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Microscopic structure of high-spin vibrational excitations in superdeformed 19%:192.19q
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Microscopic calculations based on the cranked shell model extended by the random-phase-approximation
are performed to investigate the quadrupole and octupole correlations for excited superdeformed bands in
90Hg, 19Hg, and*®Hg. TheK =2 octupole vibrations are predicted to be the lowest excitation modes at zero
rotational frequency. At finite frequency, however, the interplay between rotation and vibrations produces
different effects depending on neutron number: The lowest octupole phonon is rotationally aligfidginis
crossed by the aligned two-quasiparticle band¥fhig, and retains thi& =2 octupole vibrational character up
to the highest frequency it?*Hg. They vibrations are predicted to be higher in energy and less collective than
the octupole vibrations. From a comparison with the experimental dynamic moments of inertia, a new inter-
pretation of the observed excited bands invoking khre2 octupole vibrations is proposed, which suggests
those octupole vibrations may be prevalent in superdeformed Hg n[8556-281®6)05705-9

PACS numbses): 21.10.Re, 21.60.Jz, 27.860w

[. INTRODUCTION rotational frequency, for example, froB|~0.7 to 0.3 MeV
asfiw,, goes from 0.25 to 0.35 MeV; therefore to compare
Theoretical and experimental studies of collective vibra-the theoretical Routhians directly with the experimental
tional states built on the superdeformgD) yrast band are ones, we need to calculate them at finite rotational frequency.
open topics of interest in the field of high-spin nuclear strucFor this purpose, the cranked shell model extended by the
ture. Since the large deformation and rapid rotation of SDrandom-phase approximati¢éRPA) provides us with a pow-
bands may produce a novel shell structure, we expect thairful tool to investigate collective excitations at high angular
surface vibrations will exhibit quite different features from momentum.
those found in spherical and normal-deformed nuclei. Ac- A great advantage of this model is its ability to take into
cording to our previous workl-5], low-lying octupole vi-  account effects of the Coriolis coupling on the collective
brations are more important than quadrupole vibrations whegibrational motions in a rapidly rotating system. Since in the
the nuclear shape is superdeformed. Strong octupole correlgormal-deformed nuclei it is known that Coriolis coupling
tions in SD states have been also suggested theoretically #ffects are important even for the 3octupole state$20],
Refs. [6-13]. Experimentally, octupole correlations in SD one may expect strong Coriolis mixing for high-spin octu-
states have been suggested fofDy [14], **Hg [15], and  pole states built on the SD yrast band. On the other hand, our
19%Hg[16,17). We have reported theoretical calculations cor-previous calculations suggested weak Coriolis mixing for the
responding to these data féf*Hg [3] and **Dy [5]. In this  |owest octupole state if%Hg [3] and 1*Dy [5]. This may
paper, we discuss the quadrupole and octupole correlationse because the angular momentum of the octupole phonon is
for ***Hg (which have been partially reported in Ref87—  strongly coupled to the symmetry axis due to the large de-
19]) and for the neighboring SD nucléf?**Hg. formation of the SD shape. Generally speaking, Coriolis
We have predicted the low-lying{=2 octupole vibra- mixing is expected to occur more easily in nuclei with
tions for SD Hg isotopes®1921%g (E,~1 MeV) [3,4].  smaller deformation. However, this expectation may not hold
These predictions differ from the results of generator-for octupole bands in all SD nuclei because Coriolis mixing
coordinate-methodGCM) calculations[13] in which the  depends on the shell structure. In this paper we find a sig-
K=0 octupole state is predicted to be the lowest in SDnificant difference in the Coriolis mixing between an octu-
192Hg and the excitation energies are significantly highemole band in'®Hg and the other bands.
(Ex~2 MeV) than in our predictions. Experimentall\L7], Another advantage of this model is that it gives us a uni-
the Routhians of the lowest octupole state decrease with thiied microscopic description of collective states, weakly col-
lective states, and noncollective two-quasiparticle excita-
tions. A transition of the octupole vibrations into aligned
“Electronic address: nakatsukasat@crl.aecl.ca two-quasiparticle bands at high spin in normal-deformed nu-
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clei has been predicted by Vogg21]. In Ref. [19], this  where hyjsson IS @ standard Nilsson potential defined in
transition is discussed in the context of experimental data osingle-stretched  coordinates r! = (w;/wo)Y%; and
rare-earth and actinide nuclei, and a damping of octupolg/ = (wq/w;)¥?p; (i=X,y,2),

collectivity at high spin was suggested. Since similar phe-

nomena may happen to octupole vibrations in SD states, it is w\[p! 2 wg
important that our model describe the interplay between col- hyjsson= > (—') (ﬁ-i— 5 r 2 o, (12=(1"2)y)
lective and noncollective excitations. i=xy.z | @o
Recent experimental studies reveal a number of interest- +ud’-s 2.2
Is h .

ing features of excited SD bands in even-even Hg isotopes.
In %Hg, almost constant dynamic moments of inertia,
7(2) have been observed by Crowel al. [16]. Reference
[17] has established the relative excitation energy of this
band and confirmed the dipole character of the decay transi- B +
tions into the yrast SD band. This band has been interpreted Tpair= _T;p AP+ PT)_Tgp AN,
as an octupole vibrational band. Two more excited bands in
19%Hg have been observed recently by Wilssiral.[18], one
of which shows a sharp rise of(? at low frequency. In
192Hg, Fallon et al. [22] have reported two excited bands
which exhibit peaks in7t? at high frequency. In contrast
with these atypical 74?) behaviors, two excited bands in
1999 originally observed by Rilet al.[23] and extended
by Cederwallet al. [24] show a smooth increase with rota-
tional frequency. We show in this paper that thig?) be-
havior can be explained with a single theoretical model
which microscopically takes into account shape vibration
and the Coriolis force.

The purpose of this paper is to present the RPA metho
based on the cranked shell model and its ability to describe g . <. & as for a rigid-body rotati¢80]. However, in the

?/arietyd 0; nuc[{gar prodpir'ti(re]s in'clu?/i\?g shape Vibratlions.balltcranked Nilsson potential, this isotropy of the velocity distri-
arge deformation and high sSpin. WWe propose a plausibigy g, jg significantly broken due to tHé term. Thus the

interpr?t%g(??nggﬂthe microscopic structure of excited SDCoriolis force introduces a spurious flow in the rotating co-
bands in“"""*"Hg, and show that octupole bands may be rdinate system, proportional to the rotational frequency.

more prevalent thar_1 expected in thes_e SD_nucIei. Section his spurious effect can be compensated by an additional
presents a description of the model, in which we stress ouy,

! ts 1o th ked Nil tential and to th erm that restores the local Galilean invariance. This addi-
Improvements 1o the cranked INiisson potential and 10 g, term js obtained by substitutinghe local Galilean

coupled RPA method in a rotating system. Section llI pre'transformatiom

sents details of the calculation in which the pairing and ef-
fective interactions are discussed. The results for the excited

wherel’=r"Xxp’. The pairing fieldl'p,; is defined by
2.3

where P,=Z,_,=oCkCk and NTZEkETCle are the
monopole-pairing and number operators, respectively. In
Sec. lll A, we discuss the details of the pairing field used in
the calculations.

A standard cranked Nilsson potential has the disadvantage
that it overestimates the moments of inertia compared to a
Woods-Saxon potential. This problem comes from the spu-
rious velocity dependence associated with Itheerm in the
Nilsson potential which is absent for Woods-Saxon potential.
3f the mean-field potential is velocity independent, the local
elocity distribution in the rotating nucleus remains isotropic

velocity space, which means that the flow pattern becomes

SD g, 9Hg, and 1%Hg are presented in Sec. IV, and P—p—M(@Xr), 2.4
compared with the experimental data in Sec. V. The conclu-
sions are summarized in Sec. VI. in thels and|? terms of the Nilsson potential. This prescrip-

tion was suggested by Bohr and Motteld@9], and devel-
oped by Kinouchi[31]. For a momentum-dependent poten-

Il. THEORETICAL FRAMEWORK tial V(r,p),

The theory of the cranked shell model extended by th _ B
random-phase approximatidRPA) was first developed by VA, p)+ haga=V(r P~ M(@oXT)) (2.9
Marshalek[25] and has been applied to high-sgnand y
vibrational band§26—28 and to octupole band®9,1-5.
Since this theory is suitable for describing the collective vi- ~V(r,p) — oM Yop, “op, v(r.p)
brations built on deformed high-spin states, it is very useful Y (2.6)
for investigating vibrational motion built on the SD yrast
band. i

=V(r1p)+ ga)rotM(y[Z,V]_Z[y,V]),
A. Cranked Nilsson potential with the local Galilean (2.7
invariance

We start with a rotating mean field with a rotational fre- Where we assume uniform rotation around tkeaxis,

quencyw,, described by o o= (w01,0,0). Following this prescription, the additional

term h,yq in EqQ. (2.2) is obtained for the Nilsson potential
hs.p.: Pitssont I‘pair_ ®rordxt Nadas 2.0 (2.2,
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— T whereA 7),qis is difference between the Inglis moments of
inertia with and without theAN,,=2 contributions[32].

A Zingis(w) turned out to be approximately constant against
frequencyw and this was used in the last step of E2.9).
The 7V and 74?) values calculated with the additional term

120

100t _ are very close to the rigid-body value at low frequency,
> - . .

2 B which means that the spurious effects of theerm have
N R been removed. Note that the abscissa of Fig. 1 corresponds
p= “E‘izimnmuumy@) to the “bare” rotational frequency without renormalization.
‘S 80f I The drastic reduction ofZ¥) and 7(?) at high frequency is

corrected by the additional term, and this is seen to be im-
portant in reproducing the experimen{tﬁiz) behavior of the

— yrast SD band.

60 ---- §@ B2y
—
o1 03 05 0.7 B. RPA in the rotating frame
fiw, o [ MeV ] The residual interactions are assumed to be in a separable

form
FIG. 1. Kinematic(solid lineg and dynamiddashed linesmo-
ments of inertia for SD*?Dy calculated in the cranked Nilsson Ho— 1 SRR (2.12
Hamiltonian with (thick lines and without(thin lines the addi- L o XpRpTp '
tional termh,yqin Eq. (2.8). The rigid-body and the Inglis moments

of inertia are shown by dash-dotted and dotted lines, respectively. o .
The parameters used in the calculation are the same as those used'\mereRp are one-body Hermitian operators, gpgare cou-

Ref. [5] and pairing correlations are neglected. Symbols are experiPling strengths. The indices !ndicate the signature quantum
mental 72 taken from Ref[14]. numbers &¢=0,1) andp specifies other modes. In this paper,

we take asRZ the monopole pairing and the quadrupole op-

© 3 erators for positive-parity states, and the octupole and the
hog= — i‘[ u“[ZM woer_ﬁ< Nosct > I isovector dipole operators for negative-parity stdtee Eq.
Vwyw; (3.9)]. Since theK guantum number is not conserved at finite

rotational frequency, it is more convenient to make the mul-
+v,sM wo[r’zsx—r)’((r’~s)]]. (2.8)  tipole operators have good signature quantum numbers. In
general, the Hermitian multipoléspin-independentopera-

) . tors with good signature quantum numbers are constructed
Note that the term proportional tdN(s+3/2) in Eq. (2.8 by

comes from the velocity dependence(tf)y in Eq. (2.2).

This result, Eq.(2.8), has been applied to the SD bands in
152Dy [5] where the single-particle Routhians were found to~. _
be very similar to those obtained by using the Woods-Saxon-*K V2(1+ 8ko)
potential. In Fig. 1, moments of inertia for SB?Dy calcu-

lated with and without the additional terf2.8) are dis- . : . .
played. Since the effects of the mixing srao)ng the majorW|th K=0, where the spherical-harmonic functiovig, are

oscillator shells N, are neglected in calculating our defined with respect to the symmetig) (axis. All multipole

Routhians, kinematic £)) and dynamic (*?)) moments operators  are defined in doubly stretched coordinates

of inertia are obtained by adding the contributions of thel"i =(@i/@o)ri], which can be regarded as an improved ver-

N,scMmixing effects to the values calculated without them: sion of the conventional multipole interaction. Sakamoto and
S Kishimoto[33] have shown that at the limit of the harmonic-

(J) 1 (on oscillator potential(at w,;=0), it guarantees nuclear self-
FV=""1 —f A Zingiis(w)dw consistency{ 30|, restoration of the symmetry broken in the
@rot @rot/0 mean field, and separation of the spurious solutions. The
coupling strengthsy, should be determined by the self-
% +A Zingi 2.9 consistency condition between the density distribution and
Wy 7 Mdlis ' the single-particle potentidbee Sec. Ill B for details
To describe vibrational excitations in the RPA theory, we

i}\+a+K

[Pk (MY gl (2.13

~2) d{J,) must define theguasiparticle vacuunon which the vibra-
7 = dor, +A Zingis (210 tions are built. The observed moments of inertid?), of the
yrast SD bands smoothly increase in tAe=190 region,
. ) SAN= which suggests that the internal structure also smoothl
AL]‘Inins:)/Zlnglis_ %ﬁgliso 99 y

changes as a function of the frequensy,;. Therefore the
5 adiabatic representatignin which the quasiparticle opera-
=2 [(n|3,0)] (2.11) tors are always defined with respect to the yrast state
nAN=2) En—Eo ' |wror), is considered to be appropriate in this work.
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In terms of quasiparticles, the Hamiltonian of EG.1) N et "
can be diagonalizetby the general Bogoliubov transforma- tp(n):z, XpS,, ()t (n). (2.22
tion) as P
RPA solutions(eigenenergiesfi(},, are obtained by solving
hep=const- >, (E,ala,)+2 (Ealal), (214  the equation
w w

with de( (Q)— i Spp | =0, (2.23

Xp
a =a =0, 2.1 ) .
uloro) = ator) 219 which corresponds to the condition that §g.22 have a
where @/, a—) represent the quasiparticles with signaturenontrivial solutiont7(n)# 0]. Each RPA eigenstate is char-
a=(1/2,~1/2), respectively. The excitation operators of theacterized by the corresponding forward and backward ampli-

RPA normal modeX¢' («=0,1) are defined by tudes which are calculated as
2 Xpta (RS (79)
J— J— a _“p
Xi'=2 (dn(ua,ateunaa,), (219 (9=~ E e, (224

R ARGWLACON
1t _ 1 T 4T 1 a p
Xi'= 2 {n(unajalten(ur)a,a,) en(r0=—gSE ha, @2

P — and satisfies the normalization conditih19. The transi-
+%7{’pn(“”)aﬁ# en(pviaay), (210 yion matrix elements w,,{Q|n) of any one-body operator
Q can be expressed in terms of these amplituggsand
where indices n specify excited states andy;(uv) ©n:
[¢i(nv)] are the RPA forward[backward amplitudes.

Quasiparticle-scattering terms suchai;u,, are regarded as tn[ Q]=(wrod QIN)

higher-order terms in the boson-expansion theory and are

neglected in the RPA. =2 QYO (¥~ Qyd) en(¥9)}.

The equation of motion and the normalization condition 70

in the RPA theory, (2.26

[hsp+Hint, X3 Trpa= 1 QEXET, (2.18  The phase relation between the matrix elemédtsys) and
the amplitudeg#,(y3),¢n(y9)) is very important, because
[Xn ,Xﬁ,T]RPA= St s (2.19 it determines whether the transition matrix elemghQ] is

coherently enhanced or canceled out after the summation in
are solved with the following multidimensional responseEq. (2.26). For instance, a collective quadrupole vibrational

functions: state has a favorable phase relation for the quadrupole opera-
N N tors. Therefore, it gives large matrix elements for th2
& (@)= RI(y0)*R(y0) RI(yOR(yo)* operators, while for thé11 operators, the contributions are
oo (1) = < E,+Es;—:Q E,+Es;+4Q |’ normally canceled out after the summation.
(2.20 Finally we obtain a diagonal form of the total Hamil-

tonian in the rotating frame by means of the RPA theory,
where (y8)=(uv) for «=0 states, and xJ)
=(u<v),(u<v) for a=1 states. The two-quasiparticle
matrix elements R7(yd) are defined by R(yd)
=(wrolasa,Ry| oy Let us denote the transition matrix el-
ements between the RPA excited stafes and the yrast whereE, corresponds to the Routhians for the yrast configu-
state as ration. Since we are interested in the relative excitation en-
ergy between excited states and the yrast stajeyeed not
ty(N=t[Ry1=(wdRy[N) be explicitly calculated. It is worth noting that since the ef-
B @ vat fect of the cranking term on the quasiparticles depends on
=(wof[Ry X7 ]| @ro) rotational frequency, the effects of Coriolis coupling on the
=[R% X% rpa. (2.21)  RPA eigenstates are automatically taken into account.

=hgp+ H,m~Eo+2 RQEXITXY (2,27

Then, the equation of motiof2.18 is equivalent to Ill. DETAILS OF CALCULATIONS

A. Mean-field parameters

In the following, the notatio A,B]rps Mmeans that we neglect and the improved quasiparticle Routhians

these higher-order terms in calculating the commutator between  We adopt standard values for the parametgrsanduv
andB. [34] and use different values of the oscillator frequengy
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for neutrons and protons in the Nilsson potenfial2) in

order to ensure equal root-mean-square rg8i: osk
2N 1/3
(T) wy for neutrons, o4r i
Neutrons protons
wo— 27 1/3 (31) 00 without h 7| without Ay,
| @o for protons, I i )
wheref wy=41A"1° MeV. o
The quadrupole deformationis determined by minimiz- .
ing the total Routhian surfad@RS), and the strength for the 2,
monopole pairing interactio® is taken from the prescrip- -
tion of Ref.[36] with the average pairing gag=12A"1? > 04
MeV and the cutoff parameter of the pairing model space 2
A=1.2hwy. In principle the pairing gapsA(,,Ap) and the g 00
chemical potentials X,,,Ap) should be calculated self- 20
consistently satisfying the usual BCS conditions at each ro- ’g
tational frequency: ‘B-0;
3J
S
Gr<wr0t|PT|wr0t>:AT! (32)
<wl’0'[| NT| wr0t> = N(Z)! (33) 04 :
with 7 =(n,p). However, the mean-field treatment of the 00 I
pairing interaction predicts a sudden collapse of the proton
pairing gap athw,,w~0.3 MeV and of the neutron gap at —04r
fhw,=0.5 MeV. This transition causes a singular behavior
in the moments of inertia which is inconsistent with experi- [ ; - , ‘
mental observations. It arises from the poor treatment of 0 o 0.3 o1 0.3 05
number conservation, and such sudden transitions should not Fiw, o [ MeV ] i,y [ MeV ]

occur in a finite system like the nucleus. In this paper we
have therefore adopted the following phenomenological pre- FIG. 2. Quasiparticle Routhians for neutroffsft) and protons

scription for the pairing correlations at finite frequeri@y]:  (right) in ***Hg. The top parts show the Routhians in the Nilsson
potential without the additional terim,yy, the middle for those with

1/ w\? haqe, @nd the bottom for those in the Woods-Saxon potential with
A(0)|1- FiP for w<we, the “universal” parameters. Solid, dashed, dotted, and dash-dotted
A(w)= 1 o2 ¢ (3.9 lines correspond to quasiparticles .Withﬂ',@):(-i-,— 1/2),.
EAT(O) ZC) for w> .. (+,1/2), (—,—1/2), and ,1/2), respectively. See text for details.

Woods-Saxon calculatiorf88] and results from a crossing
between the yrast band and the alignggl;s,,)2 band; how-
ever, the predicted crossing frequency was lower
common for 190:192194g. (hw=0.3 MeV) than in the experiment. Our Nilsson po-
The quadrupole deformatics=0.44 is used in the calcu- te_ntial without the additional tern2.8) indicates the same
lations. For S|mp||c|ty' we assume the deformation to be Condlsagreement. In order to demonstrate the effects of the term
stant with rotational frequency, and neglect hexadecapolBadaOn the Routhians, we present in Fig. 2 the quasiparticle
deformatior? The equilibrium deformation and pairing gaps Routhians for**Hg with h.qq, without h,qq, and for the
have been determined at.=0, with the truncated pairing standard Woods-Saxon potentigB,= 0.465, 8,=0.055).
model space\ =1.24w,. Then, the pairing force strengths By including h,qq, the correct frequency is reproduced. This
G, are adjusted so as to reproduce the pairing gap of Ederm affects the proton Routhians: For example, the align-
(3.4) in the whole model space. ment of the intruderrj 15( @ = — 1/2) orbit is predicted to be
The experiment§16,17 have reported a sharp rise of i~6.5 without h,4q and this orbit becomes the lowest at
742 moments of inertia for the yrast SD band #Hg at 7 w,=0.37 MeV. The alignment is significantly reduced
hw=0.4 MeV. This rise was reproduced in the cranked(i~4#%) with h,4y. The behavior of highN intruder orbits in
the proton Routhians is similar to that in the Woods-Saxon
potential. It is worth noting that the conventional renormal-
2Possible errors caused by this simplification will not affect ourization in the Nilsson potential scales the rotational fre-
conclusion because the property of collective RPA solutions undeguency for all orbits, while E¢(2.8) renormalizes alignment
consideration may be insensitive to such detélse also discus- in a different way depending on the spurious effect on each
sions in Sec. IV A orbit.

The chemical potentials are calculated with E3}3) at each
rotational frequency. The parametex$0)=0.8 (0.6) MeV
andzw.=0.5 (0.3 MeV for neutrons(protons are used in
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B. Residual interactions and the RPA

We adopt the following operators & in the residual
interactions(2.12):

P, P. Qx Q% Q3 form=-+,

1 - 1 o~
Q30 le ng Qgg T3Q10 T3Qf1 for m=—,

(3.5

where7;= 53— (N—2Z)/A which is needed to guarantee the
translational invariance. Here, the operatQ¥ are defined
by Eqg.(2.13 in the doubly stretched coordinates, dhd are
defined by

P —i(p+ PT) (3.6)
i \E , .
p —i_(p_p‘r) (3.7
- 2 , .

kl

whereP =P —(wy|P|w,y. Note that theK =0 quadrupole
(octupole operatorQ,, (Q30) has a unique signature=0
(a=1), which corresponds to the fact tHat=0 bands have
no signature partners.

Since we use the different oscillator frequeney for
neutrons and protons in the Nilsson potenfsde Eq(3.1)],
we use the following modified doubly stretched multipole
operators for the isoscalar channels:

2N 2/3
(T Qs for neutrons,

Q\k— 27\2/3 (3.9
(K) Qyx for protons.

This was originally proposed by Baranger and Kuri]
for quadrupole operators. Recently Sakam@8| has gen-

NAKATSUKASA, MATSUYANAGI, MIZUTORI, AND SHIMIZU

2
Ho_ 4ATMwj

XZK_Wv (3.10

4
XER= - MBA((r)") + & (4-KIA((rP,)")

+ 5 [K2(TK2=67)+ 72]A((r*P,)")} 1,
(3.12)

with
oN| 23 N
A((rnp|)>5(f) <; (rk)”P|>O

+

Z 213 Z
N <2 (rk>“P.> . (312
K 0

A large model space has been used for solving the
coupled RPA equations, including seven major shells with
Nos= 3—9(2-8) for neutrongprotons in the calculations of
positive-parity states, and nine major shells with
Nos=2—-10(1-9) for the negative-parity states. The mesh of
the rotational frequency for the calculations has been chosen
asA7iw,=0.01 MeV which is enough to discuss the prop-
erties of band crossing and Coriolis couplings.

Since our mean-field potential is not the simple harmonic
oscillator, we use scaling factofg as

Xk = FaxiK (3.13

for the isoscalar interactions with=2 and 3. These factors
are determined by the theoretical and experimental require-
ments: As for the octupole interactions, we have the experi-
mental Routhians for the lowest octupole vibrational state in
SD g [17]. We assume the common factby for all K
values and fix it so as to reproduce these experimental data.
In this casefz=1 can nicely reproduce the experimental
Routhianss and we use the same value fdfHg and

eralized it for an arbitrary multipole operator and proved that'®**Hg. For the quadrupole interactions, we determine it so as
by means of this scaling the translational symmetry is reto reproduce the zero-frequenéilambu-Goldstonemode
stored in the limit of the harmonic-oscillator potential. In for K=1 atw,,;=0 and use the same value #r=0 and 2.
addition, for the collective RPA solutions this treatmentf,=1.007, 1.005, and 1.005 are obtained f8MHg, °*Hg,
makes the transition amplitudes of the electric operators apand %Hg, respectively, by using the adopted model space.
proximatelyZ/A of those of the mass operators, in the sameThe fact that these values 6f are close to unity indicates
way as in the case of the static quadrupole momg2gts that the size of the adopted model space is large enough.
We use the pairing force strengtlia. reproducing the According to systematic RPA calculations for the low-
pairing gaps of Eq(3.4). For the isovector dipole coupling frequencyB, v, and octupole states in medium-heavy de-
strengths, we adopt the standard values in R3], formed nuclei, we have found that the valued pfeproduc-
ing the experimental data are very close to unity for the
Nambu-Goldstone mode, the and octupole vibrational
states. On the other hand, those values are quite different
from unity for the 8 vibrational states. This may be associ-
ated with the simplicity of the monopole pairing interaction.

7TV1

XK= A7y, (3.9

with A((r3)")o=(28(r2)")o and V;=130 MeV. The self-

consistent values for the coupling strengihs of the iso-

scalar gquadrupole and octupole interactions can be obtainedThis value depends on the treatment of the pairing gaps at finite
for the case of the anisotropic harmonic-oscillator potentiafrequency. If we use constant pairing gaps against, we get the
[33,39: best valuef ;=1.05.
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The calculations show the strong interaction strength be-
tween thew([642 5/7)? configuration(for simplicity we de-
note these orbits byr6, and 76, in the following and the
yrast configuration which may contribute to the smooth in-
crease of the yrasp? moments of inertia. On the other
hand, the interaction of [761 3/3 orbits (v7, and v7, in
the following strongly depends on the chemical potential
(neutron numbeér The interaction is strongest it?*Hg, and
weakest in®Hg. This is qualitatively consistent with the
experimental observation of the yrq;@fz) moments of iner-
tia and the experimental quasiparticle Routhians in
191,19:Hg [40,411
— The characteristic features of the hilyhintruder orbits
[ eI === are similar to those of the Woods-Saxon potential, except the
- R i alignments ofv7, and v7, orbits which are, respectively,
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Hs25/2) i~3% and 2 in ours whilei~4% and 3 in the Woods-

r T Saxon potential. This results in the different crossing fre-
05 i quency between the ground band and #(g,s,)? band, as
g discussed in Sec. Il A. The observed crossing3Hg and

the quasiparticle Routhians i*1*®Hg seem to favor our
results. There are some other minor differences concerning
the position of each orbit in the Nilsson and in the Woods-
Saxon potential. However, these differences do not seriously
affect our main conclusions because the collective RPA so-
lutions are not sensitive to the details of each orbit.

0 ! 1

Quasi—neutron routhians [ MeV ]

o

L <o ] B. Octupole vibrations

05 L \‘\\1 ] Here, we discuss the negative-parity excitations in SD
[ e T 1901921914 We have solved the RPA dispersion equation
[ | (2.23 and have obtained all low-lying solutionE(<2
05 o s - s s MeV). The excitation energies and tB¢E3) values calcu-

lated atw,,;=0 are listed in Table I. This result shows that
K=2 octupole states are the lowest for these Hg isotopes,
which is consistent with our previous result8,4]. The
FIG. 3. Neutron quasiparticle Routhians in the Nilsson potentialB(E3;0* —3~,K) are calculated by using the strong cou-
with h,gq for SD 1019219%g. See text and caption to Fig. 2 for pling scheme[30] neglecting effects of the Coriolis force.
details. Absolute values oB(E3)’s cannot be taken seriously be-

) ] o cause they depend on the adopted model space and are very
Since we cannot flnd the realistic force Stren.gﬂa for SD sensitive to the octupole Coup“ng Strengw&: For in-
states, we do not discuss the property of gheibrations in  stance, if we usé;=1.05 instead of ;=1 in Eq.(3.13, the

03
fiw, o [ MeV ]

this paper. B(E3) increase by about factor of 2 while the reduction of
their excitation energy is about 15%. In addition, the effects
IV. RESULTS OF NUMERICAL CALCULATIONS of the Coriolis coupling tend to concentrate tiB{E3)

strengths onto the lowest octupole stdt2g|.

At w,= 0, the lowesK =2 octupole states exhibit almost

In this section we present calculated quasiparticleidentical properties if°%1921%g. However, they show dif-
Routhians in the improved cranked Nilsson potential and disferent behavior as functions @f,,; as shown in Figs. 4, 5,
cuss their characteristic feature. In Fig. 3 we compare thand 6, respectively. All RPA solutions, including noncollec-
neutron quasiparticle Routhians f61°1921°Hg. The proton  tive solutions as well as collective vibrational ones, are pre-
Routhians of**Hg are shown above in Fig. 2 and are almostsented in these figures. The size of the circle on the plot
identical for 1Hg and *%Hg. indicates the magnitude of tH&3 transition amplitudes be-

A. Quasiparticle Routhians

TABLE I. Calculated excitation energies of octupole vibrations BfE3;0*—37,K) values estimated
using the strong coupling scheme for S§919219g.

1904 1924 194y
K=0 K=1 K=2 K=3 K=0 K=1 K=2 K=3 K=0 K=1 K=2 K=3

E [MeV] 1.37 145 120 152 155 158 1.18 153 183 1.62 1.14 153
B(E3)/B(E3),,, 6.6 119 100 10 76 101 101 08 115 112 102 07
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E [ MeV ]

F o Oosa=0 A

F Ooca=0
oe. =1
0.2 ©=oBand 2 (exp)

° A @e: =1
’ o2} .

A Octupole routhians for *Hg
Octupole routhians for *Hge o3 ‘ o3

01 03 fiw., [ MeV ]
fiw, , [ MeV ]

FIG. 6. The same as Fig. 4, but f6*Hg.

FIG. 4. Calculated RPA eigenenergies of negative-parity states
for SD *™g, plotted as functions of rotational frequency. Open strengths, the agreement over the whole frequency region is
(solid) circles indicate states with signature=0 (e=1). Large, not trivial.
medium, and small circles indicate RPA solutions w8 transi- Since there is ndK=0 octupole state in the signature
tion amplitudes E|(n| QS| wr)|?) * larger than 208fm?, larger  «=0 sector, the Coriolis mixing is much weaker for the
than 10@ fm®, and less than 1@0fm?, respectively. Note that |owest (K,a)=(2,0) octupole state. The calculation predicts
Routhians for the yrast SD band correspond to the horizontal axighat this state is crossed by the negative-parity two-

(E;=0). The observed Routhians for band 27] are shown by quasiparticle bandw(7,8[642 3/3),-, at fw,~0.27

open squares. MeV.

. In 1%Hg, the same kind of crossing is seen for both sig-

tween a RPA_squUon and the yrast rfg}o?je- o nature partners of th&=2 octupole bands. We can clearly
The (K,@)=(2,1) octupole state i~ Hg has significant gee for the lowest excited state in each signature sector, the

Coriolis mixing and the octupole phonon is aligned along the 5 nsition of the internal structure from collective octupole

rotat_lonal axis at higher frequency. This is caused by thgates (large circles in Fig. 5 to noncollective two-

relatively close energy spacing between We2 and the g asineutron stategsmall circles. The two-quasineutron

K=0,1 octupole states in this nucleus. These Kwnem- configurations which cross the octupole vibrational bands
bers of the octupole multiplet are calculated to lie muchg,q 7,0[642 3A(a=—1/2) for =1 and 7%

higher in *2Hg and 1%*Hg, which reduces the Coriolis mix- ©[642 3/3(a=1/2) for a=0. The crossing frequency is

ing in these nuclei. As a result of these phonon alignmentsy ver for thea=1 band due to signature splitting of the
the experimental Routhians for band 2 ##Hg are nicely [642 3/2 orbits.

reproduced by the lowest=1 octupole state. It should be = |, contrast to 19019344 the K=2 octupole bands in
emphasized that although the excitation energy at one frewa,q jngicate neither the signature splitting nor the cross-
guency point can be obtained by adjusting the octupole-forc%gs_ The Routhians are very smooth up to the highest fre-

quency. This is because the neutron orbifsaiid 7, have a
“hole” character and their interaction strengths with the
negative-energy orbits become larger with increasing neu-
tron numbergsee Fig. 3 Therefore these orbits go to higher
energy and the energies of the two-quasiparticle bands
v(7,®[642 3/2) never become lower than thé=2 octu-
pole bands even at the highest frequency.
Socsqeretit These properties of thK=2 octupole vibrations come
O from the effects of the Coriolis force and from the chemical-
< 06 L potential dependence of the aligned two-quasiparticle bands.
' . In order to reproduce these rich properties of the collective
L ooraco ‘_ vibrations at finite frequency, a microscopic model, which
0. 0= can describe the interplay between the Coriolis force and the
ozl _ correlations of shape fluctuations, is needed.

[ MeV ]

El

Octupole routhians for ¥2Hg
01 ‘ 03
fiw, o [ MeV ] In this section we present results for thevibrational

states built on the SD yrast band. As mentioned in Sec. Il B,
FIG. 5. The same as Fig. 4, but f&¥?Hg. we do not discuss the property of th& band since it is

C. y vibrations



53 MICROSCOPIC STRUCTURE OF HIGH-SPIN VIBRATIONAL ...

TABLE II. Calculated excitation energies of vibrations and
B(E2;0"—2" ,K=2) values estimated using the strong coupling
scheme for SDH0192.19¢g,

19q_|g 192Hg 194Hg
E [MeV] 1.39 1.50 1.45
B(E2)/B(E2)sp. 2.7 3.0 3.8

difficult to determine a reliable value of the coupling strength
X20 for the K=0 channel of the quadrupole interaction.

The properties ofy bands atw,,;=0 are listed in Table II.
The excitation energies of vibrations are predicted to be
higher than thé& =2 octupole vibrations by 200—-350 keV. It
is known that calculations using the full model space consid-
erably overestimate thB(E2) values. In Ref[28], it has
been shown that the thréés;s-shell calculation reproduces
the experimental values very well. If we use the model space
Nos= 5—7 (4—6) for neutrongprotong, then theB(E2) val-
ues in the table decrease by about factor of 1/3. The collec-
tivity of the y vibrations turns out to be very weak in these
SD nuclei.

Figures 7, 8, and 9 illustrate the excitation energyyof
vibrations as functions of the rotational frequency for
190Hg, %%Hg, and**Hg, respectively. The unperturbed two-
quasiparticle Routhians are also depicted by s@ieltron$
and dashedprotong lines. Since the&k quantum number is
not a conserved quantity at finite rotational frequency, w
have defined the solutions with the large=2 E2 transition
amplitude as the vibrations. As seen in the figure, they lose

E [ MeV]

2221

17

10

o=1 states

a=0 states

192Hg

0

0.1

02

0.3

A, [ MeV ]

0.4

FIG. 8. The same as Fig. 7, but f¥?Hg.

their vibrational character by successive crossings with many
two-quasiparticle bands and become the dominant two-
quasiparticle states at high frequency. The reduction of col-
ejectivity is more rapid for thexr=0 v vibrations, because the
two-quasiparticle states come down more quickly in the
a=0 sector. Similar crossings occur for tKe=2 octupole
bands in*®*Hg (see Fig. 5 however, the crossing frequency

is much higher than that of thg bands. This is because the

: o=1 states

E, [ MeV]

190Hg

o=0 states

0 0.1 0.2 0.3 04
fiw, o, [ MeV ]

FIG. 7. Calculated RPA eigenenergies fprvibrational states
for SD ®™Hg, plotted as functions of rotational frequency. The
lower part is for the signature=0 Routhians and the upper for the
a=1. Large solid, small solid, and small open circles indicate the
v vibrational states whosk=2 E2 amplituded(n|Q3, w,| are
larger than 28 fm?, larger than 16 fm?, and less than fm?,
respectively. The unperturbed two-quasineut(two-quasiprotoh
Routhians are also shown by solidashedl lines.

E' [ MeV ]

excitation energies of the octupole bands are relatively lower
than those of they bands. The predicted properties ¢f
vibrations are different from those in R¢#2)].

In the frequency region (0.35% w,<0.4 MeV) where
the excited SD bands are observed in experiments,ythe

o=1 states

o=0 states

194-H 9

0

01

02

0.3

fiw, o [ MeV ]

04

FIG. 9. The same as Fig. 7, but f&"Hg.
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TABLE Ill. The lowest and the second lowest configurationg: at,,=0.4 MeV in each parity sector.
The proposed assignments of the observed excited SD bands are also shown. The excitation energies of the
negative-parity two-quasineutron states, 256 keV ¥8Hg and 441 and 632 keV fot®*Hg, contain very
weak octupole correlations. The corresponding unperturbed two-quasineutron energies are 261, 460, and 635
keV, respectively.

T=+ T=—
Lowest Second Lowest Second

1%%4g E, [keV] 113 389 ~0 256

Config. (71072) w0 v(7,®[505 11/3) 401  (OCt. Vib.)y—y v(7,0[642 3/2) .-

Expt. Band 3 Band 2 Band 4
¥2Hg E; [keV] 611 611 441 632

Config. v(7,®[512 5/2) =1 v(71©[512 5/2) e v(710[642 3/2),—1 v(7,2[642 3/2),_,

Expt. Band 2 Band 3
Y49 E, [keV] 857 892 738 759

Config.  »([514 7/2)2_, m([530 1/2)%_, (oct. vib.),_o (oct. vib.),_,

Expt. Band 2 Band 3

bands are predicted to be higher than bothKhe2 octupole The lower the excitation energy of an excited band rela-

bands and the lowest two-quasiparticle states. Therefore exive to the yrast SD band, the more strongly will it be popu-
perimental observation of the vibrations is expected to be lated. In experiments, the SD bands are populated at high

more difficult than that of the octupole bands. frequency; thus, it is the excitation energy in the feeding
region at high frequency that is relevant in this problem. We
V. COMPARISON WITH EXPERIMENTAL DATA list in Table Il the calculated excitation energies of the low-

In this section, we compare the results obtained in théy Ing positive- and negative-parity statesfiab,o=0.4 MeV.

19 H
previous section with the available experimental data for th In *%*Hg three excited SD bandbands 2, 3, a}nd)mave
excited SD bands if%1921%g. The Routhians relative to een observed16-18. Band 2 has been assigned as the
the yrast SD band have been observed only for band 2 ifPWest octupole bandl16,17 because of its strong decays
19045 and the comparison with our calculated Routhians hal't©_the yrast SD band. According to our calculations, in
been done in the Sec. IV B. The excitation energies of th@ddition to this octupole banda=1), the aligned two-
other bands are not known. Therefore, in order to compargu@sineutron bands come down at high frequency. We assign

our theory with experimental data, we have calculated th&@nd 4 at high frequency as thg7,®[642 3/2) .o be-
dynamic moments of inertiaZ*®, cause this negative-parity two-quasineutron state is crossed

It is known that the effects oRl,e. mixing, pairing fluc- Py the @=0 octupole band atiw~0.26 MeV Wh'g)h
tuations, and higher-multipole pairing are important in repro-may correspond to the observed sharp rise ﬁf
ducing absolute magnitude of the moments of inertia. On th&! _#@=0.23 MeV (Fig. 4. The positive-parity
other hand, our model aims at describing relative quantitie®(71® 72)4-o State is also relatively low lying at high fre-
(excitation energy, alignment, etdetween the excited and duency. Since this band does not show any crossing at
yrast bands. Thus, instead of directly calculatigg? in fhiw>0.12 MeV in the calculations, this may be a good

terms of Eq.(2.10, we decompose the”® of the excited ~candidate for band &ig. 7).
bands as a.2.10 P 4 In ®Hg, two excited SD bandébands 2 and Bhave

been observe[22] and both bands exhibit a bump i#?) at
di 2! fw~0.3 MeV (band 2 and 0.33 MeV(band 3. We as-
‘,}’Z(Z)(w):,%z)(w)"'d—w?%z)(w)—d—wz{, (5.1 sume these bands correspond i/ ,®[642 3/2),_, at
high frequency. This two-quasineutron configuration for
where 7{?) denotes the dynamic moments of inertia for theband 2 is the same as that suggested in B2l However,
yrast SD band$RPA vacuur, andi andE are the calcu- OUr theory predicts a different scenario at low spin: This
lated alignments and Routhians relative to the yrast ban@nd is crossed by the octupole bang<1) atfw~0.3

respectively. TheZ® values of the yrast SD bands are taken™M€V- Thus, band 2 is interpreted as am1 octupole vibra-

from the experiments and approximated by the Harris exparF—ional band in the low-frequency regior ,:<0.3 MeV).

In the same way, the bump i® in band 3 is interpreted as

sion, :
a crossing between(7,®[642 3/2),-o and thea=0 oc-
72 (w)=Jp+ 310>+ 50" (5.2)  tupole vibrational bandFig. 5.
For high frequencies, the positive-parity

The expressiorn(5.1) phenomenologically takes account of »(7,®[512 5/2) state is calculated to lie almost at the
the effects mentioned above. Those effects are included isame energy as the lowast=0 negative-parity state. How-
the experimental7{?) of Eq. (5.2). ever, no crossing is predicted for the=1 state at



53 MICROSCOPIC STRUCTURE OF HIGH-SPIN VIBRATIONAL ... 2223

190Hg 192Hg 194Hg

220} Band 1 ¢ Band 1 + Band1

J,=826 Jy=917 t  J=835
BOF  J=T3 J=88.2 T J=N3
J=0 J=0 T =195

140
100

| o=y 30eP B g M@ee M

220

180}
FIG. 10. Calculatedsolid lineg and experi-

mental(symbolg dynamic moments of inertia for
excited SD bands in®™Hg (left), 1%Hg (middle),
and **Hg (right). 7(? for the yrast SD bands are
also displayed at the top. Dotted lines indicate the
yrast 72, which are approximated by the Harris
formula (5.2). The parameterd,, J,, and J,
used in the formula are shown in units of
fi2MeV 1, 24 MeV 3, and#® MeV ~5, respec-
tively.
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hw>0.15 MeV but many crossings are predicted for thethose of the yrast SD band(ii) The configuration
a=0 state(Fig. 8. Both properties are incompatible with »([512 5/2®[624 9/2) suggested in Ref23] has a prob-
the observed features. lem with its magnetic property, which has been recently
In *¥Hg, two excited SD bandébands 2 and Bhave pointed out in Ref.[43]. If this configuration is the
been observedi23,24. In contrast to'%Hg, the observed K7=7", then strongM1 transitions between the signature
dynamic moments of inertia7\?), do not show any singular partners should have been observed. The energy of the
behavior and are more or less similar to those of the yrad™=2" configuration is certainly lowered by octupole cor-
band. Bands 2 and 3 have been interpreted as signature parlations. In our calculations, however, this configuration ac-
ners because thgray energies of band 3 are observed to liecounts for only 20% of all components constituting the oc-
midway between those of band 2 and furthermore the bandsipole vibration(iv). The y vibrations are calculated to be
have similar intensity23]. From these observations and the much higher and crossed by several two-quasiparticle bands
excitation energies listed in Table Ill, we assume that both{Fig. 9. Therefore, we believe the octupole vibration is the
bands correspond t&=2 octupole vibrations =0, 1),  best candidaté.
which are calculated to be the lowest excited stéfég. 6). Assuming the above configurations, the dynamic mo-
Any other assignment faces serious difficultigsy The  ments of inertia, 74?), are calculated with Eq(5.1), and
positive-parity two-quasiparticle configurations listed in compared with the experimental ddfig. 10. In *Hg, the
Table Il have no signature partnefs) The other low-lying  characteristic features are well reproduced for bands 2 and 4;
two-quasiparticle states occupy’; or w6, orbits. Now the  the constantZ?) of band 2(the =1 octupole vibratioh
increase in7(?) for the yrast SD band is partially attributed and the bump of band 4the crossing between the=0
to the alignment of these highintruder orbits and, since the
blocking effect of the quasiparticles prevents any alignment—
due to band crossings involving these orbits, the lack of “The signature for bands 2 and 3 is determined by following the
alignment should produce aa® curve quite different from  spin assignment in Ref23].
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octupole vibration and the aligned two-quasineutron pand
are reproduced although the crossing frequency is smaller in
the experiment. For band 3, the high?) values at low spin 25¢
are well accounted for by the alignment gain of the two- sl
guasineutron state. However, the calculation predicts the lack
of alignment due to the blocking oN=7 orbits at

135

105 F

h wo>0.25 MeV, which makes theZt?) smaller than those g BT
of the yrast band. 2 85)

In 1%%Hg, the bumps of7? are nicely reproduced in the E sl
calculations, which correspond to the crossings between o
K =2 octupole vibrations and the aligned two-quasineutron =120
bands in each signature partner. The alignment daibe- L=k

fore and after crossing for band 2 A8~ 2% which is com- 05}
parable to the experimental valdé,,~2.62 [22].
The agreement is less satisfactory i#fHg. The calcu-

95F

lated 7(?) are lower than the experimental data for & .
0.2<%w,,=0.35 MeV (similar disagreement can be seen for ol 02 03 04
W, o [ MeV/1 ]

band 3 in1%Hg). This effect comes from the blocking effect
mentioned above, associated with theé,, v7,, w6,, and
76, orbits. In the RPA(Tamm-Dancoff theory (neglecting
the backward amplitudgésthe octupole vibrations are de-
scribed by superposition of two-quasiparticle excitations,

FIG. 11. Calculatedsolid lineg and experimentalsymbolg
dynamic moments of inertia for excited SD bands'#Hg. Thin
solid lines are the same as in Fig. 10, while thick lines indicate the
results obtained by using the slightly stronger coupling strengths
(f3=1.05) for the octupole interactions. Dotted lines indicate the

) 7 for the yrast SD bandsee caption to Fig. 20
oct vib)= )| vd), 5.3 7
| ) % W(y3)|yd) (5.3

collectivity of these octupole vibrations was underestimated

where |yd)=ala}w). Some of these componentyd)  in the calculations wittf 5= 1.
associated with the particular orbit¢{,, v7,, w64, and Finally we should mention the decays from the octupole
w6,) show significant lack of alignment. However, if the bands to the yrast SD band. We have assigned all observed
octupole vibrations are collective enough, the amplitudesxcited SD bandgexcept band 3 in**®Hg) as octupole vi-
Y(yS) are distributed over many two-quasiparticle excita-brational bandgat least in the low-spin regignHowever,
tions|yd). Thus, each amplitude becomes small and blockstrong dipole decays into the yrast band have been observed
ing effects may be canceled. only for band 2 in®*®Hg. Although this seems to contradict

In order to demonstrate this “smearing” effect of collec- our proposals, in fact our calculations provide us with a
tive states, we use a slightly stronger octupole forcegualitative answer.
f3=1.05 in Eqg.(3.13, and carry out the same calculations  Let us discuss the relati8(E1;oct—yrast) values. Us-
for 1%Hg. The results are shown in Fig. 11. The higher cou-ing theE1 recoil charge £ Ze/A for neutrons andNe/A for
pling strengths make the octupole vibrations more collectivgprotong, then theB(E1) values atfiw,,;=0.25 MeV are
and the experimental data are better reproduced. Perhaps tta&lculated to be small for all th€ =2 octupole bands except

190Hg 192Hg 194Hg

Band 3

Band 2

— Band 2
250r

50 F . . .
! FIG. 12. ElectricE3 transition amplitudes,

[t[1/2(1+ 73) Q]| =[{ @il Q3kIM)|,  for  the
lowest RPA solutions with the signature=0
(lowen and thea=1 (upped for °*Hg (left),
¥92Hg (middle), and ***Hg (right). K=0, 1, 2,
and 3 components are denoted by solid, dashed,
dotted, and dash-dotted lines, respectively. Total
values (thick solid lineg are defined by

(Zkl{ @rod Q3] n>|2)1/2-

501

Q%] [ efm® ]

130

50t
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for the =1 (band 2 in ®Hg: With the scaling factors due to the relatively low excitation energy of the=0
f3=1~1.08 in Eq. (3.13, the calculation suggests (a=1) octupole state it°®Hg, in which the close spacing in
B(E1)~10 7 Weisskopf unitsW.u,) for the (K,a)=(2,0)  energy of the octupole multiplet makes the Coriolis mixing
octupole bands, and3(E1)~10 8-10"6 W.u. for the easier. This aligned octupole phonon'itHg reproduces the
(K,a)=(2,1) bands. Th&(E1) for band 2 in'®Hg is pre-  observed behavior for band 2.
dicted to be larger than these values by one to two orders of Our interpretation for the excited SD bands in
magnitude B(E1)~10 6-10“ W.u. Although the absolute °Hg solves a puzzle mentioned in RE22] in which band
values are very sensitive to the parameters used in the calcB- was assigned as the two-quasineutron excitation
lation, theE1 strengths of band 2 in®*Hg are always much v(7;®[642 3/2). The bump in theZ?) curve was consid-
larger than those for the other bands. ered to be associated with a crossing betweenvtheand
To clarify the reason for thi€1 enhancement in this » [512 5/ orbits. According to this assignment, we expect
particular band, we display the3 amplitudes K=0, 1, 2,  similar properties for the observed crossing i*fHg and
and 3 of these octupole states as functions of frequency in‘%Hg, and the difference of crossing frequencies and align-
Fig. 12. As mentioned in Sec. IV B, the Coriolis mixing is ment gains was a puzzle. This is no longer a puzzle in our
completely different between band 2 ##"Hg and the others: interpretation because the microscopic structure of band 2 is
The former has significant Coriolis mixing at finite fre- the octupole vibratior{before the crossirg Because of the
guency while the latter retains the domind&t2 character correlation-energy gains, the excitation energies of the octu-
up to very high spin. Since th€=2 octupole components pole vibrations should be lower than the unperturbed two-
cannot carry anyel strength, the stron§1 transition am- quasiparticle states. Therefore it is natural that the observed
plitudes come from Coriolis coupling, namely, the mixing of crossing frequency is larger than the one predicted by the
the K=0 and 1 octupole components. Therefore, the obguasiparticle Routhians without the octupole correlations.
served decay property does not contradict our interpretation. Our interpretation also solves some difficulties'itfHg:
The smoothZ7(? behavior of bands 2 and 3 can be explained
by the “smearing” effect of the collective states. The non-
VI. CONCLUSIONS observation of the expected stroMyl transitions between
. . . bands 2 and 343] is solved by substituting th& =2 octu-
The microscopic structure of thg and the octupole vi- pole vibrations for the two-quasineutron states

. . 190,192,19
brations built on the SD yrast bands i} Hg were y([512 5/3®[624 9/2), because the octupole correlations
investigated with the RPA based on the cranked shell mode|,or thek =2 configurations and the summation of many

The K=2 octupole V|bra_t|0_ns are predicted to lie I_owest. Totwo-quasiparticle 1) matrix elements may be destructive
reproduce the characteristic features of the experimental da 8ce discussion below E@.26)].

it was essential to include octupole correlations and the ef-
fect of rapid rotation explicitly. From the calculations, we
assigned the following configurations to the observed excited

EnhancedEl transitions from the octupole states to the
rast SD band are expected only for band 2'#Hg. This
omes about because the other octupole states do not have

bands: strong Coriolis mixing and keep thefr=2 character even at
10 . . . B high frequency. This agrees with experimental observations.
*Hg Band 2:  The rotationally aligned=1 octupole Although most of the observed properties are explained
vibration. by our calculations, there remain some unsolved problems in

Band 3:  the two-quasineutron bam{7,®7,). 19%g and '%Hg. For *™Hg, according to the calculations

Band 4:  the K,a)=(2,0) octupole vibration at  with constant pairing gaps reported in REE9], it is sug-
low spin, the two-quasineutron band  gested that band 4 may correspond to tKea) =(1,0) oc-
v(7,®[642 3/3),-, at high spin. tupole band which is predicted to be crossed by the two-

¥%4g Band 2: the K,a)=(2,1) octupole vibration at quasineutron bandv(7,®[642 3/2),_, at hw~0.21
low spin, the two-quasineutron band  MeV. Because of the phenomenological treatment for the
v(7,®[642 3/2),-, at high spin. pairing gaps at finite frequency, it is difficult to deny this

Band 3: the K,a)=(2,0) octupole vibration at possibility. The experimental intensity of band 3 raises an-
low spin, the two-quasineutron band  other ambiguity: Since it is much weaker than bands 2 and 4,
v(7,2[642 3/2),-¢ at high spin. it might be associated with a higher-lying configurations

19449 Band 2: the K,a)=(2,0) octupole vibration.  [18]. For ***Hg, our calculations predict no signature split-

Band 3: the K,a)=(2,1) octupole vibration. ting for the lowest octupole bands at_wm§0._25 MeV.

