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Abstract
Construction of the microscopic theory of large-amplitude collective motion,
capable of describing a wide variety of quantum collective phenomena in nuclei,
is a long-standing and fundamental subject in the study of nuclear many-body
systems. The present status of the challenge toward this goal is discussed
taking the shape coexistence/mixing phenomena as typical manifestations of
the large-amplitude collective motion at zero temperature. Some open problems
in rapidly rotating cold nuclei are also briefly discussed in this connection.

1. Introduction

Low-frequency collective modes of excitation in cold nuclei near the yrast line exhibit a number
of unique features of the nucleus as a finite quantum many-body system. To understand the
nature of these collective excitations, we need to develop a microscopic theory of large-
amplitude collective motion (LACM), which has sound theoretical basis and, at the same time,
is practical enough for applications to a wide variety of nuclear collective phenomena. This
is a very broad and long-term pursuit in nuclear structure physics. Through the attempts up
to now to construct the microscopic theories of LACM, promising new concepts and methods
have been proposed and developed (see [1] for a review), but it may be fair to say that the
challenge is still in its infancy. In this paper, we discuss the present status of the challenge
taking mainly the shape coexistence/mixing phenomena as typical manifestations of LACM
at zero temperature. Open problems in the theoretical formulation of microscopic LACM
theory and collective phenomena awaiting its application are listed including those in rapidly
rotating cold nuclei. This paper is not intended to be a comprehensive review of this broad
field of nuclear structure physics, and we apologize that the selection of topics and references
is leaning to our personal interest. Certainly, microscopic description of spontaneous fission
from the viewpoint of nonlinear/non-equilibrium physics is one of the major goals, but this
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subject will be discussed by other contributors to this special issue on open problems in nuclear
structure.

2. Shape coexistence/mixings as large-amplitude collective phenomena

2.1. Shape coexistence phenomena

In recent years, new experimental data exhibiting coexistence of different shapes (like
spherical, prolate, oblate and triaxial shapes) in the same energy region (of the same nucleus)
have been obtained in low-energy spectra of nuclei in various regions of a nuclear chart (see
[2, 3] for reviews and [4–6] for examples of recent data). These data indicate that the shape
coexistence is a universal phenomenon representing essential features of the nucleus.

2.2. Necessity of going beyond the small-amplitude approximation

Let us define ‘shape of the nucleus’ as a semi-classical, macroscopic concept introduced
by a self-consistent mean-field approximation, such as the Hartree–Fock–Bogoliubov (HFB)
approximation, to the quantum-mechanical many-nucleon system. Needless to say, any HFB
equilibrium shape inevitably accompanies quantum zero-point oscillations. If only one HFB
equilibrium state exists, we can describe various kinds of vibrational mode about this point
using the standard many-body methods like the random-phase approximation (RPA) or the
boson-expansion methods [7, 8]. In the situations where two different HFB equilibrium shapes
coexist in the same energy region, however, the large-amplitude shape vibrations tunneling
through the potential barrier between the two HFB local minima may take place. To describe
such LACM, we need to go beyond the perturbative approaches based on an expansion about
one of the local minima.

2.3. Quantum field theory point of view

Different from the well-known tunneling of a single particle through the barrier created
by an external field, the shape mixing of interest between different HFB local minima is
a macroscopic tunneling phenomenon where the potential barrier itself is generated as a
consequence of the dynamics of the self-bound quantum system. A HFB local minimum
corresponds to a vacuum for quasiparticles in the quantum field-theoretical formulation.
In contrast to infinite systems, different vacua in a finite quantum system are not exactly
orthogonal to each other. Thus, the shape coexistence phenomena provide us precious
opportunities to make a detailed study of the many-body dynamics of LACM connecting
different vacua in terms of quantum spectra and electromagnetic transition properties
associated with them.

2.4. Unique feature of the oblate–prolate coexistence

When the self-consistent mean field breaks the reflection symmetry (like the pear shape),
parity doublets appear as the symmetric and anti-symmetric superpositions of two degenerate
states associated with the two local minima. In contrast, there is no exact symmetry like parity
when two local minima having the oblate and prolate shapes coexist. In this case, we do not
know the relevant collective degree(s) of freedom through which the two shapes mix. It is
obviously needed to develop a microscopic theory capable of describing the shape mixing
dynamics of this kind.
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2.5. Mysterious 0+ states

There are only a few nuclei in which the first excited 0+ state appears below the first excited
2+ state. A well-known example is the 0+ state at 0.69 MeV in 72Ge which appears below the
2+ state at 0.83 MeV. The nature of this state is poorly understood. Experimental systematics
including neighboring nuclei indicates that the excitation energy of the 0+ state takes the
minimum around N = 40 where the neutron pairs start to occupy the g9/2 shell. Microscopic
calculations [9, 10] using the boson expansion method indicate that the mode–mode coupling
between the quadrupole anharmonic vibration and the neutron pairing vibration plays an
indispensable role in bringing about the peculiar behavior of the excited 0+ states. On the other
hand, these states are often interpreted in terms of the phenomenological shape coexistence
picture [11]. Relations between the two interpretations are not well understood. Closely
examining the properties of the excited 0+ states in a wide region of nuclear chart, one finds
that they exhibit features that cannot be understood in terms of the traditional concepts alone
(see [12] for an example of recent data).

3. Characteristics of low-frequency collective excitations in nuclei

As is well known, shell structure and pairing correlations play essential roles for the emergence
of low-frequency collective modes of excitation in medium–heavy and heavy nuclei. They
exhibit unique features of the nucleus as a finite quantum many-body system and their
amplitudes of vibration tend to become large. In this section, we discuss their characteristics
in a wider perspective including the shape mixing phenomena and argue for the need of a
microscopic theory capable of describing them.

3.1. Deformed shell structure

Nuclei exhibit quite rich shell structures comprising a variety of single-particle motions in the
mean field localized in space. Let us define the shell structure as a regular oscillating pattern in
the single-particle level density coarse-grained in energy. The nucleus gains an extra binding
energy, called the shell energy, when the level density at the Fermi surface is low. The shell
structure changes as a function of deformation. If the level density at the Fermi surface is
high at the spherical shape, the nucleus prefers a deformed shape with lower level density.
When different deformed shell structures give almost the same energy gain, we may obtain
approximately degenerate HFB equilibrium shapes.

3.2. Pairing correlations and quasiparticles

It should be emphasized that both the mean field and the single-particle modes are collective
phenomena. Needless to say, the nuclear mean field is self-consistently generated as a result
of cooperative motion of strongly interacting nucleons. We learned from the BCS theory
of superconductivity that the single-particle picture emerges as a consequence of collective
phenomena: the Bogoliubov quasiparticles are nothing but the elementary modes of excitation
in the presence of the Cooper pair condensate, and they have a gap in their excitation spectra
(become ‘massive’). As is well known, this idea has been greatly extended to understand
dynamical mechanisms for generating the masses of ‘elementary’ particles [13]. The HFB
theory is a generalized mean field theory taking into account both the pair condensation and
the HF mean field in a unified manner [7, 8, 14].
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3.3. Spontaneous breaking of symmetry

The self-consistent mean field of a finite quantum system inevitably breaks some symmetries.
Even the spherical mean field breaks the translational symmetry. When the mean field breaks
another symmetry of a higher order, the concept of single-particle motion is generalized
accordingly. For instance, the Bogoliubov quasiparticle is introduced by breaking the number
conservation. Struggles for finding a better concept of single-particle motion comprise the heart
of nuclear structure study. When the mean field breaks some continuous symmetries, collective
modes (Nambu–Goldstone modes) restoring the broken symmetries emerge. Nuclear rotations
are typical examples: they restore the rotational symmetries broken by the mean field [15].
In this way, the (generalized) single-particle picture and the symmetry-restoring collective
motions are inextricably linked like ‘two sides of the same coin’. This fact has been beautifully
demonstrated by the success of the ‘rotating (cranked) shell model’ [16], which describes the
interplay of the rotational motions and ‘the single-particle motions in the rotating mean field’
in a simple manner. One of the fascinations of nuclear structure physics is that we can study
the microscopic dynamics of symmetry breaking and restoration by means of a detailed study
of quantum spectra. Finite quantum systems localized in space, such as the nucleus, provide
us with such unique and invaluable opportunities.

3.4. Origin of oblate–prolate asymmetry

It should be noted that breaking of the spherical symmetry does not necessarily lead to
the regular rotational band structure. For instance, even when the HFB mean field has an
equilibrium point at a prolate shape which is deep with respect to the axial deformation
parameter β, it should be deep also with respect to the axially asymmetric deformation
parameter γ . In HFB calculations restricted to the axially symmetric shapes, we often obtain
two solutions having the prolate and oblate shapes, but the oblate solution might be unstable
with respect to γ . Even if both minima are stable, a strong mixing of the two shapes might occur
through quantum mechanical large-amplitude collective vibrations in the γ degree of freedom.
To suppress such a mixing, we need a sufficient amount of the potential barrier and the energy
difference between the oblate and prolate solutions. Otherwise, identities of the rotational
bands built on the oblate and prolate shapes will be easily lost due to the large-amplitude γ

vibrations. These problems point to the critical need for the microscopic theory of LACM
capable of describing such γ -soft situations, the oblate–prolate shape coexistence (where two
rotational bands built on them can be identified) and various intermediate situations in a unified
manner. In spite of the obvious importance for understanding low-energy collective spectra,
the microscopic origin of the oblate–prolate asymmetry in nuclear structure (the reason why
the prolate shapes are energetically more favored in many cases than the oblate shapes) still
remains as one of the long-standing and fundamental problems. On this issue, quite recently,
Hamamoto and Mottelson suggested that the surface diffuseness plays a key role in bringing
about the asymmetry [17]. A useful approach to investigate the dynamical origin of appearance
of the deformed shell structure is the semi-classical theory of the shell structure [18–20]. It
may be interesting to apply this approach to the problem in question for a deeper understanding
of the oblate–prolate asymmetry.

3.5. Collective motion as moving mean field

Nuclear rotational and vibrational motions can be described as moving self-consistent fields.
This is one of the basic ideas of the unified model of Bohr and Mottelson [21, 22]. The
time-dependent HFB (TDHFB) mean field is a generalized coherent state and its time
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development can be described as a trajectory in the large-dimensional TDHFB phase space.
Such a formulation of the TDHFB theory as a Hamilton dynamical system provides a
microscopic foundation for using a classical picture of rotating and vibrating mean fields
[23–25]. Thus, nuclear collective motions are beautiful examples of emergence of classical
properties in genuine quantum many-body systems. For small-amplitude vibrations around a
HFB equilibrium point, one can make the linear approximation to the TDHFB equations and
obtain the quasiparticle RPA (QRPA). One of the merits of the QRPA is that it determines
the microscopic structures of the normal modes (collective coordinates) without postulating
them from the outset. The small-amplitude approximation is valid for giant resonances (high-
frequency collective vibrations), and the (Q)RPA is used as the standard method for their
microscopic descriptions.

3.6. Need for a microscopic theory of LACM

In contrast to giant resonances, the small-amplitude approximation is often insufficient for low-
frequency collective modes. This is especially the case for the quadrupole collective modes in
open-shell nuclei. The oblate–prolate shape coexistences/mixings are typical examples. It is
also well known that the amplitude of the quadrupole vibration becomes very large in transient
situations of the quantum phase transition from spherical to deformed, where the spherical
mean field is barely stable or the spherical symmetry is broken only weakly. Many nuclei are
situated in such a transitional region. It seems that this is one of the characteristic features of
the quantum phase transition in the nucleus as a finite quantum many-body system. We need
to go beyond the QRPA for describing such low-frequency quadrupole collective excitations.
In view of the crucial role that the deformed shell structure and the pairing correlation play
in generating the collectivity and determining the characters of these modes, it is desirable to
construct a microscopic theory of LACM as an extension of the QRPA keeping its merit of
deriving the collective coordinates from a huge number of microscopic degrees of freedom.
Another important merit of the QRPA is that it is a quantum theory derived also with a new
Tamm–Dancoff approximation in quantum field theory. Because we aim at constructing, on
the basis of the TDHFB picture, a quantum theory of LACM capable of describing quantum
spectra, it may be imperative, for justification of quantization of the collective coordinate, to
formulate the quantum theory in such a way that it reduces to the QRPA in the small amplitude
limit. In the next section, we briefly review various attempts toward this goal.

4. Problems in microscopic theories of collective motions

4.1. Boson expansion method

One of the microscopic approaches to treat nonlinear vibrations is the boson expansion method
[26]. For describing the quadrupole vibrations in transitional nuclei, the collective QRPA
normal modes at the spherical shape are represented as boson operators and anharmonic
effects ignored in the QRPA are evaluated in terms of a power series of the boson creation
and annihilation operators. The boson expansion methods have been widely used for
the investigation of low-frequency quadrupole collective phenomena. This approach is
perturbative in the sense that the microscopic structures of the collective coordinates and
momenta are fixed at the spherical shape and nonlinear effects are evaluated by a power-
series expansion in terms of these collective variables. To treat situations where the collective
vibrations become increasingly larger amplitude and the nonlinear effects grow to such a
degree that the microscopic structures of the collective variables themselves may change
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during the vibrational motion, it is desirable to develop a microscopic theory which can treat
the nonlinear effects in a non-perturbative way.

4.2. Generator coordinate method (GCM)

In the application of the GCM to quadrupole collective phenomena, quantum eigenstates are
described as superpositions of mean-field (generalized Slater determinant) states parametrized
by the generator coordinates. This microscopic approach is widely used in conjunction with
the angular momentum and number projections [14]. A long-standing open problem in the
GCM is the reliability of the collective masses (inertial functions) evaluated with the real
generator coordinates. For the center of mass motion, complex generator coordinates are
needed to reproduce the correct mass, indicating that we have to explicitly treat the collective
momenta in addition to the coordinates [7]. Another important problem in the GCM is the
choice of the generator coordinates. Holzwarth and Yukawa [27] once tried to find an optimal
collective path by variationally determining the generator coordinate. This work stimulated
the attempts to construct the microscopic theory of LACM.

4.3. Time-dependent HF (TDHF) method

Needless to say, the TDHF is a powerful tool to microscopically describe the LACM taking
place in heavy-ion collisions [23]. The TDHF is insufficient for the description of quantum
spectra of low-lying states, however, because of its semi-classical feature. On the other hand,
as emphasized in section 3.6, its small-amplitude approximation, the RPA, can be formulated
as a quantum theory and gives us a physical insight how the collective modes are generated
as coherent superpositions of a large number of particle-hole excitations. It is thus desirable
to extend the idea of deriving the RPA from the TDHF to large amplitude motions.

4.4. Adiabatic TDHF (ATDHF) method

Challenges for constructing microscopic theory of LACM can be traced back to the pioneering
works by Belyaev [28], Baranger and Kumar [29] in which the collective potential and
collective masses (inertial functions) appearing in the quadrupole collective Hamiltonian of
Bohr and Mottelson are microscopically calculated on the basis of the time-dependent mean-
field picture and with the use of the pairing-plus-quadrupole force [30]. In the ATDHF
theories, developed by Baranger and Vénéroni [31], Brink et al [32], Goeke and Reinhard
[33], more general schemes applicable to general effective interactions are given. There, under
the assumption that the LACM is slow, the time-dependent density matrix is expanded in terms
of the collective momentum, and the collective coordinate is introduced as a parameter
describing the time dependence of the density matrix. Another ATDHF theory by Villars [34]
resembles the above approaches, but it is more ambitious in that it provides a set of equations
to self-consistently determine the collective coordinates. It turned out, however, that these
equations are insufficient to uniquely determine the collective coordinates. This problem
was solved by properly treating the second-order equation (with respect to the collective
momentum) in the time-dependent variational principle (see Mukherjee and Pal [35] and
the series of papers by Klein, Do Dang, Bulgac and Walet, reviewed in [36]). It was also
clarified through these works that the optimal collective path maximally decoupled from non-
collective degrees of freedom coincides in a very good approximation with the valley in the
large-dimensional configuration space associated with the TDHF states.
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4.5. Self-consistent collective coordinate (SCC) method

Attempts to construct the LACM theory without assuming the adiabaticity and treating the
collective coordinates and momenta on the same footing were initiated by Rowe [37] and
Marumori [38]. The problems remaining in these early works were solved in the SCC method
formulated by Marumori et al [39]. The major aim of this approach is to extract the optimal
collective path (collective submanifold), maximally decoupled from non-collective degrees
of freedom, in the TDHF phase space of large dimension. The collective submanifold is a
geometrical object independent of the choice of the canonical coordinate system. This idea
was developed also by Rowe [40], Yamamura and Kuriyama [41]. These works yield a new
insight into the fundamental concepts of collective motion. The SCC method was extended
[42] to include the pairing correlations and applied to anharmonic quadrupole vibrations
[43–45]. In these works, a perturbative method of solving its basic equations was adopted
and it remained as an open task to develop a non-perturbative method of solution for genuine
LACM. This task was attained by the adiabatic SCC (ASCC) method [46], in which the basic
equations of the SCC method is solved using an expansion with respect to the collective
momentum. Therefore, the method is applicable to the change of the system in a wide range
of the collective coordinate. This new method may also be regarded as a modern version of
the ATDHF method initiated by Villars [34]. Another approach similar to the ASCC method
has been developed also by Almehed and Walet [47] although the method of restoring the
gauge invariance (number conservation) broken in the TDHFB states is not given there. In the
next section, we briefly summarize the basic ideas of the microscopic theory of LACM along
the lines of the ASCC method which is formulated respecting the gauge invariance.

5. Basic concepts of the microscopic theory of LACM

5.1. Extraction of the collective submanifold

As mentioned in the previous sections, the TDHFB theory can be formulated as a Hamilton
dynamical system: the dimension of the phase space is quite large (twice the number of all
possible two quasiparticle states). The major aim of the microscopic theory of LACM is to
extract the collective submanifold from the TDHFB space, which is describable in terms of
a few numbers of collective coordinates and momenta. The collective Hamiltonian is then
derived and requantized yielding the collective Schrödinger equation.

5.2. Basic equations of the microscopic theory of LACM

Let us assume that the time development of the TDHFB state is describable in terms of the
single collective coordinate q(t) and momentum p(t). To describe the superfluidity, we need
to introduce also the number variable n(t) and the gauge angle ϕ(t) conjugate to it (for both
protons and neutrons in applications to nuclei). We assume that the TDHFB state can be
written in the following form:

|φ(q, p, ϕ, n)〉 = e−iϕÑ |φ(q, p, n)〉, (1)

|φ(q, p, n)〉 = eipQ̂(q)+in�̂(q)|φ(q)〉. (2)

Here |φ(q, p, n)〉 is an intrinsic state for the pairing rotational degree of freedom parametrized
by ϕ, |φ(q)〉 represents a non-equilibrium HFB state called moving-frame HFB state, Q̂(q)

and �̂(q) are one-body operators called infinitesimal generators and Ñ and n are defined by
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Ñ ≡ N̂ − 〈φ(q)|N̂ |φ(q)〉 ≡ N̂ − N0 and n ≡ 〈φ(q, p, n)|N̂ |φ(q, p, n)〉 − N0 ≡ N − N0, N̂

being the number operator.
We determine the microscopic structure of the infinitesimal generators Q̂(q), �̂(q) and

the moving-frame HFB state |φ(q)〉 on the basis of the time-dependent variational principle:

δ〈φ(q, p, ϕ, n)|i ∂

∂t
− Ĥ |φ(q, p, ϕ, n)〉 = 0, (3)

where Ĥ is a microscopic many-body Hamiltonian. Expanding in powers of p and n and
keeping terms up to the second order in p, we obtain the moving-frame HFB equation

δ〈φ(q)|ĤM(q)|φ(q)〉 = 0, (4)

where ĤM(q) is the moving-frame Hamiltonian defined by

ĤM(q) = Ĥ − λ(q)Ñ − ∂V

∂q
Q̂(q), (5)

and the moving-frame QRPA equations also called local harmonic equations

δ〈φ(q)|[ĤM(q), Q̂(q)] − 1

i
B(q)P̂ (q)|φ(q)〉 = 0, (6)

δ〈φ(q)|
[
ĤM(q),

1

i
P̂ (q)

]
− C(q)Q̂(q) − 1

2B(q)

[[
ĤM(q),

∂V

∂q
Q̂(q)

]
, Q̂(q)

]

− ∂λ

∂q
Ñ |φ(q)〉 = 0, (7)

where P̂ (q) is the displacement operator defined by

|φ(q + δq)〉 = e−iδqP̂ (q)|φ(q)〉, (8)

and

C(q) = ∂2V

∂q2
+

1

2B(q)

∂B

∂q

∂V

∂q
. (9)

The quantities C(q) and B(q) are related to the eigenfrequency ω(q) of the local normal mode
obtained by solving the moving-frame QRPA equations through ω2(q) = B(q)C(q). Note
that these equations are valid also for regions with a negative curvature (C(q) < 0) where
ω(q) takes an imaginary value. The double commutator term in (7) stems from the q derivative
of Q̂(q) and represents the curvature of the collective path.

Solving the above set of equations, the microscopic structure of the infinitesimal
generators, Q̂(q) and P̂ (q), are determined: they are explicitly expressed as bilinear
superpositions of the quasiparticle creation and annihilation operators locally defined with
respect to the moving-frame HFB state |φ(q)〉. The collective Hamiltonian is given by

H(q, p, n) = 〈φ(q, p, n)|Ĥ |φ(q, p, n)〉 = V (q) + 1
2B(q)p2 + λ(q)n, (10)

where V (q), B(q) and λ(q) represent the collective potential, inverse of the collective mass and
the chemical potential, respectively. Note that they are functions of the collective coordinate
q. The basic equations, (4), (6) and (7), reduce to the well-known HFB and QRPA equations
at the equilibrium points where ∂V/∂q = 0. Thus, the LACM theory outlined above is a
natural extension of the HFB-QRPA theory to non-equilibrium states.
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5.3. Relation to the constrained HFB approach

The moving-frame HFB equation (4) looks like the constrained HFB (CHFB) equation, but it
is essentially different from the CHFB in that the infinitesimal generator Q̂(q) (corresponding
to the constraint operator) is self-consistently determined together with P̂ (q) as a solution
of the moving-frame QRPA equations, (6) and (7), locally at every point of the collective
coordinate q. Therefore, unlike the constraint operator in the CHFB method, its microscopic
structure changes as a function of q. In other words, the LACM takes place choosing the
locally optimal ‘constraint operator’ at every point of q along the collective path. When
the LACM of interest is described by more than one collective coordinates, we try to extract
the collective hypersurface embedded in the large-dimensional TDHFB space by extending the
above equations to the multi-dimensional cases and derive the collective Schrödinger equation
by requantization. This attempt has some features in common with the problem of quantization
of a constrained dynamical system [40]. It is interesting to discuss the microscopic foundation
of the so-called Pauli prescription (frequently used in quantizing phenomenological collective
Hamiltonians) from this point of view. In discussing this issue, it is important to note that the
LACM is constrained on the collective hypersurface not by external constraining forces but
by the dynamics of itself. Namely, the collective hypersurface is generated as a consequence
of the dynamics of the quantum many-body system under consideration. It seems that this is
a unique and quite attractive feature of the subject under discussion.

5.4. Gauge invariance with respect to the pairing rotational angle

An important problem in formulating the microscopic LACM theory based on the TDHFB
approximation is how to respect the number conservation. As is well known, one of the
merits of the QRPA is that the zero-frequency Nambu–Goldstone mode restoring the number
conservation is decoupled from other normal modes of vibration [48]. Our problem is how
to generalize this concept to non-equilibrium HFB states. A clue for solving this problem is
obtained by noting that the basic equations, (4), (6) and (7), are invariant against rotations of
the gauge angle ϕ at every point of q. Actually, we can determine the infinitesimal generator
�̂(q) associated with the pairing-rotational degree of freedom in the same way as Q̂(q) and
P̂ (q), and obtain the pairing rotational energy proportional to n2 as an additional term to
the collective Hamiltonian (10). Although this term vanishes by setting N = N0 to respect
the number conservation, the consideration of the gauge invariance is essential for correctly
treating the LACM in systems with superfluidity. Specifically, we need to set up a gauge fixing
condition in practical calculations (see [49] for details).

6. Open problems in the microscopic theory of LACM

6.1. Contributions of the time-odd mean field to the collective mass

In the microscopic calculation of the collective mass (inertial function), the cranking mass
is widely used. It is obtained through the adiabatic perturbation treatment of the time
development of the mean field. As stressed by Belyaev [28], Baranger and Vénéroni [31], the
effects of the time-odd components (breaking the time-reversal invariance) induced by the time
evolution of the mean field are ignored in the cranking mass. These effects are self-consistently
taken into account in the ASCC collective mass obtained by solving equations (6) and (7). On
the other hand, one can derive the collective Schrödinger equation from the GCM equation by
making the Gaussian overlap approximation (GOA). It is not clear, however, to what extent the
time-odd mean-field effects are taken into account in the GCM-GOA mass evaluated in this
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way with real generator coordinates. In view of the importance of the collective mass in the
dynamics of LACM, the time-odd mean-field effects have been studied extensively (see e.g.
[50]). In spite of these efforts, it may be fair to say that we are still far from a full understanding
of the time-odd effects. Thus, it remains as a great subject for future to evaluate the time-odd
mean-field effects on the collective mass using energy density functionals currently under
active development.

6.2. Different meaning of ‘adiabatic’

There is another important difference between the ASCC collective mass and the cranking
mass. Let us first note that the meaning of the adjective ‘adiabatic’ in the ASCC method
is different from that of the adiabatic perturbation theory. In the ASCC method, it just
means that the collective kinetic energy term higher than the second order in the power-series
expansion with respect to the collective momentum is omitted and, in contrast to the adiabatic
perturbation, the smallness of the collective kinetic energy in comparison with the intrinsic
two-quasiparticle excitation energies is not indispensable. Recalling that the ASCC collective
mass coincides with the QRPA collective mass at the HFB equilibrium point, one can easily
confirm this difference by considering the spherical QRPA limit in the pairing-plus-quadrupole
force model, where the time-odd mean-field effect is absent. At the spherical HFB equilibrium
point, in fact, the QRPA collective mass reduces to the cranking mass in the limit that the
frequency of the QRPA normal mode vanishes [30]. In this connection, it may be pertinent
to emphasize the difference between the ASCC collective mass and the ATDHFB collective
mass of Baranger and Vénéroni. Specifically, the former is determined by the local QRPA
mode and reduces to the QRPA collective mass at the HFB equilibrium point, while the latter
is related to the cubic inverse energy-weighted sum rule [51] and does not reduce to the QRPA
collective mass in this limit. Therefore, it is also interesting to make a systematic comparison
between different collective masses including the ASCC, cranking, GCM-GOA and ATDHFB
collective masses.

6.3. Deeper understanding of the pair-hopping mechanism

The collective mass represents the inertia of the many-body system against an infinitesimal
change of the collective coordinate q during the time evolution of the mean field. It is a local
quantity and varies as a function of q. What is the microscopic mechanism that determines
the collective mass? This is one of the central questions in our study of many-body dynamics
of the LACM. Concerning this question, it is well known that the pairing correlation plays
a crucial role. Because the single-particle-energy spectrum in the mean field changes as a
function of q, the level crossing at the Fermi energy successively occurs during the LACM.
In the presence of the pairing correlation, the many-body system can easily rearrange to take
the lowest energy configurations at every value of q, i.e. the system can easily change q. The
easiness/hardness of the configuration rearrangements at the level crossings determines the
adiabaticity/diabaticity of the system. Since the inertia represents a property of the system
trying to keep a definite configuration, we expect that the stronger the pairing correlation,
the smaller the collective mass. The nucleon-pair hopping mechanism at the successive level
crossings at the Fermi surface is modeled by Barranco et al [52]. It yields the collective mass,
called hopping mass, which has been applied to the exotic decays and the tunneling phenomena
between the superdeformed (SD) and normal deformed states [52, 53]. Of course, smooth
changes of single-particle wavefunctions as functions of q also contribute to the collective mass
in addition to the configuration changes. To deepen our understanding of the collective mass
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of LACM, it is desirable to make a comprehensive analysis of the microscopic mechanism
determining it. A systematic comparison between the hopping mass and other collective
masses discussed above will certainly serve for this purpose.

6.4. Application to the shape coexistence/mixing phenomena

As discussed in section 2, one of the most interesting LACM phenomena is the oblate–
prolate shape coexistence/mixing in the proton-rich 68Se and 72Kr region. Quite recently,
we have applied the ASCC method to them and successfully determined the collective path
which runs through the triaxially deformed valley and connects the oblate and prolate HFB
minima. Evaluating the rotational moments of inertia on the collective path and requantizing
the collective Hamiltonian, we have derived the collective Schrödinger equation describing
the coupled motion of the large-amplitude shape vibrations and the three-dimensional (3D)
rotational motions [54, 55]. We have thus found a number of interesting features which
change when going from nucleus to nucleus. For instance, the 68Se nucleus exhibits
intermediate features between the oblate–prolate shape coexistence and the γ -soft rotors,
while in the neighboring N = Z nucleus 72Kr, we have found that the localization of the
collective wavefunction in the (β, γ ) plane significantly develops with increasing rotational
angular momentum. It is certainly desirable to carry out this kind of microscopic analysis
for a wide variety of shape coexistence/mixing phenomena. We believe that theoretical and
experimental investigations of these phenomena will be very fruitful and bring about plenty
of new ideas on nuclear structure and dynamics.

6.5. Microscopic derivation of the Bohr–Mottelson collective Hamiltonian

Extending the one-dimensional (1D) collective path to the two-dimensional (2D) hypersurface
and mapping it on the (β, γ ) plane, we shall be able to microscopically derive the five-
dimensional (5D) quadrupole collective Hamiltonian of Bohr and Mottelson [15]. In this
derivation, the moments of inertia of the 3D rotation may be evaluated at every point of the 2D
hypersurface generalizing the Thouless–Valatin equations to those at non-equilibrium points.
The microscopic derivation of the Bohr–Mottelson collective Hamiltonian is a well-known
long-standing subject in nuclear structure physics, but we are still on the way to the goal (see
[56, 57] for examples of recent works and [58] for a review). We illustrate in figure 1 the basic
concepts of the microscopic LACM theory and the result of a recent calculation.

