=0
and 2. As shown in Fig. 2, these low-
lying modes carry about 20% of the

' energy-weighted sum-rule values.

Next, let us discuss the dependence
of the properties of the octupole vibra-
tions on the maximum number Nr of the
shell-quantum number Ns. (characteriz-
ing the closed shells). Figure 3 shows
the excitation energies of the lowest
octupole vibrations for individual K,
calculated at the doubly-closed-shell
configurations with N=2=186, 28, 40, 60,
80, 110, 140 and 182 (which corresponds,
respectively, to Ne=3, 4, -+, 10). We see
that they exhibit a saw-tooth behavior,
except for K =2, reflecting whether Nris
even or odd; i.e., their energies are lower-
ed when Ng is even in comparison with
the odd-Nr cases. This indicates that

the closed-shell configurations with even-Nr are softer against the octupole deforma-
tions than those with odd-Nr. The difference between the even-Nr and the odd-Nr
cases is clearly seen also in Fig. 4 which displays the strength functions for the
doubly-stretched octupole operators calculated at the doubly-closed shell

1.251
1.00 b
0.75 F

0.50

Excitation Energy [fws]

0.25 F

T T T T

6

7 8 - 10

0

NFr

Fig. 3. Dependence on N:(of the closed-shells) of the RPA excitation energies. of the lowest octupole
vibrations with =0, 1,2 and 3, created on the doubly-closed-shell configurations with N=2.

The energies are plotted in units of Zws.
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Fig. 4. The strengths [<#|Qix|0>|* carried by the lowest octupole vibrations with K=0,1,2 and 3,
calculated in the RPA at various doubly-closed-shell configurations with Nr=4, 5, ---,9. The unit
is (7 /Mwo)®. The excitation energies are measured in units of A ws. :

configurations with Ny=4,5, ---, 9.

§6. Octupole vibrations in doubly-closed-shell
configurations with w,.~2w; at finite ot

In this section, we discuss how the properties of the RPA solutions presented in
§ 5 are modified when wrot#0. For this purpose, we replace the single-particle part
huo in the total Hamiltonian (2-2) with the rotating harmonic-oscillator model
‘Hamiltonian %'so defined by
A
h/HO:hHO_CUrotkgl{[l}k , (6'1)
where /1= x2ps— x3p. denotes the component of the orbital angular momentum along
the first axis (which is taken as the rotation axis). At finite wro, the octupole
vibrations with different K values couple with each other due to the Coriolis effects.
Thus, instead of Eq. (2-3), we obtain coupled RPA dispersion equations. Although
the K is no longer the good quantum number, the octupole vibrations can still be
classified by the signature quantum number »==*1 which represents the symmetry
property with respect to the rotation 180° about the 1st axis (see the Appendix). We
have numerically solved the coupled RPA equation for each signature sector.
Figure 5 shows eigenvalues of Ao with w.=2ws as functions of wre: (here the
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wm/ws
Fig. 5. Eigenvalues of the rotating harmonic-oscillator Hamiltonian %ho with w,=2ws, plotted as
functions of @ret/ws and in units of 2ws. Only eigenvalues belonging to the major shells with Nz,
=7~10 are shown.
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Fig. 6. Excitation energies (in units of Zws) of the low-frequency octupole vibrations, plotted as
functions of wrot/ws. The solid (dotted) lines indicate the solutions for the negative (positive)
signature sector. The symbols like “K=2" indicate the main components of the solutions,
although the K are mixed in every solution. These are obtained by solving the coupled RPA
dispersion equations for the doubly-closed-shell configurations with @,=2ws and with N=2=80.

ANosc=2 terms of the Coriolis force are neglected). We see that the major shell
structure at w, =2ws is not destroyed in the range wrot £0.25 w3 in spite of the Coriolis
effects. Here, we should keep in mind the limitation of the harmonic-oscillator-
potential model under consideration where the special effects of the unique-parity
orbits like jis;2 are not properly taken into account. It is known that such special
orbits sensitively respond to the increase of wror in realistic situations.

Figure 6 displays excitation energies of the low-frequency octupole vibrations as
functions of wrot, which are obtained by solving the coupled RPA dispersion equations
for the doubly-closed shell configurations with w,=2ws; and with N=Z=80(odd- V¢
case). Here the negative (positive) signature solutions are shown by solid (dotted)
. lines. We see that the signature-splittings (differences in energy between signature-
partners), which are caused by the Coriolis effects, are rather small. It is interesting
to note that there occurs a pseudo-level crossing between the lowest two solutions in
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|<n|Qsx |0>|[(/ Muwo)*? the negative-signature sector at a_bout
" y ) '(r wrot 0.1 ws. As a result, the main K
component of the lowest-energy solution
changes from K=0 to K=2 after the
pseudo-level crossing. This is clearly
seen in Fig. 7 which shows the octupole
strengths [<#|Q5x|0>| for the lowest three
modes. This figure also indicates that
the K-mixing due to the Coriolis force
becomes increasingly important with
increasing wrot. In particular, we see
that the K=3 components rapidly
increase in the modes whose main com-
ponents are K=2, in accordance with
 the fact that the doubly-stretched
octupole matrix elements with K =3 are
large.
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20.0 ¢ P collective, low-frequency K =1 octupole
10.0 t K=l ] vibration will emerge in open-shell
' s [ e configurations having finite pairing gaps
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Fig. 7. Doubly-stretched octupole strengths  can create (annihilate) two quanta along
[<7|Qix]0>] in units of (%/Mwe)** for the lowest the 3rd axis decreasing (increasing) at
two octupole modes with negative signature the same time one quantum along the
((a) and (b)) and the lowest positive-signature . . . .
mode (c), whose excitation energies are dis- axis perpenfilcular to 1t (,S€e_ (A+5b) in
played in Fig. 6. the Appendix). The excitation energy

: of these transitions, 2Zws—hwy, is zero

when w,=2ws meaning that they correspond to transitions within the same major
shell. Such excitations are forbidden at the closed-shell configurations because of the
Pauli principle. When several particles (holes) exist outside (inside) the closed shells,
however, this type of excitations is allowed. Thus, we expect that such zero-
frequency excitations will generate a new type of collective excitations in open-shell
configurations. It may be worthy of emphasizing here that the degeneracy of the
single-particle states with positive and negative parities within the same major shell
is one of the important characteristics of the harmonic-oscillator potential with the
axis ratio 2:1. '

In open-shell configurations, the pairing correlations among valence particles (or
holes) will play important roles. Thus, we expect that the K=1 collective octupole
vibrations (suggested to arise from the zero-frequency excitations) are analogous to
the familiar low-frequency quadrupole vibrations about the spherical shape whose
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properties are strongly affected by the pairing correlations. ,
To examine the possibility mentioned above, we introduce the ordinary pairing
force acting among the valence particles and treat it with the BCS approximation.
The procedure to obtain the quasiparticle RPA equations is standard so that we shall
not write down the resulting expressions. We here assume that w. /ws=2 for simplic-
ity, although the ratio for the equilibrium deformation may be slightly smaller than
2. We also use the force strength ysx determined at the doubly-closed shell.
Figure 8 shows a typical result of the quasiparticle RPA calculation. - Here the
open-shell configurations (outside the magic number 80) with Z=80+2 and N=80
+ Nvai are considered, and the excitation energies at wrt=0 of the lowest octupole
vibrations for every K value are plotted as functions of the number of valence
neutrons Nvai. It is clearly seen that the excitation energy of the K=1 mode drasti-
cally decreases with increasing Nva, while those for the K=0 and 2 modes are
approximately constant. This trend is just expected and is easily understood from
the fact that the K=1 mode is generated from the correlations among the valence
particles while the K =0 and 2 modes are created from the particle-hole excitations
across the closed shells. The properties of the K=1 mode are sensitive to the
magnitude of the pairing gap 4. For example, when the pairing force G is decreased
by 10% in the calculation, their excitation energies are lowered (compare Case (b)
with Case (a) in Fig. 8) and we obtain an imaginary RPA solution at Nvai=28 indicating
an instability toward the octupole deformation with K=1 (the “banana” shape'®).

(@) (b)
0.8} =7 I ]
206 K RN .
8 - K= —
EE ——e— K= R __K=2
04 g =" N me T ] :
7 _ — T
23] Y
0.2 | 1t _ ]
0 2 4 6 8 0 2 4 6 8
Nval Nval

Fig. 8. Excitation energies (in units of %zws) of low frequency octupole vibrations, plotted as functions
of the number of valence neutrons Nva. This quasiparticle RPA calculation was done for open-
shell configurations with Z=80+2 and N=280, 80+2, ---, 80+ 8, where 80 is the magic number (odd-
Nrcase). InCases (a) and (b), slightly different values of the pairing-force strength G are adopted.
In Case (a), the calculated proton gap 4,=0.17 and the calculated neutron gap 4.=0.0, 0.17, 0.22,
0.25 and 0.28 for Nvw=0, 2,4, 6 and 8, respectively in units of Zws. In Case (b), the corresponding
values are 4,=0.15, 4,=0.0, 0.15, 0.20, 0.23 and 0.25, respectively.
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Fig. 9. The strengths |<#|@5x[0>| carried by the lowest octupole vibrations with K =0, 1, 2 and 3 whose
excitation energies are shown in Fig. 8(a). Only the cases Nval—4 and 8 are presented in (a) and
(b), respectively.. The unit is (%/Mwo)®.

This is analogous to the well-known quadrupole instability in transitional nuclei
(between spherical and quadrupole shapes). Thus, the K=1 octupole vibrations may
be regarded as a kind of soft modes associated with the octupole instability of the
superdeformed configurations toward the “banana” shape.

Figure 9 shows the doubly-stretched octupole strengths [{#|Qik for the
octupole vibrations whose excitation energies are displayed in Fig. 8(a). We see that
the strength for the K=1 mode is large and it increases with increasing Nva indicating
the growth of its collectivity.

§8. Octupole vibration-quasiparticle couplings in odd-A systems

In this section we point out that the quasiparticle modes in open-shell odd-A
configurations may be significantly modified by the coupling effects with the soft K=1
octupole vibrations discussed in the preceding section. For simplicity, we here
consider only the case wrot=0. »

Following the conventional procedure,’® we can easily derive the coupling
Hamiltonian between the octupole vibrations and the quasiparticle modes in open-
shell odd-A configurations having finite pairing gaps 4» and 4, from the doubly-
stretched octupole interactions in Eq. (2:2). In the lowest-order approximation, it
takes the following form:

coupl an(ﬂV)(XrI +Xn)aﬂau , (8'1)
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where X, and X, represent the creation and the (time-reversed) annihilation opera-
tors of the octupole vibrations defined in the RPA, and (a}, a.) are quasiparticle
operators. The vertex functions fx(x«v) can be expressed as functions of the doubly-
stretched octupole matrix elements @Q4x(¢v) between the quasiparticle states £ and v,
the RPA transition matrix elements <#|Q%x|0>, associated with the octupole vibrations
labeled by #, and the octupole-interaction strengths ysx. It is important here to note
the selection rules of the octupole operator &sx, which is characteristic to the w, =2ws;
case under consideration. Namely, if we restrict the quasiparticle transitions (#<v)
only within a single major shell (having a definite shell-quantum number Ns»), only the
K =1 component of the octupole interactions contribute to the quasiparticle-vibration
coupling Hamiltonian Hcour. This is obvious from (A-5) and (A+9) in the Appendix.
Needless to say, such quasiparticle transitions are energetically favored and expected
to play major roles in determining near-yrast spectra of open-shell odd-A systems.
As was emphasized in § 7, the degeneracy of approximately the same number of
positive- and negative-parity single-particle states within the same major shell is one
of the important characteristics of the harmonic-oscillator potential with the axis
ratio 2:1. Therefore, there are many transitions (within the same major shell)
connecting the quasiparticle states. ¢ and v having parities opposite to each other.

According to the above consideration, let us discuss the coupling effects between
the soft K=1 octupole vibrations and the quasiparticles. We diagonalize the total
Hamiltonian

ﬂz%}E#al aut D0 X Xnt Heou (8-2)

regarding the K=1 vibrations as boson modes independent of quasiparticles and
restricting the sum with respect to # within one major shell. (At wr=0, it is
convenient to classify the K =1 vibrations by K==1 instead of the signature »==*1.
In this section, we adopt this convention.) We consider up to the double-vibrational
excitations. Then, the eigenstates of 4 can be written as

: |¢>=§ Co( ) al|0>+ X Ci(vn)al X110>

o 1

+2 2 Gva'n )m
We note here that these states have definite K values. Thus, sums of the 3rd
components of the quasiparticle and vibrational angular momenta are conserved, i.e.,
Ap=Ny+ Ki= N+ Kp+ Ko '

We present in Fig. 10 a typical result of the calculation. In this figure, the
probabilities of the zero-, one- and two-phonon states in the eigenstate |¢)> are
displayed, together with the excitation energies of the soft K=1 octupole vibrations,
as functions of the pairing gap 4 (treating the pairing force strength G as a parame-
ter). The probabilities of the 0, 1 and 2 phonon states are defined by .| Co()f%,
S Cilun)l? and 2w Co(v'w'n”)|?, respectively. It is seen that the mixing of the
one and two phonon states in the one-quasiparticle state is significant and becomes
larger as the excitation energy Zwx-1 of the soft K=1 octupole vibration decreases.

at X Xob

0> . (8-3)
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Fig. 10. (a) Dependence on the pairing gap 4 of the probabilities of the zero-, one- and two-phonon
states in the eigenstates of the total Hamiltonian X. They are shown by solid, broken and dotted
lines, respectively. This is a result of calculation for an odd-A system consisting of the even-even
core having 4 valence protons and 4 valence neutrons and the odd-quasiparticle in the Ne» =38 shell
outside the N=7=80 closed shell.

(b) Dependence on the pairing gap 4 of the excitation energy of the soft K=1 octupole
vibration, which is calculated by the RPA for the N=Z=84 system treating the pairing gap
AM=4d,=4,) as a parameter. An instability occurs at about 4%0.17 in units of Zws.

Thus, the probability of the one-quasiparticle state becomes less than 50% when
hoxk-1<02%hws(=1MeV). This indicates that the properties of the one-quasiparticle
modes in open-shell odd-A systems will be greatly modified by the coupling effects of
the soft K=1 octupole vibrations. = The mixing probabilities are sensitive to the
magnitude of the pairing gap 4 because the excitation energy Zwx-1 strongly depends
on it. From this result, we suggest that the properties of the near-yrast spectra of
open-shell odd-A superdeformed nuclei will be sensitive to the subtle interplay
between the pairing correlations and the octupole correlations. Of course we should
expect that this interplay strongly depends on details of the realistic superdeformed
shell structure which are not taken into account in the harmonic-oscillator-potential
model under consideration.
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§9. Concluding remarks

Main results obtained in this work for the harmonic-oscillator-potential model
may be summarized as follows:

1) At the closed-shell configuration of the superdeformed shell structure, the equilib-
rium deformation determined by the selfconsistency condition exactly satisfies the
relation w./ws=2 at wroe=0 when the shell-quantum number N, of the uppermost
filled major shell, Vg, is odd. On the other hand, the ratio w. /ws is slightly smaller
than 2 when Nr is even (§ 3).

2) The energy-weighted sum rules for the ordinary octupole operators §@sx and those
for the doubly-stretched operators @Qsx possess quite different K-dependence: The
former becomes larger for smaller K, while the latter takes larger values for
larger K (§ 4).

3) We obtain strongly collective, low-frequency octupole vibrations with K=0 and
2 at the doubly-closed-shell configurations with w.=2ws (§ 5).

4) Excitation energies of the K =0 octupole vibrations exhibit a saw-tooth behavior
depending on whether Nr is even or odd: They are lower in the even-Nr case
compared to the odd-Nr case (§ 5).

'_ 5) Due to the Coriolis effects mixing octupole vibrations with different K, we obtain
at wrae=0.1ws a pseudo-crossing between the lowest two octupole vibrations with
negative signature, whose main components are K=0 and 2 (§ 6).

6) We obtain soft octupole vibrational modes (the “banana” modes) generated by the
K=1 octupole correlations among the valence nucleons in open-shell
configurations with @, ~2w; (§ 7).

7). Couplings between the soft K=1 octupole vibrations and the quasiparticles in
open-shell odd-A configurations with w,~2w; are strong. ~ The coupling effects as
well as the properties of the K =1 modes are qulte sensitive to the pairing correla-
tions (§ 8).

Concerning point 7) above, we note that experimental data suggesting octupole
effects have recently been reported for the superdeformed states in '*Hg.!” We are
making realistic calculations for the octupole vibration-quasiparticle coupling effects
in superdeformed, superconducting odd-A nucle1 including ®*Hg, and the result will be
reported in a forthcoming paper.

Quite recently, it has been pointed out by Nazarewicz et al.'"'® that the octupole
softness of the superdeformed states significantly depends on whether Nr is even or
odd, and that it is related to the dynamical symmetry of the rational harmonic-
oscillator potential. Their argument is consistent with our result mentioned as point
4) above. Nazarewicz' has furthermore shown that the closed-shell configurations
with even-Nr become unstable against the octupole deformations with =0, 1 and 3,
if we extract only the shell-structure energy from the harmonic-oscillator-potential
model and combine it with the macroscopic energy (described by the liquid-drop
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model) by means of the Strutinsky procedure. Octupole instability of the
superdeformed states, their relations to the supershell structure, and to the dynamical
symmetry of rational harmonic oscillators are certainly very interesting open ques-
tions for the future.

Acknowledgements

One of the authors (K. M.) would like to thank Professor W. Nazarewicz for
valuable discussions on octupole instability of superdeformed bands, especially for his
suggestion of its possible relation to dynamical symmetries of rational harmonic
oscillators. He also wishes to acknowledge stimulating discussions concerning
microscopic structures of superdeformed states with Professors R. R. Chasman, D. H.
Feng, J. Garrett, A. Klein, E. R. Marshalek and C. -L. Wu. This work was done as a
part of the cooperative study with Dr. Y. R. Shimizu and we are indebted to him for
his active participation in it. The computer calculation for this work has been
financially supported in part by Research Center for Nuclear Physics, Osaka Univer-
sity.

Appendix

Let us consider the axially symmetric case with wi=w:=w, and introduce the
creation and annihilation operators of the harmonic-oscillator quanta by*®

2 .
n=(=i)fgpel=c),  m=y el + ),
2 ' .
Xo=,/ Zﬁwl(cg—%@), p2=1i jl—ﬂgw—*(c;—@),

2 .
2s=(—1),/ ZZthg(cg_cs)’ ba= hﬂgm(c:%Lcs). (A-1)

Let us also define

cizi%(cf?c{) and ci=$%(01¢02). (A-2)

In terms of these operators, the axially-symmetric deformed harmonic-oscillator
Hamiltonian is written as-

hﬂo:él{hau(fh-*- ﬁ_+1)+ha)3<ﬁ3+%>}k ) (A-3) _
where 7.=clcs and 73=cd cs.

Expectation values of Zmo depend only on Nese=#:11+#n2+#s and #s, where u:
denote the numbers of oscillator quanta along the 7 axis. For a given set of (Nosc, #3);
there are degenerate states having different values of projection / of the orbital
angular momentum on the symmetry axis. As is well known, the /A is given by
A={#+—#-> and takes the following values:
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A=%n,, £(n,—2),,+1or 0, (A-4)

where n, =1+ 2.
The octupole operators Qsx=7"Ysx are written in terms of the creation and
annihilation operators of the oscillator quanta as follows:

_ T B\ f At a1 §o ot
Q=1 39 0d {3fscicicd +(fici®—3fsciclics)

+3(A(+ 7+ + 7-)— fifiz)cd } +(Hermite conjugate) , (A-5a)

_ (21 7 12 t2 % t .32
Q=1 64 o {(fact’ X +2facicd

+(AQ+ 7, +27)—2/(14273)cl +2fc8 "¢}
—(Hermite conjugate with the replacement ci<—c-), - (A-5b)

3 1/2
Q32= Z<%MZL7G)03> fs(ClZCQ‘ - Cl263+2cl Csir C—)

+(Hermite conjugate with the replacement c+<c_), (A-5¢)

Q33=Z<2—27u*%> Alcl+3ctc.)

—(Hermite conjugate with the replacement ci<—c-). - (A-5d)

Here the coefficients £, f2, f5, f+ are defined as-

f1:<w03>1/2, f2:< o >1/2, f3=< w032>1/2, f4=< w02>1/2. (A-6)

w5 wiwy W3 o

The octupole operators can be classified according to the signature quantum
number 7 with respect to the rotation 180° about the st axis, as well as the familiar
K quantum number: Namely, the octupole operators which have the signature » ==1
are defined by

Q§§)=1/ —2*(1_&—81{0)1’3( Yox F Yak) . (A7)

For convenience, we write here their explicit expressions in terms of the Cartesian
coordinates:

Q= (--7 >1/22(222 —3x2—3y%)
167 ’

1/2
Qs =— <—32217T > (42— x*—y?),

172

Qi =— z(%;) y(422—2*—y?),

~f 105 172
(F)— =2
32 Z( 16 > nyz 5
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1/2
;g;):(_ll%) z2(x* %),

‘ 1/2
Q= (1) ala*=35),

’ 1/2
QB =— Z<~332%> y(3x*—3?), : (A-8)

where (x, v, 2)=(x1, 2, x3). Note that there is no »=+1 operator for K=0.
From the above expressions (A-5)~(A-8), we see that each octupole operator can
create particle-hole excitations with the following energies:

Q5); hws, 2hwy—hws, 3hws and 2w thos,

QSP; 2hws—hwy, how,, 2hws+hw. and 3hw.,

Q52 hws, 2hw,—hws and 2hw.+hos,

Q4 ho, and 3hw. . (A-9)

Using the above expressions and employing the technique developed by
Sakamoto and Kishimoto,® we can easily evaluate the partial sums X(4E; 3K)
appearing in the RPA dispersion equation (2-3): They are given in terms of the
expectation values of the operators s, 7z, 75, Az, fi+7i- and 737+ (see Eqs. (B+30)
~(B-33) of the first paper of Ref. 9)).

Below, we consider the special case w.=2ws, where the eigenstates of Zno having
the same shell quantum number New=2#,+#s are degenerate and constitute a major
shell. The sums of expectation values of the operators #s, %, etc. with respect to the
single-particle states belonging to a major shell (having a definite value of New=2#n
+p) are given as follows:

D=y +D(n+2),

(Ao un—g (n+D(n+2)@n+3p),

(A na=pn(n+Dn+2),

(A= D+ 22l +1)+ 50 +3))
(A =an(n+ 1A (n+2),

(L Sna=ag(n—Du(n+1D(n+2),

<ﬁ+ﬁs)NShz—i%n(n-l-1)(n+2)(n—1+2p). (=0 or 1) (A-10)

Summing up the above expressions, we obtain the expectation values with respect to
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the closed-shell configurations where the major shells are filled up to (Nsn)max=Nr=22
+

<1>NF=%(n+1)(n+2)(2n+3+3p) ,'
<ﬁ3>NF=%(n+1)(n+2){n(n+2)+p(2n+3)}, |

(A m=ign(ntD(n+2)(n+1+2p),

(A= (ot D 2)(n(dn+ 130+ 8)+5p(2n+ 60+ 3))
<ﬁ+2$NF:%n(n—F1)(n+2){2n2+4n+4+5p(n+1)} ,

A Sn= s (n—Dn(n+1)(n+2)(2n+1+5p),

<ﬁ+ﬁa)wFZ%On(n—F1)(n+2){4n2+3n—7+10p(n+1)}. (p=00r1) (A-11)
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We show that the closed-shell configurations in the axially-symmetric harmonic-oscillator poten-
tial with the frequency ratio w,/w.=2 are unstable against octupole deformation when their upper-
most shell quantum numbers NE are even, whereas they are stable when N& are odd, in agreement
with the recent suggestion by Nazarewicz and Dobaczewski. We also suggest a possible relationship
between the octupole instability of the superdeformed shape and the supershell effect in reflection-
asymmetric superdeformed potentials.