Therefore one may expecg-ray energies typical of the
signature-partner pair for bands 2 and 3 similar to that in
19449, which is different from what is observd@2]. Im-
With these assignments, most of the experimentally observegrovement of the pairing interactiorfuctuations, quadru-
features were well accounted for in our theoretical calculapole pairing might solve these problems as well as enable us
tions. to perform reliable RPA calculations fg vibrations.
The Coriolis force makes the lowest octupole state in Theoretical study of octupole vibrations carrying large
%%Hg align along the rotational axis, while this effect is E1 strengths would be of great interest, because this could
predicted to be very weak for other octupole states. This i®ffer direct experimental evidence. An improved version of
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calculations forE1 strengths of high-spin octupole bands is ACKNOWLEDGMENTS
in progress, taking into account the restoration of transla-
tional and Galilean invariance. Thé=0 octupole vibration
. 15 . . . .

n :Dg hz;shbeer;)predmted m(lzgiﬁ] g?d Its gic‘?y 'nt.(t). the also thanks B. Crowell, P. Fallon, J.F. Sharpey-Schafer, J.
yras an as been sugges - >trong ransition Skalski, and A.N. Wilson for valuable discussions. Three of
probabilities have been suggested by Skalgk] for K=0 ;5T N, K.M., and Y.R.S. thank the Institute for Nuclear
octupole states in tha=190 region. Therefore, the search- Theory at the University of Washington for its hospitality
for low-lying low-K octupole vibrations is an important sub- and the U.S. Department of Energy for partial support during
ject for the future. the completion of this work.
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Shell structure of the single-particle spectrum for a reflection-asymmetric deformed cav-
ity is investigated. Clear shell structure emerges for certain combinations of quadrupole
and octupole deformations. Semiclassical periodic-orbit analysis indicates that simultaneous
bifurcations of short periodic orbits in the equatorial plane play predominant roles in the
formation of this new shell structure.

§1. Introduction

Theoretical and experimental exploration of reflection-asymmetric deformed
shapes is one of the current topics of interest in finite many-fermion systems like
atomic nuclei and metallic clusters.?)~® In theoretical calculations, various ap-
proaches such as Hartree-Fock-Bogoliubov methods, microscopic-macroscopic meth-
ods and semiclassical methods have been used for this purpose (see Ref. 1) for a
review). Each method possesses merits and demerits, so that it would be desirable
to explore the subject using various approaches.

A basic motive of the semiclassical periodic-orbit approach” 19 is to under-
stand the origin of shell-structure formation that plays a decisive role in bringing
about symmetry-breaking in the average potential of finite quantum systems. Under-
standing this origin, it would become possible to predict qualitatively where we can
expect a particular deformation to appear in the multi-dimensional space spanned
by various deformation-parameters.

In the conventional wisdom, the shell-structure would be weakened if a reflection-
asymmetric deformation is added to the spheroidal shape. This is because the system
becomes non-integrable when an octupole deformation is added, and the degeneracy
of the periodic-orbits is reduced. Contrary to this expectation, a clear shell structure
was found in Refs. 11) and 12) to emerge for certain combinations of quadrupole and
octupole deformations in the reflection-asymmetric deformed oscillator model. It was
pointed out that this shell-structure is associated with the bifurcation of periodic
orbits.

In this paper, we investigate a three-dimensional cavity as a simple model of
single-particle motion in atomic nuclei and in metallic clusters, and we attempt
to find the correspondence between quantum shell structure and classical periodic-
orbits. We expect that, if we find clear shell structures at certain deformations, they
are related to the stabilities of certain periodic orbits and their bifurcations. Our
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major purpose is then to identify which kind of bifurcation is responsible for the
formation of the shell structure in the cavity model.
A part of this work was previously reported in conference proceedings. 13)

§2. Reflection-asymmetric deformed cavity

To explore whether or not clear shell structure emerges in the single-particle
spectra for non-integrable Hamiltonian, we have carried out an analysis of single-
particle motion in a reflection-asymmetric, axially-symmetric deformed cavity by
parameterizing the surface as

R(8) = Ry 1 + a3Y30(6) |, (21)

V(37 + (330
where a and b are related with the familiar quadrupole deformation parameter &

(equivalent to dosc in Ref. 14)) by a = ((3+6)/(3—26))?/% and b = ((3—24)/(3+6))'/3.
This shape reduces to a spheroid (integrable cavity) in the limit that the octupole

0 —
0 0.05 0.1 0.15 0.2 025 0.3 0.35 0.4
as

Fig. 1. Single-particle energy spectra of the deformed cavity plotted as a function of the octupole
deformation parameter az. Dotted and solid lines denote the K = 0 and the doubly-degenerate
K # 0 levels, respectively. The quadrupole deformation parameter is fixed at § = 0.3. The
energy is measured in units of h?/MR3, M being the mass.
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Fig. 2. Shell structure energies of the deformed cavities with § = 0.3 and a3 = 0.0 (a), 0.2 (b),
evaluated with the conventional Strutinsky method and plotted as functions of the particle
number N. The energy is evaluated by setting Ro = 1.2(2N)*/® fm and Mc? = 938 MeV for
nuclei.

deformation parameter as vanishes.

We solve the Schrédinger equation under Dirichlet boundary conditions and eval-
uate the shell energy by means of the Strutinsky method.!®) To efficiently obtain a
large number of eigenvalues as a function of deformation parameters, we have exam-
ined four numerical recipes; the plane-wave decomposition (PWD), 16) the spherical-
wave decomposition (SWD), 17 the boundary integral method (BIM), 1829 and the
coordinate-transformation method (DIAG).2:22) The DIAG is the most effective
method for near-spherical shapes, but it is not good for strongly deformed shapes.
In SWD, PWD and BIM, the eigenvalue problem is converted to a search for the
zeros of real functions, minima of positive functions and zeros of complex functions,
respectively, and we have found that SWD is the most convenient for the present
purpose. Thus we mainly use this method, sometimes cross-checking the results with
other methods.

As a typical example, we discuss here the case of § = 0.3. A more systematic
presentation of this work including other cases will be reported elsewhere. 23) Figure 1
displays single-particle spectra calculated as functions of the octupole-deformation
parameter az. It is seen that a new shell structure emerges at about a3 = 0.2. The
deformed magic numbers associated with this shell structure are 26, 42, 70, 114,
172, - -, taking the spin degeneracy factor into account. Note that these numbers
appear at intermediate values between the magic numbers 20, 58, 92, 138, 186, - - of
the spherical cavity. This indicates that, due to the reflection-symmetry breaking of
the cavity, strong Al = 3 mixing takes place among levels with large orbital angular
momenta [ in spherical major shells.
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Figure 2 displays shell-structure energies evaluated with the standard Strutinsky
procedure and plotted as functions of the particle number N. As expected from
Fig. 1, we confirm here that minima develop in association with the formation of
the new shell structure at about az = 0.2. These shell-energy gains are so large
that this shell structure will remain either as minima or valleys with respect to the
octupole shape degree of freedom of the total deformation energy surface, even when
the liquid-drop deformation energies are added to them.

§3. Fourier transform

To understand the physical reason why such a clear shell structure emerges for
a certain combination of the octupole and quadrupole deformations, and to identify
the classical periodic orbits responsible for this shell structure formation, we analyze
the Fourier transform of the quantum spectrum.

The single-particle equations of motion for the cavity are invariant with respect
to the scaling transformation (&, p,t) — (&, ap,a~'t). The action integral S, for the
periodic orbit v corresponds to its length L.:

S.(E = p*/2M) = j{ﬁ. dg = pL., (31)
Y

and the trace formula is written as

p(E) ~ p(E) + > Ak /2 cos(kLy — mpy/2), (3-2)
vy

where p(E) denotes the contributions of orbits of ‘zero-length’, d, the degeneracy
and p., the Maslov phase of the periodic orbit . This scaling property enables us to
make use of the Fourier transformation of the level density with respect to the wave
number k. The Fourier transform F(L) of the level density p(F) is written as

F(L) = / dk k(@226 =L 5 B — j22 1901

~F(L)+Y AlS(L-Ly). (3-3)
Y

This may be regarded as the ‘length spectrum’ exhibiting peaks at the lengths of
individual periodic orbits. ) In numerical calculation, the spectrum is smoothly trun-
cated by a Gaussian with a cutoff wave number k. = 1/AL as

Far(L) = / dk k(422 = kL =3 (k/ke o |2 — R22 /2 M)

_ % Tk /e tknl ¢ bk ko) (3-4)
. 1 (L—L,\?
~ Far(L)+ ) _ Alexp l_§ ( AL7> ] i (3-5)
5

The amplitude A, (or A7) is proportional to the stability factor 1/4/|2 — Tr M| (in
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Fig. 3. Fourier transforms of the quantum level densities for deformed cavities with § = 0.3 and
a3 = 0.0 (a), 0.1 (b), 0.2 (c). The degeneracy index d = 1 (valid for generic periodic orbits) and
Gaussian cutoff wave number k. = v/300 are used in (3-4). In each panel, the lengths of classical
periodic orbits in the axis-of-symmetry (equatorial) plane are indicated by short (long) vertical
lines. The lengths are measured in units of the radius Ry. The classical periodic orbits are
calculated by means of the surface-of-section method, ?*) which enables us to obtain all periodic
orbits whose lengths are less than a certain value.

the stationary-phase approximation), where M, is the monodromy matrix of orbit ~.
It is expected to be enhanced in the vicinity of the bifurcation point where Tr M., = 2
(see Ref. 12)).

Let us investigate how these peaks change when the shape parameters of the
cavity are varied. Figure 3 displays, as an example, how the pattern of the Fourier
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transform (3-4) changes as a function of a3, fixing the quadrupole deformation pa-
rameter at § = 0.3. The highest peaks at the spheroidal limit (a3 = 0) are associated
with triangular and quadrilateral orbits in the axis-of-symmetry plane, whose degen-
eracies are two. It is clearly seen that the heights of peaks decline with increasing as.
This is because the octupole deformation breaks the spheroidal symmetry and the
degeneracy reduces to one corresponding to rotation about the symmetry axis. On
the other hand, we can clearly see that the heights of other peaks rise with increasing
a3. These peaks are found to be associated with the diameter, triangular and square
orbits in the equatorial plane*) at the center of the larger cluster of the pear-shaped
cavity.

§4. Periodic-orbit bifurcation

The key to understanding the reason that short periodic orbits in the equa-
torial plane start to play increasingly important roles at finite octupole deforma-
tion may lie in the following point: The stability of these orbits is crucially de-
pendent on the curvature of the boundary. The curvature radius in the longi-
tudinal direction changes as the octupole deformation parameter as varies, and
at certain combinations of 4 and a3, it matches with the equatorial radius, as
illustrated in the top-leftmost figure in Fig. 4. At this point, periodic orbits
in the equatorial plane acquire local spherical symmetry,*) and form a locally
continuous set of periodic orbits leaving from the equatorial plane. This con-
tinuous set makes a coherent contribution to the trace integral and significantly
enhances the amplitudes associated with these orbits. This is just the bifurcation
point of orbits in the equatorial plane, and new periodic orbits bifurcate from the
above locally continuous set. We present in Fig. 5 some periodic orbits born out of
the above-mentioned bifurcation.

This kind of bifurcation can be regarded as a special example of the phenomena
that Balian and Bloch called ‘accidental degeneracy’: According to Ref. 8), bifurca-
tions occur when the condition

Ry _ sin(mt/p)?
R,  sin(ng/p)?

is met, where R; and Ry denote the main curvature radii for the longitudi-
nal and equatorial directions, respectively, and the integers (p, ¢, ¢) correspond
respectively to the number of vertices, the number of turns about the symmetry
axis, and the number of vibrations in direction of the symmetry axis. Note that,
for Ri = Rg, all orbits (p = 2,3,4,---) in the equatorial plane simultaneously
satisfy the above bifurcation condition with ¢ = ¢ = 1. This type of bifurcation
is quite peculiar in that the local degeneracy changes by two at the bifurcation
point.

(4-1)

*) For convenience, we call the plane where the radius of the circular section assumes its maxi-
mum value ‘the equatorial plane’, although it does not go through the center of the cavity.
**) Namely, the curvature of the boundary in the vicinity of the equatorial plane locally coincides
with that of a sphere.
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Fig. 4. Periodic orbits in the deformed cavity with § = 0.3 and a3 ~ 0.16 (at bifurcation). For each
periodic orbit, the length L and the trace of the monodromy matrix, Tr M, are indicated. Those
in the axis-of-symmetry plane are displayed in the upper panel and those in the equatorial plane
in the lower panel. Only linear, triangular and quadrilateral orbits are displayed. In the top
left-most figure, a sphere tangent to the boundary at equatorial plane is indicated by a broken

line.

Pk

Fig. 5. Some short periodic orbits bifurcated from the equatorial-plane orbits. The deformation
parameters are § = 0.3 and a3z = 0.2
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Fig. 6. Bifurcation line of the equatorial-plane periodic orbits in the quadrupole-octupole deforma-
tion parameter space. For § = 0.3, bifurcation occurs at az >~ 0.16.
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Figure 6 displays a bifurcation line of this kind in the quadrupole-octupole
deformation parameter space. The bifurcation occurs at az ~ 0.16 for the case
of § = 0.3. In general, clear shell structures will appear along the bifurcation line.
Due to these shell structures, large shell energy gains are expected for certain nuclei
with such octupole deformations.

§5. Conclusion

We have investigated the shell structure of the single-particle spectrum in a
reflection-asymmetric deformed cavity. It may be found that clear shell structure
emerges for certain combinations of quadrupole and octupole deformations. The
Fourier transform of the quantum spectra clearly indicates that simultaneous bifur-
cations of the diameter, triangular and square orbits in the equatorial plane play
predominant roles in the formation of this new shell structure.

It will be very interesting to investigate whether or not this mechanism of shell
enhancement provides a semiclassical interpretation of the reflection-asymmetric
shapes of some metallic clusters recently found in the realistic calculations by Frauen-
dorf and Pashkevich.? Also, the origin of mass-asymmetry in nuclear fission may be
studied in a similar manner (cf. a recent paper by Brack et al.2%).

It remains as a challenge for the future to develop a semiclassical trace formula
which can quantitatively treat the type of bifurcation discussed in this paper.
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Classical periodic orbits responsible for emergence of the superdeformed shell structures
of single-particle motion in spheroidal cavities are identified and their relative contributions
to the shell structures are evaluated. Both prolate and oblate superdeformations (axis ratio
approximately 2:1) as well as prolate hyperdeformation (axis ratio approximately 3:1) are
investigated. Fourier transforms of quantum spectra clearly show that three-dimensional
periodic orbits born out of bifurcations of planar orbits in the equatorial plane become
predominant at large prolate deformations, while butterfly-shaped planar orbits bifurcated
from linear orbits along the minor axis are important at large oblate deformations.

§1. Introduction

In the last decade, superdeformed spectroscopy, i.e., the study of nuclear struc-
ture with large prolate deformations (axis ratio approximately 2:1), has developed
enormously, and further significant progress is expected. 1)-3) It is well known that
the superdeformation is the result of shell effect at large deformation, and in fact re-
alistic calculations of both the Strutinsky-Nilsson type and Hartree-Fock type work
well for describing shell structures observed in experiments at such large deforma-
tions. ¥ The purpose of this paper, however, is not to make some realistic calculations
in relation to recent experimental findings. Rather, we address here the fundamental
question of why a nucleus is superdeformed and investigate the semiclassical origin
of emergence of the superdeformed shell structure in a simple model, a spheroidal
cavity model.

In the periodic-orbit theory, based on the semiclassical approximation of
the path integral, oscillating parts of single-particle level densities are determined
by periodic orbits in the classical counterpart of the single-particle Hamiltonian. We
are particularly interested in shell structure, i.e., level densities coarse-grained to a
certain energy resolution, which are related with short periodic orbits. As is well
known, a nucleus favors such shapes at which prominent shell structures are formed
and its Fermi surface lies in a valley of oscillating level density, increasing its binding
energy in this way.

With a semiclassical approach, Strutinsky et al.?) studied the shell structure
associated with the spheroidal cavity model and found that planar orbits in the
meridian plane are responsible for the shell structure at normal prolate deformations.
In addition, they pointed out that some three-dimensional (3D) periodic orbits ap-

5)- 8)



1224 K. Arita, A. Sugita and K. Matsuyanagi

pearing at large deformations lead to the shell structure responsible for the fission
isomers whose existence has been known since the 1970s, which have superdeformed
shapes. As emphasized in Ref. 9), shell structures obtained for the spheroidal cavity
model contain basic features, apart from shifts of deformed magic numbers due to
the spin-orbit potential, similar to those obtained by the Woods-Saxon potential
for heavy nuclei and metallic clusters, and thus this model can be used as a simple
model to understand the semiclassical origin of the emergence of regular oscillating
patterns in the coarse-grained quantum spectra at large deformations.

Remarkably, however, two decades after the publication of Ref. 9), to the best of
our knowledge, little exploration of this idea has been undertaken and the qualitative
argument given in that paper has not been fully examined by other researchers,
although the spheroidal cavity model has been used for various purposes.19)-12) A
paper most relevant to the present paper is that of Frisk, ¥) who used the periodic-
orbit theory and the same cavity model mainly to clarify the origin of the prolate-
oblate asymmetry at normal deformations. Although he also briefly discussed the
case of large deformations, the importance of 3D orbits was not mentioned.

In this paper, we identify the most important periodic orbits that determine the
major pattern of the oscillating level density at large deformations, including prolate
superdeformations, prolate hyperdeformations and oblate superdeformations. For
this purpose we make full use of the Fourier transformation method. As briefly
reviewed in the text, by virtue of the scaling property of the cavity model, Fourier
transforms of quantum spectra exhibit peaks at lengths of classical periodic orbits,
enabling us to precisely identify important periodic orbits contributing to the shell
structure. This method has been well known, 8 but it has not been used for the
present subject.

Classical periodic orbits in a spheroidal cavity and their bifurcations with the
variation of the axis ratio have been thoroughly studied by Nishioka et al.14)15)
This paper may be regarded as a continuation of their work in the sense that we
investigate quantum manifestations of these periodic orbits and of their bifurcations.
(Actually, this was the intention also of the work by Nishioka et al.14):15))

We present in §2 the oscillating parts of smoothed level densities as functions
of the deformation parameter of the cavity. The Fourier transformation method is
recapitulated in §3. Periodic orbits and their bifurcations in a spheroidal cavity are
briefly reviewed in §4. The results of the semiclassical analysis of shell structures
are presented in §§6-8 for prolate superdeformations, prolate hyperdeformations and
oblate superdeformations, respectively, and conclusions are given in §9.

A part of this work was previously reported in conference proceedings. 16)

§2. Oscillating level density

We solve the Schrodinger equation for single-particle motion in a spheroidal
cavity under Dirichlet boundary conditions. As is well known, a spheroidal cavity
model is integrable and separable by the spheroidal coordinate system, so that these
coordinates are frequently used for solving the Schrédinger equation. We have,
however, adopted a spherical-wave decomposition method !?) for this purpose. The
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Fig. 1. Single-particle energy diagram for a spheroidal cavity, plotted as a function of the defor-
mation parameter 8. Solid and broken lines represent even- and odd-parity levels. The energy
is measured in units of h2/2M R3, where M and Ry are the mass of the particle and the radius
in the spherical limit, respectively. The spin degeneracy factor 2 is taken into account in magic
numbers in the spherical limit.

reason is merely that we wrote a computer program based on the latter method
for the purpose of efficiently calculating a large number of eigenvalues as function .
of deformation parameters for cavities of general axially symmetric shapes. 18 With
this method, wave functions are expanded in terms of spherical Bessel functions
(for the radial coordinate) and associated Legendre functions (for the polar angle
coordinate), and expansion coefficients are determined so as to fulfill the boundary
conditions (see Refs. 18) and 17) for technical details).

The single-particle energy diagram (as function of deformation parameter )
obtained in this way is shown in Fig. 1. The deformation parameter J is related
to the axis ratio n = a/b by § = 3(n — 1)/(2n + 1) in the prolate case and by
§ = —3(n — 1)/(n + 2) in the oblate case, where a and b denote the lengths of
the major and the minor axes, respectively. The volume-conservation condition is
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Fig. 2. Oscillating part of the smoothed level density displayed as a function of the energy and
deformation parameter 4. Solid, dashed and dotted contour curves correspond to negative, zero
and positive values, respectively. The units of energy are the same as in Fig. 1. Strutinsky
smoothing is used, with the smoothing width parameter Ak = 0.5. Constant-action lines for
important periodic orbits are indicated: Thick solid lines running through the spherical closed
shells are those for tetragonal orbits in the meridian plane. Thick broken and solid lines in
the region § = 0.3 ~ 0.8 are those for five-point star-shaped orbits in the equatorial plane and
for 3D orbits (5:2:1) bifurcated from them, respectively. Broken and solid lines in the region
d = —0.3 ~ —0.7 are those for double repetitions of linear orbits along the minor axis and for
butterfly-shaped planar orbits (4:1:1) bifurcated from them, respectively. Similarly, broken and
solid lines in the region § = —0.6 ~ —1 are those for triple repetitions of linear orbits along the
minor axis and for planar orbits (6:1:1) bifurcated from them, respectively.

imposed so that ab? = R} in the prolate case and a?b = R3 in the oblate case, where
Ry is the radius in the spherical limit.

Figures 2 and 3 display the oscillating part of the smoothed level density in the
form of a contour map with respect to the energy and deformation parameter, which
is coarse-grained with the Strutinsky smoothing parameter Ak = 0.5. We clearly see
regular patterns consisting of several valley and ridge structures. Thick solid and
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Fig. 3. Same as Fig. 2 but for a higher energy region. The correspondence between valley structures

and constant-action curves becomes much clearer in the higher energy region.

broken lines indicate the valley lines predicted by the periodic orbit theory (see §5
and §§6-8 for details).

§3. Fourier transform

Single-particle equations of motion for the cavity are invariant with respect to
the scaling transformation (z,p,t) — (x,ap, a~!'t) and the action integral S, for a
periodic orbit 7 is proportional to its length L,:

S.(E = p?/2M) = fp .dq = pL, = hkL,.

(3-1)
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Thus the semiclassical trace formula for the level density ® is written as
M
n h k n
~ g(E) + Z A (k) cos(kL, — mp-/2), (3-2)

where g(E) denotes the smooth part corresponding to the contribution of the zero-
length orbit, and p, is the Maslov phase of the periodic orbit r. This scaling property
enables us to make use of the Fourier transformation of the level density with respect
to the wave number k. The Fourier transform F(L) of the level density g(E) is
written as

F(L) = / dke=*Lg(E = h2k2/2M)
~ F(L)+ 7Y e ™#r/24,(i8y) §(L — L,), (3-3)
which may be regarded as the ‘length spectrum’ exhibiting peaks at lengths of in-

dividual periodic orbits.® In numerical calculations, the spectrum is cut off by a
Gaussian with cutoff wave number k. = 1/AL as

Far(l) = o [ an e HUSE ()
Y
M ]. 1 2 —3
:ﬁZE—e 7(kn/ke)® g=iknL (3-4)
n n
I —iT : 1 —5(=x
~ Fap(L)+ 7Y e ™/24,(idy) AL’ s(5325)° . (3.5)

§4. Periodic-orbit bifurcations

In this section, we recapitulate the theory of classical periodic orbits in the
spheroidal cavity following Nishioka et al.1%-1%) and Strutinsky et al.?) We focus
our attention on those orbits having short periods.

As is well known, only linear and planar orbits exist in a spherical cavity. When
spheroidal deformations appear, the linear (diameter) orbits bifurcate into those
along the major axis and along the minor axis. Likewise, the planar orbits bifur-
cate into orbits in the meridian plane and those in the equatorial plane. Since the
spheroidal cavity model is integrable, all classical orbits lie on a 3D torus, and, in the
case of a prolate spheroid, periodic orbits are characterized by three positive inte-
gers (p:t:q), which represent numbers of vibrations or rotations with respect to three
spheroidal coordinates. They are denoted as (n¢,ng4,n¢) in Refs. 14) and 15), and
(nw, g, y) in Ref. 9). When the axis ratio 5 of the prolate spheroid increases, hyper-
bolic orbits in the meridian plane and three-dimensional orbits successively appear
through bifurcations of linear and planar orbits in the equatorial plane. Bifurcations
occur when the condition

sin(7t/p)

b sin(mq/p) 1)

n
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is satisfied.

As we see in succeeding sections, the most important orbits for superde-
formed shapes (axis ratio approximately 2:1) are 3D orbits (p:t:q) = (p:2:1) with
p = 5,6,7,---. They bifurcate from planar orbits that turn twice (¢ = 2) about
the symmetry axis. Likewise, planar orbits (4:2:1) bifurcate from linear orbits that
repeat twice along the minor axis. These new-born orbits resemble the Lissajous
figures of the superdeformed harmonic oscillator with frequency ratio w, :w, = 2:1.
Every bifurcated orbit forms a continuous family of degeneracy two, which implies
that we need two parameters to specify a single orbit among a continuous set of orbits
belonging to a family having a common value of the action integral (or equivalently,
the length).

For prolate hyperdeformed shapes (axis ratio approximately 3:1), bifurcations
from linear and planar orbits that turn three times (¢ = 3) about the symmetry
axis are important. The new-born orbits are hyperbolic orbits in the meridian plane
(6:3:1) and 3D orbits (p:3:1) with p =7,8,9,---.

In the case of oblate spheroidal cavities, periodic orbits are classified in Ref. 15)
into two modes, the whispering-gallery (W) mode and bouncing-ball (B) mode. The
systematics of periodic-orbit bifurcations for the W-mode are similar to those for
the prolate case and can be treated by just exchanging the roles of t and ¢g. On the
other hand, B-mode orbits are successively created through bifurcations of multiple
repetitions of linear orbits along the minor axis when the condition

a 1
b sin(wt/p)

n (4-2)
is satisfied. Bifurcations of this kind do not depend on ¢, so that, for instance, planar
orbits (4:1:1) are created simultaneously with two families of 3D orbits (4:1:3/2) and
(4:1:2). (For B-mode orbits, half integer values of g are allowed as well as integers,
due to different definitions of the integration range for the action integral related to
g; see Ref. 15).)

Bifurcation points and variations of lengths with deformation are displayed for
some short periodic orbits in Table I and Fig. 4.

Table I. Bifurcation points of periodic orbits specified by (p:t:g) in the spheroidal cavity. Only
those for short orbits to be discussed in §36-8 are displayed.

orbit (p:t:q) axis ratio (a/b) deformation § orbit length in Rg

(4:2:1) 1.414 0.325 7.127
(5:2:1) 1.618 0.438 8.101
(6:2:1) 1.732 0.492 8.654
(7:2:1) 1.802 0.523 8.995
(8:2:1) 1.848 0.542 9.220
(6:3:1) 2.0 0.6 9.524
(7:3:1) 2.247 0.681 10.421
(8:3:1) 2.414 0.728 11.011
(9:3:1) 2.532 0.758 11.437
(4:1:1) 1414 ~0.364 6.350

(6:1:1) 2.0 -0.75 7.560
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Fig. 4. Variations of lengths of periodic orbits in a spheroidal cavity with respect to the deformation
parameter 6. Only those for short orbits discussed in §§6-8 are displayed. For a more complete
diagram, see Nishioka et al. 1% 1%

§5. Shell structure and constant-action line

Using the trace formula, we can extract information about classical periodic
orbits from the Fourier transforms of the level density. In this section we discuss
another method of using the trace formula, the constant-action line analysis.?) As
stated in §3 (see Eq. (3-2)), the quantum level density can be represented as the
summation over periodic orbits. If a few orbits having nearly the same action in-
tegral dominate in the sum, it is expected that valleys in the contour map of the
oscillating part of the smoothed level density versus energy E and deformation § will
be characterized by constant-action lines S(F, §) = const for those dominant orbits.
The equation for such lines is kL,(8) — wpr/2 = (2n + 1), thus,

1 (2nh(n £ 1/2 4 p/4)
BO) =3 ( L)

2M
As an example, let us examine the shell structure at normal deformations |§| $0.3.
In this region, triangular and tetragonal orbits in the meridian plane give dominant
contributions to the level density. This fact was first pointed out by Strutinsky
et al.9 (Although the triangular orbits were overlooked there, actions of the two
families of orbits scale in the same way as functions of deformation parameter so
that their argument was correct in essence.) The Fourier amplitudes at lengths of
some meridian-plane orbits are plotted in Fig. 5 as functions of the deformation
parameter §. We see that the meridian-plane orbits are important for small § and
that their contributions decline with increasing |§|. In Figs. 2 and 3, constant-

2
) . (n=0,1,2,--") (5-1)
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20
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Fig. 5. Absolute values of the Fourier amplitudes defined in Eq. (3-4), at lengths L = L, of some
short meridian-plane orbits, plotted as functions of the deformation parameter §.

action lines (5-1) for the tetragonal orbits in the meridian plane are indicated. The
period of the shell oscillation is mainly determined by the tetragonal orbits, and the
valley structure of the level density at normal deformation is nicely explained by
their constant-action lines. We also note that the shell effect at spherical shape is
weakened at E ~ 300, and the phase of valley is shifted from that of the constant-
action lines for E ~ 250-350. This is due to the supershell effect associated with the
interference of the triangular and tetragonal orbits. ©):19)

In this way, we can analyze the properties of the shell structure through classical
periodic orbits. In the following sections, we utilize these techniques in order to
identify dominant classical periodic orbits that characterize the shell structures in
superdeformed shapes.

§6. Prolate superdeformations

Figure 6 displays Fourier transforms of quantum spectra for prolate spheroidal
cavities with deformation parameter values § = 0.1 ~ 0.6. At normal deformations
with § = 0.1, as mentioned in the previous section, we notice peaks associated with
triangular and tetragonal orbits in the meridian plane. With increasing deformation,
bifurcations of linear and planar orbits in the equatorial plane successively take place.
Thus, the highest peak at L ~ 7 of the Fourier transform for § = 0.4 is associated with
butterfly-shaped planar orbits (p:t:q) = (4:2:1) that bifurcate at § ~ 0.32 from double
repetitions of linear orbits along the minor axis. For § = 0.5, the prominent peaks
at L ~ 8 and 8.6 correspond to 3D orbits (5:2:1) and (6:2:1) bifurcated respectively
from five-point star-shaped orbits and double traversals of triangular orbits in the
equatorial plane. With further increase in §, the same kind of 3D orbits successively
bifurcate from equatorial-plane orbits. For § = 0.6 (axis ratio n = 2), peaks around
L ~ 9 are associated with 3D orbits (7:2:1) and (8:2:1) that are bifurcated from 7-
point star-shaped orbits and double traversals of rectangular orbits in the equatorial
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Fig. 6. Length spectra (Fourier transforms of quantum level densities) for spheroidal cavities with
deformation parameter § = 0.1,0.4,0.5 and 0.6. The cutoff wave number k. = v/600 is used in
Eq. (3-4). At the bottom of each figure, the lengths of classical periodic orbits are indicated by
vertical lines. Long, middle and short vertical lines are used for 3D orbits, planar orbits in the
meridian, and planer orbits in the equatorial planes, respectively.
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Fig. 7. Three-dimensional orbits (5:2:1) and (6:2:1) in the superdeformed prolate cavity with de-
formation & = 0.6 (axis ratio 7 = 2). Their projections on the (z,y), (y,2) and (z, z) planes are
displayed.

plane.

In Figs. 2 and 3, constant-action lines for the 3D orbits (5:2:1) are indicated.
Good correspondence is found between these lines and the valley structure seen in the
superdeformed region with § around 0.6. Thus we can conclude that the bifurcations
of equatorial orbits play essential roles in the formation of the superdeformed shell
structure, and this shell structure is characterized by the 3D orbits (p:2:1).

Some of these 3D orbits are displayed in Fig. 7. They possess similarities with the
figure-eight shaped orbits in the superdeformed harmonic oscillator with frequency
ratio w) :w, = 2:1. An important difference between the cavity model under consid-
eration and the harmonic oscillator model should be noted, however: In the former,
such periodic orbits exist for all deformation parameters ¢ larger than the bifurca-
tion points, whereas in the latter, such orbits appear only for special deformations
corresponding to rational ratios of the major and minor axes.

On the other hand, the magnitudes of contributions of individual orbits are
found to exhibit a remarkable deformation dependence. Namely, Fourier peak heights
associated with new orbits created by bifurcations quickly increase with increasing
deformation and reach maximal values. Then, they start to decline. This behavior
is seen in Fig. 6. Figure 8 displays the deformation dependence of the Fourier
amplitudes |F(L)| defined in Eq. (3-4) at lengths L = L, for some classical periodic
orbits, which confirms the behavior noted above. This behavior has not been pointed
out in the previous papers. It should be emphasized that the relative magnitudes
and the deformation dependence of contributions of individual periodic orbits found
here are significantly different from those roughly estimated in Ref. 9).

To get a deeper understanding of the mechanism of the enhancements associated
with the bifurcations noted above, a semiclassical approximation that goes beyond
the stationary phase approximation used in deriving the trace formula (3-2) may
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Fig. 8. Same as Fig. 5 but for meridian-plane hyperbolic orbits and 3D orbits (p:2:1) (left-hand

side) and (p:3:1) (right-hand side). Solid curves correspond to those for equatorial-plane orbits
from which these orbits are bifurcated.

be required. Such a semiclassical theory applicable for three dimensional deformed
cavities is not available at present and remains a challenging subject for future study.

§7. Prolate hyperdeformations

Figure 9 displays Fourier transforms for 4 = 0.7 and 0.8. For é ~ 0.7, the
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Fig. 9. Same as Fig. 6 but for § = 0.7 and 0.8 (axis ratio n ~ 2.3 and 2.7).
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Fig. 10. Same as Fig. 7 but for 3D orbits (7:3:1) and (8:3:1) in the hyperdeformed prolate cavity
with deformation § = 0.8.

peak at L ~ 10.3 is associated with 3D orbits (7:3:1) bifurcated from 7-point star-
shaped orbits in the equatorial plane. For § = 0.80, we see a rise of the peak at
L ~ 10.8, which is associated with 3D orbits (8:3:1) bifurcated from 8-point star-
shaped orbits in the equatorial plane. They are displayed in Fig. 10. These 3D
orbits resemble the Lissajous figures of the hyperdeformed harmonic oscillator with
frequency ratio w) :w, = 3:1. In the same manner as for the 3D orbits responsible
for superdeformations, Fourier peak heights associated with these newly appearing
orbits rapidly increase after the bifurcations, reach the maxima and then decline
with increasing deformation (see Fig. 8). Thus, also in this case, bifurcations of
equatorial orbits (but of different types (p:3:1)) play the major role in the formation
of this shell structure.

§8. Oblate superdeformations

Finally let us consider oblate deformations. Figure 11 displays Fourier trans-
forms of quantum spectra for oblate spheroidal cavities with § = —0.3 ~ —0.85. For
0 = —0.3, the two dominant peaks are associated with triangular and tetragonal
orbits in the meridian plane. For é == —0.4, we see a dominant peak at L ~ 6.3
in addition to the peaks associated with the meridian-plane orbits. This new peak
is associated with the butterfly-shaped planar orbits (4:1:1) bifurcated from double
repetitions of linear orbits along the minor axis.

At § = —0.75 (axis ratio n = 2), the other peak at L ~ 7.5 becomes important.
This peak is associated with the triple traversals of linear orbits along the minor
axis, which bifurcate just at this shape to planer hyperbolic orbits (6:1:1). They
make a predominant contribution for § = —0.85 (peak at L ~ 7.1).

Constant-action lines for these bifurcated orbits (4:1:1) and (6:1:1) are indicated
in Figs. 2 and 3. We see clear correspondence between the shapes of these lines and
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Fig. 11. Same as Fig. 6 but for oblate cavities with § = —0.3 ~ —0.85.

the shape of valleys in the oscillating level density. Combining this good correspon-
dence with the behavior of the Fourier peaks mentioned above, it is evident that
these periodic orbits are responsible for the shell structure at oblate superdeforma-
tions with an axis ratio of approximately 2:1. According to the classification given
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in § 4, these are W-mode orbits.

In contrast to W-mode orbits, B-mode 3D orbits do not seem very important,
although those with (p:t:q) = (5:1:2),(6:1:2),--- etc. are already bifurcated from
equatorial-plane orbits in the superdeformed region. This is an important difference
between the prolate and the oblate superdeformations in the spheroidal cavity model.

§9. Conclusions

Classical periodic orbits responsible for the emergence of the superdeformed shell
structure for single-particle motion in spheroidal cavities were identified and their
relative contributions to the shell structures were evaluated. Both prolate and oblate
superdeformations as well as prolate hyperdeformations were investigated.

Fourier transforms of quantum spectra clearly show that 3D periodic orbits born
out of bifurcations of planar orbits in the equatorial plane become predominant
at large prolate deformations, while butterfly-shaped planar orbits bifurcated from
linear orbits along the minor axis are important at large oblate deformations.

Good correspondence between constant-action lines for these periodic orbits and
valley structures in the oscillating part of the smoothed level density confirms the
above conclusions.

After writing this paper, we learned that Magner et al.?%) carried out an exten-
sive semiclassical analysis of shell structure in large prolate cavities. In their work,
a rather large coarse-graining parameter « for the level density was used, so that
the equatorial-orbit bifurcations discussed in this paper were not clearly seen. It
remains a challenge for future study to develop a semiclassical theory capable of
treating equatorial-orbit bifurcations, and the phase-space trace formula proposed
in Ref. 20) seems to provide a general framework for this aim.
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We derive an analytical trace formula for the level density of two-dimensional elliptic
billiards using an improved stationary phase method. The result is a continuous function of
the deformation parameter (eccentricity) through all bifurcation points of the short diameter
orbit and its repetitions, and possesses the correct limit of circular billiard at zero eccentric-
ity. Away from the circular limit and the bifurcations, it reduces to the usual (extended)
Gutzwiller trace formula, which for the leading-order families of periodic orbits is identical
to the result of Berry and Tabor. We show that the circular disk limit of the diameter-orbit
contribution is also reached through contributions from closed (periodic and non-periodic)
orbits of the hyperbolic type with an even number of reflections from the boundary. We ob-
tain the Maslov indices depending on deformation and energy in terms of the phases of the
complex error and Airy functions. We find enhancement of the amplitudes near the common
bifurcation points of short-diameter and hyperbolic orbits. The calculated semiclassical level
densities and shell energies are in good agreement with the quantum mechanical ones.

§1. Introduction

The periodic orbit theory (POT), developed by Gutzwiller )2 for chaotic sys-
tems, by Balian and Bloch?® for cavities, and by Berry and Tabor®)9 for integrable
systems, has proved to be an important semiclassical tool not only for an approxi-
mate quantization but also for the description of gross-shell effects in finite fermion
systems. 6).7) Gutzwiller’s approach has been extended to take into account contin-
uous symmetries 98712 and is therefore applicable to systems with mixed classical
dynamics, including the integrable and hard-chaos limits.

An important role is played by the classical degeneracy of the periodic orbits in
systems with continuous spatial or dynamical symmetries: the orbits are then not
isolated in phase space (as assumed in Gutzwiller’s original trace formula, and as is
the case in chaotic systems), but occur in degenerate families with identical actions.
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The degree of degeneracy K is defined as the number of independent parameters
that are necessary to uniquely specify an orbit within each family. For example, the
orbit families with the highest degeneracy in spherical systems with spatial SO(3)
symmetry have K = 3, corresponding to the three Euler angles that specify the
orientation of an orbit within the plane of motion and the orientation of the plane
itself, the orbit families in two-dimensional systems with U(1) rotational symmetry
have L = 1, and the isotropic harmonic oscillator in two dimensions has SU(2)
symmetry and hence orbit families with L = 2. Orbits with different degeneracies K
may also occur in a single system, such as the spherical cavity discussed by Balian
and Bloch® where the diameter orbit has K = 2 and all other orbits have K = 3,
the spheroidal cavity '3 where K = 2, 1 and 0 occur (the latter corresponding to
isolated orbits), and elliptic billiard with K = 1 and 0, as discussed in the present
paper.

However, problems arise for all these trace formulae in connection with the break-
ing of a continuous symmetry and with the bifurcation of stable periodic orbits when
a continuous parameter (energy, deformation, external field) is varied. The reason
is that at such critical points the standard stationary phase approximation, used for
integrations in the derivation of the trace formula, breaks down and leads to diver-
gences and/or discontinuities of the amplitudes in the trace formula. This happens
most frequently in mixed systems, but it occurs also in integrable systems. Typical
examples are two-dimensional elliptic billiard and the three-dimensional spheroidal
cavity. In the former, all repetitions of the short diameter orbits undergo bifurca-
tions at specific deformations, whereby new families of hyperbolic orbits are created.
Similarly, in the latter system, the periodic orbits lying in the equatorial plane per-
pendicular to the symmetry axis bifurcate also at specific deformations, whereby
new three-dimensional orbits appear.'® In both systems, all bifurcations and the
limit to the spherical shape lead to divergent amplitudes in the trace formulae (see
Refs. 6), 11) and 14)—21)). Since for each family with a given value of K, the ex-
tended Gutzwiller trace formula 88 ~10) has an amplitude proportional to R (1+K/2)
it is evident that the breaking of a continuous symmetry must be accompanied by a
discontinuous change of the amplitudes, which manifests itself in the form of a sin-
gularity when one attempts to reach the unbroken symmetry limit. (An exceptional
situation occurs in anisotropic harmonic oscillators, when changing from irrational
to rational frequency ratios: here the divergences of the different periodic orbit con-
tributions have been shown?® to cancel identically, such that the trace formulae —
which are quantum-mechanically exact here — hold for arbitrary frequency ratios,
although their analytical form is different in different limits (see also Ref. 7).))

Since symmetry breaking and orbit bifurcations occur in almost all realistic phys-
ical systems, there is a definite need to overcome these singularities. The importance
of bifurcation effects in connection with the emergence of the ‘superdeformed’ shell
structure in atomic nuclei is emphasized in Refs. 6), 18) and 20)—22). In order to
improve the POT in these critical situations, various methods have been proposed.
As in the treatment of continuous symmetries considered in Refs. 8)—11), they es-
sentially consist of taking some integrals in the derivation of the trace formula more
exactly than in the standard stationary phase method (SPM).
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Berry and Tabor suggest in Ref. 4) a quite general method to treat bifurcations
in integrable systems. Starting from the trace integral for the level density in action-
angle variables, they reduce it to a Poisson-sum trace formula and perform all trace
integrations except one with the SPM, extending the integration limits from —oo to
+o00. At bifurcations, this leads to singularities in the amplitudes when the stationary
points are close to the limits of the integration range. According to Ref. 4), in this
case one has to take the integral within the exact finite range. The integration range
need not necessarily include the stationary points (in the case of negative or complex
stationary points), but the latter are assumed to be close to the integration limits.
For integrable systems, this idea was applied to the periodic-orbit families with the
highest degeneracies, for which one can carry out the integrals over the action angles
exactly, giving 2 for each degree of freedom. ® This is the starting point of a uniform
approximation that was further developed by various authors. 24)~26)

Another type of uniform approximation was initiated by Ozorio de Almeida and
Hannay 27) (see also Ref. 28)) and developed further by Sieber and Schomerus 2% =31
for various generic types of bifurcations. Writing the trace integral in a phase-space
representation, they expand the action around the bifurcation points into so-called
normal forms which usually can be integrated analytically with finite results. The
correct asymptotic recovery of the Gutzwiller amplitudes far from the bifurcation
points can be obtained by a suitable mapping transformation whereby the amplitude
function, together with the Jacobian of the mapping transformation, is expanded up
to an order consistent with that of the action in the exponent of the integrand. Near
the bifurcation points, there is a common contribution of all participating (real or
complex, so-called ‘ghost’) orbits to the trace formula.

A similar technique, starting from the Berry-Tabor approach for integrable
systems and using a ‘pendulum mapping’, was used by Tomsovic, Grinberg and
Ullmo32):33) to derive a generic uniform approximation for the breaking of orbit
families with a one-dimensional degeneracy, corresponding to U(1) symmetry, into
pairs of stable and unstable isolated orbits. Finally, some analytical uniform trace
formulae for the breaking of the higher-dimensional SU(2) and SO(3) symmetries
in specific two- and three-dimensional systems have been derived very recently. 3%
Hereby the trace integral was performed over the de Haar measure of the corre-
sponding symmetry groups, as in the derivation of the unperturbed trace formulae
for these continuous symmetries, 10) and the mapping was done onto the forms of
the action integrals obtained in perturbation theory. %) 36)

It should be mentioned that all the uniform approximations mentioned above can
be used only for one isolated critical point of symmetry breaking or orbit bifurcation.
They fail, in particular, 29 ~31):33).34) when two critical points are so close that the
actions of the participating orbits at these points differ by less than ~ h. To our
knowledge, no common uniform treatment of two nearby bifurcations (in the above
sense), or of a bifurcation near a symmetry-breaking point, has been reported to this
time.

In this paper, we propose an approach to simultaneously overcome the diver-
gences due to symmetry breaking and any number of bifurcations in two-dimensional
elliptic billiard and the three-dimensional spheroidal cavity. Although our frame-
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work is quite general, we limit its application here to elliptic billiard. The three-
dimensional spheroidal cavity will be treated in a succeeding paper, 13) and the ex-
tension to non-integrable systems is planned for future research. We start from a
phase-space trace formula, 11):37) which after some transformations becomes identical
to that obtained from the mixed phase-space representation of the Green function
in Refs. 30) and 38), as explained there and below (see §4.3). Analogous versions of
the phase-space trace formulae are suggested in Refs. 5) and 10).

In contrast to previous investigations, ¥)%):24)-26) we calculate the integrals over
angles, also, using the stationary phase method. Note that we also include orbits
with lower degeneracies, such as the isolated diameters in elliptic billiard and the
equatorial orbits in the spheroidal cavity, thereby extending the method of Ref. 4).
Our main point is that the stationary-phase integrals over both action and angle
variables are calculated with expansions of the phase and amplitudes, as in the
standard SPM, but within finite intervals in all cases in which these integrals would
lead to divergences if one or both integration limits were taken to co or —oo. We also
discuss the role of non-periodic closed orbits (see §5.4). For the Maslov indices, which
for the bifurcating orbits depend on the deformation, and near the critical points also
on the energy, we follow the basic ideas of Maslov and Fedoryuk. 39”42 We obtain
separate contributions to the trace formula from the bifurcating periodic orbits, and
we remove the singularity of the isolated long diameter (i.e., the separatrix) near the
circular shape of the elliptic billiard in a simpler way than in Ref. 26).

In this way we obtain an analytical trace formula for the elliptic billiard system
that gives finite and continuous contributions at all deformations, including the cir-
cular disk limit and all bifurcation points of the short diameter orbit. Although its
derivation and its explicit form are quite different, our final trace formula is similar
to the uniform approximations mentioned above in the sense that it is connected
smoothly to the standard (extended) Gutzwiller trace formulae for different orbit
types with deformations sufficiently far away from all critical points.