6.6. Extension to high-spin states

In the above approach, variations of intrinsic structure due to rotation are not taken into
account. Therefore, the range of its applicability is limited to low-spin states. A promising
way of constructing LACM theory applicable to high-spin states is to adopt the rotating mean-
field picture. Specifically, it is interesting to develop LACM theory on the basis of the HFB
approximation in a rotating frame (it is possible to formulate the SCC method in a form
suitable for treating the rotational motions [59, 60]). Such an approach was once tried in [47].
It remains as a future challenge to construct the microscopic theory of LACM at high spin,
which is capable of self-consistently taking into account variation of intrinsic structure due to
rapid rotation.
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Figure 1. Illustration of basic concepts of LACM. The collective path and the collective
hypersurface embedded in the huge-dimensional TDHFB configuration space (right-hand side).
Mapping of the collective path and the hypersurface into the (β, γ ) plane and the collective
potential energy on it (lower part on the left-hand side). The excitation spectrum and collective
wavefunctions obtained by solving the collective Schrödinger equation (upper part on the left-
hand side). In this illustration, the result of a microscopic calculation for the oblate–prolate
shape coexistence/mixing phenomenon in 68Se is used, where the collective path is self-
consistently determined by solving the ASCC equations while the collective potential and the
collective masses are evaluated by solving the CHFB and the moving-frame QRPA equations,
respectively, with the pairing-plus-quadrupole force (the quadrupole pairing is also taken into
account). This calculation may be regarded as a first step toward a fully self-consistent
microscopic derivation of the 5D quadrupole collective Hamiltonian starting from modern density
functionals.

(This figure is in colour only in the electronic version)

6.7. Combining with better density functionals

As seen in a number of contributions to this special issue on open problems in nuclear structure,
very active works are going on to build a universal nuclear energy density functional. It is
certainly a great challenge to make a systematic microscopic calculation for LACM phenomena
using better energy density functionals. For carrying out such ambitious calculations, it is
certainly necessary to develop efficient numerical algorithms to solve the basic equations of the
LACM theory. In practical applications, for instance, we need to iteratively solve the moving-
frame HFB equation and the moving-frame QRPA equations at every point on the collective
path. When we extend these equations to 2D hypersurfaces, the numerical calculation grows
to a large scale. Especially, an efficient method of solving the moving-frame QRPA equations
is needed. An extension of the finite amplitude method [61] into a form suitable for this
purpose may be promising. It may also be worthwhile to examine the applicability of the
separable approximation [62] to the effective interaction derived from the energy density
functionals.
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6.8. LACM in odd-A nuclei

So far we have limited our discussions to LACM in doubly even nuclei only. In fact,
microscopic description of LACM in odd-A nuclei remains as a vast unexplored field.
Needless to say, unified treatment of the seemingly contradictory concepts of single-particle
and collective modes of motion is the central theme of the phenomenological Bohr–Mottelson
model of nuclear structure. Low-lying states in odd-A nuclei provide a wealth of data
exhibiting their interplay. In view of the great success of the Bohr–Mottelson approach, it is
extremely important to develop a microscopic theory capable of treating the single-particle and
collective modes in a unified manner. In fact, various microscopic theories of particle–vibration
coupling have been developed: e.g. the nuclear field theory [63] and the boson-expansion
method for odd-A nuclei [26]. These available theories treat the particle–vibration couplings
in a perturbative manner starting from the small-amplitude approximation (RPA/QRPA) for
collective excitations at an equilibrium point of the mean field. Non-perturbative method
capable of treating LACM in odd-A nuclei (generally speaking, LACM in the presence of
several quasiparticles) is lacking, however. This is an extremely difficult but challenging
subject for future.

7. Large-amplitude collective phenomena at high spin

The nucleus exhibits a rich variety of nonlinear collective phenomena awaiting applications
of the microscopic LACM theory. Certainly, microscopic description of spontaneous fission
from the viewpoint of nonlinear/non-equilibrium physics is one of the major goals. Another
vast unexplored field is the microscopic study of LACM at finite temperature. Microscopic
mechanism of damping and dissipation of various kinds of LACM is a long-term subject.
It seems particularly interesting to explore both theoretically and experimentally how the
character of LACM changes when going from the yrast to the compound-nucleus regions.
These subjects are outside the scope of the present paper, however. Restricting our scope to
the LACM at zero temperature, in this section, we discuss a few open problems in rapidly
rotating nuclei (see [64] for a review on high-spin states).

7.1. Tunneling decay of superdeformed (SD) states and high-K isomers

It is quite interesting to apply the microscopic LACM theory to the quantum tunneling
phenomena from the SD states (with an axis ratio of about 2:1) to the compound-nucleus
states [53], because the tunneling probability depends quite sensitively on the collective mass
and the collective path connecting the initial and final states. The tunneling decay from high-K
to low-K isomers is also interesting [65], because it poses a unique question as to which of
the two competing decay paths dominates; one through LACM in the triaxial shape degree of
freedom and the other in the orientation degree of freedom of the angular momentum vector
(with respect to the principal axes of the body-fixed frame).

7.2. Large-amplitude wobbling motions and chiral vibrations

A new mode of 3D rotation associated with the spontaneous breaking of the axial symmetry is
called wobbling motion; it is describable as a boson (small-amplitude vibration-like) excitation
from the yrast line [15, 66]. The observed rotational band associated with the double excitations
of the wobbling mode indicates, however, the presence of significant anharmonicity [67]. It is
an interesting open problem to explore what will happen when the amplitude of the wobbling
mode increases and the uniformly rotating nucleus becomes unstable against this collective
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rotational degree of freedom [68, 69]. Another interesting issue concerning new modes of
3D rotation is the possibility of doublet rotational bands called chiral band [16, 70, 71]. In
triaxially deformed nucleus, one can define chirality in terms of the directions of the collective
rotational angular momentum and those of the quasiparticle angular momenta of both protons
and neutrons. When the rotating HFB mean field involves such an intrinsic structure, the two
solutions corresponding to the right-handed and left-handed configurations are degenerate.
Then, a chiral doublet pattern is expected to appear in the rotational band structure. In a
transient situation, where the barrier separating the two HFB solutions is still in an early stage
of development, the large-amplitude vibrations connecting the two configurations, called chiral
vibrations, may occur [16, 70, 71]. It remains for the future to apply the microscopic LACM
theory to these phenomena unique to rapidly rotating nuclei with triaxial shape.

7.3. Large-amplitude vibrations associated with the reflection symmetry breaking

Rich experimental data exhibiting the parity-doublet pattern are available, indicating that
the reflection symmetry is broken in their mean fields [72]. The energy splitting of the
doublet changes as a function of rotational angular momentum [73]. Thus, it is quite
interesting to investigate, on the basis of the microscopic LACM theory, how the quantum
tunneling motion between the left- and right-configurations is affected by rapid rotation. Also
interesting in this connection is the recent observation of alternating parity bands [74, 75]
that exhibit a transitional feature toward the static octupole deformation. A considerable
number of SD states are expected to be very soft with respect to the shape vibrational degrees
of freedom simultaneously breaking the reflection and axial symmetries. In fact, the soft
octupole vibrations built on the SD yrast states have been observed [76, 77]. When the
SD mean field becomes unstable against this kind of vibrations, a new class of SD states
having exotic shapes (like a banana) may appear [78, 79]. In transitional situations, the
large-amplitude vibrations associated with the instability toward such exotic shapes may take
place. Possible appearance of exotic shapes is not restricted to SD high-spin states. For
example, the symmetry-unrestricted HFB calculation [80] yields a local minimum with the
tetrahedral shape near the ground state of 80Zr. The potential energy surface is shallow,
however, indicating that we need to take into account the large-amplitude tetrahedral shape
fluctuation [81]. Generally speaking, microscopic LACM theories are required for describing
collective motions in transitional regions of quantum phase transition, where some symmetry
is weakly broken or tends to be broken.

8. Concluding remarks

One of the fundamental questions of nuclear structure physics is why and how a variety of
LACM emerges in consequence of quantum many-body dynamics. The nucleus provides us
valuable opportunities to make a detailed study of the microscopic dynamics generating the
collectivities. The microscopic derivation of the quadrupole collective Hamiltonian started
more than half a century ago, but the challenge to construct a fully self-consistent microscopic
theory of LACM has encountered a number of serious difficulties. Finally, however, these long-
term efforts have yielded the new concept of collective submanifold and a deeper understanding
of what is collectivity. At the same time, new efficient methods of numerical calculation are
now under active development. Thus, in the coming years, fruitful applications to low-
frequency collective phenomena are envisaged. This means that a new era in the microscopic
study of nuclear collective dynamics is opening.
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On the basis of the adiabatic self-consistent collective coordinate method, we develop an efficient microscopic
method of deriving the five-dimensional quadrupole collective Hamiltonian and illustrate its usefulness
by applying it to the oblate-prolate shape coexistence/mixing phenomena in proton-rich 68,70,72Se. In this
method, the vibrational and rotational collective masses (inertial functions) are determined by local normal
modes built on constrained Hartree-Fock-Bogoliubov states. Numerical calculations are carried out using the
pairing-plus-quadrupole Hamiltonian including the quadrupole-pairing interaction within the two major-shell
active model spaces both for neutrons and protons. It is shown that the time-odd components of the moving
mean-field significantly increase the vibrational and rotational collective masses in comparison with the
Inglis-Belyaev cranking masses. Solving the collective Schrödinger equation, we evaluate excitation spectra,
quadrupole transitions, and moments. The results of the numerical calculation are in excellent agreement
with recent experimental data and indicate that the low-lying states of these nuclei are characterized as an
intermediate situation between the oblate-prolate shape coexistence and the so-called γ unstable situation where
large-amplitude triaxial-shape fluctuations play a dominant role.
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I. INTRODUCTION

The major purpose of this article is to develop an efficient
microscopic method of deriving the five-dimensional (5D)
quadrupole collective Hamiltonian [1–4] and illustrate its
usefulness by applying it to the oblate-prolate shape coex-
istence/mixing phenomena in proton-rich Se isotopes [5–8].
As is well known, the quadrupole collective Hamiltonian,
also called the general Bohr-Mottelson Hamiltonian, contains
six collective inertia masses (three vibrational masses and
three rotational moments of inertia) as well as the collec-
tive potential. These seven quantities are functions of the
quadrupole deformation variables β and γ , which represent
the magnitude and triaxiality of the quadrupole deformation,
respectively. Therefore, we also call the collective inertial
masses “inertial functions.” They are usually calculated by
means of the adiabatic perturbation treatment of the moving
mean field [9], and the version taking into account nuclear
superfluidity [10] is called the Inglis-Belyaev (IB) cranking
mass or the IB inertial function. Its insufficiency has been
repeatedly emphasized, however (see, e.g., Refs. [11–14]).
The most serious shortcoming is that the time-odd terms
induced by the moving mean field are ignored, which breaks
the self-consistency of the theory [15,16]. In fact, one of the
most important motives of constructing microscopic theory
of large-amplitude collective motion was to overcome such a
shortcoming of the IB cranking mass [15].

As fruits of long-term efforts, advanced microscopic theo-
ries of inertial functions are now available (see Refs. [15–26]
for original articles and Refs. [27,28] for reviews). These
theories of large-amplitude collective motion have been tested

for schematic solvable models and applied to heavy-ion
collisions and giant resonances [18,26]. For nuclei with pairing
correlations, Dobaczewski and Skalski studied the quadrupole
vibrational mass with use of the adiabatic time-dependent
Hartree-Fock-Bogoliubov (ATDHFB) theory and concluded
that the contributions from the time-odd components of
the moving mean-field significantly increase the vibrational
mass compared to the IB cranking mass [16]. Somewhat
surprisingly, however, to the best of our knowledge, the
ATDHFB vibrational masses have never been used in realistic
calculations for low-lying quadrupole spectra of nuclei with
superfluidity. For instance, in recent microscopic studies
[29–34] by means of the 5D quadrupole Hamiltonian, the IB
cranking formula are still used in actual numerical calculation
for vibrational masses. This situation concerning the treatment
of the collective kinetic energies is in marked contrast with
the remarkable progress in microscopic calculation of the
collective potential using modern effective interactions or
energy density functionals (see Ref. [35] for a review).

In this article, on the basis of the adiabatic self-consistent
collective coordinate (ASCC) method [36], we formulate a
practical method of deriving the 5D quadrupole collective
Hamiltonian. The central concept of this approach is local
normal modes built on constrained Hartree-Fock-Bogoliubov
(CHFB) states [37] defined at every point of the (β,γ ) defor-
mation space. These local normal modes are determined by the
local QRPA (LQRPA) equation that is an extension of the well-
known quasiparticle random-phase approximation (QRPA)
to nonequilibrium HFB states determined by the CHFB
equations. We therefore use an abbreviation “CHFB + LQRPA
method” for this approach. This method may be used in
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conjunction with any effective interaction or energy density
functional. In this article, however, we use, for simplicity, the
pairing-plus-quadrupole (P + Q) force [38,39] including the
quadrupole-pairing force. Inclusion of the quadrupole-pairing
force is essential because it produces the time-odd component
of the moving field [40].

To examine the feasibility of the CHFB + LQRPA method,
we apply it to the oblate-prolate shape coexistence/mixing
phenomena in proton-rich 68,70,72Se [5–8,41,42]. These phe-
nomena are taken up because we obviously need to go beyond
the traditional framework of describing small-amplitude vi-
brations around a single HFB equilibrium point to describe
them; that is, they are very suitable targets for our purpose.
We shall show in this article that this approach successfully
describes large-amplitude collective vibrations extending from
the oblate to the prolate HFB equilibrium points (and vice
versa). In particular, it will be demonstrated that we can
describe very well the transitional region between the oblate-
prolate shape coexistence and the γ unstable situation where
large-amplitude triaxial-shape fluctuations play a dominant
role.

This article is organized as follows. In Sec. II, we formulate
the CHFB + LQRPA as an approximation of the ASCC
method and derive the 5D quadrupole collective Hamiltonian.
In Sec. III, we calculate the vibrational and rotational masses
by solving the LQRPA equations, and discuss their properties
in comparison with those calculated by using the IB cranking
formula. In Sec. IV, we calculate excitation spectra, B(E2),
and spectroscopic quadrupole moments of low-lying states in
68,70,72Se and discuss properties of the oblate-prolate shape
coexistence/mixing in these nuclei. Conclusions are given in
Sec. V.

II. MICROSCOPIC DERIVATION OF THE 5D
QUADRUPOLE COLLECTIVE HAMILTONIAN

A. 5D quadrupole collective Hamiltonian

Our aim in this section is to formulate a practical method
of microscopically deriving the 5D quadrupole collective
Hamiltonian [1–4]

Hcoll = Tvib + Trot + V (β,γ ), (1)

Tvib = 1

2
Dββ(β,γ )β̇2 + Dβγ (β,γ )β̇γ̇ + 1

2
Dγγ (β,γ )γ̇ 2,

(2)

Trot = 1

2

3∑
k=1

Jk(β,γ )ω2
k, (3)

starting from an effective Hamiltonian for finite many-nucleon
systems. Here, Tvib and Trot denote the kinetic energies of
vibrational and rotational motions, while V (β,γ ) represents
the collective potential. The velocities of the vibrational
motion are described in terms of the time derivatives (β̇, γ̇ ) of
the quadrupole deformation variables (β, γ ) representing the
magnitude and the triaxiality of the quadrupole deformation,
respectively. The three components ωk of the rotational angular
velocity are defined with respect to the intrinsic axes associated

with the rotating nucleus. The inertial functions for vibrational
motions (vibrational masses), Dββ , Dβγ , and Dγγ , and the
rotational moments of inertia Jk are functions of β and γ .

As seen in the recent review by Próchniak and Rohoziński
[4], there are numerous articles on microscopic approaches to
the 5D quadrupole collective Hamiltonian; among them, we
should quote at least early articles by Belyaev [2], Baranger-
Kumar [43,44], Pomorski et al. [12,13], and recent articles by
Girod et al. [33], Nikšić et al. [29,30], and Li et al. [31,32].
In all these works, the IB cranking formula is used for the
vibrational inertial functions. In the following, we outline the
procedure of deriving the vibrational and rotational inertial
functions on the basis of the ASCC method.

B. Basic equations of the ASCC method

To derive the 5D quadrupole collective Hamiltonian Hcoll

starting from a microscopic Hamiltonian Ĥ , we use the
ASCC method [36,45]. This method enables us to determine
a collective submanifold embedded in the large-dimensional
TDHFB configuration space. We can use this method in
conjunction with any effective interaction or energy density
functional to microscopically derive the collective masses
taking into account time-odd mean-field effects. For our
present purpose, we here recapitulate a two-dimensional (2D)
version of the ASCC method. We suppose the existence
of a set of two collective coordinates (q1, q2) that has a
one-to-one correspondence to the quadrupole deformation
variable set (β,γ ) and try to determine a 2D collective
hypersurface associated with the large-amplitude quadrupole
shape vibrations. We thus assume that the TDHFB states can
be written on the hypersurface in the following form:

|φ(q, p,ϕ, n)〉 = e−i
∑

τ ϕ(τ )Ñ (τ ) |φ(q, p, n)〉
= e−i

∑
τ ϕ(τ )Ñ (τ )

eiĜ(q, p,n) |φ(q)〉 , (4)

with

Ĝ(q, p, n) =
∑
i=1,2

piQ̂
i(q) +

∑
τ=n,p

n(τ )�̂(τ )(q), (5)

Q̂i(q) = Q̂A(q) + Q̂B(q)

=
∑
αβ

[
QA

αβ(q)a†
αa

†
β + QA∗

αβ (q)aβaα

+QB
αβ(q)a†

αaβ

]
, (6)

�̂(τ )(q) =
∑
αβ

[
�

(τ )A
αβ (q)a†

αa
†
β + �

(τ )A∗
αβ (q)aβaα

]
. (7)

For a gauge-invariant description of nuclei with superfluidity,
we need to parametrize the TDHFB state vectors, as previously,
not only by the collective coordinates q = (q1, q2) and conju-
gate momenta p = (p1, p2), but also by the gauge angles ϕ =
(ϕ(n), ϕ(p)) conjugate to the number variables n = (n(n), n(p))
representing the pairing-rotational degrees of freedom (for
both neutrons and protons). In the above equations, Q̂i(q)
and �̂(τ )(q) are infinitesimal generators that are written in
terms of the quasiparticle creation and annihilation operators
(a†

α, aα) locally defined with respect to the moving-frame HFB
states |φ(q)〉. Note that the number operators are defined as
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Ñ (τ ) ≡ N̂ (τ ) − N
(τ )
0 subtracting the expectation values

(N (n)
0 , N

(p)
0 ) of the neutron and proton numbers at |φ(q)〉. In

this article, we use units with h̄ = 1.
The moving-frame HFB states |φ(q)〉 and the infinitesimal

generators Q̂i(q) are determined as solutions of the moving-
frame HFB equation

δ 〈φ(q)| ĤM (q) |φ(q)〉 = 0, (8)

and the moving-frame QRPA equations

δ〈φ(q)|[ĤM (q), Q̂i(q)] − 1

i

∑
k

Bik(q)P̂k(q)

+ 1

2

[∑
k

∂V

∂qk
Q̂k(q), Q̂i(q)

]
|φ(q)〉 = 0, (9)

δ〈φ(q)|
[
ĤM (q),

1

i
P̂i(q)

]
−

∑
j

Cij (q)Q̂j (q)

− 1

2

[ [
ĤM (q),

∑
k

∂V

∂qk
Q̂k(q)

]
,
∑

j

Bij (q)Q̂j (q)

]

−
∑

τ

∂λ(τ )

∂qi
Ñ (τ ) |φ(q)〉 = 0, (10)

which are derived from the time-dependent variational
principle. Here, ĤM (q) is the moving-frame Hamiltonian
given by

ĤM (q) = Ĥ −
∑

τ

λ(τ )(q)Ñ (τ ) −
∑

i

∂V

∂qi
Q̂i(q), (11)

and

Cij (q) = ∂2V

∂qi∂qj
−

∑
k

�k
ij

∂V

∂qk
, (12)

with

�k
ij (q) = 1

2

∑
l

Bkl

(
∂Bli

∂qj
+ ∂Blj

∂qi
− ∂Bij

∂ql

)
. (13)

The infinitesimal generators P̂i(q) are defined by

P̂i(q) |φ(q)〉 = i
∂

∂qi
|φ(q)〉 , (14)

with

P̂i(q) = i
∑
αβ

[Piαβ(q)a†
αa

†
β − P ∗

iαβ(q)aβaα], (15)

and determined as solutions of the moving-frame QRPA
equations.

The collective Hamiltonian is given as the expectation value
of the microscopic Hamiltonian with respect to the TDHFB
state

H(q, p, n) = 〈φ(q, p, n)| Ĥ |φ(q, p, n)〉
= V (q) +

∑
ij

1

2
Bij (q)pipj +

∑
τ

λ(τ )(q)n(τ ),

(16)

where

V (q) = H(q, p, n)| p=0,n=0, (17)

Bij (q) = ∂2H
∂pi∂pj

∣∣∣∣
p=0,n=0

, (18)

λ(τ )(q) = ∂H
∂n(τ )

∣∣∣∣
p=0,n=0

, (19)

represent the collective potential, inverse of the collective
mass, and the chemical potential, respectively. Note that the
last term in Eq. (10) can be set to zero adopting the QRPA
gauge-fixing condition dλ(τ )/dqi = 0 [45].

The basic equations of the ASCC method are invariant
against point transformations of the collective coordinates
(q1, q2). The Bij (q) and Cij (q) can be diagonalized simulta-
neously by a linear coordinate transformation at each point of
q = (q1, q2). We assume that we can introduce the collective
coordinate system in which the diagonal form is kept globally.
Then, we can choose, without losing generality and for
simplicity, the scale of the collective coordinates q = (q1, q2)
such that the vibrational masses become unity. Consequently,
the vibrational kinetic energy in the collective Hamiltonian
(16) is written as

Tvib = 1

2

∑
i=1,2

(pi)
2 = 1

2

∑
i=1,2

(q̇i)2. (20)

C. CHFB + LQRPA equations

The basic equations of the ASCC method can be solved
with an iterative procedure. This task was successfully
carried out for extracting a one-dimensional (1D) collective
path embedded in the TDHFB configuration space [46,47].
To determine a 2D hypersurface, however, the numerical
calculation becomes too demanding at the present time.
We therefore introduce practical approximations as follows:
First, we ignore the curvature terms [the third terms in
Eqs. (9) and (10)], which vanish at the HFB equilibrium
points where dV/dqi = 0, assuming that their effects are
numerically small. Second, we replace the moving-frame
HFB Hamiltonian ĤM (q) and the moving-frame HFB state
|φ(q1, q2)〉 with a CHFB Hamiltonian ĤCHFB(β,γ ) and a
CHFB state |φ(β,γ )〉, respectively, on the assumption that the
latter two terms are good approximations to the former two
terms.

The CHFB equations are given by

δ〈φ(β,γ )|ĤCHFB(β,γ )|φ(β,γ )〉 = 0, (21)

ĤCHFB(β,γ ) = Ĥ −
∑

τ

λ(τ )(β,γ )Ñ (τ )

−
∑

m=0,2

µm(β,γ )D̂(+)
2m , (22)

with four constraints

〈φ(β,γ )|N̂ (τ )|φ(β,γ )〉 = N
(τ )
0 , (τ = n, p), (23)

〈φ(β,γ )|D̂(+)
2m |φ(β,γ )〉 = D

(+)
2m , (m = 0, 2), (24)
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where D̂
(+)
2m denotes the Hermitian quadrupole operators D̂20

and (D̂22 + D̂2−2)/2 for m = 0 and 2, respectively (see
Ref. [46] for their explicit expressions). We define the
quadrupole deformation variables (β, γ ) in terms of the
expectation values of the quadrupole operators

β cos γ = ηD
(+)
20 = η 〈φ(β,γ )| D̂(+)

20 |φ(β,γ )〉 , (25)

1√
2
β sin γ = ηD

(+)
22 = η 〈φ(β,γ )| D̂(+)

22 |φ(β,γ )〉 , (26)

where η is a scaling factor (to be discussed in Sec. III A).
The moving-frame QRPA Eqs. (9) and (10) then reduce to

δ 〈φ(β,γ )| [ĤCHFB(β,γ ), Q̂i(β,γ )]

− 1

i
P̂i(β,γ ) |φ(β,γ )〉 = 0, (i = 1, 2), (27)

and

δ 〈φ(β,γ )|
[
ĤCHFB(β,γ ),

1

i
P̂i(β,γ )

]
−Ci(β,γ )Q̂i(β,γ )|φ(β,γ )〉 = 0. (i = 1, 2) (28)

Here the infinitesimal generators, Q̂i(β,γ ) and P̂i(β,γ ), are
local operators defined at (β,γ ) with respect to the CHFB state
|φ(β,γ )〉. These equations are solved at each point of (β,γ ) to
determine Q̂i(β,γ ), P̂i(β,γ ), and Ci(β,γ ) = ω2

i (β,γ ). Note
that these equations are valid also for regions with negative
curvature [Ci(β,γ ) < 0] where the QRPA frequency ωi(β,γ )
takes an imaginary value. We call the above equations “local
QRPA (LQRPA) equations.” There exist more than two
solutions of LQRPA Eqs. (27) and (28) and we need to
select relevant solutions. A useful criterion for selecting two
collective modes among many LQRPA modes will be given in
Sec. III C with numerical examples. Concerning the accuracy
of the CHFB + LQRPA approximation, some arguments will
be given in Sec. III F.

D. Derivation of the vibrational masses

Once the infinitesimal generators Q̂i(β,γ ) and P̂i(β,γ ) are
obtained, we can derive the vibrational masses appearing in
the 5D quadrupole collective Hamiltonian (1). We rewrite
the vibrational kinetic energy Tvib given by Eq. (20) in
terms of the time derivatives β̇ and γ̇ of the quadrupole
deformation variables in the following way. We first note
that an infinitesimal displacement of the collective coordinates
(q1, q2) brings about a corresponding change

dD
(+)
2m =

∑
i=1,2

∂D
(+)
2m

∂qi
dqi, (m = 0, 2), (29)

in the expectation values of the quadrupole operators. The
partial derivatives can be easily evaluated as

∂D
(+)
20

∂qi
= ∂

∂qi
〈φ(β,γ )|D̂(+)

20 |φ(β,γ )〉

= 〈φ(β,γ )|
[
D̂

(+)
20 ,

1

i
P̂i(β,γ )

]
|φ(β,γ )〉, (30)

∂D
(+)
22

∂qi
= ∂

∂qi
〈φ(β,γ )|D̂(+)

22 |φ(β,γ )〉

= 〈φ(β,γ )|
[
D̂

(+)
22 ,

1

i
P̂i(β,γ )

]
|φ(β,γ )〉 , (31)

without the need of numerical derivatives. Accordingly, the
vibrational kinetic energy can be written

Tvib = 1
2M00[Ḋ(+)

20 ]2 + M02Ḋ
(+)
20 Ḋ

(+)
22 + 1

2M22[Ḋ(+)
22 ]2, (32)

with

Mmm′(β,γ ) =
∑
i=1,2

∂qi

∂D
(+)
2m

∂qi

∂D
(+)
2m′

. (33)

Taking the time derivative of the definitional equations of
(β,γ ), Eqs. (25) and (26), we can straightforwardly transform
expression (32) to the form in terms of (β̇, γ̇ ). The vibrational
masses (Dββ , Dβγ , Dγγ ) are then obtained from (M00, M02,
M22) through the following relations:

Dββ = η−2

(
M00 cos2 γ +

√
2M02 sin γ cos γ

+ 1

2
M22 sin2 γ

)
, (34)

Dβγ = βη−2

[
−M00 sin γ cos γ + 1√

2
M02(cos2 γ − sin2 γ )

+ 1

2
M22 sin γ cos γ

]
, (35)

Dγγ = β2η−2

(
M00 sin2 γ −

√
2M02 sin γ cos γ

+ 1

2
M22 cos2 γ

)
. (36)

E. Calculation of the rotational moments of inertia

We calculate the rotational moments of inertia Jk(β,γ )
using the LQRPA equation for the collective rotation [46] at
each CHFB state

δ 〈φ(β,γ )| [ĤCHFB, �̂k] − 1

i
(Jk)−1Îk |φ(β,γ )〉 = 0, (37)

〈φ(β,γ )| [�̂k(β,γ ), Îk′ ] |φ(β,γ )〉 = iδkk′, (38)

where �̂k(β,γ ) and Îk represent the rotational angle and the
angular momentum operators with respect to the principal axes
associated with the CHFB state |φ(β,γ )〉. This is an extension
of the Thouless-Valatin equation [48] for the HFB equilibrium
state to nonequilibrium CHFB states. The three moments of
inertia can be written as

Jk(β,γ ) = 4β2Dk(β,γ ) sin2 γk (k = 1, 2, 3), (39)

with γk = γ − (2πk/3). If the inertial functions Dk(β,γ )
above are replaced with a constant, thenJk(β,γ ) reduces to the
well-known irrotational moments of inertia. In fact, however,
we shall see that their (β,γ ) dependence is very important. We
call Jk(β,γ ) and Dk(β,γ ) determined by the above equation
“LQRPA moments of inertia” and “LQRPA rotational masses,”
respectively.
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F. Collective Schrödinger equation

Quantizing the collective Hamiltonian (1) with the Pauli
prescription, we obtain the collective Schrödinger equation [2]

{T̂vib + T̂rot + V }�αIM (β,γ,�) = EαI�αIM (β,γ,�), (40)

where

T̂vib = − 1

2
√

WR

{
1

β4

[(
∂ββ2

√
R

W
Dγγ ∂β

)
− ∂β

(
β2

√
R

W
Dβγ ∂γ

)]
+ 1

β2 sin 3γ

[
−∂γ

(√
R

W
sin 3γDβγ ∂β

)
+ ∂γ

(√
R

W
sin 3γDββ∂γ

)]}
, (41)

T̂rot =
3∑

k=1

Î 2
k

2Jk

, (42)

with

R(β,γ ) = D1(β,γ )D2(β,γ )D3(β,γ ), (43)

W (β,γ ) = {Dββ(β,γ )Dγγ (β,γ ) − [Dβγ (β,γ )]2}β−2.

