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Microscopic structure of high-spin vibrational excitations in superdeformed 190,192,194Hg
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Microscopic calculations based on the cranked shell model extended by the random-phase-approximation
are performed to investigate the quadrupole and octupole correlations for excited superdeformed bands in
190Hg, 192Hg, and194Hg. TheK52 octupole vibrations are predicted to be the lowest excitation modes at zero
rotational frequency. At finite frequency, however, the interplay between rotation and vibrations produces
different effects depending on neutron number: The lowest octupole phonon is rotationally aligned in190Hg, is
crossed by the aligned two-quasiparticle bands in192Hg, and retains theK52 octupole vibrational character up
to the highest frequency in194Hg. Theg vibrations are predicted to be higher in energy and less collective than
the octupole vibrations. From a comparison with the experimental dynamic moments of inertia, a new inter-
pretation of the observed excited bands invoking theK52 octupole vibrations is proposed, which suggests
those octupole vibrations may be prevalent in superdeformed Hg nuclei.@S0556-2813~96!05705-6#

PACS number~s!: 21.10.Re, 21.60.Jz, 27.80.1w
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I. INTRODUCTION

Theoretical and experimental studies of collective vib
tional states built on the superdeformed~SD! yrast band are
open topics of interest in the field of high-spin nuclear str
ture. Since the large deformation and rapid rotation of
bands may produce a novel shell structure, we expect
surface vibrations will exhibit quite different features fro
those found in spherical and normal-deformed nuclei. A
cording to our previous work@1–5#, low-lying octupole vi-
brations are more important than quadrupole vibrations w
the nuclear shape is superdeformed. Strong octupole cor
tions in SD states have been also suggested theoretical
Refs. @6–13#. Experimentally, octupole correlations in S
states have been suggested for152Dy @14#, 193Hg @15#, and
190Hg @16,17#. We have reported theoretical calculations c
responding to these data for193Hg @3# and 152Dy @5#. In this
paper, we discuss the quadrupole and octupole correlat
for 190Hg ~which have been partially reported in Refs.@17–
19#! and for the neighboring SD nuclei192,194Hg.

We have predicted the low-lyingK52 octupole vibra-
tions for SD Hg isotopes190,192,194Hg (Ex;1 MeV! @3,4#.
These predictions differ from the results of generat
coordinate-method~GCM! calculations@13# in which the
K50 octupole state is predicted to be the lowest in
192Hg and the excitation energies are significantly high
(Ex;2 MeV! than in our predictions. Experimentally@17#,
the Routhians of the lowest octupole state decrease with

*Electronic address: nakatsukasat@cr1.aecl.ca
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rotational frequency, for example, fromEx8'0.7 to 0.3 MeV
as\v rot goes from 0.25 to 0.35 MeV; therefore to compare
the theoretical Routhians directly with the experimenta
ones, we need to calculate them at finite rotational frequenc
For this purpose, the cranked shell model extended by th
random-phase approximation~RPA! provides us with a pow-
erful tool to investigate collective excitations at high angula
momentum.

A great advantage of this model is its ability to take into
account effects of the Coriolis coupling on the collective
vibrational motions in a rapidly rotating system. Since in the
normal-deformed nuclei it is known that Coriolis coupling
effects are important even for the 32 octupole states@20#,
one may expect strong Coriolis mixing for high-spin octu-
pole states built on the SD yrast band. On the other hand, o
previous calculations suggested weak Coriolis mixing for th
lowest octupole state in192Hg @3# and 152Dy @5#. This may
be because the angular momentum of the octupole phonon
strongly coupled to the symmetry axis due to the large de
formation of the SD shape. Generally speaking, Corioli
mixing is expected to occur more easily in nuclei with
smaller deformation. However, this expectation may not hol
for octupole bands in all SD nuclei because Coriolis mixing
depends on the shell structure. In this paper we find a si
nificant difference in the Coriolis mixing between an octu-
pole band in190Hg and the other bands.

Another advantage of this model is that it gives us a uni
fied microscopic description of collective states, weakly col
lective states, and noncollective two-quasiparticle excita
tions. A transition of the octupole vibrations into aligned
two-quasiparticle bands at high spin in normal-deformed nu
2213 © 1996 The American Physical Society
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2214 53NAKATSUKASA, MATSUYANAGI, MIZUTORI, AND SHIMIZU
clei has been predicted by Vogel@21#. In Ref. @19#, this
transition is discussed in the context of experimental data
rare-earth and actinide nuclei, and a damping of octup
collectivity at high spin was suggested. Since similar ph
nomena may happen to octupole vibrations in SD states,
important that our model describe the interplay between c
lective and noncollective excitations.

Recent experimental studies reveal a number of inter
ing features of excited SD bands in even-even Hg isotop
In 190Hg, almost constant dynamic moments of inert
J (2), have been observed by Crowellet al. @16#. Reference
@17# has established the relative excitation energy of t
band and confirmed the dipole character of the decay tra
tions into the yrast SD band. This band has been interpre
as an octupole vibrational band. Two more excited band
190Hg have been observed recently by Wilsonet al. @18#, one
of which shows a sharp rise ofJ (2) at low frequency. In
192Hg, Fallon et al. @22# have reported two excited band
which exhibit peaks inJ (2) at high frequency. In contras
with these atypicalJ (2) behaviors, two excited bands i
194Hg originally observed by Rileyet al. @23# and extended
by Cederwallet al. @24# show a smooth increase with rota
tional frequency. We show in this paper that thisJ (2) be-
havior can be explained with a single theoretical mod
which microscopically takes into account shape vibratio
and the Coriolis force.

The purpose of this paper is to present the RPA meth
based on the cranked shell model and its ability to describ
variety of nuclear properties including shape vibrations
large deformation and high spin. We propose a plaus
interpretation for the microscopic structure of excited S
bands in190,192,194Hg, and show that octupole bands may
more prevalent than expected in these SD nuclei. Sectio
presents a description of the model, in which we stress
improvements to the cranked Nilsson potential and to
coupled RPA method in a rotating system. Section III p
sents details of the calculation in which the pairing and
fective interactions are discussed. The results for the exc
SD 190Hg, 192Hg, and 194Hg are presented in Sec. IV, an
compared with the experimental data in Sec. V. The conc
sions are summarized in Sec. VI.

II. THEORETICAL FRAMEWORK

The theory of the cranked shell model extended by
random-phase approximation~RPA! was first developed by
Marshalek@25# and has been applied to high-spinb andg
vibrational bands@26–28# and to octupole bands@29,1–5#.
Since this theory is suitable for describing the collective
brations built on deformed high-spin states, it is very use
for investigating vibrational motion built on the SD yra
band.

A. Cranked Nilsson potential with the local Galilean
invariance

We start with a rotating mean field with a rotational fr
quencyv rot described by

hs.p.5hNilsson1Gpair2v rotJx1hadd, ~2.1!
on
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where hNilsson is a standard Nilsson potential defined in
single-stretched coordinates r i85(v i /v0)

1/2r i and
pi85(v0 /v i)

1/2pi ( i5x,y,z),

hNilsson5 (
i5x,y,z

S v i

v0
D S pi8 22M

1
Mv0

2

2
r i8

2D 1v l l ~ l8
22^ l82&N!

1v lsl8•s, ~2.2!

wherel85r 83p8. The pairing fieldGpair is defined by

Gpair52 (
t5n,p

Dt~Pt
†1Pt!2 (

t5n,p
ltNt , ~2.3!

where Pt5(kPt,k.0c k̄ck and Nt5(kPtck
†ck are the

monopole-pairing and number operators, respectively.
Sec. III A, we discuss the details of the pairing field used
the calculations.

A standard cranked Nilsson potential has the disadvanta
that it overestimates the moments of inertia compared to
Woods-Saxon potential. This problem comes from the sp
rious velocity dependence associated with thel2 term in the
Nilsson potential which is absent for Woods-Saxon potentia
If the mean-field potential is velocity independent, the loca
velocity distribution in the rotating nucleus remains isotropi
in velocity space, which means that the flow pattern becom
the same as for a rigid-body rotation@30#. However, in the
cranked Nilsson potential, this isotropy of the velocity distri
bution is significantly broken due to thel2 term. Thus the
Coriolis force introduces a spurious flow in the rotating co
ordinate system, proportional to the rotational frequenc
This spurious effect can be compensated by an addition
term that restores the local Galilean invariance. This add
tional term is obtained by substituting~the local Galilean
transformation!

p→p2M ~vrot3r !, ~2.4!

in the ls and l2 terms of the Nilsson potential. This prescrip
tion was suggested by Bohr and Mottelson@30#, and devel-
oped by Kinouchi@31#. For a momentum-dependent poten
tial V(r ,p),

V~r ,p!1hadd5V„r ,p2M ~vrot3r !… ~2.5!

'V~r ,p!2v rotM S y ]

]pz
2z

]

]py
DV~r ,p!

~2.6!

5V~r ,p!1
i

\
v rotM ~y@z,V#2z@y,V# !,

~2.7!

where we assume uniform rotation around thex axis,
v rot5(v rot,0,0). Following this prescription, the additiona
term hadd in Eq. ~2.1! is obtained for the Nilsson potential
~2.2!,
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hadd52
v rot

Avyvz
H v l l F2Mv0r 8

22\SNosc1
3

2D G l x8
1v lsMv0@r 8

2sx2r x8~r 8•s!#J . ~2.8!

Note that the term proportional to (Nosc13/2) in Eq. ~2.8!
comes from the velocity dependence of^ l82&N in Eq. ~2.2!.
This result, Eq.~2.8!, has been applied to the SD bands
152Dy @5# where the single-particle Routhians were found
be very similar to those obtained by using the Woods-Sa
potential. In Fig. 1, moments of inertia for SD152Dy calcu-
lated with and without the additional term~2.8! are dis-
played. Since the effects of the mixing among the ma
oscillator shells Nosc are neglected in calculating ou
Routhians, kinematic (J (1)) and dynamic (J (2)) moments
of inertia are obtained by adding the contributions of t
Nosc-mixing effects to the values calculated without them

J ~1!5
^Jx&
v rot

1
1

v rot
E
0

vrot
DJ Inglis~v!dv

'
^Jx&
v rot

1DJ Inglis , ~2.9!

J ~2!5
d^Jx&
dv rot

1DJ Inglis , ~2.10!

DJ Inglis5J Inglis2J Inglis
DN50

52 (
n~DN52!

u^nuJxu0&u2

En2E0
, ~2.11!

FIG. 1. Kinematic~solid lines! and dynamic~dashed lines! mo-
ments of inertia for SD152Dy calculated in the cranked Nilsso
Hamiltonian with ~thick lines! and without ~thin lines! the addi-
tional termhadd in Eq. ~2.8!. The rigid-body and the Inglis moment
of inertia are shown by dash-dotted and dotted lines, respectiv
The parameters used in the calculation are the same as those u
Ref. @5# and pairing correlations are neglected. Symbols are exp
mentalJ (2) taken from Ref.@14#.
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whereDJ Inglis is difference between the Inglis moments of
inertia with and without theDNosc52 contributions@32#.
DJ Inglis(v) turned out to be approximately constant agains
frequencyv and this was used in the last step of Eq.~2.9!.
TheJ (1) andJ (2) values calculated with the additional term
are very close to the rigid-body value at low frequency
which means that the spurious effects of thel2 term have
been removed. Note that the abscissa of Fig. 1 correspon
to the ‘‘bare’’ rotational frequency without renormalization.
The drastic reduction ofJ (1) andJ (2) at high frequency is
corrected by the additional term, and this is seen to be im
portant in reproducing the experimentalJ (2) behavior of the
yrast SD band.

B. RPA in the rotating frame

The residual interactions are assumed to be in a separa
form

H int52
1

2 (
r,a

xrRr
aRr

a , ~2.12!

whereRr
a are one-body Hermitian operators, andxr are cou-

pling strengths. The indicesa indicate the signature quantum
numbers (a50,1) andr specifies other modes. In this paper,
we take asRr

a the monopole pairing and the quadrupole op
erators for positive-parity states, and the octupole and th
isovector dipole operators for negative-parity states@see Eq.
~3.5!#. Since theK quantum number is not conserved at finite
rotational frequency, it is more convenient to make the mu
tipole operators have good signature quantum numbers.
general, the Hermitian multipole~spin-independent! opera-
tors with good signature quantum numbers are constructe
by

QlK
a 5

i l1a1K

A2~11dK0!
@r lYlK1~2 !l1ar lYl2K#, ~2.13!

with K>0, where the spherical-harmonic functionsYlK are
defined with respect to the symmetry (z) axis. All multipole
operators are defined in doubly stretched coordinate
@r i95(v i /v0)r i #, which can be regarded as an improved ver
sion of the conventional multipole interaction. Sakamoto an
Kishimoto @33# have shown that at the limit of the harmonic-
oscillator potential~at v rot50), it guarantees nuclear self-
consistency@30#, restoration of the symmetry broken in the
mean field, and separation of the spurious solutions. Th
coupling strengthsxr should be determined by the self-
consistency condition between the density distribution an
the single-particle potential~see Sec. III B for details!.

To describe vibrational excitations in the RPA theory, we
must define thequasiparticle vacuumon which the vibra-
tions are built. The observed moments of inertia,J (2), of the
yrast SD bands smoothly increase in theA5190 region,
which suggests that the internal structure also smooth
changes as a function of the frequencyv rot . Therefore the
adiabatic representation, in which the quasiparticle opera-
tors are always defined with respect to the yrast sta
uv rot&, is considered to be appropriate in this work.
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2216 53NAKATSUKASA, MATSUYANAGI, MIZUTORI, AND SHIMIZU
In terms of quasiparticles, the Hamiltonian of Eq.~2.1!
can be diagonalized~by the general Bogoliubov transforma
tion! as

hs.p.5const1(
m

~Emam
†am!1(

m̄
~Em̄am̄

†am̄!, ~2.14!

with

amuv rot&5am̄uv rot&50, ~2.15!

where (am
† ,am̄

† ) represent the quasiparticles with signatu
a5(1/2,21/2), respectively. The excitation operators of t
RPA normal modesXn

a† (a50,1) are defined by

Xn
0†5(

m n̄
$cn

0~mn̄!am
†a n̄

†1wn
0~mn̄!a n̄am%, ~2.16!

Xn
1†5 (

m,n
$cn

1~mn!am
†an

†1wn
1~mn!anam%

1 (
m̄, n̄

$cn
1~m̄n̄ !am̄

†a n̄
†1wn

1~m̄n̄ !a n̄am̄%, ~2.17!

where indices n specify excited states andcn
a(mn)

@wn
a(mn)# are the RPA forward@backward# amplitudes.

Quasiparticle-scattering terms such asam
†an are regarded as

higher-order terms in the boson-expansion theory and
neglected in the RPA.1

The equation of motion and the normalization conditi
in the RPA theory,

@hs.p.1H int ,Xn
a†#RPA5\Vn

aXn
a†, ~2.18!

@Xn
a ,Xn8

a †#RPA5dnn8, ~2.19!

are solved with the following multidimensional respon
functions:

Srr8
a

~V!5(
gd

H Rr
a~gd!*Rr8

a
~gd!

Eg1Ed2\V
1
Rr

a~gd!Rr8
a

~gd!*

Eg1Ed1\V
J ,

~2.20!

where (gd)5(mn̄ ) for a50 states, and (gd)
5(m,n),(m̄, n̄ ) for a51 states. The two-quasiparticl
matrix elements Rr

a(gd) are defined by Rr
a(gd)

[^v rotuadagRr
auv rot&. Let us denote the transition matrix e

ements between the RPA excited statesun& and the yrast
state as

tr
a~n![tn@Rr

a#[^v rotuRr
aun&

5^v rotu@Rr
a ,Xn

a†#uv rot&

5@Rr
a ,Xn

a†#RPA. ~2.21!

Then, the equation of motion~2.18! is equivalent to

1In the following, the notation@A,B#RPA means that we neglec
these higher-order terms in calculating the commutator betweeA
andB.
-

re
e

are

n

e

-

tr
a~n!5(

r8
xr

aSrr8
a

~V!tr8
a

~n!. ~2.22!

RPA solutions~eigenenergies! \Vn are obtained by solving
the equation

detSSrr8
a

~V!2
1

xr
drr8D50, ~2.23!

which corresponds to the condition that Eq.~2.22! have a
nontrivial solution@ tr

a(n)Þ0#. Each RPA eigenstate is char
acterized by the corresponding forward and backward am
tudes which are calculated as

cn
a~gd!5

(rxr
atr

a~n!Rr
a~gd!

Eg1Ed2\Vn
, ~2.24!

wn
a~gd!5

2(rxr
atr

a~n!Rr
a~gd!*

Eg1Ed1\Vn
, ~2.25!

and satisfies the normalization condition~2.19!. The transi-
tion matrix elementŝv rotuQun& of any one-body operator
Q can be expressed in terms of these amplitudescn and
wn :

tn@Q#[^v rotuQun&

5(
gd

$Q~gd!*cn~gd!2Q~gd!wn~gd!%.

~2.26!

The phase relation between the matrix elementsQ(gd) and
the amplitudes„cn(gd),wn(gd)… is very important, because
it determines whether the transition matrix elementtn@Q# is
coherently enhanced or canceled out after the summatio
Eq. ~2.26!. For instance, a collective quadrupole vibration
state has a favorable phase relation for the quadrupole op
tors. Therefore, it gives large matrix elements for theE2
operators, while for theM1 operators, the contributions ar
normally canceled out after the summation.

Finally we obtain a diagonal form of the total Hami
tonian in the rotating frame by means of the RPA theory,

H85hs.p.1H int'E081(
n,a

\Vn
aXn

a†Xn
a , ~2.27!

whereE08 corresponds to the Routhians for the yrast config
ration. Since we are interested in the relative excitation
ergy between excited states and the yrast state,E08 need not
be explicitly calculated. It is worth noting that since the e
fect of the cranking term on the quasiparticles depends
rotational frequency, the effects of Coriolis coupling on t
RPA eigenstates are automatically taken into account.

III. DETAILS OF CALCULATIONS

A. Mean-field parameters
and the improved quasiparticle Routhians

We adopt standard values for the parametersv l l andv ls
@34# and use different values of the oscillator frequencyv0

n
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for neutrons and protons in the Nilsson potential~2.2! in
order to ensure equal root-mean-square radii@35#:

v0→H S 2NA D 1/3v0 for neutrons,

S 2ZA D 1/3v0 for protons,

~3.1!

where\v0541A21/3 MeV.
The quadrupole deformatione is determined by minimiz-

ing the total Routhian surface~TRS!, and the strength for the
monopole pairing interactionG is taken from the prescrip-
tion of Ref. @36# with the average pairing gapD̃512A21/2

MeV and the cutoff parameter of the pairing model spa
L51.2\v0 . In principle the pairing gaps (Dn ,Dp) and the
chemical potentials (ln ,lp) should be calculated self
consistently satisfying the usual BCS conditions at each
tational frequency:

Gt^v rotuPtuv rot&5Dt , ~3.2!

^v rotuNtuv rot&5N~Z!, ~3.3!

with t 5(n,p). However, the mean-field treatment of th
pairing interaction predicts a sudden collapse of the pro
pairing gap at\v rot'0.3 MeV and of the neutron gap a
\v rot'0.5 MeV. This transition causes a singular behav
in the moments of inertia which is inconsistent with expe
mental observations. It arises from the poor treatment
number conservation, and such sudden transitions should
occur in a finite system like the nucleus. In this paper
have therefore adopted the following phenomenological p
scription for the pairing correlations at finite frequency@37#:

Dt~v!5H Dt~0!F12
1

2 S v

vc
D 2G for v,vc ,

1

2
Dt~0!S vc

v D 2 for v.vc .
~3.4!

The chemical potentials are calculated with Eq.~3.3! at each
rotational frequency. The parametersD(0)50.8 ~0.6! MeV
and\vc50.5 ~0.3! MeV for neutrons~protons! are used in
common for 190,192,194Hg.

The quadrupole deformatione50.44 is used in the calcu
lations. For simplicity, we assume the deformation to be c
stant with rotational frequency, and neglect hexadecap
deformation.2 The equilibrium deformation and pairing gap
have been determined atv rot50, with the truncated pairing
model spaceL51.2\v0 . Then, the pairing force strength
Gt are adjusted so as to reproduce the pairing gap of
~3.4! in the whole model space.

The experiments@16,17# have reported a sharp rise o
J (2) moments of inertia for the yrast SD band in190Hg at
\v rot'0.4 MeV. This rise was reproduced in the crank

2Possible errors caused by this simplification will not affect o
conclusion because the property of collective RPA solutions un
consideration may be insensitive to such details~see also discus-
sions in Sec. IV A!.
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Woods-Saxon calculations@38# and results from a crossin
between the yrast band and the alignedn( j 15/2)

2 band; how-
ever, the predicted crossing frequency was low
(\v rot'0.3 MeV! than in the experiment. Our Nilsson po
tential without the additional term~2.8! indicates the same
disagreement. In order to demonstrate the effects of the t
hadd on the Routhians, we present in Fig. 2 the quasipart
Routhians for 190Hg with hadd, without hadd, and for the
standard Woods-Saxon potential (b250.465, b450.055).
By includinghadd, the correct frequency is reproduced. Th
term affects the proton Routhians: For example, the ali
ment of the intruderp j 15/2(a521/2) orbit is predicted to be
i'6.5\ without hadd and this orbit becomes the lowest
\v rot>0.37 MeV. The alignment is significantly reduce
( i'4\) with hadd. The behavior of high-N intruder orbits in
the proton Routhians is similar to that in the Woods-Sax
potential. It is worth noting that the conventional renorm
ization in the Nilsson potential scales the rotational f
quency for all orbits, while Eq.~2.8! renormalizes alignmen
in a different way depending on the spurious effect on e
orbit.

r
er

FIG. 2. Quasiparticle Routhians for neutrons~left! and protons
~right! in 190Hg. The top parts show the Routhians in the Nilss
potential without the additional termhadd, the middle for those with
hadd, and the bottom for those in the Woods-Saxon potential w
the ‘‘universal’’ parameters. Solid, dashed, dotted, and dash-do
lines correspond to quasiparticles with (p,a)5(1,21/2),
(1,1/2), (2,21/2), and (2,1/2), respectively. See text for detail
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B. Residual interactions and the RPA

We adopt the following operators asRr
a in the residual

interactions~2.12!:

P1 P2 Q20
0 Q21

a Q22
a for p51 ,

Q30
1 Q31

a Q32
a Q33

a t̃3Q10
1 t̃3Q11

a for p52 ,
~3.5!

where t̃35t32(N2Z)/A which is needed to guarantee th
translational invariance. Here, the operatorsQlK

a are defined
by Eq.~2.13! in the doubly stretched coordinates, andP6 are
defined by

P15
1

A2
~ P̃1 P̃†!, ~3.6!

P25
i

A2
~ P̃2 P̃†!, ~3.7!

whereP̃5P2^v rotuPuv rot&. Note that theK50 quadrupole
~octupole! operatorQ20 (Q30) has a unique signaturea50
(a51), which corresponds to the fact thatK50 bands have
no signature partners.

Since we use the different oscillator frequencyv0 for
neutrons and protons in the Nilsson potential@see Eq.~3.1!#,
we use the following modified doubly stretched multipo
operators for the isoscalar channels:

QlK
a →H S 2NA D 2/3QlK

a for neutrons,

S 2ZA D 2/3QlK
a for protons.

~3.8!

This was originally proposed by Baranger and Kumar@35#
for quadrupole operators. Recently Sakamoto@39# has gen-
eralized it for an arbitrary multipole operator and proved th
by means of this scaling the translational symmetry is r
stored in the limit of the harmonic-oscillator potential. I
addition, for the collective RPA solutions this treatme
makes the transition amplitudes of the electric operators
proximatelyZ/A of those of the mass operators, in the sam
way as in the case of the static quadrupole moments@28#.

We use the pairing force strengthsGt reproducing the
pairing gaps of Eq.~3.4!. For the isovector dipole coupling
strengths, we adopt the standard values in Ref.@30#,

x1K52
pV1

A^~r 2!9&0
, ~3.9!

with A^(r 2)9&05^(k
A(r k

2)9&0 and V15130 MeV. The self-
consistent values for the coupling strengthsxlK of the iso-
scalar quadrupole and octupole interactions can be obtai
for the case of the anisotropic harmonic-oscillator potent
@33,39#:
e
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x2K
HO5

4pMv0
2

5A^~r 2!9&
, ~3.10!

x3K
HO5

4p

7
Mv0

2$A^~r 4!9&1 2
7 ~42K2!A^~r 4P2!9&

1 1
84 @K2~7K2267!172#A^~r 4P4!9&%

21,

~3.11!

with

A^~r nPl !&[S 2NA D 2/3K (
k

N

~r k!
nPl L

0

1S 2ZA D 2/3K (
k

Z

~r k!
nPl L

0

. ~3.12!

A large model space has been used for solving t
coupled RPA equations, including seven major shells w
Nosc53–9~2–8! for neutrons~protons! in the calculations of
positive-parity states, and nine major shells wit
Nosc52–10~1–9! for the negative-parity states. The mesh o
the rotational frequency for the calculations has been cho
asD\v rot50.01 MeV which is enough to discuss the prop
erties of band crossing and Coriolis couplings.

Since our mean-field potential is not the simple harmon
oscillator, we use scaling factorsf l as

xlK5 f lxlK
HO, ~3.13!

for the isoscalar interactions withl52 and 3. These factors
are determined by the theoretical and experimental requ
ments: As for the octupole interactions, we have the expe
mental Routhians for the lowest octupole vibrational state
SD 190Hg @17#. We assume the common factorf 3 for all K
values and fix it so as to reproduce these experimental d
In this casef 351 can nicely reproduce the experimenta
Routhians,3 and we use the same value for192Hg and
194Hg. For the quadrupole interactions, we determine it so
to reproduce the zero-frequency~Nambu-Goldstone! mode
for K51 atv rot50 and use the same value forK50 and 2.
f 251.007, 1.005, and 1.005 are obtained for190Hg, 192Hg,
and 194Hg, respectively, by using the adopted model spac
The fact that these values off l are close to unity indicates
that the size of the adopted model space is large enough

According to systematic RPA calculations for the low
frequencyb, g, and octupole states in medium-heavy d
formed nuclei, we have found that the values off l reproduc-
ing the experimental data are very close to unity for th
Nambu-Goldstone mode, theg and octupole vibrational
states. On the other hand, those values are quite differ
from unity for theb vibrational states. This may be assoc
ated with the simplicity of the monopole pairing interaction

3This value depends on the treatment of the pairing gaps at fin
frequency. If we use constant pairing gaps againstv rot , we get the
best valuef 351.05.
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Since we cannot find the realistic force strengthx20 for SD
states, we do not discuss the property of theb vibrations in
this paper.

IV. RESULTS OF NUMERICAL CALCULATIONS

A. Quasiparticle Routhians

In this section we present calculated quasipartic
Routhians in the improved cranked Nilsson potential and d
cuss their characteristic feature. In Fig. 3 we compare t
neutron quasiparticle Routhians for190,192,194Hg. The proton
Routhians of190Hg are shown above in Fig. 2 and are almo
identical for 192Hg and 194Hg.

FIG. 3. Neutron quasiparticle Routhians in the Nilsson potent
with hadd for SD

190,192,194Hg. See text and caption to Fig. 2 for
details.
le
is-
he

st

The calculations show the strong interaction strength be
tween thep~@642 5/2#)2 configuration~for simplicity we de-
note these orbits byp61 andp62 in the following! and the
yrast configuration which may contribute to the smooth in-
crease of the yrastJ (2) moments of inertia. On the other
hand, the interaction ofn @761 3/2# orbits (n71 andn72 in
the following! strongly depends on the chemical potential
~neutron number!: The interaction is strongest in194Hg, and
weakest in190Hg. This is qualitatively consistent with the
experimental observation of the yrastJ (2) moments of iner-
tia and the experimental quasiparticle Routhians in
191,193Hg @40,41#.
The characteristic features of the high-N intruder orbits

are similar to those of the Woods-Saxon potential, except th
alignments ofn71 and n72 orbits which are, respectively,
i'3\ and 2\ in ours while i'4\ and 3\ in the Woods-
Saxon potential. This results in the different crossing fre-
quency between the ground band and then( j 15/2)

2 band, as
discussed in Sec. III A. The observed crossing in190Hg and
the quasiparticle Routhians in191,193Hg seem to favor our
results. There are some other minor differences concernin
the position of each orbit in the Nilsson and in the Woods-
Saxon potential. However, these differences do not serious
affect our main conclusions because the collective RPA so
lutions are not sensitive to the details of each orbit.

B. Octupole vibrations

Here, we discuss the negative-parity excitations in SD
190,192,194Hg. We have solved the RPA dispersion equation
~2.23! and have obtained all low-lying solutions (Ex8<2
MeV!. The excitation energies and theB(E3) values calcu-
lated atv rot50 are listed in Table I. This result shows that
K52 octupole states are the lowest for these Hg isotope
which is consistent with our previous results@3,4#. The
B(E3;01→32,K) are calculated by using the strong cou-
pling scheme@30# neglecting effects of the Coriolis force.
Absolute values ofB(E3)’s cannot be taken seriously be-
cause they depend on the adopted model space and are v
sensitive to the octupole coupling strengthsx3K : For in-
stance, if we usef 351.05 instead off 351 in Eq.~3.13!, the
B(E3) increase by about factor of 2 while the reduction of
their excitation energy is about 15%. In addition, the effects
of the Coriolis coupling tend to concentrate theB(E3)
strengths onto the lowest octupole states@20#.

At v rot50, the lowestK52 octupole states exhibit almost
identical properties in190,192,194Hg. However, they show dif-
ferent behavior as functions ofv rot as shown in Figs. 4, 5,
and 6, respectively. All RPA solutions, including noncollec-
tive solutions as well as collective vibrational ones, are pre
sented in these figures. The size of the circle on the plo
indicates the magnitude of theE3 transition amplitudes be-

ial
3

TABLE I. Calculated excitation energies of octupole vibrations andB(E3;01→32,K) values estimated
using the strong coupling scheme for SD190,192,194Hg.

190Hg 192Hg 194Hg
K50 K51 K52 K53 K50 K51 K52 K53 K50 K51 K52 K53

E @MeV# 1.37 1.45 1.20 1.52 1.55 1.58 1.18 1.53 1.83 1.62 1.14 1.5
B(E3)/B(E3)s.p. 6.6 11.9 10.0 1.0 7.6 10.1 10.1 0.8 11.5 11.2 10.2 0.7
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tween a RPA solution and the yrast state.
The (K,a)5(2,1) octupole state in190Hg has significant

Coriolis mixing and the octupole phonon is aligned along th
rotational axis at higher frequency. This is caused by t
relatively close energy spacing between theK52 and the
K50,1 octupole states in this nucleus. These low-K mem-
bers of the octupole multiplet are calculated to lie muc
higher in 192Hg and 194Hg, which reduces the Coriolis mix-
ing in these nuclei. As a result of these phonon alignmen
the experimental Routhians for band 2 in190Hg are nicely
reproduced by the lowesta51 octupole state. It should be
emphasized that although the excitation energy at one f
quency point can be obtained by adjusting the octupole-fo

FIG. 4. Calculated RPA eigenenergies of negative-parity sta
for SD 190Hg, plotted as functions of rotational frequency. Ope
~solid! circles indicate states with signaturea50 (a51). Large,
medium, and small circles indicate RPA solutions withE3 transi-
tion amplitudes ((Ku^nuQ3K

e uv rot&u2)1/2 larger than 200e fm3, larger
than 100e fm3, and less than 100e fm3, respectively. Note that
Routhians for the yrast SD band correspond to the horizontal a
(Ex850). The observed Routhians for band 2@17# are shown by
open squares.

FIG. 5. The same as Fig. 4, but for192Hg.
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strengths, the agreement over the whole frequency region
not trivial.

Since there is noK50 octupole state in the signature
a50 sector, the Coriolis mixing is much weaker for the
lowest (K,a)5(2,0) octupole state. The calculation predicts
that this state is crossed by the negative-parity two
quasiparticle bandn(71^ @642 3/2#)a50 at \v rot'0.27
MeV.

In 192Hg, the same kind of crossing is seen for both sig
nature partners of theK52 octupole bands. We can clearly
see, for the lowest excited state in each signature sector, t
transition of the internal structure from collective octupole
states ~large circles in Fig. 5! to noncollective two-
quasineutron states~small circles!. The two-quasineutron
configurations which cross the octupole vibrational band
are 71^ @642 3/2#(a521/2) for a51 and 71
^ @642 3/2#(a51/2) for a50. The crossing frequency is
lower for thea51 band due to signature splitting of then
@642 3/2# orbits.

In contrast to 190,192Hg, the K52 octupole bands in
194Hg indicate neither the signature splitting nor the cross
ings. The Routhians are very smooth up to the highest fre
quency. This is because the neutron orbits 71 and 72 have a
‘‘hole’’ character and their interaction strengths with the
negative-energy orbits become larger with increasing neu
tron numbers~see Fig. 3!. Therefore these orbits go to higher
energy and the energies of the two-quasiparticle band
n(71^ @642 3/2#) never become lower than theK52 octu-
pole bands even at the highest frequency.

These properties of theK52 octupole vibrations come
from the effects of the Coriolis force and from the chemical-
potential dependence of the aligned two-quasiparticle band
In order to reproduce these rich properties of the collectiv
vibrations at finite frequency, a microscopic model, which
can describe the interplay between the Coriolis force and th
correlations of shape fluctuations, is needed.

C. g vibrations

In this section we present results for theg-vibrational
states built on the SD yrast band. As mentioned in Sec. III B
we do not discuss the property of theb band since it is

tes
n

xis

FIG. 6. The same as Fig. 4, but for194Hg.
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difficult to determine a reliable value of the coupling streng
x20 for theK50 channel of the quadrupole interaction.

The properties ofg bands atv rot50 are listed in Table II.
The excitation energies ofg vibrations are predicted to be
higher than theK52 octupole vibrations by 200–350 keV. I
is known that calculations using the full model space cons
erably overestimate theB(E2) values. In Ref.@28#, it has
been shown that the three-Nosc-shell calculation reproduce
the experimental values very well. If we use the model sp
Nosc55–7 ~4–6! for neutrons~protons!, then theB(E2) val-
ues in the table decrease by about factor of 1/3. The col
tivity of the g vibrations turns out to be very weak in thes
SD nuclei.

Figures 7, 8, and 9 illustrate the excitation energy ofg
vibrations as functions of the rotational frequency f
190Hg, 192Hg, and194Hg, respectively. The unperturbed two
quasiparticle Routhians are also depicted by solid~neutrons!
and dashed~protons! lines. Since theK quantum number is
not a conserved quantity at finite rotational frequency,
have defined the solutions with the largeK52 E2 transition
amplitude as theg vibrations. As seen in the figure, they los

TABLE II. Calculated excitation energies ofg vibrations and
B(E2;01→21,K52) values estimated using the strong coupli
scheme for SD190,192,194Hg.

190Hg 192Hg 194Hg

E @MeV# 1.39 1.50 1.45
B(E2)/B(E2)s.p. 2.7 3.0 3.8

FIG. 7. Calculated RPA eigenenergies forg vibrational states
for SD 190Hg, plotted as functions of rotational frequency. Th
lower part is for the signaturea50 Routhians and the upper for th
a51. Large solid, small solid, and small open circles indicate
g vibrational states whoseK52 E2 amplitudesu^nuQ22

e uv rot&u are
larger than 20e fm2, larger than 10e fm2, and less than 10e fm2,
respectively. The unperturbed two-quasineutron~two-quasiproton!
Routhians are also shown by solid~dashed! lines.
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their vibrational character by successive crossings with m
two-quasiparticle bands and become the dominant
quasiparticle states at high frequency. The reduction of
lectivity is more rapid for thea50 g vibrations, because th
two-quasiparticle states come down more quickly in
a50 sector. Similar crossings occur for theK52 octupole
bands in192Hg ~see Fig. 5!; however, the crossing frequen
is much higher than that of theg bands. This is because t
excitation energies of the octupole bands are relatively lo
than those of theg bands. The predicted properties ofg
vibrations are different from those in Ref.@42#.

In the frequency region (0.15<\v rot<0.4 MeV! where
the excited SD bands are observed in experiments, tg

g

e

e

FIG. 8. The same as Fig. 7, but for192Hg.

FIG. 9. The same as Fig. 7, but for194Hg.
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TABLE III. The lowest and the second lowest configurations at\v rot50.4 MeV in each parity sector.
The proposed assignments of the observed excited SD bands are also shown. The excitation energies of
negative-parity two-quasineutron states, 256 keV for190Hg and 441 and 632 keV for192Hg, contain very
weak octupole correlations. The corresponding unperturbed two-quasineutron energies are 261, 460, and 6
keV, respectively.

p51 p52

Lowest Second Lowest Second

190Hg Ex8 @keV# 113 389 '0 256
Config. n(71^72)a50 n(71^ @505 11/2#)a50,1 (oct. vib.)a51 n(71^ @642 3/2#)a50

Expt. Band 3 Band 2 Band 4

192Hg Ex8 @keV# 611 611 441 632
Config. n(71^ @512 5/2#)a51 n(71^ @512 5/2#)a50 n(71^ @642 3/2#)a51 n(71^ @642 3/2#)a50

Expt. Band 2 Band 3

194Hg Ex8 @keV# 857 892 738 759
Config. n(@514 7/2#)a50

2 p(@530 1/2#)a50
2 (oct. vib.)a50 (oct. vib.)a51

Expt. Band 2 Band 3
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bands are predicted to be higher than both theK52 octupole
bands and the lowest two-quasiparticle states. Therefore
perimental observation of theg vibrations is expected to be
more difficult than that of the octupole bands.

V. COMPARISON WITH EXPERIMENTAL DATA

In this section, we compare the results obtained in t
previous section with the available experimental data for t
excited SD bands in190,192,194Hg. The Routhians relative to
the yrast SD band have been observed only for band 2
190Hg and the comparison with our calculated Routhians h
been done in the Sec. IV B. The excitation energies of t
other bands are not known. Therefore, in order to comp
our theory with experimental data, we have calculated t
dynamic moments of inertia,J (2).

It is known that the effects ofNosc mixing, pairing fluc-
tuations, and higher-multipole pairing are important in repr
ducing absolute magnitude of the moments of inertia. On
other hand, our model aims at describing relative quantit
~excitation energy, alignment, etc.! between the excited and
yrast bands. Thus, instead of directly calculatingJ (2) in
terms of Eq.~2.10!, we decompose theJ (2) of the excited
bands as

J ~2!~v!5J 0
~2!~v!1

di

dv
5J 0

~2!~v!2
d2Ex8

dv2 , ~5.1!

whereJ 0
(2) denotes the dynamic moments of inertia for th

yrast SD bands~RPA vacuum!, and i andEx8 are the calcu-
lated alignments and Routhians relative to the yrast ba
respectively. TheJ 0

(2) values of the yrast SD bands are take
from the experiments and approximated by the Harris exp
sion,

J 0
~2!~v!5J013J1v

215J2v
4. ~5.2!

The expression~5.1! phenomenologically takes account o
the effects mentioned above. Those effects are included
the experimentalJ 0

(2) of Eq. ~5.2!.
ex-

he
he

in
as
he
are
he

o-
the
ies

e

nd,
n
an-

f
in

The lower the excitation energy of an excited band rel
tive to the yrast SD band, the more strongly will it be popu
lated. In experiments, the SD bands are populated at h
frequency; thus, it is the excitation energy in the feedin
region at high frequency that is relevant in this problem. W
list in Table III the calculated excitation energies of the low
lying positive- and negative-parity states at\v rot50.4 MeV.

In 190Hg three excited SD bands~bands 2, 3, and 4! have
been observed@16–18#. Band 2 has been assigned as th
lowest octupole band@16,17# because of its strong decays
into the yrast SD band. According to our calculations, i
addition to this octupole band (a51), the aligned two-
quasineutron bands come down at high frequency. We ass
band 4 at high frequency as then(71^ @642 3/2#)a50 be-
cause this negative-parity two-quasineutron state is cross
by the a50 octupole band at\v rot'0.26 MeV which
may correspond to the observed sharp rise ofJ (2)

at \v rot'0.23 MeV ~Fig. 4!. The positive-parity
n(71^72)a50 state is also relatively low lying at high fre-
quency. Since this band does not show any crossing
\v rot.0.12 MeV in the calculations, this may be a goo
candidate for band 3~Fig. 7!.

In 192Hg, two excited SD bands~bands 2 and 3! have
been observed@22# and both bands exhibit a bump inJ (2) at
\v rot'0.3 MeV ~band 2! and 0.33 MeV~band 3!. We as-
sume these bands correspond ton(71^ @642 3/2#)a50,1 at
high frequency. This two-quasineutron configuration fo
band 2 is the same as that suggested in Ref.@22#. However,
our theory predicts a different scenario at low spin: Th
band is crossed by the octupole band (a51) at \v rot'0.3
MeV. Thus, band 2 is interpreted as ana51 octupole vibra-
tional band in the low-frequency region (\v rot,0.3 MeV!.
In the same way, the bump inJ (2) in band 3 is interpreted as
a crossing betweenn(71^ @642 3/2#)a50 and thea50 oc-
tupole vibrational band~Fig. 5!.

For high frequencies, the positive-parity
n(71^ @512 5/2#) state is calculated to lie almost at the
same energy as the lowesta50 negative-parity state. How-
ever, no crossing is predicted for thea51 state at
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FIG. 10. Calculated~solid lines! and experi-
mental~symbols! dynamic moments of inertia for
excited SD bands in190Hg ~left!, 192Hg ~middle!,
and 194Hg ~right!.J (2) for the yrast SD bands are
also displayed at the top. Dotted lines indicate th
yrastJ (2), which are approximated by the Harris
formula ~5.2!. The parametersJ0 , J1 , and J2
used in the formula are shown in units of
\2 MeV21, \4 MeV23, and\6 MeV25, respec-
tively.
h
h

r
r
p
l
n

o

i

d
e
e

tly

re
the
r-
ac-
c-
e
nds
he

o-

d 4;

the
\v rot.0.15 MeV but many crossings are predicted for t
a50 state~Fig. 8!. Both properties are incompatible wit
the observed features.

In 194Hg, two excited SD bands~bands 2 and 3! have
been observed@23,24#. In contrast to192Hg, the observed
dynamic moments of inertia,J (2), do not show any singula
behavior and are more or less similar to those of the y
band. Bands 2 and 3 have been interpreted as signature
ners because theg-ray energies of band 3 are observed to
midway between those of band 2 and furthermore the ba
have similar intensity@23#. From these observations and th
excitation energies listed in Table III, we assume that b
bands correspond toK52 octupole vibrations (a50, 1!,
which are calculated to be the lowest excited states~Fig. 6!.
Any other assignment faces serious difficulties:~i! The
positive-parity two-quasiparticle configurations listed
Table III have no signature partners.~ii ! The other low-lying
two-quasiparticle states occupyn71 or p61 orbits. Now the
increase inJ (2) for the yrast SD band is partially attribute
to the alignment of these high-j intruder orbits and, since th
blocking effect of the quasiparticles prevents any alignm
due to band crossings involving these orbits, the lack
alignment should produce anJ (2) curve quite different from
e

ast
art-
ie
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e
th

n

nt
of

those of the yrast SD band.~iii ! The configuration
n(@512 5/2# ^ @624 9/2#) suggested in Ref.@23# has a prob-
lem with its magnetic property, which has been recen
pointed out in Ref. @43#. If this configuration is the
Kp572, then strongM1 transitions between the signatu
partners should have been observed. The energy of
Kp522 configuration is certainly lowered by octupole co
relations. In our calculations, however, this configuration
counts for only 20% of all components constituting the o
tupole vibration~iv!. The g vibrations are calculated to b
much higher and crossed by several two-quasiparticle ba
~Fig. 9!. Therefore, we believe the octupole vibration is t
best candidate.4

Assuming the above configurations, the dynamic m
ments of inertia,J (2), are calculated with Eq.~5.1!, and
compared with the experimental data~Fig. 10!. In 190Hg, the
characteristic features are well reproduced for bands 2 an
the constantJ (2) of band 2~the a51 octupole vibration!
and the bump of band 4~the crossing between thea50

4The signature for bands 2 and 3 is determined by following
spin assignment in Ref.@23#.
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octupole vibration and the aligned two-quasineutron ban!
are reproduced although the crossing frequency is smalle
the experiment. For band 3, the highJ (2) values at low spin
are well accounted for by the alignment gain of the tw
quasineutron state. However, the calculation predicts the l
of alignment due to the blocking ofN57 orbits at
\v rot.0.25 MeV, which makes theJ (2) smaller than those
of the yrast band.

In 192Hg, the bumps ofJ (2) are nicely reproduced in the
calculations, which correspond to the crossings betwe
K52 octupole vibrations and the aligned two-quasineutr
bands in each signature partner. The alignment gainDi be-
fore and after crossing for band 2 isDi'2\ which is com-
parable to the experimental valueDi expt'2.6\ @22#.

The agreement is less satisfactory in194Hg. The calcu-
lated J (2) are lower than the experimental data fo
0.2<\v rot<0.35 MeV~similar disagreement can be seen fo
band 3 in192Hg!. This effect comes from the blocking effec
mentioned above, associated with then71 , n72 , p61 , and
p62 orbits. In the RPA~Tamm-Dancoff! theory ~neglecting
the backward amplitudes!, the octupole vibrations are de
scribed by superposition of two-quasiparticle excitations,

uoct vib &5(
gd

c~gd!ugd&, ~5.3!

where ugd&5ag
†ad

†uv rot&. Some of these componentsugd&
associated with the particular orbits (n71 , n72 , p61 , and
p62) show significant lack of alignment. However, if the
octupole vibrations are collective enough, the amplitud
c(gd) are distributed over many two-quasiparticle excit
tions ugd&. Thus, each amplitude becomes small and bloc
ing effects may be canceled.

In order to demonstrate this ‘‘smearing’’ effect of collec
tive states, we use a slightly stronger octupole forc
f 351.05 in Eq.~3.13!, and carry out the same calculation
for 194Hg. The results are shown in Fig. 11. The higher co
pling strengths make the octupole vibrations more collecti
and the experimental data are better reproduced. Perhap
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collectivity of these octupole vibrations was underestimat
in the calculations withf 351.

Finally we should mention the decays from the octupo
bands to the yrast SD band. We have assigned all obser
excited SD bands~except band 3 in190Hg! as octupole vi-
brational bands~at least in the low-spin region!. However,
strong dipole decays into the yrast band have been obser
only for band 2 in190Hg. Although this seems to contradic
our proposals, in fact our calculations provide us with
qualitative answer.

Let us discuss the relativeB(E1;oct→yrast) values. Us-
ing theE1 recoil charge (2Ze/A for neutrons andNe/A for
protons!, then theB(E1) values at\v rot50.25 MeV are
calculated to be small for all theK52 octupole bands except

FIG. 11. Calculated~solid lines! and experimental~symbols!
dynamic moments of inertia for excited SD bands in194Hg. Thin
solid lines are the same as in Fig. 10, while thick lines indicate t
results obtained by using the slightly stronger coupling strengt
( f 351.05) for the octupole interactions. Dotted lines indicate th
J (2) for the yrast SD band~see caption to Fig. 10!.
d,
l

FIG. 12. ElectricE3 transition amplitudes,
ut@1/2(11t3)Q3K

a #u5u^v rotuQ3K
e un&u, for the

lowest RPA solutions with the signaturea50
~lower! and thea51 ~upper! for 190Hg ~left!,
192Hg ~middle!, and 194Hg ~right!. K50, 1, 2,
and 3 components are denoted by solid, dashe
dotted, and dash-dotted lines, respectively. Tota
values ~thick solid lines! are defined by
((Ku^v rotuQ3K

e un&u2)1/2.
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for the a51 ~band 2! in 190Hg: With the scaling factors
f 351;1.08 in Eq. ~3.13!, the calculation suggests
B(E1)'1027 Weisskopf units~W.u.! for the (K,a)5(2,0)
octupole bands, andB(E1)'1028–1026 W.u. for the
(K,a)5(2,1) bands. TheB(E1) for band 2 in190Hg is pre-
dicted to be larger than these values by one to two orders
magnitude,B(E1)'1026–1024 W.u. Although the absolute
values are very sensitive to the parameters used in the ca
lation, theE1 strengths of band 2 in190Hg are always much
larger than those for the other bands.

To clarify the reason for thisE1 enhancement in this
particular band, we display theE3 amplitudes (K50, 1, 2,
and 3! of these octupole states as functions of frequency
Fig. 12. As mentioned in Sec. IV B, the Coriolis mixing i
completely different between band 2 in190Hg and the others:
The former has significant Coriolis mixing at finite fre
quency while the latter retains the dominantK52 character
up to very high spin. Since theK52 octupole components
cannot carry anyE1 strength, the strongE1 transition am-
plitudes come from Coriolis coupling, namely, the mixing o
the K50 and 1 octupole components. Therefore, the o
served decay property does not contradict our interpretati

VI. CONCLUSIONS

The microscopic structure of theg and the octupole vi-
brations built on the SD yrast bands in190,192,194Hg were
investigated with the RPA based on the cranked shell mod
TheK52 octupole vibrations are predicted to lie lowest. T
reproduce the characteristic features of the experimental d
it was essential to include octupole correlations and the
fect of rapid rotation explicitly. From the calculations, w
assigned the following configurations to the observed exci
bands:

190Hg Band 2: The rotationally aligneda51 octupole
vibration.

Band 3: the two-quasineutron bandn(71^72).
Band 4: the (K,a)5(2,0) octupole vibration at

low spin, the two-quasineutron band
n(71^ @642 3/2#)a50 at high spin.

192Hg Band 2: the (K,a)5(2,1) octupole vibration at
low spin, the two-quasineutron band
n(71^ @642 3/2#)a51 at high spin.

Band 3: the (K,a)5(2,0) octupole vibration at
low spin, the two-quasineutron band
n(71^ @642 3/2#)a50 at high spin.

194Hg Band 2: the (K,a)5(2,0) octupole vibration.
Band 3: the (K,a)5(2,1) octupole vibration.

With these assignments, most of the experimentally obser
features were well accounted for in our theoretical calcu
tions.

The Coriolis force makes the lowest octupole state
190Hg align along the rotational axis, while this effect i
predicted to be very weak for other octupole states. This
of
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due to the relatively low excitation energy of theK50
(a51) octupole state in190Hg, in which the close spacing in
energy of the octupole multiplet makes the Coriolis mixin
easier. This aligned octupole phonon in190Hg reproduces the
observed behavior for band 2.