In recent years, octupole instability of some superdeformed nuclei has been
suggested in shell-structure energy calculations by means of the Strutinsky me-
thod.”"® Concerning the physical condition for the occurrence of octupole instability,
Nazarewicz et al.”™® have discussed dynamical symmetry of the harmonic-oscillator
potential with frequencies in rational ratio, and suggested that the octupole instability
might occur for closed-shell configurations in the axially-symmetric oscillator poten-
tial with frequency ratio @./w-=2 (which we call “superdeformed oscillator” for
brevity) when the single-particle levels are filled up to the major shells with Nsn=-even,
Nen being the shell quantum number defined by Nen=2%.+n..'" The single-particle
levels in the superdeformed oscillator potential can be divided into two classes
according to whether Nu are even or odd. Each class corresponds to the single-
particle levels in a spherical oscillator potential having frequency 2wz% This dynam-
ical symmetry was previously discussed by Bengtsson et al.'” For the closed-shell
configurations whose uppermost shell-quantum number Ni&. are even, the particle
numbers belonging to two spherical oscillator potentials are unequal so that one can
expect a tendency toward a reflection-asymmetric shape under the assumption that
each spherical oscillator corresponds to a spatial cluster. Evaluating octupole sus-
ceptibility of shell-structure energy by the second-order perturbation, they have
shown™?® that the shell-energy octupole-stiffness coefficient is negative (positive)
when NZ, is even (odd). ' ‘

The purpose of this paper is twofold: Firstly, in order to examine the N&,
dependence of the octupole instability, we evaluate the shell-structure energies of the
closed-shell configurations in the superdeformed oscillator potential as functions of
octupole-deformation parameters by means of the Strutinsky method. The calcula-
tion is done such that the volume-conservation condition is rigorously fulfilled.
Secondly, we show that the supershell effect,'® which is intimately connected with the
dynamical symmetry of the superdeformed oscillator potential, becomes more pro-

"nounced when the reflection symmetry is broken by the octupole deformation term.

This result indicates that the octupole instability is related with the super-shell
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structure in reflection-asymmetric superdeformed potential.
Let us evaluate shell-structure energies for the single-particle Hamiltonian

2 _ .
h=P LMo V(1 —24sx Ta)), (K=0,1,2 or 3) M

where

& 1

Y =—r—eee
. V2(14+ 8ko)

Here Asx are octupole deformation parameters and the double primes indicate that the
quantity in parenthesis is defined in terms of the doubly-stretched coordinates 7
=(w:i/wo)x:.'® For frequencies w; along the 7 axis, we assume wr1=w:=w0., Ws=wz
and the ratio w,=2w., so that the Hamiltonian (1) reduces to the superdeformed
oscillator in the limit A3x »0. We determine the frequency wo(Asx) so that the volume
conservation condition is fulfilled at each value of Asx. Thus, '

(Yox+ Yak) . E (2)

0o Aex) = wo[z% [ao(1—2is 173,{(9))-3/2]”3 , - 3)

where @, is the value of wo at Ask=0. The reflection asymmetric term (#%Yax)” in (1)
is different in radial dependence from the (#®Y:k)” term used by Nazarewicz et al.”
As is well known, a merit of using the 7? dependence is that we can simultaneously
conserve the volumes inside equipotential surfaces defined by U(7, 2)=v for different
values of the constant v.'¥

Figure 1 shows shell-structure energies of the ground-state configurations for the

0.5 o

T~

0.4

0.3

A30

(=
™o

(=]
-

40 160

Fig. 1. Shell-structure energy FEs for the axially-symmetric but reflection-asymmetric oscillator
potential defined by (1) plotted as a function of the octupole-deformation parameter s and the
particle number N. The solid (dotted) lines are used for the area with negative (positive) values
of Esn, and their distances correspond to values of Een differing by 0.2Zw.. The spin-degeneracy
factor 2 is taken into account when counting the nucleon number N, which may be regarded as
either proton or neutron number. The same applies for all calculations in this paper.
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Hamiltonian (1) in the case K =0, which are calculated by the Strutinsky method."”
The same energies are plotted in Fig. 2 as functions of the octupole-deformation
parameter Asx for the closed-shell configurations. We can clearly see that the minima
occurs at finite values of As for N=60 and 110 which correspond to Ni=even, in
agreement with the suggestion by Nazarewicz et al.” In this figure, shell-structure
energies are plotted also for the case K#0, but we find pronounced minima only for
K=0. :
For the Hamiltonian (1), we have also calculated the quantity

C3K:2€i(2)67li(/13K:0) (4)

called “shell-energy octupole-stiffness coefficients” by Nazarewicz et al.”™® Here
on{Asx) are defined by subtracting the smoothed parts #: from the occupation

numbers #; as
Sni(Asx)=n:(Asx) — 7 Askc) ' ®)

and e;? denote the second-order term of the single-particle energies e:{4sx) expanded
in Asx as ei(Asx)=2nei™A%. The result is shown in Fig. 3. We find that this result
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Octupole Deformation Parameter Asx

Fig. 2. Shell-structure energies of the closed-shell configurations with N =60, 80, 110 and 140 (which
correspond to NE=6, 7, 8 and 9, respectively), plotted as functions of Ax with K=0 (solid lines),
K=1 (broken lines), K=2 (dotted lines) and K =3 (dotted broken lines). The unit is MeV.
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Fig. 3. Values of Csx defined by (4) and calculated for the Hamiltonian (1). Open circles (triangles)
indicate the values for the closed-shells with Ni=even (odd). The values calculated with
(without) imposing the volume-conservation condition are connected by solid (broken) lines. The
unit is Zwe. The integers beside these symbols denote the shell quantum numbers N&, specifying
the closed-shell configurations.

(where the octupole field (7* Yax)” is used) is qualitatively the same with that of Ref. 9)
for K=0 and 3, but is rather different for K=1 and 2. This indicates that the
quantity Csx may be sensitive to the chosen radial dependence of the octupole field.

It should be mentioned here that the Csx defined above is different from the
curvature d”Esn/dix of the shell energy Es at dsx=0, because the Asx dependence of
the oscillating components of the occupation. numbers, 6u., is neglected in the
definition (4). In fact, the curvatures of Es for various values of K estimated by Fig.
2 are considerably different from the Csx values displayed in Fig. 3, so that, rigorously
speaking, it is inappropriate to call Csx “shell-energy octupole-stiffness coefficients”.

Beside the minima at A320.25 and 0.2 for N=60 and 110, respectively, mentioned
above, we find in Fig. 1 other minima at Az==0.4 and 0.35 for N=62 and 112. These
minima are associated with new magic numbers 62 and 112, which arise at larger
values of s in the single-particle spectrum for the Hamiltonian (1); see Fig. 4.
Figure 5 represents, for the two cases 40=0 and 0.38, how the shell-structure energy
varies with the nucleon number N. Comparing the two cases, we find an interesting
fact: The minima at N=80 and 140 associated with the closed shells with N&=odd
decline when one goes from A»=0 to 0.38. In contrast, as mentioned above, new
minima emerge at N=62 and 112 for A=0.38 replacing the minima at N=60 and 110
associated with the closed shells with Niz=even for A3=0. It is worthy of note that
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Fig. 5. Comparison between the shell-structure

energies for the reflection-asymmetric case (a0
- =0.38) and for the reflection-symmetric case
Fig. 4. Single-particle energy diagram .in units of (420=0.0). The unit is Zws.

hwsw=hw: for the potential (1) with K=0,

plotted as a function of As. The shell quan-

. tum numbers Ns and the magic numbers »of
closed-shell configurations are indicated.

this result for the simple Hamiltonian (1) agrees qualitatively with the result of
realistic calculation by Hdéller and Aberg,“’ where the Nilsson potential is used.
From the shell-energy calculations presented above, we expect that the closed-
shell configurations for the superdeformed oscillator potential are unstable against
the doubly-stretched octupole deformation (#?* Ys)” when Né&.=even, whereas they are
stable when N&=odd. This odd-even effect in N& may be intimately connected with
the “supershell effect” (a modulation of the shell structure that arises from the
interference between different periodic orbits) known in the semiclassical theory of
shell structure.*®'®~1” + In the case of the superdeformed oscillator potential, it arises
from the interference between three-dimensional classical orbits with the period 2275
and the planar orbits in the (z, y) plane with the period (2#—1) To, To being 27/w., (#
=1,2,---). Figure 6 shows the oscillating components of the single-particle level
density calculated for the Hamiltonian (1) by using a smoothing method of Ref. 14).
For A0=0, we can indeed see a beating pattern due to the interference between the
oscillations with frequencies Zw: and Zw,=2%w., although it is rather weak. For the
reflection-asymmetric case with A35=0.38, however, we find that the beating pattern
becomes much more significant compared to the reflection-symmetric case (Ase=0).
Evidently, the deep minima at N=62 and 112 in the shell-energy diagram of Fig. 5
correspond to the pronounced minima at e¢=x9 and 1l%w: of the oscillating level
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density for A=0.38. This result sug-
gests that the octupole instability of the
superdeformed shape is related with en-
hancement of the supershell effect as-
sociated with the breaking of reflection
symmetry. It is an interesting open
problem to clarify the origin of the
supershell structure in reflection-
asymmetric superdeformed potentials
and to know how its effect varies with
the magnitude of the octupole deforma-
tion. For this aim, we are currently
investigating stabilities of the classical
periodic orbits for the Hamiltonian (1),'®
and the result will be reported in future.
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A particle-vibration coupling calculation based on the RPA and the cranked shell model has been
carried out for superdeformed rotational bands in "*Hg. The result suggests that properties of
single-particle motions in superdeformed nuclei may be significantly affected by coupling effects with
low-frequency octupole vibrational modes, especially by the lowest K =2 octupole mode.

Since the shell structure of superdeformed nuclei is drastically different from that
of ordinary deformed nuclei, we expect that new kinds of nuclear surface vibrational
mode emerge above the superdeformed yrast states. In fact, the RPA calculation in
the uniformly rotating frame, with the use of the single-particle states obtained by the
cranked Nilsson-Strutinsky-BCS procedure, has indicated that we can expect highly
collective, low- frequency octupole vibrational modes (with K=0, 1, 2 and 3) about the
superdeformed equilibrium shape.»® Importance of the octupole correlations in
superdeformed high-spin states has been discussed also in Refs. 3)~13). The main
reason why the octupole is more favorable than the quadrupole is that each major
shell consists of about equal numbers of positive- and negative-parity single-particle
levels which are approximately degenerate in energy at the superdeformed shape.

Existence of low-frequency octupole modes would imply that quasiparticle modes
of motion in superdeformed nuclei might be significantly affected by the coupling
effects with these vibrational modes. In this paper, we report some results of theoret-
ical calculation which indicate the importance of such particle-vibration coupling
effects to understand the properties of Landau-Zener band-crossing phenomena recent-
ly observed in '**Hg.'¥

We solve the RPA equations for the Hamiltonian

H=h— 5ok Q¥ Qi ()

where 7 is a cranked single-particle Hamiltonian of the Nilsson-plus-BCS type,
h/:hNilsson_AZ(C;rC}+C?Ci)_/uv_Cl)rotjz , (2)
and @ik =(7*Yak)" are the doubly-stretched octupole operators.”® We determine the
equilibrium quadrupole deformation by means of the Strutinsky method and use a
large configuration space composed of 9 major shells (for both protons and neutrons)
when solving the coupled RPA dispersion equations. The octupole-force strengths
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Zsx can be determined by the selfconsistency condition between the density distribu-
tion and the single-particle potential for the case of harmonic-oscillator potential.’®
However, the problem how to generalize this method to a more general single-particle
potential like Eq. (2) is not solved. Therefore, in this paper, we put xsx =F xix, wWhere
238 are the theoretical values' for the harmonic-oscillator potential, and regard f as
a phenomenological parameter as well as the pairing gap 4.

Figure 1 shows an example of the octupole strengths calculated at w::=0 for the
superdeformed 'Hg. We see that the collectivity is highest for the K=2 octupole
mode. Figure 2 represents how the octupole strength distribution changes at a finite
value of the rotational frequency wro. In this figure, we can clearly see the K -mixing
effects due to the Coriolis force; for instance, considerable mixing among the K=0, 1
and 2 components is seen for the RPA eigenmode with excitation energy Zw=1.04
MeV.

Starting from the microscopic Hamiltonian (1) and using the standard procedure,'®
we can derive the following effective Hamiltonian describing systems composed of
quasiparticle @} and octupole vibrations X,

j[ng,ud; CZ#"_E}I]hwnXJXn_i_;gfn(ﬂy)(XJ +Xn)d;1;au (3)

and we diagonalize it within the subspace {al|0>, alX/[0>}. The resulting state
vectors can be written as

|¢>=g co(ﬂ)a;|0>+zn:zu: Cilvm)al X10> . : (4)

Recently, experimental data suggesting octupole correlations in superdeformed
states have been reported by Cullen et al.'® for ®*Hg. Figure 3 shows a result of

Mu)® —
[(h(/i M )§| Wrot=0

K=2 K=

5000 - 9.1 227 i

4000 - K=3 E
K=1

3000 - 2.1 .
105

2000

1000

T
1

0.0 0.5 1.0 . 1.5 2.0
Ex [MeV]

Fig. 1. Octupole strengths [<#|(#* Yax)"|0>]? calculated for the superdeformed states of **Hg at wre=0.
Note that positive- and negative-signature states are completely degenerate at wra=0 (for peaks
with K=1,2 and 3). The deformation parameter 8ssc=0.43, the neutron gap 4.=0.7 MeV, the
proton gap 4,=0.7 MeV and the doubly-stretched octupole interaction strengths xsx=1.08 1%, xR
being the selfconsistent values for the harmonic-oscillator potential, are used. The numbers
written beside the main peaks indicate the strengths for the E3 operators measured in Weisskopf
units.
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Fig. 2. The same as Fig. 1 but for wr«=0.25 MeV/%. Note that, for example, the RPA eigenstate at
Ex=1.04 MeV has significant strengths for three components with X=0, 1 and 2.

calculation for excitation spectra in the rotating frame of this nucleus. By compar-
ing the conventional quasiparticle energy diagram (Fig. 3(a)) with the result of
diagonalization of % (Fig. 3(b)), we can clearly identify effects of the octupole
vibrations: Energy shifts defs of 50~ 300 keV due to the coupling effects are seen. In
particular, we note that the Landau-Zener crossing frequency wecross between band 1
(whose main component is the [512]5/2 quasiparticle state) and band 4 (associated
with the [761]3/2 quasiparticle) is considerably delayed. Namely, we obtain @eross
~0.26 MeV /7% in agreement with the experimental value' w&&s~0.27 MeV /7%, where-
as Weross=0.17 MeV /% if the octupole-vibrational effects are neglected. The reason
for this delay is understood by examining the properties of the quasiparticle-vibration
couplings in **Hg, which will be done below.

The amplitudes Co(y), Ci(vm) obtained by diagonalizing the effective
Hamiltonian 4 are displayed in Fig. 4 as functions of the rotational frequency wrot.
Note that the K-quantum numbers used in this figure to label these amplitudes are
valid only in the limit wrot—0, because the K-mixing effects due to the Coriolis force
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Fig. 3. (a) Quasiparticle energy diagram for neutrons with signature a=—1/2 in **Hg, plotted as a
function of wrot. (b) The same as (a) but the energy shifts dei, due to the coupling effects with
the octupole vibrations are included. Parameters used in the calculation are the same as in Figs.
1 and 2. Notations like [512]5/2 indicate the main components of the wave functions. )

are taken into account. It is seen that the main components of bands 1 and 4 are
exchanged with each other at wrt~0.26 MeV /7 indicating the Landau-Zener crossing
phenomena between the [512]5/2 and the [761]3/2 quasiparticle states. In this figure,
we also see that the mixing of the states composed of the [624]9/2 quasiparticle and
the K=2 octupole vibration is significant in band 1. Note that there are two such
states; [[624]9/2(a=—1/2)Qw¥2:> and |[624]19/2[e=1/2)Qwkl.> where a denotes the
-signature quantum number and w%2: and w%2, the octupole vibrations with positive
and negative signatures, respectively, which reduce to the K=2 octupole vibration
shown in Fig. 1 in the limit wre:=0.

It is worth emphasizing that the K=2 octupole matrix element between the
[512]5/2 and the [624]9/2 Nilsson states is especially large since it satisfies one of the
asymptotic selection rules (ANsw=1, dns=1, 4/1=2) for the transitions associated with
the K=2 octupole operator. (Ns» denotes the shell quantum number, defined by Nex
=2(71+4 n2)+n3.?) Thus, these two Nilsson states are strongly coupled with each
other due to the K=2 octupole correlation. This property is seen also in the single-
neutron energy diagram plotted as a function of the K=2 octupole deformation
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Fig. 4. Amplitudes |Co(z2)] and |Ci{vx)]| in the wave function defined by Eq. (4), plotted as functions of
wro. The full lines are used for the one-quasiparticle amplitudes, while the broken (dotted) lines
for the amplitudes involving the octupole vibrations with positive (negative) signature. (a), (b),
(c) and (d) respectively show the results of calculation for bands 1, 2, 2" and 4. The main
component of band 2 is the [624]9/2(a=1/2) quasiparticle state. The observed band 2 was
suggested in Ref.. 14) that it could actually be two bands with identical y-ray energies consisting
of the [624]9/2(¢=1/2) band and the [512]5/2(@=1/2) band. The latter band, which is the
signature partner of band 1, is denoted here by band 2”. The parameters used in the calculation are
the same as in Fig. 1.
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parameter Bs; in the paper by Skalski.'® 0.6 1 v T
As a result of this property, we obtain a %0-5 -
significant energy shift ded, for band 1. Zo.4f
- 2

On the other hand, the octupole vi- go.3 1

. . 3
brational effect is rather weak for band 0.2r
4. Thus, as shown in Fig. 3, the relative 0.1
excitation energy between bands 1 and4 - %)

increases, so that their crossing fre-
quency also increases.

=1.21
Next, let us discuss the alignment 7 ]
of band 4 and the interaction matrix 1a}
element Vin between bands 1 and 4, for
which experimental data are available; 1.0

0u=137% and Vig®=26keV.™® We
evaluate the alignment by i=—9E’ [0wrot

Y
using the eigenvalue E’ of the effective i
Hamiltonian (3) and choosing the region o}
of wrot where E’ linearly depends on wrot. sl —_

The interaction Vin is evaluated, as . \
usual, from the half of the shortest dis- pono iy o008
tance between the energy levels for Fig. 5. Dependence of crossing frequency weross
bands 1 and 4 in the energy diagram like between bands 1 and 4, the aligned angular
Fig. 3(b). The calculated value of the momentum of band 4 feanas, and the interaction
alignment for the [761]3 /2 quasiparticle matrix element Vin: between bands 1 and 4, on

. . the excitation energy Zo%2: of the lowest K =2
state (the main component of band 4) is octupole vibration (with negative signature)

0.0. 0.1 0.2 0.3

~cal : : cal

1*~1.8 2. This value is reduced to i calculated at wra=045MeV. The pairing
x~1.27% in good agreement with experi- gaps used are the same as in Fig. 1. The
ment, when the octupole-vibrational _ excitation energy hwk2.=0.54MeV corre-
effects are taken into account. On the sponds to the force-strengths ysx=1.08 xi%.

other hand, the interaction matrix element between the [761]3/2 quasiparticle state
and the [512]5/2 quasiparticle (the main component of band 1) is almost zero and
increases to about 5 keV due to the octupole-vibrational effects. This calculated
value of Vin is, however, too small in comparison with the experimental data.
Since we treat the doubly-stretched octupole force-strengths xsx as
phenomenological parameters in this paper, it is necessary to examine the dependence
on the force-strengths ysx, of the theoretical values for the crossing frequency weross,
the alignment Zwanas and the interaction matrix element Vin. This is done in Fig. 5.
In this figure, the calculated values of @ecross, tbanas and Vine are plotted as functions of
the excitation energy Zwk2: of the lowest K =2 octupole vibration calculated at @rot
=0.45 MeV /7, instead of plotting directly as functions of xsx. We note that Zw%2, is
a function of ysx and the force-strengths ysx=1.08 3¢ adopted in the calculations of
Figs. 1~4 correspond to the abscissa at Zw%22=~0.5 MeV in Fig. 5. It is seen from this
figure that wcress increases while 7vanas decreases when %l decreases (i.e., when the
octupole-vibrational effects become stronger), and we find that the experimental data
for @eross and ivanas are simultaneously reproduced at Zw%2.~0.5 MeV. On the other
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hand, the calculated interaction matrix element Vin is too small within a reasonable
range of Zw¥kls.

The main reason why the calculated value of Vi is small may be understood as
follows: Generally speaking, we can expect that the band-band interactions increase
due to the octupole-vibrational effects, because interactions between different
quasiparticle states through intermediate configurations composed of one-
quasiparticle and octupole vibrations become possible. However, in the specific case.
of band 4, as seen in Fig. 4, the octupole vibrational effects are rather weak because
the octupole matrix element between the [761]3/2 Nilsson state and the neighboring
Nilsson states are small. On the other hand, the octupole-vibrational effects are
indeed strong in band 1 so that the considerable mixing of the states |[624]9/2
(a=TF1/2)QRQwi:> occurs. This mixing does not, however, lead to a large interaction
Vint between bands 1 and 4, because the octupole matrix element between the [624]9/
2 and the [761]3/2 quasiparticle states remains small although the Coriolis K-mixing
effects are taken into account in our calculation at finite rotational frequency.

The interaction Vine under consideration depends also on the pairing-gap parame-
ter 4 as well as the force-strengths ysx. . We have adopted 4=0.7 MeV in Fig. 5 (cf.
we obtain 4,=0.72 MeV and 4,.=0.77 MeV when the pairing gap is evaluated at wrot
=0 by means of the conventional procedure of the Strutinsky method'” with the
pairing-force strengths G that gives the standard value of the smoothed pairing-gap
parameter 4=12.0 A""*MeV). The result of calculation using 4=0.9 MeV was
reported in Ref. 18). In this case, we obtain Vinex10 keV keeping the agreement of
Weross and Zvanas With experiment. This value of Vin is still too small compared with
the experimental value Vine=26 keV. Thus, we conclude that the large value of Vint
cannot be reproduced within the present framework of calculation by merely chang-
ing the pairing-gap parameter 4 within a reasonable range.

It is well known in the case of the crossing between the ground- band and the
s-band that the interaction matrix element is an oscillating function of the degree of
shell filling.**” Accordingly, its magnitude is quite sensitive to the single-particle
level structure (used in the calculation) around the chemical potential. It is also
known that the interaction matrix elements in the cranking model are considerably
smaller than those evaluated by the particle-rotor model, mainly due to the absence
of the contribution of the recoil term.2” It is not clear to us whether or not the above
experience in the g-s crossing phenomena is applicable to the Landau-Zener crossmg
under consideration.