(44)

The collective wave function in the laboratory frame
�αIM (β,γ,�) is a function of β, γ , and a set of three Euler
angles �. It is specified by the total angular momentum I , its
projection onto the z axis in the laboratory frame M , and α

that distinguishes the eigenstates possessing the same values
of I and M . With the rotational wave function DI

MK (�), it is
written as

�αIM (β,γ,�) =
∑

K=even

�αIK (β,γ )〈�|IMK〉, (45)

where

〈�|IMK〉 =
√

2I + 1

16π2(1 + δk0)

[
DI

MK (�) + (−)IDI
M−K (�)

]
.

(46)

The vibrational wave functions in the body-fixed frame
�αIK (β,γ ) are normalized as∫

dβdγ |�αI (β,γ )|2|G(β,γ )| 1
2 = 1, (47)

where

|�αI (β,γ )|2 ≡
∑

K=even

|�αIK (β,γ )|2, (48)

and the volume element |G(β,γ )| 1
2 dβdγ is given by

|G(β,γ )| 1
2 dβdγ = 2β4

√
W (β,γ )R(β,γ ) sin 3γ dβdγ. (49)

Thorough discussions of their symmetries and the boundary
conditions for solving the collective Schrödinger equation are
given in Refs. [1–3].

III. CALCULATION OF THE COLLECTIVE POTENTIAL
AND THE COLLECTIVE MASSES

A. Details of numerical calculation

The CHFB + LQRPA method outlined in the preceding
section may be used in conjunction with any effective
interaction (e.g., density-dependent effective interactions like
Skyrme forces or modern nuclear density functionals). In this
article, as a first step toward such calculations, we use a version
of the P + Q force model [38,39] that includes the quadrupole-
pairing interaction in addition to the monopole-pairing interac-
tion. Inclusion of the quadrupole-pairing is essential because
neither the monopole-pairing nor the quadrupole particle-hole
interaction contributes to the time-odd mean-field effects on
the collective masses [16]; that is, only the quadrupole-pairing
interaction induces the time-odd contribution in the present
model. Note that the quadrupole-pairing effects were not
considered in Ref. [16]. In the numerical calculation for
68,70,72Se presented in the following, we use the same notations
and parameters as in our previous work [47]. The shell
model space consists of two major shells (Nsh = 3, 4) for
neutrons and protons and the spherical single-particle energies
are calculated using the modified oscillator potential [49,50].
The monopole-pairing interaction strengths (for neutrons and
protons) G

(τ )
0 and the quadrupole-particle-hole interaction

strength χ are determined such that the magnitudes of the
quadrupole deformation β and the monopole-pairing gaps
(for neutrons and protons) at the oblate and prolate local
minima in 68Se approximately reproduce those obtained in
the Skyrme-HFB calculations [51]. The interaction strengths
for 70Se and 72Se are then determined assuming simple
mass-number dependence [39]; G

(τ )
0 ∼ A−1 and χ ′ ≡ χb4 ∼

A− 5
3 (b denotes the oscillator-length parameter). For the

quadrupole-pairing interaction strengths (for neutrons and
protons), we use the Sakamoto-Kishimoto prescription [52] to
derive the self-consistent values. Following the conventional
treatment of the P + Q model [53], we ignore the Fock term so
that we use the abbreviation HB (Hartree-Bogoliubov) in place
of HFB in the following. In the case of the conventional P + Q
model, the HB equation reduces to a simple Nilsson + BCS
equation (see, e.g., Ref. [37]). The presence of the quadrupole-
pairing interaction in our case does not allow such a reduction,
however, and we directly solve the HB equation. In the
P + Q model, the scaling factor η in Eqs. (25) and (26) is
given by η = χ ′/h̄ω0b

2, where ω0 denotes the frequency of
the harmonic-oscillator potential. Effective charges (en, ep) =
(0.4, 1.4) are used in the calculation of quadrupole transitions
and moments.

To solve the CHB + LQRPA equations on the (β,γ ) plane,
we employ a 2D mesh consisting of 3600 points in the region
0 < β < 0.6 and 0◦ < γ < 60◦. Each mesh point (βi, γj ) is
represented as

βi = (i − 0.5) × 0.01, (i = 1, . . . , 60), (50)

γj = (j − 0.5) × 1◦, (j = 1, . . . , 60). (51)

One of the advantages of the present approach is that we
can solve the CHB + LQRPA equations independently at each
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mesh point on the (β,γ ) plane, so that it is suited to parallel
computation.

Finally, we summarize the most important differences be-
tween the present approach and the Baranger-Kumar approach
[43]. First, as repeatedly emphasized, we introduce the LQRPA
collective massess in place of the cranking masses. Second, we
take into account the quadrupole-pairing force (in addition to
the monopole-pairing force), which brings about the time-odd
effects on the collective masses. Third, we exactly solve the
CHB self-consistent problem, Eq. (21), at every point on the
(β, γ ) plane using the gradient method, while in the Baranger-
Kumar works the CHB Hamiltonian is replaced with a Nilsson-
like single-particle model Hamiltonian. Fourth, we do not
introduce the so-called core contributions to the collective
masses, although we use the effective charges to renormalize
the core polarization effects (outside of the model space
consisting of two major shells) into the quadrupole operators,
We shall see that we can well reproduce the major character-
istics of the experimental data without introducing such core
contributions to the collective masses. Fifth, most importantly,
the theoretical framework developed in this article is quite
general, that is, it can be used in conjunction with modern
density functionals going far beyond the P + Q force model.

B. Collective potentials and pairing gaps

We show in Fig. 1 the collective potentials V (β,γ )
calculated for 68,70,72Se. It is seen that two local minima always
appear both at the oblate (γ = 60◦) and prolate (γ = 0◦)
shapes and, in all these nuclei, the oblate minimum is lower
than the prolate minimum. The energy difference between
them is, however, only several hundred keV and the potential
barrier is low in the direction of the triaxial shape (with respect
to γ ) indicating the γ -soft character of these nuclei. In Fig. 1
we also show the collective paths (connecting the oblate and
prolate minima) determined by using the 1D version of the
ASCC method [47]. It is seen that they always run through the
triaxial valley and never go through the spherical shape.

In Fig. 2, the monopole-pairing and quadrupole-pairing
gaps calculated for 68Se are displayed. They show a sig-
nificant (β,γ ) dependence. Broadly speaking, the monopole
pairing decreases while the quadrupole pairing increases as β

increases.

C. Properties of the LQRPA modes

In Fig. 3 the frequencies squared ω2
i (β,γ ) of various

LQRPA modes calculated for 68Se are plotted as functions
of β and γ . In the region of the (β,γ ) plane where the
collective potential energy is less than about 5 MeV, we can
easily identify two collective modes among many LQRPA
modes, whose ω2

i (β,γ ) are much lower than those of other
modes. Therefore we adopt the two lowest-frequency modes
to derive the collective Hamiltonian. This result of the
numerical calculation supports our assumption that there exists
a 2D hypersurface associated with large-amplitude quadrupole
shape vibrations, which is approximately decoupled from other
degrees of freedom. The situation changes when the collective
potential energy exceeds about 5 MeV and/or the monopole-
pairing gap becomes small. A typical example is presented in

FIG. 1. (Color online) Collective potential V (β,γ ) for 68,70,72Se.
The regions higher than 3 MeV (measured from the oblate HB
minima) are drawn by the rose-brown color. 1D collective paths
connecting the oblate and prolate local minima are determined by
using the ASCC method and depicted with bold red lines.

the bottom panel of Fig. 3. It becomes hard to identify two
collective modes that are well separated from other modes
when β > 0.4, where the collective potential energy is high
(see Fig. 1) and the monopole-pairing gap becomes small
(see Fig. 2). In this example, the second-lowest LQRPA
mode in the 0.4 < β < 0.5 region has pairing-vibrational
character, but becomes noncollective for β > 0.5. In fact,
many noncollective two-quasiparticle modes appear in its
neighborhood. This region in the (β,γ ) plane is not important,
however, because only tails of the collective wave function
enter into this region.
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FIG. 2. (Color online) Monopole-pairing and quadrupole-pairing
gaps for neutrons of 68Se are plotted in the (β,γ ) deformation plane.
(upper left) Monopole pairing gap �

(n)
0 . (lower left) Quadrupole

pairing gap �
(n)
20 . (lower right) Quadrupole pairing gap �

(n)
22 . See

Ref. [46] for definitions of �
(n)
0 ,�

(n)
20 , and �

(n)
22 .

It may be useful to set up a prescription that works even in
a difficult situation where it is not apparent how to choose
two collective LQRPA modes. We find that the following
prescription always works well for selecting two collective
modes among many LQRPA modes. This may be called a
minimal metric criterion. At each point on the (β,γ ) plane,
we evaluate the vibrational part of the metric W (β,γ ) given
by Eq. (44) for all combinations of two LQRPA modes, and
find the pair that gives the minimum value. We show in
Fig. 4 how this prescription actually works. In this figure,
the W (β,γ ) values are plotted as functions of β and γ for
many pairs of the LQRPA modes. In the situations where
the two lowest-frequency LQRPA modes are well separated
from other modes, this prescription gives the same results
as choosing the two lowest-frequency modes (see the top and
middle panels). However, a pair of the LQRPA modes different
from the lowest two modes is chosen by this prescription in the
region mentioned previously (the bottom panel). This choice
may be better than that using the lowest-frequency criterion
because we often find that a normal mode of pairing vibrational
character becomes the second-lowest LQRPA mode when the
monopole-pairing gap significantly decreases in the region of
large β. The small values of the vibrational metric implies that
the direction of the infinitesimal displacement associated with
the pair of the LQRPA modes has a large projection onto the
(β,γ ) plane. Therefore, this prescription may be well suited
to our purpose of deriving the collective Hamiltonian for the
(β,γ ) variables. It remains as an interesting open question for
the future to examine whether or not the explicit inclusion of
the pairing vibrational degree of freedom as another collective
variable will give us a better description in such situations.

D. Vibrational masses

In Fig. 5 the vibrational masses calculated for 68Se are
displayed. We see that their values exhibit a significant
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FIG. 3. Frequencies squared ω2 of the LQRPA modes calculated
for 68Se are plotted as functions of β or γ . The LQRPA modes
adopted for calculation of the vibrational masses are connected with
solid lines. (top) Dependence on γ at β = 0.3. (middle) Dependence
on β along the γ = 0.5◦ line. (bottom) Dependence on β along the
γ = 30.5◦ line.

variation in the (β,γ ) plane. In particular, the increase in the
large β region is remarkable.

Figure 6 shows how the ratios of the LQRPA vibrational
masses to the IB vibrational masses vary on the (β,γ ) plane.
It is clearly seen that the LQRPA vibrational masses are
considerably larger than the IB vibrational masses and their
ratios change depending on β and γ . In this calculation, the IB
vibrational masses are evaluated using the well-known formula

D
(IB)
ξi ξj

(β,γ ) = 2
∑
µν̄

〈µν̄| ∂ĤCHB
∂ξi

|0〉 〈0| ∂ĤCHB
∂ξj

|µν̄〉
[Eµ(β,γ ) + Eν̄(β,γ )]3

,

(ξi = β or γ ), (52)

where Eµ(β,γ ), |0〉, and |µν̄〉 denote the quasiparticle energy,
the CHB state |φ(β,γ )〉, and the two-quasiparticle state
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FIG. 4. Dependence on β and γ of the vibrational part of the
metric W (β,γ ) calculated for 68Se. (top) Dependence on γ at
β = 0.3. (middle) Dependence on β along the γ = 0.5◦ line. (bottom)
Dependence on β along the γ = 30.5◦ line. The cross symbols
indicate values of the vibrational metric calculated for various choices
of two LQRPA modes from among the lowest 40 LQRPA modes; the
lowest mode is always chosen and the other is from the remaining
39 modes. The smallest vibrational metric is shown by solid line. For
reference, the vibrational metric calculated using the IB vibrational
mass is indicated by broken lines.

a†
µa

†
ν̄ |φ(β,γ )〉, respectively (see Ref. [46] for the meaning

of the indices µ and ν̄).
The vibrational masses calculated for 70,72Se exhibit behav-

iors similar to those for 68Se.

E. Rotational masses

In Fig. 7, the LQRPA rotational masses Dk(β,γ ) cal-
culated for 68Se are displayed. Similarly to the vibra-
tional masses discussed previously, the LQRPA rotational
masses also exhibit a remarkable variation over the (β,γ )

FIG. 5. (Color online) Vibrational masses Dββ (β,γ ),
Dβγ (β,γ )/β, and Dγγ (β,γ )/β2, in units of MeV−1 calculated
for 68Se.

plane, indicating a significant deviation from the irrotational
property.

Figure 8 shows how the ratios of the LQRPA rotational
masses Dk(β,γ ) to the IB cranking masses D

(IB)
k (β,γ ) vary on

the (β,γ ) plane. The rotational masses calculated for 70,72Se
exhibit behaviors similar to those for 68Se.

As we have seen in Figs. 5 through 8, not only the
vibrational and rotational masses, but also their ratios to
the IB cranking masses exhibit an intricate dependence on
β and γ . For instance, it is clearly seen that the ratios,
Dk(β,γ )/D(IB)

k (β,γ ), gradually increase as β decreases. This
result is consistent with the calculation by Hamamoto and
Nazarewicz [54], where it is shown that the ratio of the Migdal
term to the cranking term in the rotational moment of inertia
(about the first axis) increases as β decreases. Needless to say,
the Migdal term (also called the Thouless-Valation correction)
corresponds to the time-odd mean-field contribution taken into
account in the LQRPA rotational masses so that the result of
Ref. [54] implies that the ratio D1(β,γ )/D(IB)

1 (β,γ ), increases

064313-8



MICROSCOPIC DESCRIPTION OF LARGE-AMPLITUDE . . . PHYSICAL REVIEW C 82, 064313 (2010)

FIG. 6. (Color online) Ratios of the LQRPA vibrational masses
to the IB vibrational masses Dββ/D

(IB)
ββ and Dγγ /D(IB)

γ γ , calculated for
68Se.

as β decreases, in agreement with our result. To understand
this behavior, it is important to note that, in the present
calculation, the dynamical effect of the time-odd mean-field
on D1(β,γ ) is associated with the K = 1 component of
the quadrupole-pairing interaction and it always works and
increase the rotational masses, in contrast to the behavior of the
static quantities like the magnitude of the quadrupole-pairing
gaps �20 and �22, which diminish in the spherical shape
limit. Obviously, this qualitative feature holds true irrespective
of the details of our choice of the monopole-pairing and
quadrupole-pairing interaction strengths.

The previous results of the calculation obviously indicate
the need to take into account the time-odd contributions to
the vibrational and rotational masses by going beyond the IB
cranking approximation. In Refs. [29–32], a phenomenologi-
cal prescription is adopted to remedy the shortcoming of the
IB cranking masses; that is, a constant factor in the range 1.40–
1.45 is multiplied to the IB rotational masses. This prescription
is, however, insufficient in the following points. First, the
scaling only of the rotational masses (leaving the vibrational
masses aside) violates the symmetry requirement for the 5D
collective quadrupole Hamiltonian [1–3] (a similar comment
is made in Ref. [4]). Second, the ratios take different values for
different LQRPA collective masses (Dββ,Dβγ ,Dγγ ,D1,D2,
and D3). Third, for every collective mass, the ratio exhibits
an intricate dependence on β and γ . Thus, it may be quite
insufficient to simulate the time-odd mean-field contributions
to the collective masses by scaling the IB cranking masses
with a common multiplicative factor.

FIG. 7. (Color online) Rotational masses Dk(β,γ ) in units of
MeV−1, calculated for 68Se. See Eq. (39) for the relation with the
rotational moments of inertia Jk(β,γ ).

F. Check of self-consistency along the collective path

As discussed in Sec. II, the CHB + LQRPA method is a
practical approximation to the ASCC method. It is certainly
desirable to examine the accuracy of this approximation by
carrying out a fully self-consistent calculation. Although, at
the present time, such a calculation is too demanding to carry
out for a whole region of the (β,γ ) plane, we can check
the accuracy at least along the 1D collective path. This is
because the 1D collective path is determined by carrying out
a fully self-consistent ASCC calculation for a single set of the
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FIG. 8. (Color online) Ratios of the LQRPA rotational masses to
the IB rotational masses, Dk(β,γ )/D(IB)

k (β,γ ), calculated for 68Se.

collective coordinate and momentum. The 1D collective paths
projected onto the (β,γ ) plane are displayed in Fig. 1. Let us
use a notation |φ(q)〉 for the moving-frame HB state obtained
by self-consistently solving the ASCC equations for a single
collective coordinate q [46,47]. To distinguish from it, we write
the CHB state as |φ(β(q), γ (q))〉. This notation means that
the values of β and γ are specified by the collective coordinate
q along the collective path. In other words, |φ(β(q), γ (q))〉
has the same expectation values of the quadrupole operator as
those of |φ(q)〉. It is important to note, however, that they
are different from each other because |φ(β(q), γ (q))〉 is a
solution of the CHB equation, which is an approximation of the
moving-frame HB equation. Let us evaluate various physical
quantities using the two state vectors and compare the results.
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FIG. 9. (Color online) Comparison of physical quantities eval-
uated with the CHB + LQRPA approximation and those with the
ASCC method. Both calculations are carried out along the 1D
collective path for 68Se and the results are plotted as a function
of γ (q). From the top to the bottom: (a) the collective potential,
(b) monopole-pairing gaps, �

(n))
0 and �

(p)
0 , for neutrons and protons,

(c) frequencies squared ω2 of the lowest and the second-lowest
modes obtained by solving the moving-frame QRPA and the LQRPA
equations, and (d) vibrational masses, Dββ , Dβγ /β, and Dγγ /β2,
and (e) rotational masses Dk . In almost all cases, the results of the
two calculations are indistinguishable because they agree within the
widths of the line.

In Fig. 9 various physical quantities (the pairing gaps,
the collective potential, the frequencies of the local normal
modes, the rotational masses, and vibrational masses) cal-
culated using the moving-frame HB state |φ(q)〉 and the
CHB state |φ(β(q), γ (q))〉 are presented and compared. These
calculations are carried out along the 1D collective path
for 68Se. Apparently, the results of the two calculations are
indistinguishable in almost all cases because they agree within
the widths of the line. This good agreement implies that the
CHB + LQRPA is an excellent approximation to the ASCC
method along the collective path on the (β,γ ) plane. As
we shall see in the next section, collective wave functions
distribute around the collective path. Therefore, it may be
reasonable to expect that the CHB + LQRPA method is a
good approximation to the ASCC method and suited, at least,
for describing the oblate-prolate shape mixing dynamics in
68,70,72Se.
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FIG. 10. Excitation spectra and B(E2) values calculated for 68Se by means of the CHB + LQRPA method (denoted CHB + LQRPA) and
experimental data [5–7]. For comparison, results calculated using the IB cranking masses (denoted CHB + IB) and those obtained using the
(1 + 3)D version of the ASCC method [denoted (1 + 3)D ASCC] are also shown. Only B(E2)’s larger than 1 Weisskopf unit [in the (1+3)D
ASCC and/or the CHB + LQRPA calculations] are shown in units of e2fm4.

IV. LARGE-AMPLITUDE SHAPE-MIXING
PROPERTIES OF 68,70,72Se

We calculated collective wave functions solving the col-
lective Schrödinger equation (40) and evaluated excitation
spectra, quadrupole transition probabilities, and spectroscopic
quadrupole moments. The results for low-lying states in
68,70,72Se are presented in Figs. 10–15.

In Figs. 10, 12, and 14, excitation spectra and B(E2) values
for 68Se, 70Se, and 72Se, calculated with the CHB + LQRPA
method, are displayed together with the experimental data.
The eigenstates are labeled with Iπ = 0+, 2+, 4+, and 6+. In
these figures, results obtained using the IB cranking masses
are also shown for the sake of comparison. Furthermore, the
results calculated with the (1 + 3)D version of the ASCC
method reported in our previous article [47] are shown also for

FIG. 11. (Color online) Vibrational wave functions squared β4|�Ik(β,γ )|2, calculated for 68Se.
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FIG. 12. Same as Fig. 10 but for 70Se. Experimental data are taken from Refs. [8,41].

comparison with the 5D calculations. We use the abbreviation
(1 + 3)D to indicate that a single collective coordinate along
the collective path describing large-amplitude vibration and
three rotational angles associated with the rotational motion
are taken into account in these calculations. The classification
of the calculated low-lying states into families of two or
three rotational bands is made according to the properties
of their vibrational wave functions. These vibrational wave
functions are displayed in Figs. 11, 13, and 15. In these
figures, only the β4 factor in the volume element (49) are

multiplied to the vibrational wave functions squared leaving
the sin 3γ factor aside. This is because all vibrational wave
functions look triaxial and the probability at the oblate and
prolate shapes vanish if the sin 3γ factor is multiplied by
them.

Let us first summarize the results of the CHB + LQRPA
calculation. The most conspicuous feature of the low-lying
states in these proton-rich Se isotopes is the dominance of
the large-amplitude vibrational motion in the triaxial shape
degree of freedom. In general, the vibrational wave function

FIG. 13. (Color online) Same as Fig. 11 but for 70Se.
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FIG. 14. Same as Fig. 10 but for 72Se. Experimental data are taken from Refs. [8,42].

extends over the triaxial region between the oblate (γ = 60◦)
and the prolate (γ = 0◦) shapes. In particular, this is the case
for the 0+ states causing their peculiar behaviors; for instance,
we obtain two excited 0+ states located slightly below or
above the 2+

2 state. Relative positions between these excited
states are quite sensitive to the interplay of large-amplitude
γ -vibrational modes and the β-vibrational modes. This result
of the calculation is consistent with the available experimental
data where the excited 0+ state has not yet been found, but
more experimental data are needed to examine the validity of

the theoretical prediction. In the following, let us examine the
characteristic features of the theoretical spectra more closely
for individual nuclei.

For 68Se, we obtain the third band in low energy. The
0+

2 and 2+
3 states belonging to this band are also shown in

Fig. 10. Their vibrational wave functions exhibit nodes in the
β direction (see Fig. 11) indicating that a β-vibrational mode
is excited on top of the large-amplitude γ vibrations. As a
matter of course, this kind of state is outside of the scope
of the (1 + 3)D calculation. The vibrational wave functions

FIG. 15. (Color online) Same as Fig. 11 but for 72Se.
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FIG. 16. Spectroscopic quadrupole moments for 68,70,72Se. Values
calculated with the LQRPA collective masses are shown with the
triangles. For comparison, values calculated with the IB collective
masses and those obtained with the (1 + 3)D version of the ASCC
method are also shown with the squares and the circles, respectively.
The filled symbols show the values for the yrast states, while the open
symbols those for the yrare states.

of the yrast 2+
1 and 4+

1 states exhibit localization in a region
around the oblate shape, while the yrare 2+

2 , 4+
2 , and 6+

2 states
localize around the prolate shape. It is apparent, however, that
all the wave functions significantly extend from γ = 0◦ to
60◦ over the triaxial region, indicating the γ -soft character of
these states. In particular, the yrare 4+

2 and 6+
2 wave functions

exhibit a two-peak structure consisting of the prolate and oblate
peaks. The peaks of the vibrational wave function gradually
shift toward a region of larger β as the angular momentum
increases. This is a centrifugal effect decreasing the rotational
energy by increasing the moment of inertia. In the (1 + 3)D
calculation, this effect is absent because the collective path is
fixed at the ground state. Thus, the 5D calculation yields,
for example, a much larger value for B(E2; 6+

1 → 4+
1 ) in

comparison with the (1 + 3)D calculation. Actually, in the
5D CHB + LQRPA calculation, the wave function of the yrast
6+

1 state localizes in the triaxial region (see Fig. 11) where
the moment of inertia takes a maximum value. This leads to
a small value for the spectroscopic quadrupole moment (see
Fig. 16) because of the cancellation between the contributions
from the oblate-like and prolate-like regions. This cancel-
lation mechanism due to the large-amplitude γ fluctuation
is effective also in other states; although the spectroscopic
quadrupole moments of the yrast 2+

1 and 4+
1 (yrare 2+

2 , 4+
2 , and

6+
2 ) states are positive (negative) indicating their oblate-like

(prolate-like) character, their absolute magnitudes are rather
small.

The E2-transition probabilities exhibit a pattern reminis-
cent of the γ -unstable situation; for instance, B(E2; 6+

2 →
6+

1 ), B(E2; 4+
2 → 4+

1 ), and B(E2; 2+
2 → 2+

1 ) are much larger
than B(E2; 6+

2 → 4+
1 ), B(E2; 4+

2 → 2+
1 ), and B(E2; 2+

2 →
0+

1 ); see Fig. 10. Thus, the low-lying states in 68Se may be
characterized as an intermediate situation between the oblate-
prolate shape coexistence and the Wilets-Jean γ -unstable
model [55]. Using the phenomenological Bohr-Mottelson
collective Hamiltonian, we showed in Ref. [56] that it is
possible to describe the oblate-prolate shape coexistence and
the γ -unstable situation in a unified way varying a few
parameters controlling the degree of oblate-prolate asymmetry
in the collective potential and the collective masses. The
two-peak structure seen in the 4+

2 and 6+
2 states may be

considered as one of the characteristics of the intermediate
situation. It thus appears that the excitation spectrum for
68Se (Fig. 10) serves as a typical example of the transitional
phenomena from the γ -unstable to the oblate-prolate shape
coexistence situations.

Let us make a comparison between the spectra in Fig. 10
obtained with the LQRPA collective masses and that with
the IB cranking masses. It is obvious that the excitation
energies are appreciably overestimated in the latter. This result
is as expected from the too low values of the IB cranking
masses. The result of our calculation is in qualitative agree-
ment with the HFB-based configuration-mixing calculation
reported by Ljungvall et al. [8] in that both calculations
indicate the oblate (prolate) dominance for the yrast (yrare)
band in 68Se. Quite recently, the B(E2; 2+

1 → 0+
1 ) value

was measured in the experiment [7]. The calculated value
(492 e2fm4) is in fair agreement with the experimental data
(432 e2fm4).

The result of the calculation for 70Se (Figs. 12 and 13)
is similar to that for 68Se. The vibrational wave functions of
the yrast 2+

1 , 4+
1 , and 6+

1 states localize in a region around
the oblate shape, exhibiting, at the same time, long tails
in the triaxial direction. We note here that, differently from
the 68Se case, the 6+

1 wave function keeps the oblate-like
structure. However, the yrare 2+

2 , 4+
2 , and 6+

2 states localize
around the prolate shape, exhibiting, at the same time, small
secondary bumps around the oblate shape. For the yrare 2+

2
state, we obtain a strong oblate-prolate shape mixing in the
(1 + 3)D calculation [47]. This mixing becomes weaker in
the present 5D calculation, resulting in the reduction of the
B(E2; 4+

1 → 2+
2 ) value. Similarly to 68Se, we obtain two

excited 0+ states in low energy. We see considerable oblate-
prolate shape mixings in their vibrational wave functions,
but, somewhat differently from those in 68Se, the second and
third 0+ states in 70Se exhibit clear peaks at the oblate and
prolate shapes, respectively, Their energy ordering is quite
sensitive to the interplay of the large-amplitude γ vibration
and the β vibrational modes. The calculated spectrum for
70Se is in fair agreement with the recent experimental data
[41], although the B(E2) values between the yrast states are
overestimated.

The result of the calculation for 72Se (Figs. 14 and 15)
presents a feature somewhat different from those for 68Se and
70Se; that is, the yrast 2+

1 , 4+
1 , and 6+

1 states localize around
the prolate shape instead of the oblate shape. The localization
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develops with increasing angular momentum. Nevertheless,
similarly to the 68,70Se cases, the yrare 2+

2 , 4+
2 , and 6+

2 states
exhibit the two-peak structure. The spectroscopic quadrupole
moments of the 2+

1 , 4+
1 , and 6+

1 states are negative, and their
absolute magnitude increases with increasing angular momen-
tum (see Fig. 16) reflecting the developing prolate character in
the yrast band, while those of the yrare states are small because
of the two-peak structure of their vibrational wave functions,
that is, due to the cancellation of the contributions from the
prolate-like and oblate-like regions. Also for 72Se, we obtain
two excited 0+ states in low energy, but they show features
somewhat different from the corresponding excited 0+ states
in 68,70Se. Specifically, the vibrational wave functions of the
second and third 0+ states exhibit peaks at the prolate and
oblate shape, respectively. As seen in Fig. 14, our results of
the calculation for the excitation energies and B(E2) values are
in good agreement with the recent experimental data [8] for the
yrast 2+

1 , 4+
1 , and 6+

1 states in 72Se. Experimental E2-transition
data are awaited for understanding the nature of the observed
excited band.

V. CONCLUSION

On the basis of the ASCC method, we developed a practical
microscopic approach, called CHFB + LQRPA, of deriving
the 5D quadrupole collective Hamiltonian and confirmed
its efficiency by applying it to the oblate-prolate shape
coexistence/mixing phenomena in proton-rich 68,70,72Se. The
results of the numerical calculation for the excitation energies
and B(E2) values are in good agreement with the recent
experimental data [7,8] for the yrast 2+

1 , 4+
1 , and 6+

1 states
in these nuclei. It is shown that the time-odd components of
the moving mean-field significantly increase the vibrational
and rotational collective masses and make the theoretical
spectra in much better agreement with the experimental data
than calculations using the IB cranking masses. Our analysis
clearly indicates that low-lying states in these nuclei possess

a transitional character between the oblate-prolate shape
coexistence and the so-called γ -unstable situation where large-
amplitude triaxial-shape fluctuations play a dominant role.