Our interpretation for the excited SD bands in
192Hg solves a puzzle mentioned in Ref.@22# in which band
2 was assigned as the two-quasineutron excitati
n(73^ @642 3/2#). The bump in theJ (2) curve was consid-
ered to be associated with a crossing between then71 and
n @512 5/2# orbits. According to this assignment, we expec
similar properties for the observed crossing in192Hg and
193Hg, and the difference of crossing frequencies and alig
ment gains was a puzzle. This is no longer a puzzle in o
interpretation because the microscopic structure of band 2
the octupole vibration~before the crossing!. Because of the
correlation-energy gains, the excitation energies of the oc
pole vibrations should be lower than the unperturbed tw
quasiparticle states. Therefore it is natural that the observ
crossing frequency is larger than the one predicted by t
quasiparticle Routhians without the octupole correlations.

Our interpretation also solves some difficulties in194Hg:
The smoothJ (2) behavior of bands 2 and 3 can be explaine
by the ‘‘smearing’’ effect of the collective states. The non
observation of the expected strongM1 transitions between
bands 2 and 3@43# is solved by substituting theK52 octu-
pole vibrations for the two-quasineutron state
n(@512 5/2# ^ @624 9/2#), because the octupole correlation
lower theK52 configurations and the summation of man
two-quasiparticle (M1) matrix elements may be destructive
@see discussion below Eq.~2.26!#.

EnhancedE1 transitions from the octupole states to th
yrast SD band are expected only for band 2 in190Hg. This
comes about because the other octupole states do not h
strong Coriolis mixing and keep theirK52 character even at
high frequency. This agrees with experimental observatio

Although most of the observed properties are explain
by our calculations, there remain some unsolved problems
190Hg and 192Hg. For 190Hg, according to the calculations
with constant pairing gaps reported in Ref.@19#, it is sug-
gested that band 4 may correspond to the (K,a)5(1,0) oc-
tupole band which is predicted to be crossed by the tw
quasineutron bandn(71^ @642 3/2#)a50 at \v rot'0.21
MeV. Because of the phenomenological treatment for t
pairing gaps at finite frequency, it is difficult to deny this
possibility. The experimental intensity of band 3 raises a
other ambiguity: Since it is much weaker than bands 2 and
it might be associated with a higher-lying configuration
@18#. For 192Hg, our calculations predict no signature split
ting for the lowest octupole bands at\v rot<0.25 MeV.
Therefore one may expectg-ray energies typical of the
signature-partner pair for bands 2 and 3 similar to that
194Hg, which is different from what is observed@22#. Im-
provement of the pairing interactions~fluctuations, quadru-
pole pairing! might solve these problems as well as enable
to perform reliable RPA calculations forb vibrations.

Theoretical study of octupole vibrations carrying larg
E1 strengths would be of great interest, because this co
offer direct experimental evidence. An improved version o
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calculations forE1 strengths of high-spin octupole bands
in progress, taking into account the restoration of trans
tional and Galilean invariance. TheK50 octupole vibration
in 152Dy has been predicted in Ref.@5# and its decay into the
yrast band has been suggested@14#. StrongE1 transition
probabilities have been suggested by Skalski@44# for K50
octupole states in theA5190 region. Therefore, the searc
for low-lying low-K octupole vibrations is an important sub
ject for the future.
is
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We derive an analytical trace formula for the level density of two-dimensional elliptic
billiards using an improved stationary phase method. The result is a continuous function of
the deformation parameter (eccentricity) through all bifurcation points of the short diameter
orbit and its repetitions, and possesses the correct limit of circular billiard at zero eccentric-
ity. Away from the circular limit and the bifurcations, it reduces to the usual (extended)
Gutzwiller trace formula, which for the leading-order families of periodic orbits is identical
to the result of Berry and Tabor. We show that the circular disk limit of the diameter-orbit
contribution is also reached through contributions from closed (periodic and non-periodic)
orbits of the hyperbolic type with an even number of reflections from the boundary. We ob-
tain the Maslov indices depending on deformation and energy in terms of the phases of the
complex error and Airy functions. We find enhancement of the amplitudes near the common
bifurcation points of short-diameter and hyperbolic orbits. The calculated semiclassical level
densities and shell energies are in good agreement with the quantum mechanical ones.

§1. Introduction

The periodic orbit theory (POT), developed by Gutzwiller 1), 2) for chaotic sys-
tems, by Balian and Bloch 3) for cavities, and by Berry and Tabor 4), 5) for integrable
systems, has proved to be an important semiclassical tool not only for an approxi-
mate quantization but also for the description of gross-shell effects in finite fermion
systems. 6), 7) Gutzwiller’s approach has been extended to take into account contin-
uous symmetries 6), 8) - 12) and is therefore applicable to systems with mixed classical
dynamics, including the integrable and hard-chaos limits.

An important role is played by the classical degeneracy of the periodic orbits in
systems with continuous spatial or dynamical symmetries: the orbits are then not
isolated in phase space (as assumed in Gutzwiller’s original trace formula, and as is
the case in chaotic systems), but occur in degenerate families with identical actions.
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The degree of degeneracy K is defined as the number of independent parameters
that are necessary to uniquely specify an orbit within each family. For example, the
orbit families with the highest degeneracy in spherical systems with spatial SO(3)
symmetry have K = 3, corresponding to the three Euler angles that specify the
orientation of an orbit within the plane of motion and the orientation of the plane
itself, the orbit families in two-dimensional systems with U(1) rotational symmetry
have K = 1, and the isotropic harmonic oscillator in two dimensions has SU(2)
symmetry and hence orbit families with K = 2. Orbits with different degeneracies K
may also occur in a single system, such as the spherical cavity discussed by Balian
and Bloch 3) where the diameter orbit has K = 2 and all other orbits have K = 3,
the spheroidal cavity 13) where K = 2, 1 and 0 occur (the latter corresponding to
isolated orbits), and elliptic billiard with K = 1 and 0, as discussed in the present
paper.

However, problems arise for all these trace formulae in connection with the break-
ing of a continuous symmetry and with the bifurcation of stable periodic orbits when
a continuous parameter (energy, deformation, external field) is varied. The reason
is that at such critical points the standard stationary phase approximation, used for
integrations in the derivation of the trace formula, breaks down and leads to diver-
gences and/or discontinuities of the amplitudes in the trace formula. This happens
most frequently in mixed systems, but it occurs also in integrable systems. Typical
examples are two-dimensional elliptic billiard and the three-dimensional spheroidal
cavity. In the former, all repetitions of the short diameter orbits undergo bifurca-
tions at specific deformations, whereby new families of hyperbolic orbits are created.
Similarly, in the latter system, the periodic orbits lying in the equatorial plane per-
pendicular to the symmetry axis bifurcate also at specific deformations, whereby
new three-dimensional orbits appear. 13) In both systems, all bifurcations and the
limit to the spherical shape lead to divergent amplitudes in the trace formulae (see
Refs. 6), 11) and 14) – 21)). Since for each family with a given value of K, the ex-
tended Gutzwiller trace formula 6), 8) - 10) has an amplitude proportional to h̄−(1+K/2),
it is evident that the breaking of a continuous symmetry must be accompanied by a
discontinuous change of the amplitudes, which manifests itself in the form of a sin-
gularity when one attempts to reach the unbroken symmetry limit. (An exceptional
situation occurs in anisotropic harmonic oscillators, when changing from irrational
to rational frequency ratios: here the divergences of the different periodic orbit con-
tributions have been shown 23) to cancel identically, such that the trace formulae —
which are quantum-mechanically exact here — hold for arbitrary frequency ratios,
although their analytical form is different in different limits (see also Ref. 7).))

Since symmetry breaking and orbit bifurcations occur in almost all realistic phys-
ical systems, there is a definite need to overcome these singularities. The importance
of bifurcation effects in connection with the emergence of the ‘superdeformed’ shell
structure in atomic nuclei is emphasized in Refs. 6), 18) and 20) – 22). In order to
improve the POT in these critical situations, various methods have been proposed.
As in the treatment of continuous symmetries considered in Refs. 8) – 11), they es-
sentially consist of taking some integrals in the derivation of the trace formula more
exactly than in the standard stationary phase method (SPM).
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Berry and Tabor suggest in Ref. 4) a quite general method to treat bifurcations
in integrable systems. Starting from the trace integral for the level density in action-
angle variables, they reduce it to a Poisson-sum trace formula and perform all trace
integrations except one with the SPM, extending the integration limits from −∞ to
+∞. At bifurcations, this leads to singularities in the amplitudes when the stationary
points are close to the limits of the integration range. According to Ref. 4), in this
case one has to take the integral within the exact finite range. The integration range
need not necessarily include the stationary points (in the case of negative or complex
stationary points), but the latter are assumed to be close to the integration limits.
For integrable systems, this idea was applied to the periodic-orbit families with the
highest degeneracies, for which one can carry out the integrals over the action angles
exactly, giving 2π for each degree of freedom. 5) This is the starting point of a uniform
approximation that was further developed by various authors. 24) - 26)

Another type of uniform approximation was initiated by Ozorio de Almeida and
Hannay 27) (see also Ref. 28)) and developed further by Sieber and Schomerus 29) - 31)

for various generic types of bifurcations. Writing the trace integral in a phase-space
representation, they expand the action around the bifurcation points into so-called
normal forms which usually can be integrated analytically with finite results. The
correct asymptotic recovery of the Gutzwiller amplitudes far from the bifurcation
points can be obtained by a suitable mapping transformation whereby the amplitude
function, together with the Jacobian of the mapping transformation, is expanded up
to an order consistent with that of the action in the exponent of the integrand. Near
the bifurcation points, there is a common contribution of all participating (real or
complex, so-called ‘ghost’) orbits to the trace formula.

A similar technique, starting from the Berry-Tabor approach for integrable
systems and using a ‘pendulum mapping’, was used by Tomsovic, Grinberg and
Ullmo 32), 33) to derive a generic uniform approximation for the breaking of orbit
families with a one-dimensional degeneracy, corresponding to U(1) symmetry, into
pairs of stable and unstable isolated orbits. Finally, some analytical uniform trace
formulae for the breaking of the higher-dimensional SU(2) and SO(3) symmetries
in specific two- and three-dimensional systems have been derived very recently. 34)

Hereby the trace integral was performed over the de Haar measure of the corre-
sponding symmetry groups, as in the derivation of the unperturbed trace formulae
for these continuous symmetries, 10) and the mapping was done onto the forms of
the action integrals obtained in perturbation theory. 35), 36)

It should be mentioned that all the uniform approximations mentioned above can
be used only for one isolated critical point of symmetry breaking or orbit bifurcation.
They fail, in particular, 29) - 31), 33), 34) when two critical points are so close that the
actions of the participating orbits at these points differ by less than ∼ h̄. To our
knowledge, no common uniform treatment of two nearby bifurcations (in the above
sense), or of a bifurcation near a symmetry-breaking point, has been reported to this
time.

In this paper, we propose an approach to simultaneously overcome the diver-
gences due to symmetry breaking and any number of bifurcations in two-dimensional
elliptic billiard and the three-dimensional spheroidal cavity. Although our frame-
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work is quite general, we limit its application here to elliptic billiard. The three-
dimensional spheroidal cavity will be treated in a succeeding paper, 13) and the ex-
tension to non-integrable systems is planned for future research. We start from a
phase-space trace formula, 11), 37) which after some transformations becomes identical
to that obtained from the mixed phase-space representation of the Green function
in Refs. 30) and 38), as explained there and below (see §4.3). Analogous versions of
the phase-space trace formulae are suggested in Refs. 5) and 10).

In contrast to previous investigations, 4), 5), 24) - 26) we calculate the integrals over
angles, also, using the stationary phase method. Note that we also include orbits
with lower degeneracies, such as the isolated diameters in elliptic billiard and the
equatorial orbits in the spheroidal cavity, thereby extending the method of Ref. 4).
Our main point is that the stationary-phase integrals over both action and angle
variables are calculated with expansions of the phase and amplitudes, as in the
standard SPM, but within finite intervals in all cases in which these integrals would
lead to divergences if one or both integration limits were taken to ∞ or −∞. We also
discuss the role of non-periodic closed orbits (see §5.4). For the Maslov indices, which
for the bifurcating orbits depend on the deformation, and near the critical points also
on the energy, we follow the basic ideas of Maslov and Fedoryuk. 39) - 42) We obtain
separate contributions to the trace formula from the bifurcating periodic orbits, and
we remove the singularity of the isolated long diameter (i.e., the separatrix) near the
circular shape of the elliptic billiard in a simpler way than in Ref. 26).

In this way we obtain an analytical trace formula for the elliptic billiard system
that gives finite and continuous contributions at all deformations, including the cir-
cular disk limit and all bifurcation points of the short diameter orbit. Although its
derivation and its explicit form are quite different, our final trace formula is similar
to the uniform approximations mentioned above in the sense that it is connected
smoothly to the standard (extended) Gutzwiller trace formulae for different orbit
types with deformations sufficiently far away from all critical points.

§2. Phase-space trace formula in the closed orbit theory

2.1. Semiclassical trace formula

The level density g(ε) is obtained from the Green function G(r′, r′′; ε) by taking
the imaginary part of its trace:

g(ε) = − 1
π
Im
∫
dr′′
∫
dr′G(r′, r′′; ε)δ(r′′ − r′)

= − 1
π
Im
∫
dr′′
∫
dr′
∫
dp̃G(r′, r′′; ε) exp

[
− i

h̄
p̃ · (r′′ − r′)] . (2.1)

Within the semiclassical Gutzwiller theory, 1), 2) the Green function G(r′, r′′; ε) can
be represented by the sum over all classical trajectories α connecting two spatial
points r′ and r′′ at fixed energy ε. Inserting it into (2.1), we obtain the semiclassical
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level density

gscl(ε) =
2

(2πh̄)(3n+1)/2
Im
∑
α

∫
dr′′
∫
dp̃

∫
dr′|J (p′, tα; r′′, ε)|1/2

× exp
{
i

h̄

[
Sα(r′, r′′, ε)− p̃ · (r′′ − r′)

]− iπ

2
µα

}
. (2.2)

Here Sα(r′, r′′, ε) =
∫ r′′
r′ dr · p is the action along the trajectory α, n is the spa-

tial dimension, and µα is related to the number of conjugate points (i.e., turning
and caustics points along the trajectory). 42) Jα(p′, tα; r′′, ε) is the Jacobian for the
transformation from initial momentum p′ (at the point r′) and time interval tα
(for the classical motion along the trajectory from initial to final point) to the final
coordinate r′′ and energy ε.

2.2. Phase space variables

Integrating over r′ in Eq. (2.2) along the direction transverse to the trajectory
α with the stationary phase method (SPM), we are left with the integral over the
component of dr′ parallel to the trajectory, which gives just an energy conserving
delta function δ(ε−H(r′,p′)). We hence arrive at the phase-space trace formula 37)

gscl(ε) =
1

(2πh̄)2
Re
∑
α

∫
dr′′
∫
dp′ δ(ε−H(r′,p′))

∣∣J (p′′
⊥,p

′
⊥)
∣∣1/2

× exp
{
i

h̄

[
Sα(p′,p′′, tα) + (p′′ − p′) · r′′]− iνα

}
. (2.3)

Here J (p′′
⊥,p

′
⊥) is the Jacobian for the transformation from initial to final momen-

tum components p′
⊥ and p′′

⊥, respectively, perpendicular to the trajectory α. This
Jacobian is equal to one of the elements of the stability matrix (see, e.g., Ref. 7)).
Sα(p′,p′′, tα) is the action in the momentum representation

Sα(p′,p′′, tα) = −
∫ p′′

p′
dp · r(p), (2.4)

which is related to the usual action in coordinate space

Sα(r′, r′′, ε) =
∫ r′′

r′
dr · p(r) (2.5)

by the Legendre transformation

Sα(r′, r′′, ε)− p′ · (r′′ − r′) = Sα(p′,p′′, tα) + (p′′ − p′) · r′′. (2.6)

The phase να in Eq. (2.3) contains, in addition to π
2µα in Eq. (2.2), the phases arising

from the integration over r′ in the stationary phase approximation.
Note that the integrand in the phase-space trace formula (2.3) (except for the

exponent related to the phase part proportional to r′′) is the semiclassical Green
function in the mixed representation that contains explicitly an energy-conserving
δ-function in our case, unlike the form discussed in Ref. 10). (Consequently, the
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momentum components are not independent, which is important for the following
application of the stationary phase method; see more details in the next subsection
and in §4.) Due to energy conservation, i.e., H(r′,p′) ≡ H(r′′,p′′), the trace formula
(2.3) can be rewritten in an alternative form where the integration variables are
changed from (r′′,p′) to (r′,p′′). The sum in (2.3) runs over all isolated classical
trajectories α with starting momentum p′ and final point r′′ (or with starting point
r′ and final momentum p′′ in the alternative form), for a fixed time interval tα of
the classical motion along α.

2.3. Periodic orbit theory

The trajectories α in the phase space trace formula (2.3) are not necessarily
closed orbits in the usual coordinate space. However, after separation of the ex-
tended Thomas-Fermi part (corresponding to the ‘zero length orbits’) and integra-
tion over one of the momentum components exploiting the δ-function, we use further
semiclassical approximations. We first write the stationary-phase conditions for the
integration variables in (2.3). The stationary conditions for the momentum vari-
able p′ are the closing condition for the trajectories α in the usual coordinate space,
r′ = r′′, and the Jacobian in Eq. (2.3) is unity due to the Liouville Theorem of phase-
space volume conservation (see Ref. 7)). The additional stationary-phase conditions
for the integration over spatial variables r′′ selects the periodic orbits, p′ = p′′, and
we obtain the POT and all known trace formulas including the Poisson-sum trace
formula. 37) We then integrate over components of the phase-space variables exactly
if we have identities for them. Other integrations will be done using an improved
stationary phase method (ISPM). ‘Improved’ here means that we carry out the inte-
grations in finite ranges, after expanding the exponent of the integrand around the
stationary point up to second order terms, and taking the amplitude at the station-
ary point (or use a higher-order expansion of amplitude and phase, if necessary).
All stationary points that appear outside the physical region of integration over the
phase-space variables are also taken into account, even if they are complex. In this
way we obtain simple and continuous analytical solutions that remain finite at all
critical (bifurcation and symmetry-breaking) points. In contrast to other uniform
approximations mentioned in the Introduction, our results appear as explicit sums
over separate contributions that correspond to the periodic orbits in the asymptotic
regions away from the critical points.

§3. Classical mechanics

3.1. Elliptic billiard as an integrable system

We consider an elliptic billiard with axes a and b (with a ≤ b) along the x and
y coordinate axes, respectively, and ideally reflecting walls. This is an integrable
system which can be separated into the elliptic coordinates (u, v) defined in terms
of the Cartesian coordinates (x, y) by

x = ζ cosu sinh v, y = ζ sinu cosh v, ζ =
√
b2 − a2, (3.1)
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with
−π ≤ u ≤ π, 0 ≤ v < vb. (3.2)

Hereby (x, y) = (0,±ζ) are the foci of ellipses given by v = const, and v = vb
is the elliptic boundary. It is convenient to introduce the deformation parameter
η = b/a ≥ 1 and to keep the area of the ellipse constant by setting ab = R2, so that
b = R

√
η and a = R/

√
η. The second constant of the motion, in addition to the

energy ε, is the product of the angular momenta l− and l+ with respect to the two
foci. For the following, it is advantageous to use the single-valued quantity σ defined
by

σ = 1 +
l−l+
2mεζ2

. (3.3)

There are two types of orbits, depending on the relative sign of l− and l+: elliptic
orbits circulating around both foci for l−l+ > 0 or σ > 1, and librating hyperbolic
orbits for l−l+ < 0 or σ < 1. The names used here indicate that the former are
limited to the area between the elliptic boundary given by v = vb and a confocal
elliptic caustic given by v = vc, whereas the latter are confined to the area between
the two branches of a hyperbolic caustic given by u = ±uc and the elliptic boundary.
The critical values for the boundary and the caustics are given by

vb = arccosh
(
η/
√
η2 − 1

)
, vc = arccosh(1/

√
σ), uc = arcsin(

√
σ). (3.4)

In terms of the above quantities, the single-valued action integrals Iu and Iv become

Iu =
∮
pudu =

p ζ

π

∫ uc

−uc

du

√
σ − sin2 u,

Iv =
∮
pvdv =

p ζ

π

∫ vb

vc

dv

√
cosh2 v − σ, (3.5)

where p =
√
2mε = h̄k is the constant classical momentum of the particle. Since

the system is integrable, its Hamiltonian depends only on the actions and not on the
variables u and v, i.e., H(Iu, Iv, u, v) ≡ H(Iu, Iv).

3.2. Periodic orbits

As shown by Berry and Tabor, 4) the periodic orbits of an integrable system can
be found by the condition that the angular frequencies (for angle variables conjugate
to the actions) have rational ratios. In the present case, these frequencies are given
by ωu = ∂H/∂Iu, ωv = ∂H/∂Iv, so that the periodic orbits are characterized by
pairs of positive integers Mu and Mv as

ωu
ωv

≡ 1
2

[
1− F(θ, κ)

F(π2 , κ)

]
=

Mu

Mv
, (Mu ≥ 1, Mv ≥ 2Mu) (3.6)

where
κ = sinuc/ cosh vc, θ = arcsin(cosh vc/ cosh vb), (3.7)
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Fig. 1. Some classical periodic orbits in elliptic billiard are represented by thin solid curves. The

left-hand side corresponds to elliptic triangular (1, 3) and rhomboidal (1, 4) orbits, and the

right-hand side corresponds to the hyperbolic butterfly orbit (1, 4), from Ref. 11).

and F(θ, x) is the elliptic integral of the first kind. 47) The greatest common divisor
of Mu and Mv corresponds to the repetition number M = 1, 2, 3, · · · of a primitive
periodic orbit (nu, nv):

(Mu,Mv) = (Mnu,Mnv) =M(nu, nv). (3.8)

The solutions of Eq. (3.6) for κ and θ which correspond to families of degenerate
periodic orbits with K = 1 are, labeled accordingly for elliptic and hyperbolic orbits,{

κe = 1√
σ

κh =
√
σ

}
,



θe = arcsin

(√
σ(1− 1/η2)

)
θh = arcsin

(√
1− 1/η2

)

 . (3.9)

Figure 1 shows the shortest periodic orbits of each kind. The degeneracy parameter
K was defined as the number of parameters that specify the orbits within a family
with a common action. Due to the separation of variables in elliptic coordinates (3.1)
we have two single-valued action integrals Iu and Iv (3.5). They are related through
the energy conserving equation ε = H(Iu, Iv) and can be written in terms of one
parameter of the family σ (or l−l+); i.e., we have K = 1 (see Refs. 6), 8), 9), 11), 50)
for more details).

3.3. Energy surface

For the energy surface ε = H(Iu, Iv) one can get from Eq. (3.5) the parametric
equations (A.1) for the elliptic orbits and (A.2) for the hyperbolic orbits. 19) The
energy curve (A.1) or (A.2) can also be considered through the single-valued param-
eter σ or double-valued κ defined within the same range 0 ≤ κ ≤ 1 for both kinds
of orbits. The solutions σ found from the periodic orbit equations (3.6) for elliptic
orbits satisfy the inequality σ > 1 in the elliptic part (A.1) of the energy curve. On
the other hand, σ < 1 for the hyperbolic part (see Fig. 2(a)). The two regions are
separated by the separatrix point σs = 1, corresponding to the long diameter orbit,
where the value of the action Iu = I

(s)
u is given by

I(s)
u = 2pζ/π. (σs = 1) (3.10)
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▲

❘ ❘ ❘

(a)

(b)

Fig. 2. Energy surface Iv(Iu) and curvature ∂2Iv/∂I2
u in the upper and lower panels, respectively,

from Ref. 19).

Thus, each phase space torus is split into two regions by the separatrix, a hyperbolic
region and an elliptic region. In the hyperbolic part (0 ≤ σ < 1), the action variable
Iu changes from 0 to the separatrix value I(s)

u . In the elliptic part (1 < σ ≤ σcr), Iu
changes from the separatrix value to the maximum value I(cr)

u that corresponds to a
‘creeping’ (or ‘whispering gallery’) orbit and is given by

I(cr)
u =

2pR
√
η

π
E

(
π

2
,

1√
σcr

)
=

2pR
√
η

π
E

(
π

2
,

√
η2 − 1
η

)
,

σcr = cosh2 vb = η2/(η2 − 1). (3.11)

The short diameter (1,2) and its repetitions M(1,2) correspond to the end point
of the hyperbolic region at σ = 0 (κ = 0), which is isolated in phase space {Θu, Iu}.
Equation (3.6) for the periodic orbits at this σ can be solved analytically with respect
to θ. Identifying the root θ(η, nu/nv) with its definition (3.9) for hyperbolic orbits,
we realize that all short diameters M(1,2) bifurcate at the deformations,

ηbif(M,n) =
1

sin(πnu/nv)
=

1
cos(nπ/2M)

, (n = 1, 2, 3, · · · ,M − 1) (3.12)

and at each bifurcation a new family of hyperbolic orbitsM(nu, nv) withMnv reflec-
tion points is ‘born’. The second equation presents the same bifurcation points and
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shows explicitly that the bifurcation deformations ηbif are also identical to the corre-
sponding divergences of the Gutzwiller amplitudes for short diameters (see Eq. (6.47)
of Ref. 7)). Each of the emerging hyperbolic orbits M1(M −n, 2M) with M1 repeti-
tions and n from Eq. (3.12) coincides exactly with the corresponding short diameter
M1M(1,2) repeated M1M times at the deformation ηbif . For instance, for the triply
repeated short diameter 3(1,2) (M1 = 1,M = 3) there are two bifurcation points
at the deformations ηbif = 2/

√
3 and 2 where the primitive hyperbolic orbits (2,6)

(n = 1) and (1,6) (n = 2), respectively, are born (see these orbits in Fig. 3.6 in
Ref. 19) and discussion nearby, and also Ref. 14) and Fig. 1a there). However, the
short diameters are isolated in the phase space of action-angle variables {Θu,Iu}.
They emerge as terms of the periodic orbit sum which are additional to the families
of hyperbolic tori (see a more detailed discussion below). The contribution of the
primitive short diameter 1(1,2) can be calculated by the original Gutzwiller trace
formula, except near the circular shape. 7), 19) This formula will be improved near all
bifurcation points (3.12) and the circular shape in §5.2.

The long diameter orbits M(1,2) are also characterized by 2M reflection points
and correspond to a specific isolated point in {Θu, Iu} space. They are related to the
separatrix value σ = 1 (κ = 1). Again, their amplitudes can be calculated with the
standard Gutzwiller trace formula for isolated orbits, with the same exception near
the symmetry-breaking point of the circular shape 7), 19) (see §5.3 for the improved
solution in terms of Airy functions near this point).

The limit of a circular disk (η = 1) may in some sense also be considered as a
(one-sided) bifurcation point: Here the family of diameter orbits (with K = 1) break
into two isolated diameters with K = 0 and complicated hyperbolic orbit families
(K = 1) with nu → ∞, nv → ∞, and nu : nv → 1 : 2, when the deformation (η > 1)
is turned on. Inversely, the long and short diameters and hyperbolic orbits that have
K = 0 and 1 in the ellipse, respectively, merge into the families of diameter orbits
with K = 1 as η → 1. The discontinuous change of K at η = 1 is accompanied by a
divergence of the diametric amplitudes in the standard SPM. This is the symmetry-
breaking problem discussed in the Introduction and below in §§5.2 and 5.3.

Figure 2(a) shows the energy surface in action space, in the form of the curve Iv =
Iv(ε, Iu) at fixed energy ε. Specific primitive orbits (withM = 1) are illustrated, with
the arrows pointing to the corresponding stationary points I∗u: the short diameter
(at I∗u = 0 or σ = 0, with Θ∗

u = 0, π), the ‘butterfly’ (or ‘bow-tie’) orbit, the long
diameter (at I∗u = I

(s)
u , with σ = 1 and Θ∗

u = ±π/2), the rhomboidal orbits with
four reflections, and the ‘creeping’ orbit (at I∗u = I

(cr)
u ) as the limit of a ‘whispering-

gallery’ mode with a number of reflections nv = ∞ and winding number nu = 1. The
limits of the separatrix correspond to infinite values of nv and nu for hyperbolic and
elliptic orbits with the ratio nu/nv going to 1/2 from either side (see also Ref. 14)).
We use the same notation for both short and long diameters in terms of the integers
nu, nv and M as for the elliptic and hyperbolic one-parametric families, specifying
them also by the stationary points in the phase space variables σ (or Iu) for all orbits
and Θu for the isolated ones, if necessary.
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3.4. Curvature

A key quantity in the semiclassical theory in terms of the action-angle variables
is the curvature K of the energy surface

K =
∂2Iv
∂I2

u

=
(
∂2Iv
∂σ2

+
ωu
ωv

∂2Iu
∂σ2

)/(
∂Iu
∂σ

)2

. (3.13)

The partial derivatives appearing on the right-hand side above are given in Appendix
A. Figure 2(b) displays K versus Iu. In the limit σ → 0 one finds the curvature
for the twice repeated short diameters considered as primitive orbits. 19) For our
definition of the (non-repeated) primitive orbits, the curvature Ks is larger by a
factor of 2, i.e.,

Ks = − 1
πpRη3/2

, (3.14)

which is finite and negative for all deformations. K remains negative for the entire
hyperbolic part 0 ≤ σ < 1 of the curve, whereas it is positive for the elliptic part
1 < σ < σcr. At the critical points σ = 1 (separatrix) and at σcr (creeping point),
the curvature diverges. It tends to −∞ as one approaches the separatrix from the
hyperbolic side, and to +∞ from the elliptic side. For σ → σcr it also tends to +∞.

§4. Phase space trace formula in action-angle variables

4.1. Action-angle variables

We now transform the phase space trace formula (2.3) from the usual phase
space variables (r,p) to the angle-action variables (Θ, I). The latter are useful
for integrable systems because the Hamiltonian H does not depend on the angle
variables Θ, i.e., H = H(I). For elliptic billiard one has from (2.3)

gscl(ε) =
1

(2πh̄)2
Re
∑
α

∫
dΘ′′

u

∫
dΘ′′

v

∫
dI ′u
∫
dI ′v δ(ε−H(I ′u, I

′
v))

× exp
{
i

h̄

[
Sα(I ′, I ′′, tα) + (I ′′ − I ′) · Θ′′]− iνα

}
, (4.1)

where Θ = {Θu, Θv} are the angles and I = {Iu, Iv} the actions for the elliptic
billiard defined in the previous section. For simplicity we omit here and below
the Jacobian pre-exponential factor of Eq. (2.3), because this Jacobian taken at
the stationary points is always unity when we apply the improved stationary phase
method for calculation of the integral over phase space variables, as noted above.

4.2. Stationary phase method and classical degeneracy

As noted in the Introduction, we emphasize that even for integrable systems
the trace integral (4.1) is more general than the Poisson-sum trace formula which
is the starting point of Refs. 4) and 5) for the semiclassical derivations. These two
trace formulae become identical when we assume that the phase of the exponent also
does not depend on the angle variables Θ, like the Hamiltonian. Then, the integral
over angles in (4.1) simply gives (2π)n, where n is the spatial dimension (n = 2 for
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the elliptic billiard) (see Ref. 5)). In this case the stationary condition for all angle
variables are identities in the 2π interval. This is true for the contribution of the most
degenerate classical orbits, like elliptic and hyperbolic orbits, with K = 1 in elliptic
billiard. For the case of orbits with smaller degeneracy, like the isolated diameters
(K = 0) in elliptic billiard, the exponent phase is strongly dependent on some angles
with definite discrete stationary points. We therefore need to integrate over such
angles using the standard or improved SPM. Other examples are the equatorial
orbits (K = 1) and diameters along the symmetry axis (separatrix with K = 0) in
the spheroidal cavity (n = 3), the degeneracy parameters of which are smaller than
the largest possible value K = Kmax = 2 for the elliptic and hyperbolic orbits in
the meridian plane, and for three-dimensional orbits. We have a similar situation
also for the diameters with K = 2 in the spherical cavity (Kmax = 3), orbits along
the symmetry axis for axially-symmetric cavities, and so on. Thus, the stationary
conditions with respect to the angle variables for orbits with smaller degeneracies
are not identities. Moreover, the stationary points in the cases mentioned above
occupy subspaces of the phase space which are isolated in the rational tori that lead
to separate contributions to the trace formula, except for the most degenerate orbit
families, as we see below for the case of elliptic billiard.

4.3. Stationary phase conditions

We first perform the integral over I ′v in Eq. (4.1) exactly. Due to the energy
conserving δ-function, we are left with the integrals over the angles Θ′′

u and Θ′′
v and

the action I ′u:

gscl(ε) =
1

(2πh̄)2
Re
∑
α

∫
dΘ′′

u

∫
dΘ′′

v

∫
dI ′u

1
|ω′

v|
× exp

[
i

h̄

(
Sα(I ′, I ′′, tα) + (I ′′ − I ′) · Θ′′)− iνα

]
, (4.2)

Sα(I ′, I ′′, tα) = −
∫ I′′

I′
dI · Θ(I). (4.3)

We first write down the stationary phase equation for Iu:(
∂Sα(I ′, I ′′, tα)

∂I ′u

)∗
−Θ′′

u ≡ Θ′
u −Θ′′

u = 2πMu, (4.4)

where Mu is an integer. The star indicates that we take the quantities at the sta-
tionary point I ′u = I∗u. We now use the Legendre transformation (2.6), which reads

Sα(I ′, I ′′, tα) + (I ′′ − I ′) · Θ′′ = Sα(Θ′′,Θ′, ε)− I ′ · (Θ′′ − Θ′), (4.5)

Sα(Θ′,Θ′′, ε) =
∫ Θ′′

Θ′
dΘ · I(Θ).

Making use of this transformation, the stationary phase conditions for angles Θu and
Θv are written as(

∂Sα(Θ′,Θ′′, ε)
∂Θ′′ +

∂Sα(Θ′,Θ′′, ε)
∂Θ′

)∗
≡ I ′′ − I ′ = 0. (4.6)
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For the following derivations we have to decide which stationary phase conditions
from Eqs. (4.4) and (4.6) are identities for the finite volume of the phase-space tori
and which are equations for the isolated stationary points. To do this, we must calcu-
late separately the contributions from the most degenerate (elliptic and hyperbolic)
families (K = 1) to the improved trace formula and those from diameters in elliptic
billiard. These two contributions are different with respect to the above-mentioned
decision concerning the integration over the angles Θ. After the integration over
one of the angle variables, say Θv, corresponding to the identity in the stationary
phase conditions (4.6) due to an invariance of the action along the periodic orbit in
Eq. (4.2), one gets Eq. (7) of Ref. 30) derived earlier by Bruno. 38) Thus, we obtain
the result of Refs. 30) and 38) within periodic orbit theory. Our phase-space trace
formula (2.3) is more general because it can be applied to more exact calculations
of the level density, without using the stationary phase conditions like Eqs. (4.6), in
terms of closed (periodic and non-periodic) orbits.

Note that we have separate contributions coming from each kind of family and
isolated orbits even near the bifurcation points (3.12) where we have the end point.
Taking the deformation within a small distance from ηbif , we are left with two sep-
arate close stationary points and then use the Maslov-Fedoryuk theory 39) - 42) as
for caustic and turning points. Finally, after the integration using the improved
stationary phase method, we look at the limit η → ηbif to the bifurcation point.
In particular, this idea of Maslov and Fedoryuk is applied in Appendix B for the
calculation of the contribution of the long diameter at the separatrix.

§5. Trace formulas for the elliptic billiard

5.1. Elliptic and hyperbolic orbit families (K = n− 1 = 1)

Each family of elliptic or hyperbolic orbits with a common action occupies a two-
dimensional finite area in the elliptic billiard. In this case, the stationary conditions
(4.6) for the integration over the angle variables Θu and Θv become identities, since
the integrand does not depend on the angle variables, and we have the conservation
of the action variable I ′u = I ′′u = Iu fulfilled identically along each classical trajectory
α. Taking the integrals over Θ gives a factor of (2π)2, and we are left with the
Poisson-sum trace formula like in Refs. 4) and 5):

gscl(ε) =
1
h̄2 Re

∑
M

∫
dI δ(ε−H(I)) exp

[
2πi
h̄

M · I − iνM

]

=
1
h̄2 Re

∑
M

∫
dIu

1
|ωv| exp

[
2πi
h̄

M · I − iνM

]
. (5.1)

Here M = (Mu,Mv) are integers which correspond to those in Eq. (3.8). Next
we transform the integration variable in the last expression of Eq. (5.1) from Iu to
σ defined by (3.3). Thus, the level density component δgscl,1 related to the one-
parameter families can be written as a sum of contributions from the hyperbolic
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(δg(h)
scl,1(ε)) and the elliptic (δg(e)

scl,1(ε)) parts of the tori. Their sum is

δgscl,1(ε) =
1

πε0pR2
Re
∑
M

1
nv

∫ σcr

0
dσLM

∂Iu
∂σ

exp
[
2πi
h̄

M · I(σ)− iνM

]
, (5.2)

where ε0 = h̄2/(2mR2), I(σ) are the actions defined by Eqs. (3.5), LM are the
‘lengths’ of the primitive orbits with M = 1 given by

LM =
2πnvp
mωv

= 2nvb sin θ

[
E(θ, κ)− F(θ, κ)

F(π2 , κ)
E(π2 , κ) + cot θ

√
1− κ2 sin2 θ

]
, (5.3)

and θ(σ) and κ(σ) are defined by Eq. (3.9). The ‘lengths’ become the true lengths of
the corresponding periodic orbits when they are taken at σ equal to the real positive
roots of Eq. (3.6) inside the integration range. For other values of σ, the ‘lengths’
are nothing else than the functions (5.3) introduced in place of ωv for convenience.
The integration range from the bifurcation point σ = 0 to the separatrix σs = 1
covers the contributions of all hyperbolic orbits. The remaining part of Eq. (5.2)
from σ = 1 to the creeping value σcr gives the contributions from the elliptic tori.

As we see below, the choice of σ as the integration variable significantly improves
the precision of the SPM. We hence apply the stationary condition (4.4) for the phase
in the integrands of Eq. (5.2) with respect to σ rather than to Iu. With Eqs. (3.9),
this condition becomes identical to Eq. (3.6) and determines the stationary phase
point σ′ = σ′′ = σ∗ related to I ′u = I ′′u = I∗u. We have used here the conservation
of σ (or the additional integral of motion l+l−) along the periodic orbit. We now
expand the phase up to second order as

Sα(I ′, I ′′, tα) + (I ′′ − I ′) · Θ′′ = 2πM · I = Sβ(ε) +
1
2
J
‖
β(σ − σ∗)2, (5.4)

where Sβ is the action along the periodic orbit β determined by Eq. (3.6),

Sβ(ε) = 2πM(nuIu(σ∗) + nvIv(σ∗)), (5.5)

and J
‖
β is the Jacobian stability factor with respect to σ along the energy surface:

J
‖
β =

(
∂2S

∂σ2

)
σ=σ∗,β

= 2πM

(
nu

∂2Iu
∂σ2

+ nv
∂2Iv
∂σ2

)
σ=σ∗,β

. (5.6)

It is related to the curvature Kβ (3.13) of the energy surface by

J
‖
β = 2πMnvKβ

(
∂Iu
∂σ

)2

σ=σ∗,β
= 2πMnvε |Kβ |

(
∂Iu
∂σ

)2

σ=σ∗,β
, (5.7)

where ε = +1 for elliptic orbits and ε = −1 for hyperbolic orbits. We now substitute
the expansion (5.4) and take the pre-exponential factor off the integral in Eq. (5.2).
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For the sake of simplicity, we only consider the lowest order in the expansion of the
phase and the pre-exponential factor in Eq. (5.2) in the variable σ, although higher-
order expansions can in principle be used to improve the precision of the SPM. Thus,
we are left with the integral from σ = 0 to 1 for the hyperbolic orbits, and from σ = 1
to σcr for the elliptic orbits.

When the stationary point σ∗ is far from the limits of these intervals, one can
extend the integration range from −∞ to ∞ and get the result of the standard
POT. 4) Near the bifurcation points (3.12) of the short diameter orbit (where the
hyperbolic orbit families appear), however, the stationary point σ∗ is close to zero.
In this case we cannot extend the lower limit to −∞, but, rather, we must take
the integral exactly from σ = 0. On the other hand, when the stationary point σ∗
approaches the integration limit σs (3.10) or σcr (3.11), hyperbolic or elliptic orbits
with an increasing number nv of corners appear. In these cases, too, we cannot
extend the integration limits to ±∞. Taking the integral over σ within the finite
limits, we obtain a trace formula in terms of complex Fresnel functions or generalized
error functions. The contributions of the one-parameter orbit families δgscl,1(ε) are
then given in the form

δgscl,1(ε) = Re
∑
β

A
(1)
β (ε) exp

[
ikLβ − iν

(tot)
β

]
. (5.8)

Here, the sum is taken over both elliptic and hyperbolic orbit families, k =
√
2mε/h̄.

The amplitude A(1)
β = |A(1)

β | of the orbit family β is given through

A(1)
β =

Lβ

2ε0πkR2
√
−εiM3n3

v |h̄Kβ |
erf
(
Z‖
β,1,Z‖

β,2

)
. (5.9)

Here Lβ is the ‘length’ of the orbit family (5.3) corresponding to the stationary point
σ∗ (M = 1). We have introduced here the generalized error function erf(z1, z2),

erf(z1, z2) =
2√
π

∫ z2

z1
dze−z2

= erf(z2)− erf(z1), (5.10)

erf(z) being the standard error function 47) with (complex) argument z. The complex
quantities Z‖

β,1 and Z‖
β,2 in (5.9) are given in terms of the Jacobian J

‖
β (5.6) and the

stationary points σ∗:

Z‖
β,1 =

√√√√εi|J‖
β |

2h̄

(
σ

(ε)
min − σ∗) , Z‖

β,2 =

√√√√εi|J‖
β |

2h̄

(
σ(ε)

max − σ∗) , (5.11)

where σ(ε)
min and σ

(ε)
max are related to the integration limits by

σ
(ε)
min =

{
1, ε = 1
0, ε = −1

}
, σ(ε)

max =

{
σcr, ε = 1
1 , ε = −1

}
. (5.12)

The phases ν(tot)
β in (5.8) are related to the Maslov indices. They have a constant

part νβ, which is independent of the deformation η and energy ε. At deformations
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that are far enough from bifurcation points, such that the stationary points are far
enough from the integration limits, we can determine this asymptotic part νβ by
transforming the error functions to Fresnel functions 47) with real limits and extend-
ing the integration limits to ±∞. We thereby arrive at the amplitude A(1)

β of the
standard POT, 4), 11), 44)

A
(1)
β =

Lβ

ε0πkR2
√
M3n3

v |h̄Kβ |
, (5.13)

and νβ is determined by the number of turning and caustic points, as in the theory of
Maslov and Fedoryuk. 39) - 42) In terms of the numbers nv and nu and the repetition
number M , it is given by

νβ =
3π
2
nvM for ε = +1,

νβ =
π

2
(2nu + 2nv)M for ε = −1. (5.14)

From Eqs. (5.8), (5.9) and (5.14) we determine an extra contribution to the total
phase ν(tot)

β

ν
(tot)
β = ν

(tot)
β (η, kR) = νβ − π

4
ε− arg

{
erf
(
Z‖
β,1,Z‖

β,2

)}
, (5.15)

which analytically connects the asymptotic values νβ and depends on the energy
through kR. The final result (5.15) for the total phase depends also on the defor-
mation parameter η.

Note that σ∗ is negative for η < ηbif . In the derivation of Eqs. (5.8) and (5.9),

we have changed the integration variable from σ to z =
√
−εi|J‖

β |/(2h̄)(σ − σ∗) in
order to transfer the kR and η dependence of the integrand to the limits of the
complex generalized error functions (5.10). Note also that our energy and deforma-
tion dependent phase ν(tot)

β are essentially different from those in Ref. 26) and much
simpler in analytical structure. In contrast to Refs. 26) and 29), we have not used
any assumption concerning the smoothness of the phase. Our solution is regular at
the separatrix and creeping points, at all bifurcation points, and in the circular disk
limit. We easily get the correct circular disk limit 46) and the Berry-Tabor result 4)

for larger deformations far from the bifurcations.
Equations (5.8), (5.9) and (5.15) represent one of our central results concerning

the contributions of the degenerate orbit families (K = 1) that simultaneously solves
the symmetry-breaking problem for both hyperbolic and elliptic orbits: near η = 1
and other bifurcation points for all hyperbolic orbits, and near the separatrix σs and
the ‘creeping’ point σcr for all elliptic orbits. The additional contributions of the
isolated orbits (K = 0) will be derived in the following two subsections.

Formally, our result (5.8) coincides with the first main term of the Berry-Tabor
trace formula (see Eq. (24) of Ref. 4)) using the simplest method for the expansions
near the stationary point instead of a more general and more complicated mapping
procedure. The next two terms of their formula, being of higher order in

√
h̄, can be
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obtained by taking account of the linear term in the expansion of the pre-exponential
factor over σ − σ∗. They were neglected in our approach because we are interested
here only in the main term of the SPM expansion, in order to get the simplest
possible solution of the bifurcation problem. With the higher-order corrections, we
should take into account the fact that the ratio of the contribution of the linear term
to that of the zero-order term of the amplitude is of the same order as the relative
contribution of the next order (cubic) term in the expansion of the phase. For a con-
sistent treatment of the level density in the semiclassical asymptotic approximation
kR � 1, one would have to collect both corrections.

5.2. Short diametric orbits (K = 0)

For the contribution of the isolated (K = 0) diameters, only one of the two
stationary phase conditions (4.6) corresponding to the Θv variable is an identity.
The other one for Θu is a nontrivial equation for the discrete number of stationary
points that differs by integer multiples of π. Indeed, due to the integrability of
motion in the elliptic billiard one has

Θu = ωut+Θ(0)
u , Θv = ωvt+Θ(0)

v , (5.16)

where Θ(0) is the initial angle Θ at t = 0. Since the frequency ωu in Eq. (5.16) is zero
for short diameters, for instance, there is no room for an identity in the stationary
phase condition for the variable Θu in Eq. (4.2). Hence, the Poisson-sum trace
formula cannot be applied to get the contribution from the short diameters, unlike
in the derivations in Ref. 24). The stationary points for the integration in Eq. (4.2)
over the angle Θu for short diameters are constants Θ∗

u = πM for M = 0, ±1, · · ·.
Due to the periodicity of the angle variable with the period 2π, we must deal with
the two stationary points Θ∗

u = 0 and π in the integration interval from −π to π
over the angle Θu in Eq. (4.2). We can then reduce the initial integration interval
for the angle variable Θu to the region from −π/2 to π/2, taking into account the
integration over other angles (related to the motion along the same periodic orbit
in the opposite direction) by the factor 2 (due to the time reversal invariance of the
Hamiltonian). Within this reduced integration interval, only one stationary point
Θ∗
u = 0 must be taken into account in the calculation with the improved stationary

phase method.
For the other variable Θv, for the short diameters, we have an identity in the

corresponding equation from Eq. (4.6). The integrand in (4.2) is independent of the
variable Θv, and the integral gives simply 2π. Thus, the integrand for the contri-
bution of the short diameters essentially depends only on Θu and possesses relevant
stationary points. When we take this integral using the SSPM we immediately obtain
Gutzwiller’s result for short diameters with his stability factor in the denominator.
This stability factor is zero at the bifurcation points. Below, we obtain the short
diameter term improved at the bifurcation points. For this purpose we first follow
the same method in the integration over Θu and Iu as we did in the integration
over Iu for elliptic and hyperbolic orbits with highest degeneracies. The integration
interval over Iu for the contribution of the short diameters is also finite from 0 to
the maximal “creeping” value I(cr)

u (3.11), which corresponds to the region of the σ
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variable 0 ≤ σ ≤ σcr.
Thus, for short diameters, we use the stationary condition for the angle variable

Θu and expand the phase of the exponent in Eq. (4.2) about the short diameter,

Sα = SsM (ε) +
1
2
J⊥
sMΘ2

u, (5.17)

with SsM (ε) being the action along the short diameter, SsM (ε) = 4 p(ε) aM , and
Θ∗
u = 0. J⊥

sM is the Jacobian corresponding to the second variation of the action Sα
with respect to the angle variable Θu,

J⊥
sM =

(
∂2Sα
∂Θ′2

u

+ 2
∂2Sα

∂Θ′
u∂Θ

′′
u

+
∂2Sα
∂Θ′′2

u

)
sM

=
(
− ∂I ′u
∂Θ′

u

− 2
∂I ′u
∂Θ′′

u

+
∂I ′′u
∂Θ′′

u

)
sM

,

(5.18)

according to Eq. (4.5). The Jacobian J⊥
sM is expressed in terms of the diametric

curvature Ks (3.14) and Gutzwiller’s stability factor FsM ,

FsM = −

− ∂I′u

∂Θ′
u
− 2 ∂I′u

∂Θ′′
u
+ ∂I′′u

∂Θ′′
u

∂I′u
∂Θ′′

u



sM

= 4 sin2
[
M arccos(2η−2 − 1)

]
, (5.19)

which is independent of the choice of the phase space variables

J⊥
sM = FsMJ

(Θ)
sM = − FsM

4πMKs
, (5.20)

where

J
(Θ)
sM = −

(
∂I ′u
∂Θ′′

u

)
sM

(5.21)

and Ks is the short diametric curvature given by Eq. (3.14) (ε = −1). In the second
equality of Eq. (5.20) we used a simple relation between the Jacobians J (Θ)

sM , J‖
β and

Ks. This relation follows directly from their definitions and simple properties of the
Jacobians:

J
(Θ)
sM J

‖
β(

∂Iu
∂σ

)2 = −1. (5.22)

After the exact integration over Θv in Eq. (4.2) which gives 2π as explained
above, we substitute the expansion (5.17) of the action Sα and take the amplitude
factor at the stationary point Θ∗

u = 0. We take the integral over Θu within the finite
range from −π/2 to π/2. This can be reduced further to the integral from 0 to π/2
with the factor 2 due to spatial symmetry, in addition to the time reversibility factor
2 mentioned above. Integrating over Iu as in the previous subsection, one finally
gets

δg
(s)
scl,0 = Re

∑
M

A(0)
sM exp[ikLsM − iνsM ]. (5.23)
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Here, LsM is the length of the diameter orbit, LsM = 4Ma,

A(0)
sM =

2a
ε0πkR2

1√|FsM | erf
(
Z‖
sM,1,Z‖

sM,2

)
erf
(
Z⊥
sM,1,Z⊥

sM,2

)
, (5.24)

and ZsM,1 and ZsM,2 are defined by

Z‖
sM,1 = 0, Z‖

sM,2 =

√√√√ i
∣∣∣J‖

sM

∣∣∣
2h̄

σcr, (5.25)

Z⊥
sM,1 =

√
−i ∣∣J⊥

sM

∣∣
2h̄

Θ′
u = 0, Z⊥

sM,2 =

√
−i ∣∣J⊥

sM

∣∣
2h̄

Θ′′
u =

π

2

√
−i ∣∣J⊥

sM

∣∣
2h̄

. (5.26)

For any finite deformation and sufficiently large kR, Eq. (5.24) is greatly simplified
by using asymptotics for the first error function and one obtains

A(0)
sM =

2a
ε0πkR2

1√|FsM | erf
(
Z⊥
sM,1,Z⊥

sM,2

)
. (5.27)

The constant part νsM of the Maslov phases in Eq. (5.23) is obtained in the
same way as in the previous subsection:

νsM = 3πM − π

2
. (5.28)

For deformations far from the bifurcation points, the level density δg
(s)
scl,0 (5.23)

asymptotically reduces to the standard Gutzwiller formula for isolated short diame-
ters, 1), 2), 7)

δg
(s)
scl,0(ε) →

2a
ε0πkR2

∑
M

1√
FsM

sin(kLsM − νsM ). (5.29)

The total Maslov phase ν(tot)
sM for the diameter orbits is

ν
(tot)
sM = νsM − arg

{
erf
(
Z‖

1,sM ,Z‖
2,sM

)}
− arg

{
erf
(
Z⊥

1,sM ,Z⊥
2,sM

)}
≈ νsM − arg

{
erf
(
Z⊥

1,sM ,Z⊥
2,sM

)}
(5.30)

for large kR.
Near the bifurcation points where FsM → 0, one obtains from Eq. (5.23) the

finite limit,

δg
(s)
scl,0 → a

πε0kR2
Re
∑
M

1√
2Mih̄ |Ks|

erf
(
Z‖
sM,1,Z‖

sM,2

)
ei(kLsM−νsM )

≈ η1/4

ε0

√
2πkR

Re
∑
M

1√
M

ei(kLsM−νsM−π/4). (5.31)

Note that the two last terms in Eq. (24) of Ref. 4) are smaller than the above
contribution (5.31) at the bifurcation deformations ηbif (3.12) by the factor

√
kR.
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Therefore, these two terms are the next order semiclassical corrections and can be
neglected in comparison with the term (5.31) obtained above. Moreover, the ISPM
solution (5.23) is not related to the “diametric” part of the Poisson-sum trace formula
(5.2) with nu = 1 and nv = 2, as follows from the derivations in Ref. 24) (α1 = 2, α2 =
λ = 2 in the notation of Ref. 24) applied for short diameters in elliptic billiard,
α1 = 2nu) (see below for the more detailed discussion). Thus, our derivation is
essentially different from that suggested earlier in Ref. 24) (where the last two terms
in Eq. (24) of Ref. 4) are retained without considering the contribution (5.31)).