In summary, we have investigated the coupling effects between the quasiparticle
and the octupole-vibrational modes of excitation in the superdeformed '*Hg, by
means of the particle-vibration coupling theory based on the cranking model. We
have found that the inclusion of the octupole vibrational effects is important to
reproduce the experimental data for the crossing frequency between bands 1 and 4,
and for the aligned angular momentum of band 4. On the other hand, the calculated
interaction matrix element between bands 1 and 4 is too small in comparison with the
experimental data. To understand the spectrum of the superdeformed ®*Hg, there
are several problems remaining for the future, e.g., improvement of the treatment of
the pairing correlations, inclusion of the quadrupole-pairing, evaluation of the E1
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transition probabilities, possibilities of other interpretation of the experimental data,?’

etc.
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Abstract

Low-energy intrinsic K™=1%,07, 17, 27, and 3~ states in the even—even proton-rich
Sr, Kr, and Zr nuclei are investigated using the quasiparticle random-phase approximation.
In the Z =N nuclei the lowest-lying 1* states are found to carry unusually large B(M1)
strength. It is demonstrated that, unlike in the heavier nuclei, the octupole collectivity in the
light zirconium region is small and, thus, is not directly correlated with the systematics of
the lowest negative-parity states.

Key words: NUCLEAR STRUCTURE 76788082g, 7274767880 80827, calculated levels,
B()). Quasiparticle RPA.

1. Introduction

It has been shown experimentally [1-3] that shape coexistence, large deforma-
tions, the presence of well-deformed intruder orbitals, quenching of pairing
correlations, low-lying octupole states, and dramatic shape changes induced by
rotation are quite common phenomena in the zirconium region (Z = N = 40). The
microscopic reason for such a strong variation of collective properties is the low
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Fig. 1. Neutron single-particle levels in "°Kr as functions of the quadrupole deformation B, (B,=0).
The Nilsson states are labelled by means of the asymptotic quantum numbers, [ Nn, A2].

single-particle level density in these medium-mass nuclei. Because of spectacular
shape effects, relatively small size, and high collectivity, the nuclei from the 4 ~ 80
mass region have become favorite testing grounds for various theoretical ap-
proaches. Calculations based on the mean-field approach applied to nuclei in the
light-Zr region suggest an interpretation of experimental data in terms of well-de-
formed prolate shapes, weakly-deformed oblate shapes, and spherical (shell-model)
configurations [4—6].

There exist a number of mean-field calculations for the light-Zr region (for
references, see review [3]). In most cases calculations give similar equilibrium
deformations, but they differ in their predictions for excitation energies of shape-
coexisting states. Best examples of the ground-state shape isomerism in nuclei in
the light-Zr region are the Ge-Kr isotopes with 4 ~ 70. Calculations suggest the
interpretation in terms of two competing configurations: one at an oblate shape,
and the other at a prolate shape. Oblate ground states are predicted for Ge- and
Se-isotopes and for most Kr-isotopes. For light Sr-isotopes the prolate configura-
tion lies lower in energy. Because of the mutual interaction (of the order of a few
hundred keV [1]) the prolate and oblate bands are strongly disturbed in the
low-spin region.

The single-particle diagram representative of the discussed nuclei is shown in
Fig. 1. In the A ~ 80 region both protons and neutrons lie in the same (p, /20 P32
fs /29 89 /2) shell. For T, ~ 0 systems, the proton and neutron shell corrections add
coherently and, consequently, dramatic shape effects are expected. A beautiful
experimental signature of large prolate deformations in the A4 ~ 80 region, at-
tributed to the large single-particle gaps at Z, N =38 and 40, was observation of
very collective rotational bands in neutron-deficient Sr and Zr isotopes [7-9].
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The investigation of the medium-mass N = Z nuclei has been the proprietary
niche of groups who made investigations using the Daresbury Recoil Separator.
Pioneering works from Daresbury include the spectroscopy of 64Gf:, 68Se, 72Kr,
8r, 7r, and ®*Mo (see ref. [10]). These studies confirmed earlier theoretical
predictions of shape transition from strongly oblate shapes in ®%Se and *Kr to
strongly prolate shapes in Sr, and 807 (actually, Sr and ¥Zr are, according to
calculations, very deformed, with the ground-state deformation around B, = 0.4).
The nucleus **Mo is the heaviest Z = N system known so far.

Spectroscopy in the light-Zr region will certainly become one of the main arenas
of investigations around the proton drip line. The physics of exotic nuclei with
T, < 0 is one of the fastest developing subjects in nuclear physics, thanks to exotic
(radioactive) ion beam (RIB) facilities currently under construction in Europe,
USA, and Japan. In particular, the combination of RIB and the new-generation
multidetector arrays should open up many new avenues of exploration [11].

The main motivation of this paper is to make predictions for low-energy
collective M1 and E3 excitations around "°Sr. Since the M1 collectivity of low-lying
1% states increases with deformation (though the energies of those states may
increase), it is anticipated that in some well-deformed nuclei in the 4 ~ 80 mass
region the strong magnetic dipole strength should lie low in energy. The existence
of collective octupole states in this region is a long-standing question. The
low-lying negative-parity states, often interpreted as octupole vibrations, can be of
a single-particle character [12]. To shed some light on both issues we performed
calculations based on the quasiparticle random phase approximation (QRPA). We
hope, that those predictions will stimulate experimental investigations of medium-
mass nuclei around the N = Z line.

2. Deformations and pairing correlations in the 4 ~ 80 mass region

Calculations of equilibrium deformations of A4 ~ 80 isotopes were previously
performed [4] within the Woods—Saxon-Strutinsky model [13]. In this work, new
calculations have been carried out using the same single-particle model but the
Yukawa-plus-exponential mass formula of ref. [14]. The particle—particle interac-
tion was approximated by the state-independent monopole-pairing hamiltonian.
The pairing energy was computed using the approximate particle-number projec-
tion in the Lipkin—Nogami version. The pairing strengths and the average pairing
energy were taken according to ref. [15]. The calculated equilibrium deformations
for selected Kr, Sr, and Zr isotopes are shown in Table 1. It is seen that the
deformed — spherical shape transition is expected to occur around N ~ 44, Worth
noting are very large equilibrium B8, deformations (~ 0.4) of the lightest Kr, Sr,
and Zr isotopes.

In several nuclei around *Sr highly-deformed and superdeformed bands (B,>
0.4) have been predicted to become yrast at high spin [4,5,16,17]. For example, in
828t well-deformed nearly-prolate bands involving 41, neutrons are expected to
become yrast at 1> 32#4. Experimentally, a weak ridge—valley structure with a
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Table 1

Calculated equilibrium shape deformations 8, and B,, and proton and neutron pairing gaps, 4,, and
A, (in MeV), at selected oblate and prolate configurations of Kr, Sr and Zr isotopes. According to
calculations, the oblate /=0 minima lie lower in energy than the prolate /=0 minima in 72’74’78Kr,
82Sr, and ¥Zr. For ®Sr the calculations were also performed at superdeformed configuration with
B, =045,

Nucleus Oblate Prolate

z N B, By 4, 4, B Ba 4, 4,

36 36 -0.31 -0.010 1.34 1.23 0.35 0.016 1.40 1.31
38 -0.30 -0.016 1.26 1.46 0.37 0.0 1.31 1.12
40 -0.25 -0.036 1.32 1.54 0.36 -0.016 1.24 1.25
42 -0.24 —0.050 1.28 1.48 0.32 -0.023 1.18 1.46
44 -0.23 —-0.050 1.24 1.46

38 38 0.39 -0.016 1.14 0.99
40 0.39 -0.029 1.01 1.04
42 0.37 —0.030 0.93 1.34
44 -0.22 —0.065 1.35 1.37 0.28 -0.020 1.15 1.48
44 0.45 0.0 0.83 1.45

40 40 0.40 -0.037 1.06 0.88
42 —-0.22 —0.078 1.39 1.31 0.39 -0.038 0.96 1.26

width of AE =150 keV has been seen in the E ~E  correlation map [18). This
ridge corresponds to B, ~ 0.5 for a deformed rigid motor. However, no discrete
band that could be associated with this ridge—valley was identified so far. Theoreti-
cally, the superdeformed band in ®Sr is expected [4] to have deformation B, ~ 0.45,
see Table 1.

The most important interaction, beyond the single-particle deformed mean
field, is the short-ranged pairing interaction. This force is often approximated by
means of a state-independent monopole pairing interaction. The general feature of
the pairing interaction is that the pair correlation energy is anticorrelated with the
shell correction. A smaller pairing gap results from a smaller density of single-par-
ticle levels around the Fermi level, which are available for pair correlation. For
deformed A ~ 80 nuclei the weakest pairing is expected around the deformed gaps
at N (or Z)=38-42 [5]. A further reduction of pairing can occur in excited
configurations, due to blocking.

In the A ~ 80 mass region are several good examples of very regular, rigid
rotational bands. Among them there are negative-parity bands in ®Kr and "®Kr
built upon the first I™ =3 state at 2258 keV and 2399 keV, respectively. These
bands are among the best normally-deformed rotors, with remarkably large and
nearly constant moments of inertia, .# =_#@® [19,20]. Theoretically, those bands
are associated with two-quasiparticle excitations built upon the proton [431 3] X
[312 2] Nilsson orbitals which happen to occur just below the strongly deformed
subshell closure at Z = 38. (The proton character of those bands was recently
confirmed by the g-factor measurement [21].) Another good example is the [312 2]
band in ’Rb [22] or the [422 3]band in 81y [23] having unusually large moments of
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inertia. In all those cases the BCS calculations [5] suggest the dramatic reduction
(or collapse) of the static pairing.

Weak pairing has important consequences for the low-energy electromagnetic
transitions. Since the B(M1) values involving the ground state of even—even nuclei
are proportional to the BCS factor (u,v, — vuu,,)z, weaker pair correlations en-
hance the low-lying M1 strength. For electric transitions, the related BCS factor is
(u Wb T u#u,,)z. On the average, pairing correlations enhance the collectivity of the
low-lying E3 transitions from /to the ground state in the Sr-Zr region (see sect. 4).

3. Magnetic dipole states

The deformation dependence of 1* states is a current subject of both experi-
mental [24,25] and theoretical [26-29] studies. The low-energy B(M1) strength
(defined as the summed strength over a given energy interval, e.g., 2—4 MeV in the
rare-earth nuclei) increases with quadrupole deformation as, roughly, B2. Re-
cently, it was demonstrated in ref. [29] that the sum of B(M1) values in the region
of E, <10 MeV at heavy superdeformed nuclei around 152Dy and 192Hg was
several times larger than that at normal deformations. The reason for this en-
hancement is twofold. Firstly, the proton convection current contribution to B(M1)
increases with deformation and at strongly deformed shapes becomes comparable
to the spin-flip contribution in the low-energy region. Secondly, as discussed in
sect. 2, the B(M1) strength increases if the pair correlations are weak, i.e., exactly
what is expected at SD shapes [30].

Since some of the 4 ~ 80 nuclei are very well deformed in their ground states,
their equilibrium deformations exhibit rapid isotopic and isotonic variations, and
their pairing correlations are predicted to be weak due to deformed subshell
closures (Table 1). Because the Kr, Sr, and Zr isotopes have these characteristics,
they are ideally suited for investigations of the low-energy M1 strength and its
deformation dependence. (The lighter and heavier systems, such as Ge, Se, and
Mo, are less deformed and y-soft.)

The properties of the K™= 1" states have been investigated using the QRPA
hamiltonian

HQRPA = hs.p.+ Vpair + VFF + Va-a-’ (1)
where the single-particle hamiltonian,

hs.p.= Z.(Ei_A)Cg-Ci (2)

is an axially deformed Woods—Saxon hamiltonian of ref. [31] (see ref. [32] for
parameters),

Vo = A5 (cle] +cic,) 3)
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is the monopole-pairing field, Vg is a long-ranged residual interaction (mainly of
quadrupole—quadrupole type), and V, is the spin-spin residual interaction. In
Eq. (1)

Vir = _% Z KTF;FT9 4)
T=0,1

where the isoscalar and isovector fields F are given by

Fro=F,+F,, Fr_,=F —¢F (5)

and
1 (i

FT=E hs.p.’]+ » T=1,D, (6)
while the residual spin—spin interaction is written as

VU’U’ = % Z XTS;:ST’ (7)

T=0,1

where

Sroo=8,+S,, Sr_1=8,—5,. (8)

The strength of V, is taken [33] as x, = x; = 100/4 MeV.

The residual interaction Vg gives rise to isoscalar and isovector shape oscilla-
tions. The isoscalar-coupling constant, kg, is determined by the condition [34] that
the lowest RPA frequency for the isoscalar mode vanishes, since the lowest-lying
mode with K™=17" is spurious and corresponds to a uniform rotation of the
system. The value of £ in (5) is determined by the requirement [35] that the
spurious component should be absent in the RPA solutions with non-zero frequen-
cies. We have numerically checked that the summed probability of the spurious
component, |S) oj, |g.s.), remaining in the RPA solutions with non-zero fre-
quency is less than 107,

The isovector coupling constant, «,, is taken from the self-consistency condition
for the harmonic-oscillator model [36], x, = —3.5«,. In RPA calculations we take
into account all two-quasiparticle configurations with excitation energies less than
26 MeV, and have checked that the configuration space is sufficiently large so as to
include all M1 strengths.

The B(M1)-values have been calculated using the strong coupling scheme [36].
They are given by

B(M1; 0F, »1%; n) =2|<1%; nI M1107, ), (9)
where |1%; n) is the K™ = 1* QRPA phonon and M1 = y/3/47 u\ L, (g1, +
gsv,s,) is the usual magnetic-dipole operator. As a representative example, results
of calculations for Sr isotopes are shown in Fig. 2, which shows the excitation
energies of the low-lying K™= 1% states. The values B(M1; g.s - 1%) (in p%) are
indicated. The upper diagram was obtained by using the standard pairing gaps of
Table 1. According to sect. 2, pairing correlations in the excited states of Sr—Zr are
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Fig. 2. Predicted excitation energies of low-lying 1™ states of prolate configurations in 76’78’8“’8281',
oblate minimum in 2Sr [82(0)}, and the superdeformed configuration in ¥Sr [82(SD)). The numbers
indicate the B(M1;gs.->1%) values (in p%;) for transitions greater than 0.5 pX. Only states with
B(M1; g.s.— 1+)> 0.1 wk are shown (solid lines: BIM1)> 0.3 u4;, dashed lines: BOM1) < 0.3 p%,). The
upper portion shows the results obtained with standard pairing, 4,4, see Table 1. The results obtained
with pairing reduced by 50% are displayed in the lower portion.

expected to be seriously quenched. Therefore, we performed a second set of
calculations with A, and 4, reduced by 50% with respect to the standard values.
As discussed in refs. [27,29], reduced pairing leads to increased collectivity of the
low-lying 17 states; as seen in Fig. 2 the B(M1) values calculated in the “weak
pairing” variant are approximately twice as large as the M1 rates obtained in the
“standard pairing” variant.

The best candidate for low-lying enhanced 1% states in the A ~ 80 mass region
is the N=2Z nucleus ®Sr. Its ground state is very well deformed due to the
coherent superposition of proton and neutron shell effects associated with the
deformed gap at the particle number 38. In Fig. 3 we show the B(M1; gs.— 1)
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Fig. 3. B(M1;gs.,K™=0*—> K™ =1") values for '°Sr calculated in RPA as a function of the
excitation energies of 1* states. The summed values per 1 MeV energy bin are plotted as a histogram
(solid lines). For reference, the B(M1) values (9) associated with spin part only (g, =0, dotted line) or
orbital part only (g, =0, dashed line) are also shown. The g-factors used are g, = gf“"’ and g =
(0.85)gfrc. The upper (lower) diagram represents the “standard pairing” (“weak pairing”) variant of
the calculations.

strengths of the calculated K™ = 1" RPA excitation modes in "°Sr (at the ground-
state deformation), as a function of excitation energy. The upper (lower) diagram
corresponds to the standard (weak) pairing variant. The M1 strength arising from
only the proton convection current (i.e., g, = 0) and the M1 strength from only the
spin part (i.e., g,=0) are also plotted in Fig. 3. In both pairing variants of
calculations, there appears only one low-lying 1* state which has unusually strong
M1 collectivity. In the “weak pairing” variant this state is predicted at 2.2 MeV
and the corresponding B(M1; g.s. — 1%) transition is 2.16 p3;. The main compo-
nents of the wave function of the 1* state in "°Sr are the (g, ,2)? and ¥(gg ;)
excitations involving the two Nilsson orbltals [431 2] and [422 ). The largest
components of the low-lying 1* states in "°Sr in the energy range of 4-5 MeV are
the [431 2] X [431 1] (spin-flip) and [301 2] X [310 }] two-quasiparticle excitations.
The main contribution to the peak in the M1 distribution seen in the energy range
of 7-9 MeV in Fig. 3 comes almost exclusively from the spin-flip f, , = {5, and
9/, — &7, transitions.

The contribution to the B(M1) strength coming from the unique-parity high-j
excitations, such as (h,, ,,)* or (gy,,)? has a simple shell-model interpretation (in
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Fig. 4. Similar to Fig. 2 (standard pairing) but for the Kr isctopes.

terms of a single-j shell) and cannot be viewed as coming from a collective
“scissors” mode (see discussion in ref. [33]). The synthetic orbital scissors state is
defined as

IRY =41 (IP — alP) g5, (109)

where # is a normalization factor and the parameter a is determined by the
requirement that the mode (10) is orthogonal to the spurious reorientation mode
[29,37,38], i.e.,

a={gs.| V™ |gs.)/{(gs.| jPIP |gs). (11)

The calculations show that for the lowest 1* state in '°Sr the overlap between its
RPA wave function and the state (10) is only about 12%. Consequently, although
this state is predicted to carry an unprecedented M1 strength, it cannot be given a
geometric interpretation of the “scissors” mode. The K™ =1" isovector giant
quadrupole resonance in Sr lying at E_ ~32 MeV carries a significant M1
strength (~ 4 p%)) and contains a major component of the “scissors mode” (around
50%).

Figs. 4 and 5 show the calculated 1* states in Kr and Zr isotopes, respectively.
As seen in Figs. 2, 4 and 5 when moving away from 768r, the low-energy M1
strength becomes more fragmented. Good prospects where to find large M1
strength at low energies are the well-deformed prolate nuclei "°Sr (where the 1+
state is built mainly from the ({431 92-] ®[422 %]) and ({422 %] ®[413 ID
two-quasiparticle excitations), ¥Sr, ¥zZr (7((422 21®[413 I] and »(422 3]®
[413 1])), 2Zr, and "Kr. The most promising oblate-shape candidate is the N = Z
nucleus "*Kr. Similar to 7°Sr, the 1* state in "’Kr has a (g, 20 character.
However, in this case the main contribution comes from the high-{2 substates, i.c.,
m([413 21 ®[404 2]) and »([413 ] ® [404 3]).
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As discussed in sect. 2, the best prospects for superdeformation in the 4 ~ 80
region are in the nucle1 around 2Sr. The calculations performed for superde-
formed configuration of **Sr predict two states (around 3 MeV and 4 MeV) that
carry a large M1 strength (see Fig. 2). They can be associated with the 7([431 2] ®
[422 3D, »(422 3] ® [413 ] and »([541 2] ® [550 1] two-quasiparticle excitations.

4. Octupole correlations

In the light zirconium region octupole correlations can be associated with the
€9/, and p;,, subshells. Because of their rather large energy separation and a
small number of coupling matrix elements, no pronounced octupole instability is
expected. In addition, the small number of active subshells makes the octupole
effect more sensitive to quadrupole distortion than in heavier nuclei around *Ba
or 22Th [39].

The systematics of the lowest 3~ excitations in the Zr-region is shown in Fig. 6.
It is seen that E;- tends to decrease when approaching the nucleus 6Sr. On the
other hand, the shell correction calculations [12,40,41} predict octupole softness
only in the transitional isotopes of Zn—-Se with N < 36. Is the presence of low-lying
negative-parity state always a good fingerprint of octupole collectivity? The answer
to this question is negative. There are many nuclei that possess relatively high-lying
negative-parity excitations but still are considered as good examples of systems
with strong octupole correlations. In fact, the systematics of experimental B(E3)
values in the light-Zr region [12,42] indicates that no correlation can be found
between the behavior of the lowest negative-parity states shown in Fig, 6 and the
B(E3; g.s.— 37) strength.
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Fig. 6. The lowest 3~ energy level (in keV), observed experimentally for doubly even nuclei from the
light zirconium region. The dashed contour lines represent the lowest contours, at 2.2 and 2.3 MeV.
The upper dashed curve marks the proton-drip line.

According to the energy systematics presented in Fig. 6, the lowest negative-par-
ity states are observed in strongly deformed nuclei with particle number (N or Z)
close to 38. For example, in the nucleus "®Kr two negative-parity rotational bands
built upon the (37) (2258 keV) and (27) (2227 keV) band heads are known.
However, the coexisting prolate and oblate minima in this nucleus are predicted
[12] to be fairly rigid with respect to the reflection-asymmetric distortion. In ref.
[43], based on energy systematics, it has been argued that some negative-parity
bands in well-deformed nuclei from the 4 ~ 80 mass region can be interpreted as
collective (aligned) octupole bands. However, it is not the excitation energy of the
negative-parity band itself that determines the collective character of the underly-
ing intrinsic configuration, In 7 = -~ bands pairing correlations are usually re-
duced due to blocking and there is also significant Coriolis mixing. Consequently,
these bands have usually larger moments of inertia than ground bands and, in
some cases, can become yrast at high spins. In our opinion, the observed lowering
of negative-parity states around the particle number 38 does not necessarily
indicate strong octupole correlations as suggested in ref. [43] but rather has a
non-collective origin, see below.

In order to clarify the issue of octupole collectivity around Z = 38, N = 38 we
performed the RPA calculations with the hamiltonian

uT ”
Haorpa =Hep.F Vaic — 2ZX Qi Lk — zZX 1(”'3Q3K)” (730sx)

+%ZX{;I(Tlex)”T("'lek)"- (12)
K

Where b, is a single-particle Nilsson hamiltonian, V. is given by (3), and
= (Y, Y [ D= (rY,x)] are the doubly—stretched octupole (dipole) opera-
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tors [44]. A large configuration space composed of 7 major shells (for both protons
and neutrons) was used when solving the coupled RPA equations. The octupole
isoscalar coupling strengths, x12° were determined by the self-consistency condi-
tion for the harmonic-oscillator model [36,44],

X0 = 4rMa3{((r*) Do+ 2(4 = K2)((r*P) )y

+ a1 [ K272 = 67) + 72){(r*P) )} - (13)
The strength of the isovector octupole mode was taken from ref. [45]
xig = —035x3¢°, (14)
while for the isovector dipole mode we used the value [36,44],
™V
Tl e o Mw? 15
Xik < ( r2) > 0 ( )

with ¥, = 140 MeV. A similar model has been used recently [46,47] to discuss
octupole excitations built upon superdeformed shapes. The doubly-stretched mul-
tipole interaction can be viewed as an improved version of the conventional
multipole-multipole force. Namely, it has the following desirable properties in the
limit of the harmonic-oscillator one-body potential. Firstly, it satisfies the nuclear
self-consistency condition [36] rigorously even if the system is deformed. Secondly,
it yields the zero-energy RPA spurious modes, i.e., it automatically separates the
translational and reorientation modes. Last but not least, for the doubly-stretched
multipole interaction the dipole-octupole coupling terms disappear [44].