Finally, we would like to list a few issues for the future
that seem particularly interesting. First, a fully self-consistent
solution of the ASCC equations for determining the 2D
collective hypersurface and examination of the validity of the
approximations adopted in this article in the derivation of the
CHFB + LQRPA scheme. Second, the application to various
kinds of collective spectra associated with large-amplitude
collective motions near the yrast lines (as listed in Ref. [28]).
Third, the possible extension of the quadrupole collective
Hamiltonian by explicitly treating the pairing vibrational
degrees of freedom as additional collective coordinates.
Fourth, the use of the Skyrme energy functionals + density-
dependent contact pairing interaction in place of the
P + Q force and then modern density functionals currently
under active development. Fifth, the application of the
CHFB + LQRPA scheme to fission dynamics. The LQRPA
approach enables us to evaluate, without the need of numerical
derivatives, the collective inertia masses including the time-
odd mean-field effects.
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Large-amplitude collective dynamics of shape phase transition in the low-lying states of 30−36Mg is investigated
by solving the five-dimensional (5D) quadrupole collective Schrödinger equation. The collective masses and
potentials of the 5D collective Hamiltonian are microscopically derived with use of the constrained Hartree-
Fock-Bogoliubov plus local quasiparticle random phase approximation method. Good agreement with the recent
experimental data is obtained for the excited 0+ states as well as the ground bands. For 30Mg, the shape coexistence
picture that the deformed excited 0+ state coexists with the spherical ground state approximately holds. On the
other hand, large-amplitude quadrupole-shaped fluctuations dominate in both the ground and the excited 0+ states
in 32Mg, providing a picture that is different from the interpretation of the “coexisting spherical excited 0+ state”
based on the naive inversion picture of the spherical and deformed configurations.
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Nuclei exhibit a variety of shapes in their ground and
excited states. A feature of the quantum phase transition of
a finite system is that the order parameters (shape deformation
parameters) always fluctuate and vary with the particle number.
Especially, the large-amplitude shape fluctuations play a
crucial role in transitional (critical) regions. Spectroscopic
studies of low-lying excited states in transitional nuclei are
of great interest to observe such unique features of the finite
quantum systems.

Low-lying states of neutron-rich nuclei at approximately
N = 20 attract great interest, as the spherical configura-
tions associated with the magic number disappear in the
ground states. In neutron-rich Mg isotopes, the increase of
the excitation energy ratio E(41

+)/E(21
+) [1–3] and the

enhancement of B(E2; 21
+ → 01

+) from 30Mg to 34Mg [4–6]
indicate a kind of quantum phase transition from spherical to
deformed shapes taking place around 32Mg. These experiments
stimulate microscopic investigations on quadrupole collective
dynamics unique to this region of the nuclear chart with
various theoretical approaches: the shell model [7–10], the
Hartree-Fock-Bogoliubov (HFB) method [11,12], the parity-
projected Hartree-Fock (HF) [13], the quasiparticle random
phase approximation (QRPA) [14,15], the angular-momentum
projected generator coordinate method (GCM) with [16] and
without [17,18] restriction to the axial symmetry, and the
antisymmetrized molecular dynamics [19].

Quite recently, excited 0+ states were found in 30Mg
and 32Mg at 1.789 MeV and 1.058 MeV, respectively, and
their characters are presently under hot discussion [20–23].
For 30Mg, the excited 02

+ state is interpreted as a prolately
deformed state which coexists with the spherical ground state.
For 32Mg, from the observed population of the excited 02

+
state in the (t,p) reaction on 30Mg, it is suggested [22] that
the 02

+ state is a spherical state coexisting with the deformed
ground state and that their relative energies are inverted at

*Present address: Department of Physics and Astronomy, University
of North Carolina, Chapel Hill, NC 27599-3255.

N = 20. However, available shell-model and GCM calcula-
tions considerably overestimate its excitation energy (1.4–3.1
MeV) [9,10,16,21]. It is therefore a challenge for modern
microscopic theories of nuclear structure to clarify the nature
of the excited 02

+ states. For understanding shape dynamics
in low-lying collective excited states of Mg isotopes near
N = 20, it is certainly desirable to develop a theory capable
of describing various situations in a unified manner, including,
at least, (1) an ideal shape coexistence limit where the wave
function of an individual quantum state is well localized in the
deformation space and (2) a transitional situation where the
large-amplitude shape fluctuations dominate.

In this Rapid Communication, we microscopically derive
the five-dimensional (5D) quadrupole collective Hamiltonian
using the constrained Hartree-Fock-Bogoliubov (CHFB) plus
local QRPA (LQRPA) method [24]. The 5D collective Hamil-
tonian takes into account all the five quadrupole degrees of
freedom: the axial and triaxial quadrupole deformations (β, γ )
and the three Euler angles. This approach is suitable for our
purpose of describing a variety of quadrupole collective phe-
nomena in a unified way. Another advantage is that the time-
odd mean-field contributions are taken into account in evalu-
ating the vibrational and rotational inertial functions. In spite
of their importance for correctly describing collective excited
states, the time-odd contributions are ignored in the widely
used Inglis-Belyaev cranking formula for inertial functions.
The CHFB + LQRPA method has been successfully applied
to various large-amplitude collective dynamics, including the
oblate-prolate shaped coexistence phenomena in Se and Kr
isotopes [24,25], the γ -soft dynamics in sd-shell nuclei [26],
and the shape phase transition in neutron-rich Cr isotopes [27].
A preliminary version of this work was reported in Ref. [28].

The 5D quadrupole collective Hamiltonian is written as

Hcoll = Tvib + Trot + V (β, γ ), (1)

Tvib = 1

2
Dββ(β, γ )β̇2 + Dβγ (β, γ )β̇γ̇ + 1

2
Dγγ (β, γ )γ̇ 2,

(2)

061302-10556-2813/2011/84(6)/061302(5) ©2011 American Physical Society
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Trot = 1

2

3∑
k=1

Jk(β, γ )ω2
k, (3)

where Tvib and Trot are the vibrational and rotational kinetic
energies, respectively, and V is the collective potential. The
vibrational collective masses Dββ , Dβγ , and Dγγ are the
inertial functions for the (β, γ ) coordinates. The rotational
moments of inertia Jk associated with the three components
of the rotational angular velocities ωk are defined with respect
to the principal axes. In the CHFB + LQRPA method, the
collective potential is calculated with the CHFB equation
with four constraints on the two quadrupole operators and
the proton and neutron numbers. The inertial functions in
the collective Hamiltonian are determined from the LQRPA
normal modes locally defined for each CHFB state in the
(β, γ ) plane. The equations to find the local normal modes are
similar to the well-known QRPA equations, but the equations
are solved on top of the nonequilibrium CHFB states. Two
LQRPA solutions representing quadrupole shaped motion are
selected for the calculation of the vibrational inertial functions.
After quantizing the collective Hamiltonian (1), we solve the
5D collective Schrödinger equation and obtain collective wave
functions

�αIM (β, γ,�) =
∑

K=even

�αIK (β, γ )〈�|IMK〉, (4)

where �αIK (β, γ ) are the vibrational wave functions and
〈�|IMK〉 are the rotational wave functions defined in terms of
D functions DI

MK (�). We then evaluate E2 matrix elements.
More details of this approach are given in Ref. [24].

We solve the CHFB + LQRPA equations employing, as a
microscopic Hamiltonian, the pairing-plus-quadrupole (P +
Q) model including the quadrupole-pairing interaction. As
an active model space, the two major harmonic oscillator
shells (sd and pf shells) are taken into account for both
neutrons and protons. To determine the parameters in the
P + Q Hamiltonian, we first perform Skyrme-HFB calcu-
lations with the SkM* functional and the surface pairing
functional using the HFBTHO code [29]. The pairing strength
(V0 = −374 MeV fm−3, with a cutoff quasiparticle energy of
60 MeV) is fixed so as to reproduce the experimental neutron
gap of 30Ne (1.26 MeV). We then determine the parameters for
each nucleus in the following way. The single-particle energies
are determined by means of the constrained Skyrme-HFB
calculation at the spherical shape. The resulting single-particle

energies (in the canonical basis) are then scaled with the
effective mass of the SkM* functional m∗/m = 0.79, since the
P + Q model is designed to be used for single-particle states
whose effective mass is equal to the bare nucleon mass. In
32Mg, the N = 20 shell gap between d3/2 and f7/2 is 3.7 MeV
for the SkM* functional, and it becomes 2.9 MeV after the
effective mass scaling. This value is appreciably smaller than
the standard modified oscillator value 4.5 MeV [30]. This
spacing almost stays constant for 30−36Mg. The strengths
of the monopole-pairing interaction are determined to repro-
duce the pairing gaps obtained in the Skyrme-HFB calculations
at the spherical shape. The strength of the quadrupole particle-
hole interaction is determined to reproduce the magnitude
of the axial quadrupole deformation β of the Skyrme-HFB
minimum. The strengths of the quadrupole-pairing interaction
are determined so as to fulfill the self-consistency condition
[31]. We use the quadrupole polarization charge δepol = 0.5
for both neutrons and protons when evaluating E2 matrix
elements. We solve the CHFB + LQRPA equations at 3600 β-
γ mesh points in the region 0 < β < βmax and 0◦ < γ < 60◦,
with βmax = 0.5 for 30Mg and 0.6 for 32,34,36Mg.

Our theoretical framework is quite general and it can be
used in conjunction with various Skyrme forces or modern
density functionals going beyond the P + Q model. Then
the effects of weakly bound neutrons and coupling to the
continuum on the properties of the low-lying collective exci-
tations, discussed in Refs. [14,15], can be taken into account,
for example, by solving the CHFB + LQRPA equations in
the three-dimensional (3D) coordinate mesh representation.
However, it requires a large-scale calculation with modern
parallel processors and it remains a challenging future subject.
A step toward this goal has recently been carried out for axially
symmetric cases [27].

Figure 1 shows the collective potentials V (β, γ ) for
30−36Mg. It is clearly seen that prolate deformation grows with
an increase in the neutron number. The collective potential
for 30Mg is very soft with respect to β. It has a minimum
at β = 0.11 and a local minimum at β = 0.33. The barrier
height between the two minima is only 0.24 MeV (measured
from the lower minimum). In 32Mg, in addition to the prolate
minimum at β = 0.33, a spherical local minimum (associated
with the N = 20 spherical shell gap) appears. The barrier
height between the two minima is 1.0 MeV (measured from
the lower minimum). The spherical local minimum disappears
in 34Mg and 36Mg, and the prolate minima become soft in

FIG. 1. (Color online) Collective potentials for 30−36Mg. The HFB equilibrium points are indicated by red circles.
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FIG. 2. (Color online) Comparison of calculated excitation ener-
gies of the 21

+ and 41
+ states (upper panel) and B(E2; 21

+ → 01
+)

values (lower panel) in 30−36Mg with experimental data [1–6].

the direction of triaxial deformation γ . In 34Mg, the potential
minimum is located at γ = 10◦.

In Fig. 2, calculated excitation energies and E2 transition
strengths are compared with the experimental data. The
lowering of the excitation energies of the 21

+ and 41
+

states and the increase of B(E2; 21
+ → 01

+) from 30Mg to
34Mg are well described in this calculation. The calculated
ratio of the excitation energies E(41

+)/E(21
+) increases as

2.37, 2.82, 3.26, and 3.26, while the ratio of the transition
strengths B(E2; 41

+ → 21
+)/B(E2; 21

+ → 01
+) decreases

as 2.03, 1.76, 1.43, and 1.47, in going from 30Mg to 36Mg.
Thus, the properties of the 21

+ and 41
+states gradually change

from vibrational to rotational with increasing neutron number.
Let us next discuss the properties of the 02

+ states and
the 2+ and 4+ states connected to the 02

+ states with
strong E2 transitions. The result of calculation is presented
in Fig. 3, together with the recent experimental data. The
calculated excitation energies of the 02

+ states are 1.353
and 0.986 MeV for 30Mg and 32Mg, respectively, in fair
agreement with the experimental data [21,22]. In particular,
the very low excitation energy of the 02

+ state in 32Mg is
well reproduced. In our calculation, more than 90% (80%)
of the collective wave functions for the yrast (excited) band
members are composed of the K = 0 component. Therefore,
we denote the ground band by “the K = 01 band,” and the
excited band by “the K = 02 band.” The 2+ and 4+ states
belonging to the K = 02 band appear as the second 2+ and
4+ states in 30,32Mg, while they appear as the third 2+ and
4+ states in 34,36Mg. Accordingly, we use 22,3

+ and 42,3
+ to

collectively indicate the second or the third 2+ and 4+ states.
The calculated ratios of the excitation energies relative to the
excited 02

+ state [E(42,3
+) − E(02

+)]/[E(22,3
+) − E(02

+)]
are 3.18, 2.87, 3.25, and 3.00, for 30Mg, 32Mg, 34Mg, and 36Mg,
respectively. In the upper panel of Fig. 3 we also plot the rotor-
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FIG. 3. (Color online) Excitation energies of the excited 02
+,

22,3
+, and 42,3

+ states (upper panel) and the ratio B(E2; 02
+ →

21
+)/B(E2; 01

+ → 22,3
+) of the interband E2 transition strengths

between the K = 02 and K = 01 bands (lower panel). Experimental
data are taken from Refs. [21,22]. See text for details.

model prediction for the excitation energies of the 4+ states
estimated from the 0+–2+ spacings in the K = 02 bands. The
deviation from the rotor-model prediction is largest in 32Mg,
indicating importance of shape-fluctuation effects. Although
the calculated excitation spectrum of the K = 02 band in
30Mg looks rotational, we find a significant deviation from
the rotor-model prediction in the E2 transition properties. The
calculated ratios of the E2 transition strengths B(E2; 42,3

+ →
22,3

+)/B(E2; 22,3
+ → 02

+) are 1.05, 1.54, 1.47, and 1.51 for
30−36Mg, respectively. The deviation from the rotor-model
value (1.43) is largest in 30Mg. The significant deviation from
the simple rotor-model pattern of the K = 02 bands in 30Mg
and 32Mg, noticed above, can be seen more drastically in the
interband E2 transition properties. In the lower panel of Fig. 3,
we plot the ratio B(E2; 02

+ → 21
+)/B(E2; 01

+ → 22,3
+) of

the interband transition strengths between the K = 01 and
K = 02 bands. If the K = 01 and K = 02 bands are composed
of only the K = 0 component and the intrinsic structures in the
(β, γ ) plane are the same within the band members, this ratio
should be one. These ratios for 34Mg and 36Mg are close to one,
indicating that the change of the intrinsic structure between the
0+ and 2+ states is small. In contrast, the ratios for 30Mg and
32Mg are larger than 10, indicating a remarkable change in
the shape-fluctuation properties between the 0+ and 2+ states
belonging to the K = 01 and K = 02 bands. The enhancement
of the ratios is mainly due to the large B(E2; 02

+ → 21
+)

values whose origin is discussed below.
Figure 4 shows the vibrational wave functions squared∑
K |�αIK (β, γ )|2. Let us first examine the character change

of the ground state from 30Mg to 34Mg. In 30Mg, the vibrational
wave function of the ground 01

+ state is distributed around
the spherical shape. In 32Mg, it is extended to the prolately
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FIG. 4. (Color online) Vibrational wave functions squared∑
K |�αIK (β, γ )|2 of the 01

+, 21
+, 02

+, and 22,3
+ states in 30−34Mg.

Contour lines are drawn at every eighth part of the maximum value.

deformed region. In 34Mg, it is distributed around the prolate
shape. From the behavior of the vibrational wave functions,
one can conclude that shape fluctuation in the ground 01

+ state
is largest in 32Mg. To understand the microscopic mechanism
of this change from 30Mg to 34Mg, it is necessary to take into
account not only the properties of the collective potential in
the β direction but also its curvature in the γ direction and the
collective kinetic energy (collective masses). This point will be
discussed in our forthcoming full-length paper. As suggested
from the behavior of the interband B(E2) ratio, the vibrational
wave functions of the 21

+ state are noticeably different from
those of the 01

+ state in 30Mg and 32Mg, while they are similar
in the case of 34Mg. Next, let us examine the vibrational
wave functions of the 02

+ and 22,3
+ states in 30−34Mg. It is

immediately seen that they exhibit one node in the β direction.
This is their common feature. In 30Mg and 32Mg, one bump
is seen in the spherical to weakly deformed region, while
the other bump is located in the prolately deformed region
around β = 0.3–0.4. The bump at the deformed region of
the 02

+ states and the extended structure of the 21
+ states

to the deformed region, which lead to an appreciable overlap
of their vibrational wave functions, are responsible for the
large interband B(E2; 02

+ → 21
+) values. In 34Mg, the node

is located near the peak of the vibrational wave function of the
01

+ state, suggesting that they have β-vibrational properties.
To further reveal the nature of the ground and excited 0+

states, it is important to examine not only their vibrational wave
functions but also their probability density distributions. Since
the 5D collective space is a curved space, the normalization
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FIG. 5. (Color online) (a) Vibrational wave functions squared
|�α,I=0,K=0(β, γ = 0.5◦)|2 of the 01

+ states in 30−34Mg. Their
values along the γ = 0.5◦ line are plotted as functions
of β. (b) Probability densities integrated over γ , P (β) ≡∫

dγ |�α,I=0,K=0(β, γ )|2|G(β, γ )|1/2, of the 01
+ states in 30−34Mg,

plotted as functions of β. (c) Same as (a) but for the 02
+ states.

(d) Same as (b) but for the 02
+ states.

condition for the vibrational wave functions is given by∫ ∑
K

|�αIK (β, γ )|2|G(β, γ )|1/2dβ dγ = 1, (5)

with the volume element

|G(β, γ )|1/2dβ dγ = 2β4
√

W (β, γ )R(β, γ ) sin 3γ dβ dγ,

(6)

W (β, γ ) = {Dββ(β, γ )Dγγ (β, γ )

− [Dβγ (β, γ )]2}β−2, (7)

R(β, γ ) = D1(β, γ )D2(β, γ )D3(β, γ ), (8)

where Dk=1,2,3 are the rotational masses defined through
Jk = 4β2Dk sin2(γ − 2πk/3). Thus, the probability density
of taking a shape with specific values of (β, γ ) is given by∑

K |�αIK (β, γ )|2|G(β, γ )|1/2. Due to the β4 factor in the
volume element, the spherical peak of the vibrational wave
function disappears in the probability density distribution.
Accordingly, it will give us a picture that is quite different
from that of the wave function. Needless to say, it is important
to examine both aspects to understand the nature of individual
quantum states.

In Fig. 5, we display the probability density integrated over
γ , P (β) ≡ ∫

dγ |�α,I=0,K=0(β, γ )|2|G(β, γ )|1/2, of finding a
shape with a specific value of β, together with the vibrational
wave functions squared |�α,I=0,K=0(β, γ )|2 for the ground
and excited 0+ states (α = 1 and 2). Let us first look at the
upper panels for the ground states. We note that, as expected,
the spherical peak of the vibrational wave function for 30Mg in
Fig. 5(a) corresponds to the peak at β � 0.15 of the probability
density in Fig. 5(b). In Fig. 5(b), the peak position moves
toward a larger value of β in going from 30Mg to 34Mg. The
distribution for 32Mg is much broader than those for 30Mg and
34Mg.

Next, let us look at the lower panels in Fig. 5 for the
excited states. In Fig. 5(c), the vibrational wave functions for
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30Mg and 32Mg exhibit the maximum peak at the spherical
shape. However, these peaks become small and are shifted
to the region with β � 0.1 and β � 0.2 in 30Mg and 32Mg,
respectively, in Fig. 5(d). On the other hand, the second peaks
at β � 0.3 and β ≈ 0.4 in 30Mg and 32Mg, respectively, seen
in Fig. 5(c), become the prominent peaks in Fig. 5(d). In 30Mg,
the bump at β � 0.1 is much smaller than the major bump at
β � 0.3. In this sense, we can regard the 02

+ state of 30Mg as
a prolately deformed state. In the case of 32Mg, the probability
density exhibits a very broad distribution extending from the
spherical to deformed regions up to β = 0.5 with a prominent
peak at β � 0.4 and a node at β � 0.3. The position of the node
coincides with the peak of the probability density distribution
of the 01

+ state, as expected from the orthogonality condition.
The range of the shape fluctuation of the 02

+ state in the β

direction is almost the same as that of the 01
+ state. Thus, the

result of our calculation yields a physical picture for the 02
+

state in 32Mg that is quite different from the “spherical excited
0+ state” interpretation based on the inversion picture of the
spherical and deformed configurations. A detailed analysis
of this point, including the relations with the shell model
descriptions [8,9], will be presented in a forthcoming paper. In
34Mg, the peak is shifted to the region with a larger value of β

and the tail toward the spherical shape almost disappears.

In summary, we have investigated the large-amplitude
collective dynamics in the low-lying states of 30−36Mg by
solving the 5D quadrupole collective Schrödinger equation.
The collective masses and potentials of the 5D collective
Hamiltonian are microscopically derived with use of the
CHFB + LQRPA method. Good agreement with the recent
experimental data is obtained for the excited 0+ states as
well as the ground bands. For 30Mg, the shape coexistence
picture that the deformed excited 0+ state coexists with the
spherical ground state approximately holds. On the other hand,
large-amplitude quadrupole-shaped fluctuations dominate in
both the ground and the excited 0+ states in 32Mg, in contrast
to the interpretation of “deformed ground and spherical
excited 0+ states” based on the simple inversion picture
of the spherical and deformed configurations. To test these
theoretical predictions, an experimental search for the distorted
rotational bands built on the excited 02

+ states in 30Mg and
32Mg is strongly desired.
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The spherical-to-prolate shape transition in neutron-rich Cr isotopes from N = 34 to 42 is studied by solving
the collective Schrödinger equation for the five-dimensional quadrupole collective Hamiltonian. The collective
potential and inertial functions are microscopically derived with use of the constrained Hartree-Fock-Bogoliubov
plus local quasiparticle random-phase approximation method. Nature of the quadrupole collectivity of low-lying
states is discussed by evaluating excitation spectra and electric quadrupole moments and transition strengths. The
result of calculation indicates that Cr isotopes around 64Cr are prolately deformed but still possess transitional
character; large-amplitude shape fluctuations dominate in their low-lying states.
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I. INTRODUCTION

Recent experiments on neutron-rich Cr isotopes show
that quadrupole collectivity appreciably develops toward 64Cr
with N = 40 [1–6]. Going from 58Cr to 64Cr, the excitation
energy of the first excited 2+

1 state decreases and R4/2, the
ratio of the excitation energy of the 4+

1 state to that of
the 2+

1 state, increases. These data seem to indicate that a
quantum phase transition from the spherical to deformed
shapes takes place near N = 40. The microscopic origin
of the enhanced quadrupole collectivity toward N = 40 has
been actively discussed from various theoretical approaches:
the Hartree-Fock-Bogoliubov (HFB) mean-field calculations
using the Skyrme force [8] or the Gogny force [9], the spherical
shell-model [7,10], and the projected deformed shell model
[11]. These calculations have clarified the important role of the
neutron g9/2 and d5/2 single-particle levels in the emergence
of the quadrupole collectivity near N = 40. Although the
spherical shell model calculations reproduce the experimental
data rather well, the character of the quadrupole deformation,
especially, the distinction between the equilibrium shape and
shape fluctuations around it is not sufficiently clear.

In this paper, we investigate the nature of the quadrupole
collectivity in low-lying states of the neutron-rich Cr iso-
topes 58−64Cr using an approach that treats the quadrupole
deformations as dynamical variables. Thus, the distinction of
the equilibrium shape and shape fluctuations is transparent.
The deformation energy curve with respect to the axial
quadrupole deformation was obtained in the Skyrme HFB
mean-field calculation [8], which shows that the quadrupole
instability occurs around N = 38–42. However, the deformed
minima are extremely shallow in these nuclei, suggesting
a transitional character. In such transitional situations, one
naturally expects that large-amplitude shape fluctuations play
an important role in determining the properties of low-lying
excited states. Therefore, we take the five-dimensional (5D)
quadrupole collective Hamiltonian approach [12], which is

capable of describing the large-amplitude quadrupole shape
fluctuations associated with the quantum shape transition.
It enables us to treat a variety of quadrupole deformation
phenomena (vibrational, spherical-prolate transitional, rota-
tional, γ -unstable, triaxial, oblate-prolate shape-coexistent
situations, etc.) on an equal footing. Dynamical variables of
the 5D quadrupole collective Hamiltonian approach are the
magnitude and triaxiality of quadrupole deformation (β, γ )
and the three Euler angles. The 5D collective Hamiltonian
is characterized by seven functions: the collective potential,
three vibrational inertial functions (also called vibrational
masses), and three rotational inertial functions. To evaluate
the inertial functions, the Inglis-Belyaev (IB) cranking formula
has been conventionally used. However, it is well known that
the contribution of the time-odd components of the moving
mean field is ignored in the IB cranking formula, which leads
to the overestimation of excitation energies [14,15].

The constrained Hartree-Fock-Bogoliubov plus local quasi-
particle random-phase approximation (CHFB + LQRPA)
method [16] is a method which can overcome the shortcoming
of the IB cranking formula. This method has been successfully
applied to several phenomena: shape coexistence/fluctuation
in Se and Kr isotopes [14,16,19], development of triaxial
deformation in 110Mo [20], and shape fluctuations in neutron-
rich Mg isotopes [21]. Use of the Skyrme energy density
functional in solving the CHFB + LQRPA equations has
also been initiated for the axially symmetric quadrupole
Hamiltonian [22]. In this paper, we solve the LQRPA equations
with use of the pairing-plus-quadrupole (P + Q) model [12]
including the quadrupole pairing interaction. For the collective
Hamiltonian quantized according to the Pauli prescription,
we solve the collective Schrödinger equation to obtain the
excitation energies, vibrational wave functions, E2-transition
strengths, and moments.

This paper is organized as follows. We recapitulate the
theoretical framework in Sec. II. In Sec. III, we present
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results of calculation for 58−66Cr and discuss the nature of
quadrupole collectivity in their low-lying states. We then
discuss similarities and differences of the quadrupole shape
transition near 64Cr with N = 40 and that near 32Mg with
N = 20. Conclusions are given in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section, we briefly summarize the framework of our
collective Hamiltonian approach. See Ref. [16] for details.

A. 5D quadrupole collective Hamiltonian

The 5D quadrupole collective Hamiltonian is given by

Hcoll = Tvib + Trot + V (β, γ ), (1)

Tvib = 1

2
Dββ(β, γ )β̇2+Dβγ (β, γ )β̇γ̇+1

2
Dγγ (β, γ )γ̇ 2, (2)

Trot = 1

2

3∑
k=1

Jk(β, γ )ω2
k, (3)

where Tvib and Trot represent the vibrational and rotational
kinetic energies, while V the collective potential energy.
The velocities of the vibrational motion are described in
terms of the time derivatives (β̇, γ̇ ) of the quadrupole de-
formation variables (β, γ ) representing the magnitude and
the triaxiality of the quadrupole deformation, respectively.
The three components ωk of the rotational angular velocity
are defined with respect to the principal axes associated
with the rotating nucleus. The moments of inertia are
parametrized as Jk(β, γ ) = 4β2Dk(β, γ ) sin2 γk with γk =
γ − 2πk/3. The inertial functions for vibration (vibrational
masses) Dββ,Dβγ and Dγγ , and those for rotation (rotational
masses) Dk are functions of β and γ .

The collective potential and inertial functions are deter-
mined with the CHFB + LQRPA method as explained in the
next subsection. Once they are determined as functions of
(β, γ ), we quantize the collective Hamiltonian according to
the Pauli prescription. The collective Schrödinger equation for
the quantized collective Hamiltonian is given by

{T̂vib + T̂rot + V }�αIM (β, γ,�) = EαI�αIM (β, γ,�), (4)

where

T̂vib = −1

2
√

WR

{
1

β4

[(
∂ββ2

√
R

W
Dγγ ∂β

)

− ∂β

(
β2

√
R

W
Dβγ ∂γ

)]

+ 1

β2 sin 3γ

[
−∂γ

(√
R

W
sin 3γDβγ ∂β

)

+ ∂γ

(√
R

W
sin 3γDββ∂γ

)]}
(5)

and

T̂rot =
∑

k

Î 2
k

2Jk

. (6)

Here, R(β, γ ) and W (β, γ ) are defined as

R(β, γ ) = D1(β, γ )D2(β, γ )D3(β, γ ), (7)

W (β, γ )={Dββ(β, γ )Dγγ (β, γ )−[Dβγ (β, γ )]2}β−2. (8)

The collective wave function �αIM (β, γ,�) is specified by
the total angular momentum I , its projection onto the z axis of
the laboratory frame M , and α distinguishing the states with
the same I and M . It can be written as a sum of products of
the vibrational and rotational wave functions:

�αIM (β, γ,�) =
∑

K=even


αIK (β, γ )〈�|IMK〉, (9)

where

〈�|IMK〉 =
√

2I + 1

16π2(1 + δK0)

[
DI

MK (�) + (−)IDI
M−K (�)

]
.

(10)

DI
MK is the Wigner rotation matrix and K is the projection

of the angular momentum onto the z axis in the body-fixed
frame. The summation over K is taken from 0 to I for even I

and from 2 to I − 1 for odd I .
The vibrational wave functions in the body-fixed frame,


αIK (β, γ ), are normalized as∫
dβdγ |
αI (β, γ )|2|G(β, γ )| 1

2 = 1, (11)

where

|
αI (β, γ )|2 ≡
∑

K=even

|
αIK (β, γ )|2, (12)

and the volume element |G(β, γ )| is given by

|G(β, γ )| = 4β8W (β, γ )R(β, γ ) sin2 3γ. (13)

The symmetries and boundary conditions of the collective
Hamiltonian and wave functions are discussed in Ref. [23].