Taking the limit of Eq. (5.31) for η → 1 we obtain the same contribution of the
diameters in the circular disk 46) as found from the “diametric” part of the Poisson-
sum trace formula,

δg
(d)
scl,1(ε) =

1
ε0

√
2πkR

∑
M

1√
M

sin(kLsM − νsM + π/4). (5.32)

The value in this limit is larger by the factor
√
kR than the standard Gutzwiller

result for isolated orbits as at any other bifurcation points.

5.3. Long diameters and the separatrix

As shown in §2, the curvature K goes to +∞ from the right side and −∞ from
the left side near the separatrix (σ = 1) with the same modulus (see Eqs. (A.5),
(A.6) and Fig. 2(b)). The derivation for short diameters of the previous section
with the expansion of the action exponent phase to second order terms cannot be
applied in this case. However, we note that the behavior of the curvature near the
separatrix in the action Iu (or σ) variable is similar to that for the eigenvalues of
the matrix of the second derivatives of the action in the usual coordinate space
near the turning points. One can thus apply the Maslov and Fedoryuk idea for the
calculation of the Maslov indices (see Refs. 39) – 42)). Following this idea we first
expand the phase of the exponent in Eq. (4.1) with respect to the action Iu taking
into account up to third order terms (see Eq. (B.1) in Appendix B). Then we use the
linear transformation (B.9) to the new variable z to get the standard exponent in the
integral representation of the Airy functions. Within this method, we take the small
first derivative (small parameter c1) and the large second derivative (curvature) in
the cubic polynomial expansions (B.1) taking σ within a small distance from the
separatrix σ = 1. After some algebraic transformations we obtain Eq. (B.12) in
Appendix B in the limit σ → 1. Note that an idea similar to that we used here, in
which σ is considered near the singular separatrix point σ = 1 and finally, only after
the calculation of the integrals, the limit σ → 1 is taken, is applied in the derivations
of the separate contributions of the hyperbolic orbit family and short diameters to
the periodic orbit sum, as mentioned above.

For the angle integral in Eq. (B.12), we use the same Maslov-Fedoryuk
method 39) - 42) applied for the caustic case. As a result, one obtains (see Appendix B)

δg
(l)
scl,0(ε) =

b

ε0πkR2
Re
∑
M

e
i[kLlM+ 2

3
(w

3/2

‖ +w
3/2
⊥ )−νlM ]



Symmetry Breaking and Bifurcations in the Periodic Orbit Theory. I 571

×
√√√√√

w‖w⊥∣∣∣c‖2c⊥2 ∣∣∣
[
Ai(−w‖) + iGi(−w‖)

]

×
[
Ai
(
−w⊥,Z⊥

lM,1,Z⊥
lM,2

)
+ iGi

(
−w⊥,Z⊥

lM,1,Z⊥
lM,2

)]
. (5.33)

Here, the complete and incomplete Airy (or Gairy) functions with one and three
arguments (Eq. (B.14)) are used in line with the definitions in Refs. 47) and 48) (see
also Appendix B for the definitions of all other quantities).

For large kR
√
η2 − 1, near the separatrix σ → 1, the parameter w⊥ is negligible

in Eq. (B.17) for the limits Z⊥
1,lM and Z⊥

2,lM and the integration range can be extended
from 0 to ∞. The incomplete Airy integrals in Eq. (5.33) approach the complete
ones and the asymptotic forms of all Airy functions like Ai(−w) and Gi(−w) are
now used. 47) Finally, we asymptotically obtain the standard Gutzwiller result for
the isolated diameters, 1), 2), 7)

δg
(l)
scl,0(ε) = − 2b

ε0kR2
Re
∑
M

e
i[kLlM+ 2

3
(w

3/2

‖ +w
3/2
⊥ )−νlM ]

√√
w‖w⊥
|FlM |

×
[
Ai(−w‖) + iGi(−w‖)

][
Ai(−w⊥) + iGi(−w⊥)

]
→ 2b

ε0πkR2

∑
M

1√|FlM | sin(kLlM − νlM ), (5.34)

where FlM is the Gutzwiller stability factor for long diameters,

FlM = −4 sinh2
[
M arccosh(2η2 − 1)

]
, (5.35)

νlM = 3πM − π

2
. (5.36)

In the second equation we used the asymptotics of the Ai(−w) and Gi(−w) func-
tions. 47) We found also the constant part νlM of the phase by using the Maslov-
Fedoryuk theory. The deformation and energy-dependent Maslov phases are deter-
mined by the additional phases in the exponent and the argument of the product of
the square brackets in (5.33) through complex combinations of the Airy and Gairy
functions and their arguments.

In the circular shape limit, both the upper and the lower limits of the incomplete
Airy functions in Eq. (5.33) tend to zero, and the angle integral has the finite limit
π/2 because c‖2, c⊥3 and w⊥ vanish (see Appendix B). With this, the other factors
near the separatrix σ → 1 ensure that the amplitudes for long diameters diminish
because w‖ (B.11) vanishes at the separatrix (see also Ref. 47)). Therefore, the long
diameter contribution becomes zero in the circular shape limit.

Thus, for deformations far from the bifurcations, the results (5.23) and (5.33) of
the ISPM reduce to the standard Gutzwiller formula. In the circular disk limit the
improved short diameter density (5.23) continuously approaches the diametric contri-
bution to the circular disk density, while the long diameter (separatrix) contribution
diminishes. Note that our ISPM solution (5.33) for the unstable long diameters
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is not related to the Poisson-sum trace formula (5.1), in particular, with its “dia-
metric” part because of the existence of the isolated stationary points for the angle
variable Θu as for short diameters. Moreover, the uniform approximation Eq. (24)
of Ref. 4) is singular at the separatrix because of the divergence of the curvature
Kl for σ → 1, as noted in Ref. 26). However, instead of using the continuation of
the WKB approach to the complex plane as suggested in Ref. 26), we applied the
simpler Maslov-Fedoryuk method 39) - 42) and obtained the analytical dependence of
the Maslov phase on the deformation and energy through the exponent phase and
complex arguments of the Airy functions as well as their complex summations.

5.4. Closed orbits and the circular disk limit

To get a more exact solution for the diameter contribution to the level density
and check the precision of the ISPM, we come back to the initial trace formula
Eq. (2.2) before application of the ISPM for the calculation of this trace.∗) For this
purpose we take exactly the trace integral (2.2) in suitable variables. This is the
trace formula in terms of the sum over all closed (periodic and non-periodic) orbits
α,

δgscl(ε) = 2 (2πh̄)−3/2 m√
p

∑
α

∫
dx dy√
Jα(x, y)

sin(kLα − να), (5.37)

where Jα(x, y) is the stability factor defined through the Jacobian Jα(p′tα, r′′ε) by

Jα(p′tα, r′′ε) =
m2

p

(
∂θ′p
∂ȳ′′

)
α

=
m2

p

1
Jα(x, y)

. (5.38)

Here the deflection δȳ′′ of the final path point in the perpendicular direction of
the local Cartesian system (x̄, ȳ) comes from the angle variation δθ′p of the initial
momentum, 11), 46) (see Fig. 3).

We then simplify the trace formula (5.37), taking the contribution of the main
shortest closed orbits α with the two reflection points denoted below by the index
“co2” as an example. For an arbitrary point (x, y) inside the elliptic billiard, one can
find such orbits “co2” that are triangles with two vertices at the elliptic boundary and
one vertex at the point (x, y) (see Fig. 4). There are two kinds of such orbits. For any
point (x, y) we can plot the hyperbola and ellipse confocal to the boundary, which
are the orbit-length invariant curves. Indeed, moving the initial point (x, y) along
such a hyperbola (or an ellipse) we have the one-parametric family of the triangle-
like orbits with the same action (K = 1). We refer to them as the hyperbolic and
elliptic “co2” orbits, respectively.

For the calculation of the trace integral (5.37) it is convenient to use the elliptic
coordinates (u, v), (3.1). After this coordinate transformation, we can take the sine
function of the action off the v or u integration for the hyperbolic or elliptic “co2”
orbits, respectively, because the action is independent of the corresponding elliptic

∗) Equation (2.1) can be obtained also from the phase space trace formula Eq. (2.3) taking the

integral over two components of the momentum p′ along the energy surface using the stationary

phase method.
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O

O′
p′

y

x
y″

Fig. 3. Illustration of the caustic method for evaluating the stability factor Jα in Eq. (5.38) for the

closed two-reflection orbit “co2”. The deflection angle δθ′
p at the initial point O(r′), variation

δȳ′′ of the final point O′(r′′) with respect to O, and the coordinate system (x̄, ȳ) are shown. The

thick solid curves and dashed curves represent the hyperbolic orbit “co2” and the perturbed

orbit, respectively. The thin solid curve indicates the orbit-length invariant hyperbola confocal

to the boundary.

O O

Fig. 4. Closed non-periodic two-reflection orbits with the elliptic and hyperbolic caustics at the

initial point O(x, y) are indicated by thin and thick solid curves, respectively, for the deformation

η = 1.05 (left-hand side) and 1.2 (right-hand side). O is the vertex common to both triangular

orbits. The dashed curves indicate the orbit-length invariant ellipse and hyperbola crossing

the initial point. The hyperbolic orbit is close to the diameter of the circular shape for small

deformations.

coordinate. Finally, one obtains from Eq. (5.37)

δg
(hco2)
scl,1 (ε) = 2(2πh̄)−3/2mζ2

√
p

∫
du sin(kLhco2(u)− νhco2) dv(sinh2 v + cos2 u)√

Jhco2(x(u, v), y(u, v))
(5.39)

for the contribution from the hyperbolic “co2” orbits (hco2), and a similar equation
for the elliptic “co2” orbits. An explicit expression for the stability factor Jco2(x, y)
evaluated using the caustic method 11) is presented in Appendix C.

Note that the hyperbolic “co2” orbits with the initial point (x, y) reduce to the
disk diameters crossing the same point in the circular disk limit (see Fig. 4). The
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Fig. 5. (a) Convergence to the circular shape limit: The contribution of the closed two-reflection

orbits of the hyperbolic type “hco2” (see Fig. 4) to the level density δg(kR) is represented

by the solid curve for the deformation η = 1.005, while Gutzwiller’s trace formula (SSPM) for

isolated diameters and the circular disk trace formula are indicated by dotted and dashed curves,

respectively. The dashed curve overlaps with the solid curve, so that it cannot be distinguished

from the latter. (b) Convergence to the Gutzwiller trace formula for η = 1.1. The notation is

the same as in (a).

stability factor Jhco2(x, y), (C.1), turns into the analytical circular disk expression
of Ref. 46). The circular disk limit of the level density (5.39) coincides with the
diameter contribution δg

(d)
scl,1(ε), (5.32), as shown in Fig. 5(a). The opposite limit of

(5.39) far from the bifurcations is the Gutzwiller SPM for the short and long isolated
diameters (see Fig. 5(b)). The contribution of the elliptic “co2” is negligibly small
everywhere, and it vanishes at the circular disk shape as higher order h̄ corrections.

§6. Level density, shell energy and averaging

6.1. Total level density

The total semiclassical POT density can be written as the sum over all periodic
orbit families considered in the previous section,

δgscl(ε) = δgscl,1(ε) + δg
(s)
scl,0(ε) + δg

(l)
scl,0(ε) =

∑
β

δg
(β)
scl (ε), (6.1)

where the first term is the contribution (5.8) from the elliptic and hyperbolic orbits.
The second and third terms are the contributions from the short (5.23) and the long
(5.33) diameters, respectively. Near the circular limit, the last two terms for one
period (M = 1) can be replaced by the contribution of the hyperbolic “co2” orbits
(5.39) to obtain a more precise semiclassical result.

6.2. Semiclassical shell energy

The shell-correction energy δE can be expressed in terms of the oscillating part
δg

(β)
scl (ε) of the semiclassical level density as 6), 7), 11)
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δE = 2
∑
β

(
h̄

tβ

)2

δg
(β)
scl (εF ), N = 2

∫ εF

0
dεg(ε). (6.2)

Here, tβ is the time of the motion along the periodic orbit β (including its repetitions),

tβ =MβTβ =
2πMβ

Ωβ
, (6.3)

where Tβ is the period of the primitive orbit with the Fermi energy εF , Mβ the
repetition number, Ωβ the frequency, and N the particle number. Note that we have
taken into account the spin degeneracy factor 2 in (6.2).

The semiclassical representation of the shell-correction energy (6.2) differs from
that of δg only by the factor (h̄/tβ)2 = (h̄2kF /mLβ)2, which suppresses contributions
from longer orbits. Thus short periodic orbits play dominant roles in determining
the shell-correction energy.

6.3. Average level density

For the purpose of presenting the level density improved at the bifurcation points
we need to consider a level density slightly averaged, thus avoiding the convergence
problems that usually arise when one is interested in a full semiclassical quantization.

The averaging is done by folding the level density with a Gaussian of width Γ :

gΓ (ε) =
1√
πΓ

∫ ∞

−∞
dε′ g(ε′) e

−
(

ε−ε′
Γ

)2

. (6.4)

The choice of the Gaussian form of the averaging function is immaterial and guided
only by mathematical simplicity. For cavities it is also convenient to use the level
density defined as a function of kR averaged with a Gaussian of width γ:

gγ(kR) =
1√
πγ

∫ ∞

−∞
d(k′R) g(k′R) e

−
(

(k−k′)R
γ

)2

, (6.5)

where

g(kR) =
∑
i

δ((k − ki)R) = 2kRε0

∑
i

δ(ε− εi) = 2kRε0g(ε), (6.6)

ε0 = h̄2/2mR2 and the dimensionless parameter γ is related to Γ by

Γ = 2γ
√
εε0. (6.7)

Applying the averaging procedure defined above to the semiclassical level density
(6.1), one obtains 3), 46), 11)

δgΓ,scl(ε) =
∑
β

δg
(β)
scl (ε) e

−
(

Γtβ
2h̄

)2

=
∑
β

δg
(β)
scl (ε) e

−
(

γLβ
2R

)2

. (6.8)



576 Magner, Fedotkin, Arita, Misu, Matsuyanagi, Shachner and Brack

The latter equation is written specifically for billiard problems in terms of the orbit
length Lβ (in units of a typical length scale R) and γ. The averaging yields an
exponential decrease of the amplitudes with increasing Lβ and/or γ. As shown
in Ref. 11), for γ of order unity, all longer paths are strongly damped and only the
shortest periodic orbits contribute to the oscillating part of the level density, yielding
its gross-shell structure. For a study of the bifurcation phenomenon, however, we
need smaller values of γ.

Finally, we should note that the higher the degeneracy of an orbit, the larger
the volume occupied by the orbit family in the phase space and also, the shorter its
length, the more important its contribution to the average level density.

§7. Quantum elliptic billiard

7.1. Numerical method for the spectrum calculation

Single-particle energies εi of a particle of mass m moving freely inside the elliptic
boundary v ≤ vb can be obtained by a number of numerical methods. Following the
procedure employed in previous works 18), 20) by some of the present authors, one can
expand the deformed single-particle wave functions Ψ(r, θ) into a circular basis with
well-defined orbital angular momentum l as

Ψ
(++)
i (r, θ) =

(e)∑
l=0

AlJl(kir) cos(lθ), Ψ
(−+)
i (r, θ) =

(o)∑
l=1

BlJl(kir) sin(lθ),

Ψ
(+−)
i (r, θ) =

(o)∑
l=1

AlJl(kir) cos(lθ), Ψ
(−−)
i (r, θ) =

(e)∑
l=2

BlJl(kir) sin(lθ), (7.1)

where Jl(x) are the cylindrical Bessel functions of the first kind, ki =
√
2mεi/h̄, the

superscripts (++) etc. indicate the parities with respect to reflections about the x
and y axes, and the superscripts (e) and (o) indicate the sums with respect to even
and odd l, respectively. The expansion coefficients Al and Bl can be determined by
applying Dirichlet boundary conditions.

In the present analysis we employed, in addition to the above circular-wave
decomposition method, the numerical procedure based on a rather standard ap-
proach, the transformation of the Schrödinger equation into an elliptic coordinate
system. 26), 52), 53) In terms of elliptic coordinates (3.1), the Schrödinger equation can
be written as

[√
ξ2 − 1

∂

∂ξ

{√
ξ2 − 1

∂

∂ξ

}
+
√
1− φ2

∂

∂φ

{√
1− φ2

∂

∂φ

}]
ψ(ξ, φ)

+
2mεiζ

2(ξ2 − φ2)
h̄2 ψ(ξ, φ) = 0, (7.2)

where ξ = cosh v and φ = cosu. Following Ref. 52), this equation can be sepa-
rated into two ordinary differential equations by assuming ψ(ξ, φ) = R(ξ)S(φ). The
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Fig. 6. Single-particle spectra (in units of ε0) for elliptic billiard plotted as functions of the defor-

mation parameter η.

functions R and S are solutions of the ordinary differential equations

(ξ2 − 1)
d2Rl(c, ξ)

dξ2
+ ξ

dRl(c, ξ)
dξ

−
[
λl − c2ξ2

]
Rl(c, ξ) = 0,

(1− φ2)
d2Sl(c, φ)

dφ2
− φ

dSl(c, φ)
dφ

+
[
λl − c2φ2

]
Sl(c, φ) = 0, (7.3)

where λl is the separation constant and c = ζ
√
2mεi/h̄ for ξ ≤ ξb = cosh vb. The

internal radial functions Rl(c, ξ) are expanded in terms of Bessel functions of the first
kind. The expansion coefficients and the separation constant λl can be determined
from the three-term recurrence relations found in various references. 47), 52) - 54)

By imposing usual boundary conditions on the radial wave functions, i.e.,
Rl(c, ξb) = 0, one finds the eigenenergies εi. All eigenvalues up to kR ≈ 40 with
the coordinate-transformation method can be calculated numerically in matter of
minutes without overlooking solutions near level crossings, and hence the procedure
is certainly effective for the present model. The results obtained from both numerical
procedures were carefully compared and found to exhibit a nice convergence.

In Fig. 6 the deformation dependence of the single-particle energies for the elliptic
billiard is presented. In the circular limit, the familiar shell gaps are clearly observed,
while different shell gaps start to develop at higher deformations. Below we identify
the semiclassical origin of these shell structures at higher deformations.

7.2. Strutinsky’s smoothed level densities and shell energies

With the aid of the Strutinsky averaging procedure, 57) clear oscillatory patterns
of the coarse-grained level density emerge, as shown in Fig. 7, where (a) and (b)
are obtained with the Gaussian smoothing parameter γ (defined by (6.7)) of 0.30
and 0.64, respectively. As clearly seen from these figures, the choice of a Gaus-
sian smoothing parameter γ is crucial for properly identifying the coarse-grained
level density, and hence the contribution of classical periodic orbits. In the circular
limit η = 1.0, the two Gaussian-smoothed level densities exhibit similar oscillations,
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Fig. 7. Coarse-grained level densities with the Gaussian smoothing parameter γ = 0.3 (a) and 0.64

(b).

whereas the shell gaps for γ = 0.64 start to collapse with increasing deformation.
In particular for deformations η larger than 1.5, strong shell patterns cease to exist
for the case γ = 0.64, while for γ = 0.3 appreciable effects still remain and more
oscillations appear as the deformation increases.

In the semiclassical picture, for a given value of γ the contributions from only
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those periodic orbits of length up to Lmax ≈ πR/γ can be considered. In this context,
it is important to locate the actual shell-energy minima, irrespective of the choice of
a Gaussian smoothing parameter.

In terms of the particle number N , one can also obtain the shell-correction
energy δE defined as the difference between the sum of single-particle energies of N
lowest levels (taking the spin-degeneracy factor 2 into account) and the Strutinsky
averaged energies, i.e.,

δE =
N∑
i=1

εi − Ẽ, Ẽ = 2
∫ ε̃F

−∞
dε′ ε′ g̃(ε′), (7.4)

with the Fermi energy ε̃F satisfying

N = 2
∫ ε̃F

−∞
dε′ g̃(ε′). (7.5)

Figure 8 illustrates the oscillating pattern of the shell-correction energy δE as
function of both the deformation η and particle number N . It is clear from the figure
that the distance between the major shell gaps shrink with increasing deformation. In
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Fig. 9. Smoothed shell-correction energies for η = 1.5 with Gaussian smoothing parameter γ = 0.3

(dashed curve) and 0.6 (dotted curve). Those without smoothing are plotted by the solid curve.

the considered range of deformation it is found that the actual magic numbers deter-
mined through the above procedure cannot be reproduced with the choice γ = 0.64,
whereas the value γ = 0.3 is sufficiently small to avoid demolishing but sufficiently
large to preserve the actual coarse-grained shell structure. It is explicitly shown in
Fig. 9, where the shell-correction energies are now calculated by applying Gaussian
smoothing parameters γ = 0.3 and 0.64, for the case η = 1.5 as an example. In this
case, the actual magic numbers are found to be · · · , 16, 22, 30, 38, 52, · · ·, which
exactly coincide with those for γ = 0.3, while those calculated with γ = 0.64 show
larger oscillations where magic numbers · · · , 16, 30, · · · are missing. The same is
true for other deformations considered in this paper. Thus, the coarse-grained shell
structure obtained with γ = 0.64 is too rough and therefore we adopt γ = 0.3 to
improve the precision of its description.

7.3. Shell structure and Fourier spectra

Equations of single-particle motion in billiard are invariant with respect to the
scaling transformation (r,p, t) → (r, αp, α−1t). The action integral Sβ for a periodic
orbit β is proportional to its length Lβ:

Sβ(E = p2/2m) =
∮
β
dr · p = pLβ = h̄kLβ. (7.6)

The semiclassical trace formula for the level density is then written as

gscl(ε) = g̃(ε) +
∑
β

Aβ(kR) cos
(
kLβ − π

2
µβ

)
, (7.7)

where g̃(ε) denotes the smooth part corresponding to the contribution of zero-length
orbits, Aβ = |Aβ |, and µβ is the Maslov phase (the deformation and energy depen-
dent phase of Eqs. (5.15) and (5.30) in our improved semiclassical approximation).
As previously discussed, the stationary phase approximation employed in deriving
the Gutzwiller trace formula breaks down at bifurcation points for stable periodic
orbits, and consequently it results in the divergence of the amplitudes Aβ(kR) in
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Eq. (7.7), whereas in the present ISP treatment, those amplitudes are smooth func-
tions of both deformation and energy.

In order to examine the classical-quantum correspondence in shell structure,
one can perform the Fourier transform F (L) of the quantum level density g(ε) with
respect to the wave number k,

F (L) =
∫
dk e−ikLg(ε)e−

1
2

(
k
kc

)2
=

1
2ε0R2

∑
i

1
ki
e−ikiLe

− 1
2

(
ki
kc

)2

, (7.8)

which may be regarded as a ‘length spectrum’ exhibiting peaks at lengths of indi-
vidual periodic orbits. Here the Gaussian factor is included to smoothly cutoff the
spectrum in the high-energy region. In numerical calculations, we use kc = kmax/

√
2,

kmax being the maximum wave number included. The above method of taking the
Fourier transform of the quantum level density is known to be a powerful tool to in-
vestigate the role of classical periodic orbits in the appearance of shell fluctuations in
quantum systems, and from such observations one can also extract the semiclassical
contributions of individual periodic orbits.

Fourier spectra for deformations η = 1.0, 1.2, 1.5 and 1.7 are presented in
Figs. 10(a)–(d), respectively. At the axis ratio η = 1.0, the diameter and elliptic
orbits are found to be equally important. The fact that the main contribution to the
gross-shell structure comes from the shorter periodic orbits implies the significance
of three classical periodic orbits in the circular limit, namely the diameter, triangu-
lar, and square shape orbits. As the deformation increases, the Fourier amplitudes
for triangular and rhombic orbits still exhibit fairly strong effects, while those for
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diameter orbits start to decline quickly and significant rearrangement can be ob-
served. In particular at deformations η = 1.5 and 1.7, one can conclude, in addition
to triangular and rhombic shape orbits, the gross-shell fluctuations are also governed
by the (1,4) hyperbolic orbits bifurcated from the 2(1,2) short diameter orbit at the
critical deformation η =

√
2.

Figure 11(a) displays the deformation dependence of Fourier amplitudes cal-
culated from the quantum single-particle spectra. Here the enhancement of peaks
indicates a larger contribution from the corresponding classical periodic orbits β of
length Lβ to the shell structure. In the circular limit, the system possesses the high-
est symmetry, and the breaking of this symmetry due to a small deviation of its shape
results in the orbital bifurcation. With increasing deformation, the short diameter
orbits with M repetitions M(1,2) also bifurcate and create hyperbolic orbits at the
critical deformations ηbif given by Eq. (3.12). The length of those classical periodic
orbits as a function of deformation can be calculated, 14) as shown in Fig. 11(b). It
is clearly seen from both figures that the bifurcations of stable periodic orbits give
rise to an increase in the Fourier amplitudes. The significant enhancements seen
in the figure exactly coincide with the corresponding lengths of the newly created
hyperbolic orbits, and hence they stress the importance of the orbital bifurcations.

In this context, similar enhancements for the case of a spheroidal cavity of su-
perdeformed shape were also reported in Ref. 21), where superdeformed shell struc-
ture is associated with bifurcations of periodic orbits with two repetitions on the
equatorial plane. In the present work, particular attention is paid to investigate
such correlations between bifurcations of stable periodic orbits and quantum level-
density oscillations.

In Fig. 12, Fourier peak heights for some of the important hyperbolic orbits,
namely those bifurcated from the short diameter orbits of 2, 3 and 4 repetitions,
2(1,2), 3(1,2) and 4(1,2), are displayed as functions of the deformation parameter
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η. Interestingly, the Fourier peaks for these newly created orbits exhibit a univer-
sal deformation dependence; that is, their heights reach the maxima shortly after
their bifurcation points and quickly decrease with increasing deformation. Such
remarkable features were already seen in Fig. 8, where the shell valleys for η approx-
imately larger than 1.5 can be understood to vary along the constant-action lines
S(k, η) = const of the (1,4) hyperbolic orbits, as explained below.

Suppose some classical periodic orbits β of length Lβ are the dominant compo-
nents in the semiclassical trace formula for the oscillating level density. Then the
shell valley maxima/minima follows the constant-action lines Sβ(k, η) = const of
those dominating classical periodic trajectories. Referring to Eq. (7.7), such lines
are determined by

kLβ − π

2
µβ = (2n+ 1)π, n = 0, 1, 2, · · · . (7.9)

We demonstrate the above dependence in Fig. 13(a), where the smoothed level
densities are plotted in the k-η plane. As indicated in Fig. 13(b), it is interesting
to note that the shell valley structures seen in Fig. 13(a) can be described by the
constant-action lines of three major periodic orbits: Near the circular limit, the
shell valleys vary along those of elliptic (mainly triangular and rhombic) orbits; in
the right-half region of Fig. 13(a) the influence of newly created (1,4) hyperbolic
orbits is visible; and the contribution of short diameter orbits are less pronounced
but certainly non-negligible throughout the considered range of deformation. The
equality Eq. (7.9) indicates the inverse proportionality relation between the orbital
length Lβ and wave number k. As the length of a trajectory β increases, the values of
k decrease, and consequently the smoothed level densities exhibit more oscillations.
In particular, since the length of the (1,4) hyperbolic orbits gradually increases for
η ≈ √

2 –1.7 and then slowly decreases for η > 1.7, the corresponding constant-
action lines behave in the same manner. Such a tendency was already observed in
Fig. 8, where the contribution from the (1,4) hyperbolic orbits to the shell energy
δE is apparent in the region η > 1.5, indicating the essential role of the orbital
bifurcations in quantal shell formations.

§8. Comparison between quantum and semiclassical calculations

Figures 14–16 show the modulus of the complex amplitude for a few short or-
bits. The semiclassical amplitudes for the hyperbolic “butterfly” M(nu, nv) = (1, 4)
and elliptic triangular (1,3) orbit families calculated using the ISPM are in good
agreement with the exact calculation of the Poisson-sum trace integral (4.2) (see
Figs. 14 and 15, respectively). All ISPM amplitudes are continuous function of the
deformation through the bifurcation point η =

√
2. A significant enhancement of

the butterfly amplitude is seen at the deformation η = 1.5 –1.6 slightly to the right
of the bifurcation point (see Fig. 14).

The ISPM amplitude for the primitive short diameter 1(1,2) quickly approaches
the Gutzwiller SSPM result as one goes away from the circular limit and, for larger
deformations, its magnitude is relatively small compared with those of the other
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orbits mentioned above (see Fig. 15).
In Fig. 16 we compare the ISPM result with the modulus of the “diametric”

part of the Poisson-sum trace formula corresponding to nu = 1, nv = 2 and M = 2,
which is regarded in Ref. 24) as representing short and long diameters, as well as the
standard Gutzwiller results. The ISPM amplitude for the bifurcating short diameter
2(1,2) has the maxima; at the bifurcation deformation

√
2, which is significantly

larger than the butterfly and triangular amplitudes, and at the circular shape (see
also Figs. 14 and 15). (Similar maxima at the circular shape appear for any short
diameter orbit. The maximum for the short diameter 1(1,2) is the largest one, in
particular, larger than for the triangular orbit (see Fig. 15(a)).) As seen from Fig. 16,
there is the same circular shape limit for the ISPM approach and the “diametric”
part of the Poisson-sum trace formula, which is identical to the diameter family
amplitude in the circular disk.
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Apparently, the behavior of the ISPM amplitude for two repetitions of the
short diameter 2(1,2) is essentially different from that of the “diametric” part of
the Poisson-sum trace integral, which exhibits no enhancement near the bifurcation
point. Thus, the Poisson-sum trace formula (5.1) describes families with maximum
degeneracy, like hyperbolic and elliptic orbits, rather than isolated diameters. For
isolated orbits with smaller degeneracy, like diameters in elliptic billiard the Poisson-
sum trace formula cannot be applied because of the isolated stationary points for
the angle Θu variable. This is the reason for the agreement of the ISPM and SSPM
asymptotics unlike for the “diametric” term of the Poisson-sum trace integral in
Eq. (5.1). This implies that the diameters cannot be included in the usual EBK
rational torus quantization. However, the diameters could be included in a more
general quantization rule in terms of the averaged ISPM level densities (6.1) in a
similar way as that pointed out in Refs. 9) and 12).

We note a significant improvement of the ISPM results compared to the SSPM
for σ close to the separatrix value 1 and the creeping value σcr (3.11). These cases
might seem to be important only in the limit η → ∞ when σcr tends to unity.
However, even for 0 ≤ η <∼ 2 we meet situations in which the stationary points are
close to the critical points σ = 1 and σ = σcr, so that we must integrate within the
finite limits.

We compare in Fig. 17 the semiclassical level densities δgscl(kR) calculated using
the ISPM with the quantum results for the averaging parameter γ = 0.3. The results
obtained with the ISPM are in good agreement with quantum results even near the
bifurcation point

√
2, where the SSPM gives a divergent result due to the zeros of

the stability factor FsM for short diameters 2(1,2). For deformations like 1.2 and 1.7
far from the bifurcation, one obtains a fair agreement between the ISPM and the
SSPM.

Figure 18 displays the nice convergence of the ISPM results to those using the
circular disk trace formula for η → 1. This convergence is seen for any small defor-
mation when the semiclassical parameter kR becomes sufficiently large. With the
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Fig. 17. Quantum and semiclassical (ISPM) oscillating level densities δg(kR) versus kR for several

deformations. The averaging parameter γ = 0.3, the parameter of Strutinsky’s shell correction

method γ̃ = 2.0, and the correction polynomial degree 2M = 6 are used.

inclusion of the closed (periodic and non-periodic) hyperbolic orbit contribution, one
gets even better agreement with the quantum densities near the circular disk shape.
For deformations far from the circular shape (η >∼ 1.1) and far from other bifurcation
points, the contribution of the hyperbolic “co2” orbits approach Gutzwiller’s SSPM
result for the isolated diameters (see Fig. 5(b)).

For the averaging parameter value γ = 0.64, we have good convergence of POT
sums for the ISPM and SSPM with a few short periodic orbits with M ≤ 1, nu = 1
and nv ≤ 10. This is due to the damping factor in Eq. (6.8) which ensures the
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Fig. 18. Oscillating level density δg(kR) versus kR (left-hand side) and shell energy δE in units of

ε0 versus N1/2 (right-hand side) for the small deformation 1.01. The solid and dotted curves

indicate results of quantum and ISPM calculations, respectively. The parameters for the Struti-

nsky’s shell correction method are the same as in Fig. 17.
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Fig. 19. Quantum and ISPM shell energy δE (in units of ε0) are plotted by the solid and dotted

curves, respectively, as functions of N1/2.

convergence of the POT sum. For the smaller value γ = 0.3 we need more orbits
with M ≤ 2, nu ≤ 2 and nv ≤ 10. Note that for γ = 0.3 we have much better
agreement of the ISPM results with the quantum mechanical calculations than in
the case of SSPM for the deformations near the bifurcations including the transition
to the circular shape (see Fig. 7).
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respectively (see text).
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Figures 19 and 20 show nice agreement of the ISPM results for the shell-
correction energies with the corresponding quantum results. Note that we can sub-
stitute the exact Fermi energy εF into the semiclassical shell energy δE (6.2) by using
the second equation of (6.2) for the particle number and quantum level density, as
in Ref. 11). This is important to get the correct behavior of the shell-correction
energy as a function of particle number N , as explained in Ref. 11). It is evident
from Fig. 20 that the nice agreement between the ISPM and quantum results in
the strongly deformed region of η ≥ √

2 cannot be attained without including the
contributions from bifurcating 2(1,2) and (1,4) orbits.

In all our calculations we used the semiclassical approximation improved at the
bifurcation points which becomes better with increasing kR for all deformation sizes
including the bifurcation points.

§9. Conclusion

The most essential new result of this paper in comparison to the Berry-Tabor
theory are the two additional terms (the second and third ones in Eq. (6.1)) in the
improved trace formula for elliptic billiard. These two terms represent the contribu-
tions from the short and long diameters which are continuous functions through all
bifurcation points. For deformations far from the bifurcation points, we asymptot-
ically obtain the standard Gutzwiller result for isolated diameters and the correct
trace formula for diameters in spherical limit of circular billiard. Our results for the
hyperbolic and elliptic orbits improved near the bifurcation points are simpler than
those suggested within the uniform approximation. 4), 26)

Making use of our improved trace formula, we have demonstrated the importance
of bifurcations of the repeated short diameter orbit in the emergence of shell structure
at large deformations.
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Appendix A
Curvatures

The actions Iu and Iv given by Eq. (3.5) are expressed explicitly in terms of the
elliptic integrals. 47), 49) For elliptic orbits one has

Iu =
2
π
ζ
√
2mεσ E

(
π

2
,
1√
σ

)
,

Iv =
1
π
ζ
√
2mεσ

[
E
(
θe,

1√
σ

)
− E
(
π

2
,
1√
σ

)
+
η2 − σ(η2 − 1)
η
√
η2 − 1

]
, (A.1)
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while for hyperbolic orbits,

Iu =
2
π
ζ
√
2mε

[
E
(
π

2
,
1√
σ

)
− (1− σ) F

(
π

2
,
1√
σ

)]
,

Iv =
1
π
ζ
√
2mε

{
(1− σ)

[
F
(
π

2
,
1√
σ

)
− F
(
θh,

1√
σ

)]

+E
(
θh,

1√
σ

)
− E
(
π

2
,
1√
σ

)
+
η2 − σ(η2 − 1)
η
√
η2 − 1

}
. (A.2)

Equations (A.1) and (A.2) may be regarded as equations for the energy surface
ε(Iu, Iv) written in terms of the parameter σ for its elliptic and hyperbolic parts,
respectively.

The curvature K of the energy curve is obtained by differentiating Eqs. (A.1)
and (A.2) with respect to the parameter σ. In this way one gets Eq. (3.13) with the
following derivatives for elliptic orbits:

∂Iu
∂σ

=
1
π

ζ
√
2mε√
σ

F
(
π

2
,
1√
σ

)
,

∂2Iu
∂σ2

= − 1
2π

ζ
√
2mε√
σ3

Π

(
π

2
,
1
σ
,
1√
σ

)
,

∂Iv
∂σ

= − 1
2π

ζ
√
2mε√
σ

[
F
(
π

2
,
1√
σ

)
− F
(
θe,

1√
σ

)]
,

∂2Iv
∂σ2

=
1
4π

ζ
√
2mε√
σ3

[
Π

(
π

2
,
1
σ
,
1√
σ

)
−Π

(
θe,

1
σ
,
1√
σ

)
+

η
√
η2 − 1√

1− (1− σ−1)η2

]
,

(A.3)

while for hyperbolic orbits,

∂Iu
∂σ

=
1
π
ζ
√
2mεF

(
π

2
,
√
σ

)
,

∂2Iu
∂σ2

=
1
2π

ζ
√
2mε

σ

[
Π

(
π

2
, σ,

√
σ

)
− F
(
π

2
,
√
σ

)]
,

∂Iv
∂σ

=
1
2π

ζ
√
2mε

[
F
(
θh,

√
σ
)− F

(
π

2
,
√
σ

)]
,

∂2Iv
∂σ2

=
1
4π

ζ
√
2mε

σ

[
Π
(
θh, σ,

√
σ
)−Π

(
π

2
, σ,

√
σ

)

+F
(
π

2
,
√
σ

)
− F
(
θh,

√
σ
)]
. (A.4)

With Eq. (A.3) we obtain the curvature Kβ (3.13) for elliptic orbits as

Kβ =
π

4pζ
κ

F2(π2 , κ)

[
F(θ, κ)
F(π2 , κ)

Π

(
π

2
, κ2, κ

)
−Π(θ, κ2, κ) +

η
√
η2 − 1√

1− (1− κ2)η2

]
.

(A.5)



Symmetry Breaking and Bifurcations in the Periodic Orbit Theory. I 593

For hyperbolic orbits we have

Kβ =
π

4pζ
1

κ2 F2(π2 , κ)

[
Π(θ, κ2, κ)− F(θ, κ)

F(π2 , κ)
Π

(
π

2
, κ2, κ

)]
. (A.6)

Appendix B
Separatrix

As for the case of turning points, 39) - 42) one writes

1
h̄

[
Sα(I ′, I ′′, tα)− (I ′′ − I ′) · Θ′′] = c

‖
0 + c

‖
1x+ c

‖
2x

2 + c
‖
3x

3 + . . .

≡ τ
‖
0 + τ

‖
1 z +

1
3
z3. (B.1)

Here,
x = (I ′u − I ′u

∗)/h̄, (B.2)

c
‖
0 =

1
h̄

[
S∗
α(I

′, I ′′, tα)− (I ′ − I ′′)∗ · Θ′′∗] = 1
h̄
S∗
α(Θ

′,Θ′′, ε), (B.3)

c
‖
1 =
(
∂Sα
∂I ′u

−Θ′′
u

)∗
= Θ′

u −Θ′′
u → 0, (σ → 1) (B.4)

c
‖
2 =

h̄

2

(
∂2Sα

∂I ′u
2

)∗
= 2πMh̄K‖ → ∞, (σ → 1) (B.5)

c
‖
3 =

h̄2

6

(
∂3Sα

∂I ′u
3

)∗
=

2πh̄2M

3

(
∂K‖

∂Iu

)
< 0, (σ → 1) (B.6)

where the symbol ∗ indicates that I ′u = I ′′u = I∗u. The asymptotic behavior of the
constants c‖i near the separatrix σ ≈ 1 was found from

K‖ → π log[(1 + sin θ)/(1− sin θ)]
pζ(σ − 1) log3(σ − 1)

, (σ → 1) (B.7)

θ → θh(η) formally, see (3.9),

∂K‖

∂Iu
→ −2π2 log[(1 + sin θ)/(1− sin θ)]

(pζ(σ − 1) log2(σ − 1))2
. (σ → 1) (B.8)

The second equality in Eq. (B.1) was obtained by a linear transformation with some
constants α and β,

x = αz + β, α = (3c‖3)
−1/3, β = −c‖2/(3c‖3), (B.9)

τ
‖
0 = (c0 − c1c2/(3c3) + 2c32/(27c

2
3))

‖, τ
‖
1 = α[c1 − c22/(3c3)]

‖. (B.10)

Near the stationary point for σ → 1, one has c‖1 → 0 and τ‖1 → −w‖ with the positive
quantity

w‖ =

(
c22

(3c3)4/3

)‖
→
∣∣∣∣M log[(1 + sin θ)/(1− sin θ)]pζ(σ − 1)

2h̄ log(σ − 1)

∣∣∣∣
2/3

. (B.11)
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Using the expansion (B.1) in Eq. (4.1) and taking the integral over the angle Θ′′
v

exactly, i.e. writing 2π instead of this integral, one gets

δg
(lM)
scl = −2

h̄
Re
∑
α

∫
dΘ′′

u

1
|ω∗

v |
ei(τ0−να)

√√√√√
w‖
c
‖
2

×
[
Ai
(
−w‖,Z‖

lM,1,Z‖
lM,2

)
+ iGi

(
−w‖,Z‖

lM,1,Z‖
lM,2

)]

≈ −2
h̄
Re
∑
α

∫
dΘ′′

u

1
|ω∗

v |
ei(τ0−να)

√√√√√
w‖
c
‖
2

[
Ai
(
−w‖

)
+ iGi

(
−w‖

)]
,

(B.12)

where

Z‖
lM,1 =

√
w‖, Z‖

lM,2 =

√√√√ c
‖
2√
w‖

I
(cr)
u

h̄
+√

w‖. (B.13)

Here, Ai(−w, z1, z2) and Gi(−w, z1, z2) are incomplete Airy and Gairy functions, 48){
Ai(−w, z1, z2)
Gi(−w, z1, z2)

}
=

1
π

∫ z2

z1
dz

{
cos
sin

}(
−wz + z3/3

)
, (B.14)

and Ai(−w) and Gi(−w) are the corresponding standard complete functions. 47) Here
we used in the second equation of Eq. (B.12) the fact that for any finite deformation
η and large kR near the separatrix (σ → 1) one gets (see Eq. (B.11))

Z‖
lM,1 → 0, Z‖

lM,2 → 4

[
M log[(1 + sin θ)/(1− sin θ)]pζ

2(σ − 1)2 log4(σ − 1)

]1/3

×
[

η√
η2 − 1

E

(
π

2
,

√
η2 − 1
η

)
− 1

]
→ ∞. (B.15)

Using an analogous expansion of the action τ0 in Eq. (B.12) with respect to
the angle Θ′′

u to third order and making a linear transformation like Eq. (B.9), one
arrives at Eq. (5.33). We introduced in (5.33) several new quantities, like

w⊥ =

(
c22

(3c3)4/3

)⊥
> 0, (B.16)

Z⊥
lM,2 =

√
w⊥, Z⊥

lM,2 =
π

2

(∣∣∣3c⊥3 ∣∣∣)1/3 +√
w⊥, (B.17)

c⊥2 =
1
2h̄

(J⊥
α )

∗ =
1
2h̄

(
∂2Sα

∂Θ′
u
2 + 2

∂2Sα
∂Θ′

u∂Θ
′′
u

+
∂2Sα

∂Θ′′
u
2

)∗

lM

= − FlM

8πMK‖ , (B.18)

where FlM is the stability factor for long diameters (see Eq. (5.35)):

c⊥3 =
1
6h̄

[
∂3Sα

∂Θ′
u
3 + 3

∂3Sα

∂Θ′
u
2∂Θ′′

u

+ 3
∂3Sα

∂Θ′
u∂Θ

′′
u
2 +

∂3Sα

∂Θ′′
u
3

]∗

=
1
6h̄

[
∂J⊥

α

∂Θ′
u

+
∂J⊥

α

∂Θ′′
u

]∗
< 0. (B.19)
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Note that, according to Eq. (B.18), the quantity c⊥2 goes to 0 near the separatrix (σ →
1) as in the caustic case. This is the reason that the Maslov-Fedoryuk theory 39) - 42)

can be used for the transformation of the integral over the angle Θ′′
u in Eqs. (B.12)

into Eq. (5.33).

Appendix C
Jacobians for Closed Orbits with Two Reflection Points

The Jacobian J
‖
co2 defined by the derivative in Eq. (5.38) for closed orbits α like

“co2” with two reflection points, J‖
co2 =

(
δȳ′′/δθ′p

)
co2

, can be calculated by means of

the caustic method. 11) The main idea of this method is to use a specific property of
the trajectories in the billiard system like elliptic cavity. These trajectories consist
of straight lines which are tangent to a curve called an elliptic or hyperbolic caustic
between turning points. Our trajectory stability problem for the variations δȳ′′ at
a given δθ′p (see Fig. 3) is much simplified by reducing it to the calculation of the
caustics semi-axes ac, bc and ac + δac, bc + δbc for the closed orbit “co2” and its
δθ′p deflection, respectively. For the case of closed non-periodic orbits “co2”, the
semi-axes ac and bc and their variations are functions of the initial point (x, y), in
contrast with the stability problem for the periodic orbits of Ref. 11). The orbit-
length invariant curve (confocal-to-boundary ellipse or hyperbola crossing the point
(x, y) (see Fig. 4)) and its semi-axis variations play a similar role for the calculation
of the “co2” stability factor J‖

co2 with that of the boundary parameter for the periodic
orbits in Ref. 11). In this way this stability factor is obtained in the form

J
‖
co2 =

q0 − q1√
1 + q1

D, D =
x′′ − x

δθ′p
, (C.1)

where x′′ is the x-coordinate of the final point O′ (see Fig. 3), and q0 and q1 are
the tangents of the slope angle for the initial and final directions of particle motion
along the orbit “co2”,

q0 = ±xc1
yc1

(
bc
ac

)2

, q1 = ±xc2
yc2

(
bc
ac

)2

. (C.2)

Here, the upper and lower signs stand for the hyperbolic and elliptic closed orbits,
(xc1, yc1) and (xc2, yc2) are the first and last tangent-to-caustics points of the trajec-
tory “co2”,

xc1 =
Bc +

√
B2
c −AcCc

Ac
, yc1 =

{
1

(ac − x)/|ac − x|

}
bc

√
1±
(
xc1
ac

)2

, (C.3)

xc2 =
Bc −

√
B2
c −AcCc

Ac
, yc2 =

{
−Ac/|Ac|

1

}
bc

√
1±
(
xc2
ac

)2

, (C.4)

respectively, and

Ac = b2cx
2 ∓ a2

cy
2, Bc = ∓a2

cb
2
cx, Cc = a4

c(b
2
c − y2). (C.5)
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The semi-axes ac and bc, as functions of the initial point (x, y) for the hyperbolic
and elliptic caustics for the orbit “co2” (see Fig. 4), are given by

ac = a

√
∓(bx − bc)Z

bx + bc
, bc = b

√
1−Z, (C.6)

where ax and bx are the semi-axes for the confocal-to-boundary hyperbola and the
ellipse crossing any current initial and final point (x, y) of the orbit “co2” inside the
elliptic billiard,

b2x =
x2 + y2 + b2 − a2 ∓√(x2 + y2 + b2 − a2)2 − 4y2(b2 − a2)

2
,

a2
x = ∓(b2x − b2 + a2), (C.7)

and Z is the root of the cubic algebraic equation

(1− η2)2Z3 +

[
(1 + η2)2

(
bx
b

)2

+ 1− η4

]
Z2

+

[
2η2 − 1− 2(1 + η2)

(
bx
b

)2
]
Z +

(
bx
b

)2

− 1 = 0. (C.8)

The factor D in Eq. (C.1) is given by

D =
2axΦaG

A0
, (C.9)

where

Φa = η2fc

[
∓4a2

cb
2 + η2(a2 ± a2

c)
2 − b4c/η

2

2ac(b2 − b2c ± η2a2
c)2

]
, (C.10)

fc = 2

[
d0x+

q0(d2
0 − b2 + a2)
1 + q2

0

]
, d0 = y − q0x, (C.11)

G =
2B0d0q0 +A0(b2x ∓ a2

x − d2
0)− C0(1 + q2

0)

2
√
B2

0 −A0C0

− d0q0

+
(1 + q2

0)(B0 −
√
B2

0 −A0C0)

A0
, (C.12)

with

A0 = b2x ∓ a2
xq

2
0 , B0 = ∓a2

xd0q0, C0 = ∓a2
x(d

2
0 − b2x). (C.13)

Here we have used the invariance of the Jacobian J (x, y) with respect to time re-
versal.
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Abstract

The high-spin yrast structure of32S is investigated by means of the cranked Skyrme–Hartree–
Fock method in the three-dimensional Cartesian-mesh representation without imposing restrictions
on spatial symmetries. The result suggests that (1) a crossover from the superdeformed to the
hyperdeformed-like configurations takes place on the yrast line at angular momentumI ' 24, which
corresponds to the “band termination” point in the cranked harmonic-oscillator model, and (2) non-
axial octupole deformations of theY31 type play an important role in the yrast states in the range
56 I 6 13. 2000 Elsevier Science B.V. All rights reserved.