§2. Phase-space trace formula in the closed orbit theory

2.1. Semiclassical trace formula

The level density g(¢) is obtained from the Green function G(v/,r”;¢) by taking
the imaginary part of its trace:

gle) = ! Im/dr”/dr’G(r’, r";e)5(r" — ')

™

= —iIm/dr"/dr’/dfoG(r',r”;s) exp —%fo- (" =7y (21)

™

Within the semiclassical Gutzwiller theory, 1)) the Green function G(v/,7";¢) can
be represented by the sum over all classical trajectories a connecting two spatial
points " and r” at fixed energy e. Inserting it into (2-1), we obtain the semiclassical
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level density

2 -
gsai(e) = (%h)(gnﬂ)/gImz/dr"/dP/dr’IJ(p’,ta;r”,6)|1/2
X exp{% [So(r 7" ) —p- (" —7")] — %ua}. (2-2)

Here S, (v, 7" e) = f:,// dr - p is the action along the trajectory «, m is the spa-
tial dimension, and p, is related to the number of conjugate points (i.e., turning
and caustics points along the trajectory).*?) J,(p/,ta; 7", €) is the Jacobian for the
transformation from initial momentum p’ (at the point ') and time interval ¢,
(for the classical motion along the trajectory from initial to final point) to the final
coordinate " and energy ¢.

2.2. Phase space variables

Integrating over r’ in Eq. (2-2) along the direction transverse to the trajectory
a with the stationary phase method (SPM), we are left with the integral over the
component of dr’ parallel to the trajectory, which gives just an energy conserving
delta function §(e — H(r',p’)). We hence arrive at the phase-space trace formula 7

1 14 / / / /! /
(€)= g Be S [ ar” [ a5l — B! p) 71211
X exp{% [Sa(P', 0" ta) + (p" =) -7"] - iva}. (2-3)

Here J(p'[,p,) is the Jacobian for the transformation from initial to final momen-
tum components p/, and p'[, respectively, perpendicular to the trajectory c. This
Jacobian is equal to one of the elements of the stability matrix (see, e.g., Ref. 7)).
Sa(P', P, ta) is the action in the momentum representation

p//
Sa(p', P’ ta) = —// dp - 7(p), (24)
p

which is related to the usual action in coordinate space

,r,//
Sa(r'sre) = [ dr-p(r) (25)
7,/
by the Legendre transformation
Sa('r'/’ r//’ 6) _ p/ 3 (,r// _ r/) — Sa(p/,p//, ta) + (p// _p/) 3 Ir//. (26)

The phase v, in Eq. (2-3) contains, in addition to 5, in Eq. (2-2), the phases arising
from the integration over 7’ in the stationary phase approximation.

Note that the integrand in the phase-space trace formula (2-3) (except for the
exponent related to the phase part proportional to 7”) is the semiclassical Green
function in the mixed representation that contains explicitly an energy-conserving
d-function in our case, unlike the form discussed in Ref. 10). (Consequently, the
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momentum components are not independent, which is important for the following
application of the stationary phase method; see more details in the next subsection
and in §4.) Due to energy conservation, i.e., H(r',p’) = H(r",p"), the trace formula
(2-3) can be rewritten in an alternative form where the integration variables are
changed from (v”,p’) to (v',p”). The sum in (2-3) runs over all isolated classical
trajectories o with starting momentum p’ and final point 7" (or with starting point
r’ and final momentum p” in the alternative form), for a fixed time interval ¢, of
the classical motion along a.

2.3. Periodic orbit theory

The trajectories « in the phase space trace formula (2-3) are not necessarily
closed orbits in the usual coordinate space. However, after separation of the ex-
tended Thomas-Fermi part (corresponding to the ‘zero length orbits’) and integra-
tion over one of the momentum components exploiting the d-function, we use further
semiclassical approximations. We first write the stationary-phase conditions for the
integration variables in (2-3). The stationary conditions for the momentum vari-
able p’ are the closing condition for the trajectories « in the usual coordinate space,
r’ = 7" and the Jacobian in Eq. (2-3) is unity due to the Liouville Theorem of phase-
space volume conservation (see Ref. 7)). The additional stationary-phase conditions
for the integration over spatial variables r” selects the periodic orbits, p’ = p”, and
we obtain the POT and all known trace formulas including the Poisson-sum trace
formula. 3”) We then integrate over components of the phase-space variables exactly
if we have identities for them. Other integrations will be done using an improved
stationary phase method (ISPM). ‘Improved’ here means that we carry out the inte-
grations in finite ranges, after expanding the exponent of the integrand around the
stationary point up to second order terms, and taking the amplitude at the station-
ary point (or use a higher-order expansion of amplitude and phase, if necessary).
All stationary points that appear outside the physical region of integration over the
phase-space variables are also taken into account, even if they are complex. In this
way we obtain simple and continuous analytical solutions that remain finite at all
critical (bifurcation and symmetry-breaking) points. In contrast to other uniform
approximations mentioned in the Introduction, our results appear as explicit sums
over separate contributions that correspond to the periodic orbits in the asymptotic
regions away from the critical points.

§3. Classical mechanics

3.1. Elliptic billiard as an integrable system

We consider an elliptic billiard with axes a and b (with a < b) along the x and
y coordinate axes, respectively, and ideally reflecting walls. This is an integrable
system which can be separated into the elliptic coordinates (u,v) defined in terms
of the Cartesian coordinates (x,y) by

x = ( cosusinh v, y = (sinwucoshwv, ¢ = Vb2 —a?, (3-1)
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with
—r <u<m, 0<v <. (3-2)

Hereby (z,y) = (0,£() are the foci of ellipses given by v = const, and v = v
is the elliptic boundary. It is convenient to introduce the deformation parameter
n=b/a > 1 and to keep the area of the ellipse constant by setting ab = R?, so that
b= R/ and a = R/\/n. The second constant of the motion, in addition to the
energy ¢, is the product of the angular momenta [_ and [} with respect to the two
foci. For the following, it is advantageous to use the single-valued quantity o defined
by

-1y
2me(?’

c=1+ (3-3)
There are two types of orbits, depending on the relative sign of [_ and [: elliptic
orbits circulating around both foci for [_l; > 0 or ¢ > 1, and librating hyperbolic
orbits for [_ly < 0 or ¢ < 1. The names used here indicate that the former are
limited to the area between the elliptic boundary given by v = v, and a confocal
elliptic caustic given by v = v,, whereas the latter are confined to the area between
the two branches of a hyperbolic caustic given by u = t+u. and the elliptic boundary.
The critical values for the boundary and the caustics are given by

vp = arccosh (77/\/772 — 1) , v = arccosh(1/4/0), wu.=arcsin(y/o). (3-4)

In terms of the above quantities, the single-valued action integrals I,, and I,, become

Uc
Iu:fpudu:p—C duy/o — sin® u,
T

—Ue

Up
I, = j{pvdv = p_C/ dv \/cosh®v — o, (3-5)
T Ve

where p = v/2me = hk is the constant classical momentum of the particle. Since
the system is integrable, its Hamiltonian depends only on the actions and not on the
variables u and v, i.e., H(Iy, I, u,v) = H(Iy, I).

3.2. Periodic orbits

As shown by Berry and Tabor, ) the periodic orbits of an integrable system can
be found by the condition that the angular frequencies (for angle variables conjugate
to the actions) have rational ratios. In the present case, these frequencies are given
by w, = 0H/d1l,, w, = 0H/0I,, so that the periodic orbits are characterized by
pairs of positive integers M, and M, as

Wy,

! [1 - F(Q’“)] =M g > 1 M > 20,) (36)

Wy F(%,k) M,’

where

k = sinwu./ coshv., 6 = arcsin(cosh v,/ coshuvy), (3-7)
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Yy Y

Fig. 1. Some classical periodic orbits in elliptic billiard are represented by thin solid curves. The
left-hand side corresponds to elliptic triangular (1,3) and rhomboidal (1,4) orbits, and the
right-hand side corresponds to the hyperbolic butterfly orbit (1,4), from Ref. 11).

and F(6, x) is the elliptic integral of the first kind.*”) The greatest common divisor
of M, and M, corresponds to the repetition number M =1, 2, 3, -- - of a primitive
periodic orbit (n,, n,):

(Mg, My) = (Mny, Mny) = M (14, 1). (3-8)

The solutions of Eq. (3:6) for x and 6 which correspond to families of degenerate
periodic orbits with IC = 1 are, labeled accordingly for elliptic and hyperbolic orbits,

LT
Kp =0 0y, = arcsin (m)

Figure 1 shows the shortest periodic orbits of each kind. The degeneracy parameter

K was defined as the number of parameters that specify the orbits within a family
with a common action. Due to the separation of variables in elliptic coordinates (3-1)
we have two single-valued action integrals I,, and I,, (3-5). They are related through
the energy conserving equation ¢ = H(I,,I,) and can be written in terms of one
parameter of the family o (or [_14); i.e., we have K =1 (see Refs. 6), 8),9), 11), 50)
for more details).

3.3. Energy surface

For the energy surface ¢ = H (I, I,)) one can get from Eq. (3-5) the parametric
equations (A-1) for the elliptic orbits and (A-2) for the hyperbolic orbits.'® The
energy curve (A-1) or (A-2) can also be considered through the single-valued param-
eter o or double-valued x defined within the same range 0 < x < 1 for both kinds
of orbits. The solutions ¢ found from the periodic orbit equations (3-6) for elliptic
orbits satisfy the inequality o > 1 in the elliptic part (A-1) of the energy curve. On
the other hand, ¢ < 1 for the hyperbolic part (see Fig. 2(a)). The two regions are
separated by the separatrix point os = 1, corresponding to the long diameter orbit,

where the value of the action I, = L(f) is given by

I =2p¢/m. (05 =1) (3-10)
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Fig. 2. Energy surface I,,(I,,) and curvature 6211,/813 in the upper and lower panels, respectively,
from Ref. 19).

Thus, each phase space torus is split into two regions by the separatrix, a hyperbolic
region and an elliptic region. In the hyperbolic part (0 < o < 1), the action variable

I, changes from 0 to the separatrix value LV(LS). In the elliptic part (1 < 0 < 0¢), Iy

I(cr)

changes from the separatrix value to the maximum value [, ’ that corresponds to a

‘creeping’ (or ‘whispering gallery’) orbit and is given by

u T 2’ /Oer T ’

= R
o = cosh? vy = 0%/ (n? — 1). (3-11)

The short diameter (1,2) and its repetitions M (1,2) correspond to the end point
of the hyperbolic region at o = 0 (k = 0), which is isolated in phase space {O,, I,,}.
Equation (3:6) for the periodic orbits at this o can be solved analytically with respect
to 6. Identifying the root 0(n,n,/n,) with its definition (3-9) for hyperbolic orbits,
we realize that all short diameters M (1,2) bifurcate at the deformations,
1 1

£ (M,n) = — - L (n=1,2,3,-,M—1) (312
Mir(M, ) sin(mny, /ny)  cos(nm/2M) (n ) (312)

and at each bifurcation a new family of hyperbolic orbits M (n,, n,) with Mn, reflec-
tion points is ‘born’. The second equation presents the same bifurcation points and
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shows explicitly that the bifurcation deformations n;s are also identical to the corre-
sponding divergences of the Gutzwiller amplitudes for short diameters (see Eq. (6.47)
of Ref. 7)). Each of the emerging hyperbolic orbits My (M —n,2M) with M; repeti-
tions and n from Eq. (3-12) coincides exactly with the corresponding short diameter
M;M(1,2) repeated M7 M times at the deformation 7. For instance, for the triply
repeated short diameter 3(1,2) (M; = 1, M = 3) there are two bifurcation points
at the deformations s = 2/4/3 and 2 where the primitive hyperbolic orbits (2,6)
(n = 1) and (1,6) (n = 2), respectively, are born (see these orbits in Fig. 3.6 in
Ref. 19) and discussion nearby, and also Ref. 14) and Fig. 1a there). However, the
short diameters are isolated in the phase space of action-angle variables {©,,I,}.
They emerge as terms of the periodic orbit sum which are additional to the families
of hyperbolic tori (see a more detailed discussion below). The contribution of the
primitive short diameter 1(1,2) can be calculated by the original Gutzwiller trace
formula, except near the circular shape. 19 This formula will be improved near all
bifurcation points (3-12) and the circular shape in §5.2.

The long diameter orbits M (1,2) are also characterized by 2M reflection points
and correspond to a specific isolated point in {©,, I,,} space. They are related to the
separatrix value o = 1 (k = 1). Again, their amplitudes can be calculated with the
standard Gutzwiller trace formula for isolated orbits, with the same exception near
the symmetry-breaking point of the circular shape ™19 (see §5.3 for the improved
solution in terms of Airy functions near this point).

The limit of a circular disk (7 = 1) may in some sense also be considered as a
(one-sided) bifurcation point: Here the family of diameter orbits (with IC = 1) break
into two isolated diameters with ' = 0 and complicated hyperbolic orbit families
(K =1) with n, — o0, n, — 00, and ny, : n, — 1: 2, when the deformation (n > 1)
is turned on. Inversely, the long and short diameters and hyperbolic orbits that have
K = 0 and 1 in the ellipse, respectively, merge into the families of diameter orbits
with £ =1 as 7 — 1. The discontinuous change of IC at n = 1 is accompanied by a
divergence of the diametric amplitudes in the standard SPM. This is the symmetry-
breaking problem discussed in the Introduction and below in §§5.2 and 5.3.

Figure 2(a) shows the energy surface in action space, in the form of the curve I,, =
I,(g, I,) at fixed energy e. Specific primitive orbits (with M = 1) are illustrated, with
the arrows pointing to the corresponding stationary points I7;: the short diameter
(at I =0 or 0 = 0, with ©; = 0,7), the ‘butterfly’ (or ‘bow-tie’) orbit, the long
diameter (at I} = L(f), with 0 = 1 and O} = +7/2), the rhomboidal orbits with
four reflections, and the ‘creeping’ orbit (at I} = i ) as the limit of a ‘whispering-
gallery’ mode with a number of reflections n, = co and winding number n,, = 1. The
limits of the separatrix correspond to infinite values of n, and n, for hyperbolic and
elliptic orbits with the ratio n,/n, going to 1/2 from either side (see also Ref. 14)).
We use the same notation for both short and long diameters in terms of the integers
Ny, Ny and M as for the elliptic and hyperbolic one-parametric families, specifying
them also by the stationary points in the phase space variables o (or I,,) for all orbits
and @, for the isolated ones, if necessary.
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3.4. Curvature

A key quantity in the semiclassical theory in terms of the action-angle variables
is the curvature K of the energy surface

0?1, 0?1,  wy 0?1, 0L\ 2
K= = — — . 3-13
oI (802+wv 802>/<80) (3:13)
The partial derivatives appearing on the right-hand side above are given in Appendix
A. Figure 2(b) displays K versus I,,. In the limit o — 0 one finds the curvature
for the twice repeated short diameters considered as primitive orbits.® For our

definition of the (non-repeated) primitive orbits, the curvature K, is larger by a
factor of 2, i.e.,

B 1

- o R773/2’
which is finite and negative for all deformations. K remains negative for the entire
hyperbolic part 0 < o < 1 of the curve, whereas it is positive for the elliptic part
1 < 0 < 0¢. At the critical points 0 = 1 (separatrix) and at o, (creeping point),
the curvature diverges. It tends to —oo as one approaches the separatrix from the
hyperbolic side, and to +oo from the elliptic side. For ¢ — o it also tends to +oo.

(3-14)

§4. Phase space trace formula in action-angle variables

4.1. Action-angle variables

We now transform the phase space trace formula (2-3) from the usual phase
space variables (r,p) to the angle-action variables (©,I). The latter are useful
for integrable systems because the Hamiltonian H does not depend on the angle
variables @, i.e., H = H(I). For elliptic billiard one has from (2-3)

1
0i(e) = e Re X [ ol [ael [ ar, [ ar o —m, 1)
X exp {;L (Sa(I', I t0) + (I' — T') - @"] — wa} , (4-1)

where © = {0,,0,} are the angles and I = {I,, [} the actions for the elliptic
billiard defined in the previous section. For simplicity we omit here and below
the Jacobian pre-exponential factor of Eq. (2-3), because this Jacobian taken at
the stationary points is always unity when we apply the improved stationary phase
method for calculation of the integral over phase space variables, as noted above.

4.2. Stationary phase method and classical degeneracy

As noted in the Introduction, we emphasize that even for integrable systems
the trace integral (4-1) is more general than the Poisson-sum trace formula which
is the starting point of Refs. 4) and 5) for the semiclassical derivations. These two
trace formulae become identical when we assume that the phase of the exponent also
does not depend on the angle variables @, like the Hamiltonian. Then, the integral
over angles in (4-1) simply gives (27)", where n is the spatial dimension (n = 2 for
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the elliptic billiard) (see Ref. 5)). In this case the stationary condition for all angle
variables are identities in the 27 interval. This is true for the contribution of the most
degenerate classical orbits, like elliptic and hyperbolic orbits, with I = 1 in elliptic
billiard. For the case of orbits with smaller degeneracy, like the isolated diameters
(K = 0) in elliptic billiard, the exponent phase is strongly dependent on some angles
with definite discrete stationary points. We therefore need to integrate over such
angles using the standard or improved SPM. Other examples are the equatorial
orbits (K = 1) and diameters along the symmetry axis (separatrix with £ = 0) in
the spheroidal cavity (n = 3), the degeneracy parameters of which are smaller than
the largest possible value K = Kyax = 2 for the elliptic and hyperbolic orbits in
the meridian plane, and for three-dimensional orbits. We have a similar situation
also for the diameters with K = 2 in the spherical cavity (Kpax = 3), orbits along
the symmetry axis for axially-symmetric cavities, and so on. Thus, the stationary
conditions with respect to the angle variables for orbits with smaller degeneracies
are not identities. Moreover, the stationary points in the cases mentioned above
occupy subspaces of the phase space which are isolated in the rational tori that lead
to separate contributions to the trace formula, except for the most degenerate orbit
families, as we see below for the case of elliptic billiard.

4.3. Stationary phase conditions

We first perform the integral over I] in Eq. (4-1) exactly. Due to the energy
conserving d-function, we are left with the integrals over the angles ©!/ and 6! and
the action I} :

1 1
1(6) = e Be S [ a6l [ a0y [ar,
X exp {% (Sa(I', I" to) + (I" = 1') - O") —ivy |, (4-2)
IN
SoI', 1" ty) = — [ dI-O(I). (4-3)
Il

We first write down the stationary phase equation for I,:

VAR 7] *
(W) ~ 0, =6, -6 =2rM,, (#44)

where M, is an integer. The star indicates that we take the quantities at the sta-
tionary point I/, = I}'. We now use the Legendre transformation (2-6), which reads

So(I' I t) + (I —I')- @' = 5,(0",0 &) — I' - (@' — @), (45)
@l/
5.(0,0".c)= | 4O I1(e).
6/

Making use of this transformation, the stationary phase conditions for angles @,, and
O, are written as

(asa(@', @)  9S,(0,0" ¢

AR
T ) =1"-1=0. (46)
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For the following derivations we have to decide which stationary phase conditions
from Egs. (4-4) and (4-6) are identities for the finite volume of the phase-space tori
and which are equations for the isolated stationary points. To do this, we must calcu-
late separately the contributions from the most degenerate (elliptic and hyperbolic)
families (IC = 1) to the improved trace formula and those from diameters in elliptic
billiard. These two contributions are different with respect to the above-mentioned
decision concerning the integration over the angles @. After the integration over
one of the angle variables, say ©,, corresponding to the identity in the stationary
phase conditions (4-6) due to an invariance of the action along the periodic orbit in
Eq. (4-2), one gets Eq. (7) of Ref. 30) derived earlier by Bruno.3®) Thus, we obtain
the result of Refs. 30) and 38) within periodic orbit theory. Our phase-space trace
formula (2-3) is more general because it can be applied to more exact calculations
of the level density, without using the stationary phase conditions like Egs. (4:6), in
terms of closed (periodic and non-periodic) orbits.

Note that we have separate contributions coming from each kind of family and
isolated orbits even near the bifurcation points (3-12) where we have the end point.
Taking the deformation within a small distance from 7y, we are left with two sep-
arate close stationary points and then use the Maslov-Fedoryuk theory 3?42 as
for caustic and turning points. Finally, after the integration using the improved
stationary phase method, we look at the limit n — m;s to the bifurcation point.
In particular, this idea of Maslov and Fedoryuk is applied in Appendix B for the
calculation of the contribution of the long diameter at the separatrix.

§5. Trace formulas for the elliptic billiard

5.1. Elliptic and hyperbolic orbit families (K =n —1=1)

Each family of elliptic or hyperbolic orbits with a common action occupies a two-
dimensional finite area in the elliptic billiard. In this case, the stationary conditions
(4-6) for the integration over the angle variables ©,, and ©, become identities, since
the integrand does not depend on the angle variables, and we have the conservation
of the action variable I/, = I/ = I,, fulfilled identically along each classical trajectory
«. Taking the integrals over @ gives a factor of (27)2, and we are left with the
Poisson-sum trace formula like in Refs. 4) and 5):

1 27 )
gscl(€) = - Re ME /dI 0(e —H(I))exp [7M - ZI/M:|
1 1 2me
— —ReY [dl, —exp |2 M - T —ivn| . 1
; Re 2 /d ] exp { . ZI/M:| (5-1)

Here M = (M,, M,) are integers which correspond to those in Eq. (3-8). Next
we transform the integration variable in the last expression of Eq. (5-1) from I, to
o defined by (3-3). Thus, the level density component dgsq1 related to the one-
parameter families can be written as a sum of contributions from the hyperbolic
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(595(?1)71(5)) and the elliptic (595(51),1(5)) parts of the tori. Their sum is

1
7T60pR2

1 foe ol 2mi
0gsc1(e) = Rez n_/o doLpr—— exp =iky Y I(o) —ivar|, (5-2)
M v

do h

where g9 = h%/(2mR?), I(0) are the actions defined by Eqs. (3:5), Las are the
‘lengths’ of the primitive orbits with M = 1 given by

_ 2mnyp

Ly
MWy

= 2n,b sin 6 lE(G, K) — IE((z’ Z)) E(3, k) + cot 0/ 1 — k2 sin? 9] , (5-3)

2

and 0(o) and k(o) are defined by Eq. (3-9). The ‘lengths’ become the true lengths of
the corresponding periodic orbits when they are taken at o equal to the real positive
roots of Eq. (3:6) inside the integration range. For other values of o, the ‘lengths’
are nothing else than the functions (5-3) introduced in place of w, for convenience.
The integration range from the bifurcation point ¢ = 0 to the separatrix o5 = 1
covers the contributions of all hyperbolic orbits. The remaining part of Eq. (5-2)
from ¢ = 1 to the creeping value o, gives the contributions from the elliptic tori.

As we see below, the choice of o as the integration variable significantly improves
the precision of the SPM. We hence apply the stationary condition (4-4) for the phase
in the integrands of Eq. (5-2) with respect to o rather than to I,,. With Eqgs. (3-9),
this condition becomes identical to Eq. (3-6) and determines the stationary phase
point o/ = ¢” = o* related to I], = I/ = I;. We have used here the conservation
of o (or the additional integral of motion [;[_) along the periodic orbit. We now
expand the phase up to second order as

SalI' T ta) + (I = I')- @ = 2nM - T = §y(e) + LMo —0*),  (5:4)

where Sg is the action along the periodic orbit 3 determined by Eq. (3-6),

Sg(e) =2 M (nyly(0™) + nyly(c™)), (5-5)

and J })l) is the Jacobian stability factor with respect to o along the energy surface:

2 2 2
I 0°S 041, 0“1,
— _— — 2 /\/i w s e . .
Jﬁ ( Oo2 > P T (n Oc? tn do? - (5 6)

It is related to the curvature Kg (3-13) of the energy surface by

OL,\? OL,\?
80) = 2nMnye |Kg| <> , (5:7)

Il
Jo=2rMn,K
wMn 5( 9%

o=07%0 o=0%3

where € = +1 for elliptic orbits and ¢ = —1 for hyperbolic orbits. We now substitute
the expansion (5-4) and take the pre-exponential factor off the integral in Eq. (5-2).
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For the sake of simplicity, we only consider the lowest order in the expansion of the
phase and the pre-exponential factor in Eq. (5-2) in the variable o, although higher-
order expansions can in principle be used to improve the precision of the SPM. Thus,
we are left with the integral from o = 0 to 1 for the hyperbolic orbits, and from o = 1
to o¢ for the elliptic orbits.

When the stationary point ¢* is far from the limits of these intervals, one can
extend the integration range from —oo to co and get the result of the standard
POT.% Near the bifurcation points (3-12) of the short diameter orbit (where the
hyperbolic orbit families appear), however, the stationary point o* is close to zero.
In this case we cannot extend the lower limit to —oo, but, rather, we must take
the integral exactly from ¢ = 0. On the other hand, when the stationary point o*
approaches the integration limit o4 (3-10) or o (3-11), hyperbolic or elliptic orbits
with an increasing number n, of corners appear. In these cases, too, we cannot
extend the integration limits to +oco. Taking the integral over o within the finite
limits, we obtain a trace formula in terms of complex Fresnel functions or generalized
error functions. The contributions of the one-parameter orbit families 0gs.11(€) are
then given in the form

dgsain(e) = Rez Ag)(g) exp [ik‘Lﬁ — il/gOt)} . (5-8)
B

Here, the sum is taken over both elliptic and hyperbolic orbit families, k = v/2me/h.
The amplitude A(ﬁl) = |.A(ﬁl)| of the orbit family 3 is given through
Lg

A(l) _
2eomkR?\/—€iM3n} [hK |

erf (25, 2),) - (5-9)

Here Lg is the ‘length’ of the orbit family (5-3) corresponding to the stationary point
o* (M =1). We have introduced here the generalized error function erf(z1, z2),

2 [
erf(z1,22) = —= dze™

VT o

erf(z) being the standard error function *”) with (complex) argument z. The complex

22

= erf(z2) — erf(z1), (5-10)

quantities Zg ; and Zg 5 in (5-9) are given in terms of the Jacobian Jg (5-6) and the
stationary points o*:

L o
o eldsl o o eldsl .
Z,B,l = on (Umin g )v 25,2 = o (Umax o ), (5-11)

()

min

and UI({C;E),LX are related to the integration limits by

1, 621 € O" 6:]_
af,i?n:{o 6:_1}7 aﬁn;x:{fr 6:_1}. (512)

The phases V[(;Ot) in (5-8) are related to the Maslov indices. They have a constant
part vg, which is independent of the deformation 7 and energy . At deformations

where o
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that are far enough from bifurcation points, such that the stationary points are far
enough from the integration limits, we can determine this asymptotic part vg by
transforming the error functions to Fresnel functions*”) with real limits and extend-
ing the integration limits to +co. We thereby arrive at the amplitude A(ﬂl) of the

standard POT,%)>11):44)

AW _ Lg
O comkR2, /M3 |hK 4|

and vg is determined by the number of turning and caustic points, as in the theory of
Maslov and Fedoryuk. 3% ~42) In terms of the numbers n, and n, and the repetition
number M, it is given by

(5-13)

vg = 3%rnUM for e = +1,
Vg = g(Qnu +on)M  fore=—1. (5-14)
From Egs. (5-8), (5-9) and (5-14) we determine an extra contribution to the total
phase ng)
yémt) = ng)(n, kR) =vg — %e — arg {erf (ZEJ, Zg,z)} , (5-15)

which analytically connects the asymptotic values vg and depends on the energy
through £R. The final result (5-15) for the total phase depends also on the defor-
mation parameter 7.

Note that o* is negative for 7 < mpir. In the derivation of Eqs. (5-8) and (5-9),

we have changed the integration variable from o to z = \/—ei\JE\/(Qh)(a —0*) in
order to transfer the kR and n dependence of the integrand to the limits of the
complex generalized error functions (5-10). Note also that our energy and deforma-
tion dependent phase l/gOt) are essentially different from those in Ref. 26) and much
simpler in analytical structure. In contrast to Refs. 26) and 29), we have not used
any assumption concerning the smoothness of the phase. Our solution is regular at
the separatrix and creeping points, at all bifurcation points, and in the circular disk
limit. We easily get the correct circular disk limit%®) and the Berry-Tabor result?
for larger deformations far from the bifurcations.

Equations (5-8), (5-9) and (5-15) represent one of our central results concerning
the contributions of the degenerate orbit families (K = 1) that simultaneously solves
the symmetry-breaking problem for both hyperbolic and elliptic orbits: near n = 1
and other bifurcation points for all hyperbolic orbits, and near the separatrix o, and
the ‘creeping’ point oo for all elliptic orbits. The additional contributions of the
isolated orbits (IC = 0) will be derived in the following two subsections.

Formally, our result (5-8) coincides with the first main term of the Berry-Tabor
trace formula (see Eq. (24) of Ref. 4)) using the simplest method for the expansions
near the stationary point instead of a more general and more complicated mapping
procedure. The next two terms of their formula, being of higher order in v/%, can be
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obtained by taking account of the linear term in the expansion of the pre-exponential
factor over o — ¢*. They were neglected in our approach because we are interested
here only in the main term of the SPM expansion, in order to get the simplest
possible solution of the bifurcation problem. With the higher-order corrections, we
should take into account the fact that the ratio of the contribution of the linear term
to that of the zero-order term of the amplitude is of the same order as the relative
contribution of the next order (cubic) term in the expansion of the phase. For a con-
sistent treatment of the level density in the semiclassical asymptotic approximation
kR > 1, one would have to collect both corrections.

5.2. Short diametric orbits (K = 0)

For the contribution of the isolated (I = 0) diameters, only one of the two
stationary phase conditions (4-6) corresponding to the @, variable is an identity.
The other one for @, is a nontrivial equation for the discrete number of stationary
points that differs by integer multiples of w. Indeed, due to the integrability of
motion in the elliptic billiard one has

Ou=wyt+00, O, =w,it+06Y, (5-16)

where @) is the initial angle © at t = 0. Since the frequency w, in Eq. (5-16) is zero
for short diameters, for instance, there is no room for an identity in the stationary
phase condition for the variable @, in Eq. (4-2). Hence, the Poisson-sum trace
formula cannot be applied to get the contribution from the short diameters, unlike
in the derivations in Ref. 24). The stationary points for the integration in Eq. (4-2)
over the angle ©, for short diameters are constants @ = nM for M = 0, +1, ---.
Due to the periodicity of the angle variable with the period 27, we must deal with
the two stationary points ©; = 0 and 7 in the integration interval from —7 to w
over the angle ©, in Eq. (4-2). We can then reduce the initial integration interval
for the angle variable ©,, to the region from —m/2 to 7/2, taking into account the
integration over other angles (related to the motion along the same periodic orbit
in the opposite direction) by the factor 2 (due to the time reversal invariance of the
Hamiltonian). Within this reduced integration interval, only one stationary point
O} = 0 must be taken into account in the calculation with the improved stationary
phase method.

For the other variable ©,, for the short diameters, we have an identity in the
corresponding equation from Eq. (4:6). The integrand in (4-2) is independent of the
variable ©,, and the integral gives simply 2w. Thus, the integrand for the contri-
bution of the short diameters essentially depends only on @, and possesses relevant
stationary points. When we take this integral using the SSPM we immediately obtain
Gutzwiller’s result for short diameters with his stability factor in the denominator.
This stability factor is zero at the bifurcation points. Below, we obtain the short
diameter term improved at the bifurcation points. For this purpose we first follow
the same method in the integration over ©, and I, as we did in the integration
over I, for elliptic and hyperbolic orbits with highest degeneracies. The integration
interval over I, for the contribution of the short diameters is also finite from 0 to
the maximal “creeping” value LS“) (3-11), which corresponds to the region of the o
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variable 0 < o < ogg,.
Thus, for short diameters, we use the stationary condition for the angle variable
O, and expand the phase of the exponent in Eq. (4-2) about the short diameter,

1
So = Sonr(e) + §JjM93, (5-17)

with Sgps(e) being the action along the short diameter, Ssar(e) = 4p(e) aM, and
O; = 0. JZ, is the Jacobian corresponding to the second variation of the action S,
with respect to the angle variable ©,,

T <8zsa o 928, N 82%) B (_ orn, o, N aﬂj)
M \oeg T Toe0e; oo ) a0, “oer T aer) .,

(5-18)

according to Eq. (4-5). The Jacobian JslM is expressed in terms of the diametric
curvature Ky (3-14) and Gutzwiller’s stability factor Fjyy,

ary,

_oL, 0L, Ol
Fo=— ( 90, I 89“) = 4 sin? [M arccos(2n 2 — 1)} , (5-19)
LM sM

which is independent of the choice of the phase space variables

e FsM
T = Fard iy = = 5 (5-20)
where )
©) _ ( or, )
Jo) = — (5-21)
M 88'/11, sM

and K is the short diametric curvature given by Eq. (3-14) (e = —1). In the second
equality of Eq. (5-20) we used a simple relation between the Jacobians J S(]?/[), J })l) and
K. This relation follows directly from their definitions and simple properties of the
Jacobians:

©) 4l

2

(%)
After the exact integration over @, in Eq. (4-2) which gives 27 as explained
above, we substitute the expansion (5-17) of the action S, and take the amplitude
factor at the stationary point O} = 0. We take the integral over @,, within the finite
range from —m/2 to m/2. This can be reduced further to the integral from 0 to /2
with the factor 2 due to spatial symmetry, in addition to the time reversibility factor

2 mentioned above. Integrating over I, as in the previous subsection, one finally
gets

=—1. (5-22)

59551)’0 = ReZAg% explikLspr — ivshr)- (5-23)
M
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Here, Lgps is the length of the diameter orbit, Lsy = 4Ma,

0 2a 1
Agz& T conkR? Fort] erf (leM iy ZJJM 2) erf (ZSM 1 25l 2) (5-24)

and Zsyr1 and Z,p2 are defined by

o o
Zoup =00 Zoyp =\ —gp Oens (5-25)

7L 7L 7L
_Z|J5M| _Z|JsM|@//:z _Z|JsM|
For any finite deformation and sufficiently large kR, Eq. (5-24) is greatly simplified
by using asymptotics for the first error function and one obtains

2a 1
A E()?TkRQ [Fon] erf( sM 1stM2) (5-27)

The constant part vy, of the Maslov phases in Eq. (5:23) is obtained in the
same way as in the previous subsection:

verr = 3mM — g (5-28)

For deformations far from the bifurcation points, the level density 595(51),0 (5-23)

asymptotically reduces to the standard Gutzwiller formula for isolated short diame-
ters7 1)7 2),7)

(s)
o)~ e S

The total Maslov phase 1/3(

S\c/)[t) = Vg — arg {erf (Z‘l‘,st Zél,sM)} — arg {erf (le,sM’ ZQL’SM)}
A Ugyr — arg {erf (Zf:st ZisM)} (5-30)

for large kR.
Near the bifurcation points where Fspr — 0, one obtains from Eq. (5-23) the
finite limit,

sin(kLspr — vsar)- (5-29)

]\(/}) for the diameter orbits is

erf (ZS‘M 1 leM 2) iLor—vors)

a
5
sl 0 7 o kR? Z ,/2Mm K]

1/4

~

N ———=Re) —
80\/27Tk‘R %\/M

Note that the two last terms in Eq. (24) of Ref. 4) are smaller than the above
contribution (5-31) at the bifurcation deformations ny¢ (3-12) by the factor vVkR.

ez’(kLsM*VsM*ﬂ'/‘l). (531)
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Therefore, these two terms are the next order semiclassical corrections and can be
neglected in comparison with the term (5-31) obtained above. Moreover, the ISPM
solution (5-23) is not related to the “diametric” part of the Poisson-sum trace formula
(5-2) with n,, = 1 and n,, = 2, as follows from the derivations in Ref. 24) (a1 = 2, a9 =
A = 2 in the notation of Ref. 24) applied for short diameters in elliptic billiard,
a1 = 2ny) (see below for the more detailed discussion). Thus, our derivation is
essentially different from that suggested earlier in Ref. 24) (where the last two terms
in Eq. (24) of Ref. 4) are retained without considering the contribution (5-31)).

Taking the limit of Eq. (5-31) for n — 1 we obtain the same contribution of the
diameters in the circular disk %0 as found from the “diametric” part of the Poisson-
sum trace formula,

59§?1),1(5) sin(kLgsp — vsnr + 7/4). (5-32)

1 1
 eoV2mkR % VM

The value in this limit is larger by the factor v kR than the standard Gutzwiller
result for isolated orbits as at any other bifurcation points.

5.3. Long diameters and the separatriz

As shown in §2; the curvature K goes to +oo from the right side and —oo from
the left side near the separatrix (o = 1) with the same modulus (see Egs. (A-5),
(A-6) and Fig. 2(b)). The derivation for short diameters of the previous section
with the expansion of the action exponent phase to second order terms cannot be
applied in this case. However, we note that the behavior of the curvature near the
separatrix in the action I,, (or o) variable is similar to that for the eigenvalues of
the matrix of the second derivatives of the action in the usual coordinate space
near the turning points. One can thus apply the Maslov and Fedoryuk idea for the
calculation of the Maslov indices (see Refs. 39)—42)). Following this idea we first
expand the phase of the exponent in Eq. (4-1) with respect to the action I,, taking
into account up to third order terms (see Eq. (B-1) in Appendix B). Then we use the
linear transformation (B-9) to the new variable z to get the standard exponent in the
integral representation of the Airy functions. Within this method, we take the small
first derivative (small parameter ¢1) and the large second derivative (curvature) in
the cubic polynomial expansions (B-1) taking o within a small distance from the
separatrix o = 1. After some algebraic transformations we obtain Eq. (B-12) in
Appendix B in the limit ¢ — 1. Note that an idea similar to that we used here, in
which o is considered near the singular separatrix point ¢ = 1 and finally, only after
the calculation of the integrals, the limit ¢ — 1 is taken, is applied in the derivations
of the separate contributions of the hyperbolic orbit family and short diameters to
the periodic orbit sum, as mentioned above.

For the angle integral in Eq. (B-12), we use the same Maslov-Fedoryuk
method 39 ~42) applied for the caustic case. As a result, one obtains (see Appendix B)

b i 2 'LU3/2 'LU3/2 —y
695?1’0(6) - eomkR? Reze (ke Laag+35 (w) ™" +w ") —vind]
M
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V‘jiﬁ [Ai(—w)) +i Gi(—w))]
252
x [Ai (—wi, 2, Biga) + 0 Gi (—wi, 2, Zira) |- (5:33)

Here, the complete and incomplete Airy (or Gairy) functions with one and three
arguments (Eq. (B-14)) are used in line with the definitions in Refs. 47) and 48) (see
also Appendix B for the definitions of all other quantities).

For large kR+/n? — 1, near the separatrix o — 1, the parameter w, is negligible
in Eq. (B-17) for the limits Zﬁl A and ZzL,l a and the integration range can be extended
from 0 to co. The incomplete Airy integrals in Eq. (5-:33) approach the complete
ones and the asymptotic forms of all Airy functions like Ai(—w) and Gi(—w) are
now used.*?) Finally, we asymptotically obtain the standard Gutzwiller result for
the isolated diameters, 127

) 2b Re Z ei[kLw-&-%(wﬁ/2+wi/2)—V1M1 wwL
< | Finr|

095e10(6) = — cokR2
< [Ai(—wy) + i Gi(—wp)] [Ai(—wy) 4+ Gi(—w.)]

Sin(kLlM - VlM)a (5'34)

2b Z 1
—
comh B2 4= /TFia]

where Fjys is the Gutzwiller stability factor for long diameters,

Fou=—-4 sinh? [M a1r(:(:osh(2772 — 1)} , (5-35)
T
viv = 3nM — 5 (5-36)

In the second equation we used the asymptotics of the Ai(—w) and Gi(—w) func-
tions. 4”) We found also the constant part v;y; of the phase by using the Maslov-
Fedoryuk theory. The deformation and energy-dependent Maslov phases are deter-
mined by the additional phases in the exponent and the argument of the product of
the square brackets in (5-:33) through complex combinations of the Airy and Gairy
functions and their arguments.

In the circular shape limit, both the upper and the lower limits of the incomplete

Airy functions in Eq. (5-33) tend to zero, and the angle integral has the finite limit

/2 because cg, cs and w, vanish (see Appendix B). With this, the other factors

near the separatrix ¢ — 1 ensure that the amplitudes for long diameters diminish
because w) (B-11) vanishes at the separatrix (see also Ref. 47)). Therefore, the long
diameter contribution becomes zero in the circular shape limit.

Thus, for deformations far from the bifurcations, the results (5-23) and (5-33) of
the ISPM reduce to the standard Gutzwiller formula. In the circular disk limit the
improved short diameter density (5-23) continuously approaches the diametric contri-
bution to the circular disk density, while the long diameter (separatrix) contribution
diminishes. Note that our ISPM solution (5-33) for the unstable long diameters
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is not related to the Poisson-sum trace formula (5-1), in particular, with its “dia-
metric” part because of the existence of the isolated stationary points for the angle
variable 6, as for short diameters. Moreover, the uniform approximation Eq. (24)
of Ref. 4) is singular at the separatrix because of the divergence of the curvature
K; for o — 1, as noted in Ref. 26). However, instead of using the continuation of
the WKB approach to the complex plane as suggested in Ref. 26), we applied the
simpler Maslov-Fedoryuk method 3% ~42) and obtained the analytical dependence of
the Maslov phase on the deformation and energy through the exponent phase and
complex arguments of the Airy functions as well as their complex summations.

5.4. Closed orbits and the circular disk limit

To get a more exact solution for the diameter contribution to the level density
and check the precision of the ISPM, we come back to the initial trace formula
Eq. (2-2) before application of the ISPM for the calculation of this trace.”) For this
purpose we take exactly the trace integral (2-2) in suitable variables. This is the
trace formula in terms of the sum over all closed (periodic and non-periodic) orbits
a?

dx dy

B —3/2 M -7
0gsc(€) = 2 (2mh) /P ;/ VIa(z,y)

where J,(z,y) is the stability factor defined through the Jacobian J,(p'ts,r"c) by

sin(kLq — va), (5-37)

/ "y _ m® 89;2 _ m® 1
Ja(P'ta,7"e) ’ (ay,,>a P AT (5-38)
Here the deflection §%” of the final path point in the perpendicular direction of
the local Cartesian system (Z,y) comes from the angle variation 59; of the initial
momentum, ')-46) (see Fig. 3).

We then simplify the trace formula (5-37), taking the contribution of the main
shortest closed orbits o with the two reflection points denoted below by the index
“co2” as an example. For an arbitrary point (z,y) inside the elliptic billiard, one can
find such orbits “co2” that are triangles with two vertices at the elliptic boundary and
one vertex at the point (x,y) (see Fig. 4). There are two kinds of such orbits. For any
point (z,y) we can plot the hyperbola and ellipse confocal to the boundary, which
are the orbit-length invariant curves. Indeed, moving the initial point (x,y) along
such a hyperbola (or an ellipse) we have the one-parametric family of the triangle-
like orbits with the same action (K = 1). We refer to them as the hyperbolic and
elliptic “co2” orbits, respectively.

For the calculation of the trace integral (5-37) it is convenient to use the elliptic
coordinates (u,v), (3-1). After this coordinate transformation, we can take the sine
function of the action off the v or u integration for the hyperbolic or elliptic “co2”
orbits, respectively, because the action is independent of the corresponding elliptic

*) Equation (2-1) can be obtained also from the phase space trace formula Eq. (2-3) taking the
integral over two components of the momentum p’ along the energy surface using the stationary
phase method.
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Fig. 3. Illustration of the caustic method for evaluating the stability factor J, in Eq. (5-38) for the
closed two-reflection orbit “co2”. The deflection angle §6,, at the initial point O(r’), variation
5y" of the final point O (r"") with respect to O, and the coordinate system (Z, ) are shown. The
thick solid curves and dashed curves represent the hyperbolic orbit “co2” and the perturbed
orbit, respectively. The thin solid curve indicates the orbit-length invariant hyperbola confocal

to the boundary.

Fig. 4. Closed non-periodic two-reflection orbits with the elliptic and hyperbolic caustics at the
initial point O(z, y) are indicated by thin and thick solid curves, respectively, for the deformation
n = 1.05 (left-hand side) and 1.2 (right-hand side). O is the vertex common to both triangular
orbits. The dashed curves indicate the orbit-length invariant ellipse and hyperbola crossing
the initial point. The hyperbolic orbit is close to the diameter of the circular shape for small
deformations.

coordinate. Finally, one obtains from Eq. (5-37)

) . o . 2 2
6955?2) (6) = 2(27rh)_3/2 m( du sin(k Lycoa(4) — Vheo2) dv(sinh® v 4+ cos® u)
\/}_7 \/JhCOQ(x(uvv)ay(ua’U))

(5-39)

for the contribution from the hyperbolic “co2” orbits (hco2), and a similar equation
for the elliptic “co2” orbits. An explicit expression for the stability factor Jeo2(x,y)
evaluated using the caustic method ') is presented in Appendix C.

Note that the hyperbolic “co2” orbits with the initial point (z,y) reduce to the
disk diameters crossing the same point in the circular disk limit (see Fig. 4). The
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Fig. 5. (a) Convergence to the circular shape limit: The contribution of the closed two-reflection
orbits of the hyperbolic type “hco2” (see Fig. 4) to the level density dg(kR) is represented
by the solid curve for the deformation 7 = 1.005, while Gutzwiller’s trace formula (SSPM) for
isolated diameters and the circular disk trace formula are indicated by dotted and dashed curves,
respectively. The dashed curve overlaps with the solid curve, so that it cannot be distinguished
from the latter. (b) Convergence to the Gutzwiller trace formula for n = 1.1. The notation is
the same as in (a).

stability factor Jpco2(x,y), (C-1), turns into the analytical circular disk expression

of Ref. 46). The circular disk limit of the level density (5-39) coincides with the
diameter contribution § géfl)l(s), (5-32), as shown in Fig. 5(a). The opposite limit of
(5-39) far from the bifurcations is the Gutzwiller SPM for the short and long isolated

diameters (see Fig. 5(b)). The contribution of the elliptic “co2” is negligibly small
everywhere, and it vanishes at the circular disk shape as higher order # corrections.

§6. Level density, shell energy and averaging

6.1. Total level density

The total semiclassical POT density can be written as the sum over all periodic
orbit families considered in the previous section,

59501(5) = 59801,1(8) + 595(31),0(6) + 5953,0(6) = Z 595(?]) (6)7 (61)
B

where the first term is the contribution (5-8) from the elliptic and hyperbolic orbits.
The second and third terms are the contributions from the short (5-23) and the long
(5-33) diameters, respectively. Near the circular limit, the last two terms for one
period (M = 1) can be replaced by the contribution of the hyperbolic “co2” orbits
(5-39) to obtain a more precise semiclassical result.

6.2. Semiclassical shell energy
The shell-correction energy 6 F can be expressed in terms of the oscillating part

595(?1) (¢) of the semiclassical level density as®)>7):11)
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0FE = 22 ( ) 59801 (er), N = 2/05F deg(e). (6-2)

Here, t3 is the time of the motion along the periodic orbit 3 (including its repetitions),

where T is the period of the primitive orbit with the Fermi energy er, Mg the
repetition number, {23 the frequency, and N the particle number. Note that we have
taken into account the spin degeneracy factor 2 in (6-2).

The semiclassical representation of the shell-correction energy (6-2) differs from
that of §g only by the factor (h/tg)? = (h*kr/mLg)?, which suppresses contributions
from longer orbits. Thus short periodic orbits play dominant roles in determining
the shell-correction energy.

6.3. Awerage level density

For the purpose of presenting the level density improved at the bifurcation points
we need to consider a level density slightly averaged, thus avoiding the convergence
problems that usually arise when one is interested in a full semiclassical quantization.

The averaging is done by folding the level density with a Gaussian of width I

ar(e) = \/7171“ | gt ) (6-4)

The choice of the Gaussian form of the averaging function is immaterial and guided
only by mathematical simplicity. For cavities it is also convenient to use the level
density defined as a function of kR averaged with a Gaussian of width ~:

1 oo , , _ (k*j )R
gy(kR) = Ty /_OO d(k'R) g(K'R) e ( ) ; (6:5)
where
=Y 6((k — k))R) =2kReq Y _ 6(e — &;) = 2kReog(z), (6-6)

g9 = h? /2mR? and the dimensionless parameter + is related to I" by

I =2y, (67)

Applying the averaging procedure defined above to the semiclassical level density
(6:1), one obtains?)>46).11)

scl

_(Its)? _(ts)?
5gfscl Z(Sg(ﬁ) < " ) = Z(Sg:g)(g) € ( o ) . (68)
B
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The latter equation is written specifically for billiard problems in terms of the orbit
length Lg (in units of a typical length scale R) and . The averaging yields an
exponential decrease of the amplitudes with increasing Lg and/or 4. As shown
in Ref. 11), for v of order unity, all longer paths are strongly damped and only the
shortest periodic orbits contribute to the oscillating part of the level density, yielding
its gross-shell structure. For a study of the bifurcation phenomenon, however, we
need smaller values of ~.

Finally, we should note that the higher the degeneracy of an orbit, the larger
the volume occupied by the orbit family in the phase space and also, the shorter its
length, the more important its contribution to the average level density.

§7. Quantum elliptic billiard

7.1. Numerical method for the spectrum calculation

Single-particle energies €; of a particle of mass m moving freely inside the elliptic
boundary v < v can be obtained by a number of numerical methods. Following the
procedure employed in previous works 18)-20) by some of the present authors, one can
expand the deformed single-particle wave functions ¥ (r, ) into a circular basis with
well-defined orbital angular momentum [ as

(e) (0)
LT/(++) (r,0) ZAZJZ (kir) cos(16), w ) (r,0) = ZBZJZ(IW”) sin(16),

7

=0 =1
(o) (©)

O (r,0) =S Aidi(kir) cos(10), W (r,0) =Y Bii(kir) sin(16), (7-1)
=1 1=2

where Jj(x) are the cylindrical Bessel functions of the first kind, k; = /2me; /R, the
superscripts (++) etc. indicate the parities with respect to reflections about the x
and y axes, and the superscripts (e) and (o) indicate the sums with respect to even
and odd I, respectively. The expansion coefficients A; and B; can be determined by
applying Dirichlet boundary conditions.