B. The CHFB + LQRPA method

We determine the collective potential and inertial functions
with the CHFB + LQRPA method. It is derived on the basis
of the adiabatic self-consistent collective coordinate (ASCC)
method [15,17,18] by assuming that there is a one-to-one
mapping from a point on the collective submanifold embedded
in the large-dimensional time-dependent HFB phase space to a
point in the (β, γ ) deformation space. In the CHFB + LQRPA
method, the inertial functions are derived by transforming the
local canonical coordinates determined by the LQRPA normal
modes to the (β, γ ) degrees of freedom.

We first solve the CHFB equation

δ〈φ(β, γ )|ĤCHFB(β, γ )|φ(β, γ )〉 = 0, (14)

ĤCHFB = Ĥ −
∑

τ

λ(τ )N̂ (τ ) −
∑
m

μ(m)D̂
(+)
2m (15)
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with the constraints on the particle numbers and quadrupole
deformation parameters:

〈φ(β, γ )|N̂ (τ )|φ(β, γ )〉 = N
(τ )
0 , (τ = n, p), (16)

〈φ(β, γ )|D̂(+)
2m |φ(β, γ )〉 = D

(+)
2m , (m = 0, 2). (17)

Here, D̂
(+)
2m denotes Hermitian quadrupole operators, D̂20 and

(D̂22 + D̂2−2)/2 for m = 0 and 2, respectively. We define
the quadrupole deformation variables (β, γ ) in terms of the
expectation values of the quadrupole operators

β cos γ = ηD
(+)
20 = η〈φ(β, γ )|D̂(+)

20 |φ(β, γ )〉, (18)

1√
2
β sin γ = ηD

(+)
22 = η〈φ(β, γ )|D̂(+)

22 |φ(β, γ )〉, (19)

where η is a scaling factor (see Ref. [16] for the explicit ex-
pression). Then, we solve the LQRPA equations for vibration
on top of the CHFB states obtained above,

δ〈φ(β, γ )|[ĤCHFB(β, γ ), Q̂i(β, γ )]

−1

i
P̂i(β, γ )|φ(β, γ )〉 = 0, (20)

δ〈φ(β, γ )|
[
ĤCHFB(β, γ ),

1

i
P̂i(β, γ )

]
−Ci(β, γ )Q̂i(β, γ )|φ(β, γ )〉 = 0, (i = 1, 2). (21)

The infinitesimal generators, Q̂i(β, γ ) and P̂i(β, γ ), are
locally defined at every point of the (β, γ ) deformation space.
The quantity Ci(β, γ ) is related to the eigenfrequency ωi(β, γ )
of the local normal mode through ω2

i (β, γ ) = Ci(β, γ ). It is
worth noting that these equations are valid also for regions
with negative curvature (Ci(β, γ ) < 0) where ωi(β, γ ) takes
an imaginary value.

The rotational moments of inertia are calculated by solving
the LQRPA equation for rotation on each CHFB state. It is
an extension of the Thouless-Valatin equation [24] for the
HFB equilibrium state to non-equilibrium CHFB states. We
call the moments of inertia Jk(β, γ ) thus determined ‘LQRPA
moments of inertia.’

We solve the collective Schrödinger equation (4) to obtain
excitation energies and vibrational wave functions. Then,
electric transition strengths and moments are readily calculated
(see Ref. [19] for details).

C. Details of the numerical calculation

The CHFB + LQRPA method can be used in conjunc-
tion with any effective interaction (e.g., density-dependent
effective interaction such as Skyrme functionals, or other
modern nuclear density functionals). In fact, the use of
the Skyrme functional for the LQRPA approach has been
initiated for axially symmetric quadrupole Hamiltonian [22].
In this study, however, we adopt a version of the pairing-
plus-quadrupole (P + Q) model [12] including the quadrupole
pairing interaction as well as the monopole pairing interaction
for computational simplicity. We take two harmonic-oscillator
shells with Nsh = 3, 4 and Nsh = 2, 3 for neutrons and protons,

respectively. The single-particle energies are determined with
the constrained Skyrme-HFB calculations at the spherical
shape using the HFBTHO code [25]. The single-particle energies
in the canonical basis obtained in the Skyrme-HFB calcula-
tions are then scaled with the effective mass of the SkM* func-
tional m∗/m = 0.79 for the use of the P + Q model, because
it is designed to be used for single particles whose mass is the
bare nucleon mass. In these Skyrme-HFB calculations, we em-
ploy the SkM* functional and the volume-type pairing with the
pairing strength V0 = −180 MeV fm−3. The pairing strength
has been adjusted such that the calculated neutron pairing gaps
at the HFB minima reproduce the experimental gaps in 58−64Cr
determined from the odd-even mass differences [26].

To determine the quadrupole pairing strengths in the P + Q
model, we follow the Sakamoto-Kishimoto prescription [27]
to restore the local Galilean invariance broken by the monopole
pairing. With this prescription, once we set the values of the
monopole pairing strengths G

(τ )
0 (τ = n, p), the quadrupole

pairing strengths are self-consistently determined from them
at the spherical shape. The other parameters of the P + Q
model are determined in the following way. For 62Cr (situated
in the middle of the isotopic chain), the monopole pairing
strengths and quadrupole particle-hole interaction strength χ

are adjusted to approximately reproduce the HFB equilibrium
deformation and the pairing gaps at the spherical and HFB
equilibrium shapes. For the other nuclei 58,60,64,66Cr, we
assume the simple mass number dependence according to
Baranger and Kumar [12]: G(τ )

0 ∼ A−1 and χ ′ ≡ χb4 ∼ A−5/3

(b denotes the oscillator-length parameter). We omit the Fock
term as in the conventional treatment of the P + Q model.

The CHFB + LQRPA equations are solved at 60 × 60 mesh
points in the (β, γ ) plane defined by

βi = (i − 0.5) × 0.01, (i = 1, . . . , 60), (22)

γj = (j − 0.5) × 1◦, (j = 1, . . . , 60). (23)

For the calculation of the E2 transitions and moments, we use
the standard values of effective charges (e(n)

eff , e
(p)
eff ) = (0.5, 1.5).

III. RESULTS AND DISCUSSION

In this section, we present the numerical results for 58−66Cr
and discuss the nature of quadrupole collectivity in their
low-lying states. We furthermore discuss the similarities and
differences with Mg isotopes around N = 20.

A. Collective potentials and inertial functions

We plot the collective potential V (β, γ ) calculated for
58−66Cr in Fig. 1. The location of the absolute minimum is
indicated by the (blue) circle. In 58Cr, the absolute minimum
is located at a nearly spherical shape. Although the minimum
shifts to larger deformation in 60Cr, the collective potential
is extremely soft in the β direction. A more pronounced
local minimum appears at larger deformation in 62Cr, and the
minimum becomes even deeper in 64Cr. In 66Cr, the collective
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FIG. 1. (Color online) Collective potential energy surfaces
V (β, γ ) for 58−66Cr. The regions higher than 5 MeV (measured from
the HFB minima) are colored rosy-brown.

potential becomes slightly softer than in 64Cr. These potential
energy surfaces indicate that a quantum shape transition from
a spherical to a prolately deformed shape takes place along the
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FIG. 2. Nilsson diagrams for neutrons (upper) and protons
(lower) in 62Cr as functions of β, calculated as in Ref. [13]. The levels
with the positive (negative) parity are plotted with solid (dotted) lines.

isotopic chain toward N = 40. In Fig. 2, we plot the Nilsson
diagrams of neutrons and protons as functions of β calculated
for 62Cr as in Ref. [13]. This is similar to Figs. 5(a) and 5(b)
in Ref. [8]. In 58Cr, the neutron and proton shell effects for
N = 34 and Z = 24 are in competition. The appearance of the
potential minimum in the slightly deformed region in Fig. 1
suggests that the neutron shell effects dominate over the proton
ones. On the other hand, in 62Cr, the deformed shell effects for
N = 38 and Z = 24 are in cooperation and lead to the prolate
potential minimum.

In Fig. 3, we plot the neutron and proton monopole
pairing gaps �

(n)
0 (β, γ ) and �

(p)
0 (β, γ ), the vibrational inertial

function Dββ(β, γ ), and the rotational moment of inertia
J1(β, γ ), calculated for 62Cr. Figure 3(c) clearly shows that
the vibrational inertial function is well correlated with the
magnitudes of the paring gaps: Dββ(β, γ ) becomes small in
the spherical region where �

(n)
0 and �

(p)
0 take large values. One

might be concerned for complicated behaviors of Dββ(β, γ )
in the strongly deformed region. However, they hardly affect
low-lying states, because the collective potential energy is
very high there and contributions from this region to the
vibrational wave functions are negligibly small. Figure 3(d)
clearly indicates that the rotational moment of inertia also
has a strong correlation with the pairing gaps. It takes the
maximum value in the prolate region around β 
 0.35. Both
the neutron and proton pairing gaps become small there due
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(a)

(b)

(c)

(d)

FIG. 3. (Color online) (a) Neutron monopole pairing gap
�

(n)
0 (β, γ ), calculated for 62Cr. (b) Proton monopole pairing gap

�
(p)
0 (β, γ ). (c) Vibrational inertial function Dββ (β, γ ). (d) Rotational

moment of inertia J1(β, γ ).

to the deformed shell gaps for N = 38 and Z = 24, see
Fig. 2. In particular, the proton pairing gap almost vanishes. It
results in the increase of the moment of inertia. As we shall
see later, this enhancement promotes the localization of the
vibrational wave functions in the (β, γ ) plane for excited states
with nonzero angular momenta. The rotational and vibrational
inertial functions for the other isotopes are qualitatively the
same as those for 62Cr. The enhancement of the moments
of inertia mentioned above grows gradually with increasing
neutron number up to N = 40.

 200

 400

 600

 800

 1000

 1200

 1400

 34  36  38  40  42

Exp.

LQRPA 

E
(2

+ 1)
 [k

eV
]

 

 0

0

 500

 1000

 1500

 2000

 2500

 3000
Exp.

LQRPA 

E
(4

+ 1)
 [k

eV
]

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2 Exp.
LQRPA 

E
(4

1+
) 

/ E
(2

1+
) 

 0

 5

 10

 15

 20

 25

 30

 35

 40

Exp.

LQRPA B
(E

2;
 2

1+  -
>

 0
1+
) 

 [W
. u

.]

-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
 0

 34  36  38  40  42

LQRPA

N

Q
(2

1+  )
  [

ef
m

2
]

(a)

(b)

(c)

(d)

(e)

FIG. 4. (Color online) (a) Excitation energies of the 2+
1 states for

58−66Cr. (b) Excitation energies of the 4+
1 states. (c) Ratios of E(4+

1 )
to E(2+

1 ). (d) Reduced E2 transition probabilities B(E2; 2+
1 → 0+

1 )
in Weisskopf units. (e) Spectroscopic quadrupole moments of the 2+

1

states. Experimental data are taken from Refs. [2,3,5,6].

B. Yrast states in 58−66Cr

We show in Fig. 4 the excitation energies of the 2+
1

and 4+
1 states, their ratios R4/2, the E2 transition strengths
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TABLE I. Excitation energies of the 2+
1 state E(2+

1 ) in keV, the
ratios R4/2 of E(4+

1 ) to E(2+
1 ), and B(E2; 2+

1 → 0+
1 ) in Weisskopf

units for 64Cr and 66Fe. Experimental data are taken from Refs. [6,28].

Calc. Exp.

E(2+
1 ) R4/2 B(E2) E(2+

1 ) R4/2 B(E2)

64Cr 386 2.68 28.8 420 2.69
66Fe 685 2.29 15.5 573 2.47 21.0

B(E2; 2+
1 → 0+

1 ), and the spectroscopic quadrupole moments
of the 2+

1 states, together with the available experimental data.
The decrease in the excitation energies of the 2+

1 and 4+
1

states toward N = 40 and the increase in their ratio from
N = 36 to N = 40 are well described and indicate that the
nature of the quadrupole collectivity gradually changes from
vibrational to rotational as the neutron number increases.
However, the ratio R4/2 at N = 40 is still 2.68, which is
considerably smaller than the rigid-rotor value 3.33. The
B(E2) values and spectroscopic quadrupole moments Q(2+

1 )
also suggest the onset of deformation: B(E2) increases and the
magnitude of the spectroscopic quadrupole moments, which
has a negative sign indicating a prolate shape, increase with
increasing neutron number and both of them reach a maximum
at N = 40.

In Table I, we compare the results for 64Cr with those for
66Fe. (In the calculation for 66Fe, the single-particle energies
and the P + Q parameters are determined following the same
procedure as explained in Sec. II C. In particular, the latter are
exactly the same as those for 66Cr.) Experimental data indicate
that the quadrupole collectivity is stronger in 64Cr than in

66Fe: the smaller E(2+
1 ) and the larger R4/2 and B(E2) values

for 64Cr than those for 66Fe. Our calculation reproduces these
features quite well.

We depict in Figs. 5 and 6 the squared vibrational wave
functions multiplied by β4 for the 0+

1 , 2+
1 and 4+

1 states in
58−66Cr and those without the β4 factor for the 0+

1 and 2+
1

states in 60Cr and 64Cr, respectively. The β4 factor comes from
the volume element and carries its dominant β dependence [see
Eqs. (11) and (13)]. The wave functions look quite different
between the two cases. For instance, while the nonweighted
0+

1 wave function for 60Cr shown in Fig. 6 distributes around
the spherical shape, the β4 factor changes it to the arcuate
pattern seen in Fig. 5. In 58Cr and 60Cr, the β4-weighted 0+

1
wave functions exhibit arcuate distributions around β = 0.2
covering the entire γ region. Closely looking, one finds that,
while the distribution for 58Cr is almost uniform in the γ

direction, it is slightly leaning to the prolate side for 60Cr.
With increasing neutron number, the 0+

1 wave function
localizes more and more on the prolate side, reflecting the
deepening of the prolate minima (see the collective potential
in Fig. 1). In 62Cr, the 0+

1 wave function still spreads over
the entire γ region, although it has a clear concentration on
the prolate side. In 64Cr, one can see a distinct peak around
the prolate potential minimum, and the 0+

1 wave function is
most localized at 64Cr. The vibrational wave functions clearly
indicate the shape transition from spherical to prolate along
the isotopic chain.

For all these isotopes, one can see that the prolate peak
grows with increasing angular momentum. This is due to the
enhancement of the moments of inertia on the prolate side we
have already seen in Fig. 3. Even in 58Cr whose ground state
is rather spherical, the 2+

1 and 4+
1 states are weakly localized
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FIG. 5. (Color online) Squared vibrational wave functions multiplied by β4, β4
∑

K |�αIK (β, γ )|2, for the 0+
1 , 2+

1 , and 4+
1 states in 58−66Cr.
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FIG. 6. (Color online) Vibrational wave function squared,
∑

K |�αIK (β, γ )|2, for the 0+
1 and 2+

1 states in 60Cr and 64Cr. The contour lines
are drawn at every twentieth part of the maximum value.

on the prolate side, which results in the finite spectroscopic
quadrupole moment shown in Fig. 4. In 64Cr, the 2+

1 and 4+
1

wave functions are well localized on the prolate side, although
the ground state wave function still exhibits non-negligible
shape fluctuation in the γ direction. Due to the growth of
localization of the wave functions, higher angular momentum
states acquire more rotor-like character than the ground state.
This fact can be quantified by calculating the ratio

R6/4/2 ≡ (E(6+
1 ) − E(2+

1 ))/(E(4+
1 ) − E(2+

1 )). (24)

For instance, R6/4/2 = 2.42 for 64Cr, which is fairly close to
the rigid-rotor value 2.57, although the calculated R4/2 is 2.67
which is far from the rigid-rotor value 3.33. These results
clearly indicate the importance of dynamical effects of rotation
on the nuclear shape.

Lenzi et al. [7] evaluated the intrinsic quadrupole moments
Qint(I ) for the yrast states of 62−66Cr using the spectroscopic
quadrupole moments Q(I ) obtained in their shell-model
calculation and the well-known relation between them for
the axially symmetric deformation with K = 0. The resulting
Qint(I ) stay approximately constant along the yrast sequences
in 62,64,66Cr, and they interpreted this as a fingerprint of a rigid
rotor behavior. We have evaluated Qint(I ) in the same way
as Lenzi et al. but using our calculated Q(I ). The resulting
Qint(I ) values are similar to those of Lenzi et al. We feel,
however, that this fact is insufficient to conclude that 62−66Cr
are good rotors because Q(I ) are average values that are
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FIG. 7. (Color online) Excitation energies and B(E2) values for
60Cr in comparison with experimental data. Values on arrows indicate
B(E2) in units of e2fm4. Only B(E2) values larger than 1 Weisskopf
unit are shown. Experimental data are taken from Ref. [3].

insensitive to the shape fluctuations. We need to examine
the properties of nonyrast states which are sensitive to shape
fluctuation effects. We also note that Q(I ) does not carry
direct information about the ground state, and that, according
to our calculation, the ground-state vibrational wave function
is significantly different from those of the other yrast states
with I �= 0.

C. Nonyrast states in 58−66Cr

To understand the nature of quadrupole collectivity, it is
important to examine the properties of the excited bands
including their interband transitions to the ground band,
although they have not been observed experimentally yet.
As typical examples of the calculated results, we display in
Figs. 7 and 8 the excitation spectra and the B(E2) values of
the low-lying states in 60Cr and 64Cr. (The low-lying states of
58Cr and 66Cr have qualitatively the same features as those of
60Cr and 64Cr, respectively. Those of 62Cr have an intermediate
character between 60Cr and 64Cr.)

Let us first discuss the 60Cr case. We notice that the calcu-
lated excitation spectrum exhibits some features characteristic
of the 5D harmonic oscillator (HO) limit: approximately equal
level spacing in the ground band, approximate degeneracy of
the 4+

1 and 2+
2 states, nearly equal values of B(E2; 0+

2 → 2+
1 )

and B(E2; 4+
1 → 2+

1 ), which are about twice of B(E2; 2+
1 →

0+
1 ), etc. On the other hand, we also notice significant
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FIG. 8. (Color online) Same as Fig. 7 but for 64Cr. The experi-
mental data are taken from Ref. [6].
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FIG. 9. (Color online) Squared vibrational wave functions multiplied by β4, β4
∑

K |�αIK (β, γ )|2, for the 0+
2 and 2+

2 states in 60Cr and 64Cr.

deviations from that limit. First, the 0+
2 state is considerably

lower than the 4+
1 and 2+

2 states. Second, the E2 transitions
forbidden in the HO limit are sizable; e.g., those from the 2+

2
state to the 4+

1 and 0+
2 states are fairly large. Third, the B(E2)

value from the 2+
2 state to the 2+

1 state is less than half of those
from the 4+

1 and 0+
2 states.

To examine these anharmonicities, let us look into the
vibrational wave functions of the excited states. The β4-
weighted and nonweighted vibrational wave functions of the
0+

2 and 2+
2 states are displayed in Figs. 9 and 10, respectively.

The 0+
2 wave function exhibits two components: one around

the spherical shape and the other around β = 0.35. Although
it has a β-vibrational feature, i.e., a node in the β direction,
it also exhibits a considerable deviation from the 5D HO
limit, in which the deformed component concentrating on the
prolate side would spread uniformly over the γ direction. We
can see a deviation from the 5D HO limit also in the 2+

2
state. The β4-weighted 2+

2 wave function spreads from the
prolate to the oblate sides. However, the nonweighted wave
function reveals that it also has the β-vibrational component.
In fact, this state is a superposition of the large-amplitude
γ -vibrational component spreading over the entire γ region
and the β-vibrational component. In the 5D HO limit, the 2+

3
wave function has a node in the β direction, while the 2+

2
wave function has no node. The calculated 2+

2 wave functions
indicate significant mixing of these components.

Let us proceed to the 64Cr case. We immediately notice
some features different from 60Cr. First, the approximate
degeneracy of the 4+

1 and 2+
2 states seen in 60Cr is completely

lifted here. Second, the E2 transitions within the ground band
are much stronger than those in 60Cr. Third, two low-lying
excited bands appear: one consisting of the 0+

2 , 2+
2 and 4+

2
states (excited band I), and the other consisting of the 2+

3 , 3+
1 ,

4+
3 states (excited band II, the 4+

3 state not shown here is at
2.84 MeV). One might be tempted to interpret these excited
bands in terms of the conventional concept of the β and γ

bands built on a well-deformed prolate ground state, but, in
fact, they are markedly different from them. First, there is a
strong mixing of the β- and γ -vibrational components, as seen
from strong interband E2 transitions between the two excited
bands. Second, the calculated ratio of the excitation energies
relative to E(0+

2 ), (E(4+
2 ) − E(0+

2 ))/(E(2+
2 ) − E(0+

2 )), is 2.51,
which is far from the rigid-body value. Third, the K-mixing
effects are strong, e.g., the K = 0 (K = 2) components of
the 2+

2 (2+
3 ) and 4+

2 (4+
3 ) wave functions are at most 60%.

To sum up, although the prolate deformation is appreciably
developed in the low-lying states of 64Cr, the large-amplitude
shape fluctuations play a dominant role and lead to the strong
β − γ coupling and significant interband E2 transitions.

In Fig. 11, we plot the vibrational wave functions at
γ = 0.5◦ and the probability density P (β) of finding a shape
with a specific value of β for the ground and excited 0+ states
in 60−64Cr. Note that the probability density vanishes at the
spherical shape because of the β4 factor in the volume element.
It is seen that, while the ground-state wave function for 60Cr
distributes around the spherical shape, those for 62Cr and 64Cr
extend from the spherical to deformed regions with β 
 0.4
[see Fig. 11(a)]. Accordingly, the peak of the probability
distribution moves toward larger β in going from 60Cr to
64Cr [see Fig. 11(b)]. Concerning the excited 0+ states, their
vibrational wave functions exhibit two peaks: a large peak
at the spherical shape and a small peak at a prolate shape
[see Fig. 11(c)]. In the probability distribution displayed in
Fig. 11(d), the spherical peaks move to the β ≈ 0.2 region and
the peaks at β = 0.35–0.4 in turn become prominent.

The above results indicate that large-amplitude shape
fluctuations play an important role both in the ground and
excited 0+ states. The growth of the shape fluctuations leads
to an enhancement of the calculated E0 transition strengths
ρ2(E0; 0+

2 → 0+
1 ) in going from 58Cr to 62−66Cr, as displayed

in Fig. 12.

FIG. 10. (Color online) Same as Fig. 6 but for 0+
2 and 2+

2 states. The contour lines are drawn at every twentieth part of the maximum value.
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FIG. 11. (Color online) (a) Vibrational wave function
squared |
α=1,I=0,K=0(β, γ = 0.5◦)|2 of the ground states
in 60−64Cr. (b) Probability densities integrated over γ ,
P (β) = ∫

dγ |
α=1,I=0,K=0(β, γ )|2|G(β, γ )|1/2. (c) Same as
(a) but for the 0+

2 states. (d) Same as (b) but for the 0+
2 states.

In Ref. [9], Gaudefroy et al. studied the collective structure
in the N = 40 isotones and obtained the low-lying states with a
vibrational character for 64Cr. Our calculated results indicates
that 64Cr is rather deformed but still has a transitional character.
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 34  36  38  40  42

N

ρ2 (Ε
0)

FIG. 12. (Color online) E0 transition strengths ρ2(E0; 0+
2 → 0+

1 )
calculated for 58−66Cr.

D. Similarities and differences with the Mg isotopes
around N = 20

In Ref. [7], Lenzi et al. emphasized similarities between
the shell structure of the neutron-rich Cr isotopes near N = 40
and that of the neutron-rich Mg isotopes around N = 20:
the neutron g9/2 and d5/2 single-particle levels above the
N = 40 subshell play a similar role to the neutron f7/2 and
p3/2 levels above the N = 20 shell. The quadrupole matrix
elements between these levels are large (because they are
spin-nonflip and �l = 2). The single-particle levels above
and below the N = 40 subshell gap (N = 20 shell gap) have
opposite parities so that the pairing excitations across the gap
play an indispensable role to activate the role of the g9/2 and
d5/2 levels (f7/2 and p3/2 levels) in generating quadrupole
collectivity. Also, for protons, the f7/2 and p3/2 levels in Cr
isotopes may play a parallel role to the d5/2 and s1/2 levels in
Mg isotopes.

Indeed, we have found notable similarities between Cr
isotopes near N = 40 and Mg isotopes around N = 20 in our
calculation. First of all, the growth of quadrupole collectivity
in going from 60Cr to 64Cr is similar to that from 30Mg to
32Mg. In Fig. 6, while the ground state wave function in 60Cr
distributes around the spherical shape, they are considerably
extended to the prolately deformed region in 64Cr. The 2+

1 wave
function has a peak on the prolate side in 60Cr and it shifts to
larger β in 64Cr. These features are similar to those seen in
going from 30Mg to 32Mg in our calculation [21]. Concerning
the excited 0+

2 states in 60Cr and 64Cr, as shown in Figs. 11(c)
and 11(d), both vibrational wave functions exhibit a two-hump
structure. Similar two-hump structures of the excited 0+ states
have been obtained also in our calculation for 30Mg and 32Mg.

On the other hand, we have also found significant differ-
ences between the 64Cr region and the 32Mg region. First
of all, the K mixing is strong in the excited bands in the
Cr isotopes, whereas they are weak in the Mg region. The
shape fluctuations toward the γ direction and the effect of the
β − γ coupling are larger in the Cr isotopes than in Mg. This
can be clearly seen, for instance, in the 2+

2 wave functions
displayed in Figs. 9 and 10. Lenzi et al. [7] found significant
mixture of n-particle–n-hole excitations (n =2,4 and 6) to the
wave functions of Cr isotopes in their shell model calculation.
This is consistent with the strong K-mixing found in our
calculation.
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IV. CONCLUSIONS

In this paper, we have investigated the nature of the
quadrupole collectivity in the low-lying states of neutron-rich
Cr isotopes 58−66Cr by solving the 5D collective Schrödinger
equation. The vibrational and rotational inertial functions
and the collective potential in the 5D quadrupole collective
Hamiltonian are microscopically derived with use of the
CHFB + LQRPA method. The calculated inertial functions
include the contributions from the time-odd components of
the moving mean field. The results of calculation are in
good agreement with the available experimental data. The
prolate deformation remarkably develops along the isotopic
chain from N = 36 to 40. It is not appropriate, however,
to characterize the low-lying state of Cr isotopes around
64Cr in terms of the prolate rigid-rotor model: the excitation

spectra are still transitional and the large-amplitude shape
fluctuations dominate in their low-lying states. The calculated
excited bands exhibit strong couplings between the β and γ

vibrational degrees of freedom. For close examination of the
nature of quadrupole collectivity in these nuclei, experimental
exploration of their excited bands is strongly desired.
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We investigate the possibility of the existence of the exotic torus configuration in the high-spin excited

states of 40Ca. We here consider the spin alignments about the symmetry axis. To this end, we use a three-

dimensional cranked Skyrme Hartree-Fock method and search for stable single-particle configurations.

We find one stable state with the torus configuration at the total angular momentum J ¼ 60 @ and an

excitation energy of about 170 MeV in all calculations using various Skyrme interactions. The total

angular momentum J ¼ 60 @ consists of aligned 12 nucleons with the orbital angular momenta � ¼ þ4,

þ5, and þ6 for spin-up or -down neutrons and protons. The obtained results strongly suggest that a

macroscopic amount of circulating current breaking the time-reversal symmetry emerges in the high-spin

excited state of 40Ca.

DOI: 10.1103/PhysRevLett.109.232503 PACS numbers: 21.60.Jz, 21.60.Ev, 27.40.+z

The investigations of nuclei rotating extremely fast
about the symmetry axis provide a good opportunity to
severely test the fundamental theory of quantum mechan-
ics. In a classical picture for such rotation, the oblate
deformations develop with increasing rotational frequen-
cies due to the strong centrifugal force [1]. However, such a
collective rotation about the symmetry axis is quantum-
mechanically forbidden. Instead, the spins and the orbital
angular momenta of single particles are aligned with the
symmetry axis building extremely high angular momenta
[2,3]. In this case, the total angular momentum of the
nucleus is just the sum of the symmetry-axis components
of those of the single particles. Bohr and Mottelson pointed
out that in such a nucleus, a ‘‘macroscopic’’ amount of
circulating current breaking the time-reversal symmetries
emerges, which is a fascinating new form of the nuclear
matter [4].

A typical example of such phenomena is the high-K
oblate isomer states in 152Dy [5]. In the high angular-
momentum states above I ¼ 14 @, the observed excited
states are irregularly distributed around the average yrast
line, which is calculated by assuming a macroscopic
nuclear shape with the strongly oblate deformations
(���0:3). The emergence of these high-spin isomers
around the yrast line can be naturally explained by the
single-particle alignments [4], because the E2 transitions,
which are a characteristic quantity related to the rotational
collectivity, are strongly forbidden for those nuclei. In
addition, the � transitions are strongly suppressed due to
the large difference of the internal structure between the
initial and final states. Those high-spin isomers around the
yrast line are thus called ‘‘yrast traps.’’ Many experiments

have been attempted to produce yrast traps with extremely
high spins [6]. The observed highest angular momentum in
this category is I ¼ 49 @ in 158Er [7].
In this Letter, we investigate the possibility of the exis-

tence of the torus configuration as an extreme limit of the
high-spin oblate isomers. In such a limit, more nucleons
with higher orbital angular momentum are aligned and its
density is much denser at the equator. We here consider
a special case for the existence of the density only around
its equator. We below show that such an exotic state can
indeed exist at an extremely high angular momentum
in 40Ca.
Many theoretical calculations have been performed to

search for the high spin states with strongly oblate defor-
mations in a wide range of nuclei. Those studies have been
mainly focused on the nuclei with the oblate deformation
at around ���0:3, heavier than 40Ca [3]. In contrast,
Wong discussed the stability of the torus configuration
using the macroscopic-microscopic model for a wide range
of nuclear systems [8–10]. The calculations using the
constraint Hartree-Fock (-Bogoliubov) models have been
also performed for heavy-mass systems [11,12]. The cal-
culations using the � cluster model have been attempted to
obtain the ring configurations consisting of alpha particles
and extra neutrons [13]. However, as shown in the present
study, an essential mechanism for the stability of such
configuration is the extremely high angular momentum
directed to the symmetry axis, resulting in the breaking
of the time-reversal symmetry in the intrinsic state.
To investigate the possibility of the existence of the torus

configuration in 40Cawith high angular momentum, we use
the three-dimensional Skyrme Hartree-Fock (HF) method
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with a Lagrange multiplier, which is introduced to obtain
the single-particle states aligned with the symmetry axis.