PACS:21.60.-n; 21.60.Jz; 27.30.+t
Keywords:Cranked Skyrme–Hartree–Fock method; Superdeformation; Non-axial octupole deformation; Yrast
line; High-spin state; Sulphur 32

1. Introduction

Since the discovery of the superdeformed (SD) rotational band in152Dy, about two
hundreds SD bands have been found in various mass (A= 60, 80, 130, 150, 190) regions
[1–6]. It turned out that every regions of superdeformation have their own characteristics
and offer a number of interesting questions; investigations of them have been significantly
enlarging and deepening our understanding of nuclear structure. Yet, the doubly magic SD
band in32S, which has been expected for quite a long time [7–10], remains unexplored, and
will become a great challenge in the coming years [6]. Exploration of the SD band in32S
will certainly give a strong impact toward understanding the possible connection between
the SD structure and the molecular resonance phenomena associated with the16O+ 16O
configurations (see, e.g., [11,12] for reviews). More generally speaking, the nucleus32S
seems to be situated in a key position in the investigation of possible relationships (such as
discussed in [13–15]) between the SD states systematically observed in heavy nuclei and

0375-9474/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
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the cluster structures widely observed in light nuclei (see, e.g., [16] for a review). Thus,
excited states in32S have been theoretically studied by Nilsson–Strutinsky approaches
[7–10], selfconsistent mean-field approaches [17,18], spherical shell-models [19,20], and
cluster-structure and molecular-resonance points of view [21–25].

The aim of this paper is to study the high-spin yrast structure of32S from the point
of view of exploring exotic shapes in nuclear high-spin states by means of the cranked
Hartree–Fock (HF) method with the use of the Skyrme forces [26,27], which is called “the
cranked SHF method”. One of the recent advances in nuclear structure theory is that it has
become possible to carry out the HF calculation in the three-dimensional (3D) Cartesian-
mesh representation [28–30,32]. This approach has been extended [18,33,34] to a rotating
frame by introducing the cranking term and applied to the high-spin yrast states of32S
in Ref. [18] with the use of the BKN interaction [31]. In these cranked HF calculations,
however, parity and signature symmetries are assumed for the intrinsic wave functions
in order to simplify the calculation. We refer an excellent review by Åberg, Flocard and
Nazarewicz [2] for an overview of studies on nuclear shapes in terms of various kinds of
mean-field theory, especially other than the cranked SHF approach.

Recently, we constructed a new computer code for the cranked SHF calculation based on
the 3D Cartesian-mesh representation, which provides a powerful tool for exploring exotic
shapes (breaking both axial and reflection symmetries in the intrinsic states) at high spin
in unstable nuclei as well as in stable nuclei. As a first application of this new code, we
investigated the high-spin yrast structure of32S, and found [35] that (1) a drastic structure
change may occur above angular momentumI ' 24 in the yrast line, and (2) non-axial
octupole deformations of theY31 type arise in the yrast line in the range 56 I 6 13. The
present paper is intended to give a more detailed account of this work. Quite recently,
Molique, Dobaczewski and Dudek [36] investigated several SD configurations in32S (not
restricted to the yrast states) as well as in neighboring odd-A nuclei by means of the
cranked SHF method with the SLy4 force [37] in the harmonic oscillator basis. On the
other hand, they did not discuss the yrast states aboveI ' 24 as well as non-axial octupole
deformations, which are the major subjects of this paper.

After a brief account of the cranked SHF calculational method in Section 2, an overview
of the obtained yrast line for32S is given in Section 3. In Section 4, we discuss properties of
the high-spin limit of the SD band, paying special attention to a band-crossing phenomenon
associated with the level crossing with the rotation-aligned[440]12 level. The result of
the cranked SHF calculation is compared in Section 5 with that of the cranked harmonic
oscillator (CHO) model calculation. In Section 6, effects of the rotation-induced, time-
odd components in the selfconsistent mean field on the properties of the SD band are
briefly discussed. In Section 7, we discuss about theY31 deformed solutions of the cranked
SHF equations, which constitute the yrast line in the range 56 I 6 13. Although, at the
present time, experimental data directly comparable with our theoretical calculations seem
to be unavailable, we briefly remark in Section 8 on some recent experimental references.
Conclusions are given in Section 9.
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2. Cranked SHF calculation

The cranked HF equation for a system uniformly rotating about thex-axis is given by

δ〈H −ωrotJx〉 = 0, (1)

where ωrot and Jx mean the rotational frequency and thex-component of angular
momentum, and the bracket denotes the expectation value with respect to a Slater
determinantal state. We solve the cranked HF equation for a Hamiltonian of the Skyrme
type by means of the imaginary-time evolution technique [28] in the 3D Cartesian-mesh
representation. We adopt the standard algorithm [28–30,34] in the numerical calculation,
but completely remove various restrictions on spatial symmetries. Namely, we basically
use the procedure developed and applied to the yrast line of24Mg by Bonche, Flocard and
Heenen [34], except that the parity and the signature symmetries are not imposed on the
individual wave functions. In this connection, we mention that a similar HF code (with
parity projection but without the cranking term) was constructed by Takami et al. [38] and
successfully applied to the description of cluster structures in light nuclei,8Be, 12C, 16O
and 20Ne. The same code (but without parity projection) was recently used to explore
exotic shapes in proton-richN ' Z nuclei in the80Zr region [39,40], and tetrahedral
and triangular shapes are suggested to appear near the ground states of some nuclei in
this region. In Refs. [34,39,40], the pairing correlations were taken into account in the
BCS approximation. In the present calculation, we neglect the pairing, since they are not
expected to play an important role at high-spin states in32S.

When we allow for the simultaneous breaking of both reflection and axial symmetries,
it is crucial to accurately fulfill the center-of-mass condition〈

A∑
i=1

xi

〉
=
〈

A∑
i=1

yi

〉
=
〈

A∑
i=1

zi

〉
= 0, (2)

and the principal-axis condition〈
A∑
i=1

xiyi

〉
=
〈

A∑
i=1

yizi

〉
=
〈

A∑
i=1

zixi

〉
= 0. (3)

For this purpose we examined several techniques [41] and confirmed that the constrained
HF procedure with quadrupole constraints [42] works well. Thus, we replace the
“Routhian”R =H −ωrotJx in Eq. (1) with

R′ =R −
3∑
k=1

µk

〈
A∑
i=1

(xk)i

〉2

−
3∑

k<k′
µk,k′

〈
A∑
i=1

(xkxk′)i

〉2

. (4)

In numerical calculations, we confirmed that the constraints (2) and (3) are fulfilled to
the order O(10−15) with values of the parametersµk ∼ O(102) andµk,k′ ∼ O(1). We
solved these equations inside the sphere with radiusR = 8 [fm] and mesh sizeh= 1 [fm],
starting with various initial configurations. The 11-point formula was used as the difference
formula for the Laplacian operator. As usual, the angular momentum is evaluated asI h̄=
〈Jx〉.
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In this paper, we use the standard SIII and SkM∗ forces. With the use of the SIII force
[26], Tajima et al. [30] carried out a systematic SHF+BCS calculation for the ground-state
quadrupole deformations of nuclei in a wide area of nuclear chart. They have carefully
examined the possible error due to the use of the mesh sizeh= 1 [fm] and found that the
deformation energies obtained with this mesh size are quite accurate. On the other hand,
the SkM∗ force [27] was designed to accurately describe properties at large deformations
like fission barriers, so that it may be suited for the description of superdeformations [32].
In recent years, several newer versions of the Skyrme forces have been proposed (see,
e.g., Ref. [43]) in order to improve isospin properties of the Skyrme forces. Although the
major purpose of them is to better describing neutron-rich unstable nuclei, it will also be
interesting to employ such versions to examine the dependence of the results reported in
this paper on the effective interactions adopted. We defer such a more extensive calculation
to the future.

3. Structure of the yrast line

The calculated yrast line is displayed in Fig. 1, and angular momenta and deformations
of the yrast states are drawn as functions of rotational frequency in Figs. 2 and 3. In
these and succeeding figures, the calculation were done in step of1ωrot = 0.2 MeV/h̄,
and the calculated points (indicated by symbols) are smoothly interpolated by lines. The
quadrupole deformation parametersβ2 andγ are defined as

(a) (b)

Fig. 1. (a) Excitation energy vs. angular-momentum plot for the yrast structure of32S, calculated
with the SIII force. Density distributions on the planeperpendicularto the rotation axis are shown,
as insets, for the SD band (solid line) and theY31 band (dashed line). The calculation was done in step
of 1ωrot= 0.2 MeV/h̄, and the calculated points (indicated by symbols) are smoothly interpolated
by lines. (b) Same as (a), but with the SkM∗ force.
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Fig. 2. Angular momentumI plotted as a function of rotational frequencyωrot for the SD band and
theY31 band in32S. Results calculated with the SIII and SkM∗ forces are shown by solid and dashed
lines, respectively.

Fig. 3. Quadrupole deformationβ2 plotted as a function of rotational frequencyωrot for the SD band
and theY31 band in32S. Results calculated with the SIII and SkM∗ forces are shown by solid and
dashed lines, respectively.
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β2 cosγ = 4π

5

〈
A∑
i=1

r2
i Y20(θi, φi)

〉〈
A∑
i=1

r2
i

〉−1

, (5)

β2 sinγ =−4π

5

〈
1√
2

A∑
i=1

r2
i

(
Y22(θi, φi)+ Y ∗22(θi, φi)

)〉〈 A∑
i=1

r2
i

〉−1

. (6)

It is seen from Figs. 1–3 that the results of the calculations with the SIII and SkM∗ forces
are quite similar: For both cases, the expected SD band becomes the yrast forI > 14, and
it exhibits a singular behavior at aboutI ' 24. As we shall discuss in the next section,
this is due to a band crossing associated with the rotation-aligned[440]12 level, and we
call the yrast states aboveI ' 24 “hyperdeformed (HD)-like configuration” in order to
distinguish them from the SD configuration. This configuration becomes unstable against
fission forI > 34. In addition to the SD and HD-like configurations mentioned above, we
found that the yrast states with 56 I 6 13 possess an appreciable amount of non-axial
octupole deformation of theY31 type, so that we call, for convenience, this region of the
yrast line “Y31 band”, although, as discussed in Section 7, some caution is necessary in
using this terminology.

Thus, the calculated yrast line can be roughly divided into the following four regions:
(1) I 6 4, weakly prolate region,
(2) 56 I 6 13,Y31 deformed region,
(3) 146 I 6 24, SD region,
(4) 266 I 6 32, HD-like region.
Below we first discuss the properties of the high-spin limit of the SD band, and later

about theY31 band. The lowest-spin region will be touched upon in Section 8 briefly.

4. High-spin limit of the SD band

As we saw in Figs. 1–3, the solutions of the cranked SHF equations corresponding to
the yrast SD configuration are obtained fromI = 0 to aboutI = 22.

Fig. 4 shows the potential energy function for the SD state atI = 0, evaluated by means
of the constrained HF procedure [42] with the quadratic constraint on the mass-quadrupole
moment. We see that the excitation energy of the SD state atI = 0 is about 12 MeV.

A particularly interesting point is the behavior of the SD band in the high-spin limit: It
is clearly seen in Figs. 2 and 3 that a jump occurs both in the angular momentumI and
the quadrupole deformationβ2 at ωrot ' 2.9 MeV/h̄. At this point,I jumps from about
22 to 26, andβ2 suddenly increases from about 0.6 to 0.7. Such a discontinuity is well
known [44] to occur in the description of the band crossing phenomena within a standard
framework of the cranked mean-field approach. The point is more clearly seen in Fig. 5
as a singular behavior of the dynamical moment of inertiaJ (2) = dI/dωrot near the band
crossing point. (Other properties ofJ (2) will be discussed in the next section.)

Fig. 6 displays the shape evolution of the SD band as a function of angular momentum
in the (β2, γ ) plane: With increasing angular momentum, small triaxial deformations
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Fig. 4. Potential energy function atI = 0 for the SD configuration (solid line) relative to that for the
ground state configuration (dashed line) in32S, calculated with the SIII force.

Fig. 5. Dynamical moment of inertiaJ (2) = dI/dωrot plotted as a function ofωrot for the SD
band in 32S. Results calculated with the SIII and SkM∗ forces are shown by solid and dashed
lines, respectively. For reference, the rigid moments of inertiaJrig = m

∫
ρ(r)(y2 + z2)dr with

the calculated densityρ(r) are also indicated.
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Fig. 6. Shape evolution as a function of angular momentum, plotted in the(β2, γ ) plane for the
SD and HD-like configurations in32S. Results calculated with the SIII and SkM∗ forces are shown
separately.

gradually set in and atI ' 24 the shape exhibits a striking “back-bending” toward larger
prolate deformations. Evidently, this is due to the band crossing mentioned above. Such a
singular behavior of the SD band can be noticed also in the previous cranked HF calculation
with the BKN force [18]. In Fig. 6 we also plot theI = 24 and 26 states, which are missing
in Figs. 1–3, by smoothly extrapolating theI–ωrot and(β2, γ )–I curves for the SD and the
HD-like configurations, respectively (see Ref. [44] for the treatment of the band-crossing
region).

The microscopic origin of this singular behavior may be understood when we examine
the single-particle energy diagram in the rotating frame (routhians) presented in Fig. 7. We
see that the rotation-aligned level associated with the[440]12 orbit comes down in energy
with increasingωrot and crosses the Fermi level atωrot ' 2.9 MeV/h̄ which corresponds
to I ' 24. Thus, the yrast states aboveI ' 24 are characterized by the occupation of
the [440]12 level by a single proton and a neutron. According to the deformed harmonic-
oscillator model,N = Z = 18 is a magic number associated with the HD shell structure
with axis ratio 3: 1, in which the[440]12 level is occupied by two protons and two neutrons.
In order to distinguish the yrast states withI > 26 from the SD states belowI ' 24
and keeping in mind a connection to the HD configuration, we call them “the HD-like
configuration” although the magnitude of the quadrupole deformationβ2 obtained in the
SHF calculation is in fact comparable to that of the SD shape rather than the HD shape.

Let us note that if we regard the SD configuration as to correspond to thej–j -coupling
shell model 4p–12h configurationπ[(f7/2)

2(sd)−6] ⊗ ν[(f7/2)
2(sd)−6] (relative to40Ca)

in the spherical limit, the maximum angular momentum that can be generated by aligning
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Fig. 7. Single-particle energy diagram (for neutrons) in the rotating frame for the SD band in32S,
plotted as a function ofωrot. The SIII force is used. Note that the structure of the yrast configuration
drastically changes atωrot ' 2.9 MeV/h̄, so that the diagram is discontinuous about this point,
although levels characterized by the same asymptotic quantum numbers are linked by lines.

the single-particle angular momenta toward the direction of the rotation axis is 24h̄, and
thus “the SD band termination” might be expected at this angular momentum. Interestingly,
our calculation indicates that a crossover to the HD-like configuration takes place just at
this region of the yrast line.

5. Comparison with the CHO model

The behavior at the high-spin limit of the SD band obtained in the SHF calculation
possesses some similarities with that expected from the CHO model. This model has
been frequently used [45–50] as a simplified model of rotating mean fields. With obvious
notations, the single-particle Hamiltonian of this model is written as

h′ =
3∑
k=1

h̄ωk

(
c

†
kck +

1

2

)
−ωrotl1, (7)

where

c
†
k =

√
mωk

2h̄

(
xk − ipk

mωk

)
, (8)

with (x1, x2, x3) indicating(x, y, z), etc.
The orbital angular momentum operatorl1 consists of two parts:

l1= l(1N=0)
1 + l(1N=2)

1 (9)
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with

l
(1N=0)
1 = ih̄ ω2+ω3

2
√
ω2ω3

(
c

†
3c2− c†

2c3
)
, (10)

l
(1N=2)
1 = ih̄ ω3−ω2

2
√
ω2ω3

(
c

†
2c

†
3− c3c2

)
. (11)

For a given value ofωrot or I h̄ = 〈∑A
i=1(l1)i〉, one can determine the oscillator

frequencies(ω1,ω2,ω3) such that the selfconsistency condition between the density and
the potential,

ω2
1

〈
A∑
i=1

(
x2

1

)
i

〉
= ω2

2

〈
A∑
i=1

(
x2

2

)
i

〉
= ω2

3

〈
A∑
i=1

(
x2

3

)
i

〉
, (12)

is fulfilled under a volume conservation condition [50]. Here, the brackets denote
expectation values with respect to Slater determinantal states composed of single-particle
eigenmodes ofh′.

Let us denote the total number of quanta in each of the three directions(k = 1,2,3) at
ωrot= 0 as

Σk =
〈

A∑
i=1

(
c

†
kck +

1

2

)
i

〉
, (13)

and let us continuously follow the configuration specified by the set of values(Σ1,Σ2,Σ3)

which are defined atωrot 6= 0 as the number of quanta associated with the normal modes
of the CHO Hamiltonianh′. In terms ofΣk , the selfconsistency condition atωrot = 0 is
written as

ω1Σ1= ω2Σ2= ω3Σ3. (14)

If the1N = 2 part of the angular momentum operatorl1 is neglected, it is well known
that there exists a maximum angular momentumIc =Σ3−Σ2 for a given configuration
(Σ1,Σ2,Σ3), where the shape is oblate and the symmetry axis coincides with the rotation
axis [45]. This shape evolution is caused by the effect of the1N = 0 part of the cranking
term, which tends to align the angular momentum of individual particles toward the rotation
axis of the system (rotation alignment effect due to the Coriolis force). In the case of
the doubly closed shell configuration for the SD magic numberN = Z = 16 (including
the spin-degeneracy factor 2), corresponding to the SD band in32S, (Σ1,Σ2,Σ3) =
(24,24,48) taking into account protons and neutrons. We would thus expect the “SD
band termination” at the maximum angular momentumIc =Σ3−Σ2 = 24. This number
coincides with that evaluated in the previous section in relation to thej–j -coupling shell-
model configurations.

On the other hand, the1N = 2 part stretches the system toward larger deformations,
and actual shape evolutions as functions of angular momentum are determined by the
competition and balance between these two effects. Fully taking into account both effects
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Fig. 8. Shape evolutions as functions of angular momentum in the (β2, γ ) plane, plotted with
filled and open symbols, respectively, for the SD configuration (Σ1,Σ2,Σ3)= (24,24,48) and the
HD-like configuration(22,24,54) in the CHO model.

of the cranking term, Troudet and Arvieu [49,50] found that there is a critical valueαc of
Σ3/Σ2,

αc=
√

27+√2√
27−√2

' 1.75, (15)

such that the configuration(Σ1,Σ2,Σ3) does not (does) reach the oblate limit ifΣ3/Σ2

is greater (less) thanαc. This is because, for large deformations, the stretching effect of the
1N = 2 term dominates at high spin over the alignment effect of the1N = 0 term. In the
case of32S, the SD configuration haveΣ3/Σ2= ω2/ω3= 2> αc at I = 0. Therefore, the
“oblate limit” mentioned above will not be reached and the shape at the “band termination”
point will be triaxial.

Fig. 8 shows the shape evolution in the(β2, γ ) plane, calculated for the SD configuration
of 32S in the CHO model. Here, the result of calculation for the configuration(22,24,54)
is also presented, as an example of the HD-like configurations. We see that, although the
triaxiality slowly sets in with increasing angular momentum, the shape of the SD states
remains rather far from the oblate limit and exhibits a striking “back-bending” at about
Ic = 24 toward larger prolate deformations forI > Ic. Apparently, the behavior near
the critical angular momentumIc for the SD band is quite similar to that of the SHF
solutions presented in the previous section. On the other hand, it should be recalled in
comparing Fig. 8 with Fig. 6 that the highest spin region ofI = 26∼ 32 on the yrast
line corresponds to the HD-like configuration in the SHF solution: While the continuation
of the SD configuration(24,24,48) to theI > 24 region as well as that of the HD-like
configuration(22,24,54) to theI < 26 region are presented for the CHO model, only the
yrast states were obtained and plotted in the SHF calculation.

Fig. 9 shows the angular momentum and the dynamical moment of inertiaJ (2) as
functions of the rotational frequency. We see thatJ (2) gradually decreases until the critical
point. It is interesting to compare this property with that ofJ (2) for the SD band in the
SHF calculation (Fig. 5). Apparently, they are quite similar. This suggests that the gradual
decrease with increasingωrot of the dynamical moment of inertia for the SD band is rooted
in the existence of the critical angular momentumIc associated with the quantum SD
shell structure. We feel that a more detailed investigation of the SD states near the “band
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(a) (b)

Fig. 9. (a) Plot of angular momentum vs. rotational frequency in the CHO model. Solid line is used for
the SD configuration (Σ1,Σ2,Σ3) = (24,24,48), while dashed line for the HD-like configuration
(22,24,54). (b) Same as (a), but for dynamical moment of inertiaJ (2) = dI/dωrot. For reference,
rigid moments of inertiaJrig =m〈

∑A
i=1(y

2+ z2)i〉 for these configurations are also indicated.

termination” point is a very important and challenging subject for a deeper understanding
of the rotational motion of the nucleus as a finite Fermion system,

6. Effects of time-odd components

In this section we shortly discuss about the rotation-induced, time-odd components in the
mean field. The moment of inertia of the SD band is expected to be a good physical quantity
for identifying the effects of the time-odd components, since the pairing correlation plays
only a minor role there. Concerning the effect of various time-odd components on the
moment of inertia, we refer to Ref. [51] for a semiclassical description, to Ref. [52] for a
rotating nuclear matter, and to Ref. [53] for SD bands around152Dy.

Table 1 shows individual contributions from various kinds of time-odd terms. It is
interesting to note that the contributions from terms containing the spin-densityρ(r),
nearly cancel each other and, accordingly, the contribution from the current-density terms,
denoted byB3 + B4, dominates in the sum. Such a remarkable cancellation of the spin-
density terms was not seen in the case of152Dy [53], and may be specific to32S under
consideration.

In Fig. 10 we compare the results of calculation with and without the time-odd
components. It is seen that the time-odd components increase the angular momentum for
a given value ofωrot. Accordingly, the dynamical moment of inertiaJ (2) = dI/dωrot also
increases. This trend is understood from the consideration of the local Galilean invariance
of the Skyrme force [51,53] (for a more general analysis not restricted to the Skyrme force,
see Refs. [45,52]): If the time-odd components is neglected, the local Galilean invariance
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Table 1
Contributions from various terms in the time-odd energy density,

Hodd(r)=−B3j
2−B4

(
j2
n + j2

p

)
+B9(j · ∇ × ρ + jn · ∇ × ρn + jp · ∇ × ρp)

+B10ρ
2+B11

(
ρ2
n + ρ2

p

)
+B12ρ

αρ2+B13ρ
α
(
ρ2
n + ρ2

p

)
,

to the energy (in MeV), calculated atωrot = 1.0 MeV/h̄ for the SIII and SkM∗ forces. Here,
(jn,jp) and(ρn,ρp) denote the nucleon currents and the spin densities (for neutrons and protons),
respectively, andj = jn + jp andρ = ρn + ρp (see Ref. [34] for their explicit expressions). In
the columns designated by coefficientsBi , values after the spatial integration are listed, while the
total value

∫
drHodd(r) and the sum of contributions from the current terms (the first two terms

in the r.h.s. of the above equation) are shown in the columns denoted by “total” and “B3 + B4”,
respectively. For reference, the effective massm∗ in nuclear matter for each force is also listed.

B3 B4 B9 B10 B11 B12 B13 total B3+B4 m∗/m

SIII −1.94 0.79 −0.17 −0.77 0.86 0.37 −0.18 −1.04 −1.15 0.76
SkM∗ −1.83 0.90 −0.38 −0.44 2.45 0.00 −1.65 −0.95 −0.93 0.79

(a) (b)

Fig. 10. (a) Angular momentumI plotted as a function ofωrot for the SD band in32S. Solid line
with filled squares (dashed line with open squares) indicates the result with (without) the time-odd
components. The SIII force is used. (b) Same as (a), but with the SkM∗ force.

is violated and we obtain the moment of inertia associated with the effective massm∗.
By including the time-odd components, however, the local Galilean invariance is restored
and we get the moment of inertia associated with the nucleon massm. The calculated
result presented in Fig. 10 is consistent with this expectation, but a more quantitative
analysis is not necessarily easy, because, as seen in Fig. 5, the calculated moment of inertia
significantly deviates from the rigid-body value due to the shell effect.
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7. Y 31 deformation

As mentioned in Section 3, we found that the yrast states in the region 56 I 6 13
possess a significant amount of non-axial octupole deformations of theY31 type. It should
be emphasized that such an exotic deformation is absent atI = 0 but emerges at high spin.
It has become possible to get this kind of solution by using the new cranked SHF code
allowing for the simultaneous breaking of both axial and reflection symmetries.

As in [39], we define the octupole deformation parametersα3m as

α3m = 4π

3AR3

〈
A∑
i=1

(
r3X3m

)
i

〉
(m=−3, . . . ,3) (16)

with R = 1.2A1/3 fm. HereX3m is a real basis of the spherical harmonics,

X30= Y30, X3|m| = 1√
2

(
Y3−|m| + Y ∗3−|m|

)
,

X3−|m| = −i√
2

(
Y3|m| − Y ∗3|m|

)
, (17)

where the quantization axis is chosen as the largest and smallest principal inertia axes for
prolate and oblate solutions, respectively. The yrast solutions in the region 56 I 6 13
haveα31 6= 0 butα3m = 0 for m 6= 1. (See Ref. [54] for a general discussion on this kind
of deformation and its consequence on rotational spectra.) Fig. 11 shows the calculated
values of theY31 deformation as a function ofωrot. We see that theα31 value quickly rises
whenωrot exceeds 1 MeV/h̄.

Fig. 11. Non-axial octupole deformationα31 plotted as a function ofωrot for theY31 band in32S.
Results calculated with the SIII and SkM∗ forces are shown by solid and dashed lines, respectively.
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Fig. 12. Single-particle energy diagram (for neutrons) in the rotating frame for theY31 band in32S,
plotted as a function ofωrot. The SIII force is used.

Fig. 13. Potential energy function for theY31 band in32S atωrot= 2.0 MeV/h̄, calculated by means
of the constrained HF procedure with the SIII force. Note the scale of the ordinate.

The microscopic origin of the growth of the non-axial octupole deformationα31

may be understood when we examine the single-particle energy diagram in the rotating
frame (routhians) presented in Fig. 12. We note that a strong coupling and a quasi-
level crossing between the rotation-aligned[330]12 orbit and the[211]12 orbit take place
near the Fermi surface in the region 1.0 6 ωrot 6 2.2 MeV/h̄. The matrix element of
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the r3Y31 operator between the two single-particle states is large, since they satisfy the
selection rule for the asymptotic quantum numbers(1Λ = 1, 1nz = 2). This strong
coupling is responsible for theα31 deformation appearing in this region of the yrast
line.

Fig. 13 shows the potential energy function with respect to theα31 direction, calculated
by means of the constrained HF procedure. Note the scale of the ordinate. Although
we obtain a clear minimum at a finite value ofα31, the potential is rather shallow in
this direction, so that the amplitude of the quantum-mechanical zero-point vibrational
motion might be larger than the equilibrium deformation. If this is the case, a treatment
of dynamics going beyond the mean-field approximation is required in order to investigate
the consequence of theα31 deformation on the quantum spectra in the yrast region under
consideration. This is beyond the scope of the present paper.

It may be desirable to extend the potential energy curve in Fig. 13 to theα31= 0 limit.
It turned out, however, difficult to do so, because many level-crossings take place with
decreasingα31. (If we extrapolate to this limit assuming parabolic dependence onα31, we
obtain about 2 MeV as a very crude estimate of the energy gain due to theα31 deformation.)
For the same reason, it is also difficult to follow the continuation of theY31 band to the
higher spin region as soon as it departs from the yrast line.

8. Some remarks on experimental data

Although rich experimental data are available for excited states of32S, the high-spin
yrast region in which we are interested is rather poorly known at the present time.
Accordingly, we discuss experimental references only briefly.

For low-spin states withI 6 7, detailed spectroscopic data are available up to excitation
energy 11.76 MeV [19,20]. These excited states are shown to be well described by the
spherical shell model calculations [19,20]. In these works, some negative-parity states were
interpreted as octupole–quadrupole phonon multiplets. As a matter of fact, we need to go
beyond the simple mean field theory in order to discuss such spectroscopic data in the
low-spin region.

Highly excited states have been studied by various nuclear reactions as well as16O–
16O scattering. Investigating the16O(20Ne, α)32S(α)28Si (g.s.) reaction, Morita et al. [55]
suggested possible band structures of the quasi-molecular configuration of16O+ 16O and
of some parity-doublet-like structures with angular momenta 5−,6+, (7−), (8+) at the 12–
15 MeV region. Recently, Curtis et al. [56] investigated the region withI = 10–16 and
the excitation energy 32–38 MeV by means of the12C(24Mg, 16O16O)4He reaction, and
suggested an existence of highly deformed states in this region. It is tempting to compare
these experimental data with our theoretical calculations. The experimentally explored
regions are, however, about 10 MeV above the theoretical yrast line. Therefore, a more
detailed spectroscopic study is needed in order to associate these data with the yrast
structure.
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9. Conclusions

We have investigated the high-spin yrast structure of32S by means of the cranked SHF
method in the 3D Cartesian-mesh representation without imposing restrictions on spatial
symmetries, and suggested that

(1) a crossover from the SD to the HD-like configurations takes place on the yrast line
at angular momentumI ' 24, which corresponds to the “band termination” point in
the CHO model, and

(2) non-axial octupole deformations of theY31 type play an important role in the yrast
states in the range 56 I 6 13.

In conclusion, we would like to stress again that the calculated yrast line forI = 14–
20 lies about 10 MeV below the observed molecular resonance region associated with
the 16O–16O configurations. Thus, a yrastγ -spectroscopy with higher resolving power is
strongly desired in order to explore the high-spin region of the yrast line of32S.
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An adiabatic approximation to the selfconsistent collective coordinate method is formu-
lated in order to describe large amplitude collective motions in nuclei with pairing correlations
on the basis of the time-dependent Hartree-Fock-Bogoliubov equations of motion. The basic
equations are presented in a local harmonic form which can be solved in a manner simi-
lar to that of the quasiparticle RPA equations. The formalism guarantees the conservation
of nucleon number expectation values. An extension to the multi-dimensional case is also
discussed.

§1. Introduction

Large amplitude collective motion (LACM), such as fission, shape transitions,
anharmonic vibrations and low energy heavy ion reactions, are often encountered
in studies of nuclear structure and dynamics. To go beyond the phenomenological
models assuming some macroscopic or collective degrees of freedom motivated by
the experimental facts and intuition, many attempts have been made to construct
theories that are able to describe the LACM on the microscopic basis of the nu-
clear many-body Hamiltonian. In particular, theories based on the time-dependent
Hartree-Fock (TDHF) approximation have been investigated extensively. 1) - 16) The
TDHF is a general framework for describing low-energy nuclear dynamics accompa-
nying evolution of the nuclear selfconsistent mean field. 17), 18) A LACM corresponds
to a specific solution of the TDHF equation of motion. Since such a solution forms
only a subset of the all TDHF states (Slater determinants), it is often called a col-
lective path, a collective subspace, or a collective submanifold. The collective coor-
dinates are then a set of a small number of variables that parameterize the collective
subspace, and the collective Hamiltonian is a function governing the time evolution
of the collective coordinates. One of the main purposes of the LACM theories is
to provide a scheme to determine the collective subspace and the collective Hamil-
tonian on the basis of the microscopic many-body Hamiltonian. Although studies
of LACM theories form a vast field of research with many recent developments in
different directions, realistic applications to nuclear structure problems are rather
limited. In this paper, we would like to propose a new practical method to calculate
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the collective subspace.
The adiabatic approximation has been often utilized for formulating the theory of

the collective subspace. Indeed, some class of LACM, such as nuclear fission, can be
regarded as slow motion, thus justifying the adiabatic approximation. The adiabatic
TDHF (ATDHF) theory 1) - 3) is one of the best known adiabatic theories and has
been applied in some cases to realistic descriptions of heavy ion reactions. 3) The
ATDHF theory, however, had the problem of the non-uniqueness of the solution. 4), 5)

Efforts to settle the non-uniqueness problem were made from different viewpoints.
Reference 6) emphasizes the importance of the canonical variable condition and the
analyticity as a function of a collective coordinate for finding a unique solution. The
proposed procedure relying on the Taylor expansion method has not been applied to
realistic calculations. Another work 7) points out that the collective subspace can be
uniquely determined by using the next order equation of the ATDHF theory. It has
been found also that the adiabatic collective path of LACM becomes the valley line
of the potential function in the multi-dimensional space associated with the TDHF
states. 7) - 9) Further, the adiabatic collective path can be defined by equations for a
local harmonic mode at each point of the collective path. These developments are
summarized in a consistent way in the formalism of Ref. 8). Note, however, that
the adiabatic theory of Ref. 8) relys on a multi-dimensional classical phase space
representation of the TDHF determinantal states. 17), 18) A realistic application of
this theory has not been made, except in the case of a light nucleus. 19) Furthermore,
a problem of particle number conservation arises when applied to superconducting
nuclei (i.e. nuclei with pairing correlations). 10)

Theories without the adiabatic approximation have also been developed within
the TDHF framework. The early works in this direction are called local harmonic
approximations. 12), 13) Later, a set of general equations that can determine the col-
lective subspace and the collective Hamiltonian were found and formulated in a
consistent form known as the selfconsistent collective coordinate method (SCC or
SCCM). 14) The theory is purely based on the TDHF with no further approximation.
The method also provides a concrete and practical scheme to solve the basic equa-
tions using a power series expansion with respect to the boson-like variables defined
as a linear combination of the collective coordinates and momenta. The pairing
correlation in superconducting nuclei is easily incorporated within the SCCM by
adopting the time-dependent Hartree-Fock-Bogoliubov (TDHFB) equation in place
of the TDHF, and the conservation law for the particle number is consistently intro-
duced in the basic framework of the SCCM. 15) Thanks to these features, the SCCM
has been applied to many realistic descriptions of anharmonic vibrations in medium
and heavy nuclei. 16) However, the expansion method may not be suitable for large
amplitude motion of an adiabatic nature, for which change of the nuclear mean-field
is so large that the power series expansion of the collective coordinates may not be
justified.

In the present paper, we attempt to combine the merits of the two approaches
mentioned above, the SCCM and the adiabatic theory, in order to formulate a theory
that provides a consistent and practical method easily applicable to realistic descrip-
tions of the adiabatic LACM in superconducting nuclei. We achieve this aim by
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introducing an adiabatic approximation into the general framework of the SCCM.
Here we treat superconducting nuclei since the pairing correlations play essential roles
in many cases, like spontaneous fission, tunneling between superdeformed and nor-
mally deformed configurations, and coupling between coexisting states with different
nuclear shapes (shape coexistence phenomena). Although the use of the supercon-
ducting mean field requires us to respect particle number conservation, the SCCM
allows a simple and consistent treatment of the conservation law. We also avoid the
non-uniqueness problem by utilizing principles similar to those of Refs. 7)–9). Fur-
thermore, we show that the equations of the adiabatic SCCM thus formulated can be
transformed into another set of equations that have a similar structure as the local
harmonic approach in the adiabatic theories. 8) Therefore, the present formalism also
inherits some aspects of the recent adiabatic theories such as Ref. 8).

In addition to the general formulation (§2), we present a practical scheme to
solve the basic equations given in the local harmonic form for general classes of the
many-body nuclear Hamiltonian (§3 and the Appendix). These equations are given
in terms of the matrix elements of the many-body Hamiltonian written in terms
of the quasiparticle operators, thus enabling us to develop a straightforward coding
of a numerical program to solve the equations. In this way, we provide a concrete
procedure to extract the collective subspace and the collective Hamiltonian. We also
discuss a possible prescription to extend the formalism to cases of multi-dimensional
collective motion (§4). Conclusions are outlined in §5.

§2. Basic equations

2.1. The SCC method for superconducting nuclei

In this subsection, we recapitulate the basic equations of the SCC method 14) in
a manner suitable for treating superconducting nuclei.

We introduce the TDHFB approximation to describe LACM in superconducting
many-fermion systems. Here the time-dependent many-body state vector |φ(t)〉 is
constrained to a generalized Slater determinant, which is chosen as a variational wave
function. The time evolution of |φ(t)〉 is then determined by the time-dependent
variational principle

δ 〈φ(t)| i ∂
∂t

− Ĥ |φ(t)〉 = 0, (2.1)

where the variation is given by δ |φ(t)〉 = a†αa
†
β |φ(t)〉 in terms of the quasiparticle

operators {a†α, aα}, which satisfy the vacuum condition aα |φ(t)〉 = 0.
We assume that the LACM can be described in terms of the collective variables,

i.e. the collective coordinate and momentum {q, p} that are variables parameterizing
the TDHFB state vector.∗) The whole space of the TDHFB state vectors can be
parameterized by M × (M − 1) variables (M being the number of the single particle
states), as shown by the generalized Thouless theorem. 17), 18) The set of the TDHFB
state vectors |φ(q, p)〉 forms the collective subspace in which the LACM can be

∗) We focus our discussion on the case of a single collective coordinate. A multi-dimensional

case is discussed in §4.
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properly described. One of the main problems with which we are concerned is
how to determine the collective subspace on the basis of the TDHFB equations of
motion. At the same time, we need to determine the collective Hamiltonian H(q, p)
that governs the equation of motion for the collective variables {q, p}. This is the
general purpose of theories of LACM.

When we apply the LACM theories to nuclei in the superconducting phase,
special attention has to be paid to particle number conservation. Since the TDHFB
state vector is not an eigenstate of the particle number operator N̂ , one would like
to formulate the LACM theory so that the particle number expectation value is
conserved during the course of collective motion. This is a problem which is specific
to the TDHFB, and does not exist for the TDHF for which the state vector is a
number eigenstate.

It is well known 17) that the expectation value of a conserved observable remains
constant during the time-evolution of |φ(t)〉 governed by the TDHF(B) equations of
motion. In the case of the pairing problem, the TDHFB state vector spontaneously
violates the symmetry with respect to the gauge rotation e−iϕN̂ , but rotational mo-
tion related to the gauge rotation (often called the “pairing rotation”) emerges auto-
matically to restore the gauge symmetry. Therefore, the LACM of superconducting
nuclei, described by the TDHFB theory, necessarily accompany the pairing rotation,
and we have to introduce 15) the collective coordinate, ϕ, the gauge angle, and the
conjugate collective momenta, N , which represents the particle number. Thus, we
are obliged to consider a collective subspace that is parameterized by the set of four
collective variables {q, p, ϕ,N}.∗)

Let us now present the basic equations of the SCCM that determine the collective
subspace |φ(q, p, ϕ,N)〉 and the collective Hamiltonian H(q, p, ϕ,N). As discussed
above, the variable ϕ is introduced to represent the gauge angle. This requirement
is easily satisfied 15) if one uses the parameterization

|φ(q, p, ϕ,N)〉 = e−iϕN̂ |φ(q, p,N)〉 , (2.2)

where N̂ is the number operator of particles. Here |φ(q, p,N)〉 represents an intrinsic
state that rotates in the gauge space.

The basic equations of the SCCM consist of a canonical variable condition and an
invariance principle of the time-dependent Schrödinger equation (TDHFB equation
in our case). The canonical variable condition is, in general, given by

〈φ(q, p, ϕ,N)| i ∂
∂q

|φ(q, p, ϕ,N)〉 = p+ ∂S
∂q
, (2.3a)

〈φ(q, p, ϕ,N)| ∂
i∂p

|φ(q, p, ϕ,N)〉 = −∂S
∂p
, (2.3b)

〈φ(q, p, ϕ,N)| i ∂
∂ϕ

|φ(q, p, ϕ,N)〉 = N +
∂S

∂ϕ
, (2.3c)

〈φ(q, p, ϕ,N)| ∂

i∂N
|φ(q, p, ϕ,N)〉 = − ∂S

∂N
, (2.3d)

∗) For simplicity, here we assume a single kind of particles. Extension to systems with many

kinds (e.g., protons and neutrons in nuclei) is straightforward.
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for the collective subspace parameterized by two sets of coordinates (q, ϕ) and mo-
menta (p,N). Although S is an arbitrary function of {q, p, ϕ,N}, we choose S = 0,
which is appropriate for the adiabatic approximation. 6) Then the canonical variable
condition can be rewritten as equations for the state |φ(q, p,N)〉:

〈φ(q, p,N)| i ∂
∂q

|φ(q, p,N)〉 = p, (2.4a)

〈φ(q, p,N)| ∂
i∂p

|φ(q, p,N)〉 = 0, (2.4b)

〈φ(q, p,N)| N̂ |φ(q, p,N)〉 = N, (2.4c)

〈φ(q, p,N)| ∂

i∂N
|φ(q, p,N)〉 = 0. (2.4d)

The third equation requires that the collective variable N be identical to the expecta-
tion value of the number operator. In other words, the particle number expectation
value does not depend on the collective variables (q, p) for the LACM under consid-
eration. This is nothing but the condition of particle number conservation.

The collective Hamiltonian is defined as the value of the total energy in the
collective subspace, given by

H= 〈φ(q, p, ϕ,N)| Ĥ |φ(q, p, ϕ,N)〉 (2.5a)
= 〈φ(q, p,N)| Ĥ |φ(q, p,N)〉 . (2.5b)

Since the Hamiltonian Ĥ commutes with the number operator N̂ , the collective
Hamiltonian does not depend on the gauge angle ϕ. Therefore, ϕ becomes cyclic, as
we expect.

The invariance principle of the TDHFB equation plays a central role in de-
termining the collective subspace, which requires that the TDHFB state vector
|φ(q(t), p(t), ϕ(t), N(t))〉 evolving in time within the collective subspace obey the
full TDHFB equation, Eq. (2.1). This is equivalent to the condition that the collec-
tive subspace is an invariant subspace of the TDHFB equations of motion. Inserting
Eq. (2.2) into the time-dependent variational principle, Eq. (2.1), we obtain

δ 〈φ(q, p,N)| Ĥ − dq

dt

◦
P +

dp

dt

◦
Q+

dN

dt

◦
Θ − dϕ

dt
N̂ |φ(q, p,N)〉 = 0, (2.6)

where the infinitesimal generators defined by

◦
P |φ(q, p,N)〉 = i

∂

∂q
|φ(q, p,N)〉 , (2.7a)

◦
Q |φ(q, p,N)〉 = 1

i

∂

∂p
|φ(q, p,N)〉 , (2.7b)

◦
Θ |φ(q, p,N)〉 = 1

i

∂

∂N
|φ(q, p,N)〉 (2.7c)

have been used. These operators are one-body operators which can be written as
linear combinations of bilinear products {a†αa

†
β, aβaα, a

†
αaβ} of the quasiparticle op-



964 M. Matsuo, T. Nakatsukasa and K. Matsuyanagi

erators defined with respect to |φ(q, p,N)〉. Because of the canonical variable condi-
tions, these infinitesimal generators satisfy the commutation relations

〈φ(q, p,N)| [
◦
Q,

◦
P ] |φ(q, p,N)〉 = i, (2.8a)

〈φ(q, p,N)| [
◦
Θ, N̂ ] |φ(q, p,N)〉 = i, (2.8b)

and commutators of other combinations of
◦
Q,

◦
P ,

◦
Θ and N̂ give zero expectation

value. By taking the variation as δ |φ(q, p,N)〉 = {
◦
P ,

◦
Q,

◦
Θ, N̂} |φ(q, p,N)〉, Eq. (2.6)

produces the canonical equations of motion for the collective variables:

dq

dt
=
∂H
∂p

= i 〈φ(q, p,N)| [Ĥ,
◦
Q] |φ(q, p,N)〉 , (2.9a)

dp

dt
= −∂H

∂q
= i 〈φ(q, p,N)| [Ĥ,

◦
P ] |φ(q, p,N)〉 , (2.9b)

dϕ

dt
=
∂H
∂N

= i 〈φ(q, p,N)| [Ĥ,
◦
Θ] |φ(q, p,N)〉 , (2.9c)

dN

dt
= −∂H

∂ϕ
= 0. (2.9d)

Using Eq. (2.9), Eq. (2.6) reduces to an equation of collective subspace:

δ 〈φ(q, p,N)| Ĥ − ∂H
∂p

◦
P − ∂H

∂q

◦
Q− ∂H

∂N
N̂ |φ(q, p,N)〉 = 0. (2.10)

If we take a variation δ⊥ that is orthogonal to the infinitesimal generators
{
◦
P ,

◦
Q,

◦
Θ, N̂}, we can immediately show δ⊥ 〈φ(q, p,N)| Ĥ |φ(q, p,N)〉 = 0, which im-

plies that the energy expectation value is stationary in the collective subspace with
respect to all the variations, except for those along directions tangent to the col-
lective subspace. In other words, the collective mode is decoupled from the other
modes of excitation.

We remark here that the above basic equations of the SCCM are invariant under
point transformations of the collective coordinate

q → q′ = q′(q), (2.11a)

p→ p′ = p×
(
dq′/dq

)−1
. (2.11b)

The basic principles, i.e. the canonical variable condition, Eq. (2.3), and the invari-
ance principle of the TDHFB equation, Eq. (2.6), are not affected by the general
canonical transformations of collective variables {q, p, ϕ,N} → {q′, p′, ϕ′, N ′}. By
taking the parameterization, Eq. (2.2), and the specific choice of S = 0 in Eq. (2.3),
the allowed canonical transformations are restricted to the point transformations. 6)

2.2. Adiabatic approximation

Assuming that the LACM described by the collective variables {q, p} is slow
motion, we here introduce the adiabatic approximation to the SCCM. Namely, we
expand the basic equations with respect to the collective momentum p, which is
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appropriate for small values of momentum. Since the particle number variable N is
a momentum variable in the present formulation, we also expand the basic equations
with respect to n = N −N0 when we consider a system with particle number N0.

Let us first consider the expansion of the TDHFB state vector |φ(q, p,N)〉
in the collective subspace. The origin of the expansion is the state |φ(q)〉
≡ |φ(q, p,N)〉 |p=0,N=N0 . We can assume that this is a time-even state, i.e., T |φ(q)〉
= |φ(q)〉 under the time-reversal operation T . (Here we consider system of an even
number of particles.) Thanks to the generalized Thouless theorem, the state vector
|φ(q, p,N)〉 can be expressed as

|φ(q, p,N)〉 = eiĜ(q,p,n) |φ(q)〉 (2.12)

by using the unitary transformation eiĜ(q,p,n). Here the Hermitian operator Ĝ is
given by

Ĝ(q, p, n) =
∑
α>β

(
Gαβ(q, p, n)a†αa

†
β +G

∗
αβ(q, p, n)aβaα

)
= Ĝ(q, p, n)†. (2.13)

Here and hereafter, the quasiparticle operators {a†α, aα} are always defined locally at
each value of q and satisfy the condition aα |φ(q)〉 = 0. We now expand the operator
Ĝ(q, p, n) in powers of p and n and keep only the lowest order term. We have

Ĝ(q, p, n) = pQ̂(q) + nΘ̂(q), (2.14a)

Q̂(q) =
∑
α>β

(
Qαβ(q)a†αa

†
β +Q

∗
αβ(q)aβaα

)
= Q̂(q)†, (2.14b)

Θ̂(q) =
∑
α>β

(
Θαβ(q)a†αa

†
β +Θ

∗
αβ(q)aβaα

)
= Θ̂(q)†. (2.14c)

If we require that time-reversal of |φ(q, p,N)〉 causes sign inversion of the collective
momentum p, i.e. T |φ(q, p,N)〉 = |φ(q,−p,N)〉, the operators Q̂(q) and Θ̂(q) must
be time-even (T Q̂(q)T −1 = Q̂(q)) and time-odd (T Θ̂(q)T −1 = −Θ̂(q)), respectively.
If we set n = 0 (i.e. N = N0), the parameterization Eq. (2.12) together with
Eq. (2.14) reduces to |φ(q, p)〉 = eipQ̂(q) |φ(q)〉, which has the same form as that
introduced by Villars and is often used in the ATDHF theories. 1), 3), 7)

The collective Hamiltonian is expanded as

H(q, p,N) = V (q) +
1
2
B(q)p2 + λ(q)n, (2.15a)

V (q) = H(q, p,N)|p=0,N=N0 = 〈φ(q)| Ĥ |φ(q)〉 , (2.15b)

B(q) =
1
2
∂2H(q, p,N)

∂p2

∣∣∣∣
p=0,N=N0

= −〈φ(q)| [[Ĥ, Q̂(q)], Q̂(q)] |φ(q)〉 , (2.15c)

λ(q) =
∂H(q, p,N)

∂N

∣∣∣∣
p=0,N=N0

= 〈φ(q)| [Ĥ, iΘ̂(q)] |φ(q)〉 , (2.15d)
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where we have kept terms up to second order in the collective momentum p, and
up to the first order in n. The collective Hamiltonian for the system with N = N0

particles ( n = 0 ) is given by

H(q, p,N0) = V (q) +
1
2
B(q)p2 (2.16)

as the sum of the collective potential V (q) and the collective kinetic energy (the
second term).