In the present analysis we employed, in addition to the above circular-wave
decomposition method, the numerical procedure based on a rather standard ap-
proach, the transformation of the Schrodinger equation into an elliptic coordinate
system. 26),52),53) ) terms of elliptic coordinates (3-1), the Schrédinger equation can
be written as

Ve {ﬁ?—l—} M8¢{Ma¢}]w<f,¢>

202 2
+2m@§é§ »°)

¥(& ¢) =0, (7-2)

where £ = coshv and ¢ = cosu. Following Ref. 52), this equation can be sepa-
rated into two ordinary differential equations by assuming (£, ¢) = R(£)S(¢). The
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Fig. 6. Single-particle spectra (in units of &¢) for elliptic billiard plotted as functions of the defor-
mation parameter 7.

functions R and S are solutions of the ordinary differential equations

d*R dR
(€ -1 d’gf’ I ﬂjg D[y Rife.6) =0
2
e e P L R

where )\; is the separation constant and ¢ = (v/2me;/h for £ < & = coshwv,. The
internal radial functions Ry(c, §) are expanded in terms of Bessel functions of the first
kind. The expansion coefficients and the separation constant A; can be determined
from the three-term recurrence relations found in various references. 47):52)~54)

By imposing usual boundary conditions on the radial wave functions, i.e.,
Ri(c,&) = 0, one finds the eigenenergies ¢;. All eigenvalues up to kR ~ 40 with
the coordinate-transformation method can be calculated numerically in matter of
minutes without overlooking solutions near level crossings, and hence the procedure
is certainly effective for the present model. The results obtained from both numerical
procedures were carefully compared and found to exhibit a nice convergence.

In Fig. 6 the deformation dependence of the single-particle energies for the elliptic
billiard is presented. In the circular limit, the familiar shell gaps are clearly observed,
while different shell gaps start to develop at higher deformations. Below we identify
the semiclassical origin of these shell structures at higher deformations.

7.2. Strutinsky’s smoothed level densities and shell energies

With the aid of the Strutinsky averaging procedure,®”) clear oscillatory patterns
of the coarse-grained level density emerge, as shown in Fig. 7, where (a) and (b)
are obtained with the Gaussian smoothing parameter v (defined by (6:7)) of 0.30
and 0.64, respectively. As clearly seen from these figures, the choice of a Gaus-
sian smoothing parameter ~ is crucial for properly identifying the coarse-grained
level density, and hence the contribution of classical periodic orbits. In the circular
limit n = 1.0, the two Gaussian-smoothed level densities exhibit similar oscillations,
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Fig. 7. Coarse-grained level densities with the Gaussian smoothing parameter v = 0.3 (a) and 0.64

(b).

whereas the shell gaps for v = 0.64 start to collapse with increasing deformation.
In particular for deformations n larger than 1.5, strong shell patterns cease to exist
for the case v = 0.64, while for v = 0.3 appreciable effects still remain and more
oscillations appear as the deformation increases.

In the semiclassical picture, for a given value of v the contributions from only
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Fig. 8. Shell structure energy 0F (in units of o) plotted as a function of both the deformation n
and the particle number N.

those periodic orbits of length up to Lyax &~ mR/~ can be considered. In this context,
it is important to locate the actual shell-energy minima, irrespective of the choice of
a Gaussian smoothing parameter.

In terms of the particle number N, one can also obtain the shell-correction
energy 0 F defined as the difference between the sum of single-particle energies of NV
lowest levels (taking the spin-degeneracy factor 2 into account) and the Strutinsky
averaged energies, i.e.,

(7-4)

(7-5)

Figure 8 illustrates the oscillating pattern of the shell-correction energy 0F as
function of both the deformation 1 and particle number N. It is clear from the figure
that the distance between the major shell gaps shrink with increasing deformation. In
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Fig. 9. Smoothed shell-correction energies for n = 1.5 with Gaussian smoothing parameter v = 0.3
(dashed curve) and 0.6 (dotted curve). Those without smoothing are plotted by the solid curve.

the considered range of deformation it is found that the actual magic numbers deter-
mined through the above procedure cannot be reproduced with the choice v = 0.64,
whereas the value v = 0.3 is sufficiently small to avoid demolishing but sufficiently
large to preserve the actual coarse-grained shell structure. It is explicitly shown in
Fig. 9, where the shell-correction energies are now calculated by applying Gaussian
smoothing parameters v = 0.3 and 0.64, for the case n = 1.5 as an example. In this

case, the actual magic numbers are found to be ---, 16, 22, 30, 38, 52, ---, which
exactly coincide with those for v = 0.3, while those calculated with v = 0.64 show
larger oscillations where magic numbers ---, 16, 30, --- are missing. The same is

true for other deformations considered in this paper. Thus, the coarse-grained shell
structure obtained with v = 0.64 is too rough and therefore we adopt v = 0.3 to
improve the precision of its description.

7.3. Shell structure and Fourier spectra

Equations of single-particle motion in billiard are invariant with respect to the
scaling transformation (v, p,t) — (7, ap,a~1t). The action integral Ss for a periodic
orbit 3 is proportional to its length Lg:

S4(E = p*/2m) = 7{ dr-p=pLs = hkLg. (7-6)
B
The semiclassical trace formula for the level density is then written as
- T
(€)= 32) + 3 Ap(kR) cos (KLy = T1p) (7-7)
B

where g(g) denotes the smooth part corresponding to the contribution of zero-length
orbits, Az = |Ag|, and pg is the Maslov phase (the deformation and energy depen-
dent phase of Egs. (5:15) and (5-30) in our improved semiclassical approximation).
As previously discussed, the stationary phase approximation employed in deriving
the Gutzwiller trace formula breaks down at bifurcation points for stable periodic
orbits, and consequently it results in the divergence of the amplitudes Ag(kR) in
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Fig. 10. Fourier transforms of the single-particle level density for elliptic billiards with n = 1.0 (a),
1.2 (b), 1.5 (c¢) and 1.7 (d). Some periodic orbits that correspond to peaks are illustrated.

Eq. (7-7), whereas in the present ISP treatment, those amplitudes are smooth func-
tions of both deformation and energy.

In order to examine the classical-quantum correspondence in shell structure,
one can perform the Fourier transform F(L) of the quantum level density g(¢) with
respect to the wave number k,

k.

2
—i _1 2 1 1 ik —Ll(k
F(L)Z/dke kLg(E)e 3(#) = mzk—ie kilg Q(kc) ; (7-8)

which may be regarded as a ‘length spectrum’ exhibiting peaks at lengths of indi-
vidual periodic orbits. Here the Gaussian factor is included to smoothly cutoff the
spectrum in the high-energy region. In numerical calculations, we use k. = kmax/V/2,
kmax being the maximum wave number included. The above method of taking the
Fourier transform of the quantum level density is known to be a powerful tool to in-
vestigate the role of classical periodic orbits in the appearance of shell fluctuations in
quantum systems, and from such observations one can also extract the semiclassical
contributions of individual periodic orbits.

Fourier spectra for deformations n = 1.0, 1.2, 1.5 and 1.7 are presented in
Figs. 10(a)—(d), respectively. At the axis ratio n = 1.0, the diameter and elliptic
orbits are found to be equally important. The fact that the main contribution to the
gross-shell structure comes from the shorter periodic orbits implies the significance
of three classical periodic orbits in the circular limit, namely the diameter, triangu-
lar, and square shape orbits. As the deformation increases, the Fourier amplitudes
for triangular and rhombic orbits still exhibit fairly strong effects, while those for
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Fig. 12. Deformation dependence of Fourier peak heights for hyperbolic and short diametric orbits
2(1,2), (1,4), 3(1,2), (1,6), 4(1,2) and (1,8). Solid curves are used for multiple traversals along
the short diameter, M(1,2) with M = 1, 2, 3, while long-dashed, short-dashed and dotted
curves are used for hyperbolic (1,4),(1,6), (1,8) orbits, respectively. The open circles indicate
the bifurcation points.

diameter orbits start to decline quickly and significant rearrangement can be ob-
served. In particular at deformations n = 1.5 and 1.7, one can conclude, in addition
to triangular and rhombic shape orbits, the gross-shell fluctuations are also governed
by the (1,4) hyperbolic orbits bifurcated from the 2(1,2) short diameter orbit at the
critical deformation 1 = v/2.

Figure 11(a) displays the deformation dependence of Fourier amplitudes cal-
culated from the quantum single-particle spectra. Here the enhancement of peaks
indicates a larger contribution from the corresponding classical periodic orbits § of
length Lg to the shell structure. In the circular limit, the system possesses the high-
est symmetry, and the breaking of this symmetry due to a small deviation of its shape
results in the orbital bifurcation. With increasing deformation, the short diameter
orbits with M repetitions M (1,2) also bifurcate and create hyperbolic orbits at the
critical deformations nis given by Eq. (3-12). The length of those classical periodic
orbits as a function of deformation can be calculated, ¥ as shown in Fig. 11(b). It
is clearly seen from both figures that the bifurcations of stable periodic orbits give
rise to an increase in the Fourier amplitudes. The significant enhancements seen
in the figure exactly coincide with the corresponding lengths of the newly created
hyperbolic orbits, and hence they stress the importance of the orbital bifurcations.

In this context, similar enhancements for the case of a spheroidal cavity of su-
perdeformed shape were also reported in Ref. 21), where superdeformed shell struc-
ture is associated with bifurcations of periodic orbits with two repetitions on the
equatorial plane. In the present work, particular attention is paid to investigate
such correlations between bifurcations of stable periodic orbits and quantum level-
density oscillations.

In Fig. 12, Fourier peak heights for some of the important hyperbolic orbits,
namely those bifurcated from the short diameter orbits of 2, 3 and 4 repetitions,
2(1,2), 3(1,2) and 4(1,2), are displayed as functions of the deformation parameter
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1. Interestingly, the Fourier peaks for these newly created orbits exhibit a univer-
sal deformation dependence; that is, their heights reach the maxima shortly after
their bifurcation points and quickly decrease with increasing deformation. Such
remarkable features were already seen in Fig. 8, where the shell valleys for 1 approx-
imately larger than 1.5 can be understood to vary along the constant-action lines
S(k,m) = const of the (1,4) hyperbolic orbits, as explained below.

Suppose some classical periodic orbits 3 of length Lg are the dominant compo-
nents in the semiclassical trace formula for the oscillating level density. Then the
shell valley maxima/minima follows the constant-action lines Sg(k,n) = const of
those dominating classical periodic trajectories. Referring to Eq. (7-7), such lines
are determined by

kLﬁ—guﬁz @n+r, n=012-. (7-9)

We demonstrate the above dependence in Fig. 13(a), where the smoothed level
densities are plotted in the k-n plane. As indicated in Fig. 13(b), it is interesting
to note that the shell valley structures seen in Fig. 13(a) can be described by the
constant-action lines of three major periodic orbits: Near the circular limit, the
shell valleys vary along those of elliptic (mainly triangular and rhombic) orbits; in
the right-half region of Fig. 13(a) the influence of newly created (1,4) hyperbolic
orbits is visible; and the contribution of short diameter orbits are less pronounced
but certainly non-negligible throughout the considered range of deformation. The
equality Eq. (7-9) indicates the inverse proportionality relation between the orbital
length Lg and wave number k. As the length of a trajectory 3 increases, the values of
k decrease, and consequently the smoothed level densities exhibit more oscillations.
In particular, since the length of the (1,4) hyperbolic orbits gradually increases for
n ~ v/2-1.7 and then slowly decreases for > 1.7, the corresponding constant-
action lines behave in the same manner. Such a tendency was already observed in
Fig. 8, where the contribution from the (1,4) hyperbolic orbits to the shell energy
0F is apparent in the region n > 1.5, indicating the essential role of the orbital
bifurcations in quantal shell formations.

§8. Comparison between quantum and semiclassical calculations

Figures 14-16 show the modulus of the complex amplitude for a few short or-
bits. The semiclassical amplitudes for the hyperbolic “butterfly” M (n,,n,) = (1,4)
and elliptic triangular (1,3) orbit families calculated using the ISPM are in good
agreement with the exact calculation of the Poisson-sum trace integral (4-2) (see
Figs. 14 and 15, respectively). All ISPM amplitudes are continuous function of the
deformation through the bifurcation point n = v/2. A significant enhancement of
the butterfly amplitude is seen at the deformation n = 1.5—1.6 slightly to the right
of the bifurcation point (see Fig. 14).

The ISPM amplitude for the primitive short diameter 1(1,2) quickly approaches
the Gutzwiller SSPM result as one goes away from the circular limit and, for larger
deformations, its magnitude is relatively small compared with those of the other
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SSPM of Berry and Tabor® (dotted curve).
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Fig. 15. (a) Same as in Fig. 14(a) but for primitive short diameter 1(1,2) and triangle 1(1, 3) orbits
for smaller deformations. (b) Comparison of the amplitudes for 1(1,3) with exact calculations
and SSPM. (Notation is the same as in Fig. 14(b)).

orbits mentioned above (see Fig. 15).

In Fig. 16 we compare the ISPM result with the modulus of the “diametric”
part of the Poisson-sum trace formula corresponding to n, =1, n, =2 and M = 2,
which is regarded in Ref. 24) as representing short and long diameters, as well as the
standard Gutzwiller results. The ISPM amplitude for the bifurcating short diameter
2(1,2) has the maxima; at the bifurcation deformation /2, which is significantly
larger than the butterfly and triangular amplitudes, and at the circular shape (see
also Figs. 14 and 15). (Similar maxima at the circular shape appear for any short
diameter orbit. The maximum for the short diameter 1(1,2) is the largest one, in
particular, larger than for the triangular orbit (see Fig. 15(a)).) As seen from Fig. 16,
there is the same circular shape limit for the ISPM approach and the “diametric”
part of the Poisson-sum trace formula, which is identical to the diameter family
amplitude in the circular disk.
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n

Fig. 16. ISPM amplitude modulus (solid curve) for the sum of short and long diameter 2(1,2)
orbits is compared with the (n, = 1,n, = 2, M = 2) part of the Poisson-sum trace formula
(5-1) (long-dashed curve) and the Gutzwiller SSPM (dotted curve).

Apparently, the behavior of the ISPM amplitude for two repetitions of the
short diameter 2(1,2) is essentially different from that of the “diametric” part of
the Poisson-sum trace integral, which exhibits no enhancement near the bifurcation
point. Thus, the Poisson-sum trace formula (5-1) describes families with maximum
degeneracy, like hyperbolic and elliptic orbits, rather than isolated diameters. For
isolated orbits with smaller degeneracy, like diameters in elliptic billiard the Poisson-
sum trace formula cannot be applied because of the isolated stationary points for
the angle @, variable. This is the reason for the agreement of the ISPM and SSPM
asymptotics unlike for the “diametric” term of the Poisson-sum trace integral in
Eq. (5-1). This implies that the diameters cannot be included in the usual EBK
rational torus quantization. However, the diameters could be included in a more
general quantization rule in terms of the averaged ISPM level densities (6-1) in a
similar way as that pointed out in Refs. 9) and 12).

We note a significant improvement of the ISPM results compared to the SSPM
for o close to the separatrix value 1 and the creeping value o, (3-11). These cases
might seem to be important only in the limit  — oo when o, tends to unity.
However, even for 0 < <2 we meet situations in which the stationary points are
close to the critical points ¢ = 1 and ¢ = o, so that we must integrate within the
finite limits.

We compare in Fig. 17 the semiclassical level densities dgs.(kR) calculated using
the ISPM with the quantum results for the averaging parameter v = 0.3. The results
obtained with the ISPM are in good agreement with quantum results even near the
bifurcation point v/2, where the SSPM gives a divergent result due to the zeros of
the stability factor Fips for short diameters 2(1,2). For deformations like 1.2 and 1.7
far from the bifurcation, one obtains a fair agreement between the ISPM and the
SSPM.

Figure 18 displays the nice convergence of the ISPM results to those using the
circular disk trace formula for  — 1. This convergence is seen for any small defor-
mation when the semiclassical parameter kR becomes sufficiently large. With the
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Fig. 17. Quantum and semiclassical (ISPM) oscillating level densities dg(kR) versus kR for several
deformations. The averaging parameter v = 0.3, the parameter of Strutinsky’s shell correction
method 4 = 2.0, and the correction polynomial degree 2M = 6 are used.

inclusion of the closed (periodic and non-periodic) hyperbolic orbit contribution, one
gets even better agreement with the quantum densities near the circular disk shape.
For deformations far from the circular shape (7= 1.1) and far from other bifurcation
points, the contribution of the hyperbolic “co2” orbits approach Gutzwiller’s SSPM
result for the isolated diameters (see Fig. 5(b)).

For the averaging parameter value v = 0.64, we have good convergence of POT
sums for the ISPM and SSPM with a few short periodic orbits with M <1, n, =1
and n, < 10. This is due to the damping factor in Eq. (6-8) which ensures the
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Fig. 18. Oscillating level density dg(kR) versus kR (left-hand side) and shell energy 6 E in units of
o versus N'/? (right-hand side) for the small deformation 1.01. The solid and dotted curves
indicate results of quantum and ISPM calculations, respectively. The parameters for the Struti-
nsky’s shell correction method are the same as in Fig. 17.
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Fig. 19. Quantum and ISPM shell energy dF (in units of gg) are plotted by the solid and dotted
curves, respectively, as functions of N'/2.

convergence of the POT sum. For the smaller value v = 0.3 we need more orbits
with M < 2, n, < 2 and n, < 10. Note that for v = 0.3 we have much better
agreement of the ISPM results with the quantum mechanical calculations than in
the case of SSPM for the deformations near the bifurcations including the transition
to the circular shape (see Fig. 7).
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respectively (see text).
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Figures 19 and 20 show nice agreement of the ISPM results for the shell-
correction energies with the corresponding quantum results. Note that we can sub-
stitute the exact Fermi energy e into the semiclassical shell energy § E' (6-2) by using
the second equation of (6-2) for the particle number and quantum level density, as
in Ref. 11). This is important to get the correct behavior of the shell-correction
energy as a function of particle number N, as explained in Ref. 11). It is evident
from Fig. 20 that the nice agreement between the ISPM and quantum results in
the strongly deformed region of n > /2 cannot be attained without including the
contributions from bifurcating 2(1,2) and (1,4) orbits.

In all our calculations we used the semiclassical approximation improved at the
bifurcation points which becomes better with increasing kR for all deformation sizes
including the bifurcation points.

§9. Conclusion

The most essential new result of this paper in comparison to the Berry-Tabor
theory are the two additional terms (the second and third ones in Eq. (6:1)) in the
improved trace formula for elliptic billiard. These two terms represent the contribu-
tions from the short and long diameters which are continuous functions through all
bifurcation points. For deformations far from the bifurcation points, we asymptot-
ically obtain the standard Gutzwiller result for isolated diameters and the correct
trace formula for diameters in spherical limit of circular billiard. Our results for the
hyperbolic and elliptic orbits improved near the bifurcation points are simpler than
those suggested within the uniform approximation. 4)-26)

Making use of our improved trace formula, we have demonstrated the importance
of bifurcations of the repeated short diameter orbit in the emergence of shell structure
at large deformations.
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Appendix A
—— Curvatures

The actions I, and I, given by Eq. (3:5) are expressed explicitly in terms of the
elliptic integrals. 47):49) For elliptic orbits one has

2 T 1
'LL__ 2 _7— 7
1 ¢V2meo E,(2 f)

= gema o (o Jp) 5 (5o ) + ]
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while for hyperbolic orbits,

IU:EC%[E(E’L) (1-0) F(g%ﬂ

2

2ms{ 1= [p(55) - (0 75)]

+5 (0 ) @ ) nan(—l)} e

Equations (A-1) and (A-2) may be regarded as equations for the energy surface
e(Iy, I,) written in terms of the parameter o for its elliptic and hyperbolic parts,
respectively.

The curvature K of the energy curve is obtained by differentiating Eqs. (A-1)
and (A-2) with respect to the parameter o. In this way one gets Eq. (3-13) with the
following derivatives for elliptic orbits:

oI, 1¢\/%F< 1)

q

9o Vo 2° Vo

Pl _ 1 (Vome 1

= v (T vE)

5= PG ) ()]

0’I, 1 ¢V2me H(Eli>_ﬂ<9 1 1) nw/n —
do?  Am /o3 270’ \Jo “ o’ )77 ’

while for hyperbolic orbits,

o1 (5 17)
oo T 2

e L 1 (10) (5]

Oc? 2r o

ot = ecvEme [P (0 va) —F (5.5 .

do 2’
i LT 1,05 (50
+F (g%) —F (0, ﬁ)} _ (A-4)

With Eq. (A-3) we obtain the curvature Kz (3-13) for elliptic orbits as
L F(0,x) <7T 2 ) 2 nyn? — 1
K II(—,k k) =10,k k) + .
O 4pC F(T k) [F K 2 ( ) 1—(1—r)2
(A-5)
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For hyperbolic orbits we have

. 1 2 F(ea’%) T 2 .
Kﬁ—ﬂm H(07H7ﬁ)_F(%’ﬁ)H<§7%7%>] (AG)

Appendix B
—— Separatriz

39) - 42)

As for the case of turning points, one writes

1
7 [Sa(I', I",ty) —(I"-1')-O"] = cg + c!x + ngz + ng:’» +...
1
ET(|)| +7'1”2+§z3. (B-1)
Here,
v = (I~ I)/h, (B2)
1 " 1
Cg - % {SZ(Ileuvta) - (I/ - I//)* 0" } - 552(8/7@”78)7 (B3)
0S5, *
A= (% _or) =o, 610 @1 (B.4)
h(0%S.\"
A= (Go) ekt = =) (B:5)
2 /93 * 2 I
| B2 (8%5.\" 2xh’M (0K ,
%= (aff’) s \a,)=% U~V o

where the symbol « indicates that I/, = I/ = I. The asymptotic behavior of the
I

constants ¢; near the separatrix o ~ 1 was found from

%l mlog[(1 +sinf)/(1 — sin6)]

oDl -1 7Y B
0 — 0y (n) formally, see (3-9),
oK . _27r2 log[(1 4+ sinf)/(1 — sin §)] (0 —1) (B-8)

o, (p¢(o —1)log*(o — 1))?

The second equality in Eq. (B-1) was obtained by a linear transformation with some
constants « and (3,

x=az+ 0, o= (30|3|,)_1/3, 8= —cg (3c:|3|), (B-9)
7 = (o — crea/(3es) + 283/ 21EN, 7l = afer — &/ (3es)]!. (B-10)
I

Near the stationary point for 0 — 1, one has c! — 0 and 77 — —w) with the positive
quantity

I . ‘Mlog[(l—i—sin@)/(l—sin@)]p((o’—l) 2/3
= (3cg)4/3 2hlog(o — 1) ’

(B-11)
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Using the expansion (B-1) in Eq. (4-1) and taking the integral over the angle O/
exactly, i.e. writing 27 instead of this integral, one gets

wi

5 scl - _RGZ/d@”’ *| irore) I

Cy

X [AI (—w” ) ZZIIJ\/LP Zl“]\/[,2) +iGi (_wH ) Zl“]\/[,17 Zl“]\/[,2)}

;Rez /d@” i(ro—va) jf“ (i (—wy) +iGi (—uy)].

(B-12)

where

2= VO, Ehe = V- (B-13)

Here, Ai(—w, 21, z2) and Gi(—w, 21, 2) are incomplete Airy and Gairy functions, %)

Ai(—w, z1,20) | 1 [* cos 3
{Gi(—w, z,20) [ 0w /z1 dz sin ( we 2 /3) ’ (B-14)
and Ai(—w) and Gi(—w) are the corresponding standard complete functions. 7 Here

we used in the second equation of Eq. (B-12) the fact that for any finite deformation
n and large kR near the separatrix (¢ — 1) one gets (see Eq. (B-11))

. . 1/3
M log[(1+sin6)/(1 — sin6)|pC
zl 0, zl 4
1T S 2(c — 1)2log*(o — 1)
vn?—1
)|l _g(Z YT 72} 1| - 0. (B15)
vP—=1-\2 7

Using an analogous expansion of the action 7y in Eq. (B-12) with respect to

the angle ©! to third order and making a linear transformation like Eq. (B-9), one
arrives at Eq. (5-33). We introduced in (5-33) several new quantities, like

c3 +
2
= >0 B-16
i <<3c3>4/3> | (B-16)
7'(' 1/3
Zﬁ42 = \J/wly, Zzﬁm =3 (‘3C§‘) + Jwy, (B-17)
1 1 (0%S, 92S, 928, \ £
s = o (a )" o) __ Fw g
Cy = Qh( oz) 2h <89/ 2 + 88/ a@// 89;,2) 87TMKH’ (B 18)
where )y is the stability factor for long diameters (see Eq. (5-35)):
L1 [8%S, 038, 238, 35, 1"
“ “on oo, P oe200r T sen00m T pen
1 [o0F  aJt]"
D la@; - a@g] 0. (B-19)
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Note that, according to Eq. (B-18), the quantity czl goes to 0 near the separatrix (o —
1) as in the caustic case. This is the reason that the Maslov-Fedoryuk theory 39)-42)
can be used for the transformation of the integral over the angle ©! in Egs. (B-12)
into Eq. (5-33).

Appendix C
—— Jacobians for Closed Orbits with Two Reflection Points

The Jacobian J ”02 defined by the derivative in Eq. (5-38) for closed orbits « like

C

“co2” with two reflection points, J(UOQ = (5@” / (501’,) , can be calculated by means of
Cco

the caustic method. ' The main idea of this method is to use a specific property of
the trajectories in the billiard system like elliptic cavity. These trajectories consist
of straight lines which are tangent to a curve called an elliptic or hyperbolic caustic
between turning points. Our trajectory stability problem for the variations d7” at
a given (59;) (see Fig. 3) is much simplified by reducing it to the calculation of the
caustics semi-axes ac,b. and a. + dac, b. + db. for the closed orbit “co2” and its
60,, deflection, respectively. For the case of closed non-periodic orbits “co2”, the
semi-axes a. and b, and their variations are functions of the initial point (z,y), in
contrast with the stability problem for the periodic orbits of Ref. 11). The orbit-
length invariant curve (confocal-to-boundary ellipse or hyperbola crossing the point
(z,y) (see Fig. 4)) and its semi-axis variations play a similar role for the calculation

of the “co2” stability factor J(ljl02 with that of the boundary parameter for the periodic
orbits in Ref. 11). In this way this stability factor is obtained in the form

Jly=2"Np p_I_T (C1)

co2 — ) )
V1i+aq 40,
where 2 is the x-coordinate of the final point O’ (see Fig. 3), and ¢y and ¢ are
the tangents of the slope angle for the initial and final directions of particle motion
along the orbit “co2”,

be \ 2 be \ 2
go =+ <—C) ) g =+ <—C> : (C-2)
Ye1 \Qc Ye2 \ Q¢

Here, the upper and lower signs stand for the hyperbolic and elliptic closed orbits,
(Ze1,Ye1) and (ze2, ye2) are the first and last tangent-to-caustics points of the trajec-
tory “co2”,

_ B.+/BZ- AL, 3 1 e\
Tel = Ac s Yel = {(ac . x)/‘ac . {L’| } bc 1+ (a—c> ) (03)
B.— \/BZ— A.C, —A./|A. T2\
T2 = A y Y2 = { 1/| | } bc 1+ (a—2) y (04)

respectively, and

A, = bg:ﬁQ T ang, B, = $a2bz:ﬂ, C. = afé(bg - y2). (C-5)

Cc
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The semi-axes a. and b., as functions of the initial point (z,y) for the hyperbolic
and elliptic caustics for the orbit “co2” (see Fig. 4), are given by

x — Yc Z
ac = a %, be =bvV1—Z, (C-6)

where a, and b, are the semi-axes for the confocal-to-boundary hyperbola and the
ellipse crossing any current initial and final point (x,y) of the orbit “co2” inside the
elliptic billiard,

2?92+ 0% —a® 7 /(2 + 2 + 02 — a?)? — 42 (12 — a?)

2
b2 = 5 ,
a2 = F(b2 — b* + d?), (C-7)

and Z is the root of the cubic algebraic equation

(1 o n2)223 +

b\ 2
(1 + 7]2)2 <?) +1-— 774] Z2

+ 2P =1 -2(1+7%) (%”")2 Z+(bi)2—1:0. (C-8)

b

The factor D in Eq. (C-1) is given by

2a,P,G
D= “AO , (C-9)
where
P R e L
Do =n"fe 202 — 2 £ 1Pl , (C-10)
qo(d3 — b? + a?)
fo=2 [dox + ; do =y — qox, (C-11)
1+ 45
G- 2Boydogo + Ao(b; F a3 — df) — Co(1+¢3) dodo
21/3(2) — AgCy
(1+¢3)(Bo — /B3 — AoCh)
+ A : (C-12)
with

Ao = bi F a?cqg, B() = ¥a§d0qo, Co = $ai(dg — bi) (C‘13)

Here we have used the invariance of the Jacobian J(z,y) with respect to time re-
versal.
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Abstract

The high-spin yrast structure €S is investigated by means of the cranked Skyrme—Hartree—
Fock method in the three-dimensional Cartesian-mesh representation without imposing restrictions
on spatial symmetries. The result suggests that (1) a crossover from the superdeformed to the
hyperdeformed-like configurations takes place on the yrast line at angular moment@#, which
corresponds to the “band termination” point in the cranked harmonic-oscillator model, and (2) non-
axial octupole deformations of thig; type play an important role in the yrast states in the range
5< 1 <13.0 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since the discovery of the superdeformed (SD) rotational bari®4By, about two
hundreds SD bands have been found in various m&ass €0, 80, 130, 150, 190) regions
[1-6]. It turned out that every regions of superdeformation have their own characteristics
and offer a number of interesting questions; investigations of them have been significantly
enlarging and deepening our understanding of nuclear structure. Yet, the doubly magic SD
band in32S, which has been expected for quite a long time [7—10], remains unexplored, and
will become a great challenge in the coming years [6]. Exploration of the SD bal$&in
will certainly give a strong impact toward understanding the possible connection between
the SD structure and the molecular resonance phenomena associated Wih &0
configurations (see, e.g., [11,12] for reviews). More generally speaking, the ndé®us
seems to be situated in a key position in the investigation of possible relationships (such as
discussed in [13—-15]) between the SD states systematically observed in heavy nuclei and
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the cluster structures widely observed in light nuclei (see, e.g., [16] for a review). Thus,
excited states if?S have been theoretically studied by Nilsson—Strutinsky approaches
[7-10], selfconsistent mean-field approaches [17,18], spherical shell-models [19,20], and
cluster-structure and molecular-resonance points of view [21-25].

The aim of this paper is to study the high-spin yrast structuré?ffrom the point
of view of exploring exotic shapes in nuclear high-spin states by means of the cranked
Hartree—Fock (HF) method with the use of the Skyrme forces [26,27], which is called “the
cranked SHF method”. One of the recent advances in nuclear structure theory is that it has
become possible to carry out the HF calculation in the three-dimensional (3D) Cartesian-
mesh representation [28—30,32]. This approach has been extended [18,33,34] to a rotating
frame by introducing the cranking term and applied to the high-spin yrast staf&s of
in Ref. [18] with the use of the BKN interaction [31]. In these cranked HF calculations,
however, parity and signature symmetries are assumed for the intrinsic wave functions
in order to simplify the calculation. We refer an excellent review by Aberg, Flocard and
Nazarewicz [2] for an overview of studies on nuclear shapes in terms of various kinds of
mean-field theory, especially other than the cranked SHF approach.

Recently, we constructed a new computer code for the cranked SHF calculation based on
the 3D Cartesian-mesh representation, which provides a powerful tool for exploring exotic
shapes (breaking both axial and reflection symmetries in the intrinsic states) at high spin
in unstable nuclei as well as in stable nuclei. As a first application of this new code, we
investigated the high-spin yrast structure’®®, and found [35] that (1) a drastic structure
change may occur above angular momentum 24 in the yrast line, and (2) non-axial
octupole deformations of this; type arise in the yrast line in the range& < 13. The
present paper is intended to give a more detailed account of this work. Quite recently,
Molique, Dobaczewski and Dudek [36] investigated several SD configuratiolRSimot
restricted to the yrast states) as well as in neighboring Addiclei by means of the
cranked SHF method with the SLy4 force [37] in the harmonic oscillator basis. On the
other hand, they did not discuss the yrast states abov24 as well as non-axial octupole
deformations, which are the major subjects of this paper.

After a brief account of the cranked SHF calculational method in Section 2, an overview
of the obtained yrast line f6¥S is given in Section 3. In Section 4, we discuss properties of
the high-spin limit of the SD band, paying special attention to a band-crossing phenomenon
associated with the level crossing with the rotation-aligh@tb]% level. The result of
the cranked SHF calculation is compared in Section 5 with that of the cranked harmonic
oscillator (CHO) model calculation. In Section 6, effects of the rotation-induced, time-
odd components in the selfconsistent mean field on the properties of the SD band are
briefly discussed. In Section 7, we discuss aboutthealeformed solutions of the cranked
SHF equations, which constitute the yrast line in the rangel5< 13. Although, at the
present time, experimental data directly comparable with our theoretical calculations seem
to be unavailable, we briefly remark in Section 8 on some recent experimental references.
Conclusions are given in Section 9.
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2. Cranked SHF calculation

The cranked HF equation for a system uniformly rotating about thgis is given by
8(H — wrotJy) =0, (1)

where wrot and J, mean the rotational frequency and thecomponent of angular
momentum, and the bracket denotes the expectation value with respect to a Slater
determinantal state. We solve the cranked HF equation for a Hamiltonian of the Skyrme
type by means of the imaginary-time evolution technique [28] in the 3D Cartesian-mesh
representation. We adopt the standard algorithm [28—30,34] in the numerical calculation,
but completely remove various restrictions on spatial symmetries. Namely, we basically
use the procedure developed and applied to the yrast liffvaf by Bonche, Flocard and
Heenen [34], except that the parity and the signature symmetries are not imposed on the
individual wave functions. In this connection, we mention that a similar HF code (with
parity projection but without the cranking term) was constructed by Takami et al. [38] and
successfully applied to the description of cluster structures in light ni#@ei,12C, 160
and?°Ne. The same code (but without parity projection) was recently used to explore
exotic shapes in proton-riclV ~ Z nuclei in the89Zr region [39,40], and tetrahedral
and triangular shapes are suggested to appear near the ground states of some nuclei in
this region. In Refs. [34,39,40], the pairing correlations were taken into account in the
BCS approximation. In the present calculation, we neglect the pairing, since they are not
expected to play an important role at high-spin state¥

When we allow for the simultaneous breaking of both reflection and axial symmetries,
it is crucial to accurately fulfill the center-of-mass condition

<éxi>=<éy">:<éz">zo’ )

and the principal-axis condition

(3 )=(3ova )= n) -0 o

For this purpose we examined several techniques [41] and confirmed that the constrained
HF procedure with quadrupole constraints [42] works well. Thus, we replace the
“Routhian” R = H — wyotJ, in EQ. (1) with

3 A 2 3 A 2
R'=R- Z/Lk< Z(Xk)i> -y Mk,k'< Z(Xka’)i> : 4
k=1 i=1 k<K’ i=1
In numerical calculations, we confirmed that the constraints (2) and (3) are fulfilled to
the order @1071%) with values of the parameteys, ~ O(10%) and ;1 ~ O(1). We
solved these equations inside the sphere with raBligs8 [fm] and mesh sizé = 1 [fm],
starting with various initial configurations. The 11-point formula was used as the difference
formula for the Laplacian operator. As usual, the angular momentum is evaluatéd-as

(Jx)
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In this paper, we use the standard Sl and SKigrces. With the use of the SlIlI force
[26], Tajima et al. [30] carried out a systematic SHBCS calculation for the ground-state
guadrupole deformations of nuclei in a wide area of nuclear chart. They have carefully
examined the possible error due to the use of the meshisizé [fm] and found that the
deformation energies obtained with this mesh size are quite accurate. On the other hand,
the Sk force [27] was designed to accurately describe properties at large deformations
like fission barriers, so that it may be suited for the description of superdeformations [32].
In recent years, several newer versions of the Skyrme forces have been proposed (see,
e.g., Ref. [43]) in order to improve isospin properties of the Skyrme forces. Although the
major purpose of them is to better describing neutron-rich unstable nuclei, it will also be
interesting to employ such versions to examine the dependence of the results reported in
this paper on the effective interactions adopted. We defer such a more extensive calculation
to the future.

3. Structure of the yrast line

The calculated yrast line is displayed in Fig. 1, and angular momenta and deformations
of the yrast states are drawn as functions of rotational frequency in Figs. 2 and 3. In
these and succeeding figures, the calculation were done in stépgf= 0.2 MeV/#,
and the calculated points (indicated by symbols) are smoothly interpolated by lines. The
quadrupole deformation paramet@gsandy are defined as
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Fig. 1. (a) Excitation energy vs. angular-momentum plot for the yrast structutéSofcalculated
with the SllI force. Density distributions on the plaperpendicularto the rotation axis are shown,

as insets, for the SD band (solid line) and #ag band (dashed line). The calculation was done in step
of Awrot = 0.2 MeV/#, and the calculated points (indicated by symbols) are smoothly interpolated
by lines. (b) Same as (a), but with the Skibrce.
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4 A A -1
Bacosy = §< > r2Ya0(6), ¢,-)>< ;”’2> : )

i=1

A A -1
Basiny = —%”<%2 ;F,Z(Yzz(ei, i)+ Y356, ¢,->)>< ;r?> : (6)

Itis seen from Figs. 1-3 that the results of the calculations with the Sl and $iides
are quite similar: For both cases, the expected SD band becomes the yiast Idr, and
it exhibits a singular behavior at abolit~ 24. As we shall discuss in the next section,
this is due to a band crossing associated with the rotation-aligzh@?ﬂ% level, and we
call the yrast states above~ 24 “hyperdeformed (HD)-like configuration” in order to
distinguish them from the SD configuration. This configuration becomes unstable against
fission for/ > 34. In addition to the SD and HD-like configurations mentioned above, we
found that the yrast states with<&7 < 13 possess an appreciable amount of non-axial
octupole deformation of th&s; type, so that we call, for convenience, this region of the
yrast line “Y31 band”, although, as discussed in Section 7, some caution is necessary in
using this terminology.

Thus, the calculated yrast line can be roughly divided into the following four regions:

(1) 7 <4, weakly prolate region,

(2) 5< 1 < 13,Y3; deformed region,

(3) 14< 1 <24, SDregion,

(4) 26< 1 <32, HD-like region.

Below we first discuss the properties of the high-spin limit of the SD band, and later
about ther3; band. The lowest-spin region will be touched upon in Section 8 briefly.

4. High-spin limit of the SD band

As we saw in Figs. 1-3, the solutions of the cranked SHF equations corresponding to
the yrast SD configuration are obtained fréra: 0 to about/ = 22.

Fig. 4 shows the potential energy function for the SD state-aD, evaluated by means
of the constrained HF procedure [42] with the quadratic constraint on the mass-quadrupole
moment. We see that the excitation energy of the SD state-aQ is about 12 MeV.

A particularly interesting point is the behavior of the SD band in the high-spin limit: It
is clearly seen in Figs. 2 and 3 that a jump occurs both in the angular moméreunich
the quadrupole deformatiofp at wrot >~ 2.9 MeV/A. At this point, I jumps from about
22 to 26, andB2 suddenly increases from about 0.6 to 0.7. Such a discontinuity is well
known [44] to occur in the description of the band crossing phenomena within a standard
framework of the cranked mean-field approach. The point is more clearly seen in Fig. 5
as a singular behavior of the dynamical moment of ineftid = d/ /dwyot Near the band
crossing point. (Other properties g¥2 will be discussed in the next section.)

Fig. 6 displays the shape evolution of the SD band as a function of angular momentum
in the (B2, y) plane: With increasing angular momentum, small triaxial deformations
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Fig. 6. Shape evolution as a function of angular momentum, plotted iniahe/) plane for the
SD and HD-like configurations iR2S. Results calculated with the SlIl and SkNbrces are shown
separately.

gradually set in and at ~ 24 the shape exhibits a striking “back-bending” toward larger
prolate deformations. Evidently, this is due to the band crossing mentioned above. Such a
singular behavior of the SD band can be noticed also in the previous cranked HF calculation
with the BKN force [18]. In Fig. 6 we also plot the= 24 and 26 states, which are missing

in Figs. 1-3, by smoothly extrapolating thewyot and(B2, y)—I curves for the SD and the
HD-like configurations, respectively (see Ref. [44] for the treatment of the band-crossing
region).

The microscopic origin of this singular behavior may be understood when we examine
the single-particle energy diagram in the rotating frame (routhians) presented in Fig. 7. We
see that the rotation-aligned level associated Witr[Mé)]% orbit comes down in energy
with increasingorot and crosses the Fermi levelag: >~ 2.9 MeV/ha which corresponds
to I >~ 24. Thus, the yrast states above- 24 are characterized by the occupation of
the[440]% level by a single proton and a neutron. According to the deformed harmonic-
oscillator model, N = Z = 18 is a magic humber associated with the HD shell structure
with axis ratio 3: 1, in which the[440]% level is occupied by two protons and two neutrons.

In order to distinguish the yrast states with> 26 from the SD states below ~ 24
and keeping in mind a connection to the HD configuration, we call them “the HD-like
configuration” although the magnitude of the quadrupole deformgioobtained in the
SHF calculation is in fact comparable to that of the SD shape rather than the HD shape.

Let us note that if we regard the SD configuration as to correspond tb-theoupling
shell model 4—12k configurationz[( f7/2)?(sd) 8] ® v[(f7/2)%(sd)~®] (relative to*°Ca)
in the spherical limit, the maximum angular momentum that can be generated by aligning
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the single-particle angular momenta toward the direction of the rotation axisijsa2d

thus “the SD band termination” might be expected at this angular momentum. Interestingly,
our calculation indicates that a crossover to the HD-like configuration takes place just at
this region of the yrast line.

5. Comparison with the CHO model

The behavior at the high-spin limit of the SD band obtained in the SHF calculation
possesses some similarities with that expected from the CHO model. This model has
been frequently used [45-50] as a simplified model of rotating mean fields. With obvious
notations, the single-particle Hamiltonian of this model is written as

3
1
W= Zha)k <CZCk + E) — wrotl1, (7

k=1
where

+ maoy 1Pk
8
“k V 2h (xk mwk>’ ®)

with (x1, x2, x3) indicating(x, y, z), etc.
The orbital angular momentum operatprconsists of two parts:

I = liAN:O) i l:(LAN=2) )
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with
(AN=0) _ ., @2+ w3 t
ll —lhm(cscz—czcg), (10)
(AN=2) _ ., @W3— W2 t ¢
ll = lhm(C2C3 — C3C2). (11)

For a given value ofwyt Or 17 = (Z{‘zl(ll),»), one can determine the oscillator
frequencieswi, w2, w3) such that the selfconsistency condition between the density and
the potential,

A A A
SONENE ONENRE SoEN) )
i=1 i=1 i=1
is fulfilled under a volume conservation condition [50]. Here, the brackets denote
expectation values with respect to Slater determinantal states composed of single-particle
eigenmodes of’.

Let us denote the total number of quanta in each of the three directicag, 2, 3) at
wrot =0 as

5 =<i<cgck " %)> (13)

i=1

and let us continuously follow the configuration specified by the set of valligsy, X3)
which are defined atbyot # 0 as the number of quanta associated with the normal modes
of the CHO Hamiltoniari'. In terms of Xy, the selfconsistency condition ato; = O is
written as

w1X1 = w2X2 = w3X3. (14)

If the AN = 2 part of the angular momentum operatpis neglected, it is well known
that there exists a maximum angular momentlgre: X3 — X for a given configuration
(X1, X2, X3), where the shape is oblate and the symmetry axis coincides with the rotation
axis [45]. This shape evolution is caused by the effect ofAlNe= 0 part of the cranking
term, which tends to align the angular momentum of individual particles toward the rotation
axis of the system (rotation alignment effect due to the Coriolis force). In the case of
the doubly closed shell configuration for the SD magic numiet Z = 16 (including
the spin-degeneracy factor 2), corresponding to the SD barddn (X, X, ¥3) =
(24, 24, 48) taking into account protons and neutrons. We would thus expect the “SD
band termination” at the maximum angular momentlyra: X3 — X» = 24. This number
coincides with that evaluated in the previous section in relation tg-thiecoupling shell-
model configurations.

On the other hand, thA N = 2 part stretches the system toward larger deformations,
and actual shape evolutions as functions of angular momentum are determined by the
competition and balance between these two effects. Fully taking into account both effects
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Fig. 8. Shape evolutions as functions of angular momentum in ghey( plane, plotted with
filled and open symbols, respectively, for the SD configuratibg, (X, X3) = (24, 24, 48) and the
HD-like configuration(22, 24, 54) in the CHO model.

of the cranking term, Troudet and Arvieu [49,50] found that there is a critical valud
X3/ 22,

o=V E 175 (15)

such that the configuratiof®’y, X2, X'3) does not (does) reach the oblate limitig/ >

is greater (less) thaw.. This is because, for large deformations, the stretching effect of the
AN = 2 term dominates at high spin over the alignment effect othhe= 0 term. In the

case of?S, the SD configuration havBs/ X» = wo/w3 = 2 > ac atl = 0. Therefore, the
“oblate limit” mentioned above will not be reached and the shape at the “band termination”
point will be triaxial.

Fig. 8 shows the shape evolutionin tt2, v) plane, calculated for the SD configuration
of 32S in the CHO model. Here, the result of calculation for the configura?@n24, 54)
is also presented, as an example of the HD-like configurations. We see that, although the
triaxiality slowly sets in with increasing angular momentum, the shape of the SD states
remains rather far from the oblate limit and exhibits a striking “back-bending” at about
1. = 24 toward larger prolate deformations fér> I.. Apparently, the behavior near
the critical angular momentumy, for the SD band is quite similar to that of the SHF
solutions presented in the previous section. On the other hand, it should be recalled in
comparing Fig. 8 with Fig. 6 that the highest spin region/cE 26 ~ 32 on the yrast
line corresponds to the HD-like configuration in the SHF solution: While the continuation
of the SD configuratiorni24, 24, 48) to the I > 24 region as well as that of the HD-like
configuration(22, 24, 54) to thel < 26 region are presented for the CHO model, only the
yrast states were obtained and plotted in the SHF calculation.

Fig. 9 shows the angular momentum and the dynamical moment of ingfflaas
functions of the rotational frequency. We see & gradually decreases until the critical
point. It is interesting to compare this property with thatd® for the SD band in the
SHF calculation (Fig. 5). Apparently, they are quite similar. This suggests that the gradual
decrease with increasingo; of the dynamical moment of inertia for the SD band is rooted
in the existence of the critical angular momentugassociated with the quantum SD
shell structure. We feel that a more detailed investigation of the SD states near the “band
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termination” point is a very important and challenging subject for a deeper understanding
of the rotational motion of the nucleus as a finite Fermion system,

6. Effects of time-odd components

In this section we shortly discuss about the rotation-induced, time-odd components in the
mean field. The moment of inertia of the SD band is expected to be a good physical quantity
for identifying the effects of the time-odd components, since the pairing correlation plays
only a minor role there. Concerning the effect of various time-odd components on the
moment of inertia, we refer to Ref. [51] for a semiclassical description, to Ref. [52] for a
rotating nuclear matter, and to Ref. [53] for SD bands ard\tAdy.

Table 1 shows individual contributions from various kinds of time-odd terms. It is
interesting to note that the contributions from terms containing the spin-dem@i)y
nearly cancel each other and, accordingly, the contribution from the current-density terms,
denoted byBs + B4, dominates in the sum. Such a remarkable cancellation of the spin-
density terms was not seen in the casé®¥by [53], and may be specific 7S under
consideration.

In Fig. 10 we compare the results of calculation with and without the time-odd
components. It is seen that the time-odd components increase the angular momentum for
a given value ofuro;. Accordingly, the dynamical moment of inertia® = dI /dwrot also
increases. This trend is understood from the consideration of the local Galilean invariance
of the Skyrme force [51,53] (for a more general analysis not restricted to the Skyrme force,
see Refs. [45,52]): If the time-odd components is neglected, the local Galilean invariance
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Table 1
Contributions from various terms in the time-odd energy density,

Hodd(r) = —B3j2 = Ba(j2+ j2) + BoG -V X p+ ju -V X o+ -V x )
+B10p> + Bll(pigl + pf,) + B12p” p? + B13p® (PrZ, + pf,>,

to the energy (in MeV), calculated aiot = 1.0 MeV/A for the Slll and SkM forces. Here,
(Jn-Jp)and(p,, p,) denote the nucleon currents and the spin densities (for neutrons and protons),
respectively, andi = j, + j, andp = p, + p,, (see Ref. [34] for their explicit expressions). In

the columns designated by coefficierlg values after the spatial integration are listed, while the
total value [ dr Hogq(r) and the sum of contributions from the current terms (the first two terms
in the r.h.s. of the above equation) are shown in the columns denoted by “total’Bang By,
respectively. For reference, the effective massin nuclear matter for each force is also listed.

B3 By Bg B1o B11  Bi12 B13 total B3+ B4 m*/m

Slil -194 0.79 -017 -077 0.86 037 -018 -104 —-115 0.76
SkM*  -183 090 -038 -044 245 0.00 -1.65 -095 —0093 0.79
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Fig. 10. (a) Angular momentum plotted as a function abyot for the SD band ir2S. Solid line
with filled squares (dashed line with open squares) indicates the result with (without) the time-odd
components. The SllI force is used. (b) Same as (a), but with the* Saide.

is violated and we obtain the moment of inertia associated with the effective mfass

By including the time-odd components, however, the local Galilean invariance is restored
and we get the moment of inertia associated with the nucleon ma3se calculated

result presented in Fig. 10 is consistent with this expectation, but a more quantitative
analysis is not necessarily easy, because, as seen in Fig. 5, the calculated moment of inertia
significantly deviates from the rigid-body value due to the shell effect.
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7. Y31 deformation

As mentioned in Section 3, we found that the yrast states in the region 5 13
possess a significant amount of non-axial octupole deformations &gihgpe. It should
be emphasized that such an exotic deformation is absént# but emerges at high spin.
It has become possible to get this kind of solution by using the new cranked SHF code
allowing for the simultaneous breaking of both axial and reflection symmetries.