The B(E3)-values have been calculated using the strong coupling scheme. They
are given by

2

2
B(E3; 0}, —>1=3, K; n)=1—+—5—|<3K; n10s¢lor ), (16)
KO

where [3K; n) = |n) is the QRPA phonon and Qf¢ = (r*Y;4), is the charge
(proton) octupole operator. It is worth noting that, because we use the doubly-
stretched Q') Q% interactions, there is no simple correlation between the number
of two-quasiparticle configurations contributing to an excited state and the corre-
sponding B(E3) value. That is, an excitation which looks fairly collective in terms
of the RPA amplitudes (i.e., appreciable size of backward-going amplitudes), it still
can have a very small B(E3) value. Indeed, the ordinary octupole strengths
I(nIQ3KI0)|2 are quite different from the doubly-stretched octupole strengths
[{n| ’:;K|0>|2 in well-deformed nuclei. For example, in case of the prolate
superdeformed harmonic-oscillator potential (w , =2w;), ratios of the energy-

Fig. 7. Predicted excitation energies of low-lying intrinsic K™ =07,17,27, and 3~ states in 76,78.80,82g,

The numbers indicate the B(E3; g.s.— K~ ) values in s.p.u. (1 s.p.u. = 0.416 X 1075 422b3, cf. ref.
[42]). They are shown for the states with B(E3) > 1 s.p.u. Other states represent non-collective 7 = —
excitations. The solid lines correspond to states with B(E3) > 3 s.p.u. while the dashed lines correspond
to states with B(E3) < 3 s.p.u. The results were obtained with standard pairing, 4,4, see Table 1.
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greater than 5x 1072 are indicated. (Note that due to the time-reversal symmetry each amplitude
contributes to the intrinsic wave function twice.) The results were obtained with standard pairing, 4,

see Table 1.

T. Nakatsukasa et al. / Nuclear Physics AS73 (1994) 333-355

| 31232 [431]3/2 K=0
: e

T Y T T T Y Y  m—
i [303]5/2 [422]5/2

i'- B ‘l; i l { i r-.-
B

-
Fd [——'l' """

i i 1 r-—_- i
i [301]3/2 [431]3/2
S

i i i i i i i i

1 2 3 4 5 6 7 8 )

A=76

A=78

A=80

| A=82



T. Nakatsukasa et al. / Nuclear Physics A573 (1994) 333-355

347

weighted sum rule values Ssx (for Qs operators) and S5 (for Q% operators) are

given by [48]
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Fig. 9. Similar to Fig. 8 but for the lowest K™ =1~ states in the Sr isotopes.
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while in the oblate superdeformed case (w; = 2w | ),
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Fig. 10. Similar to Fig. 9 but for the lowest X™ = 2~ states in the Sr isotopes.
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Therefore, in the well-deformed prolate (oblate) configurations, B(E3) values
overestimate (underestimate) the collectivity (in the sense of the RPA with
doubly-stretched interaction) for the K™ =0~ and 1~ states, while they underesti-
mate (overestimate) the “doubly-stretched” octupole collectivity of the K™ =3~

states.
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Fig. 11. Similar to Fig. 9 but for the lowest K™ = 3~ states in the Sr isotopes.
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The results of calculations for the Sr isotopes are shown in Fig. 7, which displays
the predicted excitation energies of intrinsic K™=0", 17, 27, and 3~ states and
the corresponding B(E3) values (in s.p.u.). The forward RPA amplitudes for the
07, 17, 27, and 3~ states built upon prolate configurations in 767880821 are
plotted in Figs. 811, respectively. In none of the nuclei considered, the low-lying
negative-parity excitations can be considered as highly-collective states.

In the N = Z nucleus "°Sr the lowest negative-parity excitations with K= 1 and
2 can be considered as weakly collective. The K =1 octupole phonon has a large
component of the two-quasiparticle [312 2] ® [422 2] neutron configuration, see
Fig. 9. The K™ =2~ mode is less collective but it lies lower in energy. As seen in
Fig. 10, the main contribution to its wave function comes from the [310 3] ® [422 3]
proton and neutron excitations. The lowest K™= 0" excitation is mainly built
upon the [312 %] ® [431 %] excitations. The K™ =3~ state is predicted to be a
non-collective [310 1] ® [422 2] state, see Fig. 11. Of course, all those intrinsic
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Fig. 12. Similar to Fig. 7 but for the lowest 7 = — states in oblate configurations in the TRIT6K

isotopes.
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states are expected to be mixed through the Coriolis interaction [49]. In the
“weaker pairing” variant of the calculations, the B(E3; g.s. - 17) rate is reduced
by a factor of ~ 3. This is because the “particle—particle” and “hole-hole”
components such as [301 2] ® [422 3] or [310 ] ® [431 3] have much less effect. A
similar quenching is calculated for the 0~ state, which becomes a pure particle—hole
excitation if pairing is reduced. On the other hand, the characteristics of the 2~
state are only weakly influenced by pairing.
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Fig. 13. Similar to Fig. 7 but for the lowest = — states in prolate configurations in the ">"*7®Kr

isotopes.
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The lowest K™=0" excntatlons in prolate configurations of 38828y carry a
rather weak collectivity. Like in Sr in the “weak pairing” variant those states
become almost pure particle—hole excitations. A similar situation is predicted for
the K™=1" and 37states. The K™ =2~ modes are found to be slightly more
collective compared to other modes with K =0, 1, and 3. They are expected to
appear at about E_, = 2.7 MeV and they carry E3 strength around 6 s.p.u. On the
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other hand, if pairing is reduced those states become less collective.
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The most collective octupole excitations in the oblate configuration of 828r are
the K™=1" and 2~ states [E. ~2.7 MeV, B(E3) ~ 7 s.p.u]. The calculations
also predict a low-lying weakly-collective K™ = 17 excitation in the superdeformed
configuration of ¥Sr (E,, ~ 2.3 MeV, B(E3) ~ 10 s.p.u.).

Figs. 12 and 13 display calculated low-lying negative-parity states built upon the
oblate and prolate configurations in the Kr isotopes, respectively. On the average,
negative-parity states in Kr’s are slightly more collective than those in Sr’s. The
K7™ =07 prolate excitations are almost pure two-quasiparticle states. The K™ =1~
states and the K™ =2~ oblate states resemble octupole vibrations; they have

~2.5 MeV, B(E3)~7 s.p.u. The most collective octupole state in the Kr
1sotopes is the K™ =3~ excitation (E,, ~ 3.2 MeV, B(E3) ~ 10 s.p.u.) in Kr built
upon the oblate minimum. However, when pairing is reduced this state becomes
almost a pure particle~hole excitation.

Finally, the results for the Zr isotopes are shown in Fig. 14, The lowest
negative-parity excitations in 807r and ¥ Zr (prolate configuration) have a two-qua-
siparticle character. The K™=07, 17, and 2 modes in the oblate minimum of
827 are weakly collective, with B(E3) ~ 5-9 s.p.u. Interestingly, the B(E3) rates
for these states do not depend strongly on pairing. This is because their dominant
two-quasiparticle components are the particle-like (g,9 2 (23/25/2 orbitals and the
hole-like negative-parity p; , @ {5, levels with 2= 3 and

5. Conclusions

In the light zirconium region there are many excellent candidates for the
low-lying 1" states with unusually large B(M1; 0*—1%) rates around 1-2 p%.
The best prospects are the Z = N nuclei, such as "°Sr (prolate), **Zr (prolate), and

"Kr (oblate), where protons and neutrons contribute equally strongly to the M1
collectivity. Interestingly, the unusually strong low-energy M1 strength in those
nuclei has a simple interpretation in terms of (g, /2)2 excitations, i.e., it does not
result from a simplistic scissors mode. Also, it does not resemble the strong M1
transitions known in the light Z = N nuclei [50], mainly of the spin-flip origin.

In 7®Sr and neighboring nuclei, the 1% excitations are predlcted to appear just
above the 7= — intrinsic states. Generally, the K"=0", 17, 27, and 3~ band
heads are calculated to be very weakly collective in well-deformed proton-rich Kr,
Sr, and Zr nuclei (except maybe "*Kr). Namely, the low-lying negative-parity states
have a dominant two-quasiparticle character when they are built on an intrinsic
state with a large quadrupole deformation. There is no clear correlation between
the excitation energy of the 3~ state and the magnitude of the B(E3)1 value in the
nuclei from the proton-rich Sr-Zr region.

The results of our calculations are quite sensitive to the strength of pairing
interaction. In general, the weaker the pairing correlations, the more (less)
collective are the M1 (E3) excitations. There exists some indirect experimental
evidence supported by calculations, see sect. 2, that pairing is seriously reduced in
some excited states of well-deformed nuclei from the A4 ~ 80 mass region. We
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hope that future measurements of excited states in the well-deformed nuclei
around "Sr, especially their lifetimes, will shed new light on the collectivity of M1
and E3 states and, indirectly, on the magnitude of pairing correlations in this mass
region.
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An oscillatory pattern in the smoothed quantum spectrum, which is unique to single-particle
motions in a reflection-asymmetric superdeformed oscillator potential, is investigated by means of the
semiclassical theory of shell structure. Clear correspondence between the oscillating components of
the smoothed level density and the classical periodic orbits is found. It is shown that an interference
effect between two families of the short periodic orbits, called supershell effect, becomes more
significant with increasing reflection-asymmetric deformations. Possible origins of this enhancement
phenomena as well as quantum signatures of period-multipling bifurcations are discussed in connec-
tion with stabilities of the classical periodic orbits.

§1. Introduction

Possible occurrence of instability of superdeformed (SD) nuclei having the prolate
shape with the axis ratio approximately 2:1 against the octupole-type reflection
asymmetric deformation is one of the current topics of a growing interest in high-spin
nuclear structure physics. Regions in the (I, Z) plane where we can expect the

existence of reflection-asymmetric SD nuclei have been investigated”~® mainly by
" means of the Strutinsky-type calculations of the collective potential energy surface
(see also Refs. 6) and 7) for other approaches). Concerning the physical condition for
the occurrence of the octupole instability, Nazarewicz and Dobaczewski® have recent-
ly discussed the connection between the dynamical symmetry of the anisotropic
harmonic-oscillator with frequencies in rational ratio and the multi-cluster
configurations. They have suggested that the closed-shell configurations in the
prolate SD oscillator potential, defined as having the frequency ratio w./w-.=2, might
be unstable (stable) against the octupole-type reflection asymmetric shapes when the
single-particle levels are filled up to the major shells with New=even (odd), Ne being
the shell quantum number defined by New=2#,+#. (see also the previous work,
Ref. 9)). Their suggestion is in good qualitative agreemert with the realistic shell-
structure energy calculation by Holler and Aberg.? We call the Nsn-dependence of
the octupole instability “odd-even effect in Nen”.

We have suggested in Refs. 10) and 11) a possible relationship between the
odd-even effect mentioned above and the “supershell effect” in reflection-asymmetric
SD potentials. The general concept of supershell was originally introduced by
Balian and Bloch!® in relation to the semi-classical theory of shell structure. Quite
recently, the supershell effect has been observed, for the first time, in the mass
abundance spectra of metal clusters. Theoretical analysis of this phenomenon has
been made by Nishioka, Hansen and Mottelson.!®'* '

As is well known, clustering of eigenvalues, that is, oscillating pattern. in the

- energy-smoothed level density for single-particle motions in the mean field is called
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shell structure.” In the semiclassical theory, classical periodic orbits having rela-
tively short periods are responsible for the clustering of the levels; the frequencies in
the level density oscillation are determined by the corresponding periods of classical
motion.'”* When two families of short-period orbits interfere and produce an
undulating pattern in the oscillating level density, this pattern is called supershell
structure.’”® In the case of the metal clusters, a beautiful beating pattern envelop-
ing individual shell oscillations which is caused by the interference between the
triangular and square orbits of an electron in a spherical Woods-Saxon potential has
been demonstrated™'* to nicely correspond to the experimental data.

In the case of the SD nuclei under consideration, an interference effect is expected
to arise between the classical periodic orbits with period T =27x/w. and those with T
~27/w- of a nucleon in the reflection-asymmetric SD potential.'? The main purpose
of this paper is to show that the interference effect brings about another example of
the supershell structure, which is intimately connected with the odd-even effect in Nen
mentioned above, and which is relevant to experimental investigations. It should be
emphasized here that, contrary to the case of spherical potentials, the Hamiltonian
describing the single-particle motions in a deformed mean field is non-integrable in
general. Accordingly, our Hamiltonian system is a kind of mixed system whose
phase space is composed both of regular and chaotic regions. As a consequence,
properties of our phase space change in a quite sensitive manner when the shape of the
nuclear surface is varied. In this paper, we shall show that the supershell effect
becomes more significant with increasing octupole deformation. Possible origins of
this enhancement of supershell pattern will be discussed in relation to the change in
the properties of the classical periodic orbits as a function of the octupole deformation
parameter. ’

After briefly reviewing the semiclassical theory of shell structure in § 2, we first
apply in § 3 both the torus quantization method and the periodic-orbit quantization
method to the case of the prolate SD oscillator potential. In this integrable limit, the
supershell effect can be treated analytically. In §4, a reflection-asymmetric SD
potential model is introduced and the supershell pattern in the quantum level spectrum
calculated for this potential is exhibited: In § 5, we investigate properties of classical
motions in this potential, like stabilities and bifurcation phenomena of the periodic
orbits. In § 6, we show that a nice correspondence holds between peak positions of
the Fourier transform of quantum spectrum and periods of classical closed orbits;
relative heights between peaks change as functions of the octupole-deformation
parameter, providing us with a semiclassical interpretation of the origin and the
octupole-deformation dependence of the supershell structure. Here, quantum signa-

" ture of the bifurcations is also discussed. A summary of this work is given in § 7.
A preliminary version of this work was previously reported in this journal 2

§2. Some eleinents of semiclassical theory of shell structure

In this section we briefly review some basic elements of the semiclassical theory
of shell structure, which are necessary for later discussion.



Semiclassical Analysis of the Supershell Effect 725

2.1. Torus quantization

To begin with, let us consider the case of multi-dimensional, integrable
Hamiltonian system, where the Hamiltonian can be written as a function of only
action variables I, being independent of angle variables #: conjugate to them.
Semiclassical quantization condition valid for such systems has been formulated by
Einstein-Brillouin-Keller, and called torus quantization or the EBK quantization;

I{Ensn)= f,p-da=n(nitaif8), i=1,7, (2:1)

where indices 7 represent mutually independent paths on f-dimensional torus con-
structed by classical trajectories, @: are Maslov indices related to the singularities of
the Van Vleck determinant appearing in the semiclassical propagator along the path
7. Thus, the semiclassical level density is given by

g(E)=‘Zn}5(E—H(Ii=7Z(ni+a/i/4))) . (2-2)

The summation on the r.h.s. may be rewritten using the Poisson sum formula into the
form of topological sum over periodic orbits.® In Ref. 25), spherical systems are
analyzed and clear correspondence between the topological sum and the periodic
orbits is shown. In the spherical case, periodic orbits generally satisfy the resonance
condition, i.e., the frequency ratio of radial and angular motions are the same as that
of topological indices. We shall apply this method to the SD harmonic oscillator
potential in § 3, and discuss the correspondence between the topological indices and
periodic orbits. There, it will be shown that some “partially-resonant” terms play an
important role giving rise to the supershell effect.

2.2. Periodic-ovbit quantization

Next, let us consider the case of multi-dimensional non-integrable Hamiltonian
system. For such systems, as is well known, the periodic-orbit quantization method
provides us with a useful base toward understanding the correspondence between
classical periodic orbits and properties of quantum spectra.?®?® This theory is
essentially based on the path integral formalism of quantum mechanics. The first
step is to express the quantum level density g(E)=3,0(E — E,) in terms of a trace of
the energy-dependent Green function,

__ 1 .
9(E)= 7TIm Tr E+ie—H

=—%ImquG(q, q E). : (2+3)

The Green function G(q”, q"; E) is a Fourier transform of the transition amplitude
K(q’, t; ¢, 0)=<q"|lexp(—itH/%)|q@’>+ 6(¢), and we can express it in the path integral
form. Evaluation of the path integral by the stationary phase approximation (SPA)
extracts the classical trajectories. The Fourier transformation is also performed by
means of the SPA. Finally, the trace integral appearing in Eq. (2-3) extracts the
periodic orbits and one obtains the following expression called the Gutzwiller trace
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formula:

g(E)=g (E)‘I'EAM(E)COS(”ZS?(E)/ h—(7/2) tny) , (2-4)

where g(E) denotes the average level density and the second term on the r.h.s.
represents the oscillating part. The summation is taken over all periodic orbits and
their multiple traversals. S, is a classical action along the orbit 7, S,=#,p*dq, and
¢y is a Maslov phase. The amplitude factor A», depends on the phase space structure
about the periodic orbit 7, as we shall discuss in § 2.4. For sufficiently isolated orbits,
the trace integral is well approximated by the SPA and the amplitude factor for the
n-fold traversal of orbit y can be written as®®

1 7y

A= R
Tk Jldet(1— M/

(2-5)

where T, and M, represent the period and the monodromy matrix of the primitive
orbit 7, respectively. This expression is known to work well for chaotic systems
such as billiards.??

2.3. Stability of classical trajectories

The amplitude factor in the trace formula is related with the properties of phase
space around the periodic orbits. Let us write the Hamilton equation in 2f-
dimensional phase space as

d ., _ .
‘ WZ—AVH : (2-6)

A ) )

and consider the time evolution of the deviation 8Z(¢) from the reference classical
trajectory Zo(¢). To the first order in 8Z, we obtain
d

E(SZ:Aﬂ[5Z , 2-7)

with

where 4 is the Hessian matrix defined by

- Hpp Hpg PH
— ij = . 2 M 8
ﬂ (qu qu)lo ’ (-H;74) aplaQJ et ( )

Knowing H(t), Eq. (2-7) can be easily integrated,
aZ(t)zexp[A [0 ”dmazo(t'))]aZ(o)zjn(z)aZ(o) . | (2-9)

M is called the stability matrix. It is real and symplectic; AMA'=M". When
one takes a periodic orbit as the reference trajectory and the period T as time ¢, the
stability matrix is particularly called monodromy matrix M,=M(T;).*” Tt is known
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that the eigenvalues of M, are independent of the initial condition Z (0) on the orbit.
According to the symplectic property of the monodromy matrix, its eigenvalues
appear in pairs (+/—)(e% e™%), where « is real or pure imaginary. When « is pure
imaginary (@=1w), the orbit is stable and torus exists surrounding it. w is called a
winding number of the torus. When « is real (e=AT), the orbit is unstable and A is
called the Lyapunov exponent which measures the degree of instability.

2.4. Magnitudes of shell effects

Strength of the shell effect depends mainly on three factors, to be discussed below,
associated with the periodic orbits.'®

The first factor is the degeneracy of the orbit. Here the term ‘degeneracy’ means
the number of independent continuous parameters (additional to energy) that specify
a certain orbit from a continuous family of orbits having the same action. For
example, planar orbits in a spherical potential form a continuous family generated by
rotation and the degeneracy is generally three, since a certain orbit belonging to this
family is specified by three Euler angles. As illustrated by the above example,
degeneracy is related to continuous symmetry of the system. These degeneracies
correspond to the unit eigenvalues of M.

The second factor is the stability of the orbit. For non-integrable systems,
evaluating the trace integral by the SPA, one sees that the amplitude behaves as

1

S e @10

where M is a reduced monodromy matrix in which degrees of freedom corresponding
“to the unit eigenvalues of M are excluded out. The more unstable is the orbit, the
weaker is its contribution to the level density, because it has a large Lyapunov
exponent and the denominator on the r.h.s. becomes large. The above propor-
tionality is valid only when all the eigenvalues of M are sufficiently distant from unity.
However, one of the eigenvalues may happen to be very close to unity. This is called
nonlinear resonance where two frequencies of the torus coincide with each other and
gives rise to a periodic orbit bifurcation. Namely, the period z-upling bifurcation
occurs when det(1—M,%)=0. In this resonance region, one has to use a more sophisti-
cated treatment than the SPA; for example, the uniform approximation using the
resonant normal form. Such a procedure is formally discussed by Ozorio de Almeida
and Hannay,® but, to the best of our knowledge, application of this theory to
multi-dimensional, non-integrable Hamiltonian system has not been performed yet.

The third factor is the phase space volume occupied by an orbit. It is not
important in our analysis because it is insensitive to the variation of potential
parameters.

Let us examine how these three factors enter in the amplitude factors for different
types of periodic orbits. First, consider a chaotic orbit, that is, a well-isolated orbit
whose degeneracy equals zero. Its amplitude factor is given by Eq. (2:5). There
appears the same stability factor as Eq. (2-10), and the period 7" measures the phase
space volume of the orbit. Next, as an example of non-isolated orbits, let us consider
orbits in axially symmetric deformed potentials, whose degeneracy equals one corre-



728 K. Arita and K. Matsuyanagi

sponding to the rotation about the symmetry axis. It is convenient to use the
cylindrical coordinates (o, ¢, z). One should then perform the integral uniformly
with respect to ¢ in the trace, because in this direction periodic orbits exist continu-
ously. Thus we obtain the following expression of the amplitude factor for these
orbits (see the Appendix):

_A4r B,
An7(E)— (27[%)3/2 /IZ—TI‘M/‘[ y
_ (7, |9e(t+ T) |2 .
B,= A dt [ (2-11)

Here, B, contains the first and the third factors mentioned above. The period
n-upling bifurcation occurs when TrM7 =2.

§ 3. Supershell effect in the SD oscillator

In this section we apply the semiclassical theories to the axialIy-symmetric 2:1
deformed harmonic oscillator Hamiltonian -

, 2, 2
H(p, q)——+ > Mocgs

i=X,¥,2 2

: - (3D

Where W= Wy=w;=2wWz=2wsn, and we discuss how the supershell structure emerges
in this case. We compare the two semiclassical quantization methods summar1zed in
the preceding section, and discuss their relations.

3.1. The periodic orbit method

In this subsection we analyze the supershell effect in the SD oscillator defined by
(3-1) using the Gutzwiller trace formula. The trace formula can be derived also for
such an integrable system if the degeneracy (mentioned below) is properly taken into
account. According to Ref. 29), the semiclassical level density may be written as

9(E)=g(E)+g&d(E)+ gsl(E) . (3-2)

The first term on the r.h.s. represents the mean level density,

F(E)= gy [ dpdad(E—H(p, ) =g (3-3)

The second and the third terms are the oscillating parts representing the shell effects.
The superscripts (II) and (IV) denote the degeneracies of the periodic orbits. g2 (E)
is a contribution from four-hold degenerate orbits whose periods are multiples of 7"
=2n/wss.. The present model is very special in the sense that all trajectories are
periodic, and one should explicitly perform four integrals (corresponding to the
degeneracy) in evaluating the trace formula. Thus one obtains the following expres-
sion:

0= Bigiopees| w542 3)]
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%mgmg(%a;)scos[m<%m——5ﬂ>] —-g(E), | (3-4)
=;W5<E—hwsh<zv+%))— a(E), (3+5)

where S™=ET is the action integral along the primitive periodic orbit and the
sum over m accounts for multiple traversals. The last expression is obtained by
using the Poisson sum formula

mgmexp(ZﬂimA) :Nng(A —N). (3+6)

In Eq. (3-2), g$2(E) is the contribution from two-fold degenerate orbits whose periods
are odd integer times T =T/2. It is obtained in a similar manner, except that
the integrations with respect to the z direction may be performed by the SPA. The
result is written as

(1)

HAE= 3 S atnor ) sinl m (S —(2+2) %) |

zmgwg—(h%ycos[@mﬂ%)( EZ};(H)‘ —'52l>] , (3-7)
=§(—)N—N—*é5/—23(15—hwsh(N+%>) , (3-8)

where the sum over m’ accounts for multiple traversals of the primitive periodic orbit.
The expressions (3:4) and (3-7) were first derived in Ref. 29).