We next expand the infinitesimal generators. It is convenient for this purpose
to define the unitary transformations

◦
P ′ = e−iĜ

◦
PeiĜ,

◦
Q′ = e−iĜ

◦
QeiĜ and

◦
Θ′ =

e−iĜ
◦
ΘeiĜ of the infinitesimal generators

◦
P,

◦
Q and

◦
Θ. They are expanded as

◦
P ′ = P̂ (q) + e−iĜi

∂

∂q
eiĜ = P̂ (q)− p∂Q̂

∂q
− n∂Θ̂

∂q
+ · · · , (2.17)

◦
Q′ = e−iĜ ∂

i∂p
eiĜ = Q̂(q) +

i

2
[Q̂, pQ̂+ nΘ̂] + · · · , (2.18)

◦
Θ′ = e−iĜ ∂

i∂N
eiĜ = Θ̂(q) +

i

2
[Θ̂, pQ̂+ nΘ̂] + · · · , (2.19)

with use of the general expansion formula

e−iĜ∂eiĜ = i∂Ĝ+
1
2!
[i∂Ĝ, iĜ] +

1
3!
[[i∂Ĝ, iĜ], iĜ] + · · · . (2.20)

The operator P̂ (q) is the infinitesimal generator with respect to |φ(q)〉 defined by

P̂ (q) |φ(q)〉 = i ∂
∂q

|φ(q)〉 . (2.21)

Similarly, we introduce the unitary transformation of the number operator and ex-
pand it as ◦

N ′ ≡ e−iĜN̂eiĜ = N̂ + i[N̂ , pQ̂+ nΘ̂] + · · · . (2.22)

Substituting these operators into the canonical variable condition, Eq. (2.4), we have

〈φ(q)|
◦
P ′(q, p,N) |φ(q)〉 = p, (2.23a)

〈φ(q)|
◦
Q′(q, p,N) |φ(q)〉 = 0, (2.23b)

〈φ(q)|
◦
Θ′(q, p,N) |φ(q)〉 = 0, (2.23c)

〈φ(q)|
◦
N ′(q, p,N) |φ(q)〉 = N. (2.23d)

Now we expand these equations with respect to the momenta p and n, and obtain
the following equations.

The zeroth order canonical variable conditions:

〈φ(q)| P̂ (q) |φ(q)〉 = 〈φ(q)| i ∂
∂q

|φ(q)〉 = 0, (2.24)

〈φ(q)| Q̂(q) |φ(q)〉 = 0, (2.25)
〈φ(q)| Θ̂(q) |φ(q)〉 = 0, (2.26)
〈φ(q)| N̂ |φ(q)〉 = N0. (2.27)
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Equations (2.25) and (2.26) are automatically fulfilled by the definition Eq. (2.14)
of the operators Q̂(q) and Θ̂(q). Equation (2.24) can be satisfied if the q-dependent
phase of |φ(q)〉 is properly chosen. Equation (2.27) is the constraint on |φ(q)〉 for the
conservation of the average particle number.

The first order canonical variable conditions:

〈φ(q)| ∂Q̂(q)
∂q

|φ(q)〉 = −1, (2.28)

〈φ(q)| [Q̂(q), Θ̂(q)] |φ(q)〉 = 0, (2.29)
〈φ(q)| [Q̂(q), N̂ ] |φ(q)〉 = 0. (2.30)

One finds
〈φ(q)| [Q̂(q), P̂ (q)] |φ(q)〉 = i, (2.31)

which can be derived by differentiating Eq. (2.25) with respect to q and using
Eq. (2.28). One can also derive from Eq. (2.27)

〈φ(q)| [P̂ (q), N̂ ] |φ(q)〉 = 0. (2.32)

These equations give constraints on the infinitesimal generators Q̂(q) and P̂ (q) con-
cerning the normalization, Eq. (2.31), and the orthogonality to the particle number
operator, Eq. (2.32).

Next we expand the equation of collective subspace, Eq. (2.10), to obtain a
complete set of the basic equations for the adiabatic approximation. After rewriting
Eq. (2.10) as

δ 〈φ(q)| e−iĜĤeiĜ − ∂H
∂p

◦
P ′ − ∂H

∂q

◦
Q′ − ∂H

∂N

◦
N ′ |φ(q)〉 = 0, (2.33)

we can expand each term with respect to p and n with use of the equations listed
above.

The zeroth order equation of collective subspace:

δ 〈φ(q)| Ĥ − λ(q)N̂ − ∂V

∂q
Q̂(q) |φ(q)〉 = 0. (2.34)

The first order equation of collective subspace:

δ 〈φ(q)| [Ĥ − λ(q)N̂ , Q̂(q)]− 1
i
B(q)P̂ (q) |φ(q)〉 = 0. (2.35)

These equations are similar to the equations of path in Villars’ ATDHF the-
ory, 1) except that the present paper deals with the superconducting Hartree-Fock-
Bogoliubov (HFB) state and that the Hamiltonian accompanies the q-dependent
chemical potential term −λ(q)N̂ . As mentioned in §1, the ATDHF theory has
the problem that the solution satisfying these two equations is not uniquely de-
termined. 4), 5) Although an additional validity condition was introduced to further
constrain the solutions, 3), 4) the procedure of Ref. 3) does not fully solve the problem
since the method does not work around the HF minima.
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The non-uniqueness problem has been investigated in recent studies of the adia-
batic theories, and in our opinion they can be classified into two different approaches.
The first one represented by Ref. 6) asserts that the solution is uniquely determined
if an RPA boundary condition is specified at the HF minimum and if the analyticity
of the collective path as a function of q is imposed together with the canonical vari-
able condition. The solution, however, needs to be constructed in an analytic way
or by means of a Taylor expansion method with respect to the collective coordinate
q. We do not adopt this approach since we wish to construct a method applicable to
systems exhibiting large excursions from the HFB minimum. We rather follow the
other approach, represented by Refs. 7)–9). These theories require the additional
condition that the equation of collective subspace (corresponding to the decoupling
condition in Ref. 8)) should be satisfied up to the next order of the adiabatic ex-
pansion. In the present formulation, this second order condition is expressed as
follows.

The second order equation of collective subspace:

δ 〈φ(q)| 1
2
[[Ĥ − λ(q)N̂ , Q̂(q)], Q̂(q)]−B(q)∆Q̂(q) |φ(q)〉 = 0, (2.36)

where

∆Q̂(q) =
∂Q̂

∂q
+ Γ (q)Q̂(q), (2.37)

Γ (q) = − 1
2B(q)

∂B

∂q
. (2.38)

This equation is equivalent in its mathematical form to the one given in Ref. 7)
if the chemical potential term −λ(q)N̂ is neglected. The last term −B(q)∆Q̂(q),
often called a curvature term, was simply neglected in the original version of the
local harmonic approximation. 12), 13) In the next subsection, instead of neglecting
this curvature term, we rewrite ∆Q̂(q) and change Eq. (2.36) into a workable form.

It is worth noting here the invariance of the adiabatic equations with respect
to the coordinate transformation. The collective momentum p undergoes a linear
homogeneous transformation under the point transformation, Eq. (2.11). Therefore,
different orders of the expansion with respect to the power of p are not mixed under
the point transformation. The invariance property of the basic equations of SCCM is
thus inherited by each equation of the adiabatic approximation listed above. One can
also confirm this property by seeing that the quantities appearing in the equations
transform as

Q̂(q) → Q̂′(q′) = Q̂(q(q′))
(
dq′

dq

)
, (2.39a)

P̂ (q) → P̂ ′(q′) = P̂ (q(q′))
(
dq′

dq

)−1

, (2.39b)

∂V

∂q
→ ∂V ′

∂q′
=
∂V

∂q

(
dq′

dq

)−1

, (2.39c)
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B → B′(q′) = B(q(q′))
(
dq′

dq

)2

, (2.39d)

∆Q̂(q) → ∆Q̂′(q′) = ∆Q̂(q). (2.39e)

§3. Local harmonic approximation to collective subspace

3.1. Local harmonic equations

In this section we present a concrete procedure to construct an approximate
solution of the adiabatic SCC method. To this end, we first derive, from the adiabatic
equations, another set of equations of collective subspace which can be solved in a
manner similar to that for the RPA equation.

We first take the derivative of the zeroth order equation, Eq. (2.34), with respect
to q. This leads to

δ 〈φ(q)|
[
Ĥ − λ(q)N̂ , 1

i
P̂ (q)

]
− C(q)Q̂(q)

−∂V
∂q
∆Q̂(q)− ∂λ

∂q
N̂ |φ(q)〉 = 0, (3.1)

C(q) =
∂2V

∂q2
− Γ (q)∂V

∂q
, (3.2)

where ∆Q̂(q) and Γ (q) are given by Eqs. (2.37) and (2.38), respectively. Using
Eq. (2.36), we eliminate ∆Q̂(q) and rewrite Eq. (3.1) as

δ 〈φ(q)|
[
Ĥ − λ(q)N̂ , 1

i
P̂ (q)

]
− C(q)Q̂(q)

− 1
2B(q)

[[
Ĥ − λ(q)N̂ , ∂V

∂q
Q̂(q)

]
, Q̂(q)

]
− ∂λ

∂q
N̂ |φ(q)〉 = 0. (3.3)

Furthermore, due to Eq. (2.34), we find

∂V

∂q
Q̂ = (Ĥ − λN̂)A, (3.4)

where (Ĥ−λN̂)A represents the a†a† and aa part of the operator Ĥ−λN̂ containing
two-quasiparticle creation and annihilation in the normal-ordered expression.

We thus replace Eqs. (2.34)–(2.36) by the equivalent set

δ 〈φ(q)| ĤM (q) |φ(q)〉 = 0, (3.5)

δ 〈φ(q)| [ĤM (q), Q̂(q)]− 1
i
B(q)P̂ (q) |φ(q)〉 = 0, (3.6)

δ 〈φ(q)|
[
ĤM (q),

1
i
P̂ (q)

]
− C(q)Q̂(q)

− 1
2B(q)

[[ĤM (q), (Ĥ − λ(q)N̂)A], Q̂(q)]−
∂λ

∂q
N̂ |φ(q)〉 = 0. (3.7)
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In Eqs. (3.6) and (3.7), Ĥ − λN̂ has been replaced by

ĤM (q) = Ĥ − λ(q)N̂ − ∂V

∂q
Q̂(q), (3.8)

since the last term has no influence. The operator ĤM (q) may be regarded as
the Hamiltonian in the moving frame. The second and third terms can be identified
with generalized cranking terms associated with the pairing rotation and the LACM,
respectively.

Equations (3.6) and (3.7) are linear equations with respect to the one-body
operators Q̂(q) and P̂ (q). They have essentially the same structure as the standard
RPA equations, except for the last two terms in Eq. (3.7). The quantity C(q)
is the local stiffness parameter defined as the second (covariant) derivative of the
collective potential V (q). The infinitesimal generators Q̂(q) and P̂ (q) are thus closely
related to the harmonic normal modes locally defined for |φ(q)〉 and the moving frame
Hamiltonian ĤM (q). These equations may be called local harmonic equations.

It was shown in Ref. 7) that the zeroth, first and second order equations of AT-
DHF give a valley line of a potential energy surface in a multi-dimensional configura-
tion space associated with the TDHF states. Similarly, the local harmonic equations
we have obtained, Eqs. (3.5)–(3.7), define the valley of the multi-dimensional poten-
tial energy surface. The solution of these equations will be uniquely determined if a
suitable boundary condition is specified. These features are similar to the formula-
tion of Ref. 8) where the valley equation of the potential energy surface is derived
from the decoupling condition.

We remark again that the local harmonic equations in the present paper differ
from those of Rowe-Bassermann 12) and Marumori 13) with respect to the third and
fourth terms of Eq. (3.7), which arise from the curvature term (derivative of the
generator) and the particle number constraint, respectively. It is important to keep
the curvature term in order to maintain the relation between the collective subspace
and the valley of the potential surface. We also note that the present formalism is
invariant with respect to the point transformation of the collective coordinate, as is
the formulation of Ref. 8).

3.2. Matrix formulation of local harmonic equations

Let us now give a procedure to find the operators Q̂(q) and P̂ (q) that satisfy
the local harmonic equations, (3.6) and (3.7) , for a given state |φ(q)〉. Since these
are linear equations with respect to these operators, this can be done in a manner
analogous to that for the standard RPA. To show this, we first express the operator
P̂ (q) and N̂ in terms of the quasiparticle operators:

P̂ (q) = i
∑
α>β

(
Pαβ(q)a†αa

†
β − P ∗

αβ(q)aβaα

)
= P̂ (q)†, (3.9)

N̂ =
∑
α>β

(
Nαβ(q)a†αa

†
β +N

∗
αβ(q)aβaα

)
. (3.10)

Note that the a†a and c-number parts are neglected here since they do not change the
state vector |φ(q)〉, except for the phase. The Hamiltonian Ĥ can also be expressed
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in terms of the same quasiparticle operators. Assuming that the matrix elements
Qαβ and Pαβ are real, the local harmonic equations can be written as the following
matrix equations:

(A − B)Q −B(q)P = 0, (3.11a)

(A+ B)P − C(q)Q − 1
B(q)

DQ − λ′N = 0, (3.11b)

P T N = 0, (3.11c)
2QT P = 1, (3.11d)

λ′ =
∂λ

∂q
. (3.11e)

Here all quantities are functions of q while Q = (· · · , Qαβ , · · ·)T , P = (· · · , Pαβ, · · ·)T

and N = (· · · , Nαβ , · · ·)T form the vector representation of the matrix elements with
α > β. A and B are the matrices whose elements are given by

(A)αβ,γδ = δαγδβδ(eα + eβ) + v22
αβ,γδ, (3.12a)

(B)αβ,γδ = v40
αβγδ, (3.12b)

in terms of the matrix elements of the moving frame Hamiltonian,

ĤM (q) =
∑
α

eαa
†
αaα (3.13a)

+
1
4

∑
αβγδ

v22
αβ,γδa

†
αa

†
βaδaγ (3.13b)

+
1
4!

∑
αβγδ

(
v40
αβγδa

†
αa

†
βa

†
γa

†
δ + v

04
αβγδaδaγaβaα

)
(3.13c)

+
1
3!

∑
αβγδ

(
v31
αβγ,δa

†
αa

†
βa

†
γaδ + v13

δ,αβγa
†
δaγaβaα

)
. (3.13d)

Here, due to Eq. (2.34), the a†a† and aa parts of ĤM (q) vanish, and the a†a
part of ĤM (q) is diagonalized. The matrix elements of the residual interactions in
Eqs. (3.13b)–(3.13d) are antisymmetrized with respect to the quasiparticle indices.
The matrices A and B have the same structures as those defined in the quasiparticle
RPA formalism. 17) The matrix D is defined by

(D)αβ,γδ =
1
2
〈φ(q)| [[[ĤM (q), (Ĥ − λ(q)N̂)A], a†αa

†
β + aβaα], aγaδ] |φ(q)〉 . (3.14)

These matrix elements can be expressed also in terms of the Hamiltonian matrix
elements as

(D)αβ,γδ= (d22
αβ,γδ − d40

αβγδ + d
11
αγδβδ − d11

βγδαδ − d11
αδδβγ + d11

βδδαγ)/2, (3.15a)

d22
αβ,γδ=

∑
ε

(v31
αβε,γhδε − v31

αβε,δhγε − v13
α,εγδhβε + v13

β,εγδhαε), (3.15b)
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d40
αβγδ=

∑
ε

(v31
αβγ,εhεδ − v31

βγδ,εhεα + v31
γδα,εhεβ − v31

δαβ,εhεγ), (3.15c)

d11
αβ=

∑
γ>δ

(v13
α,βγδhγδ − v31

γδα,βhγδ), (3.15d)

where hαβ represents the matrix elements of (Ĥ − λN̂)A defined by

(Ĥ − λN̂)A =
∑
α>β

hαβ(a†αa
†
β + aβaα). (3.16)

Note that D contains the matrix elements of the types v13 and v31. These terms of
the Hamiltonian do not contribute to the standard RPA equations.

The solution of the matrix equations is obtained as follows. From Eq. (3.11), we
obtain

Q = λ′B(q) ((A + B)(A − B)− D −Ω)−1 N , (3.17a)
P = λ′(A − B) ((A + B)(A − B)− D −Ω)−1 N , (3.17b)

with
Ω = B(q)C(q). (3.18)

The condition that the collective mode is orthogonal to the number operator,
Eq. (3.11c), gives the following equation:

S(Ω) ≡ NT (A − B) ((A + B)(A − B)− D −Ω)−1 N = 0. (3.19)

The quantity Ω = B(q)C(q) represents the square of the frequency ω =
√
BC of

the local harmonic mode, which is not necessarily positive. This equation can be
regarded as a dispersion equation to determine Ω = ω2 as a zero point of S(Ω). The
normalization condition, Eq. (3.11d), then gives a constraint on the value of λ′2B(q).
The value of the mass parameter B(q) is arbitrary, being related to the invariance
under the point transformation Eq. (2.11). The choice of the coordinate q specifies
the value of the mass parameter, B(q). In practice, the coordinate is often scaled so
as to make the mass parameter unity.

When the residual interactions are separable forces, such as the monopole pair-
ing and the quadruple-quadrupole forces, the local harmonic equations reduce to a
simpler form. The dispersion equation for the separable interaction does not require
a matrix inversion as in Eq. (3.19). The details of these points are discussed in the
Appendix.

Reference 10) discusses a problem of spurious (Nambu-Goldstone) modes for
local harmonic approaches, and it is stated there that the RPA equation at non-
equilibrium points must be extended in order to guarantee separation of the spurious
modes. However, no practical way of solving the equation was given because the
equation has parameters for which we do not have a method to calculate. In our
present formulation, the RPA equation is indeed extended to assure the number
conservation.
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3.3. Construction of collective subspace

Let us finally give algorithms to construct the collective subspace |φ(q)〉 as a
function of the collective coordinate q. Note that the local harmonic equations,
Eqs. (3.5)–(3.7), are regarded as local equations in the sense that the equations can
be solved independently for different values of q. At the HFB ground state, |φ0〉,
defined by the HFB equation

δ 〈φ0| Ĥ − λ0N̂ |φ0〉 = 0, (3.20)

we find ∂V/∂q = 0. Therefore, |φ0〉 is always a state in the collective subspace
because Eq. (3.5) is automatically satisfied. Equations (3.6) and (3.7) reduce to the
standard RPA equations at |φ0〉 since the last two terms in Eq. (3.7) vanish. The
operators Q̂ and P̂ are then determined as one of the normal modes of the RPA
equation.

For non-equilibrium states, in general, Eq. (3.5) and the other two equations,
(3.6) and (3.7), are coupled. We may solve the coupled equations in an iterative
way. As discussed in §3.2, we can find the operators Q̂(q)(n) and P̂ (q)(n) by solv-
ing Eqs. (3.6) and (3.7) for a given trial state |φ(q)〉(n) (n denoting the iteration
step). This defines the moving frame Hamiltonian ĤM (q)(n+1) = Ĥ − λ(q)(n+1)N̂ −(

∂V
∂q

)(n)
Q̂(q)(n), which can be used to construct a trial state |φ(q)〉(n+1) for the next

iteration. If the iteration converges, we obtain a state |φ(q)〉 for which Eqs. (3.5)–
(3.7) are simultaneously satisfied. Repeating the same procedure for different values
of q, one finally obtains the collective subspace |φ(q)〉 and the collective Hamiltonian
as a function of q.

We remark here that the operator P̂ (q) thus determined does not guarantee
Eq. (2.21), although the other equations are satisfied. In this sense, the local har-
monic solution is an approximate solution. The exact solution satisfying all the
basic equations in §2.2 may not exist in realistic situations. Only when the system
is “exactly decoupled” 8) does the above procedure give the exact solution.

It is possible to choose another algorithm which satisfies Eq. (2.21), at the ex-
pense of introducing errors into Eq. (3.5). Let |φ(q0)〉 be a solution that satisfies the
basic equations at q = q0. The infinitesimal generators Q̂(q0) and P̂ (q0) are deter-
mined by solving Eqs. (3.6) and (3.7). Then we can generate the state |φ(q0 + δq)〉
for an infinitesimal shift of the collective coordinate as

|φ(q0 + δq)〉 = e−iδqP̂ (q0) |φ(q0)〉 . (3.21)

Repeating this procedure, we can construct a collective subspace. This solution
should coincide with that solved by the previous method if the system is exactly
decoupled.

The two methods described above give different solutions in situations where
the exact decoupling is not satisfied. In such cases, one can evaluate the quality of
decoupling for the collective subspace or the validity of the local harmonic approx-
imation by comparing the two solutions. We note also that the second method can
be used to provide an initial guess, |φ(q)〉(0), for the iteration of the first method.
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§4. Extension to multi-dimensional collective subspace

In this section we extend the adiabatic SCC method to the case of a multi-
dimensional collective subspace described by D collective coordinates and conjugate
momenta, {qi, pi; i = 1, · · · , D}.

One can easily derive the basic equations of the adiabatic SCC method in parallel
to the derivation given in §2 by noting first that Eqs. (2.12) and (2.14) are now
extended to

|φ(q, p,N)〉 = eiĜ(q,p,n) |φ(q)〉 , (4.1)
Ĝ = piQ̂

i(q) + nΘ̂(q), (4.2)

where the operator Q̂i(q) now has D components with the coordinate label i. It
is implied here and hereafter that any coordinate index (i in the above expression)
appearing both as the superscript and subscript is summed over. The infinitesimal
generator P̂i(q) also has D components, each of which is related to the derivative
i ∂
∂qi |φ(q)〉. In the following, the coordinate dependence is often omitted. For in-

stance, Bij(q) and Q̂i(q) will be simply denoted by Bij and Q̂i.
The adiabatic collective Hamiltonian is expressed as

H(q, p,N) = V (q) +
1
2
Bij(q)pipj + λ(q)n. (4.3)

The zeroth and the first order equations of the collective subspace are derived as

δ 〈φ(q)| Ĥ − λ(q)N̂ − ∂V

∂qi
Q̂i |φ(q)〉 = 0, (4.4)

δ 〈φ(q)| [Ĥ − λ(q)N̂ , Q̂i]− 1
i
BijP̂j |φ(q)〉 = 0, (4.5)

while the second order equation becomes

δ 〈φ(q)| 1
2
[Ĥ − λ(q)N̂ , Q̂i, Q̂j ] +

1
6

[
∂V

∂qk
Q̂k, Q̂i, Q̂j

]

−1
2
(BikQ̂j

;k +B
jkQ̂i

;k) |φ(q)〉 = 0 (4.6)

with

Q̂i
;j =

∂Q̂i

∂qj
+ Γ i

kjQ̂
k, (4.7)

Γ i
kj =

1
2
Bil

(
∂Blk

∂qj
+
∂Blj

∂qk
− ∂Bkj

∂ql

)
, (4.8)

where Bij is the inverse matrix of Bij , and the bracket including the three operators
is defined by

[A,B,C] =
1
2
([[A,B], C] + [[A,C], B]). (4.9)
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Expanding the canonical variable condition with respect to pi and n, the follow-
ing equations are derived:

〈φ(q)| P̂i |φ(q)〉 = 0, (4.10)
〈φ(q)| N̂ |φ(q)〉 = N0, (4.11)

and

〈φ(q)| [Q̂i, P̂j] |φ(q)〉 = iδij , (4.12)

〈φ(q)| [Q̂i, N̂ ] |φ(q)〉 = 0, (4.13)
〈φ(q)| [P̂i, N̂ ] |φ(q)〉 = 0. (4.14)

These basic equations are invariant under the point transformation of the col-
lective variables:

qi → q′i = q′i(q), (4.15a)

pi → p′i = pj ×
(
∂qj/∂q′i

)
. (4.15b)

We have adopted the vector-tensor notation 20) to make clear the transforma-
tion properties under the point transformation. Quantities with a coordinate index
as the subscript (superscript) have the transformation properties of the covariant
(contravariant) vectors. For example,

Q̂i → Q̂′i = Q̂j ×
(
∂q′i/∂qj

)
, (4.16)

P̂i → P̂ ′
i = P̂j ×

(
∂qj/∂q′i

)
. (4.17)

The mass tensor Bij is the contravariant tensor of second rank. The operator Q̂i
;j

defined by Eq. (4.7) is the covariant derivative of Q̂i, and Γ i
kj is the Christoffel

symbol, where the mass tensor Bij plays the role of metric tensor.
Let us now derive local harmonic equations of the collective subspace. Taking

the q-derivative, the zeroth order equation (4.4) leads to

δ 〈φ(q)|
[
Ĥ − λ(q)N̂ , 1

i
P̂i

]
− Cij(q)Q̂j − ∂V

∂qj
Q̂j

;i −
∂λ

∂qi
N̂ |φ(q)〉 = 0, (4.18)

Cij(q) =
∂2V

∂qi∂qj
− Γ k

ij

∂V

∂qk
. (4.19)

As we have done for the D = 1 case, we would like to eliminate the covariant
derivative Q̂j

;i in Eq. (4.18) in order to give a feasible form of the local harmonic
equation. This was done for the D = 1 case with the help of the second order
equation of the collective subspace. The corresponding equations (4.6) give D(D +
1)/2 constraints, while the number of unknown parameters, Q̂j

;i, is D
2. In fact,

Eq. (4.6) is equivalent to

δ 〈φ(q)| 1
2
[[Ĥ − λ(q)N̂ , Q̂j], Q̂i] +

1
6

[[
∂V

∂qk
Q̂k, Q̂j

]
, Q̂i

]
− (BikQ̂j

;k + R̂
ij) |φ(q)〉 = 0,

(4.20)
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where R̂ij are arbitrary one-body operators which are antisymmetric with respect
to exchange of indices i and j. If we choose R̂ij = 0, we can eliminate the derivative
term ∂V

∂qj Q̂
j
;i. Then, Eq. (4.18) leads to

δ 〈φ(q)|
[
Ĥ − λ(q)N̂ , 1

i
P̂i

]
− CijQ̂

j

−1
2
[[Ĥ − λ(q)N̂ , (Ĥ − λ(q)N̂)A], BijQ̂

j ]− ∂λ

∂qi
N̂ |φ(q)〉 = 0. (4.21)

This equation is an analog of Eq. (3.7) and is linear in the infinitesimal generators
Q̂i and P̂i. We can numerically solve Eqs. (4.4), (4.5) and (4.21) in the same manner
as discussed in §§3.2 and 3.3.

It should be remarked that the local harmonic equation Eq. (4.21) for D > 1
is derived from Eqs. (4.4) and (4.6), but with the additional condition R̂ij = 0 in
Eq. (4.20). This condition is introduced to obtain the local harmonic equations
parallel to the one-dimensional case.

§5. Conclusions

We have formulated the adiabatic approximation of the general framework of
the selfconsistent collective coordinate method in order to describe large amplitude
collective motion in superconducting nuclei. The formalism, based on the TDHFB
equations of motion, guarantees the conservation of particle number in a transparent
way. We have shown that the equations of collective subspace are reduced to local
linear equations for the infinitesimal generators, which can be solved with use of the
quasiparticle representation of the Hamiltonian matrix elements. This provides a
concrete procedure to determine the states eipQ̂(q) |φ(q)〉 in the collective subspace
and the collective HamiltonianH(q, p) = V (q)+ 1

2B(q)p
2 as functions of the collective

coordinate q and momentum p. A possible extension to the case of multi-dimensional
collective coordinates was also discussed.

We emphasize that the equations given in this paper are solvable by means of
the matrix method similar to the standard RPA. We hope that the present adiabatic
theory is useful to solve a number of open questions in realistic studies of large
amplitude collective motion in nuclear systems.

Appendix A
Solution for the Separable Interactions

In this appendix, we give solutions of the local harmonic equations of collective
subspace for the case in which the two-body interaction is given by separable forces.
We assume that the Hamiltonian is given by

Ĥ = ĥ0 −
κ

2
F̂ †F̂ , (A.1)
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where ĥ0(= ĥ
†
0) and F̂ are one-body operators. Equivalently, one may write

Ĥ = ĥ0 −
κ

2
F̂ (+)F̂ (+) +

κ

2
F̂ (−)F̂ (−), (A.2)

F̂ (±) ≡ (F̂ ± F̂ †)/2 = ±F̂ (±)†. (A.3)

For separable forces, it is customary to neglect the Fock term of the forces. This
approximation is easily and consistently implemented in the SCCM by assuming that
the equation of motion for the time-dependent mean-field state |φ(t)〉 is now given
by the time-dependent Hartree-Bogoliubov equation without the Fock terms,

δ 〈φ(t)| i ∂
∂t

− ĥ(t) |φ(t)〉 = 0, (A.4)

ĥ(t) = ĥ0 − κF̂ (+) 〈φ(t)| F̂ (+) |φ(t)〉+ κF̂ (−) 〈φ(t)| F̂ (−) |φ(t)〉 . (A.5)

The local harmonic equations (3.5)–(3.7) then become

δ 〈φ(q)| ĥM (q) |φ(q)〉 = 0, (A.6)

δ 〈φ(q)| [ĥM (q), Q̂(q)]− f (−)
Q F̂ (−) − 1

i
B(q)P̂ (q) |φ(q)〉 = 0, (A.7)

δ 〈φ(q)|
[
ĥM (q),

1
i
B(q)P̂ (q)

]
− f (+)

P F̂ (+) −B(q)C(q)Q̂(q)− f (+)
R F̂ (+)

−f (−)
Q [F̂ (−), (ĥ(q)− λ(q)N̂)A]− fN N̂ |φ(q)〉 = 0, (A.8)

where ĥM (q) is the mean-field Hamiltonian in the moving frame defined by

ĥM (q) = ĥ(q)− ∂V

∂q
Q̂(q)− λ(q)N̂ , (A.9)

ĥ(q) = ĥ0 − κF̂ (+) 〈φ(q)| F̂ (+) |φ(q)〉 , (A.10)

and the definitions of the other symbols are

f
(−)
Q = −κ 〈φ(q)| [F̂ (−), Q̂(q)] |φ(q)〉 , (A.11a)

f
(+)
P = κ 〈φ(q)|

[
F̂ (+),

1
i
B(q)P̂ (q)

]
|φ(q)〉 , (A.11b)

f
(+)
R = −κ 〈φ(q)| [[F̂ (+), (ĥ(q)− λ(q)N̂)A], Q̂(q)] |φ(q)〉 /2, (A.11c)

fN = B(q)
∂λ

∂q
. (A.11d)

We express all operators in the above equations in terms of the quasiparticle opera-
tors {a†α, aα} defined for ĥM (q) and |φ(q)〉. For example, we have

ĥM (q) =
∑
α

eαa
†
αaα, (A.12)

F̂ (+) =
∑
α>β

F
(+)
αβ (a†αa

†
β + aβaα) +

∑
αβ

F
(+)
B,αβa

†
αaβ, (A.13)

F̂ (−) =
∑
α>β

F
(−)
αβ (a†αa

†
β − aβaα) +

∑
αβ

F
(−)
B,αβa

†
αaβ. (A.14)



978 M. Matsuo, T. Nakatsukasa and K. Matsuyanagi

We have assumed here that all matrix elements are real. Equations (A.7) and (A.8)
can then be reduced to linear equations for the matrix elements Qαβ and Pαβ of the
infinitesimal generators Q̂(q) and P̂ (q). They are easily solved to give the expression

Qαβ =
eα + eβ

(eα + eβ)2 −Ω
F

(−)
αβ f

(−)
Q

+
1

(eα + eβ)2 −Ω
(
F

(+)
αβ f

(+)
PR +R(−)

αβ f
(−)
Q +NαβfN

)
, (A.15)

BPαβ =
eα + eβ

(eα + eβ)2 −Ω
(
F

(+)
αβ f

(+)
PR +R(−)

αβ f
(−)
Q +NαβfN

)

+
Ω

(eα + eβ)2 −Ω
F

(−)
αβ f

(−)
Q , (A.16)

f
(+)
PR = f

(+)
P + f (+)

R , (A.17)

where we have introduced the one-body operator

R̂(q)(±) ≡ [F̂ (±)
B (q), (ĥ(q)− λ(q)N̂)A] =

∑
α>β

R
(±)
αβ (a†αa

†
β ∓ aβaα), (A.18)

with F̂ (±)
B (q) being the last terms of F̂ (±) in Eqs. (A.13) and (A.14).

Inserting this expression for the definition of f (+)
PR and f (−)

Q , we obtain equations

for the unknown quantities f (+)
PR , f

(−)
Q and fN . Similarly, the condition of orthogo-

nality to the number operator Eq. (3.11c) gives another equation for f (+)
PR , f

(−)
Q and

fN . These equations can be written in a 3× 3 matrix form:

 Sxx′(Ω)






f

(+)
PR

f
(−)
Q

fN


 = 0, (A.19)

where

S11 = 2S(1)

F (+)F (+) + S
(2)

R(+)F (+) −
1
κ
, (A.20a)

S12 = 2ΩS(2)

F (+)F (−) + 2S(1)

F (+)R(−) + S
(1)

R(+)F (−) + S
(2)

R(+)R(−) , (A.20b)

S13 = 2S(1)

F (+)N
+ S(2)

R(+)N
, (A.20c)

S21 = 2S(2)

F (−)F (+) , (A.20d)

S22 = 2S(1)

F (−)F (−) + 2S(2)

F (−)R(−) −
1
κ
, (A.20e)

S23 = 2S(2)

F (−)N
, (A.20f)

S31 = S
(1)

NF (+) , (A.20g)

S32 = ΩS
(2)

NF (−) + S
(1)

NR(−) , (A.20h)

S33 = S
(1)
NN . (A.20i)
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The functions S(1)
XY with the symbols X and Y denoting (X, Y ) = (F (+), F (+)),

(F (+), R(−)), (F (+), N), (R(+), F (−)), (F (−), F (−)), (N,N), (N,F (+)), (N,R(−)) are
given by

S
(1)
XY =

∑
α>β

eα + eβ
(eα + eβ)2 −Ω

XαβYαβ, (A.21)

while the functions S(2)
XY with (X, Y ) = (F (+), F (−)), (R(+), F (+)), (R(+), R(−)),

(R(+), N), (F (−), F (+)), (F (−), R(−)), (F (−), N), (N,F (−)) are given by

S
(2)
XY =

∑
α>β

1
(eα + eβ)2 −Ω

XαβYαβ. (A.22)

The value of Ω is determined by finding the zero point of the dispersion equation

det{Sxx′(Ω)} = 0. (A.23)

Normalizations of f (+)
PR , f

(−)
Q and fN are fixed by the condition Eq. (3.11d). It is

straightforward to extend the above procedure to the case in which the two-body
interaction is given by a sum of the separable forces.
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Diabatic description of rotational bands provides a clear-cut picture for understanding
the back-bending phenomena, where the internal structure of the yrast band changes dramat-
ically as a function of angular momentum. A microscopic framework to obtain the diabatic
bands within the mean-field approximation is presented by making use of the selfconsistent
collective coordinate method. Applying the framework, both the ground state rotational
bands and the Stockholm bands are studied systematically for the rare-earth deformed nu-
clei. An overall agreement has been achieved between the calculated and observed rotational
spectra. It is also shown that the inclusion of the double-stretched quadrupole-pairing in-
teraction is crucial to obtain an overall agreement for the even-odd mass differences and the
rotational spectra simultaneously.

§1. Introduction

Back-bending of the yrast rotational bands is one of the most striking phenomena
in the spectroscopic studies of rapidly rotating nuclei. 1), 2) The first back-bending,
which has been observed systematically in the rotational bands of the rare-earth
nuclei, has been understood as a band-crossing between the ground state rotational
band (g-band) and the lowest two-quasineutron excited band (s-band). A simple
approach to describe the band-crossing is the cranked mean-field approximation,
where the concept of independent particle motion in the rotating frame is fully
employed. As long as the conventional (adiabatic) cranking model is used, however,
the two bands mix at the same rotational frequency and, in the crossing region, loose
their identities as individual rotational bands. It should be noted that the difficulty
lies in the fact that the angular momenta of two bands are considerably different in
the vicinity of the crossing frequency where the mixing takes place, especially in the
case of sharp back-bendings, and such a mixing is largely unphysical. 3) - 5)

A key to solve this problem is to construct diabatic rotational bands, where
the internal structure of the band does not change abruptly. 6) - 9) Once reliable
diabatic bands are obtained it is rather straightforward to mix them if the number
of independent bands are few as in the case of the first back-bending. Note, however,
that it is highly non-trivial how to construct reliable diabatic bands in the mean-field
approximation, because it is based on the variational principle and the mixing at the
same rotational frequency is inevitable for states with the same quantum numbers (in
the intrinsic frame). On the other hand, in the mean-field approximation, the effects
of rotational motion on the internal structure of the g-band can be nicely taken into
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account as selfconsistent changes of the deformation and the pairing gap parameters.
Furthermore, rotation alignment effects of the quasiparticle angular momenta are
described in a simple and clear way. Therefore, it is desired to develop a method to
describe the rotational band diabatically within the mean-field approximation.

In this paper, we present a powerful method to obtain reliable diabatic rotational
bands by making use of the selfconsistent collective coordinate (SCC) method. 10)

The method is applied to the g- and s-bands and the results for nuclei in the rare-
earth region are compared systematically with experimental data. In order to repro-
duce the rotational spectra, the choice of residual interaction is essential. We use the
pairing-plus-quadrupole force type interaction. 11) However, it has been well-known
that the moment of inertia is generally underestimated by about 20–30% if only the
monopole-pairing interaction is included. 12) Therefore, we exploit the monopole and
quadrupole type interaction in the pairing channel, and investigate the best form of
the quadrupole-pairing part. This is done in §2. After fixing the suitable residual
interaction, we present in §3 a formulation to describe the diabatic rotational bands
and results of its application to nuclei in the rare-earth region. In practical ap-
plications it often happens that a complete set of the diabatic quasiparticle basis is
necessary; for example, in order to go beyond the mean-field approximation. For this
purpose, we present in §4 a practical method to construct the diabatic quasiparticle
basis satisfying the orthonormality condition. Concluding remarks are given in §5.

§2. Quadrupole-pairing interaction suitable for deformed nuclei

In this section we try to fix the form of residual interactions, which is suitable
to describe the properties of deformed rotating nuclei. It might be desirable to use
effective interactions like Skyrme-type interactions, 13) but that is out of scope of the
present investigation. We assume the separable-type schematic interactions instead,
and try to fix their forms and strengths by a global fit of the basic properties; the
even-odd mass difference and the moment of inertia.

2.1. Residual interactions

The residual interaction we use in the present work is of the following form:

V = −G0P
†
00P00 −G2

∑
K

P †
2KP2K − 1

2

∑
K

κ2KQ
†
2KQ2K , (2.1)

where the first and the second terms are the monopole- and quadrupole-pairing
interactions, while the third term is the quadrupole particle-hole type interaction.
The pairing interactions are set up for neutrons and protons separately (the T =
1 and Tz = ±1 pairing) as usual, although it is not stated explicitly, and only
the isoscalar part is considered for the quadrupole interaction. The quadrupole-
pairing interaction is included for the purpose of better description of moment of
inertia: It has been known for many years 12) that the cranking moments of inertia
evaluated taking account of only the monopole-pairing interaction underestimate the
experimental ones systematically in the rare-earth region, as long as the monopole-
pairing strength is fixed to reproduce the even-odd mass differences. It should be
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mentioned that the treatment of residual interactions in the pairing and the particle-
hole channels are different: In the pairing channel the mean-field (pairing gap) is
determined by the interaction selfconsistently, while that in the particle-hole channel
(spatial deformation) is obtained by the Nilsson-Strutinsky method 14), 15) and the
interaction in this channel only describes the dynamical effects, i.e., the fluctuations
around the equilibrium mean-field.

The basic quantity for deformed nuclei is the equilibrium deformation. For the
present investigation, where the properties of deformed rotational nuclei are system-
atically studied, the Nilsson-Strutinsky method is most suitable to determine the
equilibrium deformations, because there is no adjustable parameters. As empha-
sized by Kishimoto and Sakamoto, 17) the particle-hole type quadrupole interaction
for deformed nuclei should be of the double-stretched form: 17) - 19)

Q2K =
∑
ij

q2K(ij) c†icj , q2K(ij) = 〈i|(r2Y2K)′′|j〉, (2.2)

where c†i is the nucleon creation operator in the Nilsson state |i〉. (O)′′ means that
the Cartesian coordinate in the operator O should be replaced such as xk → x′′k ≡
(ωk/ω0)xk (k = x, y, z), where ωx, ωy and ωz are frequencies of the anisotropic
oscillator potential and related to the deformation parameter (ε2, γ); 15), 16) here
h̄ω0 ≡ h̄(ωxωyωz)1/3 = 41.0/A1/3 MeV (A is the mass number). Then the selfcon-
sistent condition gives, at the equilibrium shape, a vanishing mean value for the
double-stretched quadrupole operator, 〈Q2K〉 = 0, and thus the meaning of resid-
ual interaction is apparent for the double-stretched interaction. Moreover, the force
strengths are determined at the same time to be the so-called selfconsistent value,

κ2K = κself
2 =

4π
3

h̄ω0

AR2
0b

2
0

, with b20 =
h̄

Mω0
, R0 = 1.2A1/3 fm, (2.3)

by which the β- and γ-vibrational excitations are correctly described. Strictly speak-
ing, the vanishing mean value of Q2K holds only for the harmonic oscillator model.
It is, however, easily confirmed that the mean value vanishes in a good approxima-
tion in the case of Nilsson potential. In fact the calculated ratio of mean values of
the double-stretched and non-stretched quadrupole operator is typically within few
percent, if the deformation parameter determined by the Strutinsky procedure is
used.

Pairing correlations are important for the nuclear structure problem as well. The
operators entering in the pairing type residual interactions are of the form

P †
00 =

∑
i>0

c†ic
†
ĩ
, P †

2K =
∑
ij>0

p2K(ij) c†ic
†
j̃
, (2.4)

where j̃ denotes the time-reversal conjugate of the Nilsson state j. In contrast to
the residual interactions in the particle-hole channel, there is no such selfconsitency
condition known in the pairing channel. Therefore, we use the Hartree-Bogoliubov
(HB) procedure (exchange terms are neglected) for the pairing interactions, only
the monopole part of which leads to the ordinary BCS treatment. Note that the
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generalized Bogoliubov transformation is necessary in order to treat the quadrupole-
pairing interaction, since the pairing potential becomes state-dependent and contains
non-diagonal elements:

∆ij = ∆00 δij +
∑
K

∆2K p2K(ij), (2.5)

where ∆00 = G0 〈P00〉 and ∆2K = G2 〈P2K〉, the expectation values being taken with
respect to the resultant HB state.

For the application of these residual interactions we are mainly concerned with
deformed nuclei in the rare-earth region, where the neutron and proton numbers
are considerably different. In such a case, the “iso-stretching” of multipole oper-
ators, 20), 21) Qτ → (2Nτ/A)2/3 Qτ for τ = ν, π (Nτ denotes the neutron or pro-
ton number and A the mass number), is necessary in accordance with the differ-
ence of the oscillator frequencies, ωτ

0 = (2Nτ/A)1/3ω0, or of the oscillator length,
(bτ0)2 = (2Nτ/A)−1/3b20. We employ this modification for the quadrupole interaction
in the particle-hole channel.

2.2. Treatment of pairing interactions

As for the quadrupole-pairing part, there are at least three variants that have
been used in the literature. 22) - 31) Namely, they are non-stretched, single-stretched
and double-stretched quadrupole-pairing interactions, where the pairing form factor
in the operator in Eq. (2.4) is defined as

p2K(ij) = 〈i|r2Y2K |j〉, 〈i|(r2Y2K)′|j〉, 〈i|(r2Y2K)′′|j〉, (2.6)

respectively. The single-stretching of operators is analogously performed by the
replacement, xk → x′k ≡ √

ωk/ω0 xk (k = x, y, z). Note that there are matrix ele-
ments between the Nilsson states with ∆Nosc = ±2 in Eq. (2.6). We have neglected
them in the generalized Bogoliubov transformation in accordance with the treat-
ment of the Nilsson potential, which is arranged to have vanishing matrix elements
of ∆Nosc = ±2.∗)

Being consistent with the Nilsson-Strutinsky method, we use the smoothed pair-
ing gap method 14) in which the monopole-pairing force strength is determined for a
given set of single-particle energies by

2
G0

= g̃F log
(
Λ/∆̃ +

√
(Λ/∆̃)2 + 1

)
, (2.7)

where g̃F is the Strutinsky smoothed single-particle level density at the Fermi surface,
Λ is the cutoff energy of pairing model space, for which we use Λ = 1.2h̄ω0, and ∆̃
is the smoothed pairing gap. We introduce a parameter d (MeV) to control the
strength of the monopole-pairing force by

∆̃ =
d√
A
, (2.8)

∗) The hexadecapole deformation leads extra ∆Nosc = ±2, ±4 coupling terms, but they are

neglected in our calculations.
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through Eq. (2.7), where the same smoothed pairing gap is used for both neutrons
and protons, for simplicity. As for the quadrupole-pairing force strength, we take
the following form,

G2 = G0
g2

R4
0

, with R0 = 1.2A1/3 fm. (2.9)

Thus, we have two parameters d (MeV) and g2 for the residual interactions in the
pairing channel.

It is worthwhile mentioning that Eq. (2.7) gives the form,

Gτ
0 ≈ c

A

(
2Nτ

A

)−1/3

, with c =
82.0 (2/3)2/3

log
(
2Λ/∆̃

) , (2.10)

for the semiclassical treatment of the isotropic harmonic oscillator model, 32), 33)

where g̃τF ≈ (3Nτ )2/3/(h̄ωτ
0 ), and it is a good approximation for the Nilsson po-

tential. The quantity log
(
2Λ/∆̃

)
depends very slowly on the mass number and can

be replaced by a representative value for a restricted region of mass table. Taking
Λ = h̄ω0, d = 13 and A = 170, one obtains c ≈ 23, which gives the monopole-pairing
force strength often used for nuclei in the rare-earth region.

2.3. Determination of parameters d and g2

Now let us determine the form of the quadrupole-pairing interaction. Namely, we
would like to answer the question of which form factor in Eq. (2.6) is best, and of what
are the values of the parameters, d and g2, introduced in the previous subsection.
For this purpose, we adopt the following criteria; the moments of inertia J0 of the
Harris formula 34) and the even-odd mass differences (the third order formula 32)) for
even-even nuclei should be simultaneously reproduced as good as possible. Since the
neutron contribution is more important for the moment of inertia, we have used the
even-odd mass difference for neutrons, E(e-o)

ν . Then it turns out that the proton
even-odd mass difference is also reasonably well reproduced as long as the same
smoothed pairing gap is used for neutrons and protons. Thus, the two parameters
d (MeV) and g2 are searched so as to minimize the root-mean-square deviations of
these quantities divided by their average values,

Xrms(x) =
[

1
Ndata

Ndata∑
i=1

(
x

(exp)
i − x

(cal)
i

)2
]1/2/[ 1

Ndata

Ndata∑
i=1

x
(exp)
i

]
(2.11)

for x = J0 and E
(e-o)
ν . Nuclei used in the search are chosen from even-even rare-earth

nuclei in Table I, thus Ndata = 83 (58) for x = E
(e-o)
ν (J0).

Table I. Nuclei included for the search of the pairing interaction parameters, d and g2.

64Gd 66Dy 68Er 70Yb 72Hf 74W

N for E
(e-o)
ν 76–100 78–102 80–104 80–108 84–110 86–114

N for J0 86–96 86–100 86–102 86–108 90–110 92–114
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Note that the neutron even-odd mass difference has been calculated in the same
way as the experimental data by taking the third order difference of calculated bind-
ing energies for even and odd N nuclei, where the blocking HB calculation has been
done for odd-mass nuclei. In the Nilsson-Strutinsky method the grid of deformation
parameters −0.08 ≤ ε2 ≤ 0.40 and −0.08 ≤ ε4 ≤ 0.12 with an interval of 0.04 are
used. The ls and ll parameters of the Nilsson potential are taken from Ref. 35). We
have assumed the axial symmetry in the calculation of this subsection since only the
ground state properties are examined. Experimental binding energies are taken from
the 1993 Atomic Mass Evaluation. 36) As for the experimental moment of inertia,
the Harris parameters, J0 and J1, are calculated from the observed excitation ener-
gies of the 2+ and 4+ states belonging to the ground state band, experimental data
being taken from Ref. 37) and the ENSDF database. 38) If the value of J0 calculated
in this way becomes negative or J1 greater than 1000 h̄4/MeV3 (this happens for
near spherical nuclei), then J0 is evaluated by only using the 2+ energy, i.e., by
3/E2+ . The Thouless-Valtion moment of inertia, 39) which includes the effect of the
K = 1 component of the residual quadrupole-pairing interaction, is employed as the
calculated moment of inertia. Here, again, the matrix elements between states with
∆Nosc = ±2 are neglected for simplicity in the same way as in the step of diagonal-
ization of the mean-field Hamiltonian. The contributions of them are rather small
for the calculation of moment of inertia, since the ∆Nosc = ±2 matrix elements of
the angular momentum operator are smaller than the ∆Nosc = 0 ones by a factor
≈ ε2 and the energy denominators are larger. We have checked that those effects are
less than 5 % for the Thouless-Valatin moment of inertia in well deformed nuclei.

In Fig. 1 we show root-mean-square deviations of the result of calculation for
neutron even-odd mass differences and moments of inertia. We have found that the
behavior of these two quantities, Xrms(E

(e-o)
ν ) and Xrms(J0), as functions of g2 with

fixed d are opposite, and so the mean value

Xrms =
1
2

(
Xrms(E(e-o)

ν ) + Xrms(J0)
)

(2.12)

become almost constant, especially for the case of the non-stretched quadrupole-
pairing. Therefore, we also display the results for the maximum among the two,

XM
rms = max

{
Xrms(E(e-o)

ν ), Xrms(J0)
}
. (2.13)

As is clear from Fig. 1, the best fit is obtained for the double-stretched quadrupole-
pairing interaction with d = 14 (MeV) and g2 = 30. It should be mentioned that the
value of g2 is close to the one g2 = 28π/3 in Ref. 22), where it is derived from the
multipole decomposition of the δ-interaction and this argument is equally applicable
if the double-stretched coordinate is used in the interaction. It is interesting to notice
that if the non-stretched or the single-stretched quadrupole-pairing interaction is
used, then one cannot make either Xrms or XM

rms smaller than 0.2. Xrms in the
non-stretched case is rather flat as a function of g2 and the minimum occurs at
d = 12 (MeV) and g2 = 0 (no quadrupole-pairing). XM

rms in the non-stretched
case takes the minimum at small quadrupole-pairing, d = 12 (MeV) and g2 = 2.
Both Xrms and XM

rms are flat as a function of g2 also in the single-stretched case,
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Fig. 1. Root-mean-square deviations of neutron even-odd mass differences and moments of inertia,

calculated by using the non-stretched (left), single-stretched (middle), and double-stretched

(right) residual quadrupole-pairing interactions. The upper panels show the results for Xrms

and the lower panels for XM
rms, see Eqs. (2.12) and (2.13). They are calculated as functions of

the two parameters d and g2. Each curve is drawn with a fixed value of d (MeV), which is

attached near the curve, as a function of g2.

and take the minimum at d = 12 (MeV) and g2 = 16. In contrast, the double-
stretched interaction gives well developed minima for both Xrms and XM

rms. These
results clearly show that one has to use the double-stretched quadrupole-pairing
interaction. It should be mentioned that the importance of the double-stretched
quadrupole-pairing interaction has been recently recognized in somewhat different
contexts in Refs. 27)–30), and by a similar investigation in Ref. 31).