As in [39], we define the octupole deformation paramedgysas

4 A
g = 3A7;3<Z (r3X3m)l.> (m=-3,...,3) (16)

=

with R = 1.2 AY/3 fm. Here X3, is a real basis of the spherical harmonics,

1 *
X30= Yao, X3jm) = —= (Y3-im| + Y3 )

V2
—i
where the quantization axis is chosen as the largest and smallest principal inertia axes for
prolate and oblate solutions, respectively. The yrast solutions in the region & 13
haveas; # 0 butag, = 0 for m # 1. (See Ref. [54] for a general discussion on this kind
of deformation and its consequence on rotational spectra.) Fig. 11 shows the calculated
values of the¥3; deformation as a function af;or. We see that thes; value quickly rises

whenawyot exceeds 1 MeV.

X37\m| =

U-]6>""|""|""|""|""

[[—— Yglbandwith SIITI
014 |l -e-- Y21 band with SKM* hd

Non-axial Octupole Deformation ogy

2 2.5

Rotational Frequency wrot [MeV /Hh]

Fig. 11. Non-axial octupole deformatiarg; plotted as a function abrot for the Y31 band in32S.
Results calculated with the Slil and SKNbrces are shown by solid and dashed lines, respectively.
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The microscopic origin of the growth of the non-axial octupole deformatien
may be understood when we examine the single-particle energy diagram in the rotating
frame (routhians) presented in Fig. 12. We note that a strong coupling and a quasi-
level crossing between the rotation-aligr[%O]% orbit and the[211]% orbit take place
near the Fermi surface in the regiorDXK wyot < 2.2 MeV/h. The matrix element of
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the r3Y3; operator between the two single-particle states is large, since they satisfy the
selection rule for the asymptotic quantum numbetsA = 1, An, = 2). This strong
coupling is responsible for thes; deformation appearing in this region of the yrast
line.

Fig. 13 shows the potential energy function with respect tathalirection, calculated
by means of the constrained HF procedure. Note the scale of the ordinate. Although
we obtain a clear minimum at a finite value @41, the potential is rather shallow in
this direction, so that the amplitude of the quantum-mechanical zero-point vibrational
motion might be larger than the equilibrium deformation. If this is the case, a treatment
of dynamics going beyond the mean-field approximation is required in order to investigate
the consequence of theg; deformation on the quantum spectra in the yrast region under
consideration. This is beyond the scope of the present paper.

It may be desirable to extend the potential energy curve in Fig. 13 tegthe 0 limit.
It turned out, however, difficult to do so, because many level-crossings take place with
decreasinga;. (If we extrapolate to this limit assuming parabolic dependenaesgnwe
obtain about 2 MeV as a very crude estimate of the energy gain duedgitdeformation.)
For the same reason, it is also difficult to follow the continuation ofheband to the
higher spin region as soon as it departs from the yrast line.

8. Some remarks on experimental data

Although rich experimental data are available for excited state¥%f the high-spin
yrast region in which we are interested is rather poorly known at the present time.
Accordingly, we discuss experimental references only briefly.

For low-spin states witli < 7, detailed spectroscopic data are available up to excitation
energy 11.76 MeV [19,20]. These excited states are shown to be well described by the
spherical shell model calculations [19,20]. In these works, some negative-parity states were
interpreted as octupole—quadrupole phonon multiplets. As a matter of fact, we need to go
beyond the simple mean field theory in order to discuss such spectroscopic data in the
low-spin region.

Highly excited states have been studied by various nuclear reactions as WéD-as
160 scattering. Investigating tHEO(?°Ne, «)32S(«)28Si (g.s.) reaction, Morita et al. [55]
suggested possible band structures of the quasi-molecular configuratf-6f80 and
of some parity-doublet-like structures with angular momentzss, (77), (8*+) at the 12—

15 MeV region. Recently, Curtis et al. [56] investigated the region With 10-16 and

the excitation energy 32—38 MeV by means of #i€(2*Mg, 160%0)*He reaction, and
suggested an existence of highly deformed states in this region. It is tempting to compare
these experimental data with our theoretical calculations. The experimentally explored
regions are, however, about 10 MeV above the theoretical yrast line. Therefore, a more
detailed spectroscopic study is needed in order to associate these data with the yrast
structure.
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9. Conclusions

We have investigated the high-spin yrast structuré?sfby means of the cranked SHF
method in the 3D Cartesian-mesh representation without imposing restrictions on spatial
symmetries, and suggested that

(1) a crossover from the SD to the HD-like configurations takes place on the yrast line

at angular momenturh~ 24, which corresponds to the “band termination” pointin
the CHO model, and

(2) non-axial octupole deformations of tlig; type play an important role in the yrast

states in the range$ 1 < 13.

In conclusion, we would like to stress again that the calculated yrast ling fol4—

20 lies about 10 MeV below the observed molecular resonance region associated with
the 160180 configurations. Thus, a yragtspectroscopy with higher resolving power is
strongly desired in order to explore the high-spin region of the yrast lifé%f
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An adiabatic approximation to the selfconsistent collective coordinate method is formu-
lated in order to describe large amplitude collective motions in nuclei with pairing correlations
on the basis of the time-dependent Hartree-Fock-Bogoliubov equations of motion. The basic
equations are presented in a local harmonic form which can be solved in a manner simi-
lar to that of the quasiparticle RPA equations. The formalism guarantees the conservation
of nucleon number expectation values. An extension to the multi-dimensional case is also
discussed.

§1. Introduction

Large amplitude collective motion (LACM), such as fission, shape transitions,
anharmonic vibrations and low energy heavy ion reactions, are often encountered
in studies of nuclear structure and dynamics. To go beyond the phenomenological
models assuming some macroscopic or collective degrees of freedom motivated by
the experimental facts and intuition, many attempts have been made to construct
theories that are able to describe the LACM on the microscopic basis of the nu-
clear many-body Hamiltonian. In particular, theories based on the time-dependent
Hartree-Fock (TDHF) approximation have been investigated extensively. )~ 1%) The
TDHF is a general framework for describing low-energy nuclear dynamics accompa-
nying evolution of the nuclear selfconsistent mean field. 17> %) A LACM corresponds
to a specific solution of the TDHF equation of motion. Since such a solution forms
only a subset of the all TDHF states (Slater determinants), it is often called a col-
lective path, a collective subspace, or a collective submanifold. The collective coor-
dinates are then a set of a small number of variables that parameterize the collective
subspace, and the collective Hamiltonian is a function governing the time evolution
of the collective coordinates. One of the main purposes of the LACM theories is
to provide a scheme to determine the collective subspace and the collective Hamil-
tonian on the basis of the microscopic many-body Hamiltonian. Although studies
of LACM theories form a vast field of research with many recent developments in
different directions, realistic applications to nuclear structure problems are rather
limited. In this paper, we would like to propose a new practical method to calculate

*) Present address: Graduate School of Science and Technology, Niigata University, Niigata
950-2181, Japan.
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the collective subspace.

The adiabatic approximation has been often utilized for formulating the theory of
the collective subspace. Indeed, some class of LACM, such as nuclear fission, can be
regarded as slow motion, thus justifying the adiabatic approximation. The adiabatic
TDHF (ATDHF) theory ") is one of the best known adiabatic theories and has
been applied in some cases to realistic descriptions of heavy ion reactions.® The
ATDHF theory, however, had the problem of the non-uniqueness of the solution. 4),5)
Efforts to settle the non-uniqueness problem were made from different viewpoints.
Reference 6) emphasizes the importance of the canonical variable condition and the
analyticity as a function of a collective coordinate for finding a unique solution. The
proposed procedure relying on the Taylor expansion method has not been applied to
realistic calculations. Another work ?) points out that the collective subspace can be
uniquely determined by using the next order equation of the ATDHF theory. It has
been found also that the adiabatic collective path of LACM becomes the valley line
of the potential function in the multi-dimensional space associated with the TDHF
states. V-9 Further, the adiabatic collective path can be defined by equations for a
local harmonic mode at each point of the collective path. These developments are
summarized in a consistent way in the formalism of Ref. 8). Note, however, that
the adiabatic theory of Ref. 8) relys on a multi-dimensional classical phase space
representation of the TDHF determinantal states.17):®) A realistic application of
this theory has not been made, except in the case of a light nucleus. ') Furthermore,
a problem of particle number conservation arises when applied to superconducting
nuclei (i.e. nuclei with pairing correlations). 1%

Theories without the adiabatic approximation have also been developed within
the TDHF framework. The early works in this direction are called local harmonic
approximations. 12-13) Later, a set of general equations that can determine the col-
lective subspace and the collective Hamiltonian were found and formulated in a
consistent form known as the selfconsistent collective coordinate method (SCC or
SCCM). 14) The theory is purely based on the TDHF with no further approximation.
The method also provides a concrete and practical scheme to solve the basic equa-
tions using a power series expansion with respect to the boson-like variables defined
as a linear combination of the collective coordinates and momenta. The pairing
correlation in superconducting nuclei is easily incorporated within the SCCM by
adopting the time-dependent Hartree-Fock-Bogoliubov (TDHFB) equation in place
of the TDHF, and the conservation law for the particle number is consistently intro-
duced in the basic framework of the SCCM. '®) Thanks to these features, the SCCM
has been applied to many realistic descriptions of anharmonic vibrations in medium
and heavy nuclei. 19 However, the expansion method may not be suitable for large
amplitude motion of an adiabatic nature, for which change of the nuclear mean-field
is so large that the power series expansion of the collective coordinates may not be
justified.

In the present paper, we attempt to combine the merits of the two approaches
mentioned above, the SCCM and the adiabatic theory, in order to formulate a theory
that provides a consistent and practical method easily applicable to realistic descrip-
tions of the adiabatic LACM in superconducting nuclei. We achieve this aim by
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introducing an adiabatic approximation into the general framework of the SCCM.
Here we treat superconducting nuclei since the pairing correlations play essential roles
in many cases, like spontaneous fission, tunneling between superdeformed and nor-
mally deformed configurations, and coupling between coexisting states with different
nuclear shapes (shape coexistence phenomena). Although the use of the supercon-
ducting mean field requires us to respect particle number conservation, the SCCM
allows a simple and consistent treatment of the conservation law. We also avoid the
non-uniqueness problem by utilizing principles similar to those of Refs. 7)-9). Fur-
thermore, we show that the equations of the adiabatic SCCM thus formulated can be
transformed into another set of equations that have a similar structure as the local
harmonic approach in the adiabatic theories. ® Therefore, the present formalism also
inherits some aspects of the recent adiabatic theories such as Ref. 8).

In addition to the general formulation (§2), we present a practical scheme to
solve the basic equations given in the local harmonic form for general classes of the
many-body nuclear Hamiltonian (§3 and the Appendix). These equations are given
in terms of the matrix elements of the many-body Hamiltonian written in terms
of the quasiparticle operators, thus enabling us to develop a straightforward coding
of a numerical program to solve the equations. In this way, we provide a concrete
procedure to extract the collective subspace and the collective Hamiltonian. We also
discuss a possible prescription to extend the formalism to cases of multi-dimensional
collective motion (§4). Conclusions are outlined in §5.

§2. Basic equations

2.1. The SCC method for superconducting nuclei

In this subsection, we recapitulate the basic equations of the SCC method ¥ in
a manner suitable for treating superconducting nuclei.

We introduce the TDHFB approximation to describe LACM in superconducting
many-fermion systems. Here the time-dependent many-body state vector |¢(t)) is
constrained to a generalized Slater determinant, which is chosen as a variational wave
function. The time evolution of |¢(t)) is then determined by the time-dependent
variational principle

0

0 {o(t)ig, — H|p(t) =0, (2-1)

where the variation is given by ¢ |¢p(t)) = aLaE |¢(t)) in terms of the quasiparticle
operators {al,, a, }, which satisfy the vacuum condition a |¢(t)) = 0.

We assume that the LACM can be described in terms of the collective variables,
i.e. the collective coordinate and momentum {q, p} that are variables parameterizing
the TDHFB state vector.*) The whole space of the TDHFB state vectors can be
parameterized by M x (M — 1) variables (M being the number of the single particle
states), as shown by the generalized Thouless theorem. 17),18) The set of the TDHFB
state vectors |¢(q,p)) forms the collective subspace in which the LACM can be

*) We focus our discussion on the case of a single collective coordinate. A multi-dimensional
case is discussed in §4.
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properly described. One of the main problems with which we are concerned is
how to determine the collective subspace on the basis of the TDHFB equations of
motion. At the same time, we need to determine the collective Hamiltonian H(q, p)
that governs the equation of motion for the collective variables {q,p}. This is the
general purpose of theories of LACM.

When we apply the LACM theories to nuclei in the superconducting phase,
special attention has to be paid to particle number conservation. Since the TDHFB
state vector is not an eigenstate of the particle number operator N, one would like
to formulate the LACM theory so that the particle number expectation value is
conserved during the course of collective motion. This is a problem which is specific
to the TDHFB, and does not exist for the TDHF for which the state vector is a
number eigenstate.

It is well known ') that the expectation value of a conserved observable remains
constant during the time-evolution of |¢(t)) governed by the TDHF(B) equations of
motion. In the case of the pairing problem, the TDHFB state vector spontaneously
violates the symmetry with respect to the gauge rotation e~V but rotational mo-
tion related to the gauge rotation (often called the “pairing rotation”) emerges auto-
matically to restore the gauge symmetry. Therefore, the LACM of superconducting
nuclei, described by the TDHFB theory, necessarily accompany the pairing rotation,
and we have to introduce'® the collective coordinate, ¢, the gauge angle, and the
conjugate collective momenta, N, which represents the particle number. Thus, we
are obliged to consider a collective subspace that is parameterized by the set of four
collective variables {q,p, ¢, N}.%

Let us now present the basic equations of the SCCM that determine the collective
subspace |¢(q,p, p, N)) and the collective Hamiltonian H(q, p, p, N). As discussed
above, the variable ¢ is introduced to represent the gauge angle. This requirement
is easily satisfied 1) if one uses the parameterization

16(q, p, 0, N)) = N ¢(g, p, N)) , (2:2)

where N is the number operator of particles. Here |¢(g, p, N)) represents an intrinsic
state that rotates in the gauge space.

The basic equations of the SCCM consist of a canonical variable condition and an
invariance principle of the time-dependent Schrédinger equation (TDHFEFB equation
in our case). The canonical variable condition is, in general, given by

(9(a,p; ¥, N)Iia% |¢(q,p, 0, N)) =p + g—j (2-3a)
(610,00 M) 5 16l 0, M) = =5 (2:3D)
(620 N i 6.0 N) = N + 5 (2:3¢)
(60:9,i0, V)| 55100, M) = — o (2:34)

*) For simplicity, here we assume a single kind of particles. Extension to systems with many
kinds (e.g., protons and neutrons in nuclei) is straightforward.
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for the collective subspace parameterized by two sets of coordinates (g, ) and mo-
menta (p, N). Although S is an arbitrary function of {¢,p, ¢, N}, we choose S = 0,
which is appropriate for the adiabatic approximation.® Then the canonical variable
condition can be rewritten as equations for the state |¢(q,p, N)):

(6la.0 V)] i 10000, ) = (2:4)
(6(a.p. )| 5= 6l V) = 0 (2.4D)
<¢(q,p, )‘ N|¢(q,p, N)> = N7 (24C)
(¢(q, p, )\ \qﬁ(q p,N))=0. (2-4d)

The third equation requires that the collective variable N be identical to the expecta-
tion value of the number operator. In other words, the particle number expectation
value does not depend on the collective variables (g, p) for the LACM under consid-
eration. This is nothing but the condition of particle number conservation.

The collective Hamiltonian is defined as the value of the total energy in the
collective subspace, given by

H=(0(g,p, 0, N)| H |6(a,p, 0, N)) (2:50)
= (¢(¢,p, N)| H [6(q,p, N)) - (2:5b)

Since the Hamiltonian H commutes with the number operator N , the collective
Hamiltonian does not depend on the gauge angle ¢. Therefore, ¢ becomes cyclic, as
we expect.

The invariance principle of the TDHFB equation plays a central role in de-
termining the collective subspace, which requires that the TDHFB state vector
lp(q(t),p(t), p(t), N(t))) evolving in time within the collective subspace obey the
full TDHFB equation, Eq. (2-1). This is equivalent to the condition that the collec-
tive subspace is an invariant subspace of the TDHFB equations of motion. Inserting
Eq. (2-2) into the time-dependent variational principle, Eq. (2-1), we obtain

50l p NI A~ 0Py PG N YR p ) =0, (26)
where the infinitesimal generators defined by

Plola.p.N)) =i lola. V). (27a)

QW@%)>1£W@%M% (2:7h)

&16(a.p V) = 1 ol ) 279

have been used. These operators are one-body operators which can be written as
linear combinations of bilinear products {aLaTﬁ, agae, aléag} of the quasiparticle op-
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erators defined with respect to |¢(q,p, N)). Because of the canonical variable condi-
tions, these infinitesimal generators satisfy the commutation relations

(6(g,p, N)|[Q, P |6(q,p, N)) =, (2-8a)
(¢(q,p,N)|[©, N]|p(q,p, N)) =i, (2-8b)

[} [¢] [¢] ~
and commutators of other combinations of @), P,© and N give zero expectation

value. By taking the variation as 0 |¢(q,p, N)) = {103, 52, (3), N} |o(q,p,N)), Eq. (2:6)
produces the canonical equations of motion for the collective variables:

=T =i 0l VI . Q) ol V). (2:99)
P - — i M. Pl 0.0, V). (2:90)
20 T i (6la,p, NI, 6] 00, p. V). (2:9¢)
% - _g—z: =0. (2:9d)

Using Eq. (2:9), Eq. (2:6) reduces to an equation of collective subspace:

R OH o OH o OH ~
) N H-2"p_2"0_-2°N N)) = 0. 2.1
(¢(q,p, N)| o 94 Q 5N |¢(q,p,N)) =0 (2-10)

If we take a variation ¢, that is orthogonal to the infinitesimal generators
{]%, 52, é, N}, we can immediately show d, (¢(q,p, N)] H |6(q, p, N)) = 0, which im-
plies that the energy expectation value is stationary in the collective subspace with
respect to all the variations, except for those along directions tangent to the col-
lective subspace. In other words, the collective mode is decoupled from the other
modes of excitation.

We remark here that the above basic equations of the SCCM are invariant under
point transformations of the collective coordinate

q—q =d(q), (2-11a)
p—p =px (alq’/alq)_1 ) (2-11Db)

The basic principles, i.e. the canonical variable condition, Eq. (2-3), and the invari-
ance principle of the TDHFB equation, Eq. (2:6), are not affected by the general
canonical transformations of collective variables {q,p, o, N} — {¢,p',¢’, N'}. By
taking the parameterization, Eq. (2-2), and the specific choice of S = 0 in Eq. (2-3),
the allowed canonical transformations are restricted to the point transformations. %)

2.2. Adiabatic approrimation

Assuming that the LACM described by the collective variables {q,p} is slow
motion, we here introduce the adiabatic approximation to the SCCM. Namely, we
expand the basic equations with respect to the collective momentum p, which is
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appropriate for small values of momentum. Since the particle number variable IV is
a momentum variable in the present formulation, we also expand the basic equations
with respect to n = N — Ny when we consider a system with particle number Np.

Let us first consider the expansion of the TDHFB state vector |¢(q,p,N))
in the collective subspace. The origin of the expansion is the state |¢(q))
= |¢(q,p, N)) |p=0,N=N,- We can assume that this is a time-even state, i.e., 7 |¢(q))
= |¢(q)) under the time-reversal operation 7. (Here we consider system of an even
number of particles.) Thanks to the generalized Thouless theorem, the state vector
|¢(q,p, N)) can be expressed as

[6(q, p, N)) = C@P™ |6(g)) (2:12)

by using the unitary transformation e'“(@P)  Here the Hermitian operator G is

given by

Gla.p,n) = Y (Gagla.p.n)alal + Ghsla, pin)agas) = Gla,p,n). (213)
a>f

Here and hereafter, the quasiparticle operators {a} , a,} are always defined locally at
each value of ¢ and satisfy the condition a4 |¢(q)) = 0. We now expand the operator

G(q,p,n) in powers of p and n and keep only the lowest order term. We have

G(g,p,n) = pQ(q) +1O(q), (2-14a)
Q@) = Y (Qap(@)abal + Qis(@agaa) = Q@) (214b)

a>f
6(q) = Y. (Oapla)aal + Ols(a)agan) = O(a)f.  (2:140)

a>0

If we require that time-reversal of |¢(g, p, N)) causes sign inversion of the collective
momentum p, i.e. 7 |¢(q,p, N)) = |¢(q, —p, N)), the operators Q(q) and @(q) must
be time-even (7Q(¢)7T ' = Q(q)) and time-odd (T6O(¢)T ' = —6(q)), respectively.
If we set n = 0 (i.e. N = Np), the parameterization Eq. (2-12) together with
Eq. (2-14) reduces to |¢(q,p)) = €2 |$(q)), which has the same form as that
introduced by Villars and is often used in the ATDHF theories. 1):3)7)

The collective Hamiltonian is expanded as

Hla,p, N) = V(@) + 3B + M@ (2150)
V(g) = H(g,p, N)lp=o.x=no = (¢(a)] H |6(q)) , (2:15b)
10%*H(q,p, N)
B(q) = 578192 0NN
— — (6(0) (14, Q()). Q)] |6(0)). (2:150)
Mo = THERR) o) 1,160 o)) (2150)
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where we have kept terms up to second order in the collective momentum p, and
up to the first order in n. The collective Hamiltonian for the system with N = Ny
particles ( n =0 ) is given by

H(q,p,No) = V(q) + %B(Q)p2 (2-16)

as the sum of the collective potential V' (¢q) and the collective kinetic energy (the
second term).
We next expand the infinitesimal generators It is convenient for this purpose

to deﬁne the unitary transformations P’ =e ’GPeZG,Q’ = *iGACo)e"é and @ —
_ZGQeZG of the infinitesimal generators P Q and 9 They are expanded as
o . X0 A 0Q B,
P =P TG e = P(q) — p=2 —n— t - - - 217
(q) +e 5g° (q) Poy "o T (2-17)
o &0 A ~ 7 A ~ A
/ —iG G
@ =0 = Qo)+ 51Q.pQ+ ) + - (218)
o a0 LA ~ A A ~
/ —iG G
= e — — e 2.1
O =e AN @(q)+2[@,pQ+n@]+ , (2-19)
with use of the general expansion formula
e C9eiC = i0G + [z@G iG) + ,[[iaé, iG),iG + - . (2-20)

The operator P(q) is the infinitesimal generator with respect to |¢(q)) defined by

P(g) 16(a) = 8% 16(a)). (2:21)

Similarly, we introduce the unitary transformation of the number operator and ex-
pand it as

N' = e CNei® = N +i[N,pQ + nb] +---. (2:22)
Substituting these operators into the canonical variable condition, Eq. (2-4), we have
(0(a)| (a0, N) |6(0)) =, (223a)
(6(0) Q' (a9, N) [6(0)) = 0, (2:23D)
(6(2)| &' (¢, N) |6(a)) = 0, (2:23¢)
(0(a)] N'(¢.p, N) |é(q)) = N. (2:230)

Now we expand these equations with respect to the momenta p and n, and obtain
the following equations.
The zeroth order canonical variable conditions:

(6(0)] P(a) 6()) = (6(a) a% 16(a)) = 0, (2:24)
(6(q)| Q(q) 16(q)) = 0, (2:25)
(o(q)] Q(q) |p(q)) =0, (2-26)
(6(0) N |6(a)) = No (227)
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Equations (2-25) and (2-26) are automatically fulfilled by the definition Eq. (2-14)
of the operators Q(q) and é(q) Equation (2-24) can be satisfied if the ¢-dependent
phase of |¢(q)) is properly chosen. Equation (2-27) is the constraint on |¢(q)) for the
conservation of the average particle number.

The first order canonical variable conditions:

9Q(q)

(9(a)] 4 l9(q)) = -1, (2-28)

(6(a)| [Qa). 6(a)] 19(@)) = 0, 2:20)

(9(9)] [Q(q); N]|o(q)) = 0 2-30
One finds X R

(9(9)] [Q(q), P(9)] |¢(q)) =1, (2-31)

which can be derived by differentiating Eq. (2:25) with respect to ¢ and using
Eq. (2-28). One can also derive from Eq. (2-27)

((a)| [P(q), N]|¢(q)) = 0. (2-32)

These equations give constraints on the infinitesimal generators Q(¢) and P(g) con-
cerning the normalization, Eq. (2-31), and the orthogonality to the particle number
operator, Eq. (2-32).

Next we expand the equation of collective subspace, Eq. (2-10), to obtain a
complete set of the basic equations for the adiabatic approximation. After rewriting
Eq. (2-10) as

OH

OH o,
ot ON

ap N'|¢(q)) =0, (2-33)

LA A A OH o

0 {p(q)l e " He ~ - —=-Q -
dq

we can expand each term with respect to p and n with use of the equations listed

above.

The zeroth order equation of collective subspace:

5 (6(a)| L — M) - %—Zéz(q) 16(g)) = 0. (2:34)

The first order equation of collective subspace:

5 (6(q)| [H — A(a)N, Q(q)] — %B(Q)P(Q) |6(q)) = 0. (2-35)

These equations are similar to the equations of path in Villars’ ATDHF the-
ory,!) except that the present paper deals with the superconducting Hartree-Fock-
Bogoliubov (HFB) state and that the Hamiltonian accompanies the g-dependent
chemical potential term —)\(q)N . As mentioned in §1, the ATDHF theory has
the problem that the solution satisfying these two equations is not uniquely de-
termined. ¥-%) Although an additional validity condition was introduced to further
constrain the solutions, 3% the procedure of Ref. 3) does not fully solve the problem
since the method does not work around the HF minima.
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The non-uniqueness problem has been investigated in recent studies of the adia-
batic theories, and in our opinion they can be classified into two different approaches.
The first one represented by Ref. 6) asserts that the solution is uniquely determined
if an RPA boundary condition is specified at the HF minimum and if the analyticity
of the collective path as a function of ¢ is imposed together with the canonical vari-
able condition. The solution, however, needs to be constructed in an analytic way
or by means of a Taylor expansion method with respect to the collective coordinate
q. We do not adopt this approach since we wish to construct a method applicable to
systems exhibiting large excursions from the HFB minimum. We rather follow the
other approach, represented by Refs. 7)-9). These theories require the additional
condition that the equation of collective subspace (corresponding to the decoupling
condition in Ref. 8)) should be satisfied up to the next order of the adiabatic ex-
pansion. In the present formulation, this second order condition is expressed as
follows.

The second order equation of collective subspace:

5 (6(0)| S ~ M@)N, Q)] Q(a)] - B@)AQ(@) [6@) =0, (236)

where
AQ(0) = 5 + Qo). (237
I'(q) = —%@%—S. (2-38)

This equation is equivalent in its mathematical form to the one given in Ref. 7)
if the chemical potential term —/\(q)N is neglected. The last term —B(q)AQ(q),
often called a curvature term, was simply neglected in the original version of the
local harmonic approximation. 12:13) In the next subsection, instead of neglecting
this curvature term, we rewrite AQ(q) and change Eq. (2-36) into a workable form.

It is worth noting here the invariance of the adiabatic equations with respect
to the coordinate transformation. The collective momentum p undergoes a linear
homogeneous transformation under the point transformation, Eq. (2:11). Therefore,
different orders of the expansion with respect to the power of p are not mixed under
the point transformation. The invariance property of the basic equations of SCCM is
thus inherited by each equation of the adiabatic approximation listed above. One can
also confirm this property by seeing that the quantities appearing in the equations
transform as

0(q) — /(@) = Olald) (%) , (2:39)

A

P(q) — P'(q)

/N —1
P(q(q)) (Z—Z) : (2-39b)

ov. oV oV (dq’>_1

8_61_> oq’ q

2.
g (2-39¢)
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N\ 2
B - B'(¢) = Bla(d) (%) , (2:39d)
AQ(q) — AQ'(d) = AQ(q). (2-39%)

§3. Local harmonic approximation to collective subspace

3.1.  Local harmonic equations

In this section we present a concrete procedure to construct an approximate
solution of the adiabatic SCC method. To this end, we first derive, from the adiabatic
equations, another set of equations of collective subspace which can be solved in a
manner similar to that for the RPA equation.

We first take the derivative of the zeroth order equation, Eq. (2-34), with respect
to ¢q. This leads to

5 (60)| [ = \@)N, = Pla)| - Cla)Q(a)

‘%AQ(‘” - Z—QN 6(2)) = 0, (3:1)
2
Clg) = %qv - r@% (3:2)

where AQ(q) and I'(q) are given by Egs.

(2-37) and (2-38), respectively. Using
Eq. (2-36), we eliminate AQ(q) and rewrite Eq. (

. (31) as

59| [ MNa)N. 1P(0)] - CloQ
5507 ||~ AN 50| Q)] - N (@) =0. 63)
Furthermore, due to Eq. (2-34), we find
oV . "
ﬁ—qQ = (H — AN)4, (3-4)

where (lfI — AN ) A represents the a'al and aa part of the operator H—-)\N containing
two-quasiparticle creation and annihilation in the normal-ordered expression.
We thus replace Egs. (2-:34)—(2:36) by the equivalent set

5 (d(a)| Hue(q) [(g)) = 0, (3-5)
5 (¢(q)| [Har(q), Q(q)] — %B(Q)P(Q) |6(q)) =0, (3-6)

560 [ Hu() 5 Plo)| - Ca)Q
—((Harla), (= M@)N)al, Q)] — 2N () = 0. (37)
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In Eqgs. (3-6) and (3-7), H — AN has been replaced by

ai(g) = H — M)V — 8—V@< ) (38)

since the last term has no influence. The operator H m(¢q) may be regarded as
the Hamiltonian in the moving frame. The second and third terms can be identified
with generalized cranking terms associated with the pairing rotation and the LACM,
respectively.

Equations (3-6) and (3:7) are linear equations with respect to the one-body
operators Q(q) and P(q). They have essentially the same structure as the standard
RPA equations, except for the last two terms in Eq. (3-7). The quantity C(q)
is the local stiffness parameter defined as the second (covariant) derivative of the
collective potential V(¢). The infinitesimal generators Q(q) and P(q) are thus closely
related to the harmonic normal modes locally defined for |¢(q)) and the moving frame
Hamiltonian Hy; (q). These equations may be called local harmonic equations.

It was shown in Ref. 7) that the zeroth, first and second order equations of AT-
DHF give a valley line of a potential energy surface in a multi-dimensional configura-
tion space associated with the TDHF states. Similarly, the local harmonic equations
we have obtained, Egs. (3:5)—(3-7), define the valley of the multi-dimensional poten-
tial energy surface. The solution of these equations will be uniquely determined if a
suitable boundary condition is specified. These features are similar to the formula-
tion of Ref. 8) where the valley equation of the potential energy surface is derived
from the decoupling condition.

We remark again that the local harmonic equations in the present paper differ
from those of Rowe-Bassermann '2) and Marumori'® with respect to the third and
fourth terms of Eq. (3-7), which arise from the curvature term (derivative of the
generator) and the particle number constraint, respectively. It is important to keep
the curvature term in order to maintain the relation between the collective subspace
and the valley of the potential surface. We also note that the present formalism is
invariant with respect to the point transformation of the collective coordinate, as is
the formulation of Ref. 8).

3.2. Matriz formulation of local harmonic equations

Let us now give a procedure to find the operators Q(q) and P(q) that satisfy
the local harmonic equations, (3-6) and (3-7) , for a given state |¢(q)). Since these
are linear equations with respect to these operators, this can be done in a manner
analogous to that for the standard RPA. To show this, we first express the operator
P( ) and N in terms of the quasiparticle operators:

P(g) =i (Papla)alal — Pis(@)apan) = Pla)', (3:9)

a>f
N = Zﬁ( Jahal + Nis(@)agaa) (3-10)

Note that the afa and e-number parts are neglected here since they do not change the
state vector |¢(q)), except for the phase. The Hamiltonian H can also be expressed
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in terms of the same quasiparticle operators. Assuming that the matrix elements
Qap and P,g are real, the local harmonic equations can be written as the following
matrix equations:

(A-B)Q - B(q)P =0, (3-11a)
1 o _

(A+ B)P - C(q)Q — WDQ—AN—O, (3-11D)

PN =0, (3-11c)

2QTP =1, (3-11d)
) OA -

N = 50 (3-11e)

Here all quantities are functions of ¢ while @ = (- -+, Qqg, - - ')T, P=(--,Pg,-- ')T
and N = (-, Nyg, - ')T form the vector representation of the matrix elements with

a > (3. A and B are the matrices whose elements are given by

(A)apns = dary0s(ea + e5) + vk 5, (3-12a)
(B)apys = Vapass (3-12b)
in terms of the matrix elements of the moving frame Hamiltonian,
q) = Z eatl aq (3-13a)
+ Z vaﬁ 7(;aT a;rga(;a,y (3-13b)
aﬁ’yé
+4' ( i%waT a}ja aj; + Uam(s%%aﬁaa) (3-13¢)
aﬁ'y&
—I- Z ( Vi 3y,600 aﬁaJr as + v amaj;ayagaa) . (3-13d)
! aﬁ'y&

Here, due to Eq. (2-34), the ata’ and aa parts of fIM(q) vanish, and the a'a
part of Hjps(q) is diagonalized. The matrix elements of the residual interactions in
Egs. (3:13b)—(3-13d) are antisymmetrized with respect to the quasiparticle indices.

The matrices A and B have the same structures as those defined in the quasiparticle
RPA formalism. '” The matrix D is defined by

1

(D)asis = 5 (@@)| [[Far (@), (= N@)N)a), abal + agaal, aras][6(a) - (3:14)

These matrix elements can be expressed also in terms of the Hamiltonian matrix
elements as

(D)apqs= (da, 75 ol + dis0ps — dihOas — dasdsy + djzsdar) /2, (3-152)
daﬁ v Z( Vage, 'yh(SE - vaﬁe,ﬁh’YG - ’Ué?e'yzshﬁE + v,é’?ew&hae)) (315b)

€
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40 31 3 31 3
daﬁ’yéz Z(Uaﬁ'y,ehﬁls - ’Uﬁ'lyé,ehﬁa + U'yéa,eh@g - véiﬁ,€h57)7 (315C)
dofy= Y (Valasltns — Visa,ahve), (3-15d)
>4

where h,g represents the matrix elements of (ﬁ — AN )a defined by

(H=AN)a =" haglafal; + agaa). (3-16)
a>0

Note that D contains the matrix elements of the types v!? and v3!. These terms of
the Hamiltonian do not contribute to the standard RPA equations.

The solution of the matrix equations is obtained as follows. From Eq. (3-11), we
obtain

Q=XNB(Q)((A+B)(A-B)—D—-0Q)"'N, (3-17a)
P=)NA-B)(A+B)(A-B)-D-2)"'N, (3-17b)

with
2= B(q)C(q). (3-18)

The condition that the collective mode is orthogonal to the number operator,
Eq. (3-11c), gives the following equation:

S2)=NT(A-B)((A+B)(A-B)-D-2)'N =0. (3-19)

The quantity 2 = B(q)C(q) represents the square of the frequency w = +BC of
the local harmonic mode, which is not necessarily positive. This equation can be
regarded as a dispersion equation to determine §2 = w? as a zero point of S(£2). The
normalization condition, Eq. (3-11d), then gives a constraint on the value of N?B(q).
The value of the mass parameter B(q) is arbitrary, being related to the invariance
under the point transformation Eq. (2:11). The choice of the coordinate ¢ specifies
the value of the mass parameter, B(q). In practice, the coordinate is often scaled so
as to make the mass parameter unity.

When the residual interactions are separable forces, such as the monopole pair-
ing and the quadruple-quadrupole forces, the local harmonic equations reduce to a
simpler form. The dispersion equation for the separable interaction does not require
a matrix inversion as in Eq. (3-19). The details of these points are discussed in the
Appendix.

Reference 10) discusses a problem of spurious (Nambu-Goldstone) modes for
local harmonic approaches, and it is stated there that the RPA equation at non-
equilibrium points must be extended in order to guarantee separation of the spurious
modes. However, no practical way of solving the equation was given because the
equation has parameters for which we do not have a method to calculate. In our
present formulation, the RPA equation is indeed extended to assure the number
conservation.
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3.3.  Construction of collective subspace

Let us finally give algorithms to construct the collective subspace |p(q)) as a
function of the collective coordinate g. Note that the local harmonic equations,
Egs. (3-5)—(3:7), are regarded as local equations in the sense that the equations can
be solved independently for different values of ¢q. At the HFB ground state, |¢o),
defined by the HFB equation

5 (¢o| H — oI o) = 0, (3-20)

we find 0V/dq = 0. Therefore, |¢g) is always a state in the collective subspace
because Eq. (3-5) is automatically satisfied. Equations (3-6) and (3-7) reduce to the
standard RPA equations at |¢g) since the last two terms in Eq. (3-7) vanish. The
operators Q and P are then determined as one of the normal modes of the RPA
equation.

For non-equilibrium states, in general, Eq. (3-5) and the other two equations,
(3-6) and (3-7), are coupled. We may solve the coupled equations in an iterative
way. As discussed in §3.2, we can find the operators Q(q)(”) and P(q)(") by solv-
ing Egs. (3-6) and (3-7) for a given trial state \gb(q))(”) (n denoting the iteration
step). This defines the moving frame Hamiltonian Hy;(¢)™ 1) = H — A\(¢)" TN —

(%—Z) " Q(q)™, which can be used to construct a trial state |¢(q))("+1) for the next

iteration. If the iteration converges, we obtain a state |¢(g)) for which Egs. (3-5)—
(3-7) are simultaneously satisfied. Repeating the same procedure for different values
of g, one finally obtains the collective subspace |¢(q)) and the collective Hamiltonian
as a function of q.

We remark here that the operator p(q) thus determined does not guarantee
Eq. (2-21), although the other equations are satisfied. In this sense, the local har-
monic solution is an approximate solution. The exact solution satisfying all the
basic equations in §2.2 may not exist in realistic situations. Only when the system
is “exactly decoupled” ® does the above procedure give the exact solution.

It is possible to choose another algorithm which satisfies Eq. (2-21), at the ex-
pense of introducing errors into Eq. (3-5). Let |¢(qo)) be a solution that satisfies the
basic equations at ¢ = qg. The infinitesimal generators Q(qo) and P(qo) are deter-
mined by solving Eqs. (3-6) and (3-7). Then we can generate the state |¢(qo + 0q))
for an infinitesimal shift of the collective coordinate as

|6(q0 + b)) = e 9P |6(g0)) . (3-21)

Repeating this procedure, we can construct a collective subspace. This solution
should coincide with that solved by the previous method if the system is exactly
decoupled.

The two methods described above give different solutions in situations where
the exact decoupling is not satisfied. In such cases, one can evaluate the quality of
decoupling for the collective subspace or the validity of the local harmonic approx-
imation by comparing the two solutions. We note also that the second method can
be used to provide an initial guess, ]d)(q)>(0), for the iteration of the first method.
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§4. Extension to multi-dimensional collective subspace

In this section we extend the adiabatic SCC method to the case of a multi-
dimensional collective subspace described by D collective coordinates and conjugate
momenta, {¢’,p;;i=1,---,D}.

One can easily derive the basic equations of the adiabatic SCC method in parallel
to the derivation given in §2 by noting first that Eqgs. (2:12) and (2:14) are now
extended to

6(q, p, N)) = C@P™ [6(g)) (4-1)

~ .

G = piQ'(q) +nO(q), (4-2)

where the operator Ql(q) now has D components with the coordinate label 7. It
is implied here and hereafter that any coordinate index (¢ in the above expression)
appearing both as the superscript and subscript is summed over. The infinitesimal
generator E(q) also has D components, each of which is related to the derivative
ia?f |¢(q)). In the following, the coordinate dependence is often omitted. For in-
stance, B (q) and Ql(q) will be simply denoted by B% and Q'.

The adiabatic collective Hamiltonian is expressed as

Hla,p. N) = Via) + 5 B (pins + o). (43)

The zeroth and the first order equations of the collective subspace are derived as

3 {60~ Na) N — 570 ola) = 0 (14
5 (6(0) [ ~ M)V, @] — T BYB;10(a)) = 0. (15

while the second order equation becomes

1 . N B I ) AN RNy
) —[H - X\q)N,Q", J+[ kO J}
(@@l 51 (@N, Q]+ & aqu Q" Q
1 s o
— 5 (B*Q) + BQ) [0(0)) = 0 (46)
with
o 0Q ok
Q= Er + I,;Q", (47)
Ty = 38" (G + G~ ) (4:8)

where B;; is the inverse matrix of B%, and the bracket including the three operators
is defined by

[4,8,C) = 5[4, B, C] + [[4.€), B) (19
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Expanding the canonical variable condition with respect to p; and n, the follow-
ing equations are derived:

(6(a)| Pi[6(a)) =0, (410)
(6(@)| N16(q)) = No, (411)
and
(0(a)l 1", Pl (e >>= i (412)
(@) [Q", N]|o(a)) = (413)
(6(a)] [P1 ¥ folo)) — (414)

These basic equations are invariant under the point transformation of the col-
lective variables:

¢ —q" =qd"), (4-15a)
pi = pi = pj X (aqj / 8(1”) : (4-15b)

We have adopted the vector-tensor notation2?) to make clear the transforma-
tion properties under the point transformation. Quantities with a coordinate index
as the subscript (superscript) have the transformation properties of the covariant
(contravariant) vectors. For example,

Q' — Q"= Q' x (0g"/0¢'), (4-16)
P, — P =P x (aq /aq”) (4-17)

The mass tensor B¥ is the contravariant tensor of second rank. The operator sz
defined by Eq. (4-7) is the covariant derivative of Q', and I’ ,ij is the Christoffel
symbol, where the mass tensor B;; plays the role of metric tensor.

Let us now derive local harmonic equations of the collective subspace. Taking
the g-derivative, the zeroth order equation (4-4) leads to

. N N A 8)\
3 (@@ |H = Ma)N, - | = Ci(¢) @ — —QJ —5:Nlo(g) =0, (418)
0%V oV
Cii(q) = === — T _—. 4-19
](Q) aqlaqj 1) aqk ( )
As we have done for the D = 1 case, we would like to eliminate the covariant

derivative Q]l in Eq. (4-18) in order to give a feasible form of the local harmonic
equation. This was done for the D = 1 case with the help of the second order
equation of the collective subspace. The corresponding equat1ons (4-6) give D(D +

1)/2 constraints, while the number of unknown parameters, Q is D?. In fact,
Eq. (4-6) is equivalent to

(6@ 3117 - NN, @01+ ¢ || 55@ @] Q] - (B + B o(a) =0,
(4-20)
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where RY are arbitrary one-body operators which are antisymmetric with respect
to exchange of indices ¢ and j. If we choose RY = 0, we can eliminate the derivative
term %Q;]i. Then, Eq. (4-18) leads to

5 (0(0)| |71 =A@, B] - 0@
Y - M@ (- @R AL By - DR letg) 0. @21)

g

This equation is an analog of Eq. (3-7) and is linear in the infinitesimal generators
Q' and P;. We can numerically solve Egs. (4-4), (4-5) and (4-21) in the same manner
as discussed in §§3.2 and 3.3.

It should be remarked that the local harmonic equation Eq. (4-21) for D > 1
is derived from Eqs. (4-4) and (4-6), but with the additional condition R = 0 in
Eq. (4-20). This condition is introduced to obtain the local harmonic equations
parallel to the one-dimensional case.

§5. Conclusions

We have formulated the adiabatic approximation of the general framework of
the selfconsistent collective coordinate method in order to describe large amplitude
collective motion in superconducting nuclei. The formalism, based on the TDHFB
equations of motion, guarantees the conservation of particle number in a transparent
way. We have shown that the equations of collective subspace are reduced to local
linear equations for the infinitesimal generators, which can be solved with use of the
quasiparticle representation of the Hamiltonian matrix elements. This provides a
concrete procedure to determine the states €99 |¢(q)) in the collective subspace
and the collective Hamiltonian H(q, p) = V (¢q)+2 B(q)p? as functions of the collective
coordinate ¢ and momentum p. A possible extension to the case of multi-dimensional
collective coordinates was also discussed.

We emphasize that the equations given in this paper are solvable by means of
the matrix method similar to the standard RPA. We hope that the present adiabatic
theory is useful to solve a number of open questions in realistic studies of large
amplitude collective motion in nuclear systems.

Appendix A
—— Solution for the Separable Interactions

In this appendix, we give solutions of the local harmonic equations of collective
subspace for the case in which the two-body interaction is given by separable forces.
We assume that the Hamiltonian is given by

FiF, (A-1)
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where ﬁo(: B[T)) and F are one-body operators. Equivalently, one may write
H=ho— EFH)FH) + fﬁ(*)fw(*)7 (A-2)
F&) = (F j: Fhyj2 = iFHE) (A-3)

For separable forces, it is customary to neglect the Fock term of the forces. This
approximation is easily and consistently implemented in the SCCM by assuming that
the equation of motion for the time-dependent mean-field state |¢(¢)) is now given
by the time-dependent Hartree-Bogoliubov equation without the Fock terms,

5 p(0) 1~ h(1)6(1)) =0, (A4)
h(t) = ho — KEC (6(0)| ) [0(0)) + wF ) (6(0] PO (1) . (A5)

The local harmonic equations (3-5)—(3-7) then become

5 (6(q)| ha(a) |6(9)) = (A-6)
5 (6(a)| [har(9), Qla)] — £ F ) — fB< )P(q) |6(q)) = (A7)

5 (6(0)| (@) %B@P(q) — I§7 O — Bg)C@)Q() - 15 PO
~fSED, (hlg) — Ma)N)a] - nN [é(g)) =0,  (A8)

where hps(q) is the mean-field Hamiltonian in the moving frame defined by
harta) = hia) — Q@) ~ N@)X, (A-9)
h(q) = ho — 5EE) (¢(g)| D |6(q)) (A-10)

and the definitions of the other symbols are

15 ==k (0@ [, Q(a)) [6(9)) | (A-11a)
757 = w(6(0)l [ FD, 2B0)P(@)] 16(a)). (A11D)
157 =~k @I FD), (h(q) — M@)N)al, Q@) [6(0)) /2. (A-llc)
v = B(q)g—;\- (A-11d)

We express all operators in the above equations in terms of the quasiparticle opera-
tors {al,, an} defined for hy(q) and |6(q)). For example, we have

= Z eaaLaa, (A-12)

PO = Z F, +) aﬁ + agaq) + Z aﬂaT ag, (A-13)
a>f af

Z F aﬁ —agaq) + Z FB aﬂaT ag. (A-14)

a>0 af
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We have assumed here that all matrix elements are real. Equations (A-7) and (A-8)
can then be reduced to linear equations for the matrix elements Q.3 and P,z of the

infinitesimal generators Q(q) and P(q). They are easily solved to give the expression

ea teg

Qaﬂ — —(ea + 65)2 — _Q aﬁ fQ
1 (+) RO ()
—(F! N, Al
+(6a+€ﬁ)2 ( Iol Rl o‘ﬁfN>’ (A-15)
BPoy= — 20 (O 15+ R 15 + Nagfv)
(ea + 65)2 -0 aB J PR af JQ
2 (=) p(-)
— F Al
Fleategr—nlondes S
ol =1+ 1, (A17)
where we have introduced the one-body operator
R(q)® = [F$P(q), (h(q) - =" R(Y(alal, F agaa), (A-18)
a>f

with Fl(gi) (¢q) being the last terms of F() in Egs. (A-13) and (A-14).
Inserting this expression for the definition of f 1(;1? and fé{), we obtain equations
for the unknown quantities fP o fé;) and fy. Similarly, the condition of orthogo-

nality to the number operator Eq. (3-11c) gives another equation for f 1(;;%), fé_) and
fn. These equations can be written in a 3 x 3 matrix form:

foR
Szar (12) 57 =0 (A-19)

In

where

St1 = 255 ey + Shyter s %, (A-20a)
Si2 = 20504 pioy + 2Splr gy + Splerpr + Spteigis (A-20D)
Si3 =250+ 52 (A-20c)
So1 = 280 penrs (A-20d)
Spp =280 +28% L~ % (A-20e)
Sps =250 (A-20f)
Ss1= S\ 0 (A-20g)
Sz =080+ S0, (A-20h)
Sa3 = SUL (A-20i)
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The functions Sggg, with the symbols X and Y denoting (X,Y) = (FF), F(+),
(F, RN, (FG)N), (R, FO)), (FOLFO), (N, N), (N, F), (N, R)) are
given by

ea t €3

s _
XY (ea +e€3)2 — 12

a>p
while the functions Sg?g/ with (X,Y) = (F(H), FO)), (R, F), (R, RE)),
(R, N), (FO,FM), (FO)RE)), (FO)N), (N, FO)) are given by
1

5@ _
Y gﬁ (ea +€p)? — 12

XapYas, (A-21)

XagYap- (A-22)

The value of 2 is determined by finding the zero point of the dispersion equation
det{S,. (£2)} = 0. (A-23)

Normalizations of f}(;g, fé_) and fx are fixed by the condition Eq. (3-11d). It is
straightforward to extend the above procedure to the case in which the two-body
interaction is given by a sum of the separable forces.