Summing up the above three contributions, we obtain the degeneracy dv of the
N-th shell as

N/2]+1)([N/2]+2) |, 3

(i 3
= 2 32’

(3-9)

where [*] is the. Gauss symbol. The first term on the r.h.s. corresponds to the exact
degeneracy of the quantum spectrum. We thus see that the result obtained by the
trace formula is very accurate (the deviation from the exact quantum result is only
3/32). ,

Now let us focus our attention on a smoothed density of levels with finite energy
resolution 6E=7%wsn. It is then sufficient to consider a finite number of periodic orbits
of short periods satisfying the following uncertainty relation:

_27h .
T< Tmax—__SE . (3-10)

As far as gross properties of the level density is concerned, therefore, the well-known
problem of the long time propagation in the semiclassical approximation does not
occur. '

We show in Figs. 1(a) and (b) the contributions from the families of periodic
orbits with periods 27/ws» and 27/w., respectively, and in Fig. 1(c) the sum of them.
There appears an undulating pattern in the level density due to the interference of the
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above two families of periodic orbits,
which is just the supershell structure.
Thus, one sees that the supershell struc-
ture emerges from this interference
effect.

3.2. The EBK wmethod
Defining the action-angle variables

(L, 6:) by
pi=+v2Mw:;sing; ,
qi=+ 2L-/Ma)icos ; B

we write the Hamiltonian (3+1) as a
function of only action variables as
HoI)=w-I. The Maslov indices are 2
for all paths 7, and therefore the EBK
quantization condition becomes

[izh(%i"f’l/Z)'.

(3-11)

(3-12)

In the present case, this EBK quantiza-
tion gives exact quantum eigenvalues: E
=Xhwn:+1/2). Now let us investi-
gate the roles of classical periodic orbits
in giving rise to the supershell structure
in the quantum spectrum. For this pur-
pose, we use the method of topological
sum.?® The semiclassical level density
is written as '

g(E)=§}8(E—§hwi(ni+ a/z-/4)) .

?ﬁwmApgpAAAAA”
v VWUU\/\

T s 10 s
of (b)

o N\
-

0 5 0 15
30— ———
| © | ]

3 Al
03’ 0 V/\V/\V/\V/\ /\ [\
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5 10 15
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Fig. 1. Results of semiclassical calculation of the

oscillating part of the level density for the SD
oscillator model. (a) The contribution from
orbits with T =2x/w., (b) the contribution from
orbits with T=2x/w, and (c) the supershell
structure caused by the interference between
the above two families of orbits.

(3-13)

Using the Poisson sum formula (3:6), one can rewrite Eq. (3-13) as

9(E)=g(E) +M2*09M(E) )

where

gM(E)=% ﬁ " AIS(E— @+ Dexp2miM -(I/i—a/4)) |

(3-14)

(3-15)

and the summation is taken over all the combinations of integers, M =(Mz, My, Mz).
Here, g(E) represents a mean level density corresponding to the Thomas-Fermi

approximation,

_1 (= N
9o E) =5 fo dI3(E—o-D=g77- .

(3-16)
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The remaining terms with non-zero M represent the oscillating part responsible for
the shell structure. To simplify the expression, we introduce the notation f;
=97M:wsn/w:. The dominant contribution comes from terms satisfying the resonance
condition M=M*x w, ie., fo=,y=,: (in the present case, M =m(2,2,1)). Carrying
out the integration with respect to I and denoting the sum over such resonant terms

as g8, we obtain

2 A ‘
AAE) =g B, (317

m+0

Next, let us consider the ‘partially resonant’ terms which satisfy the condition f;=/;
=f +f, Carrying out the integration with respect to I, they are evaluated as

gM(part.res.)(E)
- : < = i#abinwm _ BDsh ( irieinwm _ GinErnosn > inM-al2
1wy \ i(fi—fa) © + CASTAR (e e ))e
= 1 E ifLEIhWsh ,intM-a/2 .
1Grwsy (1) ¢ e (3-18)

where the second term on the r.h.s. is neglected because it is higher-order in %. Let
us then take terms with fe=/fy=f.+f:, and write M as (m’, w’, /). Summing over
terms with odd-# and arbitrary integer /, we obtain

(i) 1 E 2mim’E 2R Wsh, ,—2ni{2m +1}/2

g°SC(E):m'=20dd l=2—oo 4(hwsn)® 2mi(m’[2—1) ¢

e

— S(h-g h)Z mg ein(2m+1)(E/ha)sh—-5/2) . (3.19)

The last expression is obtained using the expansion formula of cosecond in partial
fractions:
o (_)l

cosecz= .
l=2—oo z—Ir

(3-20)

It can be easily shown in a similar way that the sum of other terms which are the same
order in % as (3-19) vanishes. :

3.3. Relation between the two methods

Now, let us discuss the correspondence between the results obtained by the
periodic-orbit method and the EBK method. It is evident that the two terms g&:(E)
and ¢8(E) in the EBK treatment are identical with the contributions g&&(E) and
gSR(E) which are evaluated by the trace formula for the periodic orbits with periods
27/wsn and 27w, respectively. This result is very instructive to understand the
physical meanings of the resummation with respect to the indices M by the use of the
Poisson sum formula. The indices satisfying the resonance condition, M =m(2, 2, 1),
correspond to a family of classical orbits with pefiods 2mrjws,. One can examine
this by comparing Eqs. (3-4) and (3-17). On the other hand, for partially-resonant
contributions, we find the correspondence in the following way. Comparing
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Egs. (3-7) and (3-19), we notice that the family of planar orbits in' the (z, ¥) plane
corresponds to the summation over indices M=(1, 1, /) with —oco</<co. Its m-fold
traversals are related with M=(m, m, [). These partially-resonant terms play -
important roles in formation of the supershell structure in the present model.

§4. Reflection-asymmetric SD oscillator model

4.1. Model Hawmiltonian

Let us consider a model Hamiltonian consisting of an axially-symmetric 2:1
deformed harmonic oscillator and a doubly-stretched octupole ( Ys0) deformed poten-
tial,

2 2 .
H:p—‘i‘MC()oZ(?/T—/lso?’z Ko(&)) (4'1)

2M
where double primes indicate that the variables in parenthesis are defined in terms of
the doubly-stretched coordinates ¢7 =(w:/wo)g: and wo=(w-wywz)"*. As emphasized
by Sakamoto and Kishimoto,*” the doubly-stretched coordinates are suited to descrip-
tion of systems having quadrupole equilibrium deformations, and possess several
advantages over the usual coordinates; for example, the center of mass motion is
exactly decoupled from the octupole-type deformations described by the above:
Hamiltonian. Note that the doubly-stretched octupole operator is in fact a linear
combination of the ordinary dipole and octupole operators, although we sometimes
omit the adjective “doubly-stretched” for simplicity. In (4:1), we adopt the quadratic
radial dependence for the octupole-deformed potential for the ease of taking into
account the volume conservation condition. By requiring the volume surrounded by -
an equipotential surface to be independent of the octupole deformation parameter As,
the Asp-dependence of wo is determined as

onln) =wo0)] - [~ 2 Vin( )2 . | (4-2)

We note that the average level density §(E) is independent of As when wo satisfies
Eq. (4-2). Let us define dimensionless variables as

i~V Mhwo p:

qgi— h/Ma)o d:,
H-haooH . _ (4-3)

Then the Hamiltonian (4-1) becomes

=i<r_2_
H="5-+{7

rr

/1307’2 Yéo(&’)) (4'4)

Since this potential is a homogeneous function of the second order in coordinates, the
scaling relation .

H(ap, aq)=a’H(p, q) (4-5)
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Fig. 3. The oscillating part of the level density at
A»=0.4 obtained by the Strutinsky method
(broken line) is compared with a superposition
(solid line) of cos(ETy/%) with the period Ty
E [han) evaluated for the classical orbit A (T =27/w.)
Fig. 2. Oscillating parts of the level density for the and that for orbits B, C, C’, and 2A (T = 2x/wsn)
Hamiltonian (4:4) with A%=0.2, 0.3 and 0.4, (see §5 for the properties of these classical
calculated by means of the Strutinsky method orbits). Amplitudes and phases of these cosine
with the smoothing width y=05%ws. The functions are determined so that the solid line
arrows indicate the minima associated with the best agrees with the broken line, except that
even-Nq closure. the energy dependence of the amplitudes is

assumed to fulfill the relation in Eq. (6-1)
determined by the scaling property of the sys-
tem under consideration (see § 6).:

holds. Thus, if (p(#), g(t)) is a solution
of the Hamilton equation with energy E,
(ap(t), aq()) is also a solution but with
energy o’E. Namely, once the classical propertles of the system are known on a
certain energy surface Eo, properties on other energy surface E are obtained by
scale-transforming the phase space variables (p, q) to (ap, eq) with =/ E/E,.

4.2.  Supershell structurve

Figure 2 shows the oscillating part of the level density for the Hamiltonian (4-4)
calculated by means of the Strutinsky method. A characteristic property of the
oscillating level density is that it exhibits the supershell pattern. Figure 3 gives a
phenomenological illustration of the concept of the supershell. It is seen from this
figure that the oscillating level density can be represented as a superposition of
trigonometrical functions, cos(ETy/%) with Ty~27x/w. and 27/wss, in a good approxi-
mation. We shall confirm in § 6 that this supershell pattern in fact arises from an
interference effect hetween two families of classical periodic orbits with periods
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T, = 27/wsn and 27/w,.

It should be recalled here that the important factor from the point of view of
gaining the shell-structure energy is not the heights of the maxima but the depths of
the minima in the oscillating level density. Needless to say, the minima in Fig. 3
correspond to the closed-shell configurations with respect to the SD major shell
quantum number Ns.. Let us notice how the depths of the minima change as func-
tions of Ax. Then we find that the minima associated with the odd-Ns closures
become shallower as As increases, whereas those at the even-Ne, closures are tough.
Consequently, the odd-even staggering of the minima with respect to the Ne» quantum
number develops with increasing As. Possible mechanisms of the enhancement of the
supershell structure will be discussed in § 6.

§5. Classical analysis

In this section, we discuss the classical-mechanical properties of the single-
particle motion in the reflection-asymmetric SD potential defined in the preceding
section.

5.1. Poincaré map

Let us examine classical phase space structure by plotting the Poincaré map.?"
Since our Hamiltonian is axially symmetric, it reduces to a two-dimensional one with
the cylindrical coordinates (o, z) and with a definite angular momentum p,=m, -

H =—%‘ (0> + 022+ Verll 0, 2 m) ‘ 7 (5-1)
where
CaN_De 40+ Z 7 Z2—6zp° .
%ff(zy O3 p?’)— 2‘02 + 2 /130 47[ m . (5 2)

We can examine the Poincaré map for each value of m. It is convenient to choose the
Poincaré section X' as the surface with p,=0, which is intersected by any trajectory.
Figure 4 shows calculated Poincaré maps (z, p:) for the Hamiltonian (4-1) with
various values of the octupole deformation parameter Ax. We see that the system is
quasi-integrable for small A and almost all the phase space is foliated by KAM tori.
With increasing 4s, however, chaotic regions begin to spread out from the hyperbolic
points. Figure 5 shows Poincaré maps for different values of p,. We note that the
phase space volume corresponding to the (p, z) degrees of freedom contract and the
system becomes more regular as p, increases.

Figure 6 shows Poincaré maps for the surface of section (p, p») with 2=0. The
origin corresponds to the linear orbit along the z-axis and the structure around it is
exhibited. '

5.2. Periodic orbits and their bifurcations

While all trajectories are periodic when As=0, only very limited trajectories
remain as periodic orbits when A+0. In the Poincaré section, centers of tori
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Fig. 4. Poincaré maps in the section (z, p-) for the Hamiltonian (4-1) with p,=0 and with A=0.2
~0.4, defined by p,=0 and $o<0.
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Fig. 5. Poincaré maps in the section (z, pz) for the Hamiltonian (4-1) with A0=0.4 and with p,/E=0.2
and 0.4, defined by p»=0 and 5,<0.
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Fig. 6. Poincaré maps in the section (p, p,) for the Hamiltonian (4-1) with p»=0 and with A=0.2 and
0.4, defined by 2=0 and p.>0. i

correspond to stable periodic orbits,
while saddles to unstable ones. We cal-
culate the periodic orbits by the mono-
dromy method proposed by Baranger, ) - ) )
Davies and Mahoney.?” In this method, ' : ' B : l D

periodic orbits are found in an iterative | 1 (\ ]
manner starting with approximate k/

closed curves. By gradually changing : : : : : : . .
Aso, we can use the periodic orbits found
for a slightly smaller value of A as
inputs for this procedure. Figure 7
shows short periodic. orbits for Hamil-
tonian (4-1) with As=0.4 obtained in this
way. Also shown in Fig. 8 are planar
orbits for A3pg=0.3~0.4. As Ase Iincreases,
the phase space structure becomes more

Al c

complicated due to bifurcations of stable © (xy) plane (z.y) plane
periodic orbits. For example, a period- Fig. 7. Short periodic orbits for the Hamiltonian
tripling bifurcation of orbit A occurs at (4-1) with A=04. Upper part: Planar orbits
A30==0.36. Thereafter, orbit A bifur- in the plane con.taining the‘ symmetry axis z.
cates into orbits 3A (triple traversal of I;grﬁzu?;rt:tf t;:f;:ﬂ?é:; 1:)(26(21,?“;36:
orbit A)’ Eand F. In the Poincaré map three-dimensional orbit (C). Their projec-
for As0=0.37 (see Fig. 4), we can see three tions on the (x, v) plane and on the (2, ¥) plane
resonant island chains surrounding the are shown.

central KAM torus, which are associated with the newly-born periodic orbits E and
F. Likewise, a period-doubling bifurcation of orbit B occurs at As=0.4, from where
orbit B bifurcates into orbits 2B (double traversal of orbit B) and K. Many higher
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A30=0.30

Fig. 8. Short planar orbits for the Hamiltonian (4+1) with p,=0 and A3=0.3~04.

Table I. Properties of the periodic orbits: periods 7" (in units of 1/ws(0)) and traces of the
reduced monodromy matrices TrM, evaluated for A»=0, 0.2, 0.3 and 0.4. Here, ‘ny’
denote the n-fold traversal of the primitive orbit y. For the isolated orbit A’ and D, the
monodromy matrix M has two unit-eigenvalues and the remaining four eigenvalues
appear in pairs (e, e~%) and (e®, e~**). These pairs are identical (@a=a) for orbit D,
but they differ from each other for orbit A’. Traces of these pairs are given for orbit A’

Aso 0 0.2 0.3 . 0.4

orbit Tin TrM Tir TrM T/r TrM TIr TrM
A 1 —2 1.018 —1.778 1.037 —1.362 1.062 —0.758
2A 2 2 2.036 1.161 2.075 ‘ —0.145 2.125 —1.426
3A 3 —2 3.054 —0.286 3.112 1.560 3.187 1.838
E | — — | - - — — | .81 1.546
F — — — — — — 3.183 2.292
B 2 2 1.999 1.816 1.998 1.017 1.995 —~2.054
2B 4 .2 3.999 1.300 3.997 —0.966 3.989 2.221
K — .= — — — -— 3.989 1.572
C 2 2 2.001 2.030 2.004 2.383 2.009 4.277
D 2 2 2.072 1.845 2.177 3.498 2.367 ~16.317
o (| (U e (1 e (0
C 2 2 2.003 ©2.046 2.008 2.333 2.016 3.484

order bifurcations occur almost everywhere in regular regions of the phase space.
Properties of the calculated periodic orbits are summarized in Table I for several
values of As. ‘
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§6. Semiclassical analysis

6.1. The cause of the enhancement of the supershell effect

As mentioned in § 2.4, strength of shell effect associated with a periodic orbit is
mainly determined by degeneracy and stability of the orbit. Let us discuss how these
properties change when the octupole deformation is added to the SD oscillator.
When As=0, orbits with the period 27/ws» and those with the period 27/w. have
different degeneracies, 4 and 2, respectively. Therefore, the shell effect originating
from the former families of orbits is much stronger than that from the latter. As a
result, the interference effect between the two families of periodic orbit, i.e., the
supershell effect, is rather weak. When As+#0, in general, degeneracies of the orbits
reduce to 1. (For orbits D and A’ in Fig. 7 having special symmetry, the degeneracy
is 0.) Thus, generally speaking, shell effects at A+0 are expected to become weaker
in comparison with those in the As=0 limit, and it seems hard to understand the
enhancement mechanism of the supershell effect at A0 in terms of the degeneracy
property. . :

Next, let us consider the other factor, i.e., stability of periodic orbits. In Fig. 9
we show calculated values of TrM for
relevant orbits as functions of As. At
- As0=0, orbits with the period 27/ws are

resonant (TrM =2), while orbits with the ' ' I ' I
period 27n/w, are non-resonant and take 2
TrM=—2. With increasing Ao, TrM I ;
for orbits 2A (double traversal of orbit = O ;
A) and B decrease and deviate from 2. -1F .
At 23004, a period-doubling bifurcation -2
of orbit B occurs; a new stable orbit K is L P L :
created and orbit B becomes unstable. 0 01 02 03 04 05 06
Orbits C and C' are unstable for Ax>0 ' ' ' A
and their values of TrM become larger 4r 4 ]

. as Aso increases. According to the argu-
ment in § 2.4, we thus expect that the 2
contributions of these orbits to the shell s
effect decrease with increasing Asm. On =
the other hand, orbit A is stable and its 2
TrM value approaches towards 2 as Aso
increases. This implies that the contri- 4l |
bution of orbit A becomes more impor- . . . L
tant. In this way, relative magnitude 0 01 02 03 04 05 06
of the amplitude factors between the Aao
two families of orbits with the period Fig.9. Traces of the reduced monodromy matri-
xZﬂ/wSh and %271'/a)J_ changes so that ces TrM for the non-isolated periodic orbits

the interference effect between them shown in Fig. 7 (see text for their definitions).



Semiclassical Analysis of the Supershell Effect 739

becomes stronger.

The above discussion is based on the expression (2-11) obtained by the SPA. We
should note, however, that our classical phase space contains both regular and chaotic
regions, i.e., our system is a mixed system. As is well known, such a system is
abundant in the resonance regions where the SPA breaks down, so that the amplitude
factors An, should be evaluated by means of a more sophisticated method beyond the
SPA, e.g., the uniform approximation.”® This is an interesting fuiture subject, and we
expect that the above consideration will remain valid, as long as a qualitative feature
is concerned, even when nonlinear effects beyond the SPA are taken into account.

6.2. Scaling properties and Fourier analysis

By virtue of the scaling property, Eq. (4-5), the following scaling rules hold:

SAE)=ET,,
g(E)=E*3(1),
A?(E) = EdﬂzAr(l) , (6 ° 1)

where d, denotes the degeneracy of orbit 7; dy=1 for a general orbit and 0 for an
isolated orbit like D or A’ in Fig. 7. '
Let us consider the Fourier transform

Ps)= / dEe*CE-4"g(E) | | (6+2)

of the level density ¢(E) multiplied by E~%% (The factor E~%? is attached here to
compensate for the energy _dependence of the amplitude factor A;; see below.) If one
inserts the exact level density g(E)=221.0(E — E,), it becomes

P(qm)(s):zn}En—dlzeisEn . v (6 . 3)

This quantity can be evaluated with the use of the eigenvalues obtained by a quantum
mechanical calculation. On the other hand, if we insert the semiclassical level
density (2-4) in (6-2) and put d=1 appropriate to non-isolated orbits, then we obtain

P(C‘)(s)=F(s)+7§Am(1)em""”26(s— nT5). ~ (6-4)

Here P(s) comes from g(E) and has a peak at s=0 associated with the orbits of zero
length. On the other hand, the second term on the r.h.s. gives rise to sharp peaks at
s=nT, associated with the classical periodic orbits y with periods 7, (and their
multiple traversals). Note that, owing to the scaling property (6-1), periods 7 of the
primitive orbits are equal to action S,(1) calculated at E=1. If the trace formula is
valid, one expect P=PU™  Thus, we can extract information about classical
periodic orbits by calculating P“™. Namely, the amplitude factors and the Maslov
phases of the periodic orbits may be obtained from absolute values and arguments of
PU™(s), respectively.?®

Now, let us evaluate the Fourier transform (6-3). Since the summation is taken:
over a finite number of quantum levels in practice, we introduce the Gaussian cutoff
and define a smoothed version of it;
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Pusls)= [as' P —5)/ds), (6-5)
where f(z) is the Gaussian f(z)=exp(—z?/2). For (6:3) and (6-4), we obtain |

PR™(s)=3En e’ f( En/Emax) , - (6:6)

PES)=Pas) + S Aw(De™ (s~ nT)lds), (67)

where Emax=1/s.

We calculate the eigenvalues by a matrix diagonalization method with the
deformed oscillator bases, and use the lower part of the resulting spectrum. Figure 10
shows the absolute value of P¥™(s) for Ae=0.2~0.4 calculated with Emax=15%wsn(s0).

ol ez |
o) I I |
0 1 2 3 4 5
" | 7 03 |
z :
0 /\
| Il Al L
" | | ' rr=04 ]
ol 1
A s 1 |

s/T

Fig. 10. Fourier transform P{™(s) of the level density g(E) defined by Eq. (6-6), for A=0.2, 0.3 and
04. w(0) is put to 1. Gaussian cutoff is done with Emax=7%/ds=15hws{A). Arrows indicate
periods of the classical periodic orbits (see Fig. 7) and of their repetitions. This figure is basically
the same as Fig. 15 in our previous report;'”? but, accuracy of the numerical calculation is
significantly improved so that the peak at s/r=1 is now clearly seen. This improvement greatly
facilitates the discussion on the classical-quantum correspondence (see text).
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The loci of the periods of classical peri- 10
odic orbits and their multiple traversals
are indicated by arrows in the figures.
We see nice correspondence between the
peaks of P(s) and the periods of classi-
cal periodic orbits. Almost all peaks
can be explained in terms of the classical
orbits, indicating that the properties of
quantum spectrum are characterized
mostly by classical periodic orbits.
Next, let us notice the A5 depen- ' l l
dence of P“"(s). In Fig. 10 we see that 0 . . : :
the peak at s=~2n/ws» decreases, while
the peak at s~m/ws, grows up with Ao :
increasing As. Since heights of the Fig. 11. Peak heights in the Fourier transform
peaks in P(qm)( S) indicate intensities com- defined by Eq. (6+6) at the periOfis of classical
ing from the corresponding periodic periodic orbit A and of its rr‘lultlple traversals
. L. . ; . (m=1, 3, 5), plotted as functions of As. Gaus-
orbits, this implies that the contributions sian cutoff is done with Emas—12%wm(ds).
from the orbits with the period = TT/wsn . Two arrows represent the period-tripling and
become increasingly important as Aso period-5-upling bifurcation points.
increases. The change in relative inten- '
sity as a function of Asy between the two families of periodic orbit seen in Fig. 10 may
be responsible for the enhancement of the supershell effect in the reflection-
asymmetric SD potential, in accordance with our discussion in the preceding subsec-
tion.