One may wonder why the non- and single-stretched interactions do not essen-
tially improve the root-mean-square deviations. The quadrupole-pairing interaction
affects E(e-o)

ν and J0 in two ways: One is the static (mean-field) effect through the
change of static pairing potential (2.5), and the other is a dynamical effect (higher
order than the mean-field approximation) and typically appears as the Migdal term
in the Thouless-Valatin moment of inertia (c.f. Eqs. (3.73) and (3.74)). The former
effect can be estimated by the averaged pairing gap,

∆ =
∑
i

∆ii /
∑
i

1 = ∆00 +
∑
K

∆2K

∑
i

p2K(ii) /
∑
i

1, (2.14)

where the summation is taken over the Nilsson basis states i included in the pairing
model space. Stronger quadrupole-pairing interaction results in larger ∆, which leads
to the increase of even-odd mass difference on one hand and the reduction of moment
of inertia on the other hand. The Migdal term coming from the K = 1 component of
the quadrupole-pairing interaction makes the moment of inertia larger when the force
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Fig. 2. Pairing gaps (upper panels) and moments of inertia (lower panels), calculated by using the

non-stretched (left), single-stretched (middle), and double-stretched (right) residual quadrupole-

pairing interactions. Average pairing gaps ∆ and monopole-pairing gaps ∆00 (MeV), see

Eq. (2.14), are displayed by solid and dashed curves, respectively, in the upper panels, while

Thouless-Valatin and Belyaev moments of inertia (h̄2/MeV) (c.f. Eq. (3.73)) are displayed as

solid and dashed curves, respectively, in the lower panels. They are calculated as functions of the

two parameters d and g2. Each curve is drawn with a fixed value of d (MeV), which is attached

near the curve and changed by step of 1 MeV, as a function of g2. The calculation has been done

for a typical deformed nucleus, 168Yb, with deformation parameters (ε2, ε4) = (0.2570, 0.0162).

strength is increased. Therefore, the moment of inertia either increases or decreases
as a function of force strength, depending on which effect is stronger. In Fig. 2, we
show the energy gap and the moment of inertia for a typical rare-earth deformed
nuclei 168Yb as functions of the two parameters d and g2 in parallel with Fig. 1.
One can see that the average as well as monopole-pairing gaps increases rapidly as a
function of the quadrupole-pairing strength if the non-stretched interaction is used.
This static effect is so strong that the Thouless-Valatin moment of inertia decreases.
In the case of the single-stretched case, similar trend is observed for the pairing
gap, though it is not so dramatic as in the case of non-stretched interaction. The
static effect almost cancels out the dynamical effect and then the Thouless-Valatin
moment of inertia stays almost constant against g2 in this case. On the other hand,
if one uses the double-stretched interaction, the pairing gap stays almost constant
as a function of g2. This is because 〈P2K〉 ≈ 0 holds in a very good approximation,
which is in parallel with the fact that the quadrupole equilibrium shape satisfies the
selfconsistent condition, 〈Q2K〉 = 0, for the double-stretched quadrupole operator.
Thus the effect of the double-stretched quadrupole-pairing interaction plays a similar
role as the particle-hole interaction channel; it acts as a residual interaction and does
not contribute to the static mean-field.
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2.4. Results of calculation

It has been found in the previous subsection that the double-stretched form of
the quadrupole-pairing interaction with parameters d = 14 MeV and g2 = 30 gives
the best fitting for the even-odd mass differences and the moments of inertia in
the rare-earth region. Resulting root-mean-square deviations are Xrms(E

(e-o)
ν , J0) =

(0.115, 0.136). If one uses (d, g2) = (13, 28) or (12, 20), as examples, those quantities
become Xrms(E

(e-o)
ν , J0) = (0.154, 0.127) or (0.235, 0.121), respectively. Therefore,

making the two quantities smaller is complementary as discussed in §2.3.
We compare the results of calculation with experimental data in Fig. 3 as func-

tions of neutron number. In this calculation the results of Sm (Z = 62), Os (Z = 76)
and Pt (Z = 78) isotopes are also included, which are not taken into account in the
fitting procedure. As is clear from the figure, both even-odd mass differences and
moments of inertia are not well reproduced in heavy Os and Pt isotopes; especially
even-odd mass differences are underestimated by about 20%, and moments of iner-
tia overestimated by about up to 50% in Pt nuclei with N >∼ 100. In these nuclei,
low-lying spectra suggest that they are γ-unstable, and therefore correlations in the
γ degrees of freedom are expected to play an important role. Except for these nuclei,
the overall agreements have been achieved, particularly for deformed nuclei with N ≈

Fig. 3. Comparison of calculated even-odd mass differences (left panels, in MeV) and moments of

inertia (right panels, in h̄2/MeV) with experimental data for nuclei in the rare-earth region.

Experimental data are displayed in the upper panels while the calculated ones in the lower

panels. Isotopes with Z = 62–78 are connected by solid (Z = 0 mod 4) or dashed (Z = 2

mod 4) curves as functions of neutron number N . The double-stretched quadrupole-pairing

interaction is used with parameters d = 14 MeV and g2 = 30.
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Fig. 4. Even-odd mass differences (left panels) and moments of inertia (right panels) for Z =64–74

isotopes, calculated by using the single- and non-stretched quadrupole-pairing interactions. The

panels from top to bottom show the results of the single-stretched cases with parameters (d = 11

MeV, g2 = 18) and (d = 12 MeV, g2 = 16), and of the non-stretched cases with parameters

(d = 11 MeV, g2 = 5) and (d = 12 MeV, g2 = 0), respectively.
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90–100. It is, however, noted that some features seen in experimental data are not
reproduced in the calculation: (1) The maximum at N = 90 and the minimum at
N = 106 or 110 in the even-odd mass difference are shifted to N = 92 and N = 108,
respectively. This is because details of the neutron single-particle level spacings in
the present Nilsson potential are slightly inadequate. (2) The proton number de-
pendences of both the even-odd mass difference and the moment of inertia are too
weak: curves of both quantities bunch more strongly in the calculation. This trend
is clearer in light Z nuclei, Z ≤ 68, for example, Gd or Dy; the even-odd mass dif-
ference in these isotopes decreases more slowly as a function of neutron number in
the calculation, which results in the slower increase of the moment of inertia. This
problem suggests that some neutron-proton correlations might be necessary.

For comparison’s sake, results obtained by using the quadrupole-pairing inter-
actions of the single-stretched and the non-stretched types are displayed in Fig. 4.
In the calculation of the single-stretched case, the values of the two parameters,
d = 11 MeV and g2 = 18, are employed, resulting Xrms(E

(e-o)
ν , J0) = (0.240, 0.170),

in one case, and the values d = 12 MeV and g2 = 16, resulting Xrms(E
(e-o)
ν , J0) =

(0.192, 0.214), in another case. Comparing with the experimental data in Fig. 3,
the decrease of even-odd mass difference with neutron number is too strong, while
the increase of moment of inertia near N ≈ 90 is too slow. In the calculation of
non-stretched case, the values of the two parameters, d = 11 MeV and g2 = 5 are
employed, resulting Xrms(E

(e-o)
ν , J0) = (0.257, 0.237), in one case, and the values

d = 12 MeV and g2 = 0, resulting Xrms(E
(e-o)
ν , J0) = (0.265, 0.204), in another

case. The average values of the even-odd mass difference are considerably smaller
and those of the moment of inertia are 20–30% smaller compared to the experimen-
tal data. Note that the last case (d = 12 MeV and g2 = 0) is nothing but the
calculation without the quadrupole-pairing interaction. The trend of weak proton
number dependence does not change for all three forms of the quadrupole-pairing
interaction.

The merit of the Nilsson-Strutinsky method is that a global calculation is pos-
sible once the mean-field potential is given. We have then performed the calculation
for nuclei in the actinide region with the same pairing interaction and parameters as
in the rare-earth region, i.e., the double-stretched quadrupole-pairing with d = 14
MeV and g2 = 30. The result is shown in Fig. 5. Nuclei in the light actinide region
are spherical or weakly deformed with possible octupole deformations. The exper-
imental moments of inertia suggest that nucleus in this region begins to deform at
N ≈ 134, and gradually increases the deformation until a rather stable deformation
is established at N >∼ 140. In the nuclei with Z = 88 and 90, the neutron number at
which the deformation starts to grow is too large in the calculation, and the even-
odd mass differences take considerably different behaviour from the experimental
data. This disagreement possibly suggests the importance of octupole correlations.
Except for these deficiencies, both even-odd mass differences and moments of inertia
in heavy well-deformed nuclei are very well reproduced in the calculation. It should
be emphasized that the parameters fixed in §2.3 for the rare-earth region are equally
well applicable for the actinide region.
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Fig. 5. Same as Fig. 3, but for nuclei in the actinide region. Isotopes with Z = 88–100 are connected

by solid (Z = 0 mod 4) or dashed (Z = 2 mod 4) curves as functions of neutron number N .

§3. SCC method for constructing diabatic rotational bands

The SCC method 10) is a theory aiming at a microscopic description of large
amplitude collective motions in nuclei. The rotational motion is one of the most
typical large amplitude motions. Therefore it is natural to apply the SCC method
to the nuclear collective rotation. In Ref. 40), this line has been put into practice for
the first time in order to obtain the diabatic rotational bands, where the interband
interaction associated with the quasiparticle alignments is eliminated. It has also
been shown that the equation of path in the SCC method leads to the selfconsistent
cranking model in the case of rotational motion. Corresponding to the uniform
rotation about one of the principal axes of nuclear deformation, the one-dimensional
rotation has been considered as in the usual cranking model. We keep this basic
feature in the present work.

More complete formulation and its application to the ground state rotational
bands (g-bands) in realistic nuclei have been done in Ref. 41), followed by further
applications to the Stockholm bands (s-bands) 42) and improved calculations with
including the quadrupole-pairing interaction. 43) In these works the basic equations
of the SCC method have been solved in terms of the angular momentum expansion
(I-expansion). Thus, the A and B parameters in the rotational energy expansion,
E(I) = AI(I + 1) + B [I(I + 1)]2, have been studied in detail. It is, however, well
known that applicability of the I-expansion is limited to relatively low-spin regions.
This limitation is especially severe in the case of the s-bands: One has to take the
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starting angular momentum I0 (≈ 10h̄ 42)) and the expansion in terms of (I − I0) is
not very stable. Because of this problem comparisons with experimental data have
not been possible for the s-bands. 42) In the present study, the rotational frequency
expansion is utilized instead, according to the original work. 40) Then the diabatic
cranking model is naturally derived. Thus, after obtaining the diabatic quasiparticle
states, we construct the s-band as the two-quasiparticle aligned band on the vacuum
g-band at given rotation frequencies. This is precisely the method of the cranked
shell model, 44) which has been established as a powerful method to understand the
high-spin rotational bands accompanying quasiparticle excitations.

Another important difference of the present work from Refs. 41) -43) is that the
expansion method based on the normal modes of the random phase approximation
(RPA) is used for solving the basic equations in these references. The method is
very convenient to investigate detailed contents of the rotation-vibration couplings,
e.g. how each normal mode contributes to the rotational A and/or B parameters,
as has been discussed in Refs. 41) and 42). On the other hand, we are aiming at
a systematic study of rotational spectra of both g- and s-bands in the rare-earth
region. Then the use of the RPA response-function matrix is more efficient for such
a purpose, because it is not necessary to solve the RPA equation for all the normal
modes explicitly.

It has to be mentioned that the problem of nucleon number conservation, i.e.,
the pairing rotation, can be treated similarly. 45) Actually, if the SCC method is
applied to the spatial rotational motion, the mean value of the nucleon number
changes as the angular momentum or the rotational frequency increases. A proper
treatment of the pairing rotations is required, i.e., the coupling of the spatial and
pairing rotations should be included. 45) However, it has been found 41) that the
effect of the coupling is negligibly small for the case of the rotational motion in well
deformed nuclei. Therefore, we simply neglect the proper treatment of the nucleon
number in the following.

Although it is not the purpose of this paper to review applications of the SCC
method to other nuclear structure phenomena, we would here like to cite a brief re-
view 46) and some papers, in which low-frequency quadrupole vibrations are analyzed
on the basis of the SCC method: anharmonic gamma vibrations, 47) - 49) shape phase
transitions in Sm isotopes, 50) - 52) anharmonicities of the two-phonon states in Ru
and Se isotopes, 53) single-particle levels and configurations in the shape phase tran-
sition regions, 54) and a derivation of the Bohr-Mottelson type collective Hamiltonian
and its application to transitional Sm isotopes. 55)

3.1. Basic formulation

The starting point of the SCC method is the following time-dependent Hartree-
Bogoliubov (TDHB) mean-field state

|φ(θ, Ix)〉 = W (θ, Ix)|φ0〉, (3.1)

which is parametrized by the time-dependent collective variables θ(t) and Ix(t)
through the unitary transformation W (θ, Ix) from the ground (non-rotating) state
|φ0〉. In the case of rotational motion, Ix corresponds to the angular momentum
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about the rotating axis x, which is a conserved quantity, and θ is the conjugate
angle variable around the x-axis. In order to guarantee the rotational invariance,
W (θ, Ix) has to be of the form

W (θ, Ix) = e−iθJxeiG(Ix), (3.2)

where Jx is the angular momentum operator about the x-axis, and G(Ix) is a one-
body Hermite operator by which the intrinsic state is specified:

|φ(θ, Ix)〉 = e−iθJx |φintr(Ix)〉, |φintr(Ix)〉 = eiG(Ix)|φ0〉. (3.3)

The generators of the unitary transformation W (θ, Ix) are defined by (∂W/∂q)W−1

for q = θ or Ix, and they have, from Eq. (3.2), the form

∂W

∂Ix
W−1 = e−iθJx

∂eiG(Ix)

∂Ix
e−iG(Ix)eiθJx ≡ iΘ(Ix), (3.4)

i
∂W

∂θ
W−1 = Jx. (3.5)

One of the basic equations of the SCC method is the canonical variable condi-
tions, 10) which declare that the introduced collective variables are canonical coor-
dinate and momentum. In the present case they are given as

〈φ(θ, Ix)|iΘ(Ix)|φ(θ, Ix)〉 = 0, (3.6)
〈φ(θ, Ix)|Jx|φ(θ, Ix)〉 = Ix, (3.7)

and from which the weak canonical variable condition is derived:

〈φ(θ, Ix)| [Jx, iΘ(Ix)] |φ(θ, Ix)〉 = 1. (3.8)

The other basic equations, the canonical equations of motion for the collective vari-
ables and the equation of path, are derived by the TDHB variational principle,∗)

δ〈φ(θ, Ix)|
(
H − i

d

dt

)
|φ(θ, Ix)〉 = 0, (3.9)

or by using the generators, Eqs. (3.4) and (3.5),

〈φ(θ, Ix)| [O, H − θ̇Jx + İxΘ(Ix) ] |φ(θ, Ix)〉 = 0, (3.10)

where O is an arbitrary one-body operator. Taking the generators as O and using the
canonical variable conditions, Eqs. (3.6)–(3.8), one obtains the canonical equations
of motion:

θ̇ =
∂H
∂Ix

= ωrot(Ix), (3.11)

İx = −∂H
∂θ

= 0, (3.12)

∗) In this subsection h̄ = 1 unit is used.
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with
H(Ix) ≡ 〈φ(θ, Ix)|H |φ(θ, Ix)〉 = 〈φintr(Ix)|H |φintr(Ix)〉, (3.13)

where the rotational invariance of the Hamiltonian, [H, Jx] = 0, is used. Equa-
tion (3.12) is nothing else than the angular momentum conservation, and Eq. (3.11)
tells us that the rotational frequency is constant, i.e., the uniform rotation. Making
use of these equations of motion, the variational principle reduces to the equation of
path

δ〈φintr(Ix)|H − ωrot(Ix)Jx |φintr(Ix)〉 = 0, (3.14)

namely it leads precisely to the cranking model. The remaining task is to solve
this equation to obtain the operator iG(Ix) under the canonical variable conditions,
which are now rewritten as

〈φintr(Ix)|C(Ix)|φintr(Ix)〉 = 0, C(Ix) ≡ ∂eiG(Ix)

∂Ix
e−iG(Ix), (3.15)

〈φintr(Ix)|Jx|φintr(Ix)〉 = Ix. (3.16)

In Ref. 41), Eqs. (3.14)–(3.16) are solved by means of the power series expansion
method with respect to Ix, which gives the functional form of the rotational frequency
ωrot(Ix). It is, however, well known that the convergence radius of the power series
expansion with respect to ωrot is much larger, so that the applicability of the method
can be enlarged. 33) Thus, the independent variable is changed to be ωrot instead
of Ix in the equations above. In the following, we write the rotational frequency as
ω in place of ωrot for making the notation simpler. Now the basic equations can be
rewritten as

δ〈φintr(ω)|H − ωJx|φintr(ω)〉 = 0, (3.17)

〈φintr(ω)|C(ω)|φintr(ω)〉 = 0, C(ω) ≡ ∂eiG(ω)

∂ω
e−iG(ω), (3.18)

〈φintr(ω)|Jx|φintr(ω)〉 = Ix(ω). (3.19)

Note that the last equation is not the constraint now, but it just gives the functional
form of the angular momentum Ix in terms of ω. The first two equations, Eqs. (3.17)
and (3.18), are enough to get iG(ω), which makes the calculation simpler. The
equation of motion is transformed to the canonical relation

∂H′

∂ω
= −Ix(ω), (3.20)

with the total Routhian in the rotating frame

H′(ω) ≡ 〈φintr(ω)|H − ωJx|φintr(ω)〉. (3.21)

In order to show this, we note the following identity,

∂〈φintr(ω)|O|φintr(ω)〉
∂ω

= 〈φintr(ω)| [O, C(ω)] |φintr(ω)〉, (3.22)
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for an arbitrary ω-independent one-body operator O. Then,

∂H′

∂ω
= 〈φintr(ω)| [H − ωJx, C(ω)] |φintr(ω)〉 − 〈φintr(ω)|Jx|φintr(ω)〉, (3.23)

which lead to Eq. (3.20) because the first term on the right-hand side vanishes due
to the variational equation (3.17).

The one-body operator iG(ω) generates the unitary transformation from the
non-rotating (ground) state |φ0〉, see Eq. (3.3), and it is composed of the a†ia

†
j and ajai

terms, where a†i and ai are the creation and annihilation operators of the quasiparticle
state i with respect to the ground state |φ0〉 as a vacuum state. The solution of the
basic equations is obtained in the form of power series expansion

iG(ω) =
∞∑
n=1

iG(n)(ω), (3.24)

with
iG(n)(ω) = ωn

{∑
i<j

g(n)(ij) a†ia
†
j − h.c.

}
. (3.25)

It is convenient to introduce a notation for the transformed operator, which is also
expanded in power series of ω,

◦
O(ω) ≡ e−iG(ω) O eiG(ω) ≡

∞∑
n=0

◦
O

(n)(ω), (3.26)

for which the following formula are useful;

e−iGOeiG =
∞∑
n=0

1
n!

[· · · [︸ ︷︷ ︸
n times

O, iG] · · · iG], (3.27)

and
◦
C(ω) = e−iG∂e

iG

∂ω
=

∞∑
n=0

1
(n + 1)!

[
· · ·
[

︸ ︷︷ ︸
n times

∂iG

∂ω
, iG

]
· · · iG

]
. (3.28)

Then the basic equations for solving iG(ω) in the n-th order in ω are

〈φ0| [ajai,
◦
H

(n) − ω
◦
Jx

(n−1)] |φ0〉 = 0, (3.29)

〈φ0|
◦
C

(n)|φ0〉 = 0, (3.30)

and the canonical relation is

∂H′(n+1)

∂ω
= −I(n)

x , or (n + 1)H′(n+1) = −ωI(n)
x , (3.31)

where the total Routhian and the expectation value of the angular momentum are
also expanded in power series,

H′(ω) =
∞∑
n=0

H′(n), Ix(ω) =
∞∑
n=1

I(n)
x . (3.32)
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The lowest order solution is easily determined: The n = 0 and 1 parts of
Eq. (3.30) are satisfied trivially, while the n = 1 part of Eq. (3.29) is written as

〈φ0| [ajai, [H, iG(1)] ] |φ0〉 = ω〈φ0| [ajai, Jx] |φ0〉, (3.33)

or
[H, iG(1)]RPA = ωJxRPA, (3.34)

where the subscript [ ]RPA means that only the RPA order term is retained; e.g.,
JxRPA = a†ia

†
j and ajai parts of Jx. This is the RPA equation, 39) with respect

to the ground state |φ0〉, for the angle operator iΘRPA conjugate to the symmetry
conserving mode JxRPA, and we obtain

iG(1) = ωJ0 iΘRPA, I(1)
x = ωJ0, (3.35)

where J0 is the Thouless-Valatin moment of inertia. Note that the general solution
of Eq. (3.33) contains a term iωcJJxRPA with cJ being an arbitrary real constant.
We have chosen cJ = 0 as a physical boundary condition, because Jx operator
generates the transformation from the intrinsic to the laboratory frame and should
be eliminated from the unitary transformation generating the intrinsic state, see
Eq. (3.3). Once the lowest order solution (n = 1) is obtained, higher order solutions
(n ≥ 2) can be uniquely determined by rewriting Eqs. (3.29) and (3.30) in the
following forms;

〈φ0| [ajai, [H, iG(n)] ] |φ0〉 = 〈φ0| [ajai, B(n)] |φ0〉, (3.36)

〈φ0| [iG(n), iΘRPA] |φ0〉 =
1

(n− 1)J0
〈φ0|D(n)|φ0〉, (3.37)

with

B(n) ≡ ◦
H

(n) − [H, iG(n)] − ω
◦
Jx

(n−1), (3.38)

D(n) ≡ ◦
C

(n) −
[
∂iG(n)

∂ω
, iG(1)

]
−
[
∂iG(1)

∂ω
, iG(n)

]
. (3.39)

Here B(n) and D(n) only contain iG(m) with m ≤ n− 1, and ∂iG(n)/∂ω = n iG(n)/ω
and Eq. (3.35) are used. Equation (3.36) has the same structure as Eq. (3.33)
or (3.34) and is an inhomogeneous linear equation for the amplitude g(n)(ij), where
the inhomogeneous term is determined by the lower order solutions (see §3.3 for
details).

As in the case of the first order equation, if iG(n) is expanded in terms of the
complete set of the RPA eigenmodes which is composed of the non-zero normal
modes and the zero mode (JxRPA, iΘRPA), the general solution of iG(n) contains the
term proportional to JxRPA, and it is determined by Eq. (3.37). Once the boundary
condition for iG(1) is chosen as above, however, the term proportional to JxRPA

should vanish. In order to show this, one has to note that matrix elements of the
Hamiltonian and of the angular momentum can be chosen to be real with respect to
the quasiparticle basis (a†i , ai) in a suitable phase convention, e.g., that of Ref. 32).
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Then the matrix elements of the RPA normal mode operators and the angle operator
iΘRPA are also real, and so are the matrix elements of iG(1). If iG(n) is expanded in
terms of the RPA eigenmodes, the imaginary part of its matrix elements arises only
from the term proportional to JxRPA because iG(n) is anti-Hermite while JxRPA is
Hermite. If we assume that iG(m) with m ≤ n − 1 has no JxRPA term so that its
matrix elements are real, then the right-hand side of Eq. (3.37) vanishes, because
D(n) is an anti-Hermite operator with real matrix elements composed of iG(m) with
m ≤ n − 1. Therefore, iG(n) neither contains the JxRPA term. Thus, the fact that
the operator iG has no JxRPA term is proved by induction. The situation is exactly
the same for the case of gauge rotation; the NRPA term (N is either the neutron or
proton number operator) also does not appear in iG. The method to solve the above
basic equations for our case of the separable interaction (2.1) will be discussed in
detail in §3.3.

3.2. Diabatic quasiparticle states in the rotating frame

In the previous subsection the rotational motion based on the ground state |φ0〉
is considered in terms of the SCC method. The same treatment can be done for
one-quasiparticle states. The one-quasiparticle state is written in the most general
form as

|φ1-q.p.(ω)〉 = eiG(ω)
∑
i

fi(ω)a†i |φ0〉, (3.40)

where iG(ω) as well as the amplitudes fi(ω) are determined by the TDHB variational
principle. Generally iG(ω) for the one-quasiparticle state is not the same as that
of the ground state rotational band because of the blocking effect. However, we
neglect this effect and use the same iG(ω) in the present work following the idea of
the independent quasiparticle motion in the rotating frame. 44) Then by taking the
variation

δ

[
〈φ1-q.p.(ω)|H − ωJx|φ1-q.p.(ω)〉

〈φ1-q.p.(ω)|φ1-q.p.(ω)〉

]
= 0 (3.41)

with respect to the amplitudes fi, one obtains an eigenvalue equation,∑
j

ε′ij(ω)fjµ(ω) = fiµ(ω)E′
µ(ω), (3.42)

with

ε′ij(ω) = 〈φ0|ai
( ◦
H(ω) − ω

◦
Jx(ω)

)
a†j |φ0〉. (3.43)

Namely the excitation energy E′
µ(ω) and the amplitudes fiµ(ω) of the rotating quasi-

particle state µ are obtained by diagonalizing the cranked quasiparticle Hamiltonian
defined by

◦
h
′(ω) ≡ one-body part of [e−iG(ω)(H − ωJx) eiG(ω)]

=
∑
ij

ε′ij(ω) a†iaj , (3.44)
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where, due to the equation of path, Eq. (3.17) or (3.29),
◦
h
′(ω) has no a†a† and aa

terms. Introducing the quasiparticle operator in the rotating frame,

α†
µ(ω) = eiG(ω)

∑
i

fiµ(ω)a†i e
−iG(ω), (3.45)

we can see that the one-quasiparticle state (3.40) is written as

|φ1-q.p.(ω)〉 = α†
µ(ω)|φintr(ω)〉, (3.46)

and

h′(ω) ≡ one-body part of (H − ωJx)

=
∑
µ

E′
µ(ω)α†

µ(ω)αµ(ω). (3.47)

Namely, the quasiparticle states in the rotating frame are nothing but those given
in the selfconsistent cranking model. Thus, if H contains residual interactions, the
effects of change of the mean-field are automatically included in the quasiparticle
Routhian operator (3.44) in contrast to the simple cranked shell model where the
mean-field parameters are fixed at ω = 0.

It is crucially important to notice that the cutoff of the power series expansion
in evaluating Eq. (3.44) results in the diabatic quasiparticle states; i.e., the positive
and negative quasiparticle solutions do not interact with each other as functions of
the rotational frequency. This surprising fact has been found in Ref. 40) and utilized
in subsequent various applications to the problem of high-spin spectroscopy; see e.g.,
Ref. 56). Thus, we use

[
◦
h
′(ω)](n≤nmax) =

∑
ij

(nmax∑
n=0

ωnε
′(n)
ij

)
a†iaj , (3.48)

with
ε
′(n)
ij ≡ 〈φ0|ai

( ◦
H

(n) − ω
◦
Jx

(n−1)
)
a†j |φ0〉/ωn, (3.49)

as a diabatic quasiparticle Routhian operator. If we take nmax = 1 and use the
solution (3.35), the first order Routhian operator is explicitly written as

[
◦
h
′(ω)](n≤1) = h− ω(Jx − JxRPA), (3.50)

with h ≡ one-body part of H. This Hamiltonian was used to construct a diabatic
quasiparticle basis in Ref. 57) to study the g-s band crossing problem. We will show
in §3.4 that the inclusion of higher order terms improves the quasiparticle Routhian
in comparison with experimental data.

In order to study properties of one-body observables in the rotating frame, for
example, the aligned angular momenta of quasiparticles, an arbitrary one-body op-
erator O has to be expressed in terms of the diabatic quasiparticle basis (3.45);

O = eiG(ω) ◦
O(ω)e−iG(ω)
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= 〈φintr(ω)|O|φintr(ω)〉 +
∑
µν

OB(µν;ω)α†
µαν

+
∑
µ<ν

(
OA+(µν;ω)α†

µα
†
ν + OA−(µν;ω)αναµ

)
, (3.51)

where the matrix elements are written as

OB(µν;ω) =
∑
ij

f∗
iµ(ω)fjν(ω)〈φ0| ai

(nmax∑
n=0

◦
O

(n)(ω)
)
a†j |φ0〉, (3.52)

OA+(µν;ω) =
∑
ij

f∗
iµ(ω)f∗

jν(ω)〈φ0|
[
ajai,

(nmax∑
n=0

◦
O

(n)(ω)
)]

|φ0〉, (3.53)

OA−(µν;ω) =
∑
ij

fiµ(ω)fjν(ω)〈φ0|
[(nmax∑

n=0

◦
O

(n)(ω)
)
, a†ia

†
j

]
|φ0〉. (3.54)

It is clear from this expression that there are two origins of the ω-dependence of the
matrix elements; one is the effect of collective rotation, Eq. (3.26), which is treated
in the power series expansion in ω and truncated up to nmax, and the other comes
from the diagonalization of the quasiparticle Routhian operator, Eq. (3.42). Our
method to calculate the rotating quasiparticle states can be viewed as a two-step
diagonalization; the first step is the unitary transformation eiG(ω), which eliminates
the dangerous terms, the a†a† and aa terms, of the Routhian operator

◦
h
′ up to the

order nmax in ω leading to the diabatic basis, while the second step diagonalizes
its one-body part, the a†a terms. We shall discuss this two-step transformation in
more detail in §4.1. In this way we can cleanly separate the effects of the collec-
tive rotational motion on the intrinsic states of the g-band and on the independent
quasiparticle motion in the rotating frame. As long as the one-step diagonalization
is performed as in the case of the usual cranking model, this separation cannot be
achieved and the problem of the unphysical interband mixing is inevitable.

3.3. Solution of the equation of path by means of the RPA response function

Now we present a concrete procedure to solve the equation of path, Eq. (3.17), for
our Hamiltonian which is composed of the Nilsson single-particle potential and the
multi-component separable interaction (2.1). Let us rewrite our total Hamiltonian
in the following form:

H = h− 1
2

∑
ρ

χρQρQρ, (3.55)

where Qρ are Hermite operators satisfying

Qρ = Q†
ρ, 〈φ0|Qρ|φ0〉 = 0, (3.56)
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and |φ0〉 is the HB ground state of H.∗) The mean-field Hamiltonian h includes the
pairing potential and the number constraint term as well as the Nilsson Hamiltonians:

h = hNils −
∑
τ

∑
L=0,2

∆L0τ

(
P τ†
L0 + P τ

L0

)
−
∑
τ

λτNτ , (3.57)

where the nuclei under consideration are assumed to be axially symmetric at ω = 0.
Our Hamiltonian has a symmetry with respect to the 180◦-rotation around the
rotation-axis (x-axis), the quantum number of which is called signature, r = e−iα;
therefore the operators Qρ are classified according to the signature quantum num-
bers, 7) r = ±1 or α = 0, 1. Moreover, we can choose the phase convention 32) in such
a way that the matrix elements of the Hamiltonians H and of the angular momentum
Jx are real. Then the operators Qρ are further classified into two categories, i.e.,
real and imaginary operators, whose matrix elements are real and pure imaginary,
respectively. Since expectation values of the signature r = −1 (α = 1) operators and
of the imaginary operators vanish in the cranking model, operators with signature
r = +1 and real matrix elements only contribute to the equation of path for the
collective rotation. This observation is important. As shown at the end of §3.1, the
boundary condition (3.35) for the collective rotation leads that the transformation
operator iG(ω) does not contain the JxRPA part in all orders. Absence of the imagi-
nary operators guarantees that the matrix elements of iG(ω) are real and Eq. (3.18)
is automatically satisfied: We need not use this equation anymore.

Thus, the operators that are to be included in Eq. (3.55) in order to solve the
basic equations for iG(ω) are

{Qρ} = P τ
00+, P

(+)τ
20+ , P

(+)τ
21+ , P

(+)τ
22+ , Q

(+)
20 , Q

(+)
22 , (3.58)

and correspondingly the strengths are

{χρ} = Gτ
0/2, Gτ

2/2, Gτ
2/2, Gτ

2/2, κ20, κ22, (3.59)

where τ = ν, π distinguishes the neutron and proton operators. Here the following
definitions are used; for the pairing operators,

P00+ = P †
00 + P00, P00− = i

(
P †

00 − P00

)
,

P
(±)
2K+ = P

(±)†
2K + P

(±)
2K , P

(±)
2K− = i

(
P

(±)†
2K − P

(±)
2K

)
, (3.60)

and for signature coupled operators,

P
(±)
2K =

1√
1 + δK0

(
:P2K : ± :P2−K :

)
, (K ≥ 0)

Q
(±)
2K =

1√
1 + δK0

(
:Q2K : ± :Q2−K :

)
, (K ≥ 0) (3.61)

∗) We employ the HB approximation, i.e., do not include the exchange terms of the separable

interactions throughout this paper.
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where the superscript (±) denotes the signature r = ±1, and :O: ≡ O − 〈φ0|O|φ0〉.
The quasiparticle creation and annihilation operators should also be classified ac-
cording to the signature quantum number; a†i for r = +i (α = −1/2) and a†

ī
for

r = −i (α = +1/2). Then the mean-field Hamiltonian h is expressed in terms of
them as

h =
∑
i>0

(
Eia

†
iai + Eīa

†
ī
aī

)
, (3.62)

where
∑

i>0 means that only half of the single-particle levels has to be summed
corresponding to the signature classification, and the quasiparticle energy at ω = 0
satisfies Ei = Eī. In the same way, Qρ are written as

Qρ =
∑
ij>0

qAρ (ij) (a†ia
†
j̄

+ aj̄ai) +
∑
ij>0

(
qBρ (ij) a†iaj + q̄Bρ (ij) a†

ī
aj̄

)
, (3.63)

where the matrix elements satisfy, at ω = 0, qAρ (ji) = ±qAρ (ij) and qBρ (ij) = ± qBρ (ij)
for Qρ with the time-reversal property being ±, if the phase convention of Ref. 32)
is used.

Now let us consider the method to solve the equations for iG(ω). As is already
discussed in §3.1, the solution is sought in the form of power series expansion in ω,
where the n-th order term iG(n) is written as

iG(n) = ωn
∑
ij>0

g(n)(ij) (a†ia
†
j̄
− aj̄ai). (3.64)

The n-th order equation (3.36) has the structure of an inhomogeneous linear equation
for the amplitudes g(n)(ij),

K

(
g(n)

−g(n)

)
=

(
b(n)

−b(n)

)
, (3.65)

where K is the RPA energy matrix

K (ij; kl) =

(
A(ij; kl) B(ij; kl)
B∗(ij; kl) A∗(ij; kl)

)

=

( 〈φ0| [aj̄ai, [H, a†ka
†
l̄
] ] |φ0〉 〈φ0| [aj̄ai, [H, al̄ak] ] |φ0〉

〈φ0| [a†ia†j̄ , [H, a†ka
†
l̄
] ] |φ0〉 〈φ0| [a†ia†j̄ , [H, al̄ak] ] |φ0〉

)
, (3.66)

and the amplitudes b(n)(ij) in the inhomogeneous term are defined by

a†a† and aaparts of B(n) = ωn
∑
ij>0

b(n)(ij) (a†ia
†
j̄

+ aj̄ai). (3.67)

For the first order n = 1, B(1) = ωJxRPA and Eq. (3.65) determines the RPA an-
gle operator iΘRPA, as discussed in §3.1. Since the part of interaction composed of
the imaginary operators, e.g. P00−, P20− and Q

(+)
21 , etc., which are related to the

symmetry recovering mode JxRPA (and NRPA) are not included, the RPA matrix K
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(with signature r = +1) has no zero-modes and can be inverted without any prob-
lem. However, the dimension of the RPA matrix is not small in realistic situations,
and therefore we invoke the merit of separable interactions; by using the response-
function matrix for the Qρ operators, the inversion of the RPA matrix is reduced to
the inversion of the response-function matrix itself whose dimension is much smaller.
Inserting the Hamiltonian (3.55) into Eq. (3.36), we obtain

(Ei + Ej̄)g
(n)(ij) −

∑
ρ

qAρ (ij)χρQ(n)
ρ = b(n)(ij), (3.68)

where
Q(n)

ρ ≡ 〈φ0| [Qρ, iG
(n)] |φ0〉/ωn = 2

∑
ij>0

qAρ (ij)g(n)(ij). (3.69)

Then inhomogeneous linear equations for Q(n)
ρ can be easily derived as∑

σ

(δρσ −Rρσχσ)Q(n)
σ = B(n)

ρ , (3.70)

where

Rρσ ≡ 2
∑
ij>0

qAρ (ij)qAσ (ij)
Ei + Ej̄

, B(n)
ρ ≡ 2

∑
ij>0

b(n)(ij)qAρ (ij)
Ei + Ej̄

. (3.71)

Note that Rρσ are the response functions for operators Qρ and Qσ at zero excitation
energy, and nothing but the inverse energy weighted sum rule values (polarizability).
Equation (3.70) is much more easily solved than Eq. (3.65) because of the huge
reduction of dimension, and we obtain

g(n)(ij) =
1

Ei + Ej̄

{∑
ρσ

qAρ (ij)χρ[ (1 −Rχ)−1]ρσB(n)
σ + b(n)(ij)

}
, (3.72)

where the matrix notations are used for R = (Rρσ) and χ = (δρσχρ). Apparently
the n = 1 solution gives the Thouless-Valtin moment of inertia,

J0 = JTV = JBely + JMig, JBely = 2
∑
ij>0

JA
x (ij)JA

x (ij)
Ei + Ej̄

, (3.73)

and

JMig =
∑
ρσ

BJ
ρ χρ[ (1 −Rχ)−1]ρσBJ

σ , with BJ
ρ ≡ 2

∑
ij>0

JA
x (ij)qAρ (ij)
Ei + Ej̄

, (3.74)

where JA
x (ij) denote the a†a† and aa parts of Jx, and the summation (ρ, σ) in

Eq. (3.74) runs, at ω = 0, only over ρ, σ = P
(+)τ
21+ , namely the K = 1 quadrupole-

pairing component. Once the perturbative solution of iG(ω) is obtained, the quasi-
particle energy can be calculated by diagonalizing

◦
h
′(ω) =

∑
ij>0

(
ε′ij (ω)a†iaj + ε̄′ij (ω)a†

ī
aj̄

)
, (3.75)
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and one obtains

h′(ω) =
∑
µ>0

(
E′
µ(ω)α†

µ(ω)αµ(ω) + E′
µ̄(ω)α†

µ̄(ω)αµ̄(ω)
)
, (3.76)

where the first and second terms in these two equations correspond to the quasipar-
ticle states with signature r = +i (α = −1/2) and r = −i (α = +1/2), respectively.

At the end of this subsection a few remarks are in order: First, although it is
assumed that the starting state |φ0〉 is the ground state at ω = 0, the formulation
developed above can be equally well applied also when the finite frequency state at
ω = ω0 is used as a starting state; i.e., |φ0〉 is determined by δ〈φ0|H − ω0Jx|φ0〉. In
such a case, however, the power series expansion should be performed with respect
to (ω−ω0). In fact, the method has been applied in Ref. 42) to describe the s-band
by taking the starting state as the lowest two-quasineutron state at finite frequency,
although the angular momentum expansion in (I − I0) is used in it. Second, as can
be inferred from the form of the n-th order solution (3.72), the ω-expansion is based
on the perturbation with respect to the quantity ω/(Ei + Ej) (or ω/ωλ(RPA), if
the equation is solved in terms of the RPA eigenmodes). Therefore, it is expected
that the convergence of the ω-expansion becomes poor when the average value of
the two-quasiparticle energies is reduced: It is the case for the situation of weak
pairing, or when one takes the starting state at a finite frequency where highly
alignable two-quasiparticle states have considerably smaller excitation energies. The
difficulty in the calculation of s-band in Ref. 42) is possibly caused by this problem.
Third, as mentioned already, the expectation value of the nucleon number is not
conserved along the rotational band. This is because the number operator Nτ does
not commute with iG(ω); namely, there exists a coupling between the spatial and the
pairing rotations. In order to achieve rigorous conservation of nucleon numbers, one
has to apply the SCC method also to the pairing rotational motion, 45) and combine
it to the present formalism. In view of such a more general formulation, the energy
in the rotating frame (3.21) calculated in the present method is actually the double
Routhian H′′(ω, λτ = λ0τ ), where λ0τ is the chemical potential fixed to conserve the
number at the ground state ω = 0. The ω-dependence of the expectation value of
number operator starts from the second order, and its coefficient is very small as
will be shown in §3.4. Therefore the effect of number non-conservation along the
rotational band is very small; this fact has been checked in Ref. 41) by explicitly
including the coupling to the pairing rotation. Finally, this method utilizing the
response-function matrix can be similarly applied to the case of the (η∗, η)-expansion
of the SCC method for problems of collective vibration. In such a case, a full RPA
response matrix (containing both real and imaginary operators) is necessary, and
one has to choose one of the RPA eigenenergies, to which the solution is continued
in the small amplitude limit, as the excitation energy of the response function.

3.4. Application to the g- and s- bands in rare-earth nuclei

We apply the formulation of the SCC method for the collective rotation de-
veloped in the previous subsections to even-even deformed nuclei in the rare-earth
region. In this calculation, the same Nilsson potential (the ls and ll parameters
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from Ref. 35)) is used as in §2, but the hexadecapole deformation is not included.
As investigated in Ref. 41), the couplings of collective rotation to the pairing vibra-
tions as well as the collective surface vibrations are important. Therefore the model
space composed of three oscillator shells, Nosc =4–6 for neutrons and Nosc =3–5 for
protons, are employed and all the ∆Nosc = 0,±2 matrix elements of the quadrupole
operators are included in the calculation. In order to describe the properties of de-
formed nuclei, the deformation parameter is one of the most important factors. The
Nilsson-Strutinsky calculation in §2 gives slightly smaller values compared with the
experimental data deduced from the measured B(E2, 2+

g → 0+
g ) values. Therefore,

we take the experimental values for the ε2 parameter from Ref. 58). There exist,
however, some cases where no experimental data are available. Then we take the
value obtained by extrapolation from available data according to the scaling of the
result of our Nilsson-Strutinsky calculation in §2; for example, ε2(154Dy) used is
ε2(154Dy)cal × ε2(156Dy)exp/ε2(156Dy)cal. The values adopted in the calculation are
listed in Table II.

The residual interaction is of the form given in Eq. (2.1), where the double-
stretched form factor is taken according to the discussion in §2. However, we cannot
use the same best values obtained in §2 for the strengths of the pairing interactions,
since the model space and the treatment of ∆Nosc = ±2 matrix elements of the

Table II. Summary of the calculated results and comparison with experimental data for nuclei in

the rare-earth region, Gd (Z = 64) to W (Z = 74). The deformation parameters ε2 are taken

from Ref. 58); superscript * denotes cases where no data is available and extrapolation based

on our calculation in §2 is employed. The Harris parameters J0 and J1 are given in units of

h̄2/MeV and h̄4/MeV3, respectively. The energy gaps ∆ are in units of MeV. The third order

even-odd mass differences based on the mass table of Ref. 36) are used as experimental pairing

gaps.

N ε2 J cal
0 J cal

1 J exp
0 J exp

1 ∆cal
ν ∆cal

π ∆exp
ν ∆exp

π

Gd 88 0.164 11.8 308 8.7 — 1.157 1.424 1.108 1.475

90 0.251 25.6 341 23.1 333 1.270 1.169 1.277 1.133

92 0.274 31.5 165 33.4 179 1.222 1.097 1.070 0.960

94 0.282 34.2 118 37.6 111 1.152 1.060 0.892 0.878

96 0.287 36.0 98 39.7 101 1.073 1.030 0.831 0.871

Dy 88 0.205∗ 17.4 134 9.0 — 1.187 1.261 1.177 1.472

90 0.242 24.3 223 20.1 348 1.233 1.138 1.269 1.162

92 0.261 29.4 178 29.9 184 1.196 1.073 1.077 1.033

94 0.271 32.7 136 34.3 123 1.128 1.033 0.967 0.978

96 0.270 34.3 120 37.0 93 1.050 1.013 0.917 0.930

98 0.275 36.8 117 40.7 98 0.970 0.984 0.832 0.875

Er 88 0.162∗ 12.2 110 8.7 — 1.105 1.321 1.213 1.396

90 0.204 18.6 112 13.0 281 1.153 1.188 1.277 1.244

92 0.245 26.2 154 23.1 196 1.165 1.075 1.138 1.137

94 0.258 30.3 130 29.0 133 1.105 1.031 1.078 1.091

96 0.269 33.5 104 32.6 93 1.028 0.995 1.035 0.987

98 0.272 35.8 108 37.1 105 0.951 0.971 0.966 0.877

100 0.271 36.4 103 37.5 57 0.919 0.953 0.776 0.857

102 0.268 35.4 76 38.1 59 0.907 0.938 0.708 0.797

(continued.)
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Table II.

N ε2 J cal
0 J cal

1 J exp
0 J exp

1 ∆cal
ν ∆cal

π ∆exp
ν ∆exp

π

Yb 90 0.172∗ 14.4 83 9.1 221 1.124 1.200 1.402 1.253

92 0.197∗ 18.9 119 16.6 204 1.136 1.128 1.168 1.180

94 0.218∗ 23.8 141 23.5 186 1.106 1.070 1.137 1.214

96 0.245∗ 30.1 119 29.0 131 1.024 1.012 1.159 1.111

98 0.258 33.6 111 34.0 127 0.950 0.981 1.039 0.983

100 0.262 34.9 108 35.5 83 0.915 0.959 0.865 0.908

102 0.267 34.5 75 38.0 70 0.889 0.938 0.764 0.840

104 0.259 33.4 70 39.1 64 0.862 0.926 0.685 0.848

106 0.250 32.3 93 36.4 55 0.847 0.918 0.585 0.815

Hf 92 0.163∗ 14.1 90 12.2 178 1.154 1.105 1.219 1.260

94 0.181∗ 17.8 129 17.7 196 1.148 1.057 1.175 1.285

96 0.207∗ 23.6 134 23.5 191 1.083 1.004 1.123 1.182

98 0.218∗ 27.0 122 29.3 194 1.032 0.976 1.022 1.062

100 0.227 29.5 116 31.2 131 0.986 0.952 0.953 0.988

102 0.235 30.6 94 32.7 110 0.935 0.932 0.901 0.915

104 0.245 31.4 74 33.8 88 0.867 0.915 0.811 0.864

106 0.227 29.2 99 32.1 65 0.867 0.903 0.693 0.824

108 0.227 26.9 100 32.1 40 0.898 0.887 0.745 0.856

W 92 0.148∗ 12.1 70 9.4 159 1.159 1.006 1.331 1.295

94 0.161∗ 14.6 100 13.2 182 1.169 0.968 1.201 1.142

96 0.179∗ 18.5 122 17.8 216 1.139 0.928 1.146 1.100

98 0.196∗ 22.6 118 23.4 255 1.082 0.899 1.046 1.053

100 0.206∗ 25.4 110 26.3 171 1.032 0.880 1.091 1.023

102 0.211∗ 26.7 99 27.1 134 0.985 0.865 0.931 1.027

104 0.214∗ 27.3 83 28.0 112 0.929 0.850 0.884 1.036

106 0.212 26.8 95 28.7 86 0.890 0.833 0.802 0.943

108 0.208 24.5 92 29.8 53 0.903 0.817 0.814 0.849

110 0.197 21.5 77 26.8 55 0.927 0.805 0.720 0.868

112 0.191 19.6 76 24.3 67 0.919 0.794 0.793 0.907

quadrupole operators are different. Here we use Gν
0 = 20/A MeV and Gπ

0 = 24/A
MeV for the monopole-pairing interaction, by which monopole-pairing gaps calcu-
lated with the use of the above model space roughly reproduce the experimental
even-odd mass differences (see Eq. (2.10), and note that an extra difference of the
constant “c” in it between neutrons and protons comes from the difference of the
model space). As for the double-stretched quadrupole-pairing interaction, we take
gν2 = gπ2 = 24 (see Eq. (2.9)), by which overall agreements are achieved for the mo-
ments of inertia. The results are summarized in Table II. Here calculated energy
gaps ∆ are the monopole-pairing gaps, but they are very similar to the average
pairing gaps (2.14) because the double-stretched quadrupole-pairing interaction is
used. The isoscalar (double-stretched) quadrupole interaction does not contribute
to the Thouless-Valatin moment of inertia J0, but affects the higher order Harris
parameter J1. We do not fit the strengths for each nucleus, but use κ2K = 1.45κself

2

(see Eq. (2.3)), which gives, on an average, about 1 MeV for the excitation energy of
γ-vibrations in the above model space. We believe that this choice is more suitable
to understand the systematic behavior of the result of calculation for nuclei in the
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rare-earth region.
One of the most important output quantities is the rotational energy parameters,

i.e., the Harris parameters, in our formalism of the ω-expansion. Up to the third
order,

Ix(ω) = I + 1/2 = J0 ω + J1 ω
3, (3.77)

where I = 0, 2, 4, · · · (h̄) for the K = 0 ground state bands. 44) The results are sum-
marized in Table II in comparison with experimental data, where the experimental
Harris parameters J0 and J1 are extracted from the E2+ and E4+ of the ground
state band as follows:

J0 =
1.5ω3

2 − 3.5ω3
1

ω1ω3
2 − ω3

1ω2
, J1 =

3.5ω1 − 1.5ω2

ω1ω3
2 − ω3

1ω2
, (3.78)

with
ω1 ≡ E2+/2, ω2 ≡ (E4+ − E2+)/2. (3.79)

If the resultant parameter becomes negative or J1 gets greater than 1000 h̄4/MeV3,
then only J0 = 3/E2+ parameters are shown in Table II. It is seen from the table
that two Harris parameters are nicely reproduced, especially their mass number de-
pendence. In contrast to the J0 parameter, for which only the residual quadrupole
pairing interaction affects, the J1 parameter are sensitive to all components of the
residual interaction. In other words, J1 reflects the mode-mode couplings of the col-
lective rotation to other elementary excitation modes. Therefore the SCC method
with the present residual interaction is considered to be a powerful means to de-
scribe the “non-adiabaticity” of nuclear collective rotations. Details of coupling
mechanism has been investigated in Ref. 41) by decomposing the contributions from
various RPA eigenmodes: It has been found that the couplings to the pairing vibra-
tions and collective surface vibrations are especially important. Although the main
contributions come from the collective modes, many RPA eigenmodes have to be
included to reach the correct results, see also Ref. 48) for this point. The method
of the response-function matrix described in §3.3 is very useful to include all RPA
eigenmodes.