To this end, we minimize the HF Hamiltonian, Ĥ, with the
Lagrange multiplier, !. In the present study, we take the z
axis as the symmetry axis. We first define the effective

Hamiltonian, Ĥ0, given by Ĥ0 ¼ Ĥ �!Ĵz, where Ĵz
denotes the operator for the sum of the z components of

the total angular-momentum for each single particle, ĵz,

given by Ĵz ¼
P

i
^jðiÞz. In the HF approximation, Ĥ0 is

rewritten as Ĥ0 ¼ P
ifĥi �! ^jðiÞzg, where ĥi denotes the

Hamiltonian for each single particle. The eigenvalue of H0

is given by hĤ0i ¼ P
ifðei � �Þ � @!�ig, where � denotes

the Fermi energy at! ¼ 0 and ei and�i denote the energy
and the z component of the total angular momentum in
the unit of @ for each single particle, respectively. In the
present study, we search for the stable state using the

equivalent cranked Skyrme HF equation, �hĤ �!Ĵzi ¼
0 [14,15], by scanning a large range of !.

Before the HF calculations, we discuss the shell struc-
ture of the torus configuration using the radial displaced
harmonic oscillator (RDHO) model [9]. For the torus
configuration, not only � but also the z component of
the orbital angular momentum � are good quantum num-
bers (� ¼ �þ �, where � denotes the z component of
the spin values, �1=2). Two nucleons in each � energeti-
cally degenerate with the different spin values. At @! ¼ 0,
the lowest configuration for 40Ca is � ¼ 0, �1, �2, �3,
and �4 and the residual two nucleons can occupy any two
states with � ¼ �5. At @! � 0, the possible spin aligned
configurations are (i) � ¼ 0,�1,�2,�3,�4, andþ5 for
the total angular momentum J ¼ 20 @ [ ¼ 5 @� 2 (spin
degeneracy) �2 (isospin degeneracy)], (ii) � ¼ 0, �1,
�2, �3, þ4, þ5, and þ6 for J ¼ 60 @ [¼ 15 @� 2�
2], and (iii) � ¼ 0, �1, �2, þ3, þ4, þ5, þ6, and þ7
for J ¼ 100 @ [ ¼ 25 @� 2� 2].

In the self-consistent calculations, the single-particle
wave functions are described on a Cartesian grid with a
grid spacing of 1.0 fm. We take 32� 32� 24 grid points
for the x, y, and z directions, respectively. This was suffi-
ciently accurate to provide converged configurations. The
damped-gradient iteration method [16] is used, and all
derivatives are calculated using the Fourier transform
method. We take three different Skyrme forces which all
perform well concerning nuclear bulk properties but differ
in details: SLy6 as a recent fit which includes information
on isotopic trends and neutron matter [17], and SkI3 and
SkI4 as recent fits especially for the relativistic isovector
structure of the spin-orbit force [18]. However, except for
the effective mass, the bulk parameters (equilibrium en-
ergy and density, incompressibility, and symmetry energy)
are comparable in the all interactions.

For the initial wave functions, we chose the ring con-
figuration with 10 � particles placed on the x-y plane, as
shown in Fig. 1(a). Each � particle is described by the
Gaussian function with its center placed on z ¼ 0. Using

this initial condition, we perform the HF iterations with
15 000 times and investigate the convergence of the calcu-
lated results. Figure 2 shows the convergence behaviors of

hĴzi versus the number of the HF iterations with various
!’s using the SLy6 interaction. We can see that the result
calculated with @! ¼ 1:5 MeV converges rapidly to Jz ¼
60 @. Figure 1(b) shows the density obtained with @! ¼
1:5 MeV at the 15 000th iteration step. The calculated
result is indeed the torus configuration. The obtained den-

sity distribution, �ðr; zÞ, can be well fitted by �ðr; zÞ ¼
�0e

�fðr�r0Þ2þz2g=�2
, where �0 ¼ 0:13 fm�3, r0 ¼ 6:07 fm,

and � ¼ 1:61 fm for the SLy6 interaction.
On the other hand, the calculated results with @! ¼ 0:5

and 1.0 MeV lead to unstable states. That for @! ¼
2:0 MeV leads to the fission. Although it seems that
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FIG. 1 (color online). Total density for (a) the initial condition of
the HF iterations and (b) the calculated result with @! ¼ 1:5 MeV
at the 15 000 HF iterations. The density is integrated in the z
direction. The contours correspond to multiple steps of 0:05 fm�2.
The color (gray scale) is normalized by the largest density in
each plot.

FIG. 2. Convergence behavior of the expectation value of Jz in
the HF calculations versus the number of iterations. The dashed,
dash-dotted, solid, and dotted lines denote the calculated results
with @! ¼ 0:5, 1.0, 1.5, and 2.0 MeV, respectively.
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hĴzi’s with @! ¼ 0:5 and 1.0 MeV converge at the 15
000th step, those are in fact unstable. In Fig. 2, we can
see that these states first converge to a quasistable state.
After that, the instability of those states increases. In those
quasistable states, Jz is 20@ for @! ¼ 0:5, and 1.0 MeVand
is 100 @ for @! ¼ 2:0 MeV. Later, we will discuss those
quasistable states with Jz ¼ 20 and 100 @.

We next investigate the region of the Lagrange multi-
pliers where the torus configurations stabilize, using vari-
ous Skyrme interactions. We find that such region of @! for
the SLy6 and SkI3 interactions extends from 1.2 to
1.7 MeV. That for the SkI4 interaction is from 1.2 to
1.8 MeV. In such regions, we obtain the only one stable
torus configuration at Jz ¼ 60 @ in all calculations. The
obtained excitation energies are 170.45, 174.22, and
172.53 MeV for the SLy6, SkI3, and SkI4 interactions,
respectively. The fitted radius of the torus configuration is
almost the same for all calculations. The dependence of the
calculated result on the choice of the interaction is weak.
This is mainly because that the spin-orbit forces in the
radial directions of the inner and outer surface of the torus
configuration almost cancel out each other [see Eq. (4.14)
in Ref. [9]]. Thus, the RDHO mode is a good approxima-
tion for the present calculations.

Figure 3 shows the single-particle spectrum versus �
calculated using the SLy6 interaction. The solid and open
circles denote the single-particle states with the positive
and the negative parities, respectively. The single-particle
states with � ¼ þ1=2 and �1=2 are connected by the

dashed and the dotted lines, respectively. These energies
connected by each line are well proportional to �2, which
is consistent with that of the RDHO model [see Eq. (4.26)
in Ref. [9]]. We here define the ‘‘sloping’’ Fermi energy,
�0, given by �0 ¼ �þ @!� [3]. Then, the occupied states

are obtained by hĤ0i ¼ P
iðei � �0Þ with ei < �0. The solid

and the dash-dotted lines denote the sloping Fermi energies
with @! ¼ 1:7 and 1.2 MeV, respectively. The occupied
states are denoted by the gray area. In Fig. 3, we can clearly
see that the torus configuration can exist at Jz ¼ 60 @ in the
region from @! ¼ 1:2 to 1.7 MeV. The total angular mo-
mentum of Jz ¼ 60 @ consists of the spin-up-down pairs of
the aligned single particles with the same �, (�þ,��), of
(þ 9=2þ, þ7=2þ) with � ¼ 4, (þ 11=2�, þ9=2�) with
� ¼ 5, and (þ 13=2þ,þ11=2þ) with� ¼ 6 (see the solid
ellipses in Fig. 3).
As discussed in the shell structure of the torus configu-

ration, the states with J ¼ 20, 60, and 100 @ are the pos-
sible combinations of the spin alignment for the RDHO
model. For the quasi-stable state with J ¼ 20 @, the cen-
trifugal force is insufficient to stabilize the torus configu-
ration against the strong nuclear attractive force. On the
other hand, to build the state with J ¼ 100 @, the unbound
states (e > 0) with � ¼ þ15=2 and þ13=2 are occupied,
resulting in the instability for the torus configuration. Only
for J ¼ 60 @, the torus configuration can be stabilized.
Thus, the stability of the state with J ¼ 60 @ is rather
robust. Although we have performed the similar calcula-
tions for 24Mg and 32S, we could not find the stable torus
states for those nuclei.
As shown in the present study, if the state with the torus

configuration is formed at J ¼ 60 @, the macroscopic cir-
culating current of 12 nucleons with� ¼ þ4,þ5, andþ6
strongly violates the time-reversal symmetry in the intrin-
sic state (see Fig. 4). It is interesting to investigate how this
fascinating new state can be observed in experiments. The
state with the torus configuration at J ¼ 60 @ would have
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FIG. 3. Single-particle energies versus the z component of the
total angular momentum�. The solid and open circle denote the
single-particle states with the positive and the negative parties,
respectively. The single-particle states with the z component of
the spin � ¼ þ1=2 and �1=2 are connected by the dashed and
dotted lines, respectively. The solid and the dash-dotted lines
denote the sloping Fermi energies with @! ¼ 1:2 and 1.7 MeV,
respectively. The gray area denotes the states below the Fermi
energy for @! ¼ 1:2 MeV.

FIG. 4 (color online). Circulating currents of 12 nucleons. The
outer layer of the torus surface denotes the half of the total
density. The density plot in the inside of the torus surface denotes
the calculated density of the aligned 12 single particles.
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an extremely large magnetic moment (� ¼ 30�N). This
would lead to a procession motion under an external mag-
netic field.

A question then arises how such a ‘‘femtoscale magnet’’
rotates spontaneously. When the spherical symmetry is
broken, the collective rotation emerges spontaneously, in
principle, to restore the broken symmetry. However, it is
unclear whether such a state built with significant amount
of circulating current can rotate about the perpendicular
direction to the symmetry axis or not. If not, such a state
would be an anomalous one, which has not yet been
recognized in the experiments. Even if the state can rotate,
the rotational band built on such a state would show
interesting behaviors for their M1=E2 transition strengths
and moment of inertia, J?. It is intriguing to investigate
the extent of the difference between the experimental and
the classical rigid-body moments of inertia (J? ¼
20:97@2 �MeV�1 in the case of the SLy6 interaction).

To identify the torus configuration in the experiment, it
is also important to discuss the competition to the fission
decay channel. The calculation using the macroscopic
model with the FRLDM2002 parameter set [19] shows
that the fission barrier for the spheroidal deformations
vanishes at J ¼ 32 @ and an excitation energy of
49.27 MeV [20]. Our calculated results for the torus con-
figuration are considerably higher than those values.
However, it would be possible that the state with the torus
configuration can survive against the fission. One impor-
tant example for such possibility is the long-lived K	 ¼
16þ isomer in 178Hf with a half-lives of about 31 y [21],
which is extremely long compared to other isomers (4 s for
the K	 ¼ 8� isomer). In this connection, it is unclear how
the collective path from a topologically different torus
configuration is connected to the region of the spheroidal
deformations leading to the fission [10,12]. A possible
decay channel of the torus configuration might be multi-
fragmentation through the sausage mode [10]. Wong
indeed showed that the torus configurations are stable
from J � 57 to 74 @ for mass number A� 50 [10].

In summary, we have suggested the existence of the
torus configuration in the extremely high-spin excited
states of 40Ca using the three-dimensional cranked
Skyrme HF method. We found only one stable state with
the torus configuration at Jz ¼ 60 @ in all the calculations
with any Skyrme interactions. The calculated excitation
energies of this state are 170.45, 174.22, and 172.53 MeV
for the SLy6, SkI3, and SkI4 interactions, respectively. The
obtained results are insensitive to the choice of the Skyrme
interactions, because the contribution of the spin-orbit
force is small in the torus configuration. To build the torus
state with J ¼ 60 @, the 6 nucleons for � ¼ þ9=2þ and
þ7=2þ with � ¼ 4, � ¼ þ11=2� and þ9=2� with � ¼
5, and� ¼ þ13=2þ andþ11=2þ with � ¼ 6 are aligned
with the symmetry axis for both protons and neutrons. We
have shown that such configuration is built on the major

shell structure estimated by the RDHO model for the
rotating torus shape, indicating that the torus state is
robustly stable and the macroscopic amount of the time-
reversal symmetry breaking occurs. Although the observa-
tion of the torus state would be difficult, exploration for
such an exotic state would provide us valuable information
on the new frontier of the nuclear matter, which is a big
challenge both theoretically and experimentally.
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BCS-pairing and nuclear vibrations
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On the basis of time-dependent mean-field picture, we discuss the na-
ture of the low-frequency quadrupole vibrations from small-amplitude
to large-amplitude regimes as representatives of surface shape vibra-
tions of a superfluid droplet (nucleus). We consider full five-dimensional
quadrupole dynamics including three-dimensional rotations restoring the
broken symmetries as well as axially symmetric and asymmetric shape
fluctuations. We show that the intimate connections between the BCS-
pairing and collective vibrations reveal through the inertial masses gov-
erning their collective kinetic energies.

1. Introduction

In almost all even-even nuclei consisting of even number of protons and

neutrons, aside from the doubly magic nuclei of the spherical shell model,

the first excited states possess angular momentum two and positive parity

(Iπ = 2+). Their excitation energies are much lower than the energy gap

2∆ characterizing nuclei with superfluidity (see Fig. 4 in the contribution of

Bertsch to this volume), and very large electric quadrupole (E2) transition

strengths (in comparison with those of single-particle transitions) between

these first excited 2+ states and the ground states have been systematically

observed. These experimental data clearly indicate that they are collec-

tive excitations of the superfluid system.1,2 They are genuine quantum

vibrations essentially different in character from surface oscillations of a

1
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classical liquid drop, that is, superfluidity and shell structure of nuclei play

indispensable roles for their emergence. Unfortunately, this point is quite

insufficiently described in several textbooks on nuclear physics.

In a nucleus whose mean field breaks the spherical symmetry but con-

serves the axial symmetry, its first excited 2+ state can be interpreted as a

uniformly rotating state, provided that the amplitudes of quantum shape

fluctuations are smaller than the magnitude of equilibrium deformation.

Nuclei exhibiting very small ratios of the excitation energy to the energy

gap, E(2+)/2∆, (less than about 0.1) belong to this category (see Fig. 4

in the contribution of Bertsch to this volume). The rotational moment of

inertia evaluated from E(2+) turned out to be about half of the rigid-body

value. This was one of the most clear evidences leading to the recognition

that their ground states are in superfluid phase. Large portion of nuclei

exhibiting regular rotational spectra have the prolate shape. Origin of the

asymmetry between the prolate and oblate shapes is an interesting funda-

mental problem still under study.3

The first excited 2+ states other than the rotational states have been

regarded as quadrupole vibrations around the spherical shape. Their fre-

quencies are low and decrease as the numbers of neutrons and protons

increasingly deviate from the magic numbers of the spherical shell model.

Eventually, they turn into the rotational 2+ states discussed above. Thus,

low-frequency quadrupole vibrations may be regarded as soft modes of the

quantum phase transitions breaking the spherical symmetry of the mean

field. In a finite quantum system like nuclei, however, this phase transi-

tion takes place gradually as a function of nucleon number, and there is a

wide region of nuclei whose low-energy excitation spectra exhibit charac-

teristics intermediate between the vibrational and the rotational patterns.

The softer the mean field toward the quadrupole deformation, the larger

the amplitude and the stronger the nonlinearity of the vibration.

In this Chapter, we discuss mainly the low-frequency (slow) quadrupole

vibrations rather than summing up the diversity of nuclear vibrational phe-

nomena. The reason is not only because they dominate in low-lying spectra

but also because they represent most typically the intimate connection be-

tween the BCS-pairing and the emergence of collective vibrational modes

in nuclei. Many ideas developed here are applicable also to low-frequency

octupole (3−) vibrations. We here restrict ourselves to the time-dependent

mean-field approach, because it provides a clear correspondence between

the quantum and classical aspects of the surface shape vibrations. Fur-

thermore, this approach enables us to microscopically derive the collective
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coordinates and momenta on the basis of the time-dependent variational

principle. We shall show that the inertial masses determining the collective

kinetic energies of the low-frequency quadrupole modes clearly reveal their

character as surface shape vibrations of a superfluid droplet (nucleus).

We shall start from small-amplitude vibrations around the spherical

equilibrium shape and then go to large-amplitude regime where we need to

consider full five-dimensional (5D) quadrupole dynamics including three-

dimensional rotations restoring the broken symmetries as well as axially

symmetric and asymmetric shape fluctuations. Through this Chapter, we

would like to stress that construction of microscopic quantum theory of

large-amplitude collective motion (LACM) is one of the most challenging

open subjects in nuclear structure physics. Nowadays, the dimension of

nuclear collective vibrational phenomena awaiting applications of such a

microscopic quantum theory is enormously increasing covering wide regions

from low to highly excited states, from small to large angular momenta, and

from the proton-drip line to the neutron-drip line.

2. Collective motion as moving self-consistent mean field

2.1. Small-amplitude regime

Let us consider even-even nuclei whose ground states consist of correlated

nucleon pairs occupying time-reversal conjugate single-particle states. The

Hartree-Fock-Bogoliubov (HFB) method is a generalized mean-field theory

treating the formation of the HF mean field and the nucleon pair condensate

in a self-consistent manner,4 and yields the concept of quasiparticles as

single-particle excitation modes in the presence of the pair condensate.

As is well known, Bohr and Mottelson opened the way to a unified un-

derstanding of single-particle and collective motions of nuclei by introducing

the concept of moving self-consistent mean field.5–7 The time-dependent

extension of the HFB mean field, called the time-dependent HFB (TD-

HFB) theory, is suitable to formulate their ideas.8,9 The TDHFB state

vector |φ(t)〉 can be written in a form of generalized coherent state:

|φ(t)〉 = eiĜ(t)|φ(t = 0)〉 = eiĜ(t)|φ0〉, (1)

iĜ(t) =
∑

(ij)

(gij(t)a
†
ia

†
j − g∗ij(t)ajai), (2)

where the HFB ground state |φ0〉 is a vacuum for quasiparticles (a†i , aj) ,

ai|φ0〉 = 0, (3)
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with the suffix i distinguishing different quasiparticle states. The functions

gij(t) in the one-body operator Ĝ(t) is determined by the time-dependent

variational principle

δ〈φ(t)|i ∂
∂t

−H |φ(t)〉 = 0. (4)

For small-amplitude vibrations around a HFB equilibrium point, one can

make a linear approximation to the TDHFB equations and obtain the quasi-

particle random phase approximation (QRPA) which is a starting point of

microscopic theory of collective motion.10,11 Expanding Eq. (4) as a power

series of Ĝ(t) and taking only the linear order, we obtain

δ〈φ0|[H, iĜ] +
∂Ĝ

∂t
|φ0〉 = 0. (5)

Writing Ĝ(t) in terms of the creation and annihilation operator (Γ†,Γ) of

the excitation mode as

iĜ(t) = η(t)Γ− η∗(t)Γ†, η(t) = ηe−iωt, (6)

we obtain the QRPA equation which determines the microscopic structure

of (Γ†,Γ) as a coherent superposition of many two-quasiparticle excitations.

Alternatively, we can write Ĝ(t) in terms of the collective coordinate and

momentum operators (Q̂, P̂ ) and their classical counterparts (q(t), p(t)) as

Ĝ(t) = p(t)Q̂− q(t)P̂ (7)

and obtain the QRPA equation,

[ Ĥ, Q̂ ] = −iP̂ /D, (8)

[ Ĥ, P̂ ] = iCQ̂, (9)

for (Q̂, P̂ ). Here C, D and ω2 = C/D respectively denote the stiffness,

the inertial mass and the frequency squared of the vibrational mode (with

~ = 1). For Anderson-Nambu-Goldstone (ANG) modes,12,13 C and ω are

zero but D are positive. Note that Eqs. (8) and (9) can be used also

for unstable HFB equilibria where C is negative and ω is imaginary. For

simplicity, we assumed above that there is only a single collective mode,

but in reality Ĝ(t) is written as a sum over many QRPA normal modes.

The self-consistent mean field of a finite quantum system generates a

variety of shell structure dependent on its shape, and single-particle wave

functions possess individual characteristics. In addition to rich possibilities

of spatial structure, collective excitations associated with the spin-isospin



May 2, 2012 0:20 World Scientific Review Volume - 9in x 6in 50yNBCS˙paper˙v3

BCS-pairing and nuclear vibrations 5

degrees of freedoms of nucleons occur. Thus, diversity of collective vibra-

tions emerges.14,15 Even restricting to the 2+ surface oscillation, there are

two modes of different characters. One is the low-frequency mode generated

mainly from two-quasiparticle excitations within partly filled major shells

(for both protons and neutrons). The other is the high-frequency mode,

called giant quadrupole resonance, generated from single-particle excita-

tions across two major shells. While giant resonances are small amplitude

vibrations, low-frequency collective modes in open shell nuclei exhibit sig-

nificant nonlinear effects and we need to go beyond the QRPA. In the

QRPA, the quadrupole vibrational modes can be regarded as phonons of

5D harmonic oscillator and excitation spectra are expected to show a simple

pattern: e.g., the two-phonon states (double excitations of the 2+ quanta)

will appear as a triplet with Iπ = 0+, 2+ and 4+. Closely examining ex-

perimental data, e.g., on their E2 transition properties, one finds that they

often exhibit significant anharmonicities even when a candidate of such a

triplet is seen.16 The vibrational amplitude becomes very large in transient

situations of the quantum phase transition from spherical to deformed,

where the spherical mean field is barely stable or the spherical symmetry is

broken only weakly. Many nuclei are situated in such transitional regions.

2.2. Quadrupole collective dynamics

One of the microscopic approaches to treat nonlinear vibrations is the bo-

son expansion method, where the collective QRPA normal modes at the

spherical shape are regarded as bosons and nonlinear effects are evaluated

in terms of a power series expansion with respect to the boson creation and

annihilation operators. This method has been widely used for low-energy

collective phenomena.17

In the investigation of low-energy excitation spectra, the pairing-plus-

quadrupole (P+Q) model18,19 and its extension20 have played a central

role. This phenomenological effective interaction represents the competi-

tion between the pairing correlations favoring the spherical symmetry and

the quadrupole (particle-hole) correlations leading to the quadrupole de-

formation of the mean field. Combining the P+Q model with the TD-

HFB theory, Belyaev,8 Baranger and Kumar9 microscopically derived the

5D quadrupole collective Hamiltonian describing the quadrupole vibrations

and rotations in a unified manner:

H = Tvib + Trot + V (β, γ), (10)
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Tvib =
1

2
Dββ(β, γ)β̇

2 +Dβγ(β, γ)β̇γ̇ +
1

2
Dγγ(β, γ)γ̇

2, (11)

Trot =
∑

k

I2k
2Jk(β, γ)

. (12)

Here, Tvib and Trot denote the kinetic energies of vibrational and rotational

motions, while V (β, γ) represents the collective potential energy defined

through the expectation value of an effective interaction with respect to

the TDHFB state. The velocities of the vibrational motion are described in

terms of the time-derivatives (β̇, γ̇) of the quadrupole deformation variables

(β, γ) representing the magnitude and the triaxiality of the quadrupole

deformation, respectively. They are defined in terms of the expectation

values of the quadrupole moments or through a parametrization of the

surface shape. The three components Ik of the rotational angular momen-

tum and the moments of inertia Jk = 4β2Dk(β, γ) sin
2(γ − 2πk/3) in the

rotational energy Trot are defined with respect to the intrinsic frame of ref-

erence; that is, an instantaneous principal-axis frame of the time-dependent

shape-fluctuating mean field.

After quantization with the Pauli prescription, the vibrational kinetic

energy takes the following form:21

T̂vib = − 1

2
√
WR

[

1

β4

∂

∂β
β2

√

R

W

(

Dγγ
∂

∂β
−Dβγ

∂

∂γ

)

− 1

β2 sin 3γ

∂

∂γ

√

R

W
sin 3γ

(

Dβγ
∂

∂β
−Dββ

∂

∂γ

)

]

, (13)

where

W = β−2
[

Dββ(β, γ)Dγγ(β, γ)−D2
βγ(β, γ)

]

, (14)

R = D1(β, γ)D2(β, γ)D3(β, γ). (15)

If the β and γ dependences of the inertial functions, Dββ, Dβγ , Dγγ and

Dk, are ignored, Eq. (13) reduces to a simpler expression used in many

papers. However, such an approximation is valid only for small-amplitude

vibrations around the spherical shape. It is mandatory to use the above

expression to describe large-amplitude vibrations in transitional regions

toward the quadrupole deformation.

In an axially deformed nucleus whose collective potential V (β, γ) has a

deep minimum at β 6= 0 and γ = 0◦ (prolate shape) or γ = 60◦ (oblate

shape), a regular rotational spectrum appears. At the same time, one can
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identify β and γ bands involving vibrational quanta of fluctuations of the

β and γ variables. Close examination of their properties, however, reveals

significant nonlinear character of the γ vibration.22 It has been known

that the β vibration couples, often strongly, with the pairing vibration

associated with the fluctuation of the pairing gap ∆. Recent experiments

reveal further interesting features of the excited 0+ states23 upon which we

shall touch in Section 3.

2.3. Quantum shape fluctuations and collective rotations

restoring the broken symmetry

As is well known, the fundamental concept underlying the BCS supercon-

ductivity is ‘spontaneous symmetry breaking and appearance of collective

modes restoring the broken symmetry.’12,13 Nuclear rotation can be re-

garded as a manifestation of this dynamics in a finite quantum system;

that is, it is a collective motion restoring the spherical symmetry broken

by the self-consistently generated mean field.5,7 It is important, however,

to keep in mind that any HFB equilibrium shape inevitably accompanies

quantum zero-point fluctuations. The well-known I(I +1) pattern of rota-

tional spectrum will not appear if the fluctuation amplitude is larger than

the equilibrium value of β 6= 0. Even when the minimum in the collective

potential V (β, γ) is deep in the β direction, it may be soft with respect to

the γ direction breaking the axial symmetry. In the axially symmetric limit,

the rotational motion about the symmetric axis is absent. However, as soon

as the axial symmetry is dynamically broken by quantum shape fluctua-

tions, all rotational degrees of freedom about the three principal axes (of

the instantaneous shape) are activated. Low energy excitation spectrum in

such a situation exhibits a feature more complex than the simple rotational

pattern. It seems that many nuclei belong to this category.

2.4. Microscopic theory of LACM

The TDHFB theory describes the time evolution of the superfluid mean field

without explicitly introducing collective variables. To derive the collective

Hamiltonian, we have to assume that the time evolution is governed by

a few collective coordinates and momenta. In the work of Baranger and

Kumar,9 the 5D collective Hamiltonian was derived by giving the role of

collective coordinates to the quadrupole operators. We note, however, that

there are two kinds of 2+ vibration, and the high frequency quadrupole giant

resonance carries the major part (about 90%, see Fig. 5 in the contribution
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of Bertsch to this volume) of the energy-weighted sum-rule value for the

quadrupole operator. On the other hand, the collective variables are defined

in terms of the low-frequency 2+ QRPA modes in the derivation of the

5D collective Hamiltonian by means of the boson-expansion method.20 In

the QRPA modes, contributions of the two-quasiparticle excitations near

the Fermi surface are much larger than those in the quadrupole operators.

Therefore, the two definitions are different significantly.

Attempts to construct microscopic theory of LACM on the basis of

the TDHFB mean field dates back to the latter half of the seventies (see

Refs. 24,25 for reviews). The major challenge was how to extract the collec-

tive submanifold embedded in the TDHFB phase space, which is maximally

decoupled from other microscopic degrees of freedom.26 Once such a collec-

tive submanifold is extracted, we can set up a local canonical coordinates

on it. Such canonical coordinates may be called “collective coordinates.”

Below we sketch the basic ideas of the LACM theory.

Let us assume that the time evolution of the TDHFB state is deter-

mined by the collective coordinate q(t) and momentum p(t). To restore the

gauge invariance broken by the HFB mean-field approximation for super-

fluid nuclei, it is necessary to find a way extending the QRPA procedure

to non-equilibrium. For this purpose, we introduce the number fluctuation

variable n(t) and the gauge angle ϕ(t) conjugate to it and write the TDHFB

state vector in the following form:

|φ(q, p, ϕ, n)〉 = e−iϕÑ |φ(q, p, n)〉 , (16)

|φ(q, p, n)〉 = eipQ̂(q)+inΘ̂(q) |φ(q)〉 . (17)

Here |φ(q, p, n)〉 represents an intrinsic state for the pairing rotational de-

gree of freedom parametrized by ϕ, |φ(q)〉 a non-equilibrium HFB state, Ñ

nucleon number fluctuation, and Q̂(q), Θ̂(q) infinitesimal generators. We

also define an infinitesimal displacement operator P̂ (q) by

|φ(q + δq)〉 = e−iδqP̂ (q) |φ(q)〉 . (18)

Microscopic structures of Q̂(q), P̂ (q), Θ̂(q) and |φ(q)〉 are determined on the

basis of the time-dependent variational principle:

δ 〈φ(q, p, ϕ, n)| i ∂
∂t

− Ĥ |φ(q, p, ϕ, n)〉 = 0, (19)

where Ĥ is a microscopic many-body Hamiltonian. (For simplicity, we

assume that there is only a single canonical set of collective variables.)