P(mTa(As0))

0 01 02 03 04 05 06

6.3. Quantum signature of bifurcations

In order to see how the bifurcations (resonances) of periodic orbits affect the
magnitudes of the Fourier amplitudes, let us evaluate the heights of the peak as
functions of As at the periods of the classical orbits. As examples, we take the
period-tripling and the period-5-upling bifurcations of orbit A, which occur at As0=0.36
and 0.25, respectively. In Fig. 11 are plotted the calculated values of P{¥™(s) as
functions of Ase at specific values of s that correspond to the periods of single, three-
and five-fold traversals of orbit A. In accordance with the argument given below
Eq. (2-10), we find that the peak-heights indeed exhibit supremes about the bifurcation
(resonance) points but with rather significant delays. To account for this delay, it
may be necessary to go beyond the SPA.

6.4. Amngular momentum decomposition of the trace formula

As our system is axially symmetric, the angular momentum about the symmetry
axis pe is a good quantum number. Thus, the level density can be decomposed as
9(E)=2ng(E; m) with m denoting the angular momentum quantum number. Let us
derive a semiclassical expression of g(E; m). Writing the three-dimensional coordi-
nate vector as ¢=(Q, ¢) with @ =(p, z), the Green function may be decomposed as
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Gla', a5 B)= 3 GUQ", ¢y+2nn), (@', 0); E)

=3 [aMe > G(Q”, Q'; E, M)

)

= 3 e™G(Q", Q5 E,m), , (6-8)

m=—

where G denotes a Fourier transform of G with respect to ¢=¢" — ¢’, and where the
Poisson sum formula is used in obtaining the last expression. Taking the trace of
Eq. (6-8), one can derive the trace formula for g(E; m) in a way similar to (2-4),?

9(E; M)Z—Zlm/deG(Q, Q; E, m)

= 7(8; m)+— i B Ercos(noa ) (x/2)n), (6-9)

S N A O

8

6
—_ 4
&2
o 2

0

s/n
Fig. 12. Fourier transforms of the level density g(E; m) in the m=0 subspace for 4»=0.2, 0.3 and 0.4.
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where ¢, denotes the action integrals along the two-dimensional closed orbits « in the
(p, z) plane, ., the periods and y. the Maslov phases. Using the symplectic property
of the monodromy matrix, Wre can be written as

Wna=det(1—Ma”)=2—Tr(Ma") s (6'10)

where M, is a 2X2 monodromy matrix. Note that, for symmetric self-retracing
orbits, M,” is different from M." appearing in Eq. (2-11). It is easily seen that, due to
the reflection symmetry with respect to the z-axis, these orbits in the (p, z) plane have
periods half of those in the three-dimensional space.

Now, for m=0, a scaling property holds so that we can use the Fourier transfor-
mation technique. Since the degeneracy of the orbits is zero in the two-dimensional
space, we put d=0 in Eq. (6:6). From the above consideration, one expect that the
Fourier transform will exhibit peaks, in addition to those corresponding to the periods
of closed orbits, also at half of the periods of the three-dimensional symmetric

- self-retracing orbits. The results of calculation is shown in Fig. 12. Again we find
a clear correspondence between peaks of the Fourier transform and periods of
classical orbits. As expected, peaks appear also at half integer times the period of
orbit A.

§7. Concluding remarks

We have found a clear correspondence between the shell structure, i.e., the
oscillatory structure in the smoothed level density, and the classical periodic orbits for
single-particle motions in a reflection-asymmetric SD oscillator potential. We have
then shown that the supershell effect, i.e., an interference effect between two families
of the periodic orbits having periods approximately 27/w, and 27/wss, becomes more
significant when the reflection-asymmetric deformation increases. This supershell
effect is in clear correspondence with the odd-even effect in Ns pointed out in Refs.
8) and 10). Possible origins of this enhancement phenomena have been pointed out in
connection with stabilities of the classical periodic orbits. Quantum signature of the
period-tripling bifurcation of the shortest-period orbit is also pointed out.

It should be emphasized that our model Hamiltonian system is a mixed system
where chaos and tori are intermixed; accordingly, period-multipling bifurcations
.occur, as we have seen, rather frequently when the reflection-asymmetric deformation
parameter is varied. As is well known, the SPA breaks down at the bifurcation
points so that we cannot use the Gutzwiller trace formula for the aim of calculating
the smoothed level density. Instead, by virtue of the scaling property of our model
Hamiltonian, we have been able to use the Fourier transformation technique to find
the quantum-classical correspondence. Properties of the Gutzwiller amplitudes have
been used only as a guide to qualitative discussions. It is an interesting future subject
to investigate the problem discussed in this paper by using a more sophisticated
method, like the uniform approximation, which goes beyond the SPA.
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Appendix
—— Derivation of Eq. (2-11)——

The semiclassical expression of the Green function in an f-dimensional system is
G(q", q’; E)= ZWHDsIexp( S(¢”, ¢'; E)— uc~—) (A-1)

where S(q”, ¢’; E) is the classical action f/p-dq along a trajectory connecting g and
q@” with energy E. The determinant Ds in the amplitude factor is given by

_|*Sjoq7oq’ #SloEsq’

T |oSloq oE  BSloE* | (A-2)

Let us consider a three-dimensional system (f=3) with axial symmetry, and define an
orthogonal coordinate g=(&, 7, {) for each periodic orbit. We take & along the
direction of the trajectory and 7 perpendicular to both £ and the azimuthal direction
¢. Differentiating the Hamilton-Jacobi equations

H(p"=34S/3a”, a")=E, / (A-3a)
H(p'=-0S/oq’, q')=E (A-3b)

with respect to E and using 7 = £ =0, one obtains

oH #S _ ., ‘ .
557 dq7oE = & S (A-4a)

_ GOH PSS . ,

1= 25y aEaqi— ¢ S (A-4b)

where Szy denotes (6°S/0xdy). If one differentia‘ges (A-32) and (A-3b) with & and &7,
respectively, one obtains

Sq{’é’:Sé”q{iO . ’ (A'S)
Thus, the determinant (A-2) is written as
SEE SEE' SE’?' SE{’
Ses 0 0 0| 1 1

Sps 0 Sy Sore XN-1
S{”E 0 ) S{rrﬂr Sg/r;r

Sﬂ””l S7I” ¢r
Sergr Serer

Ds= (A-6)

If we use coordinates (&, 7, ¢) which are generally not orthogonal, then we obtain
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Syrer Sors
SW]’ SW/’

1. 1.
]/I E//, ]’/EI

Ds:

, (A7)

where J is Jacobian of the coordinate transformation, /” and /” denoting its value at

" and q”, respectively, and ¢=¢"—¢’". Let us evaluate the trace of the Green
function in the stationary phase approximation. As usual, the action integral along
a closed path may be expanded about a stationary point g as

Sta, @ B)=5(a, @ B+a-' [ S+25]

=q

1, T[ &S #S | S ] o
+ 2 (q Q) aq”aq” +2 aqﬂaqr T aq/aq/ q"=q,=§((1 q)+
(A-8)

The stationary phase condition requires the second term on the r.h.s. to vanish. This
is nothing but the condition for the trajectory to be periodic, i.e.,, p”=p’. Taking the
axial symmetry into account, we can rewrite Eq. (A-8) as

S(a, @; B)=S(E)+5 W7+, (A-9)

where
W(E):det(l_M)Sn"n’:(z_TrM)Sﬂ"n’ , (A'lO)

M being the (2X2) monodromy matrix for the periodic orbit (see § 2.2). Performing
the Gauss-Fresnel integral with respect to 7, we finally obtain the following result:

Gose(B) = thlmz [dedzdn /1D exp[ <S+—W(§)77 )—zx—}

2
__A4rm By N . .
(27?7&)3/22 JlZ—TrMyl LOS(Sr/h /1771'/2) , . (A 11)
where 1,=k,—sign(W,)/2 and
y ,
de|[|Swr Sy . b Apy |12 ’qu(t—}- T,) |12 .
B=f{a E ( o Suo | ) gt = [ Gt (A1)
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Abstract

RPA calculations, based on the cranked shell model, are performed for superdeformed '**Dy in which five excited bands
have been found recently. We show that characteristic features of the observed dynamical moments of inertia are well
accounted for by explicitly taking the octupole correlations into account. Importance of the interplay between rotation and
octupole vibrations is stressed, and it is suggested that one of the observed excited bands might be a collective octupole

vibration built on the superdeformed yrast band.

The discovery of superdeformed (SD) rotational
bands has opened many new avenues in studies of nu-
clear structure at the extremes of rapid rotation and
large deformation. Recent experimental developments,
especially large y-ray detector arrays (Eurogam, Gam-
masphere, Ga.Sp, etc.), have offered better observa-
tional limits which help in clarifying many aspects of
high-spin nuclear structure.

Recently, five excited SD bands (Bands 2-6) have
been observed in 32Dy in a Eurogam experiment [1].
According to various theoretical calculations [2~4],
152Dy has a SD doubly-closed-shell configuration cor-
responding to the large single-particle gaps at Z =
66 and N = 86. Since the pairing correlations in SD

! Present address: AECL Research, Chalk River Laboratories.
Chalk River, Ontario KOJ 1J0, Canada.

20n leave of absence from Institute of Theoretical Physics,
Warsaw University, Warsaw, Poland; Institute of Physics, Warsaw
University of Technology, Warsaw, Poland.

bands in the A = 150 region are expected to be seri-
ously quenched due to the low level-density of single-
particle states and rapid rotation, the angular momen-
tum variations in the dynamical moments of inertia,
J? = dI/dw, are mainly due to the intrinsic angular
momentum alignment of single-particle orbitals, espe-
cially high-N intruder orbitals [2-4]. Consequently,
the J‘» moments of inertia carry important exper-
imental information about single-particle configura-
tions in SD bands.

The excited SD bands in '3?Dy, observed by Dag-
nall et al. [1], have a very low intensity relative to the
yrast SD band. This might be related to the predicted
SD magic structure in '32Dy. Due to its magic struc-
ture, collective excitation modes are expected to influ-
ence the properties of near-yrast SD bands in '5?Dy.
In this context, octupole vibrations play a very special
role. According to the RPA calculations based on the
cranked shell model [5,6], low-lying octupole vibra-
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tions are more important than low-lying quadrupole
vibrations built on the SD shape. Strong octupole cor-
relations in SD states have also been suggested theoret-
raall st DL, 777 18T ML OV SR, r1s7
ICdlly I INCIS. | /—10]. 10C bdlbuldLlUllb Ul I\Ul 110]
demonstrate that the inclusion of the coupling between

quasiparticle and octupole vibrational modes is impor-

tant for understanding the experimental data for SD
193Hg [10].

In this Letter, we discuss octupole correlations in
excited SD bands of ?Dy. Comparing our results
with the experimental data, we propose a plausible
scenario for the microscopic structure of excited SD
bands in *?Dy. This scenario is compatible with the
discussions by Dagnall et al. [ 1] but the influence of
octupole correlations is explicitly considered. Indeed,
one of the excited SD bands is suggested to have a

collective octupole vibrational character. If this inter-

pretation is correct, this is the first case in which the
collective vibrational mode at SD states in the A = 150
region has been observed experimentally. 3

In order to investigate the influence of octupole vi-
brations on the excitation spectrum of SD 92Dy, the
RPA treatment has been carried out. The model Hamil-
tonian has been assumed to be of the form:

II

—n _ 1N\ .
H—”s_ _§ f /(JKZ3KZ3K
K
1\ ; ~n Tt ~n I
— 17 2 _Xik\T3lig) "\T3l)ik) ()
K

where Ay, is a cranked single-particle Nilsson Hamil-
tonian, h;,p, = Anilsson — wrotfx, and Q;IK = (r3Y§K)”
and D;IK = (rh K)" are, respectively, the dou-
bly stretched octupole and dipole operators defined
by coordinates x; = f}'txi [18]. The equilibrium
quadrupole deformations have been determined by
means of the shell correction method. A large con-
figuration space composed of nine major shells for

A 1 h hoan ~rd Ffar onls
both protons anG neulrons nas veéen usea 10T 801 vxus

the coupled RPA dispersion equations. The spurious
velocity dependence associated with the 12 and I - s
terms in the Nilsson potential are removed by means
of the method proposed in Ref. [19]. We note that
the obtained single-particle routhians are similar to
those for the Woods-Saxon potential [3]. The pairing

3 An excited band in SD 'Hg has been interpreted in terms of
octupole vibrations [17].

gaps A, and A, are assumed to be zero: Although
dynamical pairing fluctuations never vanish, relative
energy spectra and relative alignments are known to
be well described by the simple cranked shell-model
routhians without pairing at wy > 0.3 MeV/F, ie.,
in the region where the cxperimental data are avail-
able [20,21]. In order to determine the isoscalar
coupling strengths, yig, we have carried out the
systematic RPA calculations for the low-frequency
I™ = 37 states in medium-heavy nuclei. Guided by
these calculations, we use y3x = 1.05x%Q where
X% are the selfconsistent values for the harmonic
oscillator potential [18]. For the isovector dipole
coupling strengths we use y1x = —aV;/{(#2)") with
Wi = 140 MeV [22].

Fig. 1(a) shows the RPA eigenvalues as functions of
rotational frequency wr. The lowest excitation mode
with signature @ = 1 (dotted line) can be associ-
ated with the collective octupole vibrational band. The
band has K = 0 at e,y = 0, but the K-mixing due to
the Coriolis force is significant at high rotational fre-
quencies. The B(E3)-values calculated at w.; = 0 in
the strong coupling scheme are around B(E3; 37 —
07) =~ 35 W.u. By comparing Fig. 1(b) and (c), we
see that the octupole collectivity carried by the low-

est = 1 uauu UCblcdbe glauuauy W]lll Wrat. UIl lIlC
other hand, collectivity of the lowest excitation mode

with o =0 (cnhd hm:\ is weak and this mode has a

L0 10T

dommam 1p-1h configuration at high frequency. The
excitation energy of this band drastically decreases
in the high-frequency region and its alignment, { =
—dE,/dw, is evaluated to be about 57. Since this band
has much lower excitation energy at high frequency
than the octupole vibrational & = 1 band, it may be
populiated with higher intensity.

Calculations show that the neutron & = 86 single-
partlcle shell gap persists at 111511 1requenc1es, while
the proton Z = 66 shell gap vanishes at high angu-
lar momenta where the proton N = 7 (a = —-11/2)
orbital crosses the fourth N =6 (a = —1/2) orbital
(see Fig. 2 and discussion in Ref. [1]). The 1p-1h
excitation associated with these two orbitals gives rise
to the Towest excited state with signature o = 0. The
alignment of this 1p-1h excitation is equal to i, — iy ~
4.5k; i.e., the large alignment of the band comes from

tha intringic ancenular momentum of the nroton intruder
tne inlrinsic anguiar momentium ol n€ proion miruger

N =7 orbital. In contrast, the lowest 1p-1h excitation
with @ = 1 is associated with the proton N =7 (a =
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Fig. 1. Results of RPA calculations at quadrupole deformation dosc = 0.59. (a) Calculated RPA eigenvalues (in MeV) for SD [52Dy, plotted
as functions of rotational frequency wo (in MeV/h). Solid (dotted) lines indicate negative-parity states with signature @ = 0 (a = 1).
The lowest & = 1 state has K = 0 in the limit @ = 0. (b) Electric octupole strength EK |(n|%( 1+ 73)Q3K|0)|2 at weot = 0.3 MeV/A in
Weisskopf units (|0) and |n) denote the RPA ground state and excited states, respectively). Solid and dotted lines indicate the a = 0 and
a = 1 states, respectively. The vertical axis represents the excitation energy as in (a). (¢} The same as (b), except for wyo = 0.6 MeV/h.
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Fig. 2. Neutron and proton single-particle routhians as functions of rotational frequency wry. The Nilsson parameters («, ) are adopted
from Ref. [23], and the spurious velocity dependence associated with /2 and [ - s terms are removed according to a prescription developed
by Kinouchi and Kishimoto [19]. Orbitals having parity and signature, (7,a) = (+,1/2), (+, ~1/2), (-, 1/2), and (—, —1/2) are
shown by solid, dashed, dotted, and dash-dotted lines, respectively. The oscillator quantum number, Nosc, is indicated for “high-N"" orbitals.

—~1/2) and the third N = 6 (@ = 1/2) orbital. Its ex-
citation energy is about 1 MeV higher than that of the
a = 0 band in the highest frequency region. Because
of this effective energy gap, the collective mode with
o = 1 survives up to rather high frequencies. Since
the alignment of the collective octupole phonon is less
than 3#, the lowest a = 0 band carries a larger align-
ment and becomes lower at high frequency.

In the following, we discuss the dynamical moments

of inertia of Bands 2, 3, and 6 for which octupole cor-
relations are calculated to be important. Characteristic
features of Bands 2, 3, and 6, determined in Ref. [ 1],
can be summarized as follows: (i) J ) of Band 2
(Band 3) has a bump (dip) at wy = 0.5 MeV/F;
(ii) Bands 2 and 3 are populated with higher intensity
compared to other excited bands (Bands 4-6); (iii)
J @ of Band 6 is larger than that of the SD yrast band
and is almost constant as a function of rotational fre-
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Fig. 3. Calculated (solid lines) and experimental (symbols) dynamical moments of inertia for excited SD bands (Bands 2, 3, and
6) in '2Dy. Dotted lines indicate 7> for the yrast SD band, which is approximated by the Harris formula \7(2) = a + Bw? with
a=88.5h2 MeV~! and 8= —11.95% MeV~3. See text for details.

quency; (iv) At low values of w., Band 6 shows a
decay branch into the yrast SD band.

On the basis of the above observations, we pro-
pose a scenario in which the Jowest and the second
lowest excited a = O states (solid lines in Fig. 1),
and the lowest a@ = 1 state (dotted line) correspond
to Bands 2, 3, and 6, respectively. Firstly, the 7%
bump in Band 2 and the dip of Band 3 occurring at
the same frequency can be associated with crossing
between the two lowest & = 0 states, see Fig. 1. Sec-
ondly, the high intensity of Bands 2 and 3 indicates
that at high frequency these bands have lower exci-
tation energy than the other bands. Our conjecture is
consistent with the intensity data for Band 2.* Thirdly,
weak wroi-dependence of 72 in Band 6 suggests an
almost constant curvature d°E, /dw® of the routhian
(see Eq. (2)). Finally, the partial decay of Band 6
into the yrast SD band indicates that Band 6 may be a
collective band possessing significant (E1) transition
matrix elements into the yrast SD band.

In order to make the comparison with experimental
data quantitative, we calculate the dynamical moments
of inertia J®. They can be decomposed as

4 On the other hand, calculations suggest that intensity of Band
3 should be weaker than that of Band 2 whereas experimentally
it is similar; this weakens our interpretation of Band 3.

; 2
(2) di 2) d Ex
TH=07 g =%~ G

dw (2)

where \70‘2’ denotes the dynamical moment of inertia
of the yrast SD band of 32Dy (RPA vacuum). We ap-
proximate the experimental 7 (2) by the Harris expan-
sion, J{* = @ + Bw?, with o = 88.5h> MeV ™' and
B = —11.97* MeV 3. Calculated and experlmental
values of 72 are compared in Fig. 3; it is seen that
the characteristic features of the experimental data are
well reproduced. It is worth noting that the octupole
correlations are also important for reproducing exper-
imental 7 values for Bands 2 and 3.

In order to discuss the collectivity of octupole cor-
relations, we show in Fig. 4 the forward RPA ampli-
tudes® i, (aB) for Bands 2, 3, and 6. We see that
Bands 2 and 3 correspond to simple 1p-1h excitations
at the highest frequency region; i.e., proton N =6 —
N =7 and proton N = 6 — N =5 excitations, respec-
tively. Bands 2 and 3 cross at »'§ =~ 0.5 MeV/A. For
wrot < @8, collective components in both bands are
significant. In fact, the interaction matrix element be-
tween Bands 2 and 3 would be too small to reproduce
the observed bumps and dips of 7 if octupole cor-

5Sums of the squared backward RPA  amplitudes,
D s lont@B), at @i = 0.3 MeV/h are 0.13, 0.11 and 0.48

for Bands 2, 3 and 6, respectively.
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Fig. 4. Absolute values of the forward amplitudes, ¢ (aB)|. of the lowest and the second lowest RPA solutions in the @ = 0 sector
(portions a and b), and the lowest RPA solution in the a = [ sector (portion ¢), corresponding to Bands 2, 3, and 6, respectively. Solid
(Dashed) lines indicate neutron (proton) amplitudes. All amplitudes whose absolute values are greater than 1.5 x 10~! are displayed.

The characteristic p-h excitations are indicated.

relations were turned off. On the other hand, Band 6
has vibrational character in the whole range of rota-
tional frequency. The octupole collectivity of this band
decreases with rotational frequency.

In summary, we have investigated the effects of oc-
tupole correlations in excited SD bands of '*2Dy by
means of the RPA based on the cranked shell model.
We found that a low-lying octupole vibrational band
(a = 1) appears near the yrast band (E; ~ 1 MeV).
According to our scenario, Bands 2, 3, and 6 have
negative parity. Band 2 (3) is the lowest (second low-
est) a = 0 band. Band 6 is the octupole vibrational
a = 1 band. The collectivity of Band 6 is expected
to gradually decrease with wo, while Bands 2 and 3
cross each other at wy; &~ 0.5 MeV/ k. The calculated
T values reflect the w.o-dependence of the internal
structures of these bands, and seem to agree well with
major characteristics found experimentally.
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Abstract

We investigate microscopic structures of octupole correlations at high spin
in superdeformed open-shell nuclei in the Gd-Dy region, using the random-
phase approximation (RPA) based on the cranked shell model. The result
of our calculation indicates that constructive interplay between rotation-
aligned particle-hole (or two-quasiparticle) excitations and octupole vibra-
tions is very important in determining octupole softness of superdeformed
bands.

1. Introduction

Since the discovery in 32Dy, the superdeformed bands are
ne of the focus in high spin nuclear physics. Many experi-
mental and theoretical studies have been done on the nature
of the yrast and excited superdeformed bands. Recently,
some experimental data, suggesting the existence of octupole
vibration built on superdeformed bands, have been reported
both the 4 ~ 150 region [1, 2] and the A ~ 180 region
.~). The octupole degrees of freedom in the superdeformed
region have been attracting theoretical attentions even
before the appearance of any experimental information [4-
17].

At the superdeformed shape, we have a new situation in
shell structure. Namely, a major shell is composed of almost
equal number of levels of both parities. This situation is in
contrast to a major shell in spherical nuclei, which is com-
posed of levels with specific parity except for the intruder
levels. Therefore, it is expected that the negative parity exci-
tations, such as octupole vibrations, play more important
roles at low excitation energy in superdeformed nuclei than
in spherical or normal deformed nuclei. Especially, in
analogy with the well known shape transition from spher-
ical to quadrupole deformed shapes due to the correlation
between valence nucleons within a major shell, one might
expect that, if nucleons are added to the superdeformed
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closed shell, octupole collectivity increases, and eventually
the system acquires a stable octupole deformed shape.

In superdeformed high spin states, however, there are two
important situations that would significantly affect the
properties of the octupole vibrations and hence would affect
the above scenario of shape transition. Firstly, due to the
strong Coriolis mixing effect, the K-quantum number is not
conserved. Therefore, there would be considerable differ-
ences between the structures of octupole vibrational states

" built on non-rotating states and those built on rapidly rotat-

ing states. Secondly, contrary to the spherical open shell
nuclei at zero rotational frequency, which have considerable
pairing gaps so that two-quasiparticle excitations have
much larger excitation energies than collective vibrations,
the pairing gaps are predicted to be zero or very small in the
superdeformed bands. Furthermore, the excitation energies
of some rotation-aligned quasiparticle states might become
very small and appear in the same energy region where the
low-lying octupole vibrational states exist. In this paper, we
analyse the microscopic structure of octupole vibrations
built on superdeformed open shell nuclei, directing our
attention to the Coriolis alignment effects and the weak-
pairing effects on them.