Expectation values of other observable quantities are also expanded in power
series of ω, and their coefficients give us important information about the response
of nucleus against the collective rotation. In Table III we show examples for the
nucleon number, monopole-pairing gaps, and mass quadrupole moments:

〈φintr(ω)|Nτ |φintr(ω)〉 = (Nτ )0 + (Nτ )1 ω2, (3.80)
Gτ

0〈φintr(ω)|P τ
00|φintr(ω)〉 = (∆τ )0 + (∆τ )1 ω2, (3.81)

〈φintr(ω)|Q(+)
2K |φintr(ω)〉 = (Q(+)

2K )0 + (Q(+)
2K )1 ω2. (K = 0, 2) (3.82)

They are time-reversal even quantities so that the series contains up to the second
order within the third order calculations. It should be noticed that these ω-expanded
quantities are associated with the properties of the diabatic ground state band, which
becomes non-yrast after the g-s band-crossing. As remarked at the end of §3.3,
(Nτ )1 �= 0 means that the nucleon number is not conserved along the rotational
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Table III. Results of the ω-expansion for some observables in Er (Z = 68) isotopes. Q
(+)
2K (K = 0, 2)

are expectation values of the mass quadrupole operators. The zero-th order values of ∆ are

shown in Table II, and those of Q
(+)
22 are zero (axially symmetric at ω = 0). Units of each

quantity are shown in the second raw.

N (N)1 (Z)1 (∆ν)1 (∆π)1 (Q
(+)
20 )0 (Q

(+)
20 )1 (Q

(+)
22 )1

h̄2/MeV2 h̄2/MeV2 h̄2/MeV h̄2/MeV b b h̄2/MeV2 b h̄2/MeV2

Er 88 14.5 −4.2 −0.45 −1.81 2.84 6.14 4.58

90 9.9 −5.4 −0.72 −1.80 3.74 4.67 4.78

92 7.5 −6.3 −1.58 −1.83 4.71 4.52 5.72

94 3.6 −4.3 −2.12 −1.50 5.13 2.45 4.43

96 1.8 −3.1 −2.34 −1.33 5.50 1.31 3.70

98 1.0 −3.0 −2.83 −1.32 5.71 1.10 2.74

100 −2.6 −3.4 −2.83 −1.35 5.82 0.86 1.51

102 −3.5 −3.6 −2.34 −1.38 5.87 0.79 1.08

band. However, its breakdown is rather small; even in the worst case of 156Er in
Table III the deviation is about 1.3 at ω = 0.3 MeV, and it is less than 0.1 at ω = 0.1
MeV in 166Er. It is well known that the pairing gap decreases as a function of ω due
to the Coriolis anti-pairing effect. It is sometimes phenomenologically parametrized
as 59)

∆(ω) =


∆0

(
1 − 1

2

( ω
ωc

)2
)

ω ≤ ωc,

1
2
∆0

(ωc

ω

)2
ω > ωc.

(3.83)

Thus, our ω-expansion method precisely gives the phenomenological parameter ωc =√−∆0/2∆1 (∆1 < 0) in Eq. (3.83) from microscopic calculations. As shown in
Table III, (∆ν)1 varies considerably along the isotopic chain. The (Q2K)1 are related
to the shape change at high-spin states, and tell us how soft the nucleus is against
rapid rotation. Since nuclei studied in the present work are axially symmetric in
their ground states, (Q20)1 and (Q22)1 serve as measures of softness in the β- and γ-
directions, respectively. As seen in Table III the isotopes get harder in both directions
as the neutron number increases; especially, the N = 88 and N = 90 isotopes are
known to undergo a shape change from the prolate collective to the oblate non-
collective rotation scheme at very high-spin states (“band termination” 60)), while
heavier isotopes (N ≥ 96) are known to be well deformed keeping prolate shape
until the highest observed spins. These features have been well known from the
calculations of the potential energy surface in the (ε2, γ)-plane, and our results seem
to agree with them qualitatively. In order to see the effect of the residual interactions,
the result obtained by neglecting them, i.e., that of a simple higher order Coriolis
coupling calculations, is shown in Table IV. Comparing it with Tables II and III,
it is clear that the residual interactions play an important role in the ω-dependence
of observables. For example, J1 Harris parameter becomes quite small by a factor
of about 1/2–1/3 when the residual interactions are switched off. The effect on the
second order coefficients of the quadrupole moment is more dramatic and leads to
about an order of magnitude reduction in soft nuclei.

Now let us study the quasiparticle Routhians obtained by means of the SCC
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method. It is mentioned in §3.2 that the two-step diagonalization with the truncation
of the ω-expansion up to nmax, c.f. Eq. (3.48), leads to diabatic quasiparticle states
in the rotating frame, in which the negative and positive eigenstates do not interact
with each other. We show in Figs. 6 and 7 calculated quasiparticle Routhians for
neutrons and protons, respectively. It is confirmed that the diabatic quasiparticle
states are obtained. As discussed in §3.2, the diagonalization of the quasiparticle
Hamiltonian in the SCC method is completely equivalent to that of the selfconsistent
cranking model, which is known to lead to the adiabatic levels, if the first step
unitary transformation eiG(ω) is treated non-perturbatively in full order. Then what
is the mechanism that realizes the diabatic levels? We believe that the cutoff of the
ω-expansion extracts the smoothly varying part of the quasiparticle Hamiltonian;
namely, ignoring its higher order terms eliminates the cause of abrupt changes of the
microscopic internal structure by quasiparticle alignments. An analogous mechanism

Table IV. Similar to Table III but the residual interactions are artificially switched off in the cal-

culation. The results for the Harris parameters are also included.

N J0 J1 (N)1 (∆ν)1 (Q
(+)
20 )1 (Q

(+)
22 )1

h̄2/MeV h̄4/MeV3 h̄2/MeV2 h̄2/MeV b h̄2/MeV2 b h̄2/MeV2

Er 88 7.5 11 1.00 −0.18 0.32 0.13

90 12.1 18 1.05 −0.25 0.38 0.15

92 18.1 28 0.97 −0.39 0.42 0.18

94 21.4 34 0.60 −0.48 0.33 0.18

96 24.6 34 0.67 −0.54 0.27 0.18

98 27.6 51 0.83 −0.67 0.29 0.17

100 28.3 55 −1.01 −0.67 0.15 0.15

102 27.5 36 −0.85 −0.57 0.16 0.15

Fig. 6. Neutron quasiparticle Routhians plotted as functions of h̄ωrot (MeV) suitable for 162Er.

They are obtained by diagonalizing the SCC quasiparticle Hamiltonian (3.48) up to the first

order (left) and third order (right) of the ω-expansion. As in the case of the usual adiabatic

quasiparticle energy diagram, the negative energy solutions, −E′
µ = E′

µ̄ and −E′
ν̄ = E′

ν , are

also drawn. The solid, dotted, dashed, and dash-dotted curves denote Routhians with (π, r) =

(+,+i), (+,−i), (−,+i), and (−,−i), respectively.
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has been known for many years in the Strutinsky smoothing procedure: 14) The
δ-function in the microscopic level density is replaced by the Gaussian smearing
function times the sum of the Hermite polynomials (complete set), and the lower
order cutoff of the sum (usually 6th order is taken) gives the smoothed level density.
It should be noted, however, that the plateau condition guarantees that the order of
cutoff does not affect the physical results in the case of the Strutinsky method. We
have not yet succeeded in obtaining such a condition in the present case of the cutoff
of the ω-expansion in the SCC method for the collective rotation. Therefore we have
to decide the nmax value by comparison of the calculated results with experimental
data. We mainly take nmax = 3 in the following; determination of the optimal choice
of nmax remains as a future problem.

In Figs. 6 and 7 the results obtained by truncating up to the first order (nmax = 1)

Fig. 7. Same as Fig. 6 but for proton quasiparticles.

Fig. 8. Same as Fig. 6 but obtained by the adiabatic cranking (left) and the third order SCC (right)

with neglecting the residual interactions.
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and the third order (nmax = 3) are compared. It is clear that the higher order terms
considerably modify the quasiparticle energy diagrams. Especially, the alignments
of the lowest pair of quasiparticles are reduced for neutrons (low K states of the
i13/2-orbitals), while they are increased for protons (medium K states of the h11/2-
orbitals). Thus, the higher order effects depend strongly on the nature of orbitals.
It should be stressed that the effects of the residual interaction, i.e., changes of the
mean-field against the collective rotation, are contained in the quasiparticle diagrams
presented in these figures. In this sense, they are different from the spectra of the
cranked shell model, 44) where the mean-field is fixed at ω = 0. In Fig. 8 are dis-
played the usual adiabatic quasineutron Routhians and the third order SCC Routhi-
ans, in both of which the residual interactions are neglected completely. Again,
by comparing Fig. 8 with Fig. 6, it is seen that the effect of residual interactions
considerably changes the quasiparticle states. In relation to the choice of nmax, we
compare in Fig. 9 the Routhians obtained by changing the cutoff order nmax = 1, 3, 5.
In this figure, the usual non-selfconsistent adiabatic Routhians are also displayed,
and for comparison’s sake, the residual interactions are completely neglected in all
cases. Moreover, the rotational frequency is extended to unrealistically large values
in order to see the asymptotic behavior of the Routhian. Comparing the adiabatic
Routhians with those of the SCC method, positive and negative energy solutions
cross irrespective of the strength of level-repulsion. Although the adiabatic levels

Fig. 9. Neutron quasiparticle Routhians for the Nosc = 6 (i13/2) orbits suitable for 162Er. The

left upper, right upper, left lower, and right lower panels denote the results of the adiabatic

cranking, the SCC up to the first order, 3rd order, and 5th order, respectively. The solid and

dotted curves denote Routhians with r = +i (α = −1/2) and r = −i (α = +1/2), respectively.

The effect of residual interaction is completely neglected in this calculation.
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change their characters abruptly at the crossing, if their average behavior is com-
pared to the calculated ones, the third order results (nmax = 3) agree best with the
adiabatic levels. The first order results, for example, give the alignments (the slopes
of Routhians) too large. On the other hand, the divergent behavior is clearly seen
at about ω ≥ 0.8 MeV in the fifth order results. The inclusion of the effect of the
residual interactions makes this convergence radius in ω even smaller.

Finally, we would like to discuss the results of application of the present for-
malism to the g- and s-bands, which are observed systematically and compose the
yrast lines of even-even nuclei. Although we can compare the Routhians (3.21),
or equivalently the rotational energy (3.13), it is known that the relation Ix versus
ω gives a more stringent test. Therefore we compare the calculated Ix–ω relation
with the experimental one in Fig. 10 for even-even nuclei in the rare-earth region, in
which the band crossings are identified along the yrast sequences. In this calculation
the Ix(ω) of the g-band is given by Eq. (3.77) with calculated values of the Harris
parameters (see Table II). As for the Ix(ω) of the s-band, we calculate it on the
simplest assumption of the independent quasiparticle motions in the rotating frame,
which is the same as that of the cranked shell model:

|φs(ω)〉 = α†
1(ω)α†

1̄
(ω)|φintr(ω)〉, |φg(ω)〉 = |φintr(ω)〉, (3.84)

where α†
1(ω) and α†

1̄
(ω) are the lowest r = +i and r = −i quasineutron creation

operators in the rotating frame. Then, the Ix(ω) of the s-band is the sum of Ix(ω)
of the g-band and the aligned angular momenta of two quasineutrons, which are
calculated according to Eqs. (3.51)–(3.54),(

Ix(ω)
)
s-band

= Ix(ω) + i1(ω) + i1̄(ω),
(
Ix(ω)

)
g-band

= Ix(ω), (3.85)

or by using the canonical relation between the Routhian and the aligned angular
momentum, the alignments iµ and iµ̄ can be calculated as usual:

iµ(ω) = −∂E′
µ(ω)
∂ω

, iµ̄(ω) = −∂E ′̄
µ(ω)
∂ω

. (3.86)

Since our quasiparticle Routhians behave diabatically as functions of the rotational
frequency, the resultant g- and s-bands are also non-interacting bands; we have to
mix them at the same angular momentum to obtain the interacting bands corre-
sponding to the observed bands. Such a band mixing calculation is straightforward
in our formalism if the interband g-s interaction is provided. However, it is a very
difficult task as long as the usual adiabatic cranking model is used. In the present
stage we are not able to estimate the g-s interband interaction theoretically. There-
fore, we do not attempt to perform such band-mixing calculations in the present
paper (but see §4.2).

Looking into the results displayed in Fig. 10, one see that our diabatic formalism
of collective rotation based on the SCC method is quite successful. The overall
agreements are surprisingly good, considering the fact that we have only used a
global parametrization of the strengths of the residual interaction:
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Gν
0 = 20/A, Gπ

0 = 24/A (MeV), (3.87)
gν2 = gπ2 = 24, (3.88)
κ2K = 1.45κself

2 , (3.89)

Fig. 10. (continued.)

Fig. 10. (continued.)
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Fig. 10. (continued.)

Fig. 10. Comparison of the third order SCC method calculations for the diabatic g- and s-bands

with experimental data. The angular momenta 〈Jx〉 = I + 1/2 (h̄) are displayed versus the

rotational frequency h̄ωrot (MeV) for nuclei in the rare-earth region, Gd (Z = 64) to W (Z = 74)

isotopes. Filled circles denote experimental data smoothly extended from the ground state.

Data for excited bands are also included as filled squares when available, which are, in most

cases, identified as s-bands.

for the model space of three Nosc-shells (4–6 for neutrons and 3–5 for protons). The
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agreements of the calculated g-bands come from the fact that the Harris parameters
(Table II) are nicely reproduced in the calculation. Further agreements of the s-
bands are not trivial, and tell us that we have obtained reliable diabatic quasiparticle
spectra (Figs. 6 and 7). It is known that, if the Ix–ω relations of s-bands are
parametrized in the form, Ix = i + J0 ω + J1 ω

3, the J1 Harris parameters of s-
bands are systematically smaller than those of g-bands. This feature is quite well
reproduced in the calculations, as is clearly seen in Fig. 10, and the reason is that the
value of the aligned angular momentum of two quasineutrons decreases as a function
of ω. The suitable decrease is obtainable only if the residual interactions are included
and the diabatic quasiparticle Routhians are evaluated up to the third order.

§4. Diabatic quasiparticle basis and the interband interaction between
the g- and s-bands

The formulation of the previous section gives a consistent perturbative solution,
with respect to the rotational frequency, of the basic equations of the SCC method
for collective rotation. However, it has a problem as a method to construct the dia-
batic quasiparticle basis: The wave functions of the diabatic levels are orthonormal
only within the order of cutoff (nmax) of the ω-expansion. In the previous section
only the independent quasiparticle states, i.e., one-quasiparticle states or the g- and
s-bands, are considered and this problem does not show up. The quasiparticle states
have another important role that they are used as a basis of complete set for a more
sophisticated many body technique beyond the mean-field approximation; for exam-
ple, the study of collective vibrations at high spin in terms of the RPA method in
the rotating frame. 7), 56), 61) - 64) In such an application it is crucial that the diabatic
quasiparticle basis satisfies the orthonormal property. We present in this section a
possible method to construct the diabatic basis satisfying the orthonormality condi-
tion.

Another remaining problem which is not touched in the previous section is how
to theoretically evaluate the interband interaction between the ground state band
and the two-quasineutron aligned band. Since we do not have a satisfactory answer
yet to this problem, we only present a scope for possible solutions at the end of this
section.

4.1. Construction of diabatic quasiparticle basis in the SCC method

Although the basic idea is general, we restrict ourselves to the case of collec-
tive rotation and use the good signature representation with real phase convention,
introduced in §3.3, for the matrix elements of the Hamiltonian H and of the an-
gular momentum Jx. First let us recall that the diabatic quasiparticle basis in the
rotating frame is obtained by the two-step unitary transformation (3.45). The first
transformation by eiG(ω) can be represented as follows 10)

eiG(ω)a†ie
−iG(ω) =

∑
j>0

[
cos
√
ggT

]
ij
a†j −

∑
j>0

[
g

sin
√
gTg√

gTg

]
ij
aj̄ , (4.1)
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eiG(ω)a†
ī
e−iG(ω) =

∑
j>0

[
cos
√
gTg

]
ij
a†
j̄

+
∑
j>0

[
gT sin

√
ggT√

ggT

]
ij
aj , (4.2)

with real matrix elements gij(ω) =
∑

n≥1 ω
ng(n)(ij), see Eq. (3.64), where gT denotes

the transpose of g. Thus, by using an obvious matrix notation, the transformation
to the rotating quasiparticle operator from the ω = 0 quasiparticle operator is given
as

(
α
ᾱ†

)
=

(
fT 0
0 f̄ T

)
cos
√
ggT −g sin

√
gTg√

gTg

gT sin
√
ggT√

ggT
cos
√
gTg


(

a
ā†

)
(4.3)

≡ FT(ω)GT(ω)

(
a
ā†

)
, (4.4)

where the real matrix elements fiµ(ω) and f̄iµ(ω) are the amplitudes that diagonalize
the quasiparticle Hamiltonian in the rotating frame, see Eq. (3.42), for signature
r = +i and −i, respectively. The cutoff of the ω-expansion means that the generator
iG(ω), i.e. the matrix g, is solved up to the n = nmax order,

g(ω) = [g(ω)](n≤nmax) =
nmax∑
n=1

ωng(n), (4.5)

and at the same time the transformation matrix G(ω) itself is treated perturbatively

G(ω) =

(
1 − ω2g(1)g(1)T + · · · ωg(1) + · · ·

−ωg(1)T + · · · 1 − ω2g(1)Tg(1) + · · ·

)
, (4.6)

while the other one, F(ω), is treated non-perturbatively by the diagonalization proce-
dure. The origin of difficulty arising when the diabatic basis is utilized as a complete
set lies in this treatment of G(ω), because the orthogonality of the matrix G(ω) is
broken in higher-orders.

Now the solution to this problem is apparent: The generator matrix g(ω) is
solved perturbatively like in Eq. (4.5), but the transformation matrix G(ω) has to
be treated non-perturbatively as in Eq. (4.3). In order to realize this treatment we
introduce new orthogonal matrices, D and D̄, which diagonalize ggT and gTg within
the signature r = +i and −i states, respectively,∑

j>0

(ggT)ijDjk = Dikθ
2
k,

∑
j>0

(gTg)ijD̄jk = D̄ikθ
2
k, (4.7)

where we have used the fact that the matrices ggT and gTg have common eigenvalues,
which are non-negative, and then we have

G(ω) =

(
D(cos θ)DT gD̄(sin θ/θ)D̄T

−gTD(sin θ/θ)DT D̄(cos θ)D̄T

)
. (4.8)
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Here (cos θ) and (sin θ/θ) denote diagonal matrices, whose matrix elements are
δij cos θi and δij sin θi/θi, respectively. The physical meaning is that the orthogo-
nal matrices D and D̄ are transformation matrices from the quasiparticle operators
(a†i , ai) and (a†

ī
, aī) at ω = 0 to their canonical bases, which diagonalize the density

matrices ρ and ρ̄ with respect to the rotational HB state |φintr(ω)〉, respectively;

ρij ≡ 〈φintr(ω)|a†iaj |φintr(ω)〉 =
[
cos
√
ggT

]
ij
,

ρ̄ij ≡ 〈φintr(ω)|a†
ī
aj̄ |φintr(ω)〉 =

[
cos
√
gTg

]
ij
. (4.9)

Thus the method to construct the rotating quasiparticle basis is summarized as
follows. First, solve the basic equation of the SCC method and obtain the generator
matrix g(ω) up to the nmax order as in Eq. (4.5). At the same time, diagonalize
the quasiparticle Hamiltonian and obtain the eigenstates as in Eq. (3.42) for both
signatures r = ±i. Second, diagonalize the density matrices (4.9), or equivalently
Eq. (4.7), and obtain the orthogonal matrices D and D̄ of the canonical bases.
Finally, by using these matrices D and D̄ calculate the transformation matrix G(ω)
as in Eq. (4.8), and then the basis transformation is determined by Eq. (4.4).

It is instructive to consider a concrete case of the cranked shell model; i.e., the
effect of residual interactions or the selfconsistency of mean-field is neglected at ω >
0. The quasiparticle basis is obtained by diagonalizing the generalized Hamiltonian
matrix:(

hNils − ωjx −∆
−∆ −(hNils + ωjx)

)(
U V̄
V Ū

)
=

(
U V̄
V Ū

)(
E′ 0
0 −Ē′

)
,

(4.10)
where hNils and jx denote matrices with respect to the Nilsson (or the harmonic
oscillator) basis at ω = 0, and (U, V ) and (Ū , V̄ ) are coefficients of the generalized
Bogoliubov transformations from the Nilsson nucleon operators (c†i , ci) and (c†

ī
, cī)

(in the good signature representation),

α†
µ =

∑
i>0

(Uiµc
†
i + Viµcī), α†

µ̄ =
∑
i>0

(Ūiµc
†
ī

+ V̄iµci), (4.11)

or in the matrix notation(
c
c̄†

)
= U

(
α
ᾱ†

)
, U ≡

(
U V̄
V Ū

)
. (4.12)

In contrast, the transformation U is decomposed into three steps in our construction
method of the diabatic quasiparticle basis; (i) the Bogoliubov transformation U0

between the nucleon (c, c̄†) and the quasiparticle (a, ā†) at ω = 0,(
c
c̄†

)
= U0

(
a
ā†

)
, U0 ≡

(
u v

−vT u

)
, (4.13)

where u and v are the matrices of transformation at ω = 0 (they are diagonal, e.g.
uij = uiδij , if only the monopole-pairing interaction is included), (ii) the transfor-
mation matrix G(ω) in Eq. (4.4), generated by eiG(ω), and (iii) the diagonalization
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step of the rotating quasiparticle Hamiltonian F(ω) in Eq. (4.4), see also Eq. (3.42),
namely

U(ω)SCC = U0 G(ω)F(ω). (4.14)

Here both G(ω) and F(ω) depend on the order of cutoff nmax in solving the generator
iG(ω) by the ω-expansion method, but they themselves have to be calculated non-
perturbatively, especially for G by Eq. (4.8) with (4.7). As noted at the end of §3.3,
we can apply the SCC method starting from the finite frequency ω0. In such a case
U0 is the transformation at ω = ω0, and G and F are obtained by expansions in
terms of (ω − ω0); thus,

U(ω)SCC = U0(ω0)G(ω − ω0)F(ω − ω0) if started at ω = ω0. (4.15)

It should be stressed that the transformation (4.14) only approximately diagonalize
the Hamiltonian in Eq. (4.10) within the nmax order in the sense of ω-expansion.
Namely, some parts of the Hamiltonian corresponding to the terms higher order than
nmax are neglected, and this is exactly the reason why we can obtain the diabatic
basis, whose negative and positive solutions are non-interacting.

In the case where the effect of residual interactions is neglected, i.e. correspond-
ing to the higher order cranking, we can easily solve the basic equations of the SCC
method. It is useful to present the solution for practical purposes; for example
for the construction of the diabatic quasiparticle basis for the cranked shell model
calculations. The solutions for g(n) up to the third order are given as follows:

g(1)(ij) =
1

Ei + Ej̄

JA
x (ij), (4.16)

g(2)(ij) =
1

Ei + Ej̄

(JB
x g

(1) + g(1)J̄B
x )ij , (4.17)

g(3)(ij) =
1

Ei + Ej̄

[
(JB

x g
(2) + g(2)J̄B

x )

+
1
3

(JA
x g

(1)Tg(1) + 2g(1)JAT
x g(1) + g(1)g(1)TJA

x )
]
ij
, (4.18)

and the solutions for the rotating quasiparticle Hamiltonian (3.48)–(3.49):

ε
′(0)
ij = δijEi, ε̄

′(0)
ij = δijEī, (4.19)

ε
′(1)
ij = −JB

x (ij), ε̄
′(1)
ij = −J̄B

x (ij), (4.20)

ε
′(2)
ij =

1
2

(JA
x g

(1)T + g(1)JAT
x )ij , ε̄

′(2)
ij =

1
2

(JAT
x g(1) + g(1)TJA

x )ij , (4.21)

ε
′(3)
ij =

1
2

(JA
x g

(2)T + g(2)JAT
x )ij , ε̄

′(3)
ij =

1
2

(JAT
x g(2) + g(2)TJA

x )ij , (4.22)

where the quasiparticle energies at the starting frequency are given in Eq. (3.62),
and the matrix elements of Jx at the starting frequency are given as in Eq. (3.63)
with Qρ replaced by Jx. If the starting frequency is ω = 0, then Eī = Ei, and
the matrix elements of Jx satisfy the relations, JAT

x = −JA
x , J̄B

x = −JB
x , and
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JBT
x = JB

x . The transformation G(ω) is calculated from Eqs. (4.16)–(4.18), and F(ω)
from Eqs. (4.19)–(4.22). It should be mentioned that the selfconsistent mean-field
calculation is in principle possible in combination with the diabatic basis prescription
presented above.

4.2. Estimate of the g-s interaction

Once the diabatic g- and s-bands states (3.84) are obtained as functions of ω,
one can immediately construct them as functions of angular momentum I, because
the Ix–ω relation has no singularity, as shown in Fig. 10, and can easily be inverted:

|φg(I)〉 = |φg(ωg(I))〉, |φs(I)〉 = |φs(ωs(I))〉, (4.23)

where ωg(I) and ωs(I) are the inverted relations of (3.85) with Ix = I + 1/2. Physi-
cally, one has to consider the coupling problem between them at a fixed spin value
I. It is, however, a difficult problem because one has to calculate, for example, a
matrix element like 〈φs(I)|H |φg(I)〉, which is an overlap between two different HB
states; they are not orthogonal to each other due to the difference of the frequencies
ωg(I) and ωs(I). Although such a calculation is possible by using the Onishi for-
mula for the overlap of general HB states, 39) it would damage the simple picture
of quasiparticle motions in the rotating frame, and is out of scope of the present
investigation.

Here we assume that the wave functions vary smoothly along the diabatic rota-
tional bands as functions of spin I or frequency ω, so that the interband interaction
between the g- and s-bands can be evaluated at the common frequency by

vg-s(I) = 〈φs(ωgs(I))|H |φg(ωgs(I))〉, (4.24)

where ωgs is defined by an average of ωs and ωg,

ωgs(I) ≡ ωg(I) + ωs(I)
2

. (4.25)

We note that this quantity corresponds, in a good approximation, to the crossing
frequency ωg-s

c at the crossing angular momentum Ig-sc ,

ωgs(Ig-sc ) ≈ ωg-s
c , (4.26)

where ωg-s
c is defined as a frequency at which the lowest diabatic two-quasiparticle en-

ergy vanishes, E′
1(ω)+E ′̄

1(ω) = 0. Using the fact that |φs(ω)〉 is the two-quasiparticle
excited state on |φg(ω)〉 (see Eq. (3.84)), the interaction can be rewritten as

vg-s(I) = ωgs(I)〈φs(ωgs(I))|Jx|φg(ωgs(I))〉, (4.27)

because of the variational principle (3.17). Applying the idea of ω-expansion and
taking up to the lowest order, we have, at the crossing angular momentum Ig-sc ,

vg-s(Ig-sc ) ≈ ωg-s
c

∑
ij>0

fi1(ωg-s
c )f̄j1(ωg-s

c )JA
x (ij), (4.28)
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Fig. 11. The g-s interband interaction (solid), the crossing frequency h̄ωgs (dash-dotted) in MeV,

the alignment i (dotted), and the expectation value of number operator n (dashed), plotted as

functions of the chemical potential λ in MeV, for the i13/2 single-j shell model without residual

interactions. The result of the usual adiabatic cranked shell model is displayed in the left panel,

while that of the diabatic SCC 1st order calculation in the right panel. Here the alignment i

and the number n is scaled by their maximum values, imax = 12h̄ and nmax = 14. The energy

unit is chosen such that the splitting of the i13/2-shell roughly reproduces that of a typical well

deformed rare-earth nucleus; i.e. κ = 2.5 MeV in Eq. (4.29), and the constant ∆ = 1.0 MeV is

used.

where fi1(ω) and f̄j1(ω) are the amplitudes of the diabatic quasiparticle diagonal-
ization (3.42) for the lowest r = ±i quasineutrons, and should be calculated non-
perturbatively with respect to ω.

In Fig. 11 (right panel), we show the result evaluated by using Eq. (4.28) for
a simple single-j shell model (i13/2) with a constant monopole-pairing gap and no
residual interactions, in which the single-particle energies are given by

ei = κ
3m2

i − j(j + 1)
j(j + 1)

, (mi = 1/2, · · · , j) (4.29)

with a parameter κ describing the nuclear deformation. In this figure other quan-
tities, the alignment of the lowest two-quasiparticle state, the number expectation
value, and the crossing frequency are also shown as functions of the chemical poten-
tial. These quantities can also be evaluated in terms of the usual adiabatic cranking
model, and they are also displayed in the left panel. Note that in the adiabatic
cranking model the crossing frequency is defined as a frequency at which the adia-
batic two-quasiparticle energy E

′(ad)
1 (ω) + E

′(ad)
1̄

(ω) becomes the minimum, and the
interband interaction is identified as the half of its minimum value. 44) As is well
known, 65) the g-s interaction oscillates as a function of the chemical potential, and
both the absolute values and the oscillating behavior of the result of calculation
roughly agree with the experimental findings. Comparing two calculations, the in-
terband interaction (4.28) seems to give a possible microscopic estimate based on
the diabatic description of the g- and s-bands. We would like to stress, however,
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that its derivation is not very sound. It is an important future problem to derive the
coupling matrix element on a more sound ground.

§5. Concluding remarks

In this paper, we have formulated the SCC method for the nuclear collective
rotation. By using the rotational frequency expansion rather than the angular mo-
mentum expansion, we have applied it to the description of the g- and s-bands
successfully. The systematic calculation gives surprisingly good agreements with
experimental data for both rotational bands. It has been demonstrated that the
resultant quasiparticle states develop diabatically as functions of the rotational fre-
quency; i.e. the negative and positive energy levels do not interact with each other.
Although the formulation is mathematically equivalent to the selfconsistent cranking
model, the cutoff of the ω-expansion results in the diabatic levels and its mechanism
is also discussed. The perturbative ω-expansion is, however, inadequate to use the
resultant quasiparticle basis states as a complete set. We have then presented a
method to construct the diabatic quasiparticle basis set, which rigorously satisfies
the orthonormality condition and can be safely used for the next step calculation,
e.g. the RPA formalism for collective vibrations at high-spin.

In order to obtain a good overall description of the rotational band for nuclei
in the rare-earth region, we have investigated the best possible form of residual
quadrupole-pairing interactions. It is found that the double-stretched form factor
is essential for reproducing the even-odd mass difference and the moment of inertia
simultaneously.

Since the calculated g- and s-bands in our formulation are diabatic rotational
bands, the interband interaction between them should be taken into account for
their complete descriptions. As in any other mean-field model, however, the wave
function obtained in our formalism is a wave packet with respect to the angular
momentum variable. Therefore, it is not apparent how to evaluate the interband
interaction from microscopic point of view. We have presented a possible estimate of
the interaction, which leads to a value similar to that estimated by the level repulsion
in the adiabatic cranking model. Further investigations are still necessary to give a
definite conclusion to this problem.
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Abstract

By performing fully 3D symmetry-unrestricted Skyrme–Hartree–Fock–Bogoliubov calculations,
we discuss shape coexistence and possibility of exotic deformations simultaneously breaking the
reflection and axial symmetries in proton-richN = Z nuclei:64Ge,68Se,72Kr, 76Sr,80Zr and84Mo.
Results of calculation indicate that the oblate ground state of68Se is extremely soft against theY33
triangular deformation, and that the low-lying spherical minimum coexisting with the prolate ground
state in80Zr is extremely soft against theY32 tetrahedral deformation. 2001 Elsevier Science B.V.
All rights reserved.

PACS: 21.60-n; 21.60.Jz; 27.50.+e
Keywords: Hartree–Fock–Bogoliubov method; Skyrme interaction; Density-dependent pairing interaction;
Shape coexistence; Nonaxial octupole deformation; Proton-richN = Z nuclei

1. Introduction

The Hartree–Fock–Bogoliubov (HFB) method with the Skyrme interactions is one of
the standard approaches in nuclear structure research [1,2]. In the last two decades it has
become possible to solve the HFB equations directly in the coordinate mesh space [3,4].
In recent years, in order to investigate the structure of drip-line nuclei, the need for such
coordinate-space HFB calculations has been greatly increased and intensive analyses have
been made for neutron radii and skins in spherical neutron-rich nuclei [5–11]: since the
easier HF plus BCS method breaks down when treating the pairing correlation in weakly
bound systems due to a leakage of nucleons into the continuum, we need to calculate
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the mean-field (particle–hole) correlations and the pairing (particle–particle) correlations
selfconsistently in order to preserve confinement of the nuclear density while allowing
the pairing excitations to positive-energy resonant states [3] (see, e.g., [12] and references
therein for mean-field approaches other than the Skyrme–HFB method).

Recently, Terasaki, Heenen, Flocard and Bonche [13,14] have removed the restriction
of spherical symmetry in solving the coordinate-space Skyrme–HFB equations in order to
investigate the possibility to get three-dimensional (3D) deformed solutions in neutron
rich nuclei. In their works, a Skyrme interaction is used to describe the Hartree–
Fock (HF) Hamiltonian while a density-dependent zero-range interaction is used for the
pairing channel. The mean-field HF equations are solved by the imaginary-time evolution
method [15] in a 3D cubic mesh space while the HFB equations are solved in terms of
the two-basis method developed earlier in [16,17]. The discretization in 3D mesh space
has the advantage over methods relying on an expansion in the harmonic-oscillator basis
that nuclei with exotic deformations can be treated at the same level of accuracy [18–20].
In these works, however, reflection symmetries with respect to three planes are imposed
for the nuclear density so that only one spatial octant is needed to solve the HFB equations.

The major purpose of this paper is to extend their method by removing the symmetry
restrictions mentioned above and investigate the possibility of exotic shapes simultane-
ously breaking the axial and reflection symmetries in the mean field. For this purpose, we
have constructed a new computer code that carries out Skyrme–HFB calculations in the 3D
cartesian-mesh space without imposing any restrictions on the spatial symmetry. Recently,
on the basis of the Skyrme HF plus BCS calculations with no restriction on the nuclear
shape, Takami, Yabana and Matsuo [21,22] suggested that the oblate ground state of68Se
is extremely soft against theY33 triangular deformation, and that the low-lying “spherical”
minimum coexisting with the prolate ground state in80Zr has theY32 tetrahedral shape.
As the first application of a fully 3D, symmetry-unrestricted Skyrme HFB method with
the use of the density-dependent zero-range pairing interaction [13,14,17,23–30], we in-
vestigate in this paper shape coexistence and possibility of nonaxial octupole deformations
in proton richN = Z nuclei in theA = 64–84 region and examine the above predictions.
These nuclei are especially interesting objects to study, since proton and neutron deformed
shell effects act coherently and rich possibilities arise for coexistence and competition of
different shapes (see [31] for earlier references). In recent years, active experimental stud-
ies of these nuclei are going on by means of combinations of radioactive nuclear beams and
new gamma-ray and charged-particle detector systems (see [32–35] for reviews). It should
be noted here that, although extensive theoretical calculations and rich experimental evi-
dences have been accumulated for axially symmetric octupole (Y30) deformations, as re-
viewed in [36,37], only a few calculations using Woods–Saxon–Strutinsky methods are
available [38–41] except for light nuclei, and no firm experimental evidence exists up to
now concerning the nonaxial octupole (Y31, Y32, Y33) deformations in the mean fields. For
light nuclei, nonaxial octupole deformations have been discussed [42–46] in connection
with alpha-cluster structures [47]; for instance, a triangular structure of12C [42,44] and
a tetrahedral shape for16O [45,46].
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Our motive for developing the coordinate-space Skyrme–HFB method is not only to
investigate the possibilities of emergence of new types of symmetry breakdown in the
ground states of proton-rich and neutron-rich nuclei, but also to investigate, in the future,
low-lying modes of excitation of such unstable nuclei by means of the RPA and the
Selfconsistent Collective Coordinate (SCC) method [48] on the basis of the HFB basis
thus obtained. We intend to proceed in parallel with other calculations with the use of
more phenomenological shell model potentials and separable interactions. The Skyrme–
HFB method is suited for this aim, as it provides a local mean-field potential so that such
a comparative study is easy.

In Section 2, a brief account of the method of the coordinate-space Skyrme–HFB
calculation is given. In Section 3, results of numerical calculation are presented and
discussed. In Section 4, a conclusion is given.

2. Skyrme–HFB calculation

2.1. Two basis method

For convenience, we here recapitulate the two basis method [13,14,16,17] adopted as the
algorithm of our computer code. In this method, the imaginary-time evolution method is
combined with a diagonalization of the HFB Hamiltonian matrix to construct the canonical
basis.

We first determine the single-particle wave functionsφi satisfying the HF equations

h
[
ρ(r)

]
φi(r) = εiφi(r) (1)

by means of the imaginary-time evolution method [15]. Hereh, εi and ρ(r) denote
the mean-field Hamiltonian, the single-particle energies and the total nuclear density,
respectively. (The isospin indexτ is omitted for simplicity.) We next diagonalize the HFB
Hamiltonian matrix [1](

h− λ ∆

−∆∗ −h∗ + λ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
(2)

to get the one-body density matrixρ and the pairing tensorκ :

ρ = V ∗V T, κ = V ∗UT. (3)

We then diagonalize the density matrixρ and obtain the occupation coefficientsnα and the
unitary transformationW which relates the HF wave functionsφi to the canonical basis
wave functionsϕα :

ρkl =
∑
α

nαWkαW
†
αl, (4)

ϕα(r) =
∑
j

Wjαφj (r). (5)

In the canonical basisϕα , the HFB density matrix in the coordinate space is diagonal:
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ρ(r, r ′) =
∑
α

nαϕα(r)ϕα(r
′)∗. (6)

These steps are repeated until the convergence is achieved.
The single-particle wave functions and densities are represented on a full 3D cartesian-

mesh space within a spherical container. In the present calculation, the radius of the
spherical container and mesh spacing are set toRmesh = 10.0 fm and h = 1.0 fm,
respectively. Tajima et al. [49,50] have carefully examined possible errors due to the use
of the mesh sizeh = 1.0 fm and they found that, since discretization errors are essentially
independent of the nuclear shape, deformation energies obtained with this mesh size are
quite accurate (see also [51]). Actually, we have constructed the new Skyrme–HFB code
by extending the cranked Skyrme–HF code [52] written previously and applied to the
investigation of the yrast structure of32S, so that the cranking term can be included. In this
paper, however, we examine only the cases of zero angular momentum.

2.2. The Skyrme plus density-dependent pairing interactions

We use the SIII parameter set [53] of the Skyrme interaction for the mean-field (particle–
hole) channel, which has been successful in describing systematically the ground-state
quadrupole deformations in proton and neutron rich Kr, Sr, Zr and Mo isotopes [19] and
in a wide area of nuclear chart [49]. For the pairing (particle–particle) channel, we use the
density-dependent zero-range interaction [13,14,17,23–30], which has been successful in
describing, for instance, the odd–even staggering effects in charge radii:

Vpair(r1, r2) = V0

2

(
1− P̂σ

)(
1− ρ(r1)

ρc

)
δ(r1 − r2) (7)

with the notation of [17], where the strengthV0 and the densityρc are parameters
and P̂σ denotes the spin exchange operator. For these parameters, we use the standard
values [14,17]:V0 = −1000.0 MeV fm3, ρc = 0.16 fm–3. The pairing interaction is
smoothly cut off at 5 MeV above the Fermi energy in the same way as in [19]. For a more
general form of the density-dependent pairing interaction, we refer to [54,55].

To check the dependence on the Skyrme-interaction parameter sets, we make calcula-
tions with the SkM∗ [56] and SLy4 [57] sets for an example of68Se. We refer to a recent
work by Reinhard et al. [58] for a detailed and systematic study of shape coexistence phe-
nomena in relation to the properties of various versions of the Skyrme interaction. We shall
also check the dependence on the pairing strengthV0 adopted.

2.3. Constrained HFB calculation

In order to investigate the deformation properties away from the HFB equilibrium points,
we perform constrained HFB calculations with the use of the quadratic constraints for the
mass-quadrupole (octupole) moments [59] to obtain the energy surfaces as functions of
the quadrupole (octupole) deformations. Because no spatial symmetry is imposed on the
3D mesh space, the center of mass and the directions of the principal axes of the nucleus
can move freely without affecting the total energy. To evaluate the physical quantities like
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deformation parameters, it is crucially important to fulfill the constraints to keep the center
of mass,〈

A∑
i=1

xi

〉
=
〈

A∑
i=1

yi

〉
=
〈

A∑
i=1

zi

〉
= 0, (8)

and the directions of the principal axes,〈
A∑

i=1

(xy)i

〉
=
〈

A∑
i=1

(yz)i

〉
=
〈

A∑
i=1

(zx)i

〉
= 0. (9)

These requirements are taken care of by means of the quadrupole constraints on these
conditions as in our previous study [52].

2.4. Deformation parameters

As measures of the deformation, we calculate the mass-multipole moments,

αlm = 4π

3ARl

∫
rlXlm(Ω)ρ(r)dr (m = −l, . . . , l) (10)

whereρ(r) = ∑
α v2

α|ϕα(r)|2, R = 1.2A1/3 fm andXlm are real bases of the spherical
harmonics:

Xl0 = Yl0, (11)

Xl|m| = 1√
2

(
Yl−|m| + Y ∗

l−|m|
)
, (12)

Xl−|m| = −i√
2

(
Yl|m| − Y ∗

l|m|
)
. (13)

Here the quantization axis is chosen as the largest (smallest) principal axis for prolate
(oblate) solutions. We then define the quadrupole deformation parameterβ2, the triaxial
deformation parameterγ , and the octupole deformation parametersβ3 andβ3m by

α20 = β2 cosγ, α22 = β2 sinγ, (14)

β3 =
(

3∑
m=−3

α2
3m

)1/2

, β3m = (
α2

3m + α2
3−m

)1/2
(m = 0,1,2,3). (15)

For convenience, we also use the familiar notation−β2 for oblate shapes with
(β2, γ = 60◦).

3. Results and discussion

3.1. Quadrupole deformations

The solutions of the Skyrme–HFB equations obtained in the numerical calculations for
64Ge,68Se,72Kr, 76Sr, 80Zr and84Mo are summarized in Table 1. The calculated ground-
state shape changes from triaxial (64Ge), oblate (68Se,72Kr), large prolate (76Sr, 80Zr), to



584 M. Yamagami et al. / Nuclear Physics A 693 (2001) 579–602

Table 1
Solutions of the HFB equations for proton-richN = Z nuclei in theA = 64–84 region

Oblate Spherical Prolate

64Ge g.s.
β,γ = 0.27,25◦ (triaxial)

β3 = 0.0
∆p = 1.25, ∆n = 1.12

68Se g.s. 0.52
β,γ = 0.28,60◦ β,γ = 0.26,0◦
β3 = β33 ≈ 0.08 β3 = 0.0

∆p = 1.28, ∆n = 1.13 ∆p = 1.29, ∆n = 1.15
72Kr g.s. 0.92

β,γ = 0.32,60◦ β,γ = 0.40,0◦
β3 = 0.0 β3 = 0.0

∆p = 1.03, ∆n = 1.23 ∆p = 1.25, ∆n = 0.92
76Sr 1.79 g.s.

β,γ = 0.30,60◦ β,γ = 0.51,0◦
β3 = β33 ≈ 0.0 β3 = 0.0

∆p = 1.47, ∆n = 1.43 ∆p = 0.67, ∆n = 0.50
80Zr 0.86 1.01 g.s.

β,γ = 0.20,60◦ β,γ = 0.0,0◦ β,γ = 0.51,0◦
β3 = 0.0 β3 = β32 ≈ 0.15 β3 = 0.0

∆p = 1.02, ∆n = 0.82 ∆p = 0.68, ∆n = 0.39 ∆p = 0.79, ∆n = 0.78
84Mo 0.20 g.s. 1.52

β,γ = 0.16,60◦ β,γ = 0.0,0◦ β,γ = 0.66,0◦
β3 = 0.0 β3 = β30 ≈ 0.0 β3 = 0.0

∆p = 1.46, ∆n = 1.42 ∆p = 0.74, ∆n = 0.72 ∆p = 0.0, ∆n = 0.0

For each nucleus, numbers in the first line indicate excitation energies measured from the ground
state. The symbol≈ indicates that the potential-energy curve is extremely shallow about the
equilibrium value. Pairing gaps∆p and ∆n are here defined as averages of diagonal elements
-iī over 5 MeV interval around the Fermi surface, and their values (in MeV) at the equilibrium
deformations are listed.

spherical shape (84Mo) with increasingN (= Z). For68Se,72Kr, 76Sr,80Zr and84Mo, we
obtain two or three local minima close in energy, indicating shape coexistence. These gross
features are consistent with available experimental data [60–66] and previous theoretical
calculations [19,21,22,49,67–77].

The potential-energy curves obtained by the constrained HFB calculations are displayed
in Fig. 1 as functions of the quadrupole deformation parameterβ2 and in Fig. 2 as
functions of the triaxial deformation parameterγ . Below we remark on some specific
points.

As seen in Fig. 2, the calculated potential-energy curve for64Ge is rather shallow with
respect to theγ degree of freedom so that this nucleus may be regarded as “γ -soft.” This
result is consistent with the experimental indication [60] and also with the shell model
calculation by the Monte Carlo diagonalization method [75].
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Fig. 1. Potential-energy curves calculated by the constrained Skyrme–HFB method for64Ge,68Se,
72Kr, 76Sr,80Zr and84Mo are drawn as functions of the quadrupole deformation parameterβ2. The
SIII interaction is used for the particle–hole channel, while the density-dependent pairing interaction
with V0 = −1000.0 MeV fm3 andρc = 0.16 fm–3 is used for the particle–particle channel.
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Fig. 2. Potential-energy curves calculated at fixedβ2 by the constrained Skyrme–HFB method
for 64Ge, 68Se, 72Kr, 76Sr, 80Zr and 84Mo are drawn as functions of the triaxial deformation
parameterγ . The effective interactions used are the same as in Fig. 1.
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Quite recently, an excited prolate band coexisting with the ground-state oblate band
has been found in68Se [63]. Their quadrupole deformations are estimated asβ2 ≈ 0.27
andβ2 ≈ −0.27, respectively. Although the prolate excited band-head 0+ state has not
yet been observed, its excitation energy is estimated to be about 0.6 MeV. Our calculated
energy difference between the prolate and the oblate HFB solutions, 0.52 MeV, is in good
agreement with this experimental data. The barrier between the prolate and the oblate
minima is about 3 MeV in the plot with respect toβ2 in Fig. 1, but it is only about
0.3 MeV in the plot with respect to the triaxial deformation parameterγ in Fig. 2. It might
be considered that, if the barrier is so low, the two bands built on the prolate and the oblate
solutions interact strongly so that the shape coexistence picture is too much perturbed in
contradiction with the experiment [63]. In our view, however, description of dynamics
by going beyond the static mean-field approximation is necessary in order to discuss the
interaction between the oblate and the prolate structures. In any case, understanding this
shape coexistence dynamics is an interesting subject for future.

The second minimum withβ2 ≈ 0.66 seen in the potential-energy curve for84Mo
in Fig. 1 may be regarded as a superdeformed solution, since it is related to theZ =
N = 42 deformed shell gap [68] formed by occupying the down-sloping [431]1/2 levels
from the upper major shell by two protons and two neutrons. This second minimum was
also obtained in [21]. It offers an interesting possibility that a superdeformed rotational
band might be observed at such a low excitation energy as about 1.5 MeV. From
a viewpoint of deformed shell structure, the ground-state solutions for76Sr and80Zr have
characteristics different from the second minimum in84Mo and may be distinguished from
the superdeformation, although they have large prolate deformations ofβ2 ≈ 0.5.

3.2. Nonaxial octupole deformations

As a result of the Skyrme–HFB calculations for proton-richN = Z nuclei from64Ge to
84Mo (summarized in Table 1), we have found equilibrium shapes with finite nonaxial
octupole deformations for68Se and80Zr. The density distribution at the HFB local
minimum for 68Se with the triangular deformation superposed on the oblate shape and
that for80Zr with the tetrahedral deformation are illustrated in Fig. 3.

Fig. 3. Density contour surfaces at the half central density of the Skyrme–HFB solution with the
oblate plus triangular shape (β2 = −0.28, β33 = 0.08) for 68Se (left-hand side) and that with the
tetrahedral shape (β2 = 0.00, β32 = 0.15) for 80Zr (right-hand side), listed in Table 1.
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Fig. 4. Potential-energy curves calculated by the constrained Skyrme–HFB method are drawn as
functions of the octupole deformation parametersβ3m (m = 0,1,2,3) about the oblate minima (seen
in Fig. 1) of the quadrupole deformation energies. One of theβ3m (m = 0,1,2,3) is varied while the
otherβ3m’s are fixed to zero. The effective interactions used are the same as in Fig. 1.



M. Yamagami et al. / Nuclear Physics A 693 (2001) 579–602 589

In addition to the two cases mentioned above, Takami et al. [21] and Matsuo et al. [22]
obtained, in their Skyrme–HF plus BCS calculations, finite equilibrium values of octupole
deformations superposed on an oblate shape in76Sr and also on a near spherical shape
in 84Mo. According to their calculations, the potential-energy curves are very soft with
respect to the octupole deformation degrees of freedom especially in the four cases
mentioned above. In order to see the properties of the potential-energy curve in the
neighborhood of the HFB equilibrium points and to make a better comparison with the
results of Refs. [21,22], we have carried out constrained HFB calculations with respect to
theβ3m (m = 0,1,2,3) degrees of freedom about the local minima (seen in Fig. 1) of the
quadrupole deformation energies.

Figs. 4, 5 and 6 show the potential-energy curves with respect to the octupole
deformation parametersβ3m about the oblate, the spherical and the prolate (or triaxial)
minima of the quadrupole deformation-energy curves, respectively. These curves are
obtained by the constrained HFB calculations with the octupole operatorsr3X3|m| as
constraints. We see that the oblate shape of68Se is extremely soft against the triangular
(β33) deformation and that the spherical shape of80Zr is extremely soft against the
tetrahedral (β32) deformation, in agreement with those of the Skyrme–HF plus BCS
calculations of Refs. [21,22]. The oblate shape of76Sr is fairly soft with respect to the
β32 andβ33 deformations and the spherical ground state of84Mo is barely stable against
all β3m degrees of freedom, especially againstβ30. In [22] an oblate solution with a finite
equilibrium value ofβ32 is obtained for76Sr, while a similar solution for76Sr but with
a finite equilibrium value ofβ33 and also a nearly spherical solution for84Mo with a finite
equilibrium value ofβ30 is reported in [21]. Although such details differ depending on the
treatment of the pairing correlations, the basic features, i.e., the softness to bothβ32 and
β33 of the oblate shape of76Sr and the softness toβ30 of the spherical shape of84Mo are in
common between the present HFB calculations and those of [21,22]. Generally speaking,
Figs. 4–6 indicate that the oblate shapes are softer for octupole deformationsβ3m with
higher values ofm, while the prolate shapes favor lower values ofm.