References

1) F. Villars, Nucl. Phys. A285 (1977), 269.
2) M. Baranger and M. Veneroni, Ann. of Phys. 114 (1978), 123.
K. Goeke and P.-G. Reinhard, Ann. of Phys. 112 (1978), 328.
K. Goeke, F. Griimmer and P.-G. Reinhard, Ann. of Phys. 150 (1983), 504.
4) K. Goeke, P.-G. Reinhard and D. J. Rowe, Nucl. Phys. A359 (1981), 408.
A. K. Mukherjee and M. K. Pal, Phys. Lett. B100 (1981), 457.
A. Kuriyama and M. Yamamura, Prog. Theor. Phys. 70 (1983), 1675; 71 (1984), 122.
M. Yamamura, A. Kuriyama and S. Iida, Prog. Theor. Phys. 71 (1984), 109.
M. Yamamura and A. Kuriyama, Prog. Theor. Phys. Suppl. No. 93 (1987).
7) A. K. Mukherjee and M. K. Pal, Nucl. Phys. A373 (1982), 289.
8) A. Klein, N. R. Walet and G. Do Dang, Ann. of Phys. 208 (1991), 90.
For a recent review, see also G. Do Dang, A. Klein and N. R. Walet, preprint nucl-
th/9911081.
9) D. J. Rowe, Nucl. Phys. A391 (1982), 307.
10) T. Nakatsukasa, N. R. Walet and G. Do Dang, Phys. Rev. C61 (2000), 014302.
11) T. Nakatsukasa and N. R. Walet, Phys. Rev. C57 (1998), 1192; C58 (1998), 3397.
12) D. J. Rowe and R. Bassermann, Can. J. Phys. 54 (1976), 1941.
13) T. Marumori, Prog. Theor. Phys. 57 (1977), 112.
14) T. Marumori, T. Maskawa, F. Sakata and A. Kuriyama, Prog. Theor. Phys. 64 (1980),
1294.
15) M. Matsuo, Prog. Theor. Phys. 76 (1986), 372.
16) M. Matsuo and K. Matsuyanagi, Prog. Theor. Phys. 74 (1985), 1227; 76 (1986), 93; 78
(1987), 591.
K. Takada, K. Yamada and H. Tsukuma, Nucl. Phys. A496 (1989), 224.
K. Yamada, K. Takada and H. Tsukuma, Nucl. Phys. A496 (1989), 239.
K. Yamada and K. Takada, Nucl. Phys. A503 (1989), 53.
H. Aiba, Prog. Theor. Phys. 84 (1990), 908.
M. Matsuo, in New Trends in Nuclear Collective Dynamics, ed. Y. Abe, H. Horiuchi and
K. Matsuyanagi (Springer-Verlag, 1992), p. 219.
K. Yamada, Prog. Theor. Phys. 85 (1991), 805; 89 (1993), 995.
17) P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, 1980).
18) J.-P. Blaizot and G. Ripka, Quantum Theory of Finite Systems (The MIT press, 1986).
19) N. R. Walet, G. Do Dang and A. Klein, Phys. Rev. C43 (1991), 2254.
20) L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon press, 1975).



Progress of Theoretical Physics Supplement No. 141, 2001 285

Diabatic Mean-Field Description of Rotational Bands
in Terms of the Selfconsistent Collective Coordinate Method

Yoshifumi R. SHIMIZU and Kenichi MATSUYANAGI*

Department of Physics, Kyushu University, Fukuoka 812-8581, Japan
* Department of Physics, Graduate School of Science
Kyoto University, Kyoto 606-8502, Japan

(Received July 31, 2000)

Diabatic description of rotational bands provides a clear-cut picture for understanding
the back-bending phenomena, where the internal structure of the yrast band changes dramat-
ically as a function of angular momentum. A microscopic framework to obtain the diabatic
bands within the mean-field approximation is presented by making use of the selfconsistent
collective coordinate method. Applying the framework, both the ground state rotational
bands and the Stockholm bands are studied systematically for the rare-earth deformed nu-
clei. An overall agreement has been achieved between the calculated and observed rotational
spectra. It is also shown that the inclusion of the double-stretched quadrupole-pairing in-
teraction is crucial to obtain an overall agreement for the even-odd mass differences and the
rotational spectra simultaneously.

§1. Introduction

Back-bending of the yrast rotational bands is one of the most striking phenomena
in the spectroscopic studies of rapidly rotating nuclei. 1):2) The first back-bending,
which has been observed systematically in the rotational bands of the rare-earth
nuclei, has been understood as a band-crossing between the ground state rotational
band (g-band) and the lowest two-quasineutron excited band (s-band). A simple
approach to describe the band-crossing is the cranked mean-field approximation,
where the concept of independent particle motion in the rotating frame is fully
employed. As long as the conventional (adiabatic) cranking model is used, however,
the two bands mix at the same rotational frequency and, in the crossing region, loose
their identities as individual rotational bands. It should be noted that the difficulty
lies in the fact that the angular momenta of two bands are considerably different in
the vicinity of the crossing frequency where the mixing takes place, especially in the
case of sharp back-bendings, and such a mixing is largely unphysical.?) =5

A key to solve this problem is to construct diabatic rotational bands, where
the internal structure of the band does not change abruptly.® =9 Once reliable
diabatic bands are obtained it is rather straightforward to mix them if the number
of independent bands are few as in the case of the first back-bending. Note, however,
that it is highly non-trivial how to construct reliable diabatic bands in the mean-field
approximation, because it is based on the variational principle and the mixing at the
same rotational frequency is inevitable for states with the same quantum numbers (in
the intrinsic frame). On the other hand, in the mean-field approximation, the effects
of rotational motion on the internal structure of the g-band can be nicely taken into
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account as selfconsistent changes of the deformation and the pairing gap parameters.
Furthermore, rotation alignment effects of the quasiparticle angular momenta are
described in a simple and clear way. Therefore, it is desired to develop a method to
describe the rotational band diabatically within the mean-field approximation.

In this paper, we present a powerful method to obtain reliable diabatic rotational
bands by making use of the selfconsistent collective coordinate (SCC) method. '%)
The method is applied to the g- and s-bands and the results for nuclei in the rare-
earth region are compared systematically with experimental data. In order to repro-
duce the rotational spectra, the choice of residual interaction is essential. We use the
pairing-plus-quadrupole force type interaction. ') However, it has been well-known
that the moment of inertia is generally underestimated by about 20-30% if only the
monopole-pairing interaction is included. '2) Therefore, we exploit the monopole and
quadrupole type interaction in the pairing channel, and investigate the best form of
the quadrupole-pairing part. This is done in §2. After fixing the suitable residual
interaction, we present in §3 a formulation to describe the diabatic rotational bands
and results of its application to nuclei in the rare-earth region. In practical ap-
plications it often happens that a complete set of the diabatic quasiparticle basis is
necessary; for example, in order to go beyond the mean-field approximation. For this
purpose, we present in §4 a practical method to construct the diabatic quasiparticle
basis satisfying the orthonormality condition. Concluding remarks are given in §5.

§2. Quadrupole-pairing interaction suitable for deformed nuclei

In this section we try to fix the form of residual interactions, which is suitable
to describe the properties of deformed rotating nuclei. It might be desirable to use
effective interactions like Skyrme-type interactions, 13) but that is out of scope of the
present investigation. We assume the separable-type schematic interactions instead,
and try to fix their forms and strengths by a global fit of the basic properties; the
even-odd mass difference and the moment of inertia.

2.1.  Residual interactions

The residual interaction we use in the present work is of the following form:
1
V = —GoPlyPo — G2 > Pl P — 3 > Kok Qb Qore, (2-1)
K K

where the first and the second terms are the monopole- and quadrupole-pairing
interactions, while the third term is the quadrupole particle-hole type interaction.
The pairing interactions are set up for neutrons and protons separately (the T' =
1 and T, = +1 pairing) as usual, although it is not stated explicitly, and only
the isoscalar part is considered for the quadrupole interaction. The quadrupole-
pairing interaction is included for the purpose of better description of moment of
inertia: It has been known for many years'? that the cranking moments of inertia
evaluated taking account of only the monopole-pairing interaction underestimate the
experimental ones systematically in the rare-earth region, as long as the monopole-
pairing strength is fixed to reproduce the even-odd mass differences. It should be
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mentioned that the treatment of residual interactions in the pairing and the particle-
hole channels are different: In the pairing channel the mean-field (pairing gap) is
determined by the interaction selfconsistently, while that in the particle-hole channel
(spatial deformation) is obtained by the Nilsson-Strutinsky method 419 and the
interaction in this channel only describes the dynamical effects, i.e., the fluctuations
around the equilibrium mean-field.

The basic quantity for deformed nuclei is the equilibrium deformation. For the
present investigation, where the properties of deformed rotational nuclei are system-
atically studied, the Nilsson-Strutinsky method is most suitable to determine the
equilibrium deformations, because there is no adjustable parameters. As empha-
sized by Kishimoto and Sakamoto,'” the particle-hole type quadrupole interaction

for deformed nuclei should be of the double-stretched form: 17)~19)
Qo = Z%K(ij) Cj'Cj, q2rc (i) = (il (r*Yar)"|5), (2-2)
]
where c;-r is the nucleon creation operator in the Nilsson state |i). (O)” means that

the Cartesian coordinate in the operator O should be replaced such as zj, — z) =

(wg/wo)zk, (K = x,y,2), where w,, wy and w, are frequencies of the anisotropic
oscillator potential and related to the deformation parameter (eg,~);'%):16)  here
hwo = h(wpwyws) /3 = 41.0/AY3 MeV (A is the mass number). Then the selfcon-
sistent condition gives, at the equilibrium shape, a vanishing mean value for the
double-stretched quadrupole operator, (Q2x) = 0, and thus the meaning of resid-
ual interaction is apparent for the double-stretched interaction. Moreover, the force

strengths are determined at the same time to be the so-called selfconsistent value,

h
= . with b2 = ,
3 AR%b% Mwo

self 47T hwo

Kok = K Ry = 1.24"3 fm, (2-3)

by which the - and ~-vibrational excitations are correctly described. Strictly speak-
ing, the vanishing mean value of (Q2x holds only for the harmonic oscillator model.
It is, however, easily confirmed that the mean value vanishes in a good approxima-
tion in the case of Nilsson potential. In fact the calculated ratio of mean values of
the double-stretched and non-stretched quadrupole operator is typically within few
percent, if the deformation parameter determined by the Strutinsky procedure is
used.

Pairing correlations are important for the nuclear structure problem as well. The
operators entering in the pairing type residual interactions are of the form

Flo=Yclcl, Pl =3 palij)clc, (24)

i>0 i5>0

where j denotes the time-reversal conjugate of the Nilsson state j. In contrast to
the residual interactions in the particle-hole channel, there is no such selfconsitency
condition known in the pairing channel. Therefore, we use the Hartree-Bogoliubov
(HB) procedure (exchange terms are neglected) for the pairing interactions, only
the monopole part of which leads to the ordinary BCS treatment. Note that the
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generalized Bogoliubov transformation is necessary in order to treat the quadrupole-
pairing interaction, since the pairing potential becomes state-dependent and contains
non-diagonal elements:

Aij = Doo bij + Y Aok paxc (i), (2+5)
K

where Agg = Go (Poo) and Asir = G (Pak), the expectation values being taken with
respect to the resultant HB state.

For the application of these residual interactions we are mainly concerned with
deformed nuclei in the rare-earth region, where the neutron and proton numbers
are considerably different. In such a case, the “iso-stretching” of multipole oper-
ators,20:21) Q. — (2N,/A)*?Q, for 7 = v,m (N, denotes the neutron or pro-
ton number and A the mass number), is necessary in accordance with the differ-
ence of the oscillator frequencies, wj = (2N,/A)Y3wy, or of the oscillator length,
(b5)? = (2N, /A)~Y/3b3. We employ this modification for the quadrupole interaction
in the particle-hole channel.

2.2.  Treatment of pairing interactions

As for the quadrupole-pairing part, there are at least three variants that have
been used in the literature. 2231 Namely, they are non-stretched, single-stretched
and double-stretched quadrupole-pairing interactions, where the pairing form factor
in the operator in Eq. (2-4) is defined as

parc (i) = (i[r*Yaklj), (il(r*Yar)'l5), (il(r*Yar)"|j), (2:6)

respectively. The single-stretching of operators is analogously performed by the
replacement, z, — x) = /wi/wo x (k = z,y,2). Note that there are matrix ele-
ments between the Nilsson states with ANysc = +2 in Eq. (2:6). We have neglected
them in the generalized Bogoliubov transformation in accordance with the treat-
ment of the Nilsson potential, which is arranged to have vanishing matrix elements
of ANgge = £2.%)

Being consistent with the Nilsson-Strutinsky method, we use the smoothed pair-
ing gap method ' in which the monopole-pairing force strength is determined for a
given set of single-particle energies by

2 _ ~ =

2 = jelos (A/A Jade 1 ) (27)
0

where gr is the Strutinsky smoothed single-particle level density at the Fermi surface,

A is the cutoff energy of pairing model space, for which we use A = 1.2%wg, and A

is the smoothed pairing gap. We introduce a parameter d (MeV) to control the

strength of the monopole-pairing force by

A=d (2-8)

*) The hexadecapole deformation leads extra ANosc = £2, £4 coupling terms, but they are
neglected in our calculations.
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through Eq. (2:7), where the same smoothed pairing gap is used for both neutrons
and protons, for simplicity. As for the quadrupole-pairing force strength, we take
the following form,

Go = Gy %, with Rp = 1.2A4Y/3 fm. (2:9)
0
Thus, we have two parameters d (MeV) and gy for the residual interactions in the
pairing channel.
It is worthwhile mentioning that Eq. (2-7) gives the form,

-1/3 2/3
Gy ~ E(%) , with c= M, (2-10)
A\ A log (2/1/A)

for the semiclassical treatment of the isotropic harmonic oscillator model,32)33)
where gh ~ (3N,)?/3/(hw§), and it is a good approximation for the Nilsson po-
tential. The quantity log (2/1/ A~) depends very slowly on the mass number and can
be replaced by a representative value for a restricted region of mass table. Taking
A = hwg, d =13 and A = 170, one obtains ¢ ~ 23, which gives the monopole-pairing
force strength often used for nuclei in the rare-earth region.

2.3.  Determination of parameters d and go

Now let us determine the form of the quadrupole-pairing interaction. Namely, we
would like to answer the question of which form factor in Eq. (2-6) is best, and of what
are the values of the parameters, d and go, introduced in the previous subsection.
For this purpose, we adopt the following criteria; the moments of inertia Jy of the
Harris formula %) and the even-odd mass differences (the third order formula3?)) for
even-even nuclei should be simultaneously reproduced as good as possible. Since the
neutron contribution is more important for the moment of inertia, we have used the
even-odd mass difference for neutrons, E,SC'O). Then it turns out that the proton
even-odd mass difference is also reasonably well reproduced as long as the same
smoothed pairing gap is used for neutrons and protons. Thus, the two parameters
d (MeV) and g9 are searched so as to minimize the root-mean-square deviations of
these quantities divided by their average values,

N, N,

1 data . 2 1/2 1 data <

Xyms(7) = [Nd t 3 (xge p) _ xz(cal)) ] / |:Nd t 2 p)} (2-11)
ata ;—q ata j—1

for x = Jp and Eﬁe'o). Nuclei used in the search are chosen from even-even rare-earth
nuclei in Table I, thus Ngata = 83 (58) for x = B (Jo)-

Table I. Nuclei included for the search of the pairing interaction parameters, d and go.

64Gd 66Dy esEor 70Yb 7oHE 7aW
N for B 76-100 78-102 80-104 80-108 84-110 86-114
N for Jo 86-96 86-100 86-102 86-108 90-110 92-114
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Note that the neutron even-odd mass difference has been calculated in the same
way as the experimental data by taking the third order difference of calculated bind-
ing energies for even and odd N nuclei, where the blocking HB calculation has been
done for odd-mass nuclei. In the Nilsson-Strutinsky method the grid of deformation
parameters —0.08 < eo < 0.40 and —0.08 < ¢4 < 0.12 with an interval of 0.04 are
used. The ls and Il parameters of the Nilsson potential are taken from Ref. 35). We
have assumed the axial symmetry in the calculation of this subsection since only the
ground state properties are examined. Experimental binding energies are taken from
the 1993 Atomic Mass Evaluation.?®) As for the experimental moment of inertia,
the Harris parameters, Jy and [Jp, are calculated from the observed excitation ener-
gies of the 2* and 4T states belonging to the ground state band, experimental data
being taken from Ref. 37) and the ENSDF database.3®) If the value of Jj calculated
in this way becomes negative or [J; greater than 1000 h4/ MeV? (this happens for
near spherical nuclei), then Jp is evaluated by only using the 2% energy, i.e., by
3/Ey+. The Thouless-Valtion moment of inertia,3? which includes the effect of the
K =1 component of the residual quadrupole-pairing interaction, is employed as the
calculated moment of inertia. Here, again, the matrix elements between states with
ANose = 12 are neglected for simplicity in the same way as in the step of diagonal-
ization of the mean-field Hamiltonian. The contributions of them are rather small
for the calculation of moment of inertia, since the ANy = 2 matrix elements of
the angular momentum operator are smaller than the ANy, = 0 ones by a factor
~ €9 and the energy denominators are larger. We have checked that those effects are
less than 5 % for the Thouless-Valatin moment of inertia in well deformed nuclei.

In Fig. 1 we show root-mean-square deviations of the result of calculation for
neutron even-odd mass differences and moments of inertia. We have found that the
behavior of these two quantities, erS(EVe_O)) and X;ms(Jo), as functions of go with
fixed d are opposite, and so the mean value

Yrms = % (ers(El(/O_O)) + ers(sYO)) (212)

become almost constant, especially for the case of the non-stretched quadrupole-
pairing. Therefore, we also display the results for the maximum among the two,

XM = max{ Xome (BE), Xome(J0) }- (213)

As is clear from Fig. 1, the best fit is obtained for the double-stretched quadrupole-
pairing interaction with d = 14 (MeV) and g2 = 30. It should be mentioned that the
value of gy is close to the one go = 287/3 in Ref. 22), where it is derived from the
multipole decomposition of the d-interaction and this argument is equally applicable
if the double-stretched coordinate is used in the interaction. It is interesting to notice
that if the non-stretched or the single-stretched quadrupole-pairing interaction is
used, then one cannot make either X, ms or Xﬁ/[ns smaller than 0.2. X, in the
non-stretched case is rather flat as a function of go and the minimum occurs at
d = 12 (MeV) and g2 = 0 (no quadrupole-pairing). XM _ in the non-stretched

case takes the minimum at small quadrupole-pairing, d = 12 (MeV) and g2 = 2.
Both X,ns and X}fns are flat as a function of go also in the single-stretched case,
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Fig. 1. Root-mean-square deviations of neutron even-odd mass differences and moments of inertia,
calculated by using the non-stretched (left), single-stretched (middle), and double-stretched
(right) residual quadrupole-pairing interactions. The upper panels show the results for X ms
and the lower panels for XM, see Egs. (2:12) and (2:13). They are calculated as functions of
the two parameters d and g2. Each curve is drawn with a fixed value of d (MeV), which is
attached near the curve, as a function of gs.

and take the minimum at d = 12 (MeV) and g = 16. In contrast, the double-
stretched interaction gives well developed minima for both X, ms and XMB. These
results clearly show that one has to use the double-stretched quadrupole-pairing
interaction. It should be mentioned that the importance of the double-stretched
quadrupole-pairing interaction has been recently recognized in somewhat different
contexts in Refs. 27)-30), and by a similar investigation in Ref. 31).

One may wonder why the non- and single-stretched interactions do not essen-
tially improve the root-mean-square deviations. The quadrupole-pairing interaction
affects £ and Jo in two ways: One is the static (mean-field) effect through the
change of static pairing potential (2-5), and the other is a dynamical effect (higher
order than the mean-field approximation) and typically appears as the Migdal term
in the Thouless-Valatin moment of inertia (c.f. Egs. (3-73) and (3-74)). The former
effect can be estimated by the averaged pairing gap,

Z:ZA“/212A00+2A2KZP2K(”)/21’ (214)

where the summation is taken over the Nilsson basis states ¢ included in the pairing
model space. Stronger quadrupole-pairing interaction results in larger A, which leads
to the increase of even-odd mass difference on one hand and the reduction of moment
of inertia on the other hand. The Migdal term coming from the K = 1 component of
the quadrupole-pairing interaction makes the moment of inertia larger when the force
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Fig. 2. Pairing gaps (upper panels) and moments of inertia (lower panels), calculated by using the
non-stretched (left), single-stretched (middle), and double-stretched (right) residual quadrupole-
pairing interactions. Average pairing gaps A and monopole-pairing gaps Ago (MeV), see
Eq. (2:14), are displayed by solid and dashed curves, respectively, in the upper panels, while
Thouless-Valatin and Belyaev moments of inertia (A%/MeV) (c.f. Eq. (3-73)) are displayed as
solid and dashed curves, respectively, in the lower panels. They are calculated as functions of the
two parameters d and g>. Each curve is drawn with a fixed value of d (MeV), which is attached
near the curve and changed by step of 1 MeV, as a function of g2. The calculation has been done
for a typical deformed nucleus, '%*Yb, with deformation parameters (e2, €4) = (0.2570, 0.0162).

strength is increased. Therefore, the moment of inertia either increases or decreases
as a function of force strength, depending on which effect is stronger. In Fig. 2, we
show the energy gap and the moment of inertia for a typical rare-earth deformed
nuclei '¥Yb as functions of the two parameters d and g¢» in parallel with Fig. 1.
One can see that the average as well as monopole-pairing gaps increases rapidly as a
function of the quadrupole-pairing strength if the non-stretched interaction is used.
This static effect is so strong that the Thouless-Valatin moment of inertia decreases.
In the case of the single-stretched case, similar trend is observed for the pairing
gap, though it is not so dramatic as in the case of non-stretched interaction. The
static effect almost cancels out the dynamical effect and then the Thouless-Valatin
moment of inertia stays almost constant against gs in this case. On the other hand,
if one uses the double-stretched interaction, the pairing gap stays almost constant
as a function of go. This is because (Pyx) =~ 0 holds in a very good approximation,
which is in parallel with the fact that the quadrupole equilibrium shape satisfies the
selfconsistent condition, (Q2x) = 0, for the double-stretched quadrupole operator.
Thus the effect of the double-stretched quadrupole-pairing interaction plays a similar
role as the particle-hole interaction channel; it acts as a residual interaction and does
not contribute to the static mean-field.
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2.4.  Results of calculation

It has been found in the previous subsection that the double-stretched form of
the quadrupole-pairing interaction with parameters d = 14 MeV and g2 = 30 gives
the best fitting for the even-odd mass differences and the moments of inertia in
the rare-earth region. Resulting root-mean-square deviations are Xy (E,Se_o), Jo) =
(0.115, 0.136). If one uses (d, g2) = (13,28) or (12,20), as examples, those quantities

become erS(E,Ee'O), Jo) = (0.154, 0.127) or (0.235, 0.121), respectively. Therefore,
making the two quantities smaller is complementary as discussed in §2.3.

We compare the results of calculation with experimental data in Fig. 3 as func-
tions of neutron number. In this calculation the results of Sm (Z = 62), Os (Z = 76)
and Pt (Z = 78) isotopes are also included, which are not taken into account in the
fitting procedure. As is clear from the figure, both even-odd mass differences and
moments of inertia are not well reproduced in heavy Os and Pt isotopes; especially
even-odd mass differences are underestimated by about 20%, and moments of iner-
tia overestimated by about up to 50% in Pt nuclei with N > 100. In these nuclei,
low-lying spectra suggest that they are «-unstable, and therefore correlations in the
~ degrees of freedom are expected to play an important role. Except for these nuclei,
the overall agreements have been achieved, particularly for deformed nuclei with N =

T 50

moment of inertia

A 4

N

Fig. 3. Comparison of calculated even-odd mass differences (left panels, in MeV) and moments of
inertia (right panels, in #?/MeV) with experimental data for nuclei in the rare-earth region.
Experimental data are displayed in the upper panels while the calculated ones in the lower
panels. Isotopes with Z = 62-78 are connected by solid (Z = 0 mod 4) or dashed (Z = 2
mod 4) curves as functions of neutron number N. The double-stretched quadrupole-pairing
interaction is used with parameters d = 14 MeV and g2 = 30.
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Fig. 4. Even-odd mass differences (left panels) and moments of inertia (right panels) for Z =64-74
isotopes, calculated by using the single- and non-stretched quadrupole-pairing interactions. The
panels from top to bottom show the results of the single-stretched cases with parameters (d = 11
MeV, g2 = 18) and (d = 12 MeV, g = 16), and of the non-stretched cases with parameters
(d=11 MeV, g2 = 5) and (d = 12 MeV, g2 = 0), respectively.
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90-100. It is, however, noted that some features seen in experimental data are not
reproduced in the calculation: (1) The maximum at N = 90 and the minimum at
N =106 or 110 in the even-odd mass difference are shifted to N = 92 and N = 108,
respectively. This is because details of the neutron single-particle level spacings in
the present Nilsson potential are slightly inadequate. (2) The proton number de-
pendences of both the even-odd mass difference and the moment of inertia are too
weak: curves of both quantities bunch more strongly in the calculation. This trend
is clearer in light Z nuclei, Z < 68, for example, Gd or Dy; the even-odd mass dif-
ference in these isotopes decreases more slowly as a function of neutron number in
the calculation, which results in the slower increase of the moment of inertia. This
problem suggests that some neutron-proton correlations might be necessary.

For comparison’s sake, results obtained by using the quadrupole-pairing inter-
actions of the single-stretched and the non-stretched types are displayed in Fig. 4.
In the calculation of the single-stretched case, the values of the two parameters,
d =11 MeV and g, = 18, are employed, resulting Xyms(ES, Jo) = (0.240, 0.170),
in one case, and the values d = 12 MeV and ¢g» = 16, resulting ers(Eﬁc_O), Jo) =
(0.192, 0.214), in another case. Comparing with the experimental data in Fig. 3,
the decrease of even-odd mass difference with neutron number is too strong, while
the increase of moment of inertia near N = 90 is too slow. In the calculation of
non-stretched case, the values of the two parameters, d = 11 MeV and go = 5 are
employed, resulting erS(E,Se_O), Jo) = (0.257, 0.237), in one case, and the values
d = 12 MeV and go = 0, resulting Xyms(ES™, %) = (0.265, 0.204), in another
case. The average values of the even-odd mass difference are considerably smaller
and those of the moment of inertia are 20-30% smaller compared to the experimen-
tal data. Note that the last case (d = 12 MeV and gy = 0) is nothing but the
calculation without the quadrupole-pairing interaction. The trend of weak proton
number dependence does not change for all three forms of the quadrupole-pairing
interaction.

The merit of the Nilsson-Strutinsky method is that a global calculation is pos-
sible once the mean-field potential is given. We have then performed the calculation
for nuclei in the actinide region with the same pairing interaction and parameters as
in the rare-earth region, i.e., the double-stretched quadrupole-pairing with d = 14
MeV and go = 30. The result is shown in Fig. 5. Nuclei in the light actinide region
are spherical or weakly deformed with possible octupole deformations. The exper-
imental moments of inertia suggest that nucleus in this region begins to deform at
N = 134, and gradually increases the deformation until a rather stable deformation
is established at N > 140. In the nuclei with Z = 88 and 90, the neutron number at
which the deformation starts to grow is too large in the calculation, and the even-
odd mass differences take considerably different behaviour from the experimental
data. This disagreement possibly suggests the importance of octupole correlations.
Except for these deficiencies, both even-odd mass differences and moments of inertia
in heavy well-deformed nuclei are very well reproduced in the calculation. It should
be emphasized that the parameters fixed in §2.3 for the rare-earth region are equally
well applicable for the actinide region.
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Fig. 5. Same as Fig. 3, but for nuclei in the actinide region. Isotopes with Z = 88-100 are connected
by solid (Z = 0 mod 4) or dashed (Z = 2 mod 4) curves as functions of neutron number N.

§3. SCC method for constructing diabatic rotational bands

The SCC method'? is a theory aiming at a microscopic description of large
amplitude collective motions in nuclei. The rotational motion is one of the most
typical large amplitude motions. Therefore it is natural to apply the SCC method
to the nuclear collective rotation. In Ref. 40), this line has been put into practice for
the first time in order to obtain the diabatic rotational bands, where the interband
interaction associated with the quasiparticle alignments is eliminated. It has also
been shown that the equation of path in the SCC method leads to the selfconsistent
cranking model in the case of rotational motion. Corresponding to the uniform
rotation about one of the principal axes of nuclear deformation, the one-dimensional
rotation has been considered as in the usual cranking model. We keep this basic
feature in the present work.

More complete formulation and its application to the ground state rotational
bands (g-bands) in realistic nuclei have been done in Ref. 41), followed by further
applications to the Stockholm bands (s-bands) 42) and improved calculations with
including the quadrupole-pairing interaction. 3 In these works the basic equations
of the SCC method have been solved in terms of the angular momentum expansion
(I-expansion). Thus, the A and B parameters in the rotational energy expansion,
E(I) = AI(I + 1)+ B[I(I + 1)), have been studied in detail. It is, however, well
known that applicability of the [-expansion is limited to relatively low-spin regions.
This limitation is especially severe in the case of the s-bands: One has to take the
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starting angular momentum Iy (= 107 %)) and the expansion in terms of (I — I) is
not very stable. Because of this problem comparisons with experimental data have
not been possible for the s-bands.*? In the present study, the rotational frequency
expansion is utilized instead, according to the original work.*?) Then the diabatic
cranking model is naturally derived. Thus, after obtaining the diabatic quasiparticle
states, we construct the s-band as the two-quasiparticle aligned band on the vacuum
g-band at given rotation frequencies. This is precisely the method of the cranked
shell model, %) which has been established as a powerful method to understand the
high-spin rotational bands accompanying quasiparticle excitations.

Another important difference of the present work from Refs. 41)-43) is that the
expansion method based on the normal modes of the random phase approximation
(RPA) is used for solving the basic equations in these references. The method is
very convenient to investigate detailed contents of the rotation-vibration couplings,
e.g. how each normal mode contributes to the rotational A and/or B parameters,
as has been discussed in Refs. 41) and 42). On the other hand, we are aiming at
a systematic study of rotational spectra of both g- and s-bands in the rare-earth
region. Then the use of the RPA response-function matrix is more efficient for such
a purpose, because it is not necessary to solve the RPA equation for all the normal
modes explicitly.

It has to be mentioned that the problem of nucleon number conservation, i.e.,
the pairing rotation, can be treated similarly.?) Actually, if the SCC method is
applied to the spatial rotational motion, the mean value of the nucleon number
changes as the angular momentum or the rotational frequency increases. A proper
treatment of the pairing rotations is required, i.e., the coupling of the spatial and
pairing rotations should be included.*®) However, it has been found*?) that the
effect of the coupling is negligibly small for the case of the rotational motion in well
deformed nuclei. Therefore, we simply neglect the proper treatment of the nucleon
number in the following.

Although it is not the purpose of this paper to review applications of the SCC
method to other nuclear structure phenomena, we would here like to cite a brief re-
view %) and some papers, in which low-frequency quadrupole vibrations are analyzed
on the basis of the SCC method: anharmonic gamma vibrations,*”) =49 shape phase
transitions in Sm isotopes, 52 anharmonicities of the two-phonon states in Ru
and Se isotopes, ) single-particle levels and configurations in the shape phase tran-
sition regions, ® and a derivation of the Bohr-Mottelson type collective Hamiltonian
and its application to transitional Sm isotopes. %)

3.1.  Basic formulation

The starting point of the SCC method is the following time-dependent Hartree-
Bogoliubov (TDHB) mean-field state

|6(6, 1)) = W(0, L) o), (3-1)

which is parametrized by the time-dependent collective variables 6(t) and I,(t)
through the unitary transformation W (0, I,)) from the ground (non-rotating) state
|¢o). In the case of rotational motion, I, corresponds to the angular momentum
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about the rotating axis x, which is a conserved quantity, and 6 is the conjugate
angle variable around the z-axis. In order to guarantee the rotational invariance,
W (8, I;) has to be of the form

W (0, 1) = e =), (3-2)

where J,, is the angular momentum operator about the z-axis, and G(I,) is a one-
body Hermite operator by which the intrinsic state is specified:

16(0, 1)) = e~ |$inee (1)), |inee(I)) = "0 |hg). (3-3)

The generators of the unitary transformation W (6, I,,) are defined by (W /dq)W !
for ¢ = 6 or I, and they have, from Eq. (3-2), the form

. iG(Is) ,
ZI?/W_l = ¢ 0/ Le@[ e 1GUe) gife = i0(1;), (3-4)

One of the basic equations of the SCC method is the canonical variable condi-
tions, 19 which declare that the introduced collective variables are canonical coor-
dinate and momentum. In the present case they are given as

<¢(9a Ix)|7’9(lx)|¢(07 Ix)) =0, (36)
<¢<07[w)’Jx’¢(gv[x)> = I, (3'7)
and from which the weak canonical variable condition is derived:

The other basic equations, the canonical equations of motion for the collective vari-
ables and the equation of path, are derived by the TDHB variational principle,*

d
5(0(6.1)|(H ~ i, ) 6(6.1,)) = 0 (39
or by using the generators, Egs. (3-4) and (3-5),
<¢(9a Ix)‘ [07 H — HJx + Ix@(lx)] |¢(‘97 Im)) =0, (3'10)

where O is an arbitrary one-body operator. Taking the generators as O and using the
canonical variable conditions, Eqgs. (3:6)—(3-8), one obtains the canonical equations
of motion:

. OH
0= 8—LE = wrot(lx), (311)
. OH
IZE = —_—-—— = s 12
50 = ° (3-12)

*) In this subsection A = 1 unit is used.
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with
H(Iaz) = <¢(97Iaz)|H|¢(eaIx)> = <¢intr(Ix)|H|¢intr(Im)>, (3'13)

where the rotational invariance of the Hamiltonian, [H,J,] = 0, is used. Equa-
tion (3-12) is nothing else than the angular momentum conservation, and Eq. (3-11)
tells us that the rotational frequency is constant, i.e., the uniform rotation. Making
use of these equations of motion, the variational principle reduces to the equation of
path

5<¢intr(-[x)| H— wrot(Ix)Jx ’Qbintr(lx» = O, (314)

namely it leads precisely to the cranking model. The remaining task is to solve
this equation to obtain the operator i{G(I,) under the canonical variable conditions,
which are now rewritten as

0e'4I) —iG (L)
<¢intr(Ix)|C(Ix)|¢intr(lx)> = Oa C(Ix) = a] € i ) (315)

<¢intr(Iac)|Jz’¢intr(Iac)> - I:c (316)

In Ref. 41), Egs. (3:14)—(3-16) are solved by means of the power series expansion
method with respect to I, which gives the functional form of the rotational frequency
wrot(Iz). Tt is, however, well known that the convergence radius of the power series
expansion with respect to wyot is much larger, so that the applicability of the method
can be enlarged.? Thus, the independent variable is changed to be wyo; instead
of I, in the equations above. In the following, we write the rotational frequency as
w in place of wyot for making the notation simpler. Now the basic equations can be
rewritten as

&(intr (W) [ H — wz|Pintr(w)) = 0, (3-17)
_ 069 o)

<¢intr(w)’0(w)’¢intr(w)> =0, C(w) = Ow € ) (3‘18)

<¢intr(w)’¢]x‘¢intr(w)> = I:E(w) (319)

Note that the last equation is not the constraint now, but it just gives the functional
form of the angular momentum I, in terms of w. The first two equations, Egs. (3-17)
and (3-18), are enough to get iG(w), which makes the calculation simpler. The
equation of motion is transformed to the canonical relation

oH"
ow

_Ix(w)’ (320)
with the total Routhian in the rotating frame
H' (W) = (bintr (W) H — wa|dintr(w))- (3-21)

In order to show this, we note the following identity,

a<¢intr (w) ’O ’ (bintr (w»
Ow

= (Gt (W)] [0, C(w)] [Pintx(w)), (3-22)
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for an arbitrary w-independent one-body operator O. Then,

OH'

o = (Ginr )| [H — wa, C@)) [9imr(w)) — (Gimer @) Tl b)), (323)
which lead to Eq. (3:20) because the first term on the right-hand side vanishes due
to the variational equation (3-17).

The one-body operator iG(w) generates the unitary transformation from the

non-rotating (ground) state |¢g), see Eq. (3-3), and it is composed of the aza; and aja;

terms, where alT and a; are the creation and annihilation operators of the quasiparticle
state i with respect to the ground state |¢g) as a vacuum state. The solution of the
basic equations is obtained in the form of power series expansion

iG(w) = fj iG™ (w), (3-24)
n=1
with
G (W) = w"{z 9™ (ij) alal - h.c.}. (3-25)

i<j
It is convenient to introduce a notation for the transformed operator, which is also
expanded in power series of w,

O

Ow)=e —iG(W) O (iGW) Z o (3-26)

for which the following formula are useful;

. , > 1
—iG G __ . .
e "0e"™ = nE_O ] [[--]0,iG]---iG], (3-27)
- n times
and o
o . ael e 1 8ZG
p— _ZG —_— ... —_— ) .. 3 .

Clw)=ce e 2 )] { { R ZG:| zG]. (3-28)

n times

Then the basic equations for solving iG(w) in the n-th order in w are

(ol [ajas, H™ — wJ," ] |gg) = 0, (3-29)
(@olC™ ) = 0, (3-30)
and the canonical relation is
I(n+1)
MT =1, or (n+ HH"H = —wrl, (3:31)

where the total Routhian and the expectation value of the angular momentum are
also expanded in power series,

=Y H™, Lw) =Y 1. (3-32)
n=0 n=1
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The lowest order solution is easily determined: The n = 0 and 1 parts of
Eq. (3-30) are satisfied trivially, while the n = 1 part of Eq. (3-29) is written as
(@l lajas, [H, iGM]]|¢o) = w(do| [ajai, Ja] o), (3-33)
or
[H, iGY]rpa = wzrpa, (3-34)

where the subscript [ |gpa means that only the RPA order term is retained; e.g.,
JiRPA = aga; and aja; parts of J,. This is the RPA equation,3?) with respect
to the ground state |¢g), for the angle operator i©rps conjugate to the symmetry

conserving mode J,rpa, and we obtain
iGY = wJyiOrpa, IV =w, (3-35)

where Jp is the Thouless-Valatin moment of inertia. Note that the general solution
of Eq. (3:33) contains a term iwcyJ,rpa With ¢y being an arbitrary real constant.
We have chosen c; = 0 as a physical boundary condition, because .J, operator
generates the transformation from the intrinsic to the laboratory frame and should
be eliminated from the unitary transformation generating the intrinsic state, see
Eq. (3-3). Once the lowest order solution (n = 1) is obtained, higher order solutions
(n > 2) can be uniquely determined by rewriting Eqs. (3-29) and (3-30) in the
following forms;

(bl [ajai, [H, iG™]]|¢o) = (¢o| [ajas, B™] o), (3-36)
) L (n) .

(@0l [iG"", 1Orpa] |¢0) (n—l)J0<¢O|D ¢0), (3:37)

with
B™ = g™ (7, i¢™] - wJ, (Y, (3-38)
0 2iG™) 2iGM
(n) — Aln) _ o] _ () :
DM = ¢ [ 5o iG } [&u ,iG ] (3-39)

Here B™ and D™ only contain iG™ with m <n — 1, and 9iG™ /0w = niG™ Jw
and Eq. (3-:35) are used. Equation (3-36) has the same structure as Eq. (3-33)
or (3-34) and is an inhomogeneous linear equation for the amplitude ¢(™ (i), where
the inhomogeneous term is determined by the lower order solutions (see §3.3 for
details).

As in the case of the first order equation, if G is expanded in terms of the
complete set of the RPA eigenmodes which is composed of the non-zero normal
modes and the zero mode (J,rpa, 1Orpa ), the general solution of iG™ contains the
term proportional to Jygrpa, and it is determined by Eq. (3-:37). Once the boundary
condition for iG() is chosen as above, however, the term proportional to Jyrpa
should vanish. In order to show this, one has to note that matrix elements of the
Hamiltonian and of the angular momentum can be chosen to be real with respect to
the quasiparticle basis (aj-, a;) in a suitable phase convention, e.g., that of Ref. 32).
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Then the matrix elements of the RPA normal mode operators and the angle operator
1@rpa are also real, and so are the matrix elements of iGM . I G s expanded in
terms of the RPA eigenmodes, the imaginary part of its matrix elements arises only
from the term proportional to J,rpa because iG™ is anti-Hermite while JoRPA 18
Hermite. If we assume that iG™) with m < n — 1 has no Jygpa term so that its
matrix elements are real, then the right-hand side of Eq. (3:37) vanishes, because
D™ is an anti-Hermite operator with real matrix elements composed of i{G("™) with
m < n — 1. Therefore, iG" neither contains the Jyrpa term. Thus, the fact that
the operator G has no J,rpa term is proved by induction. The situation is exactly
the same for the case of gauge rotation; the Ngpa term (N is either the neutron or
proton number operator) also does not appear in ¢G. The method to solve the above
basic equations for our case of the separable interaction (2-1) will be discussed in
detail in §3.3.

3.2.  Diabatic quasiparticle states in the rotating frame

In the previous subsection the rotational motion based on the ground state |¢g)
is considered in terms of the SCC method. The same treatment can be done for
one-quasiparticle states. The one-quasiparticle state is written in the most general
form as

|¢1 qp Zfz T ‘(ﬁO (3‘40)

where iG(w) as well as the amplitudes f;(w) are determined by the TDHB variational
principle. Generally iG(w) for the one-quasiparticle state is not the same as that
of the ground state rotational band because of the blocking effect. However, we
neglect this effect and use the same iG(w) in the present work following the idea of
the independent quasiparticle motion in the rotating frame. 4 Then by taking the
variation

(P1-q.p. (W) H — WJle-q.p.(w»]
0 =0 3-41
l (10 @) [61-0 () (4l
with respect to the amplitudes f;, one obtains an eigenvalue equation,
Z EZ_] f]ﬂ fiu (w)E:L(w)’ (342)
with
€l;(w) = (dola; (H (@) = wJa(w))alléo)- (3-43)

Namely the excitation energy EL(w) and the amplitudes f;,(w) of the rotating quasi-
particle state u are obtained by diagonalizing the cranked quasiparticle Hamiltonian
defined by

one-body part of [ CWN(H — wJ,) e ¢W)]
- Zew alaj, (3-44)

B (w)
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where, due to the equation of path, Eq. (3-17) or (3-29), ;L'(w) has no a’al and aa
terms. Introducing the quasiparticle operator in the rotating frame,

aL(w) = CW) Z fw((,u)a;r e IG W) (3-45)

i
we can see that the one-quasiparticle state (3-40) is written as
|[$1-q.p.(w)) = O‘L(w)|¢intr(w)>a (3-46)
and

h/(w) = one-body part of (H — w.J,)
=B () af(w)au(w). (3-47)
I

Namely, the quasiparticle states in the rotating frame are nothing but those given
in the selfconsistent cranking model. Thus, if H contains residual interactions, the
effects of change of the mean-field are automatically included in the quasiparticle
Routhian operator (3-44) in contrast to the simple cranked shell model where the
mean-field parameters are fixed at w = 0.

It is crucially important to notice that the cutoff of the power series expansion
in evaluating Eq. (3-44) results in the diabatic quasiparticle states; i.e., the positive
and negative quasiparticle solutions do not interact with each other as functions of
the rotational frequency. This surprising fact has been found in Ref. 40) and utilized
in subsequent various applications to the problem of high-spin spectroscopy; see e.g.,
Ref. 56). Thus, we use

@0 = 330wl Y alas, (3-15)

with
€;§‘n) = (¢oa; (IZT(") - wJo:(n_l))a}WoWW"a (3-49)

as a diabatic quasiparticle Routhian operator. If we take ny.x = 1 and use the
solution (3-35), the first order Routhian operator is explicitly written as

[ (@)=Y = b — w(Jz — Jorea), (3-50)

with h = one-body part of H. This Hamiltonian was used to construct a diabatic
quasiparticle basis in Ref. 57) to study the g-s band crossing problem. We will show
in §3.4 that the inclusion of higher order terms improves the quasiparticle Routhian
in comparison with experimental data.

In order to study properties of one-body observables in the rotating frame, for
example, the aligned angular momenta of quasiparticles, an arbitrary one-body op-
erator O has to be expressed in terms of the diabatic quasiparticle basis (3-45);

0= eiG(w)é(w)e—iG(w)
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= <¢intr(w)|0|¢intr ‘|‘ Z OB ,LLV ) ozT ey

pv
+ Z (OA+([U/; w) aLole, + Oa_(pr;w) oz,,ozu), (3-51)
u<v
where the matrix elements are written as
Mmax

Bli) = S Al ¢o|az(zo o)alo),  (352)
Oarliie) = ¥ £ 1) oo a0, (nfo’” )90, @9

(i) wa ) fi0(@) (ol K"fxé(m(w)),aiaﬂ 0. (3-54)

n=0

It is clear from this expression that there are two origins of the w-dependence of the
matrix elements; one is the effect of collective rotation, Eq. (3-26), which is treated
in the power series expansion in w and truncated up to nmax, and the other comes
from the diagonalization of the quasiparticle Routhian operator, Eq. (3:42). Our
method to calculate the rotating quasiparticle states can be viewed as a two-step
diagonalization; the first step is the unitary transformation ¢'G(@) which eliminates

the dangerous terms, the a'a' and aa terms, of the Routhian operator ;3’ up to the
order nm.x in w leading to the diabatic basis, while the second step diagonalizes
its one-body part, the afa terms. We shall discuss this two-step transformation in
more detail in §4.1. In this way we can cleanly separate the effects of the collec-
tive rotational motion on the intrinsic states of the g-band and on the independent
quasiparticle motion in the rotating frame. As long as the one-step diagonalization
is performed as in the case of the usual cranking model, this separation cannot be
achieved and the problem of the unphysical interband mixing is inevitable.

3.3.  Solution of the equation of path by means of the RPA response function

Now we present a concrete procedure to solve the equation of path, Eq. (3-17), for
our Hamiltonian which is composed of the Nilsson single-particle potential and the
multi-component separable interaction (2-1). Let us rewrite our total Hamiltonian
in the following form:

H=h- % > x0Q0Qp, (3-55)
p

where @, are Hermite operators satisfying

Qp=Qb,  (d0|Qpleo) =0, (3-56)
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and |¢g) is the HB ground state of H.*) The mean-field Hamiltonian % includes the
pairing potential and the number constraint term as well as the Nilsson Hamiltonians:

h = hNils - Z Z ALOT( LO + PL(]) - Z )\TNT7 (357)

7T L=0,2

where the nuclei under consideration are assumed to be axially symmetric at w = 0.
Our Hamiltonian has a symmetry with respect to the 180°-rotation around the
rotation-axis (z-axis), the quantum number of which is called signature, r = e=*%;
therefore the operators ), are classified according to the signature quantum num-
bers,”) r =41 or a = 0, 1. Moreover, we can choose the phase convention 32 in such
a way that the matrix elements of the Hamiltonians H and of the angular momentum
J, are real. Then the operators ), are further classified into two categories, i.e.,
real and imaginary operators, whose matrix elements are real and pure imaginary,
respectively. Since expectation values of the signature r = —1 (o = 1) operators and
of the imaginary operators vanish in the cranking model, operators with signature
r = +1 and real matrix elements only contribute to the equation of path for the
collective rotation. This observation is important. As shown at the end of §3.1, the
boundary condition (3:35) for the collective rotation leads that the transformation
operator iG(w) does not contain the J,grpa part in all orders. Absence of the imagi-
nary operators guarantees that the matrix elements of iG(w) are real and Eq. (3-18)
is automatically satisfied: We need not use this equation anymore.

Thus, the operators that are to be included in Eq. (3-55) in order to solve the
basic equations for iG(w) are

{Qo} = Boy, Pal”s P, P, Q5 (3:58)
and correspondingly the strengths are
{Xp} G /2 GT/Q G§/2 G2/2, K20, K22, (3'59)

where 7 = v, 7 distinguishes the neutron and proton operators. Here the following
definitions are used; for the pairing operators,

Pot = Py + Poo, Poo— = i(Pgo - Poo),
+ + + + A p(E +
PRy =B + PR, Pl = 1(132(}{)T - P2(K))’ (3-60)

and for signature coupled operators,

@ _ L, .

PQK = T T 5K_0 (.PQK. + .PQ_K.), (K 2 0)
() _ ¥(1Q2K: 4 ;QQ_K;), (K > 0) (3-61)
2K /T + 0ko B

) We employ the HB approximation, i.e., do not include the exchange terms of the separable
interactions throughout this paper.
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where the superscript (1) denotes the signature r = £1, and :0: = O — {(¢y|O| o).
The quasiparticle creation and annihilation operators should also be classified ac-

cording to the signature quantum number; aj» for r = +i (o« = —1/2) and a%f for
r = —i (o = +1/2). Then the mean-field Hamiltonian & is expressed in terms of
them as
h= Z(Eiagai + Egagag), (3-62)
>0

where ) ;.o means that only half of the single-particle levels has to be summed
corresponding to the signature classification, and the quasiparticle energy at w = 0
satisfies E; = E;. In the same way, ), are written as

Q=2 a)(ij) (alal +ajas) + Y (aF (i5) ala; + 30 (i) alaj), (363)
ij>0 ij>0
where the matrix elements satisfy, at w = 0, q/‘;‘(jz') = iq;‘(ij) and Gf (1j) ==+ qf(z’j)
for @, with the time-reversal property being =, if the phase convention of Ref. 32)
is used.
Now let us consider the method to solve the equations for iG(w). As is already
discussed in §3.1, the solution is sought in the form of power series expansion in w,
where the n-th order term iG(™ is written as

iGM =™ " g™ (ij) (alal - aja,). (3-64)
ij>0

The n-th order equation (3-36) has the structure of an inhomogeneous linear equation
for the amplitudes g(™ (ij),

(n) ()
g _
K( ) ) = ( ) ) : (3-65)

where K is the RPA energy matrix

ikt) = ( AGIH) - Bligsk)

) . (3:66)

and the amplitudes b(™ (i7) in the inhomogeneous term are defined by

f and aa parts of BM™ = w" Z b™ (i5) (aT f ;T a; 50i)- (3-67)
i7>0

For the first order n = 1, B") = wJ,zpa and Eq. (3:65) determines the RPA an-
gle operator i@grpa, as discussed in §3.1. Since the part of interaction composed of
the imaginary operators, e.g. Pyy—, Py— and ng), etc., which are related to the
symmetry recovering mode Jyrpa (and Nrpa) are not included, the RPA matrix K
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(with signature r = +1) has no zero-modes and can be inverted without any prob-
lem. However, the dimension of the RPA matrix is not small in realistic situations,
and therefore we invoke the merit of separable interactions; by using the response-
function matrix for the @, operators, the inversion of the RPA matrix is reduced to
the inversion of the response-function matrix itself whose dimension is much smaller.
Inserting the Hamiltonian (3-55) into Eq. (3:36), we obtain

(Ei + B;) g™ (i) = 3 a2 (i) x, Q0" = b (45), (3-68)
P
where
= (o] [Qp, iG] |do) fw™ =2 > ¢(ig)g"™ (ig). (3-69)
ij>0

Then inhomogeneous linear equations for an) can be easily derived as

> (Gpo = Rpoxo) Q5 = B, (3-70)
where
A .. A ..
_ qp (i4) 45 (i) b (i)q;' (i) (w) .
15 >0 J 15 >0

Note that R,, are the response functions for operators (), and @), at zero excitation
energy, and nothing but the inverse energy weighted sum rule values (polarizability).
Equation (3-70) is much more easily solved than Eq. (3:65) because of the huge
reduction of dimension, and we obtain

9" (i) = Ei Ej{; 0 )xel (1= BX) e BEY +0) ) (372)

where the matrix notations are used for R = (R,,) and x = (d,0X,). Apparently
the n = 1 solution gives the Thouless-Valtin moment of inertia,

T (i) T3 (i)

E+E; (3-73)

Jo = J1v = TBely + IMig, IBely = 2 Z

ij>0

and

T (i) qp (i
s = S B] Xl (1~ R0 oo, with B] =2 30 i AN A
ro ij>0

where J4(ij) denote the a'a’ and aa parts of J,, and the summation (p,o) in
Eq. (3:74) runs, at w = 0, only over p,o = P2(;ZT, namely the K = 1 quadrupole-
pairing component. Once the perturbative solution of iG(w) is obtained, the quasi-

particle energy can be calculated by diagonalizing

Bw) =3 (¢ @ala; + & (@)alay), (375)
ij>0
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and one obtains

W (w) =3 (B w) af(@)auw) + Byw) of (@)ap@)), (376)

>0

where the first and second terms in these two equations correspond to the quasipar-
ticle states with signature r = +i (o« = —1/2) and r = —i (o = +1/2), respectively.