2. Rotating shell model + RPA

We have carried out the random phase approximation
(RPA) calculation based on the cranked shell model with
the use of the doubly stretched octupole-octupole inter-
actions. The total Hamiltonian is written as

1 At An "
H=ZE#GZ(Z“—§ZKKQ3;< 3K» (l)
©® K
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where a} and E, are respectively creation operators and
energies of the quasiparticles, which are obtained from the
cranked Nilsson-BCS Hamiltonian,

hsp + hnils - A(PT + p) - ;~N - hwrol fx' (2)

h.., Pt, and N denote the Nilsson Hamiltonian, the mono-
pole pair-creation operator, and the number operator,
respectively.

Doubly-stretched octupole operators, 05, are obtained
from the usual octupole operators by the substitution,
Xx; = (w/we)x;. The interaction strength, kg, should be
determined by fitting experimental data. However, we adopt
the theoretical estimate by Sakamoto and Kishimoto [18]
which is valid for the harmonic-oscillator potential, since
such experimental data on superdeformed nuclei are not
available. Octupole operators are classified according to the
_signature, the symmetry with respect to the rotation of =
_about the cranking axis (x-axis),

+05%. &)

The angular momentum projection K on the symmetry axis
runs from O to 3 (1 to 3) for the octupole operators with
signature — (+). Octupole operators can also be classified
according to the angular momentum projections on the
cranking axis, which we denote by ¢. ¢ takes values {3, 1,
—1, —3} for negative signature and {2, 0, —2} for positive
signature.
The RPA equation is expressed as usual

[H, XI]RPA = hQn XrTn (4)

e—inj::Q;(Kj:)exrux =

where 7, denote the excitation energies of the RPA
phonons,

X1 =3 {V.wala) + ¢ (uv)a,a,}. ©)

The forward and backward amplitudes, y(uv) and ¢(uv), are
normalized as

3 {Uauwv)? — ¢, wv)*} = 1. (6)

3. Results

In the following, we present the result of the calculation on
some isotones of N = 86, including nuclei in which super-
deformed bands have not been found yet. The rotational
frequency is fixed to 0.7 MeV, which corresponds to the high
end of the observed superdeformed bands in this mass
region. The equilibrium shapes are determined for each
nuclei by the minimization of the total Routhian surface cal-
culated with the Strutinsky method, therefore slightly differ
for each nuclei. The pairing gaps are calculated selfconsis-
tently, with the interaction strength determined from the
average-gap method given in [19].

Figure 1 shows the octupole strength functions. All RPA
solutions lower than 3.5MeV are shown in the figure.
Figure 1(a) is for the signature (—) excitations while Fig.
1(b) is for the signature (+) operators. The strengths are
drawn for each isotone and are classified according to the
angular momentum projection on the cranking axis, & As ¢
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Fig. 1. Octupole strength functions calculated at the rotational frequency
0.7MeV for the isotones of '5°Gd. The negative and positive signature
sectors are shown in panels (a) and (b), respectively. All RPA solutions
below 3.5MeV are shown. The horizontal axis indicates the excitation
energy in MeV, while the vertical axis the intrinsic mass octupole strength
in the Weisskopf unit. The strengths are drawn for each ¢ component. For

_every nuclei, the equilibrium deformations are calculated in terms of the

Strutinsky method and the pairing gaps are calculated selfconsistently.

is not a good quantum number, each RPA solution ha.
strengths for all values of ¢ available for a given signature.
An interesting observation in Fig. 1 is that the octupole
operator with larger ¢ tends to have more strength in the
lower excitation energy region on the average. (It does n~t
mean that the low-lying levels always have largest streny
for largest £, however) Another observation is that, the
octupole strength is concentrated in a narrow region for
150Gd, while it is more spread in other nuclei. This is
because there are more proton particle-hole excitations
carrying octupole strengths in other nuclei, while those exci-
tations are mostly blocked in !°°Gd and there are only a
smaller number of low-lying unperturbed particle-hole exci-
tations carrying octupole strength.

It is remarkable that for !*2Dy and 3*Er, there are low-
lying solutions with considerable octupole strengths for
¢ = 3 [signature (—)] and ¢ = 2 [signature (+)]. One might
call these nuclei “octupole soft” because of the existence of
low-lying octupole strengths. It should be noted, however,
that the octupole strengths of these lowest RPA solutions
are not necessarily largest, nor larger than the octupole
vibrational state in '°°Gd. Therefore, the collectivity of
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these states might not be very large, unlike the collectivity of
the quadrupole vibrations in spherical open shell nuclei.

In order to get a better understanding on this point, we
show in Table I and II the microscopic structure of the
lowest excited states. Here, we have listed the energy of the
RPA solutions, the largest two-quasiparticle (2qp) com-
ponents of the RPA phonons, the squared forward ampli-
tudes ¥ ,(uv)?, the sums of the squared forward amplitudes
for protons ¥, (1) =Y ,. ¥, (/,zv)' the sums of the squared
forward amphtude ¥, =Y, ¥, (uv)?, unperturbed excitation
energies and unperturbed octupole strengths carried by the
largest 2qp components. We also list, for reference sake,
these quantities for !°°Gd zero rotational frequency.

It is seen that the lowest excited state of 32Dy is com-
posed mainly of a single proton 2qp excitation, whose
unperturbed energy is not much larger than the excitation
energy of the RPA phonon. In the case of !**Er, the lowest
RPA phonon is composed not of a single but of a few
proton 2qp excitations. Namely these states are composed
mainly of valence proton excitations. On the other hand, in

e excitation energy region about 1.5MeV [for signature
—)] and 2 MeV [for signature (+)], proton excitations and
neutron excitations contributes more or less equally to the
RPA phonons.

It should be stressed that the magnitudes of the octupole
strengths of low-lying RPA modes cannot be explained in
terms of only the main 2qp components. In fact, the octupo-
le strengths are carried by a huge number of small com-
ponents. Namely, the octupole softness in open shell nuclei
emerges as a result of the constructive interplay between
very low lying particle-hole (or two-quasiparticle) excita-
tions and coherent contributions from numerous two-
quasiparticle (or particle-hole) excitations of small
amplitudes.

4. Conclusion

We have investigated the microscopic structure of octupole
vibrations built on superdeformed open shell nuclei at high
spin. We obtained low lying solutions with large octupole
strengths in the N = 86 isotones heavier than Z = 64. Those
strengths are mainly carried by the octupole operators with
large angular momentum projections on the cranking axis.
We have found that, in some cases, the RPA phonons are
dominated by one or a few components of the proton
particle-hole (or two-quasiparticle) excitation(s). However,
they have significant octupole collectivities which arise from

table 1. Microscopic structures of some of the RPA phonons with negative signature appeared in Fig. I(a). Listed are the
excitation energies of the RPA phonons Q,(MeV), mass octupole strengths | {n|Q%|0)|? (w.u.), the largest two-quasiparticle

components of the RPA phonons, the squared forward amplitudes v, (uv)?

, sums of the squared forward amplitudes for protons

Y, (7), sums of the squared forward amplitudes ¥,, unperturbed energies E,(MeV) and unperturbed octupole strengths
| {uv| Q%10 |* (w.u.) of the largest two-quasiparticle components. For reference sake the results for *°°Gd at zero rotational

frequency are also shown in the lowest rows, denoted as (*3°Gd)

nuclei Q, [<n| Q510> main configuration v (uv)? ¥ (n) ¥, E,. [<uv| Q5102
146Nd 0.92 27 n(532)5/2( —1i) — [420]1/2(—i) 0.65 0.99 1.03 0.99 0.48
1.52 42 v(761)3/2(i) — [642]5/2(1) 0.23 0.60 1.04 1.85 091
1485m 1.38 74 n[65113/2(—i) — [532]5/2(—i) 0.17 0.71 1.06 175 0.75
150Gd 1.45 115 n[651]3/2(—i) — [532]5/2(—1) 0.33 0.60 .12 1.80 0.79
152Dy 0.77 58 n[770]1/2(i) — [651]3/2(i) 0.87 0.96 1.06 0.98 1.20
1.55 82 v[76175/2(i) — [642]5/2(0) 0.40 0.32 1.08 1.85 091
1S4Er 0.75 41 n[532]3/2(i) — [404]9/2(i) 0.50 0.98 1.03 0.98 1.20
1.58 95 v[76173/2(i) — [642]5/2(0) 031 0.44 1.09 1.85 0.91
(*3°Gd) 2.01 300 v[880]1/2(i) — [770]1/2(i) 0.07 0.59 1.27 6.14 4.65
2.14 143 v[770]1/2(i) — [660]1/2(i) 0.11 0.39 1.11 2.35 0.05
233 100 [532]3/2()) — [40419/2()) 0.23 0.60 1.07 2.69 0.51
Table II. Same as Table I but for some of the RP A phonons with negative signature appeared in Fig. 1(b)
nuclei Q, [{n] Q510> main configuration ¥ (uv)? ¥ () vy, . [ <uv | Q410> 12
146Nd 0.91 27 n[532]5/2(i) — [420]1/2(—=1i) 0.79 0.99 1.03 1.00 0.46
2.52 63 v[642]5/2(i) — [521]3/2(—1i) 0.34 0.40 1.04 2.54 091
148Sm 1.58 25 n[532]5/2(i) — [641]3/2(—i) 0.43 0.77 1.02 1.73 0.46
2.11 58 n[422]3/2(i) — [532]5/2(—1) 0.40 0.78 1.04 2.16 0.05
150Gd 1.89 103 v[761]3/2(i) — [642]5/2(—1) 0.22 0.54 1.07 2.06 0.60
132Dy 0.63 37 n[770]1/2(i) — [660]1/2(—1i) 0.95 1.00 1.04 0.76 0.95
0.82 19 n[532]3/2(i) — [660]1/2(—i) 0.95 1.00 1.02 0.90 0.49
211 73 v[413]5/2(i) — [301]1/2(—1) 0.40 085 1.04 204 0.19
VS4Er 0.65 36 n[770]1/2(i) — [660]1/2(—1i) 0.89 1.00 1.04 0.79 0.83
0.77 18 n[532]3/2(i) — [404]9/2(—1i) 0.67 1.00 1.02 0.84 0.38
242 69 n[413]5/2(i) — [30171/2(—1) 0.10 0.56 1.04 2.24 0.15
(*3°Gd) 2.13 143 v[770]1/2(i) — [660]1/2(—1i) 0.11 0.39 1.11 2.35 0.05
233 100 n[532]3/2(i) — [404]9/2(—i) 0.23 0.60 1.07 2.69 0.51
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coherent contributions of a huge number of small com-
ponents. Thus, the constructive interplay of a few lowest-
lying particle-hole (or two-quasiparticle) excitations and
octupole vibrations is very important in determining the
octupole softness of superdeformed bands.
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Abstract

The correspondence between classical periodic orbits and quantum shell structure is investigated
for a reflection-asymmetric deformed oscillator model as a function of quadrupole and octupole
deformation parameters. The periodic orbit theory reveals several aspects of quantum level struc-
ture for this non-integrable system. Good classical-quantum correspondence is obtained in the
Fourier transform of the quantum level density, and the importance of periodic orbit bifurcation is
demonstrated. A systematic survey of the local minima of shell energies in the two-dimensional
deformation parameter space shows that prominent shell structures do emerge at finite values
of the octupole parameter. Correspondences between the regions exhibiting strong shell effects
and the classical bifurcation lines are investigated, and the significance of these bifurcations is
indicated.

1. Imtroduction

Shell structure is one of the important aspects of finite quantum many-body systems.
In the single-particle level density, one may generally find some regular patterns like
shells consisting of dense and thin regions. This pattern changes with deformation, and
the system favors the shape which makes the level density at the Fermi surface lower.
Predictions of the superdeformed (extremely large quadrupole deformations with axis
ratio about 2:1) and the hyperdeformed (the axis ratio about 3:1) nuclear states, which
are hot current topics of high-spin nuclear structure physics, had been based on the
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above kind of consideration. Strong shell effects which appear at ellipsoidal shapes with
the axis ratios about 2:1 and 3:1 play essential roles in stabilizing such exotic shapes.
Reflection-asymmetric degrees of freedom are also one of the most exciting subjects
in the current high-spin physics. Superdeformed potentials possess remarkable single-
particle level structures where levels with different parities approximately (exactly in
the harmonic oscillator limit) degenerate in the same major shell, which may bring
about strong octupole correlations [1-3]. The recent remarkable development of large
y-ray detector arrays encourages us to find such exotic shapes like reflection-asymmetric
superdeformations, and to investigate the mechanism of producing them. Recently micro-
cluster physics has also attracted much attention, and many nuclear physicists have been
contributing to this new field. Shell structures and deformations of clusters are very
interesting subjects — their shapes can actually be seen with an electron microscope -
and one can apply almost the same theoretical framework to both nuclei and micro-
clusters [4-6].

A clear understanding of the origin of shell structure may be obtained by the use of
semiclassical theory. Correspondences between quantum spectra and classical dynamical
properties of Hamiltonian systems have been extensively investigated for two limiting
cases, namely, for integrable and strongly chaotic situations. Most physical systems are
situated in the midst of these limits, however, and belong to what we call “mixed” sys-
tems. The semiclassical theory for mixed systems is difficult and only a few aspects have
been clarified up to now. This difficulty is associated with the periodic-orbit bifurcations
(characteristic to the mixed systems) where the stationary phase approximation (SPA)
and the conventional trace formula for representing the quantum spectrum in terms of
classical periodic orbits breaks down. Fortunately, however, an approach in the inverse
direction sometimes works and one can extract the periodic orbit information from the
quantum spectrum by means of the Fourier transformations. This approach is very useful
to understand the shell structure of the quantum spectrum. We take this approach and
clarify some aspects of a mixed system, directing our attention to the influence of the
bifurcations of short periodic orbits on the gross structure of the quantum spectrum.

In this paper, we investigate the classical-quantum correspondence for an axially-
symmetric deformed oscillator model with reflection-asymmetric terms. This is a non-
integrable mode! and chaotic behavior gradually emerges in the dynamics as the octupole
deformation becomes large. The role of periodic orbit bifurcations will be emphasized.
In Section 2, basic elements of the semiclassical theory relevant to our analysis are
briefly reviewed. Special attention will be paid to the classical bifurcation phenomena
and their effects on the quantum spectra. In Section 3 our model is introduced and several
aspects of it are summarized. In Sections 4-7, we will present numerical results of the
semiclassical analysis and discuss their implications. It will be shown that prominent
shell structures emerge for finite octupole deformations superposed on the prolate shapes.
Origins of such new shell structures will be clarified. Section 8 is devoted to summary
and conclusion.
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2. Basic formulae
2.1. Classical Hamiltonian system

Let us consider a Hamiltonian system with f degrees of freedom. The equation of
motion (EOM) for a 2 f-dimensional phase space vector Z = ( p, q) is expressed as

d oH o -1
—Z=A— A=
A—, (1 0), (N

where O and I denote the f-dimensional zero and identical matrices, respectively. Now
consider a bundle of trajectories around a certain solution Z,(t) and write them as
Z(t) = Zy(t) +6Z(t). Then the EOM for 8Z(t) is given by

3*H(Z)

d
- BZ = A Za y =
dt F(Za(1)) 62 H(Z); 0Z;0Z;

(2)
up to the first order in 6Z. H is called Hessian matrix. One can easily integrate the
above differential equation and obtain the following solution:

0Z(t) =T exp /dTA'H(T) 0Z (ty) = S, (t — ty) 6Z(1p), (3)

fo

where 7, denotes that the exponential is defined by time-ordered product. S, is called
the stability matrix of the trajectory «, whose eigenvalues determine its stability.

Let 3 denote a (2f — 2) dimensional hypersurface in the phase space with fixed
energy E. It defines a time-discretized mapping M : 3 — 3 with classical trajectories,
which is called the Poincaré map. Periodic orbits Z are defined as the fixed points of
M, namely, by M(Z) = Z. The linear part M, (with respect to 6Z) of M about a
periodic orbit Z, is called “monodromy matrix” and describes the stability of the orbit:

M(Z, +8Z) =Z, + M, 8Z + 0(8Z%). (4)
The monodromy matrix is a symplectic matrix satisfying
AM AT =M, (5)

and this property restricts its eigenvalues as follows. Let A be one of the eigenvalues
of M,. Relation (5) guarantees that the reciprocal of A is another eigenvalue of M,.
Furthermore, M, is a real matrix so that the complex conjugates of these eigenvalues
are also eigenvalues. Thus the eigenvalues of the monodromy matrix generally appear
in quartets (e***#) In the two-dimensional case, they appear in a pair.

Let us now proceed to a discussion on bifurcations of stable periodic orbits. Consider
a trajectory that emerges at g with energy E and returns to the initial point, ¢ = ¢.
This kind of trajectory certainly exists for any ¢. The condition for this trajectory to
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be periodic is that the initial and final momenta coincide; namely, p’ = p. Using the
Hamilton-Jacobi equation, this condition can be rewritten as

_ S(d.¢E) _(_ 95(q.¢:E)\ _35(q)
iq dq iq
where S(g) denotes the action integral along the closed path under consideration. Thus,

the periodic orbit is the stationary point of this action integral. Let us expand S(q)
about the periodic point g:

0=p'-p (6)

325(q,9)
dqiq

=5+16¢"Bég+---. (7

S(g+6q)=S(q) +36q Sq+--

After some simple matrix rearrangements, one can express B in terms of the quadrants
of the monodromy matrix as

p (7 1, _ A B

B=B-({U-A)C(-D), M_(C D)' (8)
Note that

det(1 — M) = —det[C] det[B]. 9)

The above relations provide us with a clear understanding of the connection between
eigenvalues of the monodromy matrix and the bifurcation of periodic orbits. Suppose
that one of the eigenvalues of M becomes unity. Then the curvature tensor B for the
action S has a zero eigenvalue. This means that the stationary points of S (periodic
orbits) locally form a continuous set and a bifurcation can occur hereafter; namely a
(few) new stationary point(s) can emerge.

2.2. Trace formula

By means of the semiclassical theory, we can relate properties of the quantum spec-
trum with those of the corresponding classical system. For non-integrable Hamiltonian
systems, Gutzwiller’s trace formula [7-9] represents the quantum level density g(E) =
Y_;6(E — E;) as a sum over classical periodic orbits:

SA(E
g¥(E) = g(E) + ;Am(E) cos ("——ﬁ(—) - gu) . (10)

Z(E) is called Weyl term (or Thomas-Fermi approximation), which is a monotonic
function of energy. The sum is taken over all primitive periodic orbits r and their
multiple traversals. S, = fr p - dq is the action integral along the orbit r, and w, denotes
the Maslov phase. Several numerical application of this formula to strongly chaotic
systems have shown its effectiveness. As is well known, however, exact reproduction
of a quantum spectrum is not an easy task, because one has to treat a huge number
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of periodic orbits which show exponential proliferation as a function of energy. On the
other hand, since our purpose is to understand the gross structure of the spectrum we
need only a finite number of periodic orbits which have rather short periods. If one is
interested in the gross structure with energy resolution 8E, the change of the phase in
Eq. (10) must be less than 277 for the change of energy by 6E. Namely,

S, (E
nS,(E+6E) — nS,(E) ~n a( )6E=nT,6E§27rh, (1)
which leads to the relation
2ah
nT,,STmaX_Z_ ?Ej— (12)

Thus, we need only short periodic orbits whose periods are less than T, defined
above. Although much efforts have been devoted to reproduce individual eigenenergies
by calculating millions of periodic orbits, gross structures of the level spectra have
rarely been discussed in connection with periodic orbits for non-integrable systems.
(For integrable systems, there are several works; see for instance, Refs. [4,10-13].)

2.3. Bifurcations

Let us next discuss the condition for the amplitude factor A, in the trace formula
(10) to take a large value. In the stationary phase approximation, the amplitude factor
is expressed for isolated orbits as

1 T,

A r= . (13)
" wh /] det(1 = M,
For degenerate orbits with degeneracy 1, it is represented by
4o B T oTop(e+T)]™"
A, = 4 , B,=/dt[————’—] . (14)
" 2mhy32 /| det(1 — M,T)] py (1)

where ¢ and p, denote an ignorable variable in the Hamiltonian and its canonically
conjugate momentum, respectively (see the appendix in Ref. [14]). From the difference
in order of A, one sees that the contribution of degenerate orbits is more important than
that of isolated ones.

Another important factor, which plays an essential role in our analysis below, is
the stability factor det(1 — M,"). Its value is independent of the point chosen on the
periodic orbit. As discussed above, eigenvalues of the monodromy matrix M, appear
in pairs (+/—)(e*,e™*), A being real or pure imaginary, or in quartets (e=**¥#),
One should note that the periodic orbit generally appears in at least one parameter
family, so that the monodromy matrix always has two unit eigenvalues. Other pairs of
unit eigenvalues correspond to the global continuous symmetries which the Hamiltonian
possesses but the orbit itself does not. These degrees of freedom are responsible for
the degeneracy and, as seen in Eq. (14), can be separated out from the definition of
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M, appearing in the stability factor. In the case of three-dimensional systems with axial
symmetry, the monodromy matrix has (except for isolated non-degenerate orbits) four
unit eigenvalues, and the remaining two appear in a pair (+/—)(e*,e™*). Thus, M,
may be reduced to a (2x2) matrix for most orbits. A is purely imaginary for stable
orbits, and real for unstable ones. The stability factor for each case becomes

det(1— M,)=2-TrM,
with

2cos(B) stable, A=ip,

+2 cosh(a) unstable, A=a. (15)

TrM, = {
Thus, the stability of orbit is determined by the value of Tr M.

If a parameter in the Hamiltonian is continuously varied, the periodic orbits change
their shapes and the values of A also change continuously. It may occur that the 8 for a
certain stable orbit becomes a fraction of 27, namely, 8 = 27m/n with n and m being
relatively prime integers. At this point Tr M,” becomes 2, and the amplitude factor A,,
suffers divergence. This singularity corresponds to the period n-upling bifurcation of
the orbit r. Near the bifurcation point, the stationary phase approximation breaks down.
It is then necessary to take into account higher-order fluctuations about the classical
orbit to extract a finite value of A,, [15]. Although we leave this task as a challenging
future subject, we expect that the amplitude factor takes a large value in the bifurcation
region. It will result in a large-amplitude oscillation in the level density, leading to an
enhancement of the shell effect.

3. The model and its scaling properties
3.1. The model

We adopt a model Hamiltonian consisting of an axially deformed harmonic oscillator
and a reflection asymmetric octupole deformed potential:
p? Mw?x?

H= oo+ =2 — hoMaj [Pho(4)]

"

(16)

Here, the double primes denote that the variables in square brackets are defined in terms
of the doubly-stretched coordinates x!/ = (w;/wo)x;, Where wy = (@ wyw,)'/3 being
determined so that the volume conservation condition is satisfied [16]. For simplicity,
we define dimensionless variables as follows:

pi — / Mhwg p;,
qi — h/Mwoq,-, (17)
H — hwo H.
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Then, the Hamiltonian is written as
H = 3p* + §1r*(1 - 2250130(2)) 1" (18)
Since the radial dependence of the octupole potential is quadratic, the Hamiltonian
obeys the following scaling rule:

H(ap,aq) = o*H(p,q). (19)

Thanks to this property, if one solves the Hamilton equations of motion at a certain

energy Ep, the solution at any energy E is obtained by just scale transforming the

solution at Eg as Z(t; E) = \/E/Ey Z(t; Ey), Z denoting a phase space vector (p, q).
In the cylindrical coordinates (p, z, ¢), the above Hamiltonian (18) is written as

H=Y(p2+p2) +V(p.2;p,).