Let us assume that time variation of the mean field is slow (in com-

parison with the single-particle motion in the mean field), and expand
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|φ(q, p, n)〉 in powers of p and n. Requiring that the time-dependent vari-

ational principle be satisfied at each order, we obtain the equations de-

termining the infinitesimal generators, Q̂(q), P̂ (q), and Θ̂(q), which are a

generalization of the QRPA about an HFB equilibrium to non-equilibrium

HFB states. Solving these equations in a self-consistent way, we obtain

a classical collective Hamiltonian written in terms of canonical variables,

which can be readily quantized and yield the collective Schrödinger equa-

tion for collective wave functions. The procedure outlined above has been

formulated as the adiabatic self-consistent collective coordinate (ASCC)

method.27 Quite recently, we have developed a practical approximation

scheme called “constrained HFB+ local QRPA (LQRPA) method” to ef-

ficiently carry out such calculations.28 Examples of numerical application

are presented in Figs. 1 and 2. In both cases, we see clear correlations

between the β-γ dependence of the paring gap ∆ and of the inertial mass

Dββ; that is, Dββ becomes small in the region where ∆ is large.

2.5. Microscopic mechanism of determining the inertial

mass

The reason why the pairing correlation plays a crucial role in determining

the inertia mass of collective motion may be understood in the following

way.29 The single-particle energy levels change following the motion of the

mean field and encounter a number of level crossings. When a level cross-

ing occurs near the Fermi surface, the lowest-energy configuration changes.

Without the pairing, it is not always easy to rearrange the system to en-

ergetically more favorable configurations. In the presence of the pairing

correlation, in contrast, it is easy for nucleon pairs to hop from up-sloping

levels to down-sloping levels. The easiness/hardness of the configuration re-

arrangements at the level crossings determines the adiabaticity/diabaticity

of the collective motion. Since the inertia represents a property of the sys-

tem trying to keep a definite configuration, we expect that the stronger the

pairing, the smaller the inertial mass.

In this connection, let us note the following fact. The nucleon pair in a

deformed mean field is not simply a monopole (J = 0) pair but a superpo-

sition of different angular momenta J , because the spherical symmetry is

broken. Especially, one cannot ignore the quadrupole pairing correlations

acting among the J = 2 components. For example, when the prolately de-

formed nucleus develops toward a larger value of β, single-particle energy

levels favoring the prolate shape go down while those favoring the oblate
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Fig. 1. Application of the LQRPA method to anharmonic quadrupole vibrational exci-

tations in 76Se. Note that the colors are used differently for ∆
(n)
0 and Dββ.

shape go up. At their level crossing point, the ability of the rearrangement

depends on the pairing matrix element between the crossing levels. The

spacial overlap between the prolate-favoring and the oblate-favoring single-

particle wave functions is smaller than its value at the spherical limit. This

effect is taken into account by including the quadrupole pairing correlation.

If this effect is ignored, the inertial mass will be underestimated.28 The in-

teraction strengths of the monopole and quadrupole components are linked

by the requirement of Galilean invariance.20
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3. Remarks on some current topics

3.1. Shape coexistence and quantum shape fluctuations

In the situations where two different HFB equilibrium shapes coexist in

the same energy region, LACM tunneling through the potential barrier

between the two HFB local minima may take place. This a macroscopic

tunneling phenomenon where the potential barrier itself is generated as

a consequence of the dynamics of the self-bound quantum system. For

instance, two strongly distorted rotational bands built on the oblate and

prolate shapes have been found in 68Se, which seems to coexist and interact

with each other.30 Figure 2 shows an application of the LQRPA method

to this oblate-prolate shape coexistence/fluctuation phenomenon.28 Such

phenomena are widely seen in low-energy spectra from light to heavy nu-

clei.23

One of the recent hot issues related to the shape coexistence/fluctuation

is to clarify the nature of deformation in neutron-rich nuclei around 32Mg,

where two-particle-two-hole configurations of neutrons across the spherical

magic number N = 20 play a crucial role.23 It seems that the pairing

and quadrupole correlations act coherently in this situation to generate a

large-amplitude quadrupole shape fluctuations.31

3.2. Mysterious 0+ excited states

There are only a few nuclei in which the first excited 0+ state appears below

the first excited 2+ state. An example is the 0+ state of 72Ge which is known

from old days but still poorly understood. This anomaly occurs in the

vicinity of N = 40 where the g9/2 shell starts to be partly filled (due to the

pairing). It has been pointed out32,33 that the neutron pairing vibrations

strongly couple with the quadrupole vibrations there and generates such

anomalous 0+ states. It is an open problem whether such 0+ excited states

are describable within the 5D quadrupole dynamics or it is mandatory to

extend the dimension of the collective submanifold explicitly treating the

pairing gaps as dynamical variables. Closely examining the properties of

low-lying excited 0+ states throughout the nuclear chart, one finds that

they exhibit features difficult to understand within the traditional models

of nuclear collective motions.23
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3.3. Vibrational modes at high angular momentum

Experimental data for low-frequency vibrations near the high-spin yrast

states (‘ground’ states for given angular momenta) are scarce. As the nu-

cleus rotates more rapidly, excitations of aligned quasiparticles take place

step by step,34,35 the shell structure changes with varying mean-field, and

the pair field may eventually disappear.36 Such drastic changes of the mean-
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field and the presence of aligned quasiparticles will significantly modify the

properties of vibrational motions. The presence of low-frequency vibra-

tions itself is not self-evident, if we recall that the BCS pairing plays an

essential role in the emergence of the low-frequency 2+ vibrations. On the

other hand, we could also expect that vibrations may compete with rota-

tions in high-spin yrast region, because the rotational frequency increases

with increasing angular momentum and eventually become comparable to

vibrational frequencies.37

Discovery of superdeformed bands opened a new perspective to the

above open question. We learned that a new shell structure, called superde-

formed shell structure, is formed and a new type of soft octupole vibrations

simultaneously breaking the axial symmetry and space-reflection symme-

try emerge in the near yrast regions of rapidly rotating superdeformed

nuclei.38,39 Quite recently, a number of new data suggesting appearance

of γ-vibrations (shape fluctuation modes toward triaxial deformation) at

high spin have been reported.40,41 Appearance of triaxial deformation at

high spin due to the weakening of the pairing correlation has been discussed

for a long time, but it is only recent years that a variety of experimental

data unambiguously indicating the triaxial deformation has been obtained.

New rotational modes appearing when the mean field breaks the axial sym-

metry, called wobbling motions, have been discovered.42 It is shown that

the aligned quasiparticle plays an important role for their emergence.43

Another new type of rotational spectra expected to appear in triaxially

deformed nuclei under certain conditions is the chiral rotation34 and ex-

perimental search for the predicted chiral doublet bands and its precursor

phenomena, called chiral vibrations,44 are now going on.

3.4. Vibrational modes near the neutron drip line

The mean field in unstable nuclei near the neutron drip line possesses new

features like large neutron-to-proton ratios, formation of neutron skins,

weak binding of single-particles states near the Fermi surface, excitations

of neutron pair into the continuum.45 In stable nuclei, overlaps of dif-

ferent single-particle wave functions become maximum at the surface and

generate a strong coherence among quasiparticle excitations. In unstable

nuclei, weakly bound single-particle wave functions significantly extend to

the outside of the half-density surface and acquire strong individualities.

It is therefore very interesting to investigate how the pairing correlation in

such a situation acts to generate the collectivity of vibrational modes. It is
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suggested, for instance, in a recent HFB+QRPA calculation simultaneously

taking into account the deformations of the mean field, the pairing corre-

lations and the excitations into the continuum,46 that a strong coherence

of the pairing and shape fluctuations may generate collective vibrations

unique to weakly bound neutron-rich nuclei.

3.5. Concluding remarks

Quite recently, it becomes possible to carry out fully self-consistent QRPA

calculations on the basis of density functional theory for superfluid nuclei

and treat low- and high-frequency vibrations as well as the ground states

in a unified way for all nuclei from the proton-drip line to the neutron-drip

line.47–49 Fully self-consistent microscopic calculations for large-amplitude

vibrations are also initiated.50 A new era toward understanding vibrational

motions of nuclear superfluid droplet is opening.
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We demonstrate that when two colliding nuclei approach each other, their quantum vibrations are damped near
the touching point. We show that this damping is responsible for the fusion hindrance phenomena measured in the
deep sub-barrier fusion reactions. To show those, we, for the first time, apply the random-phase-approximation
method to the two-body 16O + 16O and 40Ca + 40Ca systems. We calculate the octupole transition strengths for
the two nuclei that adiabatically approach each other. The calculated transition strength drastically decreases
near the touching point, which strongly suggests the vanishing of the quantum couplings between the relative
motion and the vibrational intrinsic degrees of freedom of each nucleus. Based on this picture, we also calculate
the fusion cross section for the 40Ca + 40Ca system by using the coupled-channel method with a damping factor
that simulates the vanishing of the couplings. The calculated results reproduce the experimental data well,
which indicates that the smooth transition from the sudden to the adiabatic processes indeed occurs in the deep
sub-barrier fusion reactions.
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Heavy-ion fusion reactions at low incident energies serve
as an important probe for investigating the fundamental
properties of the potential tunneling of many-body quantum
systems. When two nuclei fuse, a potential barrier, called the
Coulomb barrier, is formed because of the strong cancellations
between the Coulomb repulsion and the attractive nuclear
force. The potential tunneling at incident energies below this
Coulomb barrier is called the sub-barrier fusion. One important
aspect of the sub-barrier fusion reactions is couplings between
the relative motion of the colliding nuclei and the nuclear
intrinsic degrees of freedom, such as collective vibrations
of the target and/or projectile [1]. Those couplings result in
the large enhancement of the fusion cross sections at the
sub-barrier incident energies as compared to the estimation of
a simple potential model. The coupled-channel (CC) model,
which takes the couplings into account, has been successful in
explaining this enhancement [2,3].

Recently, it has been possible to measure the fusion cross
sections down to extremely deep sub-barrier incident energies
[4–7]. The unexpected steep falloff of the fusion cross sections,
compared to the standard CC calculations, emerges at the
deep sub-barrier incident energies in a wide range of mass
systems. These steep falloff phenomena are often called the
fusion hindrance. The emergence of the fusion hindrance
shows the threshold behavior, which is strongly correlated
with the energy at the touching point of the two colliding
nuclei [8,9]. In this respect, it has been shown that a key
point for understanding this fusion hindrance is the potential
tunneling in the density overlap region of the two colliding
nuclei (see Fig. 1 in Ref. [8]).

To describe the fusion hindrance phenomena, many the-
oretical models to extend the standard CC model have been
proposed. Based on the sudden picture, Mişicu and Esbensen
have proposed that a strong repulsive core exists in the inner
part of the Coulomb barrier due to nuclear incompressibility
[10]. This model can reproduce the fusion hindrance from
the light- to heavy-mass systems well [7,10–12]. Dasgupta

et al. proposed the concept of the quantum decoherence
of the channel couplings [5], but there are only simple
calculations with this model [13]. Based on the adiabatic
picture, which is the opposite limit to the sudden approach,
Ichikawa et al. introduced the damping factor in the standard
CC calculations to smoothly join between the sudden and the
adiabatic processes [14]. This model can reproduce the fusion
hindrance better than the sudden model. However, the physical
origin of the damping factor was still unclear.

In this Rapid Communication, we show the physical origin
of the damping factor proposed in Ref. [14]. In the standard CC
model, it has been assumed that the properties of the vibrational
modes do not change, even when two colliding nuclei touch
with each other. However, in fact, the single-particle wave
functions drastically change in the two nuclei by approaching
each other. This results in the damping of the vibrational
excitations, that is, the vanishing of the couplings between
the relative motion and the vibrational excitations of each
nucleus. To show this, we, for the first time, apply the
random-phase-approximation (RPA) method to the two-body
16O + 16O and 40Ca + 40Ca systems and calculate the octupole
transition strength B(E3) as a function of the distance between
the two nuclei. We below show that the obtained B(E3) values
for the individual nuclei are indeed damped near the touching
point.

To illustrate our main idea, we first discuss a disappear-
ance of the octupole vibration during the 16O + 16O fusion
process. We calculate the mean-field potential with the folding
procedure that uses the single Yukawa function to conserve
its inner volume [15]. In the two-body system before the
touching point, we assume the two sharp-surface spherical
nuclei. After the touching point, we describe the nuclear shapes
with the lemniscatoids parametrization as shown in Ref. [16].
By using this, we can describe the smooth transition from the
two- to the one-body mean-field potentials. The depths of the
neutron and proton potentials are taken from Ref. [17]. We
use the radius for the proton and neutron potentials R0 with

011602-10556-2813/2013/88(1)/011602(4) ©2013 American Physical Society
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FIG. 1. (Color online) Nilsson diagram for the neutron single-
particle states versus the distance between 16O + 16O. The solid
and dashed lines denote the positive- and negative-parity states,
respectively. The gray area denotes the overlap region of 16O + 16O.
The solid and dashed arrows denote the main p-h excitations
that generate the octupole vibration. The single-particle density
distributions for these p and h states are given in the insets from
(a) to (d) and (a′) to (d′).

R0 = 1.26A1/3 fm, where A is the total nucleon number. In
the calculations, the origin is located at the center-of-mass
position of the two nuclei. The above procedure works well
because Umar and Oberacker found that the double-folding
potential with the frozen density agrees almost perfectly with
the density-constrained time-dependent Hartree-Fock (TDHF)
approach for distances R � 6 fm [18].

By using the obtained mean-field potentials, we solve the
axially symmetric Schrödinger equation with the spin-orbit
force. Then, the parity π and the z component of the total
angular momentum � are the good quantum numbers. The
details of the model and the parameters are similar to those in
Refs. [15,17]. We calculate the single-particle wave functions
of both the projectile and the target by using the one-center
single Slater determinant. We expand the total single-particle
wave function by many deformed harmonic-oscillator bases
in the cylindrical coordinate representation. The deformation
parameter of the basis functions is determined so as to cover
the target and projectile. The basis functions are taken with
their energy lower than 25h̄ω.

Figure 1 shows the Nilsson diagram for the obtained
neutron single-particle energies versus the distance between
16O + 16O. The solid and dashed lines denote the positive-
and negative-parity states, respectively. The gray area denotes
the overlap region of the two nuclei. The distance R = 6.4 fm

corresponds to the touching point. Some densities for the
obtained single particles at R = 14 and 6.4 fm are given in the
insets from (a) to (d) and (a′) to (d′) in Fig. 1, respectively.
At R = 14 fm, we see that the positive (negative) parity
indicates the symmetric (asymmetric) combinations of the
single-particle states that refer to the right- and left-sided 16O.
Thus, the positive- and negative-parity single-particle states
are degenerate for large R. With decreasing R, these single-
particle states smoothly change to those for the composite 32S
system.

We can now easily extend the RPA method [19] to the
two-body system because the wave functions of both the one-
and the two-body systems are described with the one-center
Slater determinant. We can directly superpose all combinations
of the particle (p) and hole (h) states for the obtained single
particles in a unified manner for both the one- and the two-
body systems. We solve the RPA equation at each center-of-
mass distance between 16O + 16O. At large R values, the RPA
solutions with �π = 0+ and 0− represent the symmetric and
asymmetric combinations of the states where the RPA modes
are excited in either the right- or the left-sided 16O. When the
R values decrease below the touching point, they smoothly
change to excitation modes in the composite 32S system. In
the calculations, we only take into account the p-h states with
the excitation energies below 30 MeV. We use the residual
interaction as the density-dependent contact one taken from
Ref. [20]. The strength of the residual interaction is determined
at each R such that the lowest �π = 0− solution of the RPA
appears at zero energy. We have developed a new scheme
based on the Tomonaga theory of collective motion [21,22] that
enables us to separate the center of mass, the relative motion,
and the intrinsic degrees of freedom. It is a generalization of
the known procedure in the RPA [23]. It is also interesting to
compare our results with the TDHF dynamics [24].

For the calculated results, the obtained first excited state
of the right-sided 16O is the octupole (3−) one with a large
B(E3) value. At R = 15 fm, the excitation energy and the
B(E3, 3−

1 → 0+
1 ) value are 5.29 MeV and 102.07 e2 fm6,

respectively. We have checked that those values are consistent
with the calculated results of the one-body 16O. Figure 2(a)
shows the calculated transition densities and currents [19]
for the first excited state with �π = 0+ at R = 14 fm. In
Fig. 2(a), we can clearly see the octupole vibrations in both
16O’s. At R = 8.0 fm, the transition density of the neck part
between two 16O’s develops [see Fig. 2(b)]. At R = 6.4 fm, the
octupole vibrations of each 16O become weak [see Fig. 2(c)].
The degenerating excitation energies of the first excited states
with �π = 0+ and 0− split below R = 8 fm. They become
5.82 and 4.83 MeV at R = 6.4 fm.

To more clearly see the damping of the octupole vibrations,
we calculate the B(E3) value for the right-sided 16O. We can
easily calculate it by taking a symmetric linear combination
of the octupole transition amplitudes for the positive- and
negative-parity RPA solutions. Figure 3(a) shows the calcu-
lated B(E3, 3−

1 → 0+
1 ) values versus the distance between

16O + 16O. In Fig. 3(a), we can see that the B(E3) value for
the right-sided 16O (the solid line) falls off at around R = 8 fm
with decreasing R, which indicates that the octupole vibrations
are strongly suppressed near the touching point.
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FIG. 2. (Color online) Transition densities and currents for the
first excited 3− state with �π = 0+ at (a) R = 14.0 fm, (b) R =
8.0 fm, and (c) R = 6.4 fm. The contour lines denote the transition
density. The arrows denote the current density. These two values are
normalized in each plot. The (red) thick solid line denotes the half
depth of the mean-field potential.

The damping of the vibrations originates from the change
in the single-particle wave functions. At R = 14 fm, the major
p-h excitations that generate the octupole vibration are those
from the p1/2 to the d5/2 single-particle states in 16O. In these
states, the degenerating positive- and negative-parity doublet
states contribute equally to generate the octupole vibration.
Those can be seen in the density distributions of the �π =
1/2+ and 1/2− states given in the insets from (a) to (d) in
Fig. 1. The corresponding p-h excitations are denoted by the
solid arrows from (a) to (b) and (c) to (d) in Fig. 1. When the two
nuclei approach each other, the features of these single-particle
wave functions drastically change. At R = 6.4 fm, the neck
formation takes place in the positive-parity states, whereas, it is
forbidden for the negative-parity states (that have nodes at the
touching point). Thus, the density distributions of those parity
partners become quite different from each other. [See the insets
from (a′) to (d′).] In the RPA calculation, the contributions from
the negative-parity states to the octupole vibration become
small at the touching point [see the solid and dotted arrows
from (a′) to (b′) and (c′) to (d′), respectively], which results in
the decreases in the B(E3) value.

The mechanism for the damping of the quantum vibration is
a general one, which is also valid for heavier-mass systems. We
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FIG. 3. Transition strengths B(E3) for the first excited state
versus the distance between (a) 16O + 16O and (b) 40Ca + 40Ca. The
solid line denotes the calculated results. The gray area denotes the
overlap region of the two colliding nuclei. In the bottom panel (b),
the dotted line denotes the damping factor of Eq. (2) in Ref. [14],
estimated from the experimental data of the fusion cross section.

have also performed the RPA calculations for the 40Ca + 40Ca
and 56Ni + 56Ni systems. In the calculations, we use R0 =
1.27 A1/3. We obtained the similar damping of the B(E3)
values for the both systems. In Fig. 3(b), the solid line
denotes the calculated result for the 40Ca + 40Ca system. The
calculated excitation energy and the B(E3, 3−

1 → 0+
1 ) value

for the 40Ca + 40Ca system are 3.24 MeV and 1253.17 e2 fm6

at R = 15.0 fm, respectively.
As shown above, the octupole vibrations are damped near

the touching point, which results in the vanishing of the
couplings between the relative motion and the vibrational
intrinsic degrees of freedom. This vanishing would lead to
the smooth transition from the sudden to the adiabatic process
as shown in Ref. [14]. It is clear that such an effect has not been
taken into account in the standard CC model. One candidate to
include is the introduction of the damping factor proposed
in Ref. [14]. To clearly see the effect of the vanishing of
the couplings, we calculate the fusion cross section for the
40Ca + 40Ca system by using the computer code CCFULL [25]
coupled with the damping factor based on the model of
Ref. [14].

In the calculations, we include the couplings to only the
low-lying 3− and 2+ states and to single-phonon and all
mutual excitations of these states. We take the energies and the
deformations of each state taken from Ref. [7] to reproduce
the experimental data well. We use the same deformation
parameters for the Coulomb and nuclear couplings. For the
parameters of the Yukawa-plus-exponential (YPE) model, we
use r0 = 1.191 and a = 0.68 fm.

It is remarkable that the damping factor strongly correlates
with the calculated B(E3) value for the 40Ca + 40Ca system.
To show this, we take λα = 0 in the damping factor of Eq. (2)
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FIG. 4. (Color online) Fusion cross section (upper panel) and
its logarithmic derivative (lower panel) for the 40Ca + 40Ca system
versus the incident energies. The solid circles denote the experimental
data taken from Ref. [7]. The solid and dashed lines denote the
calculated results of the coupled-channel method by using the YPE
potential with and without the damping factor, respectively. The
dotted line denotes the calculated result without the couplings.

in Ref. [14] for simplicity. We tune the parameters Rd and ad in
the damping factor so as to reproduce the experimental data of
the fusion cross section. We obtain Rd = 9.6 and ad = 0.9 fm
as the best fits to the data. In Fig. 3(b), the dotted line denotes
the obtained damping factor normalized at R = 15 fm.

Figure 4 shows the calculated fusion cross section (upper
panel) and its logarithmic derivative d ln(Ec.m.σfus)/dEc.m.

(lower panel) for the 40Ca + 40Ca system. The solid and dashed
lines denote the calculation with and without the damping
factor, respectively. The dotted line denotes the calculation
without the couplings. In Fig. 4, we can see that the calculated
results with the damping factor reproduce the experimental
data well, which is better than the sudden model [7,12].
In our model, the calculated astrophysical S factor has a
peak structure. We also performed the CC calculation for the
48Ca + 48Ca system, and the calculated result reproduces the
experimental data well. The CC calculations with the damping
factor also already reproduced the experimental data for the
64Ni + 64Ni, 58Ni + 58Ni, and 16O + 208Pb systems well [14].

To summarize, we have demonstrated the damping of the
quantum vibrations when two nuclei adiabatically approach
each other. To show this, we, for the first time, applied the RPA
method to the two-body 16O + 16O and 40Ca + 40Ca systems
and calculated the B(E3) values of each nucleus. We have
shown that the calculated B(E3) value is indeed damped near
the touching point. We have also shown that the damping factor
proposed in Ref. [14] strongly correlates with the calculated
B(E3) values and the calculations of the fusion cross section
coupled with the damping factor reproduce the experimental
data well. This indicates that the fusion hindrance originates
from the damping of the quantum couplings and strongly
suggests that the smooth transition from the sudden to the
adiabatic processes occurs near the touching point.
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We investigate the precession motion of the exotic torus configuration in high-spin excited states of 40Ca. For
this aim, we use the three-dimensional time-dependent Hartree-Fock (TDHF) method. Although the high-spin
torus isomer is a unique quantum object characterized by the alignment of angular momenta of independent
single-particle motions, we find that the obtained moment of inertia for rotations about an axis perpendicular to
the symmetry axis is close to the rigid-body value. We also analyze the microscopic structure of the precession
motion using the random-phase approximation (RPA) method for high-spin states. In the RPA calculation, the
precession motion of the torus isomer is generated by coherent superposition of many one-particle–one-hole
excitations across the sloping Fermi surface that strongly violates the time-reversal symmetry. By comparing
results of the TDHF and the RPA calculations, we find that the precession motion obtained by the TDHF
calculation is a pure collective motion well decoupled from other collective modes.

DOI: 10.1103/PhysRevC.89.011305 PACS number(s): 21.60.Jz, 21.60.Ev, 27.40.+z

Nuclear rotation is a collective motion that restores the
symmetry spontaneously broken in the self-consistent mean
field. When deformed nuclei break the spherical symmetry
but preserve the axial symmetry, the rotation about the
symmetry (z) axis is quantum mechanically forbidden. For
instance, in high-spin oblate isomer states, the total angular
momentum about the symmetry axis is constructed not by the
collective rotation but the alignments of the angular momenta
of individual nucleons [1,2]. However, even such a state can
rotate about an axis perpendicular to the symmetry axis,
because the density distribution breaks the rotational symmetry
about that axis. Below we call this (x or y) axis a perpendicular
axis. This rotational degree of freedom causes the precession
motion of the system as a whole [3].

In our previous paper [4], we showed the existence of a
stable torus configuration in high-spin excited states of 40Ca,
whose z component of the total angular momentum, K , is
K = 60 �. This large angular momentum is generated by
alignment of single-particle angular momenta of a total of
twelve nucleons; the z components of the orbital angular
momenta, � = +4, +5, and +6 � for spin-up or -down
neutrons and protons, are summed up to K = 60 �. Thus, this
torus isomer has a significant amount of circulating current.
A question then arises how such a “femto-scale magnet”
rotates collectively to restore the broken symmetry about a
perpendicular axis.

A key physical quantity to understand fundamental prop-
erties of nuclear rotation is the moment of inertia about
a perpendicular axis. It is theoretically known that an
independent-particle configuration in a deformed harmonic-
oscillator potential rotates with rigid moment of inertia,
provided that the self-consistency between the potential and
the density distribution is fulfilled [5]. In reality, however,
measured moments of inertia for deformed nuclei largely
deviate from the rigid-body values. For instance, measured
moments of inertia for precession motions of high-K prolate
isomers are significantly smaller than rigid-body values [6,7].

This reduction has been seen at high spin where pairing
correlations are negligible, and is attributed to shell effects [6].
For high-K oblate isomers, precession modes have not yet been
observed. A possible reason is that their moments of inertia
are much reduced from rigid-body values due to oblate shell
structure at small deformation [8]. Then excitation energies of
precession motion become higher. This would be a reason why
the search for precession modes of a high-K oblate isomer
is difficult and remains as an experimental challenge. The
high-K torus isomer can be regarded as an extreme limit of
the high-K oblate isomer. Therefore, dynamical properties of
the high-K torus isomer revealed in its moment of inertia about
a perpendicular axis will provide a fresh insight into dynamical
properties of high-K oblate isomers as well.

In this Rapid Communication, we present a periodic
numerical solution of the precession motion of the high-K
torus isomer in 40Ca described by the three-dimensional
time-dependent Hartree-Fock (TDHF) equation. We trigger
the precession motion by applying a certain amount of angular
momentum in the direction of a perpendicular axis. We
estimate the moment of inertia characterizing such an exotic
mode of nuclear collective rotation. We find that the obtained
moment of inertia is close to the rigid-body value. This result
is surprising, because the high-K torus isomer is created by
aligned angular momenta of independent particle motion and
possesses strong time-odd components in the self-consistent
mean field. We shall also analyze the microscopic structure of
the precession motion using the random-phase approximation
(RPA) method and compare with the result of the TDHF
calculation.

Since the TDHF method describes time evolution of a wave
packet, quantization is necessary to obtain quantum spectra.
If we succeed in obtaining periodic numerical solutions in
real-time evolution of the TDHF mean field, then we can adopt
the semiclassical quantization procedure. It is, however, very
difficult to obtain the periodic solutions, because nonlinear
effects tend to destroy the periodic motion and lead to chaotic
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FIG. 1. Schematic picture of the precession motion of a high-K
torus isomer. The bold solid arrow denotes the symmetry axis of
the density distribution. The dashed arrow denotes the precession
axis. The symbols θ and φ denote the tilting and the rotation angles,
respectively.

motion. Thus, up to now, periodic solutions have been found
only for a few relatively simple cases such as large-amplitude
monopole vibrations in 4He and 16O [9]. Periodic solutions
for rotational modes have not yet been reported. In this
Rapid Communication, we will also show that the precession
frequency obtained in the TDHF calculation agrees with that of
the RPA method in good approximation. That is, we have, for
the first time, succeeded in obtaining the quantum excitation
energy of the precession motion by the numerical application
of the TDHF method.

Figure 1 shows a schematic picture for the precession
motion of a high-K torus isomer. In the figure, the bold solid

arrow denotes the symmetry (z′) axis of the density distribution
in the body-fixed frame. At t = 0, this axis is identical to
the z axis in the laboratory frame and the torus isomer has
the angular momentum, K , along this axis. When we give an
angular momentum to the (negative) direction of the x axis (the
dotted line) at t = 0, the total angular momentum changes to
�I . Then, the precession motion starts. The symmetry (z′) axis
rotates about a fixed axis (the dashed arrow) that coincides
with the direction of the total angular momentum �I . We call
this axis the precession axis. In the precession motion, the
value K is conserved. The tilting angle, θ , is defined as the
angle between the symmetry (z′) axis and the precession axis
(the direction of the total angular momentum). The symbol
φ denotes the rotation angle of the z′ axis rotating about the
precession axis. The moment of inertia for the rotation about
a perpendicular axis of the torus configuration, T⊥, is then
given by T⊥ = I/ωprec, where ωprec denotes the rotational
frequency of the precession motion. The first excited state of
the precession motion is the state with I = K + 1. Since the
torus isomer of 40Ca has K = 60 �, we calculate the precession
motion with I = 61 �.