At the end of this subsection a few remarks are in order: First, although it is
assumed that the starting state |¢g) is the ground state at w = 0, the formulation
developed above can be equally well applied also when the finite frequency state at
w = wy is used as a starting state; i.e., |¢o) is determined by 6(po|H — woJz|¢o). In
such a case, however, the power series expansion should be performed with respect
to (w —wp). In fact, the method has been applied in Ref. 42) to describe the s-band
by taking the starting state as the lowest two-quasineutron state at finite frequency,
although the angular momentum expansion in (I — I) is used in it. Second, as can
be inferred from the form of the n-th order solution (3:72), the w-expansion is based
on the perturbation with respect to the quantity w/(E; + Ej;) (or w/wy(RPA), if
the equation is solved in terms of the RPA eigenmodes). Therefore, it is expected
that the convergence of the w-expansion becomes poor when the average value of
the two-quasiparticle energies is reduced: It is the case for the situation of weak
pairing, or when one takes the starting state at a finite frequency where highly
alignable two-quasiparticle states have considerably smaller excitation energies. The
difficulty in the calculation of s-band in Ref. 42) is possibly caused by this problem.
Third, as mentioned already, the expectation value of the nucleon number is not
conserved along the rotational band. This is because the number operator N, does
not commute with iG(w); namely, there exists a coupling between the spatial and the
pairing rotations. In order to achieve rigorous conservation of nucleon numbers, one
has to apply the SCC method also to the pairing rotational motion, *> and combine
it to the present formalism. In view of such a more general formulation, the energy
in the rotating frame (3-21) calculated in the present method is actually the double
Routhian H” (w, Ay = Ag;), where Ao, is the chemical potential fixed to conserve the
number at the ground state w = 0. The w-dependence of the expectation value of
number operator starts from the second order, and its coefficient is very small as
will be shown in §3.4. Therefore the effect of number non-conservation along the
rotational band is very small; this fact has been checked in Ref. 41) by explicitly
including the coupling to the pairing rotation. Finally, this method utilizing the
response-function matrix can be similarly applied to the case of the (n*, n)-expansion
of the SCC method for problems of collective vibration. In such a case, a full RPA
response matrix (containing both real and imaginary operators) is necessary, and
one has to choose one of the RPA eigenenergies, to which the solution is continued
in the small amplitude limit, as the excitation energy of the response function.

3.4. Application to the g- and s- bands in rare-earth nuclei

We apply the formulation of the SCC method for the collective rotation de-
veloped in the previous subsections to even-even deformed nuclei in the rare-earth
region. In this calculation, the same Nilsson potential (the [s and [l parameters
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from Ref. 35)) is used as in §2, but the hexadecapole deformation is not included.
As investigated in Ref. 41), the couplings of collective rotation to the pairing vibra-
tions as well as the collective surface vibrations are important. Therefore the model
space composed of three oscillator shells, Ny =4—6 for neutrons and Nyg. =35 for
protons, are employed and all the ANy = 0, £2 matrix elements of the quadrupole
operators are included in the calculation. In order to describe the properties of de-
formed nuclei, the deformation parameter is one of the most important factors. The
Nilsson-Strutinsky calculation in §2 gives slightly smaller values compared with the
experimental data deduced from the measured B(E?2, 2; — O;F) values. Therefore,
we take the experimental values for the ez parameter from Ref. 58). There exist,
however, some cases where no experimental data are available. Then we take the
value obtained by extrapolation from available data according to the scaling of the
result of our Nilsson-Strutinsky calculation in §2; for example, ex(***Dy) used is
ea(1P1Dy) e x €o(196Dy)**P /ey (196Dy) . The values adopted in the calculation are
listed in Table II.

The residual interaction is of the form given in Eq. (2-1), where the double-
stretched form factor is taken according to the discussion in §2. However, we cannot
use the same best values obtained in §2 for the strengths of the pairing interactions,
since the model space and the treatment of ANy = £2 matrix elements of the

Table II. Summary of the calculated results and comparison with experimental data for nuclei in
the rare-earth region, Gd (Z = 64) to W (Z = 74). The deformation parameters ez are taken
from Ref. 58); superscript * denotes cases where no data is available and extrapolation based
on our calculation in §2 is employed. The Harris parameters Jp and Ji are given in units of
h?/MeV and h*/MeV?, respectively. The energy gaps A are in units of MeV. The third order
even-odd mass differences based on the mass table of Ref. 36) are used as experimental pairing

gaps.

N € 0cal 1cal (;exp 1exp Aﬁal Agral A(;xp Afrxp
Gd 88 0.164 11.8 308 8.7 — 1.157 1424 1.108 1.475
90 0.251 256 341 23.1 333 1270 1.169 1.277 1.133
92 0274 315 165 334 179 1.222 1.097 1.070 0.960
94 0.282 342 118 376 111 1.152 1.060 0.892 0.878
96 0.287  36.0 98 39.7 101 1.073 1.030 0.831 0.871
Dy 8 0.205" 174 134 9.0 — 1.187 1.261 1.177 1.472
90 0.242 243 223 20.1 348 1.233 1138 1.269 1.162
92 0.261 294 178 299 184  1.196 1.073 1.077 1.033
94 0.271  32.7 136 343 123 1.128 1.033 0.967 0.978
96 0.270 34.3 120 37.0 93 1.050 1.013 0.917 0.930
98 0.275 36.8 117  40.7 98 0.970 0.984 0.832 0.875
Er 88 0.162* 122 110 8.7 — 1.105 1.321 1.213 1.396
90 0.204 18.6 112 13.0 281 1.153 1.188 1.277 1.244
92 0.245 26.2 154 23.1 196 1.165 1.075 1.138 1.137
94 0.258 30.3 130 29.0 133 1.105 1.031 1.078 1.091
96 0.269 335 104 326 93 1.028 0.995 1.035 0.987
98 0.272 358 108 37.1 105 0.951 0971 0.966 0.877
100 0.271  36.4 103  37.5 57 0.919 0.953 0.776 0.857
102 0.268 354 76 38.1 59 0.907 0938 0.708 0.797
(continued.)
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Table II.
N € 0cal 1cal Oexp 16Xp A(;al A;al A(lelxp Asrxp
Yb 90 0.172* 144 83 9.1 221  1.124 1.200 1.402 1.253
92  0.197* 189 119 16.6 204 1.136 1.128 1.168 1.180
94 0.218* 238 141 23.5 186  1.106 1.070 1.137 1.214
96 0.245* 30.1 119 29.0 131 1.024 1.012 1.159 1.111
98 0.258 336 111  34.0 127 0.950 0.981 1.039 0.983
100 0.262 349 108  35.5 83 0.915 0.959 0.865 0.908
102 0.267 345 75 38.0 70 0.889 0.938 0.764 0.840
104 0.259 334 70 39.1 64 0.862 0.926 0.685 0.848
106 0.250 32.3 93 36.4 55 0.847 0.918 0.585 0.815
Hf 92 0.163* 14.1 90 12.2 178 1.154 1.105 1.219 1.260
94  0.181* 17.8 129 17.7 196  1.148 1.057 1.175 1.285
96 0.207* 236 134 23.5 191 1.083 1.004 1.123 1.182
98 0.218" 27.0 122 293 194 1.032 0976 1.022 1.062
100 0.227 295 116 31.2 131 0.986 0.952 0.953 0.988
102 0.235 30.6 94 32.7 110 0.935 0.932 0.901 0.915
104 0.245 314 74 33.8 88 0.867 0.915 0.811 0.864
106  0.227  29.2 99 32.1 65 0.867 0.903 0.693 0.824
108  0.227  26.9 100 32.1 40 0.898 0.887 0.745 0.856
W 92 0.148* 121 70 9.4 159  1.159 1.006 1.331 1.295
94 0.161" 14.6 100 13.2 182 1.169 0.968 1.201 1.142
9 0.179" 185 122 17.8 216 1.139 0.928 1.146 1.100
98 0.196* 226 118 234 255 1.082 0.899 1.046 1.053
100 0.206* 254 110 26.3 171 1.032 0.880 1.091 1.023
102 0.211*  26.7 99 27.1 134 0.985 0.865 0.931 1.027
104 0.214* 27.3 83 28.0 112 0.929 0.850 0.884 1.036
106 0.212  26.8 95 28.7 86 0.890 0.833 0.802 0.943
108  0.208 24.5 92 29.8 53 0.903 0.817 0.814 0.849
110 0.197 215 T 26.8 55 0.927 0.805 0.720 0.868
112 0.191  19.6 76 24.3 67 0.919 0.794 0.793 0.907

quadrupole operators are different. Here we use Gjj = 20/A MeV and G = 24/A
MeV for the monopole-pairing interaction, by which monopole-pairing gaps calcu-
lated with the use of the above model space roughly reproduce the experimental
even-odd mass differences (see Eq. (2-10), and note that an extra difference of the
constant “¢” in it between neutrons and protons comes from the difference of the
model space). As for the double-stretched quadrupole-pairing interaction, we take
95 = g5 = 24 (see Eq. (2-9)), by which overall agreements are achieved for the mo-
ments of inertia. The results are summarized in Table II. Here calculated energy
gaps A are the monopole-pairing gaps, but they are very similar to the average
pairing gaps (2-14) because the double-stretched quadrupole-pairing interaction is
used. The isoscalar (double-stretched) quadrupole interaction does not contribute
to the Thouless-Valatin moment of inertia Jy, but affects the higher order Harris
parameter J1. We do not fit the strengths for each nucleus, but use ko = 1.45 H;le
(see Eq. (2-3)), which gives, on an average, about 1 MeV for the excitation energy of
~-vibrations in the above model space. We believe that this choice is more suitable
to understand the systematic behavior of the result of calculation for nuclei in the
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rare-earth region.
One of the most important output quantities is the rotational energy parameters,
i.e., the Harris parameters, in our formalism of the w-expansion. Up to the third
order,
Lw)=T+1/2=Tow+ T, (3-77)

where I =0,2,4,--- (h) for the K = 0 ground state bands. 44) The results are sum-
marized in Table II in comparison with experimental data, where the experimental
Harris parameters Jy and J; are extracted from the Fy+ and E4+ of the ground
state band as follows:

1.5ws — 35w 3.5w; —L.bw
Jo = %’ Ji = %’ (3'78)
with
w1 = E2+/2, Wy = (E4+ — E2+)/2. (379)

If the resultant parameter becomes negative or J; gets greater than 1000 A* /MeV?3,
then only Jy = 3/FE,+ parameters are shown in Table II. It is seen from the table
that two Harris parameters are nicely reproduced, especially their mass number de-
pendence. In contrast to the Jy parameter, for which only the residual quadrupole
pairing interaction affects, the J; parameter are sensitive to all components of the
residual interaction. In other words, J; reflects the mode-mode couplings of the col-
lective rotation to other elementary excitation modes. Therefore the SCC method
with the present residual interaction is considered to be a powerful means to de-
scribe the “non-adiabaticity” of nuclear collective rotations. Details of coupling
mechanism has been investigated in Ref. 41) by decomposing the contributions from
various RPA eigenmodes: It has been found that the couplings to the pairing vibra-
tions and collective surface vibrations are especially important. Although the main
contributions come from the collective modes, many RPA eigenmodes have to be
included to reach the correct results, see also Ref. 48) for this point. The method
of the response-function matrix described in §3.3 is very useful to include all RPA
eigenmodes.

Expectation values of other observable quantities are also expanded in power
series of w, and their coefficients give us important information about the response
of nucleus against the collective rotation. In Table III we show examples for the
nucleon number, monopole-pairing gaps, and mass quadrupole moments:

<¢intr(w)|NT|¢intr(w)> = (NT)O + (NT)l w27 (380)
G (Dintr (@) | Pl dimer () = (Ar)o + (Ar)1 w2, (3-81)
(Dints (©)| Q51 [ Bintr (0)) = (QS)0 + (QS1w?. (K =0,2)  (3:82)

They are time-reversal even quantities so that the series contains up to the second
order within the third order calculations. It should be noticed that these w-expanded
quantities are associated with the properties of the diabatic ground state band, which
becomes non-yrast after the g-s band-crossing. As remarked at the end of §3.3,
(N;)1 # 0 means that the nucleon number is not conserved along the rotational
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Table III. Results of the w-expansion for some observables in Er (Z = 68) isotopes. Qé;) (K =0,2)
are expectation values of the mass quadrupole operators. The zero-th order values of A are
shown in Table II, and those of Qg) are zero (axially symmetric at w = 0). Units of each
quantity are shown in the second raw.

N (N (2 (A (A (@) (@) (@'
R?/MeV?  R?*/MeV?  h%/MeV  h?/MeV b bh?/MeV?  bh?/MeV?

Er 88 14.5 —4.2 —0.45 —1.81 2.84 6.14 4.58

90 9.9 —5.4 —0.72 —1.80 3.74 4.67 4.78

92 7.5 —6.3 —1.58 —~1.83 4.71 4.52 5.72

94 3.6 —4.3 —2.12 —~1.50 5.13 2.45 4.43

96 1.8 —-3.1 —2.34 —-1.33 5.50 1.31 3.70

98 1.0 -3.0 —2.83 —1.32 5.71 1.10 2.74

100 2.6 —3.4 —2.83 —~1.35 5.82 0.86 1.51

102 —3.5 -3.6 —2.34 -1.38 5.87 0.79 1.08

band. However, its breakdown is rather small; even in the worst case of SEr in
Table III the deviation is about 1.3 at w = 0.3 MeV, and it is less than 0.1 at w = 0.1
MeV in 156Er. It is well known that the pairing gap decreases as a function of w due
to the Coriolis anti-pairing effect. It is sometimes phenomenologically parametrized

as59)
2
Ao(l—%(%) ) w < we,
Aw)=1 1\, 2w (3-83)
§A0(U> w > We.

Thus, our w-expansion method precisely gives the phenomenological parameter w. =
V—2A0/2A; (A1 < 0) in Eq. (3:83) from microscopic calculations. As shown in
Table III, (A, ), varies considerably along the isotopic chain. The (Q2x)1 are related
to the shape change at high-spin states, and tell us how soft the nucleus is against
rapid rotation. Since nuclei studied in the present work are axially symmetric in
their ground states, (Q20)1 and (Q22)1 serve as measures of softness in the - and -
directions, respectively. As seen in Table III the isotopes get harder in both directions
as the neutron number increases; especially, the N = 88 and N = 90 isotopes are
known to undergo a shape change from the prolate collective to the oblate non-
collective rotation scheme at very high-spin states (“band termination” 60)), while
heavier isotopes (N > 96) are known to be well deformed keeping prolate shape
until the highest observed spins. These features have been well known from the
calculations of the potential energy surface in the (e2,y)-plane, and our results seem
to agree with them qualitatively. In order to see the effect of the residual interactions,
the result obtained by neglecting them, i.e., that of a simple higher order Coriolis
coupling calculations, is shown in Table IV. Comparing it with Tables II and III,
it is clear that the residual interactions play an important role in the w-dependence
of observables. For example, J1 Harris parameter becomes quite small by a factor
of about 1/2-1/3 when the residual interactions are switched off. The effect on the
second order coefficients of the quadrupole moment is more dramatic and leads to
about an order of magnitude reduction in soft nuclei.

Now let us study the quasiparticle Routhians obtained by means of the SCC
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method. It is mentioned in §3.2 that the two-step diagonalization with the truncation
of the w-expansion up to nmax, ¢.f. Eq. (3-48), leads to diabatic quasiparticle states
in the rotating frame, in which the negative and positive eigenstates do not interact
with each other. We show in Figs. 6 and 7 calculated quasiparticle Routhians for
neutrons and protons, respectively. It is confirmed that the diabatic quasiparticle
states are obtained. As discussed in §3.2, the diagonalization of the quasiparticle
Hamiltonian in the SCC method is completely equivalent to that of the selfconsistent
cranking model, which is known to lead to the adiabatic levels, if the first step
unitary transformation e’““) is treated non-perturbatively in full order. Then what
is the mechanism that realizes the diabatic levels? We believe that the cutoff of the
w-expansion extracts the smoothly varying part of the quasiparticle Hamiltonian;
namely, ignoring its higher order terms eliminates the cause of abrupt changes of the
microscopic internal structure by quasiparticle alignments. An analogous mechanism

Table IV. Similar to Table IIT but the residual interactions are artificially switched off in the cal-
culation. The results for the Harris parameters are also included.

N D Ji (M (A (@) (@5
h?/MeV  B*/MeV®  R?/MeV?  h%/MeV  bh%*/MeV? bh?/MeV?

Er 88 7.5 11 1.00 —0.18 0.32 0.13

90 12.1 18 1.05 —0.25 0.38 0.15

92 18.1 28 0.97 —-0.39 0.42 0.18

94 21.4 34 0.60 —0.48 0.33 0.18

96 24.6 34 0.67 —0.54 0.27 0.18

98 27.6 51 0.83 —0.67 0.29 0.17

100 283 55 —~1.01 —0.67 0.15 0.15

102 275 36 —0.85 —0.57 0.16 0.15

. SCC-3rd ™

I neutron

Fig. 6. Neutron quasiparticle Routhians plotted as functions of fiwrot (MeV) suitable for 162 ),
They are obtained by diagonalizing the SCC quasiparticle Hamiltonian (3-48) up to the first
order (left) and third order (right) of the w-expansion. As in the case of the usual adiabatic
quasiparticle energy diagram, the negative energy solutions, —F, = E; and —E; = E,,, are
also drawn. The solid, dotted, dashed, and dash-dotted curves denote Routhians with (mw,r) =
(4, +1%), (+,—1), (—,+19), and (—, —i), respectively.
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has been known for many years in the Strutinsky smoothing procedure: ' The
d-function in the microscopic level density is replaced by the Gaussian smearing
function times the sum of the Hermite polynomials (complete set), and the lower
order cutoff of the sum (usually 6th order is taken) gives the smoothed level density.
It should be noted, however, that the plateau condition guarantees that the order of
cutoff does not affect the physical results in the case of the Strutinsky method. We
have not yet succeeded in obtaining such a condition in the present case of the cutoff
of the w-expansion in the SCC method for the collective rotation. Therefore we have
to decide the ny.x value by comparison of the calculated results with experimental
data. We mainly take npax = 3 in the following; determination of the optimal choice
of nyax remains as a future problem.

In Figs. 6 and 7 the results obtained by truncating up to the first order (nymax = 1)

o — = — T ) ey E— e
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
hwmg hwrot

. . . . 0.2 0.3 0.4 0.5
fiwrot fiwrot

[e=]en)
o
[e=]
—
o
N
o
w
o
Ny
o
ot
o
o
o
—

Fig. 8. Same as Fig. 6 but obtained by the adiabatic cranking (left) and the third order SCC (right)
with neglecting the residual interactions.
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and the third order (nmax = 3) are compared. It is clear that the higher order terms
considerably modify the quasiparticle energy diagrams. Especially, the alignments
of the lowest pair of quasiparticles are reduced for neutrons (low K states of the
i13/9-orbitals), while they are increased for protons (medium K states of the hyy /o-
orbitals). Thus, the higher order effects depend strongly on the nature of orbitals.
It should be stressed that the effects of the residual interaction, i.e., changes of the
mean-field against the collective rotation, are contained in the quasiparticle diagrams
presented in these figures. In this sense, they are different from the spectra of the
cranked shell model,*» where the mean-field is fixed at w = 0. In Fig. 8 are dis-
played the usual adiabatic quasineutron Routhians and the third order SCC Routhi-
ans, in both of which the residual interactions are neglected completely. Again,
by comparing Fig. 8 with Fig. 6, it is seen that the effect of residual interactions
considerably changes the quasiparticle states. In relation to the choice of nyay, we
compare in Fig. 9 the Routhians obtained by changing the cutoff order ny.x = 1, 3, 5.
In this figure, the usual non-selfconsistent adiabatic Routhians are also displayed,
and for comparison’s sake, the residual interactions are completely neglected in all
cases. Moreover, the rotational frequency is extended to unrealistically large values
in order to see the asymptotic behavior of the Routhian. Comparing the adiabatic
Routhians with those of the SCC method, positive and negative energy solutions
cross irrespective of the strength of level-repulsion. Although the adiabatic levels
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Rwrot Rwrot

Fig. 9. Neutron quasiparticle Routhians for the Nosc = 6 (i13/2) orbits suitable for '®?Er. The
left upper, right upper, left lower, and right lower panels denote the results of the adiabatic
cranking, the SCC up to the first order, 3rd order, and 5th order, respectively. The solid and
dotted curves denote Routhians with r = +i (& = —1/2) and r = —i (o = +1/2), respectively.
The effect of residual interaction is completely neglected in this calculation.
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change their characters abruptly at the crossing, if their average behavior is com-
pared to the calculated ones, the third order results (nmax = 3) agree best with the
adiabatic levels. The first order results, for example, give the alignments (the slopes
of Routhians) too large. On the other hand, the divergent behavior is clearly seen
at about w > 0.8 MeV in the fifth order results. The inclusion of the effect of the
residual interactions makes this convergence radius in w even smaller.

Finally, we would like to discuss the results of application of the present for-
malism to the g- and s-bands, which are observed systematically and compose the
yrast lines of even-even nuclei. Although we can compare the Routhians (3-21),
or equivalently the rotational energy (3-13), it is known that the relation I, versus
w gives a more stringent test. Therefore we compare the calculated I,—w relation
with the experimental one in Fig. 10 for even-even nuclei in the rare-earth region, in
which the band crossings are identified along the yrast sequences. In this calculation
the I (w) of the g-band is given by Eq. (3-77) with calculated values of the Harris
parameters (see Table II). As for the I, (w) of the s-band, we calculate it on the
simplest assumption of the independent quasiparticle motions in the rotating frame,
which is the same as that of the cranked shell model:

|65 (@) = af (@)ad (@)|dinr (@), $g(w)) = [Biner(@)), (3-84)
where aJ{(w) and aJ{(w) are the lowest » = +i and r = —i quasineutron creation
operators in the rotating frame. Then, the I, (w) of the s-band is the sum of I,(w)
of the g-band and the aligned angular momenta of two quasineutrons, which are
calculated according to Egs. (3-51)—(3-54),

(L))

or by using the canonical relation between the Routhian and the aligned angular
momentum, the alignments ¢, and i; can be calculated as usual:

= I, (w), (3-85)

Im(w) + il(w) + ’ii(W), (Ix(w))g-band N

s-band -

OF (w OF. (w
i) = =25 gy = 2B, (356)

Since our quasiparticle Routhians behave diabatically as functions of the rotational
frequency, the resultant g- and s-bands are also non-interacting bands; we have to
mix them at the same angular momentum to obtain the interacting bands corre-
sponding to the observed bands. Such a band mixing calculation is straightforward
in our formalism if the interband g-s interaction is provided. However, it is a very
difficult task as long as the usual adiabatic cranking model is used. In the present
stage we are not able to estimate the g-s interband interaction theoretically. There-
fore, we do not attempt to perform such band-mixing calculations in the present
paper (but see §4.2).

Looking into the results displayed in Fig. 10, one see that our diabatic formalism
of collective rotation based on the SCC method is quite successful. The overall
agreements are surprisingly good, considering the fact that we have only used a
global parametrization of the strengths of the residual interaction:



Diabatic Mean-Field Description of Rotational Bands 317

¥ —=20/A, GF=24/A (MeV), (3-87)
97 =93 =24, (3-88)
kor = 1.45 k571 (3-89)
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Fig. 10. (continued.)
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Fig. 10. (continued.)
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Fig. 10. (continued.)

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
Rwrot fiwrot Fwrot

Fig. 10. Comparison of the third order SCC method calculations for the diabatic g- and s-bands
with experimental data. The angular momenta (J,) = I 4+ 1/2 (h) are displayed versus the
rotational frequency hwrot (MeV) for nuclei in the rare-earth region, Gd (Z = 64) to W (Z = 74)
isotopes. Filled circles denote experimental data smoothly extended from the ground state.
Data for excited bands are also included as filled squares when available, which are, in most
cases, identified as s-bands.

for the model space of three Nog-shells (4-6 for neutrons and 3-5 for protons). The
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agreements of the calculated g-bands come from the fact that the Harris parameters
(Table II) are nicely reproduced in the calculation. Further agreements of the s-
bands are not trivial, and tell us that we have obtained reliable diabatic quasiparticle
spectra (Figs. 6 and 7). It is known that, if the I,—w relations of s-bands are
parametrized in the form, I, = i + Jow + Jy w3, the J; Harris parameters of s-
bands are systematically smaller than those of g-bands. This feature is quite well
reproduced in the calculations, as is clearly seen in Fig. 10, and the reason is that the
value of the aligned angular momentum of two quasineutrons decreases as a function
of w. The suitable decrease is obtainable only if the residual interactions are included
and the diabatic quasiparticle Routhians are evaluated up to the third order.

§4. Diabatic quasiparticle basis and the interband interaction between
the g- and s-bands

The formulation of the previous section gives a consistent perturbative solution,
with respect to the rotational frequency, of the basic equations of the SCC method
for collective rotation. However, it has a problem as a method to construct the dia-
batic quasiparticle basis: The wave functions of the diabatic levels are orthonormal
only within the order of cutoff (nmyax) of the w-expansion. In the previous section
only the independent quasiparticle states, i.e., one-quasiparticle states or the g- and
s-bands, are considered and this problem does not show up. The quasiparticle states
have another important role that they are used as a basis of complete set for a more
sophisticated many body technique beyond the mean-field approximation; for exam-
ple, the study of collective vibrations at high spin in terms of the RPA method in
the rotating frame. 7)»56)-61)-64) Tp guch an application it is crucial that the diabatic
quasiparticle basis satisfies the orthonormal property. We present in this section a
possible method to construct the diabatic basis satisfying the orthonormality condi-
tion.

Another remaining problem which is not touched in the previous section is how
to theoretically evaluate the interband interaction between the ground state band
and the two-quasineutron aligned band. Since we do not have a satisfactory answer
yet to this problem, we only present a scope for possible solutions at the end of this
section.

4.1.  Construction of diabatic quasiparticle basis in the SCC method

Although the basic idea is general, we restrict ourselves to the case of collec-
tive rotation and use the good signature representation with real phase convention,
introduced in §3.3, for the matrix elements of the Hamiltonian H and of the an-
gular momentum J,. First let us recall that the diabatic quasiparticle basis in the
rotating frame is obtained by the two-step unitary transformation (3:45). The first
transformation by €’“(“) can be represented as follows 1%

1G(w —iG(w Sin\/ng
0@ gleiG(w) — > {COS \/ggT} ija} -> {g 7T] aj, (4-1)

§>0 §>0 g9 Jdij
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T
G gleiGW) — cosy/gTyg ”ai + {QT VI ﬂ} Qjs (42)

with real matrix elements g;;(w) = 3,51 w™g(™ (i5), see Eq. (3-64), where g7 denotes
the transpose of g. Thus, by using an obvious matrix notation, the transformation
to the rotating quasiparticle operator from the w = 0 quasiparticle operator is given
as

3 T
cos /7gT g SmVITY

(6% . fT 0 ng a 4 3
at )\ o f7T g7 sin\/ggT c0s /7T at (4:3)
Vgt

= .7-"T(w) QT(w) ( “ > , (4-4)

7l

where the real matrix elements f;,(w) and f;,(w) are the amplitudes that diagonalize
the quasiparticle Hamiltonian in the rotating frame, see Eq. (3-42), for signature
r = 44 and —i, respectively. The cutoff of the w-expansion means that the generator
iG(w), i.e. the matrix g, is solved up to the n = npyay order,

Mmax

g(w) = lg(@)) "= = 3 W™, (4:5)
n=1
and at the same time the transformation matrix G(w) itself is treated perturbatively

while the other one, F(w), is treated non-perturbatively by the diagonalization proce-
dure. The origin of difficulty arising when the diabatic basis is utilized as a complete
set lies in this treatment of G(w), because the orthogonality of the matrix G(w) is
broken in higher-orders.

Now the solution to this problem is apparent: The generator matrix g(w) is
solved perturbatively like in Eq. (4-5), but the transformation matrix G(w) has to
be treated non-perturbatively as in Eq. (4-3). In order to realize this treatment we
introduce new orthogonal matrices, D and D, which diagonalize g¢* and gT¢ within
the signature » = 44 and —i states, respectively,

> (99")ijDjk = Dirbz, > (9" 9)ijDjr = Dirby, (4-7)
>0 >0

where we have used the fact that the matrices ggT and ¢T g have common eigenvalues,
which are non-negative, and then we have

G(w) = < D(cos ) DT gD(sin 9/921;?T ) ' (4:8)

—gTD(sin0/0)DT  D(cos )
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Here (cosf) and (sinf/6) denote diagonal matrices, whose matrix elements are
dij cosb; and ;5 sin6;/0;, respectively. The physical meaning is that the orthogo-
nal matrices D and D are transformation matrices from the quasiparticle operators
(ag, a;) and (ag, a;) at w = 0 to their canonical bases, which diagonalize the density
matrices p and p with respect to the rotational HB state |¢intr(w)), respectively;

pis = (Dinte ()|} diner () = [cos (/g

ij’
pij = <¢intr(w)|aga5’¢intr(w» = {cos ng} i (4-9)

Thus the method to construct the rotating quasiparticle basis is summarized as
follows. First, solve the basic equation of the SCC method and obtain the generator
matrix g(w) up to the npmax order as in Eq. (4-5). At the same time, diagonalize
the quasiparticle Hamiltonian and obtain the eigenstates as in Eq. (3-42) for both
signatures r = +i. Second, diagonalize the density matrices (4-9), or equivalently
Eq. (4:7), and obtain the orthogonal matrices D and D of the canonical bases.
Finally, by using these matrices D and D calculate the transformation matrix G(w)
as in Eq. (4-8), and then the basis transformation is determined by Eq. (4-4).

It is instructive to consider a concrete case of the cranked shell model; i.e., the
effect of residual interactions or the selfconsistency of mean-field is neglected at w >
0. The quasiparticle basis is obtained by diagonalizing the generalized Hamiltonian
matrix:

hNﬂs — W jx —A U ‘_/ - U ‘_/ E/ 0
—-A —(hNﬂs +wjx) |4 U o Vv U 0 —E, ’
(4-10)
where hyjs and j, denote matrices with respect to the Nilsson (or the harmonic
oscillator) basis at w = 0, and (U, V) and (U, V) are coefficients of the generalized

Bogoliubov transformations from the Nilsson nucleon operators (c;-r, ¢;) and (c; ,C3)
(in the good signature representation),

of, = Y (Uinel + Vipey), ol =" (Uiue! + Vipes), (4-11)
i>0 i>0

or in the matrix notation

<§>=U<2T» uz<g g). (4-12)

In contrast, the transformation I/ is decomposed into three steps in our construction
method of the diabatic quasiparticle basis; (i) the Bogoliubov transformation U
between the nucleon (c, ET) and the quasiparticle (a, ELT) at w =20,

(=)o) w=( )

where v and v are the matrices of transformation at w = 0 (they are diagonal, e.g.
uij = u;0;5, if only the monopole-pairing interaction is included), (ii) the transfor-
mation matrix G(w) in Eq. (4-4), generated by ¢/“(“) and (iii) the diagonalization
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step of the rotating quasiparticle Hamiltonian F(w) in Eq. (4-4), see also Eq. (3-42),
namely

U(w)C = Uy G(w)F(w). (4-14)

Here both G(w) and F(w) depend on the order of cutoff nyax in solving the generator
iG(w) by the w-expansion method, but they themselves have to be calculated non-
perturbatively, especially for G by Eq. (4-8) with (4-7). As noted at the end of §3.3,
we can apply the SCC method starting from the finite frequency wg. In such a case
Up is the transformation at w = wp, and G and F are obtained by expansions in
terms of (w — wp); thus,

U(w)*C =Uy(wo) Glw —wo) Flw —wo) if started atw =wo.  (4:15)

It should be stressed that the transformation (4-14) only approximately diagonalize
the Hamiltonian in Eq. (4-10) within the npax order in the sense of w-expansion.
Namely, some parts of the Hamiltonian corresponding to the terms higher order than
Nmax are neglected, and this is exactly the reason why we can obtain the diabatic
basis, whose negative and positive solutions are non-interacting.

In the case where the effect of residual interactions is neglected, i.e. correspond-
ing to the higher order cranking, we can easily solve the basic equations of the SCC
method. It is useful to present the solution for practical purposes; for example
for the construction of the diabatic quasiparticle basis for the cranked shell model
calculations. The solutions for ¢(™ up to the third order are given as follows:

o) = ) (116)
906 = g 20+ gV ), (417)
g ¥ (ig) = o3 Jlr 3 [(Jfg@) + g B
%( TAGTGD -+ 29D TG 4 0TI (418)
and the solutions for the rotating quasiparticle Hamiltonian (3-48)—(3-49):
ey =0yEs, &y =0k, (4-19)
) = =g, &Y = -JP ), (4-20)

1 1
i) = 5T 4 gV Iy e = ST + gy, (421)

1 1
&) = U + gD Iy, @Y = ST + g, (422)
where the quasiparticle energies at the starting frequency are given in Eq. (3-62),
and the matrix elements of J, at the starting frequency are given as in Eq. (3:63)
with @, replaced by J. If the starting frequency is w = 0, then E; = E;, and
the matrix elements of J, satisfy the relations, JAT = —J4 JB = —JB and
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JBT = JB. The transformation G(w) is calculated from Eqs. (4-16)—(4-18), and F(w)
from Egs. (4-19)—(4-22). It should be mentioned that the selfconsistent mean-field
calculation is in principle possible in combination with the diabatic basis prescription
presented above.

4.2.  Estimate of the g-s interaction

Once the diabatic g- and s-bands states (3:84) are obtained as functions of w,
one can immediately construct them as functions of angular momentum I, because
the I,—w relation has no singularity, as shown in Fig. 10, and can easily be inverted:

|09(1)) = |¢g(wy(D)));  [0s(1)) = [ds(ws(1))), (4-23)

where wy(I) and ws(I) are the inverted relations of (3-85) with I, = I +1/2. Physi-
cally, one has to consider the coupling problem between them at a fixed spin value
I. It is, however, a difficult problem because one has to calculate, for example, a
matrix element like (¢5(I)|H|pg(I)), which is an overlap between two different HB
states; they are not orthogonal to each other due to the difference of the frequencies
wy(I) and ws(l). Although such a calculation is possible by using the Onishi for-
mula for the overlap of general HB states, 39) it would damage the simple picture
of quasiparticle motions in the rotating frame, and is out of scope of the present
investigation.

Here we assume that the wave functions vary smoothly along the diabatic rota-
tional bands as functions of spin I or frequency w, so that the interband interaction
between the g- and s-bands can be evaluated at the common frequency by

UQ'S(I) = <¢S(wg8(j))’H|¢g(wgs(l))>> (4‘24)

where wy, is defined by an average of wy and wy,

wys(I) = M (4-25)

We note that this quantity corresponds, in a good approximation, to the crossing
frequency w?™® at the crossing angular momentum 197%,

wes(17°) = W™, (4-26)

where wf™® is defined as a frequency at which the lowest diabatic two-quasiparticle en-
ergy vanishes, E(w)+Ef(w) = 0. Using the fact that |¢s(w)) is the two-quasiparticle
excited state on |¢y(w)) (see Eq. (3-84)), the interaction can be rewritten as

Vg-s(I) = wys (I)(Ps(wgs (1))]Jz|pg (wgs (1)), (4-27)

because of the variational principle (3-17). Applying the idea of w-expansion and
taking up to the lowest order, we have, at the crossing angular momentum /9%,

Vg-s(I9°) m wd™* D fir(wd®) fj(wd*) T2 (i), (4-28)
>0
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Fig. 11. The g-s interband interaction (solid), the crossing frequency hwgys (dash-dotted) in MeV,
the alignment 7 (dotted), and the expectation value of number operator n (dashed), plotted as
functions of the chemical potential A in MeV, for the i,3/5 single-j shell model without residual
interactions. The result of the usual adiabatic cranked shell model is displayed in the left panel,
while that of the diabatic SCC 1st order calculation in the right panel. Here the alignment ¢
and the number n is scaled by their maximum values, tmax = 12h and nmax = 14. The energy
unit is chosen such that the splitting of the 7;3/5-shell roughly reproduces that of a typical well
deformed rare-earth nucleus; i.e. £ = 2.5 MeV in Eq. (4-29), and the constant A = 1.0 MeV is
used.

where f;1(w) and fj1(w) are the amplitudes of the diabatic quasiparticle diagonal-
ization (3-42) for the lowest r = =+i quasineutrons, and should be calculated non-
perturbatively with respect to w.

In Fig. 11 (right panel), we show the result evaluated by using Eq. (4-28) for
a simple single-j shell model (i3 /2) with a constant monopole-pairing gap and no
residual interactions, in which the single-particle energies are given by

3mi —j(j +1)
JG+1)
with a parameter x describing the nuclear deformation. In this figure other quan-
tities, the alignment of the lowest two-quasiparticle state, the number expectation
value, and the crossing frequency are also shown as functions of the chemical poten-
tial. These quantities can also be evaluated in terms of the usual adiabatic cranking

model, and they are also displayed in the left panel. Note that in the adiabatic
cranking model the crossing frequency is defined as a frequency at which the adia-

) (mz = 1/2a"'7j) (4‘29)

€; =

batic two-quasiparticle energy Ei(ad) (w) + E%(ad) (w) becomes the minimum, and the
interband interaction is identified as the half of its minimum value.*® As is well
known, %) the g-s interaction oscillates as a function of the chemical potential, and
both the absolute values and the oscillating behavior of the result of calculation
roughly agree with the experimental findings. Comparing two calculations, the in-
terband interaction (4-28) seems to give a possible microscopic estimate based on

the diabatic description of the g- and s-bands. We would like to stress, however,
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that its derivation is not very sound. It is an important future problem to derive the
coupling matrix element on a more sound ground.

§5. Concluding remarks

In this paper, we have formulated the SCC method for the nuclear collective
rotation. By using the rotational frequency expansion rather than the angular mo-
mentum expansion, we have applied it to the description of the g- and s-bands
successfully. The systematic calculation gives surprisingly good agreements with
experimental data for both rotational bands. It has been demonstrated that the
resultant quasiparticle states develop diabatically as functions of the rotational fre-
quency; i.e. the negative and positive energy levels do not interact with each other.
Although the formulation is mathematically equivalent to the selfconsistent cranking
model, the cutoff of the w-expansion results in the diabatic levels and its mechanism
is also discussed. The perturbative w-expansion is, however, inadequate to use the
resultant quasiparticle basis states as a complete set. We have then presented a
method to construct the diabatic quasiparticle basis set, which rigorously satisfies
the orthonormality condition and can be safely used for the next step calculation,
e.g. the RPA formalism for collective vibrations at high-spin.

In order to obtain a good overall description of the rotational band for nuclei
in the rare-earth region, we have investigated the best possible form of residual
quadrupole-pairing interactions. It is found that the double-stretched form factor
is essential for reproducing the even-odd mass difference and the moment of inertia
simultaneously.

Since the calculated g- and s-bands in our formulation are diabatic rotational
bands, the interband interaction between them should be taken into account for
their complete descriptions. As in any other mean-field model, however, the wave
function obtained in our formalism is a wave packet with respect to the angular
momentum variable. Therefore, it is not apparent how to evaluate the interband
interaction from microscopic point of view. We have presented a possible estimate of
the interaction, which leads to a value similar to that estimated by the level repulsion
in the adiabatic cranking model. Further investigations are still necessary to give a
definite conclusion to this problem.
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Abstract

By performing fully 3D symmetry-unrestricted Skyrme—Hartree—Fock—Bogoliubov calculations,
we discuss shape coexistence and possibility of exotic deformations simultaneously breaking the
reflection and axial symmetries in proton-rish= Z nuclei:64Ge,68se,72Kr, 76sr,80zr and84Mo.

Results of calculation indicate that the oblate ground staf@®é is extremely soft against thigs
triangular deformation, and that the low-lying spherical minimum coexisting with the prolate ground
state in9Zr is extremely soft against thigso tetrahedral deformatioml 2001 Elsevier Science B.V.
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1. Introduction

The Hartree—Fock—Bogoliubov (HFB) method with the Skyrme interactions is one of
the standard approaches in nuclear structure research [1,2]. In the last two decades it has
become possible to solve the HFB equations directly in the coordinate mesh space [3,4].
In recent years, in order to investigate the structure of drip-line nuclei, the need for such
coordinate-space HFB calculations has been greatly increased and intensive analyses have
been made for neutron radii and skins in spherical neutron-rich nuclei [5-11]: since the
easier HF plus BCS method breaks down when treating the pairing correlation in weakly
bound systems due to a leakage of nucleons into the continuum, we need to calculate
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the mean-field (particle—hole) correlations and the pairing (particle—particle) correlations
selfconsistently in order to preserve confinement of the nuclear density while allowing
the pairing excitations to positive-energy resonant states [3] (see, e.g., [12] and references
therein for mean-field approaches other than the Skyrme—HFB method).

Recently, Terasaki, Heenen, Flocard and Bonche [13,14] have removed the restriction
of spherical symmetry in solving the coordinate-space Skyrme—HFB equations in order to
investigate the possibility to get three-dimensional (3D) deformed solutions in neutron
rich nuclei. In their works, a Skyrme interaction is used to describe the Hartree—
Fock (HF) Hamiltonian while a density-dependent zero-range interaction is used for the
pairing channel. The mean-field HF equations are solved by the imaginary-time evolution
method [15] in a 3D cubic mesh space while the HFB equations are solved in terms of
the two-basis method developed earlier in [16,17]. The discretization in 3D mesh space
has the advantage over methods relying on an expansion in the harmonic-oscillator basis
that nuclei with exotic deformations can be treated at the same level of accuracy [18-20].
In these works, however, reflection symmetries with respect to three planes are imposed
for the nuclear density so that only one spatial octant is needed to solve the HFB equations.

The major purpose of this paper is to extend their method by removing the symmetry
restrictions mentioned above and investigate the possibility of exotic shapes simultane-
ously breaking the axial and reflection symmetries in the mean field. For this purpose, we
have constructed a new computer code that carries out Skyrme—HFB calculations in the 3D
cartesian-mesh space without imposing any restrictions on the spatial symmetry. Recently,
on the basis of the Skyrme HF plus BCS calculations with no restriction on the nuclear
shape, Takami, Yabana and Matsuo [21,22] suggested that the oblate ground &ate of
is extremely soft against thigz triangular deformation, and that the low-lying “spherical”
minimum coexisting with the prolate ground state®#Zr has theYs; tetrahedral shape.

As the first application of a fully 3D, symmetry-unrestricted Skyrme HFB method with
the use of the density-dependent zero-range pairing interaction [13,14,17,23—-30], we in-
vestigate in this paper shape coexistence and possibility of nonaxial octupole deformations
in proton richN = Z nuclei in theA = 64-84 region and examine the above predictions.
These nuclei are especially interesting objects to study, since proton and neutron deformed
shell effects act coherently and rich possibilities arise for coexistence and competition of
different shapes (see [31] for earlier references). In recent years, active experimental stud-
ies of these nuclei are going on by means of combinations of radioactive nuclear beams and
new gamma-ray and charged-particle detector systems (see [32—35] for reviews). It should
be noted here that, although extensive theoretical calculations and rich experimental evi-
dences have been accumulated for axially symmetric octufyelg deformations, as re-
viewed in [36,37], only a few calculations using Woods—Saxon-Strutinsky methods are
available [38—41] except for light nuclei, and no firm experimental evidence exists up to
now concerning the nonaxial octupol&(, Y3», Y33) deformations in the mean fields. For

light nuclei, nonaxial octupole deformations have been discussed [42—46] in connection
with alpha-cluster structures [47]; for instance, a triangular structufé®f42,44] and

a tetrahedral shape 8?0 [45,46].
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Our motive for developing the coordinate-space Skyrme—HFB method is not only to
investigate the possibilities of emergence of new types of symmetry breakdown in the
ground states of proton-rich and neutron-rich nuclei, but also to investigate, in the future,
low-lying modes of excitation of such unstable nuclei by means of the RPA and the
Selfconsistent Collective Coordinate (SCC) method [48] on the basis of the HFB basis
thus obtained. We intend to proceed in parallel with other calculations with the use of
more phenomenological shell model potentials and separable interactions. The Skyrme
HFB method is suited for this aim, as it provides a local mean-field potential so that such
a comparative study is easy.

In Section 2, a brief account of the method of the coordinate-space Skyrme—-HFB
calculation is given. In Section 3, results of numerical calculation are presented and
discussed. In Section 4, a conclusion is given.

2. Skyrme-HFB calculation
2.1. Two basis method

For convenience, we here recapitulate the two basis method [13,14,16,17] adopted as the
algorithm of our computer code. In this method, the imaginary-time evolution method is
combined with a diagonalization of the HFB Hamiltonian matrix to construct the canonical
basis.

We first determine the single-particle wave functignsatisfying the HF equations

h[p(r)]bi(r) = eigi (r) @)

by means of the imaginary-time evolution method [15]. Héres; and p(r) denote

the mean-field Hamiltonian, the single-particle energies and the total nuclear density,
respectively. (The isospin indexis omitted for simplicity.) We next diagonalize the HFB
Hamiltonian matrix [1]

h—A A Ur\ U
(—A* —h*+k)<Vk)_Ek(Vk> 2)
to get the one-body density matrixand the pairing tensax:
p=VVT,  k=v*U'. ()

We then diagonalize the density matrixand obtain the occupation coefficientsand the
unitary transformatior which relates the HF wave functioigs to the canonical basis
wave functionsp,:

Pkl = Zno{ Wia W(Lv (4)
Qu(r) =Y Wit (r). (5)
J

In the canonical basig,, the HFB density matrix in the coordinate space is diagonal:
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P, 1) =" nepu(r)gar)*. (6)
o

These steps are repeated until the convergence is achieved.

The single-particle wave functions and densities are represented on a full 3D cartesian-
mesh space within a spherical container. In the present calculation, the radius of the
spherical container and mesh spacing are seRi@sh= 10.0 fm and 2 = 1.0 fm,
respectively. Tajima et al. [49,50] have carefully examined possible errors due to the use
of the mesh sizé = 1.0 fm and they found that, since discretization errors are essentially
independent of the nuclear shape, deformation energies obtained with this mesh size are
quite accurate (see also [51]). Actually, we have constructed the new Skyrme—HFB code
by extending the cranked Skyrme—HF code [52] written previously and applied to the
investigation of the yrast structure #S, so that the cranking term can be included. In this
paper, however, we examine only the cases of zero angular momentum.

2.2. The Skyrme plus density-dependent pairing interactions

We use the Slll parameter set [53] of the Skyrme interaction for the mean-field (particle—
hole) channel, which has been successful in describing systematically the ground-state
quadrupole deformations in proton and neutron rich Kr, Sr, Zr and Mo isotopes [19] and
in a wide area of nuclear chart [49]. For the pairing (particle—particle) channel, we use the
density-dependent zero-range interaction [13,14,17,23—-30], which has been successful in
describing, for instance, the odd—even staggering effects in charge radii:

o(ry)

Vi -~
Vpair(r1, r2) = 70(1 - P,) (1 - )a(rl —r) @)

with the notation of [17], where the strengWpy and the densityp, are parameters
and P, denotes the spin exchange operator. For these parameters, we use the standard
values [14,17]:Vo = —10000 MeVfm?3, p. = 0.16 fnm3. The pairing interaction is
smoothly cut off at 5 MeV above the Fermi energy in the same way as in [19]. For a more
general form of the density-dependent pairing interaction, we refer to [54,55].

To check the dependence on the Skyrme-interaction parameter sets, we make calcula-
tions with the SkM [56] and SLy4 [57] sets for an example $Se. We refer to a recent
work by Reinhard et al. [58] for a detailed and systematic study of shape coexistence phe-
nomena in relation to the properties of various versions of the Skyrme interaction. We shall
also check the dependence on the pairing strehgtdopted.