2 2., .2 3 21"
p p-+z 7 2z° —3zp
Vip,2,pe) = =% — Ao/ — =0
(p.2;Pp) 2p2+[ 2 0\ Tem poS (20)

Thus, we can treat the system as a two-dimensional one with fixed angular momentum
p,- This reduction enables us to make use of the Poincaré surface of section in order
to survey the classical phase space profile. Note that y = p,/E is a scaling-invariant
parameter and, therefore, classical properties are the same for the same y.

In the following sections, we shall investigate how the properties of the quantum
spectrum for the Hamiltonian (16) changes as the two deformation parameters, So5 =
(w1 ~ w;) /@ and Asg, are varied. We shall then discuss the physical origins of these
changes by means of the periodic orbit theory reviewed in Section 2.

3.2. Fourier transformation of quantum level density

As we will see in the following numerical analyses, the Hamiltonian above becomes
chaotic with increasing octupole deformation parameter A3g. But considerable parts of the
phase space remain regular and the system is considered as a so-called “mixed system”.
The trace formula based on the stationary phase approximation (SPA) does not work
well in such situations. The amplitude factors suffer divergences at the bifurcation points
of stable periodic orbits because of the breakdown of SPA. Consequently, we cannot
directly use the conventional semiclassical expression to analyze the quantum spectrum.
Fortunately, we can avoid the above difficulty by using the Fourier transformation
technique for the quantum level density. Suppose that the level density is characterized
by the classical periodic orbits and is expressed as

gé:f:)(E) = ZZA"V(E) Ccos (nSr(E) - zl-lfnr) s 21)
n=1

h 2

r

without specifying the concrete expression of the amplitude factor A,,(E) which may
be obtained by going beyond the SPA. Since our model obeys the scaling rule (19),
energy dependence of the classical variables entering Eq. (21) is factored out as follows:



16 K. Arita, K. Matsuyanagi/ Nuclear Physics A 592 (1995) 9-32

S-(E) =ET,,
Ap(E) =E*?A), (22)

where d, is the effective degeneracy of the orbit, and equal to 1 for most orbits due to
the axial symmetry. For isolated orbits, d, = 0 and we expect that their contributions to
the level density may be small. The degeneracies are integers in the classical dynamics,
but in the quantum mechanics this restriction is relaxed and d, changes continuously in
the bifurcation regions [15,9]. Using the above relations, Eq. (22) is expressed as

nET,
g"(E) = (E) + ;Ed'/ZA;‘,” cos ( = - Eum) : (23)
Now let us consider the Fourier transformation of the level density, defined by
2
1 iSE/R p—d)2 1/ E
=— —= | = . 24
F(s) 27rh/ dE e E~%“g(E)exp I \E (24)

Here the Gaussian damping factor is used for energy cut-off, and we shall put d =1 in
order to cancel the energy dependence of the amplitude factors for most orbits. Inserting
the quantum level density g(E) = ), 6(E — E;) and the semiclassical one (23) into
Eq. (24), we obtain quantum mechanical and semiclassical expressions for F(s):

2
Fam gy = _Z vz SE /M exp [_5 (EEi ) } ’

2
F(Sc)(s):F(s)-i-ZA,(,?) \/—Asexp[ I(S"A;’T’) J (25)

respectively, where 4s = i/Epax. F9™ is calculated from the single-particle spectrum
obtained by diagonalizing the Hamiltonian with deformed oscillator basis. The result
is compared with the semiclassical expression F(*9. In Eq. (25), F(s) corresponds
to the Weyl term which is regarded as a contribution from orbit of zero-length, and
it has peak at s = 0. The remaining part has a functional form exhibiting successive
peaks at the periods of classical periodic orbits and their heights are proportional to the
amplitude factors of the corresponding orbits. By comparing the calculated F(9™(s)
with F(&) (), we can thus extract information about periodic orbits from the quantum
spectrum.

4. Shell structure energy calculation

A useful quantitative measure of shell structure is the shell structure energy which is
defined as the fluctuation part of the sum of single-particle energies, i.e.,

N
En(N) =D Ex = E(N), (26)

k=1
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Fig. 1. Local minima of shell structure energy in the two-dimensional deformation parameter space ( Sasc, A3p).
The size of each disc represents the absolute value of the shell structure energy normalized as £, /N!/3. Plotted
data are for even N in the range 16 < N < 160.

where E;’s represent eigenvalues of the single-particle Hamiltonian. The second term
E(N) is obtained by smoothing the first term by means of the Strutinsky method; it is
a smooth function of particle number N and of other potential parameters. The shell
structure energy takes a large negative value when the single-particle level density at the
Fermi surface is low.

We have carried out a systematic calculation of the shell structure energy for the
Hamiltonian (16) as a function of the deformation parameters 8,5, (quadrupole defor-
mation), Az (octupole deformation) and of the particle number N. Fig. 1 shows a
map of the local minima of shell structure energies in the two-dimensional deformation
parameter space calculated for particle numbers in the range 16 < N < 160. The centers
of discs show the loci of local minima (corresponding to different values of N) and
the sizes of the discs represent the absolute values of shell structure energies. As the
order of magnitude of the shell structure energy is roughly proportional to N'/3 in the
harmonic oscillator case [19], we normalize them by multiplying N~'/3 in order to
compare system with different values of N.

For A3p =0, it is well known that strong shell structure exists at 6,5 =0 (spherical),
3/5 (prolate superdeformed), 6/7 (prolate hyperdeformed), —3/4 (oblate superde-
formed) and so on. The distribution of discs is actually dense around such points. We
find in Fig. 1 that, in addition to such known cases, prominent shell structure emerges
also at finite values of octupole deformation. Their shell-structure energies are compa-
rable, in magnitude, to (sometimes larger than) those for the purely quadrupole shapes.
The most remarkable region is that of A3y = 0.3 ~ 0.4 and 8o =~ 0.1. Using the
semiclassical theory, let us analyze in the following sections the mechanism which cre-
ates the above new shell structures for the combination of the quadrupole and octupole
deformations.
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5. Semiclassical analyses

In this section, we investigate how the structure of the quantum spectrum changes
as the octupole deformation parameter Az is increased, fixing quadrupole deformation
parameter 8,5 at several positive values (between the spherical and the prolate superde-
formed shapes). Fig. 2 shows the single-particle spectra as functions of Az for the
Hamiltonian (16) with Spsc = 0.1, 0.3 and 0.5. The corresponding axis ratios w /@,
are 31/28, 11/8 and 7/4, respectively. They are not in simple ratios so that there is
no prominent shell structure at Azp = 0. However, new shell structures emerge at finite
values of Asg. To see features of these spectra, we show in Fig. 3 the Fourier transforms
of the level density defined by (25). As discussed in Section 3.2, one sees prominent
Fourier peaks at the periods of classical periodic orbits. It means that the fluctuation
of the spectrum is characterized by the periodic orbits, demonstrating a beautiful ap-
plicability to our model of the semiclassical method in Section 2.2. For elucidating the
features of shell structure, it is essential to understand the behavior of these Fourier
peaks with respect to the deformation parameters. As discussed in the previous sections,
short periodic orbits play important roles for the formation of gross structure of quan-
tum spectrum. There are various periodic orbits of various topologies in each part of
the deformation parameter space and the same type of orbits change their characters as
the parameters change. This fact is clearly seen in the Fourier transforms where peaks
corresponding to certain orbits change their heights. The heights of the peaks represent
nothing but the strengths of the shell structures. Let us discuss in the following what
kind of periodic orbits exist and how they determine the features of quantum spectra in
several regions on the (85, A39) plane.

5.1. The case of 6,5.=0.1

Let us first take up the case of dosc = 0.1, where we obtain especially strong shell
structures at finite A3g values in the shell structure energy calculation (see Fig. 1), and
let us discuss which orbits are responsible for these shell structures. Fig. 4 shows, for
several values of A3, some planar periodic orbits in the plane including the symmetry
axis. We use the Monodromy Method developed by Baranger et al. [17] to calculate
periodic orbits and their monodromy matrices. At A3y = 0, the most important orbit
family is the ellipse-shaped one in the (x,y) plane. The next orbit family is 31:28
Lissageous. They are very long orbits and unimportant for the gross shell structure.
Adding the octupole deformation, new types of orbits are born. Orbit PR appears at
Azg = 0.12 by the isochronous bifurcation of the orbit PA, and PA becomes unstable
after this bifurcation. At Azg = 0.24, the orbit PA becomes stable again and a new orbit
PM appears.

To see these bifurcations, the Poincaré map is a very convenient implement. As our
Hamiltonian has axial symmetry, we can treat it as a two-dimensional system with
fixed angular momentum p,. Fig. 5 is the Poincaré map (z,p,) for the “projected”
Hamiltonian (20) with p, = 0. Here the surface is defined by p, =0 and p, < 0. In
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Aso Ao

(C)  80sc=0.5
g%

e [N, ]

a0
Fig. 2. Single-particle spectrum of the Hamiltonian (16) with deformation parameter Sosc = 0.1, 0.3 and 0.5
as functions of the octupole parameter Azg. Dashed and solid curves represent the levels whose K quantum
numbers are zero and nonzero, and the latter degenerate in two due to the time-reversal symmetry.
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Fig. 3. Fourier transforms | F(s)| of the level densities for the Hamiltonian (16) with dosc = 0.1, 0.3 and 0.5
plotted as functions of the action s and the octupole parameter Azg.

the top panel, the center of the main torus corresponds to the orbit PA. In the middle
panel, the orbit PA becomes an unstable saddle and a new pair of island is created.
These islands correspond to the orbit PR. In the bottom panel the orbit PA comes back
to a stable one and creates a new pair of saddles confronting horizontally. These saddles



K. Arita, K. Matsuyanagi/Nuclear Physics A 592 (1995) 9-32 21

(c)

7
Al
il
) ’ W )
'/I,N'I"»/r/' A
! :,:’l;//v / / 2 / ""h‘c /i ; '“‘/,5‘['

S 1
"l:’/f’ f '

"

IF¢ ;

0
I

7
7
/
il
///I"'"'/"/.’//'///z//// ) i
4 % X //////f 4 il
Wiy M.
i
Ui
///l/””//lllllllifllllgll/lfll’
S

Fig. 3 —continued.

correspond to the orbit PM,

As is well known, stabilities of periodic orbits are determined by the monodromy
matrices. Fig. 6 shows the traces of the two-dimensional monodromy matrices for orbits
associated with the above bifurcations. The bifurcation occurs at Tr M = 2 where the
monodromy matrix has the unit eigenvalues (1,1). Period n-upling bifurcations occur
at Tr M* = 2. Higher order (large n) resonances occur at every points of the torus
and new orbits bifurcate from them, but they are of rather long periods and are related
with more detailed structure of the spectrum. In the Fourier transform Fig. 3a, the peak
corresponding to the orbit PA with period T ~ 27/w strongly enhances at Azp ~ 0.2. It
mainly characterizes the shell structure seen in the spectrum Fig. 2a at A3p =0.2 ~ 0.3.

Agp=0.2

PA IL PR

A30=0.3

PA IL PR PM

Fig. 4. Some short planar periodic orbits of the Hamiltonian (16) with 8osc = 0.1.
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A30=0.20 A30=0.30

Fig. 5. The Poincaré surface of section (z, p;) for the Hamiltonian (20) with p, = 0. The surface is defined
by pp=0and p, < 0.

This enhancement is related with the above bifurcations of PA at A3 =0.128 and 0.227.

5.2. The case of 8,5.=0.3

Next let us discuss the case of 8§y = 0.3. Some important classical orbits are drawn
in Fig. 7. Orbit PO is born out of the period-doubling bifurcation of the orbit IL at
Asp = 0.215. Orbits PP and PQ are created by the saddle-node bifurcation (pair creation
of stable and unstable orbits from nothing) at Azp = 0.221. Orbit PR emerges from the
isochronous bifurcation of the orbit PA at A3p = 0.338. In the Fourier transform Fig. 3b,
the enhancement of the peak with s =~ 1 is related with the isochronous bifurcation.
The orbits associated with the period-doubling and saddle-node bifurcations mentioned
above are of similar periods and contribute to the same peak with s ~ 2.75 in the
Fourier transform. It also shows strong enhancement in the bifurcation region.

2.6

2.4

2.2
PA

2

M

1.8
PR ™
1.6 1

1.4 — :
0.1 0.2 0.3 0.4

Ago

Fig. 6. Traces of the monodromy matrices at 8osc = 0.1 for some short periodic orbits plotted as functions of
the octupole deformation parameter Asg.
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Aao=0.3

PA IL PO PP PQ

Ag0=0.4

PA IL PO PQ PR

Fig. 7. Some short planar periodic orbits for the Hamiltonian (16) with Sosc = 0.3.

5.3. The case of 8,,=0.5

Lastly, let us consider the case of 645, = 0.5. This quadrupole deformation is almost
equivalent to the case of axis ratio v/3 : 1 treated in Ref. [18]. The feature of the
shell is rather weak at A3 = 0. However, one may notice in Fig. 2 that a remarkable
shell structure emerges at A3y ~ 0.3. In the Fourier transform Fig. 3c, a significant
enhancement of the peak with s ~ 1.75 is observed. It seems that this is the most
typical example in our model, which clearly exhibits a new shell structure emerging at
finite octupole deformation.

Some short periodic orbits are illustrated in Fig. 8. At A3 = 0, the ellipse-shaped
family in the (x,y) plane characterize the structure of the spectrum. Orbit PB is born
out of the isochronous bifurcation of the orbit IL. at A3y = 0.276, orbits PC and PD are
created by the saddle-node bifurcation at Azg = 0.274. The Poincaré maps and the traces
of the monodromy matrices are displayed in Figs. 9 and 10, respectively. The strong
enhancement of the peak with s o~ 1.85 at A3y ~ 0.4 are related with the bifurcations
mentioned above. Orbits associated with these bifurcations are of similar periods and
thus contribute to the same peak in the Fourier transform Fig. 3c. These bifurcations
may be regarded as the mechanism which creates the prominent shell structure at finite
octupole deformation.

Orbits PE and PF are born associated with the period-tripling bifurcation of the orbit
PA at A3 = 0.376. A quantum signature of this bifurcation is also seen in the Fourier
peak with s ~ 3. Thus, we can conclude that the enhancement of the Fourier peak in
the bifurcation region is a general phenomenon.

6. Bifurcation lines in the two-dimensional parameter space

In the preceding section, we presented several examples where bifurcations of short
periodic orbits play important roles in forming shell structures. In this section, let us dis-
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Ag0=0.2
(=

Aa0=0.3

Y
Q) 1

Asp=0.4

Fig. 8. Some short planar periodic orbits for the Hamiltonian (16) with s = 0.5.

cuss roles of the bifurcations varying two deformation parameters systematically. In the
n-dimensional parameter space, bifurcation points generally form (n — 1)-dimensional
manifolds; they are 1-dimensional curves in the present case. We have evaluated these
bifurcation lines for some short periodic orbits. The result of the calculation is presented
in Fig. 11. These bifurcation lines always emerge at the points where the ratios o /w,
are rational and Azp = 0. Note that 8,=0, 3/5, 6/7 and —3/4 correspond to the spher-
ical, prolate superdeformed, prolate hyperdeformed and oblate superdeformed shapes,
respectively. The orbit PA causes isochronous bifurcations across the lines i and ii (in

Aso=0.27 Aas=0.30

Fig. 9. Poincaré surfaces of section for 8osc = 0.5 in the bifurcation region of short periodic orbits. The surface
(p.pp) is defined by z =0 and p, > 0.
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Fig. 10. Same as Fig. 6 but 845 = 0.5.

direction from the right to the left). As discussed in the case 8o, = 0.1, new orbits PM
and PR are born after the bifurcations i and ii, respectively. On the other hand, as
discussed in the case 8y, = 0.5, the lines iii~vi are related with the orbits PB, PC,
PD, IL and 2PA (double traversals of the orbit PA). The orbit IL causes isochronous
bifurcation (from the left to the right) and produces the orbit PB (stable) across the
line iii, while the orbit PC (unstable) and PD (stable) are born out of the saddle-node
bifurcation across the line iv in the region 8, < 0.5. As s increases, orbit PB
becomes unstable while orbit PC becomes stable across the line v and they annihilate
into 2PA across the line vi. Across the line vii, the orbit PA causes period-tripling
bifurcation (from the right to the left) and produces orbits PE and PF.

According to the discussions in the preceding sections, we expect strong shell effects
along these bifurcation lines. Prominent shell structures are known to exist for the
spherical and superdeformed shapes (the end points of the bifurcation lines) where
periodic orbit conditions for the harmonic oscillator potential are satisfied. Conditions

0.5

04

0.3

Aao

0.2

0.1

6OSC

Fig. 11. Bifurcation lines for some short periodic orbits in the two-dimensional deformation parameter space
(5050 )‘3())~
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for the emergence of pronounced shell structure in non-integrable systems are not well
known, however. As is indicated in Fig. 1, shell structure energies at equilibrium shapes
with finite A3p are comparable in magnitude to those of spherical and superdeformed
shapes. The most remarkable one is the region with dosc =~ 0.1 and A3p = 0.3 ~ 0.4.
The bifurcation map of Fig. 11 suggests that the strong shell effect in this region may
be connected with the bifurcation of orbit PA (the lines i and ii). In fact, we saw in
the preceding section that the Fourier peak corresponding to the orbit PA is strongly
enhanced by the bifurcation phenomena. It is worth emphasizing that such a strong shell
effect can arise associated with classical orbit bifurcations in non-integrable systems.

One should also note that most of the large discs in Fig. 1 at finite A3 locate in the
prolate side (8osc > 0). This is related with the property of the shortest periodic orbit:
For prolate shapes, the shortest orbit is of the type-PA. It is degenerate and stable, so its
contribution to the level density is important. On the other hand, the shortest orbit for
oblate shapes is of the type-IL, which is isolated and, accordingly, its contribution to the
level density is rather small. The orbit of type-PA, the second shortest orbit, is unstable
against the octupole deformation, and less important in comparison with the prolate
case. A more detailed discussion on the difference in stability between the oblate and
prolate superdeformed shapes against octupole deformations will be given in the next
section. The same problem was discussed also in [20,21] from a somewhat different
point of view.

7. Octupole deformation superposed on the prolate and oblate superdeformations

Let us discuss the origin of the difference in octupole stability between the prolate and
oblate superdeformed states. In Refs. [16,14] we have shown that the supershell effect in
the prolate superdeformed states increases with increasing octupole deformation. As an
underlying mechanism of that enhancement, we emphasized the importance of stability
properties of two kinds of periodic orbit family and of their interference effect. The
oblate case is similar to the prolate case in that there are two kinds of periodic orbit
family whose periods are in the ratio 2:1. But the structure of the quantum spectrum
is quite different for each of them. In Fig. 12 are compared the single-particle spectra
for the prolate (w, /w, = 2) and oblate () /w, = 1/2) superdeformed oscillators as
functions of the octupole deformation parameter A3p. The way the degeneracy is solved
is different between the two. The octupole operator Y3p has matrix elements between
states in the same major shell in the oblate case and, therefore, it affects the spectrum in
the first order perturbation, while it affects only in the second order in the prolate case.
Let us discuss below how this difference be explained in terms of the classical dynamics
point of view. For this purpose, representative periodic orbits with short periods are
displayed in Fig. 14 for several octupole deformation parameters Aszp.

We first compare the features of the two spectra without the octupole term. Fig. 13
shows the oscillating level density smoothed to an energy width 6E = wg/2 (wg, being
the energy spacing between adjacent major shells). A characteristic feature is that the
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Fig. 12. Single-particle spectra for (a) prolate and (b) oblate superdeformed oscillators plotted as functions

of the octupole deformation parameter A3p.
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Fig. 13. Oscillating level density of prolate and oblate superdeformed oscillators, which are smoothed to an
energy width 8E = hwg,/2.

prolate superdeformed spectrum has an undulating pattern (supershell structure) while
the oblate one does not. This is due to the difference in degeneracies of contributing
periodic orbits. As discussed in Ref. [14], two orbit families (corresponding to orbits
(PB, PC) and orbit PA in the upper panel of Fig. 14, respectively) in the prolate
superdeformed states have degeneracies 4 and 2. In the oblate case, the orbit family
with period 27 /@ (corresponding to orbits (PA, PL) in the lower panel of Fig. 14 has
the maximal degeneracy 4, but the shortest orbit (the linear orbit IL along the z-axis) is
isolated and has degeneracy 0. Thus the interference effect between these two families
is so small that one cannot see the supershell effect in the spectrum.

Fig. 15 compares the Fourier transforms of the level density for the prolate and oblate
cases. One can hardly see the component at s =1 in the oblate case and the oscillating
pattern of the spectrum is determined by the s = 2 component almost exclusively.
Comparing the two figures, one notices that the reduction rate of the peak-height due to
the octupole deformation is much greater in the oblate case. This rapid decline clearly
corresponds to the rapid disappearance of the shell effect in the oblate case.

The main reason for reduction of the shell effect with increasing octupole deformation
is two-fold: The first is the reduction of degeneracy of the periodic orbit families, and the
second is the change of stabilities. As the degeneracies are the same for the major orbit
families in both cases (orbits PB, PC, ... in the prolate case and orbits PA, PL, ... in
the oblate case), we expect that the differences are associated mainly with the stability
properties. In Fig. 16 we show the stability factors X = (/| det(1 — M,)| calculated as
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Fig. 14. Some short periodic orbits in the prolate (upper panel) and the oblate (lower panel) superdeformed
potentials with octupole deformations.

function of Azp. The stability factors for orbits in the oblate potential depend linearly
on Az for Az ~ 0 while they depend quadratically in the prolate case. Consequently
the amplitude factors reduce much faster in the former case. This seems to be the main
cause of the rapid reduction of shells with octupole deformation in the oblate potential.
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Fig. 16. Stability factors X = /|det(1 — M,)| of the short periodic orbits for the prolate (left) and the
oblate (right) superdeformed potentials plotted as functions of the octupole deformation parameter Ay. The
sign of X is that of det(M, — 1) = TrM, — 2. Namely, —2 < X < O for stable orbits and otherwise for
unstable ones.

8. Summary and conclusion

We have analyzed the gross structure of single-particle spectra in reflection-asymmetric
deformed oscillator potentials using the semiclassical method. Our model is nonintegrable
and is regarded as a mixed system where regular and chaotic dynamics coexist. The
periodic orbit theory, which is well established for regular and strongly chaotic lim-
its, seems to be also applicable to such a situation. Fourier transforms of the quantum
level density reveal almost perfect correspondences with classical periodic orbits. The
importance of classical orbit bifurcations has been demonstrated in our model. Strong
shell effects arise also for rather chaotic regions, and their strengths are comparable in
magnitude to those of regular regions. We obtain an interesting result which indicates
that classical bifurcations may be responsible for the emergence of shell structure in
the mixed system. Applications of the semiclassical theory of shell structure to more
realistic mean-field potential models and identifications of classical orbits which play
decisive roles in determining exotic shapes of nuclei or micro-clusters remain as exciting
future subjects.
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