Fig. 5. Same as Fig. 4 but about the spherical minima.



590 M. Yamagami et al. / Nuclear Physics A 693 (2001) 579–602

Fig. 6. Same as Fig. 4 but about the prolate minima (the triaxial minimum in the case of64Ge).
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Below we focus our attention on the triangular deformation in68Se and the tetrahedral
shape in80Zr and discuss about the microscopic origins of them.

3.2.1. Triangular deformation in 68Se
Generally speaking, octupole correlations are associated with strong couplings between

the shell-model orbits with-l = -j = 3 [36,37]. In theA = 64–84 region under
consideration, they are 1g9/2 and 2p3/2. In order to understand why the oblate shape in
68Se is unstable (or extremely soft) against the triangular deformation, however, we need
to examine the interplay of the quadrupole and octupole deformation effects. Namely, as
explained below, the emergence of the triangular deformation is strongly correlated with
the magnitude of the oblate deformation.

When68Se (N = Z = 34) is oblately deformed, the highΩ levels [404]92 and [413]72
stemming from the 1g9/2 orbit go down in energy and approach the Fermi surfaces for
N = Z = 34 and strongY33 couplings with [301]32 and [310]12 levels (associated with
the 2p3/2 orbit) take place. TheseY33 coupling effects are seen as repulsions between
these levels in Fig. 7 which displays the neutron single-particle energies as functions of the
triangular deformation parameterβ33. Here, the single-particle energies mean eigenvalues
of the HF Hamiltonian with the densityρ(r) determined by the HFB equations, and the
asymptotic Nilsson quantum numbers are used only for convenience of labeling these
levels: they are, of course, not good quantum numbers.

In this figure, results of calculation with use of the SkM∗ and SLy4 interactions are also
shown for comparison. We note that theY33 coupling effects are slightly weaker in the case
of the SkM∗ and SLy4 interactions in comparison with the case of the SIII interaction. This
is because the spacings between the levels coupled by theY33 operator are the smallest
for the SIII interaction: the spacings at the oblate equilibrium deformations between the
[404]9/2 and [301]3/2 levels are about 2.8, 3.4 and 3.6 MeV, and those between the
[413]7/2 and [310]1/2 levels are about 3.8, 4.1 and 4.2 MeV for the SIII, SkM∗ and
SLy4 interactions, respectively. Thus, as shown in Fig. 8, the potential-energy curve with
respect to the triangularβ33 deformation is softest for the case of the SIII interaction,
although they are soft also for the cases of the SkM∗ and SLy4 interactions. Note that, in
making this comparison, we have chosen the pairing-interaction strengthV0 such that the
resulting pairing gaps∆ take about the same values for calculations with different Skyrme
interactions (in order to make the effects of the pairing correlations approximately the same
for all cases), as shown in the right-hand part of Fig. 8.

The importance of the triangularY33 deformation superposed on the oblate shape was
previously pointed out by Frisk, Hamamoto and May [78] in terms of a two-level model as
well as the modified oscillator model which simulates the one-particle spectra in an infinite-
well potential. Our result of the Skyrme–HFB calculation provides a realistic example
which is consistent with their arguments.

3.2.2. Tetrahedral deformation in 80Zr
As shown by Hamamoto, Mottelson, Xie and Zhang [79], the tetrahedral symmetry

associated with theY32 deformation brings about a bunching of the single-particle levels
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Fig. 7. Neutron single-particle energies for68Se plotted as functions of the octupole deformation
parameterβ33 about the oblate shape. Here, the single-particle energies mean eigenvalues of the HF
Hamiltonian with the densityρ(r) determined by the HFB equations. Results for the SIII, SkM∗ and
SLy4 parameter sets are compared. Equilibrium quadrupole deformations obtained for each Skyrme
interaction areβ2 = −0.28,−0.25 and−0.24 for SIII, SkM∗ and SLy4, respectively. Solid (broken)
lines indicate levels which have positive (negative) parity in the limitβ33 = 0. The projection of
the angular momentum on the symmetry axis,Ω , is a good quantum number only atβ33 = 0. The
arrows indicate the-Ω = 3 coupling associated with the triangularY33 deformation as discussed in
the text. The single-particle spectrum for protons is almost the same as for neutrons.

and create a remarkable shell structure: theN = Z = 40 is one of the magic numbers for
such tetrahedral shapes. Such a shell effect is common to various finite fermion systems,
and in fact the tetrahedral deformation has been predicted, for instance, for sodium clusters
consisting of 40 atoms by the density functional Kohn–Sham calculation [80,81], in which
there is no spin–orbit coupling. The instability of the spherical shape of80Zr against the
Y32 deformation, as exhibited in Fig. 5, is evidently connected to the magic numberN =
Z = 40 for the tetrahedral shape.
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Fig. 8. Comparison of the HFB potential-energy curves for68Se about the oblate shape as functions
of the triangular deformation parameterβ33, calculated for different versions of the Skyrme
interaction (left-hand side). The pairing-interaction strengthsV0 are chosen such that the average
pairing gaps become approximately equal for all Skyrme interactions (as displayed in the right-hand
side). The calculated deformation parameterβ2 are−0.28,−0.25 and−0.24 for the SIII, SkM∗ and
SLy4 interactions, respectively.

Fig. 9 shows the single-particle energy diagrams as function of octupole deformation
parameterβ3m (m = 0,1,2,3). As expected, we can see for the case ofm = 2 a remarkable
bunching of single-particle levels and an increase of the shell gap atN = 40 with
increasingβ32, while the other octupole deformations(m = 0,1,3) do not exhibit such
a feature. Looking into details, one notices a fine splitting of the 1g9/2 level into three
levels which correspond to irreducible representations of the double tetrahedral (spinor-Td)
group [41,45]; a twofold-degenerate level and two fourfold-degenerate levels.

Thus, the tetrahedral shell gap atN = Z = 40 emerges even under the presence of the
strong spin–orbit coupling. It should also be noted that the tetrahedral minimum is obtained
in the calculation selfconsistently including the pairing correlations.

3.3. Pairing gaps

In this subsection, we first examine dependence of the pairing gaps on deformations, and
then discuss dependence of the nonaxial octupole deformations on the pairing strength.
The result of calculation for the pairing gaps at equilibrium deformations in each nucleus
is listed in Table 1. As the pairing gaps in the HFB theory depend on single-particle levels,
the numbers listed in this table are averages of the diagonal elements in the HF basis,∆iī ,
over 5 MeV interval in the vicinity of the Fermi surfaces.

In the literature, slightly different quantities like averages of the diagonal matrix
elements in the canonical basis,∆αᾱ , weighted by the coefficients of the Bogoliubov
transformation,uαvα [82–84] orv2

α [3], are used for similar purposes. Fig. 10 compares
these quantities for the case of triangular deformations superposed on the oblate shape in
68Se. We see that the two average quantities,〈∆iī〉 and 〈∆αᾱuαvα〉, are approximately
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Fig. 9. Neutron single-particle energies for80Zr plotted as functions of the octupole deformation
parametersβ3m (m = 0,1,2,3) about the spherical shape. Here, the single-particle energies mean
eigenvalues of the HF Hamiltonian with the densityρ(r) determined by the HFB equations. The SIII
interaction is used. Solid (broken) lines indicate levels which have positive (negative) parity in the
limit β32 = 0. The single-particle spectrum for protons is almost the same as for neutrons.

equal. We also confirm that the averages do not significantly depend on the averaging
interval.

Figs. 11, 12 and 13 display the variation of the pairing gaps with the quadrupole
deformation parameterβ2, the triaxial deformation parameterγ , and the octupole
deformation parametersβ3m (m = 0,1,2,3), respectively. We observe that gross features
of deformation dependence of the pairing gap correlate with the corresponding potential-
energy curves displayed in Figs. 1, 2 and 4–6. Such correlations are rather easy to be
understood from the behavior of the single-particle level density near the Fermi surface,
i.e., from the well-known (spherical or deformed) shell effects that the level density near the
Fermi surface becomes relatively low in the vicinities of the local minima of the potential-
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Fig. 10. Comparison of differently defined average pairing gaps for68Se, plotted as func-
tions of the triangular deformation parameterβ33 superposed on the oblate shape. Here,
〈∆iī 〉-E =∑

i fifīgigī∆iī

/∑
i fifīgigī , 〈uv∆〉cano=∑

α uαvα〈ϕα |∆|ϕα〉/∑α uαvα [82–84]

and〈v2∆〉cano=∑
α v2

α〈ϕα |∆|ϕα〉/∑α v2
α [7], wherefi = (1+ exp[(εi − λF − -E/2)/µ])−1/4,

gi = (1+ exp[(εi − λF + -E/2)/µ])−1/4 with -E = 3 or 5 MeV.

Fig. 11. Variations of the pairing gaps∆τ (τ =p, n) calculated by the constrained Skyrme–HFB
method as functions of the quadrupole deformation parameterβ2 for 64Ge,68Se,72Kr, 76Sr, 80Zr
and84Mo. The effective interactions used are the same as in Fig. 1.
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Fig. 12. Variations of the pairing gaps∆τ (τ =p, n) calculated by the constrained Skyrme–HFB
method as functions of the triaxial deformation parameterγ at fixedβ2 for 64Ge,68Se,72Kr, 76Sr
and80Zr. The effective interactions used are the same as in Fig. 1.

energy curve [85]. Thus, the pairing correlation becomes weaker and the paring gap
decreases near the local minima. On the other hand, the level density becomes relatively
high and the pairing gap increases near the local maxima of the potential-energy curve.

Because of significant shape changes in the sequence of isotopes (isotones) in theA =
64−84 region, it is not always easy to extract the magnitudes of pairing correlations from
experimental odd–even staggerings of binding energies and to assess the appropriateness of
the pairing-interaction strengthV0 = −1000 MeV fm3 used in our HFB calculations. Quite
recently, however, Satuła, Dobaczewski and Nazarewicz [86] have proposed a method for
separating out the pairing correlation effects from the deformed mean-field (single-particle
energy) effects on the odd–even staggerings, and evaluated average pairing gaps; these are
in the range 1.0−1.6 MeV for the mass region under consideration [87]. We note that these
values agree rather well with the well-known global trend∆ = 12/

√
A MeV [88], which

are in the range 1.3−1.5 MeV for A = 64−84. Our calculated values of the pairing gaps,
listed in Table 1 and drawn in Figs. 11–13, mostly lie in this range of values, so that we
may say that the adopted strength forV0 is reasonable.

Another possible source of ambiguity in evaluating the pairing gaps is the proton–
neutron isoscalar pairings which are expected to play an important role in theN = Z nuclei
(see, for example, [89,90] and references therein). We have assumed that such isoscalar
pairings are absent in the states under consideration. Although this assumption should be
examined, there are some experimental indications [90,91] that this may be a fairly good
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Fig. 13. Variations of the pairing gaps∆τ (τ =p, n) calculated by the constrained Skyrme–HFB
method as functions of the octupole deformation parameterβ3m (m = 0,1,2,3) about the local
minima (seen in Fig. 1) of the quadrupole deformation energies for64Ge,68Se,72Kr, 76Sr,80Zr and
84Mo. The effective interactions used are the same as in Fig. 1.
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Fig. 14. Comparison of the potential-energy curves (left-hand side) and average pairing gaps for
protons (right-hand side) calculated by the constrained Skyrme–HFB method as functions of the
triangular deformation parameterβ33 about the oblate shape for68Se with use of different strengths
V0 of the density-dependent pairing interaction (and with the same SIII interaction).

approximation. It is clear that we need a more systematic and detailed investigations, both
theoretical calculations and experimental explorations, for a better understanding of the
pairing correlations in the proton-richN = Z nuclei in theA = 64−84 region.

In order to examine the sensitivity of the calculated results to the strengthV0 of the
pairing interaction, we have made a calculation of the potential-energy curve about the
oblate shape in68Se as a function of the triangular octupole deformation parameterβ33 for
V0 = −900,−1000 and−1100 MeV fm3. The result is shown in Fig. 14. As expected, the
potential-energy curve becomes shallower with increasing (absolute value of)V0. Thus,
the local minimum atβ33 ≈ 0.10 disappears with 10% increase of the (absolute) value
of V0. In any case, the potential is so shallow that we cannot associate a definite physical
significance with the equilibrium values ofβ33. We can still draw from these calculations
an important conclusion that the oblate ground state of68Se is extremely soft with respect
to the triangular octupole deformation.

3.4. Discussion

Actually, we need a more detailed investigation on the physical implication of the
extremely soft potentials like those with respect to the triangular deformation in68Se
and for the tetrahedral shape degree of freedom in80Zr. As is well known in the case
of the axially symmetricY30 octupole deformation [92–96], a definite minimum develops
at finite value ofβ30 after the parity projection when the mean-field potential is very soft
with respect toβ30. For the case of nonaxial octupole deformations, a similar effect of the
parity projection has been demonstrated by Takami, Yabana and Ikeda [42] for light nuclei.
It remains to be examined whether or not the situation is similar for the nonaxial octupole
deformations in medium-mass nuclei under consideration.
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More generally speaking, investigations of modes of excitation and of excitation spectra
associated with the instabilities toward the nonaxial octupole shape deformations is one of
the major challenges for future. The present paper should be regarded as providing a HFB
mean-field basis for a study of dynamics by means of methods like the quasiparticle RPA
and the SCC method [48].

4. Conclusion

We have constructed a new computer code that carries out Skyrme–HFB calculations in
the 3-dimensional cartesian-mesh space without imposing any restriction on the spatial
symmetry, and investigated shape coexistence and nonaxial octupole deformations in
proton-richN = Z nuclei, 64Ge, 68Se, 72Kr, 76Sr, 80Zr and 84Mo. The ground-state
shape changes from triaxial (64Ge), oblate (68Se, 72Kr), large prolate (76Sr, 80Zr), to
spherical (84Mo) asN (= Z) increases, in agreement with the available experimental data
and the previous theoretical calculations. The extreme softness toward theY33 triangular
deformation of the oblate ground state of68Se and that towardY32 tetrahedral deformation
of the excited spherical minimum of80Zr, pointed out by Takami et al. [21,22] on
the basis of the Skyrme–HF plus BCS calculations, have been confirmed by the fully
selfconsistent Skyrme–HFB calculations with the use of the density-dependent zero-range
pairing interaction.

The symmetry-unrestricted Skyrme–HFB computer code constructed in this work
provides a selfconsistent mean-field basis for future investigation of collective modes of
excitation in neutron-rich nuclei with neutron skins as well as in proton-rich nuclei.
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W. Nazarewicz, Nucl. Phys. A 535 (1991) 392.
[61] C.J. Lister, P.J. Ennis, A.A. Chishti, B.J. Barley, W. Gellely, H.G. Price, A.N. James, Phys. Rev.

C 42 (1990) R1191.
[62] S. Skoda, B. Fiedler, F. Becker, J. Eberth, S. Freund, T. Steinhardt, O. Stuch, O. Thelen, H.G.

Thomas, L. Käubler, J. Reif, H. Schnare, R. Schwengner, T. Servene, G. Winter, V. Fischer,
A. Jungclaus, D. Kast, K.P. Lieb, C. Teich, C. Ender, T. Härtlein, F. Köck, D. Schwalm,
P. Baumann, Phys. Rev. C 58 (1998) R5.

[63] S.M. Fischer, D.P. Balamuth, P.A. Hausladen, C.J. Lister, M.P. Carpenter, D. Seweryniak,
J. Schwartz, Phys. Rev. Lett. 84 (2000) 4064.

[64] G. de Angelis, C. Fahlander, A. Gadea, E. Farnea, W. Gelletly, A. Aprahamian, D. Bazzacco,
F. Becker, P.G. Bizzeti, A. Bizzeti-Sona, F. Brandolini, D. de Acuna, M. De Poli, J. Eberth,
D. Foltescu, S.M. Lenzi, S. Lunardi, T. Martinez, D.R. Napoli, P. Pavan, C.M. Petrache, C. Rossi
Alvarez, D. Rudolph, B. Rubio, W. Satula, S. Skoda, P. Spolaore, H.G. Thomas, C.A. Ur,
R. Wyss, Phys. Lett. B 415 (1997) 217.

[65] C.J. Lister, M. Campbell, A.A. Chishti, W. Gelletly, L. Goettig, R. Moscrop, B.J. Varley, A.N.
James, T. Morrison, H.G. Price, J. Simpson, K. Connell, O. Skeppstedt, Phys. Rev. Lett. 59
(1987) 1270.

[66] D. Bucurescu, C. Rossi Alvarez, C.A. Ur, N. Marginean, P. Spolaore, D. Bazzacco, S. Lunardi,
D.R. Napoli, M. Ionescu-Bujor, A. Iordachescu, C.M. Petrache, G. de Angelis, A. Gadea,
D. Foltescu, F. Brandolini, G. Falconi, E. Farnea, S.M. Lenzi, N.H. Medina, Zs. Podalyak,
M. De Poli, M.N. Rao, R. Venturelli, Phys. Rev. C 56 (1997) 2497.

[67] K. Hyde, J. Moreau, M. Waroquier, Phys. Rev. C 29 (1984) 1859.
[68] W. Nazarewicz, J. Dudek, R. Bengtsson, T. Bengtsson, I. Ragnarsson, Nucl. Phys. A 435 (1985)

397.
[69] J. Dudek, W. Nazarewicz, N. Rowley, Phys. Rev. C 35 (1987) 1489.
[70] J.P. Maharana, Y.K. Gambhir, J.A. Sheikh, P. Ring, Phys. Rev. C 46 (1992) R1163.
[71] E. Kirchuk, P. Federman, S. Pittel, Phys. Rev. C 47 (1993) 567.
[72] G.A. Lalazissis, M.M. Sharma, Nucl. Phys. A 586 (1995) 201.
[73] A. Petrovici, K.W. Schmid, A. Faessler, Nucl. Phys. A 605 (1996) 290.
[74] A. Petrovici, K.W. Schmid, A. Faessler, Nucl. Phys. A 665 (2000) 333.
[75] M. Honma, T. Mizusaki, T. Otsuka, Phys. Rev. Lett. 77 (1996) 3315.
[76] I. Hamamoto, X.Z. Zhang, Z. Phys. A 353 (1995) 145.
[77] P. Sarriguren, E. Moya de Guerra, A. Escuderos, Nucl. Phys. A 658 (1999) 13.
[78] F. Frisk, I. Hamamoto, F.R. May, Phys. Scr. 50 (1994) 628.
[79] I. Hamamoto, B. Mottelson, H. Xie, X.Z. Zhang, Z. Phys. D 21 (1991) 163.
[80] S.M. Reimann, M. Koskinen, H. Häkkinen, P.E. Lindelof, M. Manninen, Phys. Rev. B 56 (1997)

12147.



602 M. Yamagami et al. / Nuclear Physics A 693 (2001) 579–602

[81] J. Kolehmainen, M. Koskinen, H. Häkkinen, M. Manninen, Czech. J. Phys. 48 (1998) 679.
[82] S. Takahara, N. Onishi, N. Tajima, Phys. Lett. B 331 (1994) 261.
[83] M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn, nucl-th/0005028.
[84] T. Duguet, P. Bonche, P.-H. Heenen, nucl-th/0005040.
[85] M. Brack, J. Damgaad, A.S. Jensen, H.C. Pauli, V.M. Strutinsky, C.Y. Wong, Rev. Mod.

Phys. 44 (1972) 320.
[86] W. Satuła, J. Dobaczewski, W. Nazarewicz, Phys. Rev. Lett. 81 (1998) 3599.
[87] J. Dobaczewski, P. Magierski, W. Nazarewicz, W. Satula, Z. Szymański, Phys. Rev. C 63 (2001)
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Periodic-orbit bifurcations and superdeformed shell structure
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We have derived a semiclassical trace formula for the level density of the three-dimensional spheroidal
cavity. To overcome the divergences occurring at bifurcations and in the spherical limit, the trace integrals over
the action-angle variables were performed using an improved stationary phase method. The resulting semi-
classical level density oscillations and shell-correction energies are in good agreement with quantum-
mechanical results. We find that the bifurcations of some dominant short periodic orbits lead to an enhance-
ment of the shell structure for ‘‘superdeformed’’ shapes related to those known from atomic nuclei.
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I. INTRODUCTION

The periodic-orbit theory~POT! @1–7# is a nice tool for
studying the correspondence between classical and qua
mechanics and, in particular, the interplay of determinis
chaos and quantum-mechanical behavior. But also for
tems with integrable or mixed classical dynamics, the P
leads to a deeper understanding of the origin of shell st
ture in finite fermion systems from such different areas
nuclear @5,8–10#, metallic cluster@11,12#, or mesoscopic
semiconductor physics@13,14#. Bifurcations of periodic or-
bits may have significant effects, e.g., in connection with
so-called ‘‘superdeformations’’ of atomic nuclei@5,6,9,15#,
and were recently shown to affect the quantum oscillati
observed in the magneto-conductance of a mesoscopic
vice @14#.

In the semiclassical trace formulas that connect
quantum-mechanical density of states with a sum over
periodic orbits of the classical system@1–3#, divergences
arise at critical points where bifurcations of periodic orb
occur or where symmetry breaking~or restoring! transitions
take place. At these points the stationary-phase approx
tion, used in the semiclassical evaluation of the trace in
grals, breaks down. Various ways of avoiding these div
gences have been studied@2,4,16#, some of them employing
uniform approximations@17–20#. Here we employ an im-
proved stationary-phase method~ISPM! for the evaluation of
the trace integrals in the phase-space representation, b
on the studies in Refs.@4,18# which we have derived for the
elliptic billiard @21#. It yields a semiclassical level densit
that is regular at all bifurcation points of the short diame
orbit ~and its repetitions! and in the circular~disk! limit.
Away from the critical points, our result reduces to the e
tended Gutzwiller trace formula@3,5–7# and is identical to
that of Berry and Tabor@4# for the leading-order families o
periodic orbits.

The main purpose of the present Rapid Communicatio
to report on the extension of our semiclassical approac
the three-dimensional~3D! spheroidal cavity@22#, which
may be taken as a simple model for a large deformed nuc
1063-651X/2001/63~6!/065201~4!/$20.00 63 0652
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@5,8# or a ~highly idealized! deformed metal cluster@11,12#,
and to specify the role of orbit bifurcations in the shell stru
ture responsible for the superdeformation. Although
spheroidal cavity is integrable~see, e.g., Ref.@23#!, it exhib-
its all the difficulties mentioned above~i.e., bifurcations and
symmetry breaking! and therefore gives rise to an exempla
case study of a nontrivial 3D system. We apply the ISPM
the bifurcating orbits and succeed in reproducing the sup
deformed shell structure by the POT, hereby observin
considerable enhancement of the shell-structure amplit
near the bifurcation points.

II. THEORY

The level densityg(E) is obtained from the semiclassica
Green function@1# by taking the imaginary part of its trace i
(I ,Q) action-angle variables@6,21#,

g~E!5(
i

d~E2« i !.Re(
a

E dI 8dQ9

~2p\!3 d~E2H !

3expH i

\
@Sa~ I 8,I 9,ta!1~ I 92I 8!•Q9#2 i

p

2
maJ .

~1!

Here $« i% is the single-particle energy spectrum andH
5H(I ) is the classical Hamiltonian. The sum is taken ov
all classical trajectoriesa specified by the initial actionsI 8

and final anglesQ9. Sa(I 8,I 9,ta)52* I8
I9I•dQ is the action

integral andta the time for the motion along the trajectorya,
and ma is the Maslov index related to the caustic and t
turning points@21,22#. In the spheroidal variables$u,v,w%,
the actionI has the components

I u5
pc

p E
2uc

uc
duAs12sin2 u2s2 /cos2 u,

~2!

I v5
pc

p E
vc

v t
dvAcosh2 v2s12s2 /sinh2 u,
©2001 The American Physical Society01-1
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I w5pcAs2.

Hereby p5(2mE)1/2 is the particle’s momentum andc
5(b22a2)1/2 half the distance between the foci;b anda are
the semiaxes~with b.a) of the spheroid with its volume
fixed by a2b5R3 and the axis ratioh5b/a as deformation
parameter; and6uc ~or vc) andv t are the caustic and turn
ing points, respectively. In Eq.~2! we use the dimensionles
‘‘action’’ variables s1 , s2 @21# in which the torus of the
classical motion is given by

s2
250<s2<

1

h221
5s2

1 ,

~3!

s1
25s2<s1<

h2

h221
2s2~h221!5s1

1 .

In the ISPM, we expand the actionSa in Eq. ~1! up to
second-order terms around its stationary points and keep
preexponential factor at zero order, taking the integrati
over the torus within thefinite limits given by Eq.~3!. For
the oscillating~‘‘shell-correction’’! part of the level density
dg(E)5g(E)2g̃(E), whereg̃(E) is its smooth part@7,24#,
we obtain

dg~E!.
1

E0
Re(

b
Ab~E!expS ikLb2 i

p

2
mbDwb

g , ~4!

where k5p/\ is the wave number andE05\2/2mR2 our
energy unit. The amplitudesAb will be specified below. The
sum overb includes all two-parameter families of thre
dimensional~3D! periodic orbits and elliptic and hyperboli
2D orbits lying in a plane containing the symmetry axis~all
with degeneracy parameterK52), the one-parameter fam
lies of ~2D! equatorial orbits lying in the central plane pe
pendicular to the symmetry axis~with K51), and the~1D!
isolated long diameter~with K50). In Eq. ~4!, Lb is the
length of the orbitb at the stationary point (s1* ,s2* ) which
for the 3D orbits lies inside the physical region of the tor
~3!, and is analytically continued outside this region. T
s250 boundary of Eq.~3! is occupied by the 2D orbits with
K52. The stationary points are determined by the roots
the periodicity conditions vu /vv5nu /nv and vu /vw

5nu /nw ; herebyvk5]H/]I k are the frequencies andnk
are coprime integers which specify the periodic orbitsb
5M (nv ,nw ,nu), whereM is the repetition number. The fac
tor wb

g5exp(2g2Lb
2 /4R2) in Eq. ~4! is the result of a convo-

lution of the level density with a Gaussian function over
rangeg in the variablekR. This ensures the convergence
the POT sum~4! by suppressing the longer orbits which a
not relevant for the coarse-grained gross-shell structure@6,7#.

For Strutinsky’s shell-correction energydU @3,7,24#, we
obtain ~with time reversal symmetry and a spin factor 2!
06520
he
s

f

dU52(
i 51

N/2

« i22E
0

ẼF
Eg̃~E!dE

.8R2EF Re(
b

Ab~EF!

Lb
2 expS ikFLb2 i

p

2
mbD . ~5!

The Fermi energiesEF ~and with it kF) and ẼF are deter-
mined by the particle number conservationN

52*0
EFg(E)dE52*0

ẼFg̃(E)dE. Due to the factorLb
22 , the

PO sum in Eq.~5! may converge faster for the shortest orb
than the level density~4! for small g. Any enhancement of
the amplitudesAb of the most degenerate short periodic o
bits ~e.g., due to bifurcations or to symmetry restoring,
discussed below! therefore leads to an enhancement of t
shell structure and hence to an increased stability of the
tem.

We present here only the amplitudes of the leading c
tributions to Eqs.~4! and ~5!. For further details~including,
e.g., explicit expressions for the Maslov indicesma), we
refer to a forthcoming, more extensive publication@22#.

For the amplitudesAb of the most degenerate (K52)
families of periodic 3D and 2D orbits, we obtain

Ab
(K52)5

icLb@]I u /]s1#s
n*

p~4MRnv!2AKbs2*
)
n51

2

erf~xn
2 ,xn

1!. ~6!

The quantityKb5Kb
(1)Kb

(2) is related to the main curvature
Kb

(n) of the energy surfaceE5H(s1 ,s2) in the ‘‘action’’
plane (s1 ,s2), given by

Kb
(n)5F]2I v

]sn
2 1

vu

vv

]2I u

]sn
2 1

vw

vv

]2I w

]sn
2 G

s
n*
, ~n51,2!. ~7!

In Eq. ~6!, the arguments of the two-dimensional error fun
tion erf(x,y)52*x

ydze2z2
/Ap are given by the turning

points in the action plane

xn
65A2 ipMnvKb

(n)/\~sn
62sn* ! ~n51,2!; ~8!

see Eq.~3! for the boundariessn
6 . All quantities in Eq.~6!

can be expressed analytically in terms of elliptic integra
For the 3D orbits, our result~6! is in agreement with tha
obtained by exact Poisson summation over the EBK sp
trum ~cf. Refs.@4,7#!.

For the contribution of theK51 families of equatorial
orbits to Eq.~4!, we obtain the amplitudes

Ab
(K51)5A i sin3 fb

pMnvkRhFb
)
n51

3

erf~xn
2 ,xn

1!, ~9!

wherefb5pnw /nv , Fb is their stability factor@1,2,6#, s1*
5s2* 5cos2 fb /(h221), and

x3
15kcA 2 ip\Fb

64Mnv~s2* 11!Kb
(1), x3

250. ~10!
1-2
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The contribution of the isolated long diameter orb
which may be expressed in terms of incomplete Airy in
grals @21,22#, is not important for deformations of the orde
h;1.222.

III. DISCUSSION OF RESULTS

In Fig. 1 we showuAbu versus deformationh ~at kR
540) for a pair of orbits involved in a typical bifurcatio
scenario. At the critical pointh51.618 . . . the equatorial
‘‘star’’ orbit ~5,2! undergoes a bifurcation at which the 3
orbit ~5,2,1! is born; the latter does not exist belowh
51.618 . . . .

In the standard stationary-phase approach~SSPM; dash-
dotted lines!, the amplitude of the~5,2! orbit diverges ath
51.618 . . . , whereas that of the bifurcated orbit~5,2,1! is
finite but discontinuous. As seen in Fig. 1, the ISPM~solid
lines! leads to a finite amplitudeA(5,2)

(K51) for the ~5,2! orbit.
This is because the factorFb in the denominator of Eq.~9!,
which goes to zero at the bifurcation, is cancelled by
same factor in the numerator ofx3

1 ~10! via the third error
function in Eq.~9!. A similar result was found for the shor
diameter orbit 2~2,1! in the elliptic billiard @21#. Further-
more, the ISPM softens the discontinuity for the~5,2,1! orbit,
leading to a maximum amplitude slightly above the critic
deformation.

The relative enhancement of these amplitudesAb near the
bifurcation point can also be understood qualitatively fro
the following argument. At the bifurcation of the equator
~5,2! orbit, its degeneracy parameterK51 locally increases
to 2, because it is there degenerate with the orbit fam
~5,2,1! that hasK52 at all deformationsh>1.618 . . . . This
is similar to a symmetry restoring transition. An increase
the symmetry parameterK by one unit leads to one mor
exact integration compared to the SSPM, and thus the
plitudes ~6! and ~9! acquire an enhancement factorAkLb

}ApR/\ ~cf. Refs.@3,7#!.

FIG. 1. Moduli of amplitudesuAbu vs h for the equatorial
‘‘star’’ orbit ~5,2! (K51) and the 3D orbit~5,2,1! (K52) bifur-
cating from it ath51.618 . . . . Solid lines: using the ISPM accord
ing to Eqs.~9! and ~6!, respectively; dash-dotted lines: using th
standard stationary-phase approach.
06520
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A similar enhancement of the double triangle 2~3,1! and
the 3D orbit ~6,2,1! is found near their bifurcation pointh
5A351.732 . . . . However, the curvatureKb

(1) ~7! for orbits
like M (3t,t,1) (t52,3, . . .! is identically zero and hence th
SSPM is divergent for all deformationsh>1, in contrast to
the situation with orbits like~5,2,1! with finite Kb

(1) . Here we
have to take into account the next nonzero third-order te
in the expansion ofSa , although the (3t,t,1) ISPM ampli-
tude ~6! is finite and continuous everywhere. The amplitu
can then be expressed in terms of incomplete Airy and G
integrals with finite limits @22#. For the equatorial orbits
t(3,1), like for the double triangles 2~3,1!, one has a zero
curvatureKb

(1) only at the bifurcation pointh5A3. Here
Fb /Kb

(1)→0, and a similar mechanism of cancellation of si
gularities for other orbits takes place through Eqs.~8!–~10!.
But the relative enhancement of the ISPM amplitudes~6,9!
of such orbits at the bifurcations is of orderkLb because of a
change of the degeneracy parameterK by two units ~see Ref.
@22# for details!. In this sense we avoid here a double sing
larity related to a double restoring of symmetry.

In Figs. 2 and 3, we present semiclassical level densi
dg(E) ~4! versuskR and shell-correction energiesdU ~5!
versusN1/3 for various critical deformations~thick dotted
lines!, and compare them to the corresponding quantu
mechanical results~thin solid lines!. We observe a very good
agreement of the gross-shell structure at all deformatio
The most significant contributions to these results near
critical deformations are coming from bifurcating orbits wi
lengths smaller than about 10R, in line with the convergence
arguments for the POT sums~4! and ~5! mentioned above.
For the bifurcation ath51.618 . . . , the orbits ~5,2,1! and
~5,2! give contributions comparable with other 2D orbits. F
h5A3, the bifurcating orbits~6,2,1! and ~6,2! are also im-
portant.

FIG. 2. Level densitydg(E) ~4! ~unit E0
21) vs kR for different

critical deformationsh. The Gaussian averaging parameter isg
50.3. Thin solid lines: quantum-mechanical results; thick dot
lines: semiclassical results using the ISPM.
1-3
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The role of the bifurcating orbits increases for larger d
formations and is dominating at the superdeformationh52.
For this deformation, the most important orbits in the pres
spheroidal cavity model are the 3D orbits~5,2,1!, ~6,2,1!,
~7,2,1!, and~8,2,1!.

FIG. 3. Shell-correction energydU ~5! ~unit E0) vs cube root of
particle numberN1/3 ~same notation and same deformations as
Fig. 2!.
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These results are in agreement with both heights and
sitions of the peaks in the length spectra obtained in R
@15# from the Fourier transforms of the quantum level de
sitiesg(kR) at the same deformations.

IV. SUMMARY AND CONCLUSIONS

We have obtained an analytical trace formula for the
spheroidal cavity model, which is continuous through
critical deformations where bifurcations of periodic orb
occur. We find an enhancement of the amplitudesuAbu at
deformationsh;1.622.0 due to bifurcations of 3D orbits
from the shortest 2D orbits. We believe that this is an imp
tant mechanism which contributes to the stability of sup
deformed systems. Our semiclassical analysis may there
lead to a deeper understanding of shell structure effect
superdeformed fermionic systems, not only in nuclei
metal clusters but also, e.g., in deformed semicondu
quantum dots whose conductance and magnetic suscept
ties are significantly modified by shell effects.
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Wobbling motion in atomic nuclei with positive-g shapes
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The three moments of inertia associated with the wobbling mode built on the superdeformed states in163Lu
are investigated by means of the cranked shell model plus random phase approximation to the configuration
with an aligned quasiparticle. The result indicates that it is crucial to take into account the direct contribution
to the moments of inertia from the aligned quasiparticle so as to realizeJx.Jy in positive-g shapes. Quench-
ing of the pairing gap cooperates with the alignment effect. The peculiarity of the recently observed163Lu data
is discussed by calculating not only the electromagnetic properties but also the excitation spectra.
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Rotation is one of the specific collective motions in fin
many-body systems. Most of the nuclear rotational spe
can be understood as the outcome of one-dimensional~1D!
rotations of axially symmetric nuclei. Two representati
models—the moment of inertia of the irrotational fluid,J irr,
and that of the rigid rotor,J rig, both specified by an appro
priate axially symmetric deformation parameterb—could
not reproduce the experimental ones given byJ exp; J irr

,J exp,J rig. From a microscopic viewpoint, the moment
inertia can be calculated as the response of the many-b
system to an externally forced rotation—the cranking mo
@1#. This reproducesJ exp well by taking into account the
pairing correlation. Triaxial nuclei can rotate about th
three principal axes and the three corresponding momen
inertia depend on their shapes in general. In spite of a lo
theoretical studies, their shape~in particular the triaxiality
parameterg) dependence has not been understood well
cause of the lack of decisive experimental data. Recen
some evidences of 3D rotations have been observed, su
the shears bands and the so-called chiral-twin bands@2#. In
addition to these fully 3D motions, from the general arg
ment of symmetry breaking, there must be a low-lying c
lective mode associated with the symmetry reduction from
1D rotating axially symmetric mean field to a 3D rotatin
triaxial one. This is called the wobbling mode. Notice th
the collective mode associated with the ‘‘phase transitio
from an axially symmetric to a triaxial mean field in th
nonrotating case is the well-knowng vibration. Therefore,
the wobbling mode can be said to be produced by an in
play of triaxiality and rotation. The wobbling mode is d
scribed as a small amplitude fluctuation of the rotational a
away from the principal axis with the largest moment
inertia. Bohr and Mottelson first discussed this mode@3#.
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Mikhailov and Janssen@4# and Marshalek@5# described this
mode in terms of the random phase approximation~RPA! in
the rotating frame. In these works it was shown that ag
50 this mode turns into the odd-spin members of theg
vibrational band while atg560° or 2120° it becomes the
precession mode built on the top of the high-K isomeric
states@6#. Here we note that, according to the direction of t
rotational axis relative to the three principal axes of t
shape,g runs from2120° to 60°.

Recently, electromagnetic~EM! properties of the second
triaxial superdeformed~TSD2! band in 163Lu were reported
and it was concluded that the TSD2 is a wobbling band
cited on the previously known yrast TSD1 band, on the ba
of comparisons to a particle-rotor model~PRM! calculation
@7,8#. In conventional PRM calculations an irrotational m
ment of inertia,

J k
irr5

4

3
J0sin2S g1

2

3
pkD , ~1!

wherek51 –3 denote thex, y, and z principal axes, is as-
sumed. The magnitudeJ0 is treated as an adjustable param
eter although it can be identified asJ053B2b2, whereB2 is
the inertia parameter in the Bohr Hamiltonian@9#. This re-
duces toJ irr in the first paragraph by substitutingg50 and
k51, and satisfies such a required property that collec
rotations about the symmetry axes are forbidden. SinceJ y

irr

is largest for 0,g,60° and the main rotation occurs abo
the axis of the largest inertia, the PRM withJ k

irr cannot de-
scribe the positive-g rotation, that is, the rotation about th
shortest axis (x axis!. Then in Refs.@7,8# the so-called
g-reversed moment of inertia@10#, J k

rev, defined by invert-
ing the sign ofg in Eq. ~1!, was adopted. Although this
reproduced the measured EM properties well, this does
satisfy the required property mentioned above and its ph
cal implications are not very clear. In this Rapid Commu
cation, therefore, we study the moments of inertia associa
with the wobbling motion excited on the positive-g states by
©2002 The American Physical Society03-1
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FIG. 1. ~a! Moments of inertia
and ~b! wobbling frequency~left
scale! and wobbling angle~right!
in the five quasiparticle state in
147Gd calculated as functions ofg
at \v rot50.3 MeV. The dip
aroundg555° stems from a weak
fragmentation of collectivity. Note
that the present method of calcu
lation does not apply tog.0.
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means of the cranked shell model plus RPA. This framew
does not divide the system into a valence particle and a ro
and therefore, can calculate the three moments of inerti
the whole system microscopically. We believe that this is
first step toward understanding the fully 3D nuclear ro
tions.

We have developed a computer code for the RPA to e
tation modes built on configurations with arbitrary number
aligned quasiparticles~QPs!. In this paper, we present th
results for the 4–6 QP configurations in Gd isotopes and
1 QP one in163Lu. In particular, this is the first RPA calcu
lation for the rotating odd-A configurations, to our knowl-
edge. Note that this approach is different from the conv
tional particle-vibration coupling calculations where the R
itself is performed for the even-even ‘‘core’’ configuration
Since the details of the formulation have already been gi
in Refs. @11,12#, here we describe only the outline. The Q
states were obtained by diagonalizing the cranked tria
Nilsson plus BCS Hamiltonian at each rotational frequen
v rot by adjusting chemical potentials to give correct avera
particle numbers. The doubly stretchedl2 and l•s potentials
were adopted, and their strengths were taken from Ref.@13#.
The RPA calculation was performed by adopting the pair
plus doubly stretchedQ-Q interaction. The existence o
aligned QPs is taken into account by exchanging the de
tions of the QP creation and annihilation operators in
appropriate manner. Actual calculations were done in fi
major shells (Nn

(osc)53 –7 andNp
(osc)52 –6) by using the

dispersion equation@5#,

~\v!25~\v rot!
2
@Jx2J y

(eff)~v!#@Jx2J z
(eff)~v!#

J y
(eff)~v!J z

(eff)~v!
, ~2!

obtained by decoupling the Nambu-Goldstone mode ana
cally assuminggÞ0. This equation is independent of th
strengths of the interaction. Not only the collective wobbli
mode (v5vwob) but also many noncollective modes are o
tained from this equation. The effective inertiaJy,z

(eff)(v)
5Jy,z

(PA)(v)/Vy,z(v), defined in the principal-axis~PA! frame
~their concrete expressions were given in Ref.@12#!, depend
on the eigenmode while the kinematicalJx5^Jx&/v rot ,
where the expectation value taken with respect to the wh
system is common to all the modes. It should be noted
Eq. ~2! coincides with the original expression forvwob @3# if
Jx andJy,z

(eff)(v) are replaced with constant moments of i
ertia.
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In the following, we present some numerical results. H
the parameterse2 ~alternative tob), g, Dn , and Dp were
chosen so as to reproduce the available experimental d
and kept constant as functions ofv rot . We have confirmed
that qualitative features of the result are robust and the
tails of the parameter dependence will be given in a sepa
publication@14#. It is nontrivial to obtain the wobbling solu
tion in the RPA for positive-g nuclei and the QP alignment i
indispensable for its appearance. In order to show this,
first discuss a theoretical calculation for a precession m
that might be built on top of theI p549/21 isomeric state in
147Gd, where the whole angular momentum is built up by t
alignment of the five QPs,@(ph11/2)

2(nh9/2, f 7/2)
2#181 in

146Gd plus@n i 13/2#13/21, so that ag560° shape~axially sym-
metric about thex axis! is realized. This state is obtained b
cranking with\v rot50.3 MeV. We chosee250.19 andDn
5Dp50.6 MeV, and reproduced the observed static qu
rupole moment and theg factor @15,16#. In order to see the
behavior of the three moments of inertia, we calculated
wobbling mode by changing the parameterg from 60°. The
result is presented in Fig. 1~a!. Although at a first glance thei
g dependence resembles that of the rigid rotor,

J k
rig5

16p

15
B2S 12A 5

4p
b cosS g1

2

3
pkD D , ~3!

the physical content ofJx changes withg; the fraction of the
collective contribution decreases asg increases and reache
0 at g560°. Accordingly, it can be conjectured that theg
dependence of the ‘‘rotor’’ contribution is approximately i
rotational and the QP contribution is superimposed on top
the former by aligning its angular momentum to thex axis.
Our previous calculation@12,17# for a negative-g nucleus,
182Os, also supports this and consequently it is thought
the wobbling mode can appear relatively easily in superfl
negative-g nuclei. To see if this conjecture is meaningfu
starting from 146Gd we add thei 13/2 quasineutrons sequen
tially. The result shows thatJx increases as the number o
aligned QPs increases. Since the increase inJy,z

(eff) is rather
moderate, the increase inJx leads to that of the wobbling
frequencyvwob. Thus, the change fromJx,Jy in J k

irr to
Jx.Jy in J k

rev may be related qualitatively to the increase
Jx stemming from the alignment that is not accounted for
the PRM, considering the fact that the alignment of parti
states leads tog.0.
3-2
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FIG. 2. ~a! Wobbling frequency~left scale! and wobbling angle~right! and~b! moments of inertia in the TSD2 band in163Lu as functions
of \v rot . Here the latter were given by normalized toJx(31/2)599.2\2/MeV. The protonBC crossing occurs at\v rot*0.55 MeV in the
calculation. Experimental values were calculated from the energy levels in Refs.@7,8#.
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At g;30°, whereJy reaches its maximum as in the irro
tational model, we could not obtain a wobbling solution.
Fig. 1~b!, \vwob and the wobbling angle

uwob5tan21
AuJy

(PA)~vwob!u21uJz
(PA)~vwob!u2

^Jx&
~4!

are graphed. This shows thatvwob becomes imaginary an
uwob blows up in this region. Comparing Figs. 1~a! and 1~b!,
it may be inferred that the wobbling motion excitation on
mean field rotating about thex axis becomes unstable atg
;30° due toJx,J y

(eff) , and that a tilted-axis rotation woul
be realized. Putting this unstable region in between, the
lution in the larger-g side is like a precession of an axial
symmetric body about thex axis, whereas that in the smalle
g side is like ag vibration around an axially symmetri
shape about thez axis.

Now we turn to the TSD bands in163Lu. We chosee2
50.43, g520°, andDn5Dp50.3 MeV, and obtained tran
sition quadrupole momentsQt510.9–11.3e b for \v rot
50.20–0.57 MeV in accordance with the data,Qt510.7
60.7 e b @18#. We have obtained for the first time~aside
from the theoretical simulation above! the wobbling solution
in the RPA for positive-g nuclei. Here it should be stresse
that the inclusion of the five major shells and the alignm
effect of the protoni 13/2 quasiparticle is essential for obtain
ing this result. In Fig. 2~a! the measured excitation energy
the TSD2 band relative to that of the TSD1 and the cal
lated \vwob are shown. The most peculiar point in the e
perimental data is thatvwob decreases as a function ofv rot .
If v rot-independent moments of inertia such as the irro
tional ones are adopted,vwob increases linearly withv rot ,
see the comment below Eq.~2!. The wobbling frequency is
sensitive to the difference among the three moments of i
tia, and the ratiosJ y

(eff)/Jx andJ z
(eff)/Jx actually determine

vwob. For example, theg-reversed moments of inertia giv
J y

rev/J x
rev50.43 andJ z

rev/J x
rev50.12 for g520° leading to

vwob.3v rot , which is quite different from the experimenta
data. In contrast, as shown in Fig. 2~b!, the three moments o
inertia calculated microscopically depend onv rot even when
the shape parameters are fixed, and the resultantvwob can
either increase or decrease in general. In the present ca
163Lu in Fig. 2,Jx2J y

(eff) mainly determines thev rot depen-
04130
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dence. Its decrease is a consequence of that ofJx ; the partial
contribution toJx from the protoni 13/2, i x /v rot , decreases
asv rot increases since this orbital is already fully aligned a
therefore the aligned angular momentumi x is approximately
constant. Thus, our result forvwob stays almost constan
againstv rot , and even decreases slightly at higher frequ
cies approaching the experimentally observed one. T
clearly shows that microscopic calculation of the three m
ments of inertia is crucial to understand thev rot dependence
of vwob in 163Lu. Let us compare this result with that fo
147Gd above. In 147Gd, J y

(eff)/Jx.1, J z
(eff);0, and

uQ1
(2)/Q2

(2)u!1 at g&20°. The last quantity measures th
rotationalK-mixing. This indicates that this solution is esse
tially similar to the g vibration in an axially symmetric
nucleus as mentioned above. In contrast, the result
J y

(eff)/Jx50.90, J z
(eff)/Jx50.19, anduQ1

(2)/Q2
(2)u50.78 for

163Lu at \v rot50.3 MeV, for example, indicates that thi
solution is more like a wobbling motion of a triaxial bod
The wobbling angle shown in Fig. 2~a! is 19° –13° for the
calculated range. It is evident that the present sm
amplitude approximation holds better at high spins. We c
firmed that this wobbling solution disappeared asg de-
creased. Another feature distinct from theg vibration is that
the present solution exists even atDn5Dp50, whereas it is
well known that the pairing field is indispensable for th
existence of low-lying shape vibrations. This is related
such a tendency that the moments of inertia approach
rigid ones,Jx.Jy for g.0, as the pairing gap decreas
even without aligned QPs.

A significant point of the data in Refs.@7,8# is that the
interband EM transition rates connecting the statesI ~TSD2!
to I 21 ~TSD1! were precisely measured. In Fig. 3, we com
pare our numerical results with the measured ones in a f
similar to those in Refs.@7,8#. Calculated values forI ~TSD2!

I 11 ~TSD1! are also included in order to show the sta
gering behavior characteristic to this kind of transitions@12#.
Figure 3~a! presents the relativeB(E2). The data indicate
huge collectivity of the interbandB(E2), such as 170 Weis
skopf unit. Although the present RPA solution is extreme
collective, ucn5wobu.0.9 in the sum rule~Eq. ~4.30! in Ref.
@12#!, in comparison to usual low-lying vibrations, the calc
lation accounts for 1/2–1/3 of the measured strength. Fig
3-3
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FIG. 3. Interband transition rates forI ~TSD2! →I 61 ~TSD1! transitions as functions of 23 spin I, ~a! E2 and~b! M1. They are divided
by the in-bandE2(I→I 22) transition rates. Experimental values were taken from Ref.@8#. Noting that the statesI 11 ~TSD1! are slightly
higher in energy thanI ~TSD2! at I .51/2 andB(Tl ;I→I 11).B(Tl ;I 11→I ) at high spins, we plotted those forI→I 11 at the places
with the abscissaeI 11 in order to show clearly their characteristic staggering behavior.
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3~b! graphsB(M1)/B(E2)in . The smallness ofB(M1) also
reflects collectivity, that is, the coherence with respect to
E2 operator, indirectly. Having confirmed the insensitivity
gs

(eff) , we adopted 0.6gs
(free) conforming to Ref.@8# and cal-

culatedB(M1). The result is similar to that of the PRM. W
confirmed that the sign of theE2/M1 mixing ratios was
correct.

To summarize, we have performed, for the first time,
RPA calculation in the rotating frame to the triaxial superd
formed odd-A nucleus163Lu and discussed the physical co
ditions for the appearance of the wobbling solution in t
RPA. We have confirmed that the protoni 13/2 alignment is
indispensable for the appearance of the wobbling mode
04130
e
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this nucleus. The appearance of the wobbling mode requ
Jx.J y

(eff)(ÞJ z
(eff)), but the moments of inertia of the even

even core exhibit irrotational-likeg dependence and, there
fore, cannot fulfill this condition for positive-g shapes. Con-
sequently, the alignment effect that increasesJx is necessary.
Quenching of the pairing correlation also cooperates with
alignment effect for making theg dependence rigidlike.
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