2.3. Constrained HFB calculation

In order to investigate the deformation properties away from the HFB equilibrium points,
we perform constrained HFB calculations with the use of the quadratic constraints for the
mass-quadrupole (octupole) moments [59] to obtain the energy surfaces as functions of
the quadrupole (octupole) deformations. Because no spatial symmetry is imposed on the
3D mesh space, the center of mass and the directions of the principal axes of the nucleus
can move freely without affecting the total energy. To evaluate the physical quantities like
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deformation parameters, it is crucially important to fulfill the constraints to keep the center
of mass,

A A A
-2
i=1 i=1 i=1
and the directions of the principal axes,
A A A
<Z(X)’)i> = <Z(yz)i> = <Z(zx),-> =0. (9)
i=1 i=1 i=1

These requirements are taken care of by means of the quadrupole constraints on these
conditions as in our previous study [52].

2.4. Deformation parameters

As measures of the deformation, we calculate the mass-multipole moments,

Alm

47 !
= 3ARI fr Xim()p(r)dr (m=-1,...,]) (10)
wherep(r) = Y, v2|¢q ()2, R = 1.2AY/3 fm and X,,, are real bases of the spherical
harmonics:

X0 = Yo, (1)
1

Xijm) = E(Yl—vm + Y ) (12)
—i

Xl—lml = E(Yl|m| - Yle|)' (13)

Here the quantization axis is chosen as the largest (smallest) principal axis for prolate
(oblate) solutions. We then define the quadrupole deformation paragettire triaxial
deformation parameter, and the octupole deformation parametgssand 83, by

a20 = PB2C0Sy, a2 = B2siny, (14)
3 1/2
1/2
B3 = ( > a§m> . Pan=(3, 4+ ) m=01.23) (15)
m=-—3

For convenience, we also use the familiar notatio, for oblate shapes with
(B2, y =60°).
3. Resultsand discussion
3.1. Quadrupole deformations

The solutions of the Skyrme—HFB equations obtained in the numerical calculations for
64Ge,%8se,7%Kr, 76Sr, 8071 and®*Mo are summarized in Table 1. The calculated ground-
state shape changes from triaxi#iGe), oblate $Se, "?Kr), large prolate {°Sr, 8Zr), to
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Table 1

M. Yamagami et al. / Nuclear Physics A 693 (2001) 579-602

Solutions of the HFB equations for proton-rish= Z nuclei in theA = 64—84 region

Oblate Spherical Prolate
64Ge g.s.
B,y =0.27,25° (triaxial)
B3=0.0
Ap=125 Ap=112
685e g.s. 0.52
B,y = 0.28,60° B,y =0.26,0°
B3 = B33~ 0.08 B3=0.0
Ap=128 Ap=113 Ap=129 Ap=115
72Ky g.s. 0.92
B.y =0.32,60° B,y = 0.40,0°
B3=0.0 B3=0.0
Ap=103 Ap=123 Ap=125 Ap=092
76gy 1.79 g.s.
B,y =0.30,60° B,y =051, 0°
B3 = P33~ 0.0 B3=0.0
Ap=147, An=143 Ap=0.67, Ap=0.50
807y 0.86 1.01 g.s.
B,y = 0.20,60° B,y =0.0,0° B,y =0.51,0°
B3=0.0 B3 = pB32~0.15 B3=0.0
Ap=102 Ap=082  Ap=0.68 An=0.39 Ap=079, Ap=0.78
84Mo 0.20 g.s. 1.52
B,y =0.16, 60° B,y =0.0,0° B,y = 0.66,0°
B3=0.0 B3 =pB30~00 B3=00

For each nucleus, numbers in the first line indicate excitation energies measured from the ground
state. The symbok indicates that the potential-energy curve is extremely shallow about the
equilibrium value. Pairing gaps\p and A are here defined as averages of diagonal elements
A;; over 5 MeV interval around the Fermi surface, and their values (in MeV) at the equilibrium
deformations are listed.

spherical shapé{Mo) with increasingV (= Z). For®8Se,”?Kr, 76sr,80Zr and®*Mo, we

obtain two or three local minima close in energy, indicating shape coexistence. These gross
features are consistent with available experimental data [60—-66] and previous theoretical
calculations [19,21,22,49,67—77].

The potential-energy curves obtained by the constrained HFB calculations are displayed
in Fig. 1 as functions of the quadrupole deformation paramgieand in Fig. 2 as
functions of the triaxial deformation parameter Below we remark on some specific
points.

As seen in Fig. 2, the calculated potential-energy curvé¥6e is rather shallow with
respect to ther degree of freedom so that this nucleus may be regarded-asft.” This
result is consistent with the experimental indication [60] and also with the shell model
calculation by the Monte Carlo diagonalization method [75].
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Fig. 1. Potential-energy curves calculated by the constrained Skyrme—HFB metfiG&Fese,

72K, 765y, 8071 and®4Mo are drawn as functions of the quadrupole deformation pararfietdihe
Slilinteraction is used for the particle—hole channel, while the density-dependent pairing interaction
with Vg = —10000 MeV fm3 andp, =0.16 fn3 is used for the particle—particle channel.
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Fig. 2. Potential-energy curves calculated at fix@dby the constrained Skyrme-HFB method
for 84Ge, %8se, 72kr, 76sr, 807y and 84Mo are drawn as functions of the triaxial deformation
parametely. The effective interactions used are the same as in Fig. 1.
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Quite recently, an excited prolate band coexisting with the ground-state oblate band
has been found ifi®Se [63]. Their quadrupole deformations are estimatefi,as 0.27
and B ~ —0.27, respectively. Although the prolate excited band-headtate has not
yet been observed, its excitation energy is estimated to be about 0.6 MeV. Our calculated
energy difference between the prolate and the oblate HFB solutions, 0.52 MeV, is in good
agreement with this experimental data. The barrier between the prolate and the oblate
minima is about 3 MeV in the plot with respect g in Fig. 1, but it is only about
0.3 MeV in the plot with respect to the triaxial deformation paramgter Fig. 2. It might
be considered that, if the barrier is so low, the two bands built on the prolate and the oblate
solutions interact strongly so that the shape coexistence picture is too much perturbed in
contradiction with the experiment [63]. In our view, however, description of dynamics
by going beyond the static mean-field approximation is necessary in order to discuss the
interaction between the oblate and the prolate structures. In any case, understanding this
shape coexistence dynamics is an interesting subject for future.

The second minimum withB, ~ 0.66 seen in the potential-energy curve ffiMo
in Fig. 1 may be regarded as a superdeformed solution, since it is related #the
N = 42 deformed shell gap [68] formed by occupying the down-sloping [42Llavels
from the upper major shell by two protons and two neutrons. This second minimum was
also obtained in [21]. It offers an interesting possibility that a superdeformed rotational
band might be observed at such a low excitation energy as about 1.5 MeV. From
a viewpoint of deformed shell structure, the ground-state solution®®&rand®®Zr have
characteristics different from the second minimurfiido and may be distinguished from
the superdeformation, although they have large prolate deformatigis00.5.

3.2. Nonaxial octupole deformations

As a result of the Skyrme—HFB calculations for proton-rék= Z nuclei from®4Ge to
84Mo (summarized in Table 1), we have found equilibrium shapes with finite nonaxial
octupole deformations fof8Se and®°zr. The density distribution at the HFB local
minimum for 68Se with the triangular deformation superposed on the oblate shape and
that for80Zr with the tetrahedral deformation are illustrated in Fig. 3.

Fig. 3. Density contour surfaces at the half central density of the Skyrme—HFB solution with the
oblate plus triangular shapg4{ = —0.28, 833 = 0.08) for 683¢ (left-hand side) and that with the
tetrahedral shapeg = 0.00, B3, = 0.15) for 89Zr (right-hand side), listed in Table 1.
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In addition to the two cases mentioned above, Takami et al. [21] and Matsuo et al. [22]
obtained, in their Skyrme—HF plus BCS calculations, finite equilibrium values of octupole
deformations superposed on an oblate shap@3n and also on a near spherical shape
in 8Mo. According to their calculations, the potential-energy curves are very soft with
respect to the octupole deformation degrees of freedom especially in the four cases
mentioned above. In order to see the properties of the potential-energy curve in the
neighborhood of the HFB equilibrium points and to make a better comparison with the
results of Refs. [21,22], we have carried out constrained HFB calculations with respect to
the B3, (m =0, 1, 2, 3) degrees of freedom about the local minima (seen in Fig. 1) of the
quadrupole deformation energies.

Figs. 4, 5 and 6 show the potential-energy curves with respect to the octupole
deformation parameterss,, about the oblate, the spherical and the prolate (or triaxial)
minima of the quadrupole deformation-energy curves, respectively. These curves are
obtained by the constrained HFB calculations with the octupole opera?d@m as
constraints. We see that the oblate shap€®8e is extremely soft against the triangular
(B33) deformation and that the spherical shape®®r is extremely soft against the
tetrahedral 832) deformation, in agreement with those of the Skyrme—HF plus BCS
calculations of Refs. [21,22]. The oblate shap€e®8r is fairly soft with respect to the
B3> and B33 deformations and the spherical ground staté*o is barely stable against
all B3,, degrees of freedom, especially agaifiss. In [22] an oblate solution with a finite
equilibrium value ofg3; is obtained for’®Sr, while a similar solution fof®Sr but with
a finite equilibrium value oBs3 and also a nearly spherical solution f8Mo with a finite
equilibrium value of83g is reported in [21]. Although such details differ depending on the
treatment of the pairing correlations, the basic features, i.e., the softness tzpathd
B33 of the oblate shape 6fSr and the softness fyg of the spherical shape Mo are in
common between the present HFB calculations and those of [21,22]. Generally speaking,
Figs. 4—-6 indicate that the oblate shapes are softer for octupole deform@agjpngith
higher values ofz, while the prolate shapes favor lower valuesof
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Below we focus our attention on the triangular deformatioPf®e and the tetrahedral
shape irfZr and discuss about the microscopic origins of them.

3.2.1. Triangular deformation in %8Se

Generally speaking, octupole correlations are associated with strong couplings between
the shell-model orbits withAl = Aj = 3 [36,37]. In the A = 64-84 region under
consideration, they aregd,» and Zp3/>. In order to understand why the oblate shape in
683e is unstable (or extremely soft) against the triangular deformation, however, we need
to examine the interplay of the quadrupole and octupole deformation effects. Namely, as
explained below, the emergence of the triangular deformation is strongly correlated with
the magnitude of the oblate deformation.

When®8Se (V = Z = 34) is oblately deformed, the higi2 levels [404F and [413]
stemming from the dg,> orbit go down in energy and approach the Fermi surfaces for
N = Z = 34 and strongras couplings with [3013 and [310} levels (associated with
the 2p3/> orbit) take place. Thes#s3 coupling effects are seen as repulsions between
these levels in Fig. 7 which displays the neutron single-particle energies as functions of the
triangular deformation parametgss. Here, the single-particle energies mean eigenvalues
of the HF Hamiltonian with the density(r) determined by the HFB equations, and the
asymptotic Nilsson quantum numbers are used only for convenience of labeling these
levels: they are, of course, not good quantum numbers.

In this figure, results of calculation with use of the Skihd SLy4 interactions are also
shown for comparison. We note that the; coupling effects are slightly weaker in the case
of the SKMF and SLy4 interactions in comparison with the case of the Slll interaction. This
is because the spacings between the levels coupled bystheperator are the smallest
for the SlllI interaction: the spacings at the oblate equilibrium deformations between the
[404]9/2 and [301]32 levels are about 2.8, 3.4 and 3.6 MeV, and those between the
[413]7/2 and [310]¥2 levels are about 3.8, 4.1 and 4.2 MeV for the SllI, Skikhd
SLy4 interactions, respectively. Thus, as shown in Fig. 8, the potential-energy curve with
respect to the triangulgsss deformation is softest for the case of the SlllI interaction,
although they are soft also for the cases of the Skdvid SLy4 interactions. Note that, in
making this comparison, we have chosen the pairing-interaction str&pgtirch that the
resulting pairing gapg\ take about the same values for calculations with different Skyrme
interactions (in order to make the effects of the pairing correlations approximately the same
for all cases), as shown in the right-hand part of Fig. 8.

The importance of the trianguldks deformation superposed on the oblate shape was
previously pointed out by Frisk, Hamamoto and May [78] in terms of a two-level model as
well as the modified oscillator model which simulates the one-patrticle spectrain an infinite-
well potential. Our result of the Skyrme—HFB calculation provides a realistic example
which is consistent with their arguments.

3.2.2. Tetrahedral deformation in 802zr
As shown by Hamamoto, Mottelson, Xie and Zhang [79], the tetrahedral symmetry
associated with th&z> deformation brings about a bunching of the single-particle levels
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Fig. 7. Neutron single-particle energies ffise plotted as functions of the octupole deformation
parameteps3 about the oblate shape. Here, the single-particle energies mean eigenvalues of the HF
Hamiltonian with the density () determined by the HFB equations. Results for the SllI, Skivid

SLy4 parameter sets are compared. Equilibrium quadrupole deformations obtained for each Skyrme
interaction arg8o = —0.28, —0.25 and—0.24 for SllIl, SkM* and SLy4, respectively. Solid (broken)

lines indicate levels which have positive (negative) parity in the lifag = 0. The projection of

the angular momentum on the symmetry axis,is a good quantum number only g3 = 0. The

arrows indicate the\ 2 = 3 coupling associated with the trianguléys deformation as discussed in

the text. The single-particle spectrum for protons is almost the same as for neutrons.

and create a remarkable shell structure:she- Z = 40 is one of the magic numbers for
such tetrahedral shapes. Such a shell effect is common to various finite fermion systems,
and in fact the tetrahedral deformation has been predicted, for instance, for sodium clusters
consisting of 40 atoms by the density functional Kohn—Sham calculation [80,81], in which
there is no spin—orbit coupling. The instability of the spherical shap@aifagainst the

Y32 deformation, as exhibited in Fig. 5, is evidently connected to the magic number

Z = 40 for the tetrahedral shape.
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Fig. 8. Comparison of the HFB potential-energy curvesSi8e about the oblate shape as functions

of the triangular deformation parametggs, calculated for different versions of the Skyrme
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pairing gaps become approximately equal for all Skyrme interactions (as displayed in the right-hand
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SLy4 interactions, respectively.

Fig. 9 shows the single-particle energy diagrams as function of octupole deformation
parameteps,, (m =0, 1, 2, 3). As expected, we can see for the caseef 2 aremarkable
bunching of single-particle levels and an increase of the shell gapy at 40 with
increasingpsz, while the other octupole deformatioia = 0, 1, 3) do not exhibit such
a feature. Looking into details, one notices a fine splitting of thellevel into three
levels which correspond to irreducible representations of the double tetrahedral (§ginor-
group [41,45]; a twofold-degenerate level and two fourfold-degenerate levels.

Thus, the tetrahedral shell gap#t= Z = 40 emerges even under the presence of the
strong spin—orbit coupling. It should also be noted that the tetrahedral minimum is obtained
in the calculation selfconsistently including the pairing correlations.

3.3. Pairing gaps

In this subsection, we first examine dependence of the pairing gaps on deformations, and
then discuss dependence of the nonaxial octupole deformations on the pairing strength.
The result of calculation for the pairing gaps at equilibrium deformations in each nucleus
is listed in Table 1. As the pairing gaps in the HFB theory depend on single-particle levels,
the numbers listed in this table are averages of the diagonal elements in the HEAbasis,
over 5 MeV interval in the vicinity of the Fermi surfaces.

In the literature, slightly different quantities like averages of the diagonal matrix
elements in the canonical basig,z, weighted by the coefficients of the Bogoliubov
transformationyu, v, [82—84] orv§ [3], are used for similar purposes. Fig. 10 compares
these quantities for the case of triangular deformations superposed on the oblate shape in
683e. We see that the two average quantitiels;) and (Aqguqve), are approximately
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Fig. 9. Neutron single-particle energies fftZr plotted as functions of the octupole deformation
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equal. We also confirm that the averages do not significantly depend on the averaging
interval.

Figs. 11, 12 and 13 display the variation of the pairing gaps with the quadrupole
deformation parametepy, the triaxial deformation parameter, and the octupole
deformation parametegs,, (m =0, 1, 2, 3), respectively. We observe that gross features
of deformation dependence of the pairing gap correlate with the corresponding potential-
energy curves displayed in Figs. 1, 2 and 4-6. Such correlations are rather easy to be
understood from the behavior of the single-particle level density near the Fermi surface,
i.e., from the well-known (spherical or deformed) shell effects that the level density near the
Fermi surface becomes relatively low in the vicinities of the local minima of the potential-
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energy curve [85]. Thus, the pairing correlation becomes weaker and the paring gap
decreases near the local minima. On the other hand, the level density becomes relatively
high and the pairing gap increases near the local maxima of the potential-energy curve.

Because of significant shape changes in the sequence of isotopes (isotones) ia the
64—84 region, it is not always easy to extract the magnitudes of pairing correlations from
experimental odd—even staggerings of binding energies and to assess the appropriateness of
the pairing-interaction strengtfy = —1000 MeV fn? used in our HFB calculations. Quite
recently, however, Satuta, Dobaczewski and Nazarewicz [86] have proposed a method for
separating out the pairing correlation effects from the deformed mean-field (single-particle
energy) effects on the odd—even staggerings, and evaluated average pairing gaps; these are
in the range D—1.6 MeV for the mass region under consideration [87]. We note that these
values agree rather well with the well-known global treig= 12/+/A MeV [88], which
are in the range.3—1.5 MeV for A = 64—84. Our calculated values of the pairing gaps,
listed in Table 1 and drawn in Figs. 11-13, mostly lie in this range of values, so that we
may say that the adopted strength @ris reasonable.

Another possible source of ambiguity in evaluating the pairing gaps is the proton—
neutron isoscalar pairings which are expected to play an important role M th& nuclei
(see, for example, [89,90] and references therein). We have assumed that such isoscalar
pairings are absent in the states under consideration. Although this assumption should be
examined, there are some experimental indications [90,91] that this may be a fairly good
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Vo of the density-dependent pairing interaction (and with the same SllII interaction).

approximation. It is clear that we need a more systematic and detailed investigations, both
theoretical calculations and experimental explorations, for a better understanding of the
pairing correlations in the proton-ridki = Z nuclei in theA = 64—84 region.

In order to examine the sensitivity of the calculated results to the stréngtf the
pairing interaction, we have made a calculation of the potential-energy curve about the
oblate shape ifSe as a function of the triangular octupole deformation parargetdor
Vo= —900, —1000 and—1100 MeV fn?. The result is shown in Fig. 14. As expected, the
potential-energy curve becomes shallower with increasing (absolute vali.ofhus,
the local minimum at833 ~ 0.10 disappears with 10% increase of the (absolute) value
of Vp. In any case, the potential is so shallow that we cannot associate a definite physical
significance with the equilibrium values gg3. We can still draw from these calculations
an important conclusion that the oblate ground staf®®é is extremely soft with respect
to the triangular octupole deformation.

3.4. Discussion

Actually, we need a more detailed investigation on the physical implication of the
extremely soft potentials like those with respect to the triangular deformatiéASe
and for the tetrahedral shape degree of freedor®#r. As is well known in the case
of the axially symmetrid’zp octupole deformation [92—96], a definite minimum develops
at finite value ofgzg after the parity projection when the mean-field potential is very soft
with respect t@33p. For the case of nonaxial octupole deformations, a similar effect of the
parity projection has been demonstrated by Takami, Yabana and Ikeda [42] for light nuclei.
It remains to be examined whether or not the situation is similar for the nonaxial octupole
deformations in medium-mass nuclei under consideration.
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More generally speaking, investigations of modes of excitation and of excitation spectra
associated with the instabilities toward the nonaxial octupole shape deformations is one of
the major challenges for future. The present paper should be regarded as providing a HFB
mean-field basis for a study of dynamics by means of methods like the quasiparticle RPA
and the SCC method [48].

4. Conclusion

We have constructed a new computer code that carries out Skyrme—HFB calculations in
the 3-dimensional cartesian-mesh space without imposing any restriction on the spatial
symmetry, and investigated shape coexistence and nonaxial octupole deformations in
proton-rich N = Z nuclei, %4Ge, 8Se, 72Kr, 76Sr, 807r and 8Mo. The ground-state
shape changes from triaxia®*Ge), oblate $8Se, 72Kr), large prolate {¢Sr, 89Zr), to
spherical #*Mo) asN (= Z) increases, in agreement with the available experimental data
and the previous theoretical calculations. The extreme softness towargsthé@angular
deformation of the oblate ground state®88e and that towartiz, tetrahedral deformation
of the excited spherical minimum d&¥Zr, pointed out by Takami et al. [21,22] on
the basis of the Skyrme—HF plus BCS calculations, have been confirmed by the fully
selfconsistent Skyrme—HFB calculations with the use of the density-dependent zero-range
pairing interaction.

The symmetry-unrestricted Skyrme—HFB computer code constructed in this work
provides a selfconsistent mean-field basis for future investigation of collective modes of
excitation in neutron-rich nuclei with neutron skins as well as in proton-rich nuclei.
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We have derived a semiclassical trace formula for the level density of the three-dimensional spheroidal
cavity. To overcome the divergences occurring at bifurcations and in the spherical limit, the trace integrals over
the action-angle variables were performed using an improved stationary phase method. The resulting semi-
classical level density oscillations and shell-correction energies are in good agreement with quantum-
mechanical results. We find that the bifurcations of some dominant short periodic orbits lead to an enhance-
ment of the shell structure for “superdeformed” shapes related to those known from atomic nuclei.
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I. INTRODUCTION [5,8] or a(highly idealized deformed metal clustdil1,12,
and to specify the role of orbit bifurcations in the shell struc-

The periodic-orbit theorfPOT) [1-7] is a nice tool for ture responsible for the superdeformation. Although the
studying the correspondence between classical and quantusgheroidal cavity is integrableee, e.g., Ref23)), it exhib-
mechanics and, in particular, the interplay of deterministidts all the difficulties mentioned abovee., bifurcations and
chaos and quantum-mechanical behavior. But also for syssymmetry breakingand therefore gives rise to an exemplary
tems with integrable or mixed classical dynamics, the POTcase study of a nontrivial 3D system. We apply the ISPM for
leads to a deeper understanding of the origin of shell structhe bifurcating orbits and succeed in reproducing the super-
ture in finite fermion systems from such different areas agleformed shell structure by the POT, hereby observing a
nuclear [5,8—10, metallic cluster[11,12, or mesoscopic consideraple enhancer_nent of the shell-structure amplitude
semiconductor physicgl3,14. Bifurcations of periodic or- Nnear the bifurcation points.
bits may have significant effects, e.g., in connection with the
so-called “superdeformations” of atomic nuclgs,6,9,15, Il. THEORY
and were recently shown to affect the quantum oscillations
\cl)i?:see[rr‘%c.i in the magneto-conductance of a mesoscopic dga_reen fur)ctior[l] by ta!<ing the imaginary part of its trace in

In the semiclassical trace formulas that connect théI .0) action-angle variablegs, 21
guantum-mechanical density of states with a sum over the dl’ de”
periodic orbits of the classical systefti—3|, divergences g(E)=E 6(E—si)zReZ f(zﬁ—ﬁ)g,é(E—H)
arise at critical points where bifurcations of periodic orbits : “«
occur or where symmetry breakirigr restoring transitions i -
take place. At these points the stationary-phase approxima- xexp{ %[SH(I’,I”,tQ)wL(I”— [')-@"]—i 5 Ha
tion, used in the semiclassical evaluation of the trace inte-
grals, breaks down. Various ways of avoiding these diver- )
gences have been studigtl4,16, some of them employing ) _ _
uniform approximation§17—20. Here we employ an im- Here {e;} is the single-particle energy spectrum ahfl
proved stationary-phase methd8PM) for the evaluation of ~=H(l) is the classical Hamiltonian. The sum is taken over
the trace integrals in the phase-space representation, bas@lfi classical trajectories specified by the initial actiont’
on the studies in Ref$4,18] which we have derived for the and final angle®”. S,(1',1",t,) = _f:'/'| .d® is the action
e||lptIC billiard [21] |ty|e|dS a Semic|aSSica| level d.ensity integral anda the time for the motion a|ong the trajectow
that is regular at all bifurcation points of the short diameterang 4, is the Maslov index related to the caustic and the

orbit (and its repetitionsand in the circular(disk) limit. turning points[21,22. In the spheroidal variablefu,v, ¢},
Away from the critical points, our result reduces to the eX-the actionl has the components

tended Gutzwiller trace formulg8,5—-7 and is identical to

that of Berry and Tabof4] for the leading-order families of pc (uc .

periodic orbits. qu?J duyoy—sin u—o,/cos u,
The main purpose of the present Rapid Communication is e

to report on the extension of our semiclassical approach to pe (o

the three-dimensional3D) spheroidal cavity[22], which |U:_f dvcosl v — o, — o, /sini? u,

may be taken as a simple model for a large deformed nucleus T Jog

The level densityg(E) is obtained from the semiclassical

@

1063-651X/2001/6@)/0652014)/$20.00 63 065201-1 ©2001 The American Physical Society
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l,=pcyos.

Hereby p=(2mE)*? is the particle’s momentum and

= (b%—a®) Y2 half the distance between the fobianda are
the semiaxegwith b>a) of the spheroid with its volume
fixed by a’b=R? and the axis ratioy=b/a as deformation
parameter; and-u, (or v;) andv, are the caustic and turn-
ing points, respectively. In Eq2) we use the dimensionless
“action” variables o, o, [21] in which the torus of the
classical motion is given by

)

=
7°-1

0L =00, —oy(np—1)=o0,.

In the ISPM, we expand the actids), in Eq. (1) up to

second-order terms around its stationary points and keep tl}s
preexponential factor at zero order, taking the integrations

over the torus within thdinite limits given by Eq.(3). For
the oscillating(“shell-correction”) part of the level density
59(E)=g(E)—g(E), whereg(E) is its smooth parf7,24),
we obtain

1 , T
5g(E):E—ORe§ﬁ: Aﬁ(E)exy{mLﬁ—lE,uﬁ)wg, 4

wherek=p/# is the wave number anB,=#2/2mR our
energy unit. The amplitudes; will be specified below. The
sum over B includes all two-parameter families of three-
dimensional(3D) periodic orbits and elliptic and hyperbolic
2D orbits lying in a plane containing the symmetry ata#
with degeneracy paramet&r=2), the one-parameter fami-
lies of (2D) equatorial orbits lying in the central plane per-
pendicular to the symmetry axisvith =1), and the(1D)
isolated long diametetwith £=0). In Eq. (4), Lg is the
length of the orbitg at the stationary pointd} ,o3) which
for the 3D orbits lies inside the physical region of the torus
(3), and is analytically continued outside this region. The
o,=0 boundary of Eq(3) is occupied by the 2D orbits with
K=2. The stationary points are determined by the roots o
the periodicity conditions w,/w,=n,/n, and o,/w,
=n,/n,; herebyw,=dH/Jl, are the frequencies ama,
are coprime integers which specify the periodic orlits
=M(n,,n,,n,), whereM is the repetition number. The fac-
tor w}=exp(—¥’L5/4R?) in Eq. (4) is the result of a convo-
lution of the level density with a Gaussian function over a
rangevy in the variablekR. This ensures the convergence of
the POT sum4) by suppressing the longer orbits which are
not relevant for the coarse-grained gross-shell stru¢yi@.

For Strutinsky’s shell-correction energd) [3,7,24, we
obtain (with time reversal symmetry and a spin factgr 2
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N/2 ~

su=23 si—szFEa(E)dE
i=1 0

As(Er)
2
Ls

. . W

The Fermi energie€r (and with itkg) and Eg are deter-
mined by the particle number conservatiorN
=2[7g(E)dE=2/;Fg(E)dE. Due to the factoi ;2, the

PO sum in Eq(5) may converge faster for the shortest orbits
than the level density4) for small y. Any enhancement of
the amplitudesA; of the most degenerate short periodic or-
bits (e.g., due to bifurcations or to symmetry restoring, as
discussed belowtherefore leads to an enhancement of the
shell structure and hence to an increased stability of the sys-
tem.

We present here only the amplitudes of the leading con-
tributions to Eqs(4) and (5). For further detailgincluding,
e.g., explicit expressions for the Maslov indicgs), we
refer to a forthcoming, more extensive publicat{@z2)].

For the amplitudesA; of the most degeneratelC(=2)
milies of periodic 3D and 2D orbits, we obtain

2

IT erfix, .x).

n=1

icLg[dly/doy]

7(4AMRn,)*VK go3

The quantityK ;=K§ K is related to the main curvatures
K(B”) of the energy surfac&E=H(o,05,) in the “action”
plane (,0,), given by

AL=2)_

6

Fa

)
2

W, Jog| 4

Un

w, 3y

w, (90'§

a1,

= 2
do,

()
B

, )

(n=1,2).

In Eg. (6), the arguments of the two-dimensional error func-
tion erf(x,y)=2f§dze‘22/\/; are given by the turning
points in the action plane

Xy =\—i7mM anﬁ(”jlh(aﬁ—o’;) (n=1,2);

see Eq.(3) for the boundariesrrf . All quantities in Eq.(6)

can be expressed analytically in terms of elliptic integrals.
For the 3D orbits, our resulf6) is in agreement with that
obtained by exact Poisson summation over the EBK spec-
trum (cf. Refs.[4,7]).

f For the contribution of théC=1 families of equatorial
orbits to Eq.(4), we obtain the amplitudes

®

3

H erf(x, ,X

n=1

i si® ¢
7Mn,kR7nF 4

+
n

(kK=1)_
AB =

), 9

where ¢g=mn,/n,, Fgis their stability factof1,2,6], o7
o} =cos ¢pl(7*—1), and

x;=|«;\/

64Mn, (o5 + 1)KG"

x;=0. (10
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FIG. 1. Moduli of amplitudes|A,z| vs # for the equatorial

“star” orbit (5,2 (K=1) and the 3D orbi{5,2,) (K=2) bifur-

cating from it aty=1.618... . Solid lines: using the ISPM accord-

ing to Eqs.(9) and (6), respectively; dash-dotted lines: using the  FIG. 2. Level densitysg(E) (4) (unit E;*) vs kR for different

standard stationary-phase approach. critical deformationsz. The Gaussian averaging parameteryis
=0.3. Thin solid lines: quantum-mechanical results; thick dotted

The contribution of the isolated long diameter orbit, lines: semiclassical results using the ISPM.
which may be expressed in terms of incomplete Airy inte-
grals[21,22, is not important for deformations of the order

n~1.2-2 A similar enhancement of the double triangleg4) and

the 3D orbit(6,2,]) is found near their bifurcation poing
=\3=1.72... . However, the curvaturi}’ (7) for orbits
like M(3t,t,1) (t=2,3,..) is identically zero and hence the
In Fig. 1 we show|Ag| versus deformationy (at kR SSPM is divergent for all deformationg=1, in contrast to
=40) for a pair of orbits involved in a typical bifurcation the situation with orbits liké5,2,9) with finite K. Here we
scenario. At the critical pointy=1.618... the equatorial have to take into account the next nonzero third-order terms
“star” orbit (5,2) undergoes a bifurcation at which the 3D in the expansion 08, , although the (8t,1) ISPM ampli-
orbit (5,2,1 is born; the latter does not exist below  tude(6) is finite and continuous everywhere. The amplitude
=1.618.... can then be expressed in terms of incomplete Airy and Gairy
In the standard stationary-phase appro&@88PM; dash- integrals with finite limits[22]. For the equatorial orbits
dotted lineg, the amplitude of the€5,2) orbit diverges aty  t(3,1), like for the double triangles(2,1), one has a zero
=1.618..., whereas that of the bifurcated orl{#,2,1) is curvatureK(Bl) only at the bifurcation pointy=+/3. Here
finite but discontinuous. As seen in Fig. 1, the ISR86lid  f /k(D_.0, and a similar mechanism of cancellation of sin-
lines) leads to a finite amplitud&(52)" for the (5,2 orbit.  gularities for other orbits takes place through E@—(10).
This is because the factét, in the denominator of Eq9),  But the relative enhancement of the ISPM amplitud&s)
which goes to zero at the bifurcation, is cancelled by theof such orbits at the bifurcations is of ordel ; because of a
same factor in the numerator & (10) via the third error  change of the degeneracy paramétesy two units (see Ref.
function in Eq.(9). A similar result was found for the short [22] for detailg. In this sense we avoid here a double singu-
diameter orbit 22,1) in the elliptic billiard [21]. Further- Ilarity related to a double restoring of symmetry.

Ill. DISCUSSION OF RESULTS

more, the ISPM softens the discontinuity for 2,1 orbit, In Figs. 2 and 3, we present semiclassical level densities
leading to a maximum amplitude slightly above the critical 5g(E) (4) versuskR and shell-correction energia3U (5)
deformation. versusNY3 for various critical deformationgthick dotted

The relative enhancement of these amplitudlgsiear the  lines), and compare them to the corresponding quantum-
bifurcation point can also be understood qualitatively frommechanical result&hin solid lines. We observe a very good
the following argument. At the bifurcation of the equatorial agreement of the gross-shell structure at all deformations.
(5,2 orbit, its degeneracy parametEr=1 locally increases The most significant contributions to these results near the
to 2, because it is there degenerate with the orbit familyritical deformations are coming from bifurcating orbits with
(5,2,1) that haslC=2 at all deformations;=1.618... . This  |engths smaller than about RQin line with the convergence
is similar to a symmetry restoring transition. An increase ofarguments for the POT suntd) and (5) mentioned above.
the symmetry parameteéC by one unit leads to one more For the bifurcation aty=1.618..., theorbits (5,2,1) and
exact integration compared to the SSPM, and thus the ang5,2) give contributions comparable with other 2D orbits. For
plitudes (6) and (9) acquire an enhancement factgkL; 5= 1/3, the bifurcating orbit¢6,2,1) and (6,2) are also im-
«pR/A (cf. Refs.[3,7]). portant.
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200.0 ; - ; These results are in agreement with both heights and po-
1000 - 1 sitions of the peaks in the length spectra obtained in Ref.
0.0 [15] from the Fourier transforms of the quantum level den-

-100.0 sitiesg(kR) at the same deformations.
-200.0 . :

100.0 IV. SUMMARY AND CONCLUSIONS
0.0
~100.0 |

-200.0

We have obtained an analytical trace formula for the 3D
spheroidal cavity model, which is continuous through all
critical deformations where bifurcations of periodic orbits
occur. We find an enhancement of the amplitugieg| at

0.0 deformationsy~1.6—2.0 due to bifurcations of 3D orbits
-100.0 from the shortest 2D orbits. We believe that this is an impor-
-200.0 ; - : tant mechanism which contributes to the stability of super-

' deformed systems. Our semiclassical analysis may therefore

lead to a deeper understanding of shell structure effects in

superdeformed fermionic systems, not only in nuclei or

, metal clusters but also, e.g., in deformed semiconductor

Neo 120 150 quantum dots whose conductance and magnetic susceptibili-
ties are significantly modified by shell effects.

FIG. 3. Shell-correction energ§U (5) (unit Ey) vs cube root of
particle numbeiN? (same notation and same deformations as in ACKNOWLEDGMENTS
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The three moments of inertia associated with the wobbling mode built on the superdeformed stitas in
are investigated by means of the cranked shell model plus random phase approximation to the configuration
with an aligned quasiparticle. The result indicates that it is crucial to take into account the direct contribution
to the moments of inertia from the aligned quasiparticle so as to redlize7, in positive-y shapes. Quench-
ing of the pairing gap cooperates with the alignment effect. The peculiarity of the recently obs&tuedata
is discussed by calculating not only the electromagnetic properties but also the excitation spectra.

DOI: 10.1103/PhysRevC.65.041303 PACS nunifer21.10.Re, 21.60.Jz, 23.20.Lv, 27.7@

Rotation is one of the specific collective motions in finite Mikhailov and Janssef#] and Marshalek5] described this
many-body systems. Most of the nuclear rotational spectraode in terms of the random phase approximatRRA) in
can be understood as the outcome of one-dimensid@)l  the rotating frame. In these works it was shown thatyat
rotations of axially symmetric nuclei. Two representative=0 this mode turns into the odd-spin members of the
models—the moment of inertia of the irrotational flui@,",  vibrational band while aty=60° or —120° it becomes the
and that of the rigid rotor7"9, both specified by an appro- precession mode built on the top of the highisomeric
priate axially symmetric deformation parametgr—could stated6]. Here we note that, according to the direction of the
not reproduce the experimental ones given B§® 7"  rotational axis relative to the three principal axes of the
< J®P< 7", From a microscopic viewpoint, the moment of shape,y runs from—120° to 60°.
inertia can be calculated as the response of the many-body Recently, electromagneti&M) properties of the second
system to an externally forced rotation—the cranking modetriaxial superdeformedTSD2) band in **3_u were reported
[1]. This reproduces7®*P well by taking into account the and it was concluded that the TSD2 is a wobbling band ex-
pairing correlation. Triaxial nuclei can rotate about theircited on the previously known yrast TSD1 band, on the basis
three principal axes and the three corresponding moments of comparisons to a particle-rotor mod&RM) calculation
inertia depend on their shapes in general. In spite of a lot of7,8]. In conventional PRM calculations an irrotational mo-
theoretical studies, their shagim particular the triaxiality —ment of inertia,
parametery) dependence has not been understood well be- A 5
cause of the lack of decisive experimental data. Recently, im_ " 7 £
some evidences of 3D rotations have been observed, such as Tk 3josm2( [ 3 Wk)’ @
the shears bands and the so-called chiral-twin b&Rfdn o )
addition to these fully 3D motions, from the general argu-Wherek=1-3 denote the, y, andz principal axes, is as-
ment of symmetry breaking, there must be a low-lying col-Sumed. The magnitudé, is treated as an adjustable param-
lective mode associated with the symmetry reduction from £ter although it can be identified a§=3B,3°, whereB; is
1D rotating axially symmetric mean field to a 3D rotating the inertia parameter in the Bohr Hamiltonig@i. This re-
triaxial one. This is called the wobbling mode. Notice thatduces to7™ in the first paragraph by substituting=0 and
the collective mode associated with the “phase transition’k=1, and satisfies such a required property that collective
from an axially symmetric to a triaxial mean field in the rotations about the symmetry axes are forbidden. Sizige
nonrotating case is the well-known vibration. Therefore, is largest for 6<y<<60° and the main rotation occurs about
the wobbling mode can be said to be produced by an interthe axis of the largest inertia, the PRM witR" cannot de-
play of triaxiality and rotation. The wobbling mode is de- scribe the positivey rotation, that is, the rotation about the
scribed as a small amplitude fluctuation of the rotational axishortest axis X axis). Then in Refs.[7,8] the so-called
away from the principal axis with the largest moment of y-reversed moment of inertid 0], 7', defined by invert-
inertia. Bohr and Mottelson first discussed this md8¢  ing the sign ofy in Eq. (1), was adopted. Although this
reproduced the measured EM properties well, this does not
satisfy the required property mentioned above and its physi-

*Email address: matsuza@fukuoka-edu.ac.jp cal implications are not very clear. In this Rapid Communi-
"Email address: yrsh2scp@mbox.nc.kyushu-u.ac.jp cation, therefore, we study the moments of inertia associated
*Email address: ken@ruby.scphys.kyoto-u.ac.jp with the wobbling motion excited on the positiyestates by
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means of the cranked shell model plus RPA. This framework In the following, we present some numerical results. Here
does not divide the system into a valence particle and a rotothe parameters, (alternative tog), y, A,, andA, were
and therefore, can calculate the three moments of inertia athosen so as to reproduce the available experimental data,
the whole system microscopically. We believe that this is theand kept constant as functions @f,;. We have confirmed
first step toward understanding the fully 3D nuclear rota-that qualitative features of the result are robust and the de-
tions. tails of the parameter dependence will be given in a separate
We have developed a computer code for the RPA to excipublication[14]. It is nontrivial to obtain the wobbling solu-
tation modes built on configurations with arbitrary number oftion in the RPA for positivey nuclei and the QP alignment is
aligned quasiparticlesQPS. In this paper, we present the indispensable for its appearance. In order to show this, we
results for the 4—6 QP configurations in Gd isotopes and théirst discuss a theoretical calculation for a precession mode
1 QP one in*®3Lu. In particular, this is the first RPA calcu- that might be built on top of the”=49/2" isomeric state in
lation for the rotating oddk configurations, to our knowl- #’Gd, where the whole angular momentum is built up by the
edge. Note that this approach is different from the convenalignment of the five QPs[(h;1/)2(vhes,f72)%]1g+ N
tional particle-vibration coupling calculations where the RPA148Gd plus| vi3/5]13/+, SO that ay=60° shapgaxially sym-
itself is performed for the even-even “core” configurations. metric about thex axis) is realized. This state is obtained by
Since the details of the formulation have already been givegranking with% w,,=0.3 MeV. We choses,=0.19 andA ,
in Refs.[11,12, here we describe only the outline. The QP =A =0.6 MeV, and reproduced the observed static quad-
states were obtained by diagonalizing the cranked trlaX|a|}upo|e moment and thg factor[15,16. In order to see the
Nilsson plus BCS Hamiltonian at each rotational frequencybehavior of the three moments of inertia, we calculated the
oo by adjusting chemical potentials to give correct averagavobbling mode by changing the parametefrom 60°. The
particle numbers. The doubly stretchBdand|- s potentials  result is presented in Fig(d). Although at a first glance their
were adopted, and their strengths were taken from [R&. v dependence resembles that of the rigid rotor,
The RPA calculation was performed by adopting the pairing
plus doubly stretched)-Q interaction. The existence of
aligned QPs is taken into account by exchanging the defini- i /S
tio?]s of the QP creation and anni%lation ogergtors in an jkg: 15 ( BCOS( vty Wk)) @)
appropriate manner. Actual calculations were done in five
major shells N{**9=3-7 andNé"SC):Z—G) by using the

dispersion equatiofs], the physical content qf changes withy; the fraction of the
collective contribution decreases @dncreases and reaches
_ 7(eff) _ (eff) 0 at y=60°. Accordingly, it can be conjectured that the
(ﬁw)Zz(ﬁwmt)Z[j (w)][jxﬁ Jz (w)], 2) dependence of the “rotor” contribution is approximately ir-
J§,em(w)J§e (o) rotational and the QP contribution is superimposed on top of

the former by aligning its angular momentum to thexis.
obtained by decoupling the Nambu-Goldstone mode analytiOur previous calculatiofi12,17 for a negativey nucleus,
cally assumingy#0. This equation is independent of the ¥0s, also supports this and consequently it is thought that
strengths of the interaction. Not only the collective wobblingthe wobbling mode can appear relatively easily in superfluid
mode (= w,,p) but also many noncollective modes are ob-negativey nuclei. To see if this conjecture is meaningful,
tained from this equation. The effective ineri#®¥(w)  starting from **%d we add the 15/, quasineutrons sequen-
—J(PA)(w)/Qy’Z(w) defined in the principal-axi®A) frame  tially. The result shows thay, increases as the number of
(their concrete expressions were given in Rég]), depend aligned QPs increases. Since the |ncreas§(f‘§> is rather
on the eigenmode while the kinematicgh=(J,)/w,,  Moderate, the increase if, leads to that of the wobbling
where the expectation value taken with respect to the wholérequencyw,,q,. Thus, the change fron¥,<J, in j'k” to
system is common to all the modes. It should be noted thay,>.7, in 7, may be related qualitatively to the increase in
Eq. (2) coincides with the original expression fex,q, [3]if 7, stemming from the alignment that is not accounted for in
Jx and jﬁ”(w) are replaced with constant moments of in- the PRM, considering the fact that the alignment of particle
ertia. states leads te>0.
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FIG. 2. () Wobbling frequencyleft scalé and wobbling angléright) and(b) moments of inertia in the TSD2 band 1Lu as functions
of hw,y. Here the latter were given by normalized (31/2)=99.2:.2/MeV. The protonBC crossing occurs dt w,,;=0.55 MeV in the
calculation. Experimental values were calculated from the energy levels in [Redk.

At y~30°, whereJ, reaches its maximum as in the irro- dence. Its decrease is a consequence of thaj pthe partial
ta}tlonal model, we could not qbtam a wobbling solution. In contribution to.7, from the protoni g, iy/w, decreases
Fig. 1(b), fiwyop and the wobbling angle aswy increases since this orbital is already fully aligned and

G PR 5 therefore the aligned angular momentuyms approximately
Byop=tan * w‘ly (@won)|*+ |95 (@wop)| constant. Thus, our result fop,,, Stays almost constant
" (3w

againstw,y;, and even decreases slightly at higher frequen-
) ] . cies approaching the experimentally observed one. This
are graphed. This shows that,,, becomes imaginary and
Owob blows up in this region. Comparing Figsial and Xb),

clearly shows that microscopic calculation of the three mo-
_ _ ! i _ ments of inertia is crucial to understand thg,; dependence

it may be inferred that the wobbling motion excitation on a

mean field rotating about the axis becomes unstable &t

of wyep in *%3Lu. Let us compare this result with that for
~30° due toZ,< 7™ , and that a tilted-axis rotation would

YGd above. In *Gd, g% 7=~1, 7%~0, and
()0 < ° i
be realized. Putting this unstable region in between, the sd-Ql /Q3 °|<1 at y=20°. The last quantity measures the
lution in the largery side is like a precession of an axially

rotationalK-mixing. This indicates that this solution is essen-
symmetric body about theaxis, whereas that in the smaller-

tially similar to the y vibration in an axially symmetric
y side is like ay vibration around an axially symmetric nucleus as mentioned above. In contrast, the result that
shape about the axis.

J401.7,=0.90, 7M1 7,=0.19, and Q| )/Q% )| =0.78 for
Now we turn to the TSD bands if®3Lu. We chosee, 3 u at iw,=0.3 MeV, for example, indicates that this
=0.43,y=20°, andA,=A,=0.3 MeV, and obtained tran- solution is more like a wobbling motion of a triaxial body.
sition quadrupole moment®;=10.9-11.3eb for Zw,r  The wobbling angle shown in Fig.(@ is 19°—13° for the
=0.20-0.57 MeV in accordance with the dat@,=10.7

A dale - calculated range. It is evident that the present small-
+0.7 eb [18]. We have obtained for the first tim@side  gmplitude approximation holds better at high spins. We con-
from the theoretical simulation abovéihe wobbling solution

. 1 . ¢ firmed that this wobbling solution disappeared qasde-

in the RPA for positivey nuclei. Here it should be stressed creased. Another feature distinct from thevibration is that
that the inclusion of the five major shells and the alignmentpe present solution exists even/st=A,=0, whereas it is
effect of the protori 3, quasiparticle is essential for obtain- \ye|l known that the pairing field is indispensable for the
ing this result. In Fig. £a) the measured excitation energy of existence of low-lying shape vibrations. This is related to
the TSD2 band relative to that of the TSD1 and the calcuxch g tendency that the moments of inertia approach the

lated # w0, are shown. The most peculiar point in the ex- rigid ones, >, for y>0, as the pairing gap decreases
perimental data is thab,,, decreases as a function of;. even without aligned QPs.

If w,rindependent moments of inertia such as the irrota- p significant point of the data in Ref§7,8] is that the
tional ones are adopted),, increases linearly withoro:,  interband EM transition rates connecting the stategSD2)

see the comment below E(®). The wobbling frequency is 9| —1 (TSD1) were precisely measured. In Fig. 3, we com-
sensitive to the difference among the three moments of inefare our numerical results with the measured ones in a form
tia, and the ratios7{*"/ 7, and 7*"/ 7, actually determine similar to those in Refd7,8]. Calculated values fdr(TSD2)
wwon- FOr example, they-reversed moments of inertia give —|+1 (TSD1) are also included in order to show the stag-
Ty 1T"=0.43 andJ; "1 J,7=0.12 for y=20° leading to  gering behavior characteristic to this kind of transiti¢hg].
wywon= 3w, Which is quite different from the experimental Figure 3a) presents the relativB(E2). The data indicate
data. In contrast, as shown in Figbp, the three moments of huge collectivity of the interbanB(E2), such as 170 Weis-
inertia calculated microscopically depend op, even when  skopf unit. Although the present RPA solution is extremely
the shape parameters are fixed, and the resuliggt can  collective, |c, o =0.9 in the sum rul€Eq. (4.30 in Ref.
either increase or decrease in general. In the present case[a]), in comparison to usual low-lying vibrations, the calcu-
%3 uin Fig. 2, 7~ 7™ mainly determines the depen-  lation accounts for 1/2—1/3 of the measured strength. Figure

(4)
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FIG. 3. Interband transition rates fbtTSD2 — 1+ 1 (TSDJ) transitions as functions of’2 spinl, (a) E2 and(b) M1. They are divided
by the in-bandE2(l — | —2) transition rates. Experimental values were taken from 8&fNoting that the statels+ 1 (TSD1) are slightly
higher in energy thaih (TSD2) at|>51/2 andB(T, ;|—1+1)=B(T, ;| +1—1) at high spins, we plotted those fbr1+1 at the places
with the abscissak+ 1 in order to show clearly their characteristic staggering behavior.

3(b) graphsB(M1)/B(E2);,. The smallness dB(M1) also this nucleus. The appearance of the wobbling mode requires
reflects collectivity, that is, the coherence with respect to the7,> J(yeﬁ)(aﬁjgeﬁ)), but the moments of inertia of the even-
E2 operator, indirectly. Having confirmed the insensitivity to even core exhibit irrotational-likes dependence and, there-
g™ we adopted 0g{™® conforming to Ref[8] and cal-  fore, cannot fulfill this condition for positive- shapes. Con-
culatedB(M1). The result is similar to that of the PRM. We sequently, the alignment effect that increaggss necessary.
confirmed that the sign of th&2/M1 mixing ratios was Quenching of the pairing correlation also cooperates with the
correct. alignment effect for making the dependence rigidlike.

To summarize, we have performed, for the first time, the
RPA calculation in the rotating frame to the triaxial superde- We acknowledge useful discussions with I. Hamamoto
formed oddA nucleus'®3_u and discussed the physical con- and H. Madokoro. This work was supported in part by the
ditions for the appearance of the wobbling solution in theGrant-in-Aid for scientific research from the Japan Ministry
RPA. We have confirmed that the protop, alignment is  of Education, Science and Cultur@os. 13640281 and
indispensable for the appearance of the wobbling mode i1264028].
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