To calculate the precession motion by means of the TDHF
method, we use the code SKY3D [10]. We calculate the
initial state of the torus configuration for 40Ca with the z
component of the total angular momentum K = 60 � by
the cranked HF method using this code. The details are
given in Ref. [4]. In the calculations, the single-particle wave
functions are described on a Cartesian grid with a grid spacing
of 1.0 fm. We take 32 × 32 × 24 grid points for the x, y,

FIG. 2. (Color online) Snapshots of the time evolution of the density distribution of the high-K torus isomer in 40Ca obtained by the TDHF
calculations. The (red) surface indicate that the density is half of the maximum value there. The time step of each snapshot is 50 fm/c. The
solid and the dotted lines denote the symmetry and the precession axes, respectively.
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and z directions, respectively. In all the calculations, we
use the SLy6 interaction [11]. As shown in Ref. [4], the
interaction dependence is negligible, because the spin-orbit
force effects are weak in the torus configuration. The obtained
density distribution on the plane at z = 0 is well fitted by
ρ(r) = ρ0e

−(r−R0)2/σ 2
, where ρ0 = 0.12 fm−3, R0 = 6.06 fm,

and σ = 1.64 fm. The rigid-body moment of inertia calculated
using the obtained density distribution is T rid

⊥ = 21.1 �
2/MeV.

To excite the precession motion, we provide an impulsive
force at t = 0 fm/c by the external potential given by
Vext(r,ϕ,z) = V0z cos ϕ exp[−(r − R0)2/σ 2]. The parameter
V0 is chosen such that the total angular momentum becomes
I = 61 �, that is, the x component of the total angular momen-
tum, Ix , is Ix = −11.0 � at t = 0 [I =

√
602 + (−11)2 � =

61 �]. Here, we use V0 = 0.12757 MeV. We determine the
time evolution of the density distribution by solving the TDHF
equation of motion, i�ρ̇ = [h,ρ], where h is the single-particle
Hamiltonian and ρ is the one-body density matrix. To solve
the TDHF equation, we take a Taylor expansion to the time-
development operator up to the 12th order in the code. The
time step of the TDHF calculations is 0.2 fm/c. We calculate
the time evolution until 3000 fm/c. Thus, we obtain about 7.5
periods of the precession motion.

Figure 2 shows snapshots of the time-evolution of the
density distribution obtained by the TDHF calculations. In the
figure, we plot the surface at the half of the maximum value
of the density distribution. The time step of each snapshot is
50 fm/c. We can clearly see in this figure about one period of
the precession motion of the high-K torus isomer of 40Ca.

Figure 3 shows the time evolution of (a) the total angular
momentum I , (b) the tilting angle θ , and (c) the rotational
angle φ. In Fig. 3(a), we see that the value of the total angular
momentum converges to about 61 �, indicating that the TDHF
calculations work well for long duration. The total energy also
converges well. By the impulsive force, −∂Vext/∂z, exerted at
t = 0, not only the precession motion but also other collective
motions such as the γ vibrations might be excited. However,
the tilting angle fluctuates only slightly between 10◦ and
11◦ [see Fig. 3(b)]. This indicates that the coupling effects
between the precession motion and other collective modes
are rather weak. In Fig. 3(c), we see that the rotational angle
linearly increases in each period. The obtained periods are
401.4, 403.5, 404.6, 405.4, 403.5, 400.9, and 401.5 fm/c. The
fluctuations of the period indicate the extent of the effects
due to the couplings with other collective modes and/or
precision of numerical calculation. They are much smaller
(less than 1%) than the time scale of the precession motion.
The average period, Tprec, is 403.0 fm/c. Thus, the average
frequency is ωprec = 2π/Tprec = 3.08 MeV/�. We can identify
�ωprec with the �I = 1 excitation energy of the precession
mode of the high-K torus isomer. We shall later confirm this
interpretation in connection with the RPA treatment of this
mode. The moment of inertia obtained in this way is T TDHF

⊥ =
I/ωprec = 19.8 �

2/MeV, which is very close to the rigid-body
value T rid

⊥ = 21.1 �
2/MeV. The high-K torus isomer is a

unique quantum object characterized by the alignment of
angular momenta of independent single-particle motions. The
alignment causes a significant amount of circulating current
and, as a consequence, the self-consistent mean field strongly
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FIG. 3. Time-evolution of (a) total angular momentum I , (b) the
tilting angle θ , and (c) the rotational angle φ of the precession motion
for the high-K torus isomer in 40Ca.

violates the time-reversal symmetry. Although these features
are essentially different from the classical rigid body, we find
that the high-K torus isomer performs a collective rotation
about a perpendicular axis with the moment of inertia close to
the rigid-body value.

To obtain a deeper understanding of the microscopic
particle-hole structure generating the collective precession
motion, we have performed an RPA calculation with the radial
displaced harmonic-oscillator (RDHO) model [12]. We also
confirm the validity of the relation T TDHF

⊥ = I/ωprec used
to extract the moment of inertia from the real-time TDHF
evolution. The RDHO model represents the major features
of the torus isomer and works well, because effects of the
spin-orbit force are negligible in the torus configuration. We
can also avoid the complications for the treatment of unbound
single-particle states by using this model. In the RDHO model
for the torus configuration, the single-particle potential V is
given, in the cylindrical coordinates, by V (r,z) = 1

2mω2
0(r −

R0)2 + 1
2mω2

0z
2, where m and R0 denote the nucleon mass

and the torus radius, respectively. The Coulomb potential is
ignored for simplicity. The harmonic-oscillator frequency ω0

is determined such that the density distribution calculated
with this model agrees, in good approximation, with that
of the torus isomer obtained by the cranked HF calculation.
The rigid-body moment of inertia calculated with the RDHO
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RAPID COMMUNICATIONS

ICHIKAWA, MATSUYANAGI, MARUHN, AND ITAGAKI PHYSICAL REVIEW C 89, 011305(R) (2014)

density distribution is T RDHO
⊥ = 21.1 �/MeV, which agrees

with the rigid-body value, T rid
⊥ , for the torus isomer.

We can easily determine the frequency of the preces-
sion motion by solving the RPA dispersion equation [7],
T RPA

⊥ (ω) = K/ω, where the moment of inertia, T RPA
⊥ , is a

function of ω defined by

T RPA
⊥ (ω) = �

2

2

∑
ph

{
|Jph

+ |2
(εph − �ω)

+ |Jph
− |2

(εph + �ω)

}
. (1)

Here the sum is taken over the one-particle–one-hole (1p-1h)
excitations across the sloping Fermi surface (see Fig. 3
in Ref. [4]) and εph denote their excitation energies. The
quantities J

ph
± represent the matrix elements of the angular

momentum raising and lowering operators, Jph
± = 〈ph|Ĵ±|0〉,

between the torus configuration |0〉 and the 1p-1h excited
states |ph〉. This RPA dispersion equation is valid for
velocity-independent residual interactions, and it yields the
classical relation, T rid

⊥ = I/ω, except that anharmonic effects
higher order in 1/K are ignored and, accordingly, I is
approximated by K . By solving the RPA dispersion equation,
we can simultaneously determine the frequency, ω, and the
moment of inertia, T⊥, of the precession motion. The lowest
eigenfrequency that satisfies the above equation is just the RPA
precession frequency of interest. We denote this solution ωRPA.
The precession motion is generated by coherent superposition
of many 1p-1h excitations across the sloping Fermi surface.
The value of T RPA

⊥ at ωRPA is the RPA moment of inertia
for the precession motion. In the limit ωRPA = 0, T RPA

⊥
reduces to the adiabatic cranking formula, T crank

⊥ . Using the
single-particle wave functions obtained by the RDHO model,
we determine ωRPA and T RPA

⊥ . In the calculations, we take all
1p-1h excitations whose energies are below εph � 30 MeV.
We obtain ωRPA = 3.02 MeV/� and T RPA

⊥ = 19.6 �
2/MeV.

This value of the RPA moment of inertia is different from the
adiabatic cranking value T crank

⊥ = 20.0 �
2/MeV only slightly,

indicating that the effect of the finite frequency (ωRPA �= 0) is
rather small for the precession motion under consideration.

The RPA frequency ωRPA and the moment of inertia T RPA
⊥

agree with the TDHF results for ωprec and T TDHF
⊥ in very

good approximation. If K is replaced with I = K + 1 in the
RPA dispersion equation, the agreement becomes even better

(ωRPA = 3.07 MeV/�). This almost perfect agreement clearly
indicates that the periodic numerical solution obtained in the
real-time TDHF evolution describes the collective rotation
well decoupled from other collective modes. The agreement
between the TDHF and RPA results furthermore suggests that
the net effect of the velocity-dependent interactions such as
the spin-orbit interaction is small, despite the presence of
a significant amount of circulating current which strongly
violates the time-reversal symmetry in the self-consistent mean
field. As we have seen in [4], the effects of the spin-orbit
potential almost cancel out between the inside and outside of
the torus radius R0. This suggests that the velocity-dependent
interaction effects are almost canceled out for the precession
motion under consideration. The results of the TDHF and the
RPA calculations thus suggest that basic physical conditions
for the occurrence of the rigid precession motion are (1) the
independent-particle configuration is pure and stable, (2) the
symmetry breaking about a perpendicular axis is sufficiently
strong, and (3) the net effect of the velocity-dependent
interactions is small.

In summary, we have obtained a periodic numerical solution
in the TDHF time evolution that describes the precession
motion of the high-K torus isomer with K = 60 � in 40Ca.
Although the high-K torus isomer is a unique quantum
object characterized by the alignment of angular momenta
of independent single-particle motions, we find that the
torus isomer performs a collective rotation about an axis
perpendicular to the symmetry axis with the moment of
inertia close to the classical rigid-body value. We have also
performed the RPA calculation for the precession motion with
the RDHO model. By comparing the results of the TDHF and
the RPA calculations, we have confirmed that the periodic
TDHF solution corresponds to the precession mode generated
by coherent superposition of many 1p-1h excitations across
the sloping Fermi surface. This exotic mode of rotation at high
spin is ideally decoupled from other collective modes.
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Observation of Low- and High-Energy Gamow-Teller Phonon Excitations in Nuclei

Y. Fujita,1,2,† H. Fujita,1 T. Adachi,1 C. L. Bai,3 A. Algora,4,5 G. P. A. Berg,6 P. von Brentano,7 G. Colò,8 M. Csatlós,5

J. M. Deaven,9 E. Estevez-Aguado,4 C. Fransen,7 D. De Frenne,10,* K. Fujita,1 E. Ganioğlu,11 C. J. Guess,9,‡ J. Gulyás,5

K. Hatanaka,1 K. Hirota,1 M. Honma,12 D. Ishikawa,1 E. Jacobs,10 A. Krasznahorkay,5 H. Matsubara,1,§

K. Matsuyanagi,13,14 R. Meharchand,9,∥ F. Molina,4,¶ K. Muto,15 K. Nakanishi,1,** A. Negret,16 H. Okamura,1,* H. J. Ong,1

T. Otsuka,17 N. Pietralla,7,†† G. Perdikakis,9,18 L. Popescu,19 B. Rubio,4 H. Sagawa,12,13 P. Sarriguren,20 C. Scholl,7,‡‡

Y. Shimbara,21,§§ Y. Shimizu,1,∥∥G. Susoy,11 T. Suzuki,1 Y. Tameshige,1 A. Tamii,1 J. H. Thies,22 M. Uchida,1 T. Wakasa,1,¶¶

M. Yosoi,1 R. G. T. Zegers,9 K. O. Zell,7 and J. Zenihiro1,∥∥
1Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan

2Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
3Department of Physics, Sichuan University, Chengdu 610065, China

4Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
5Institute for Nuclear Research (MTA-Atomki), H-4001 Debrecen, Post Office Box 51, Hungary
6Department of Physics and JINA, University of Notre Dame, Notre Dame, Indiana 46556, USA

7Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany
8Dipartimento di Fisica, Università degli Studi di Milano, and INFN, Sezione di Milano, via Celoria 16, 20133 Milano, Italy

9National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321, USA
10Vakgroep Subatomaire en Stralingsfysica, Universiteit Gent, B-9000 Gent, Belgium

11Department of Physics, Istanbul University, Istanbul 34134, Turkey
12Center for Mathematical Sciences, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8580, Japan

13RIKEN, Nishina Center, Wako Saitama 351-0198, Japan
14Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

15Department of Physics, Tokyo Institute of Technology, Ohokayama, Meguro, Tokyo 152-8551, Japan
16Horia Hulubei National Institute for Physics and Nuclear Engineering, 077125 Bucharest-Magurele, Romania

17Department of Physics, University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033, Japan
18Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, USA

19SCK-CEN, Belgian Nuclear Research Center, B-2400 Mol, Belgium
20Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, E-28006 Madrid, Spain

21Graduate School of Science and Technology, Niigata University, Nishi, Niigata 950-2181, Japan
22Institut für Kernphysik, Westfälische Wilhelms-Universität, D-48149 Münster, Germany

(Received 29 January 2014; published 18 March 2014)

Gamow-Teller (GT) transitions in atomic nuclei are sensitive to both nuclear shell structure and effective
residual interactions. The nuclear GT excitations were studied for the mass number A ¼ 42, 46, 50, and 54
“f-shell” nuclei in (3He, t) charge-exchange reactions. In the 42Ca → 42Sc reaction, most of the GT
strength is concentrated in the lowest excited state at 0.6 MeV, suggesting the existence of a low-energy GT
phonon excitation. As A increases, a high-energy GT phonon excitation develops in the 6–11 MeV region.
In the 54Fe → 54Co reaction, the high-energy GT phonon excitation mainly carries the GT strength. The
existence of these two GT phonon excitations are attributed to the 2 fermionic degrees of freedom in nuclei.

DOI: 10.1103/PhysRevLett.112.112502 PACS numbers: 24.30.Cz, 25.55.Kr, 27.40.+z

Atomic nuclei are the “quantum finite many-body
system” consisting of correlated nucleons, i.e., protons
and neutrons. However, the independent particle model
called the shell model (SM), has succeeded in describing
single “particle (p)” or single “hole (h)” properties of a
proton (π) or a neutron (ν). By introducing a spin-orbit
(L · S) force, whose effect is stronger than in atoms, the
shell closures at “magic numbers” (the proton number Z or
neutron number N of 2, 8, 20, 28, and so forth [see, e.g.,
Ref. [1] ]) were reproduced. The “doubly magic nuclei”
such as 4He with N ¼ Z ¼ 2, 16Owith N ¼ Z ¼ 8, or 40Ca
with N ¼ Z ¼ 20 behave like an atomic inert gas, and can
work as inert cores.

Nucleons can also form strongly correlated pairs [2,3].
These nuclear correlations can be treated as effective
residual interactions (ERIs). The collective excitations
caused by ERIs are commonly observed in many-body
systems. In nuclei, giant resonances (GRs) with specific
total angular momentum and parity (Jπ values) are exam-
ples. They are visualized as one-phonon vibrations from
a macroscopic view point, or as collective excitations of
particle-hole (p-h) or particle-particle (p-p) configurations
from a microscopic view point [4]. Note that nucleons have
a spin degree of freedom. In addition, they have two
“faces,” i.e., π and ν. In 1932, Heisenberg introduced the
isospin quantum number T to describe phenomena caused
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by the 2 fermionic degrees of freedom. Therefore, GRs as
well as ERIs can be specified by their spin nonflip and
spin flip nature and, also, by the isoscalar (IS) and the
isovector (IV) characters. In IV excitations, πs and νs
vibrate out of phase. Note that they are found only in
systems having 2 fermionic degrees of freedom. In this
respect, Gamow-Teller (GT) excitations specified by both
spin and IV excitations are characteristic of nuclei.
Only a few configurations are involved in GT transitions

caused by the GT operator στ having no radial or angular
momentum component [5,6]. In a SM picture, where the
nucleons are in an orbit with angular momentum l and spin
s ¼ �1=2, GT transitions can connect only the orbits
with the j> (¼ lþ 1=2) and j< (¼ l − 1=2) values, where
the former is energetically lower than the latter due to the
L · S force. Therefore, without ERIs, a transition between
j> orbits causes an excitation at zero energy, while a
j> → j< transition occurs at 3 to 7 MeV [1].
Absolute values of GT transition strength B(GT) can be

obtained in β-decay studies. The accessible excitation
energy (Ex), however, is limited by the decay Q value
[6]. In the 1980s, it was found that charge-exchange
(CE) reactions at intermediate incident energies (E >
100 MeV=nucleon) and the scattering angle Θ ¼ 0° are
good tools for the study of GTexcitations [4]. In the studies
using (p, n) reactions [7], bumplike GT resonances (GTRs),
i.e., high-energy GT phonon excitations, with a few MeV
width were commonly observed at Ex ¼ 9–18 MeV in
nuclei with mass A larger than about 60 [7,8]. The main
part of the GT strength was carried by the GTRs containing
≈ 50–60% of the GT sum-rule strength [8]. Note that GTRs
were always observed at Exs higher than the energy differ-
ence of the j< and j> orbits. Because of the neutron excess in
these nuclei, the main configurations of the GTRs are ofp-h
nature. It is well established that the ERIs among the p-h
configurations in IVexcitations, such as the GTor IV dipole
excitations, have a repulsive nature, and thus, IV GRs are
pushed up relative to the unperturbed p-h energies [4]. On
the contrary, in lighter nuclei with mass number A ≤ 40,
prominent high-energy GTRs are not observed; the GT
strength is mainly carried by states at lower energies [6,7].
This raises a question of how these two features of GT
strength distributions can be understood consistently.
In order to reconcile these observations, we studied the

GT excitations for the “f-shell” nuclei in the transitional
mass region of 40 < A < 60 using the (p, n)-type (3He, t),
CE reaction. The orbits f5=2 and f7=2 with l ¼ 3 represent
the j< and j> orbits, respectively, where the single particle
energy of the former is about 6 MeV higher than that of the
latter [1]. For a systematic study, we selected target nuclei
with even Z and N numbers and neutron excesses of two,
i.e., Tz ¼ þ1, where Tz ¼ ðN − ZÞ=2 is the z component
of isospin T. They were 42Ca, 46Ti, 50Cr, and 54Fe. The
final nuclei are 42Sc, 46V, 50Mn, and 54Co with odd Z andN
numbers and Tz ¼ 0, respectively.

It has been shown that GT excitations dominate the
spectra of the (3He, t), CE reaction at 0° and an intermediate
beam energy of 140 MeV=nucleon [6]. In addition,
although there were exceptions, a close proportionality
between the cross sections at 0° and the BðGTÞ values

σð0°Þ≃ σ̂GTð0°ÞBðGTÞ; (1)

has been empirically established [6,9–13], where σ̂GTð0°Þ is
the unit GT cross section at 0°.
The (3He, t) experiments were performed at the high

resolution facility of RCNP, consisting of a beam line WS
course [14] and the Grand Raiden spectrometer [15] using
the 3He beam from the K ¼ 400 Ring Cyclotron [16].
The targets consisted of enriched self-supporting 42Ca,
46Ti, 50Cr, and 54Fe metal foils with thicknesses of
0.8–1.8 mg=cm2. The outgoing tritons were momentum
analyzed within the full acceptance of the spectrometer at
0° and detected with a focal-plane detector system [17].
Energy resolutions of ΔE ¼ 21–33 keV (FWHM),

much better than the energy spread of the beam of about
120 keV, were realized by applying both dispersion
matching and focus matching techniques [6,18,19].
These resolutions are about 1 order of magnitude better
than those in the pioneering (p, n) works [7,20,21]. This
high energy resolution makes a detailed study of GT
excitations possible. A good angular resolution of ΔΘ ≤
5 mr (FWHM) was achieved by applying the angular
dispersion matching technique [18] and the overfocus
mode of the spectrometer [22].
The acceptance of the spectrometer was subdivided into

four scattering-angle regions of Θ ¼ 0°–0.5°, 0.5°–1.0°,
1.0°–1.5°, and 1.5°–2.0° using the tracking information.
The Jπ ¼ 1þ, GT states excited by ΔL ¼ 0, GT transitions
can be identified by their maximum intensity at Θ ¼ 0° (for
detail, see [23]). Figure 1 shows the “0° spectra” that
include the events with Θ ≤ 0.5°. The 46V, 50Mn, and 54Co
spectra are from Refs. [23–25], and the 42Cað3He; tÞ42Sc
spectrum was newly measured in this study. The angular
distribution analysis shows that most of the prominent
states are excited with ΔL ¼ 0. Among them, the ground
states are all Jπ ¼ 0þ isobaric analog states (IASs), each
forming an isospin multiplet with the target ground state.
Therefore, it is suggested that the ΔL ¼ 0 excited states
are Jπ ¼ 1þ, GT states [6]. The BðGTÞ values were derived
using Eq. (1). The σ̂GT values were deduced by using the
information on the Tz ¼ −1 → 0, βþ decay [25,26] assum-
ing that Tz ¼ �1 → 0 mirror GT transitions have the
same BðGTÞ values on the basis of isospin symmetry [6].
The gradual decrease of σ̂GT as a function of Ex [9]
was corrected using distorted wave Born approximation
calculations (see, e.g., [23]).
The remarkable feature in Fig. 1 is the completely

different strength distributions in these four systems
although the neutron excess in the initial nuclei is always
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two. In 42Sc, most of the GT strength, in agreement with
[20], is concentrated in the excitation of the lowest GT state
at 0.611 MeV. In 46V and 50Mn, however, the low-energy
strength becomes fragmented and at the same time the
bumplike structure of the GTR in the 6–11 MeV region
begins to develop [Figs. 1(b) and 1(c)]. A fragmentation of
GT strength was also observed in the 44Ca → 44Sc reaction
[27], suggesting that the concentration of the strength is
also hampered by a larger neutron excess of four in 44Ca.
Finally in 54Co [Fig. 1(d)], the GT strength is mainly in
the GTR.
The cumulative sum of the experimental BðGTÞ values

is shown in Fig. 2(a) up to Ex ¼ 12 MeV. A shift in the
strength to higher energy with increasing A is again clearly
seen. The total sum in 42Sc is 2.7(4), with 80% of the GT
strength carried by the lowest GT state. The observed sum
gradually increases with A and it is 3.9(6) in 54Co [23],
where ≈75% of the GT strength is found in the high-energy
GTR structure.
In a SM picture, the j> valence orbits, πf7=2 and νf7=2,

outside the inert 40Ca core (Z ¼ N ¼ 20) will be gradually
filled in the Tz ¼ þ1, A ¼ 42–54 nuclei as A increases (see
Fig. 3). On the other hand, the j<, πf5=2 and νf5=2 orbits

remain unpopulated. In this picture, without ERIs, we
expect a low-energy GT excitation originating from the
νf7=2 → πf7=2 transition and a high-energy one from the
νf7=2 → πf5=2, where the latter is expected≈6 MeV higher
than the former due to the strong L · S force [1]. The single
particle strengths of these GT excitations are similar,
namely BðGTÞ ¼ 9=7 and 12=7, respectively [9]. Taking
into account the occupation and vacancy factors of the f7=2
and f5=2 shells, the relative strengths between the νf7=2 →
πf7=2 and νf7=2 → πf5=2 transitions are 9∶12 and 9∶48 in
the 42Ca → 42Sc and 54Fe → 54Co reactions, respectively.
Therefore, we can, to some extent, understand the larger
high-energy strength in the A ¼ 54 system. However, from
this simple picture, we cannot understand the concentration
of GT strength to the low-energy 0.611 MeV state in the
42Ca → 42Sc reaction.
Figure 2(b) shows the cumulative sum of the GT

strengths from SM calculations. The modern GXPF1J
interaction used in the calculation was derived to reproduce
various experimental data [28]. We see that the A dep-
endence of the GT strength distribution, including the
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FIG. 1 (color online). High energy-resolution spectra of (3He, t)
reaction on A ¼ 42–54, Tz ¼ þ1 target nuclei. The vertical
scales are normalized so that the heights of all GT peaks are
approximately proportional to the BðGTÞ values. The GT strength
is concentrated in one low-energy state in 42Sc [panel (a)]. The
fine structures of GTRs in the 6–11 MeV region are observed in
panels (c) and (d).
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after making GT transitions (shown by the arrows) are indicated
by filled crosses and open circles, respectively. The shell closures
at Z ¼ N ¼ 20 and 28 are indicated by thick solid lines.
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concentration of the GT strength in the lowest GT state in
42Sc, is well reproduced. However, we notice that this
concentration of the GT strength is reproduced even in a
SM calculation using the classical Kuo-Brown interaction
[29], suggesting that it contains the essential ERI compo-
nents that make the GT strength concentrate in the lowest
GT state of 42Sc.
Further calculations were performed using a quasiparti-

cle random phase approximation (QRPA) framework based
on a self-consistent Hartree-Fock mean field with Skyrme
interactions. First, we performed standard calculations
including proper IV ERIs in both the p-h and the p-p
configurations. Within this framework, GT strengths and
GTR structures in nuclei heavier than A ≈ 60 have been
well reproduced [30]. As an extension, the observed GT
strength in the GTR region of 54Co was well reproduced.
Note that closed shells are formed at Z or N ¼ 28. Then,
the main transition νf7=2 → πf5=2 makes a p-h type (πf5=2,
νf−17=2) configuration in 54Co [see Fig. 3(d)]. Here, we see
the established scenario that the main part of the GT
strength is pushed up to the GTR region, higher than the
p-h energy of ≈6 MeV, by the repulsive IV interaction that
is active in p-h configurations. However, the concentration
of GT strength in one low-energy state in 42Sc could not
be reproduced; about half of the total GT strength always
remained in the GTR region.
In the SM picture, the final nucleus 42Sc has one π and

one ν outside the inert 40Ca core. As shown in Fig. 3(a),
p-p configurations of (πf7=2, νf7=2) and (πf5=2, νf7=2), are
formed after the transitions νf7=2 → πf7=2 and νf7=2 →
πf5=2, respectively. Taking the antisymmetrization into
account, a π-ν pair can couple to the spin S ¼ 0 and
T ¼ 1 (spin-singlet, IV) or S ¼ 1 and T ¼ 0 (spin-triplet,
IS) states, and the analysis of ERIs in these states shows
that the spin-triplet IS ERI is attractive and stronger than the
spin-singlet IV ERI [31]. Note that the IS, ERI cannot act
in the IV-type π-π or ν-ν pairs. In addition, it is discussed
that p-p type configurations are sensitive to the IS pairing
interaction [32,33], and the attraction is strong if both
nucleons of the π-ν pair are in the same shell [3,31]. It is
known that this attractive IS ERI makes the deuteron
bound [34].
In newly performed spherical QRPA calculations [35],

the spin-triplet IS ERI was also included, which changed
the results drastically; in the 42Ca → 42Sc calculation, a
strong concentration of the GT strength in the lowest
GT state appeared as the IS coupling constant f [35]
was increased from null to f ¼ 1. In addition, at f ¼ 1 the
contributions of the main p-p type configurations (πf5=2,
νf7=2) and (πf7=2, νf7=2) of the lowest 1þ state were in
phase, increasing the collectivity [35].
As discussed, the configurations of GTRs are p-h type in

heavier nuclei with neutron excess. Since ERIs of p-h
configurations are repulsive in IVexcitations, the GTRs are
pushed to a higher Ex region. However, we observed that

the GT excitations can be shifted to a lower energy if the
configurations of the final nucleus have πp-νp nature
where the attractive IS ERI can be active. We saw that
the 0.611 MeV GT state in 42Sc collects 80% of the total
GT strength in the region up to 12 MeV. The GT transition
to this state has a large BðGTÞ value of 2.2, which can be
deduced from the small log ft value of 3.25 of the isospin
analogous GT transition in the 42Ti β decay to 42Sc [36].
Therefore, in the sense that this low-energy GT state has
the collective nature and carries most of the observed GT
strength, it is comparable to the high-energy GTR in heavy
N > Z nuclei.
In the limit of null L · S force, Wigner proposed the

existence of SU(4) symmetry and the “super-multiplet
state” [37]. In this limit, (a) the GT strength is concentrated
in a low-energy GT state, and, also, (b) excitation energies
of both the IAS and the GT state are identical. From Fig. 1,
we see a broken SU(4) symmetry in the A ¼ 54 system,
while a good symmetry is observed in the A ¼ 42 system.
We found that the attractive IS ERI plays the role of
restoring the SU(4) symmetry and the 0.611 MeV GT state
in 42Sc has a character close to that of a super-multiplet
state. Therefore, we can call this state the “low-energy
super GT” (LESGT) state. Note that “zero-energy”
πp-νp configurations that are essential for the formation
of LESGT states are realized only in CE excitations (and β
decays).
TheLESGTstate is expected if the relevant configurations

of the final GT state are of πp-νp nature. Indeed, strong GT
transitionstothegroundstatesof theN ¼ Znuclei6Liand18F
have been observed in the β-decay studies of 6He and 18Ne,
respectively [38,39]. The transitions have very small log ft
values of 2.9 and 3.1. In addition, we can confirm the
concentration of the main GT strength in the ground state
of 18F from the 18Oðp; nÞmeasurement [40]. Since 4He and
16O can act as inert cores, we expect that these ground
states in 6Li and 18F have πp-νp configurations, and
thus, they are also LESGT states.
In summary, in the high-resolution (3He, t) measure-

ments for f-shell nuclei, we observed low- and high-energy
collective GT excitations, i.e., two kinds of GT phonon
states. In 42Sc, a concentration of the GT strength was
observed in the lowest GT state, which we call the LESGT
state. We found that the attractive IS ERI that is active in
πp-νp configurations pulls the GT strength to a lower
excitation energy and that LESGT states are the extreme
structure carrying most of the GT strength. In 46V and
50Mn, transitional features were observed; the low-energy
phonon strength became fragmented and weaker, while the
strength in the high-energy GTR region increased. In 54Co,
the main part of the GT strength was concentrated in the
GTR phonon structure. As is known, GTRs are formed by
the repulsive IV ERI that is active in the πp-νh configura-
tions. Note that the existence of IS and IV ERIs, and thus,
low- and high-energy GT phonon excitations, are attributed
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to the 2 fermionic degrees of freedom, which is a unique
feature in atomic nuclei.
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Background: In our previous study, we found that an exotic isomer with a torus shape may exist in the high-spin,
highly excited states of 40Ca. The z component of the total angular momentum, Jz = 60�, of this torus isomer is
constructed by totally aligning 12 single-particle angular momenta in the direction of the symmetry axis of the
density distribution. The torus isomer executes precession motion with the rigid-body moments of inertia about
an axis perpendicular to the symmetry axis. The investigation, however, has been focused only on 40Ca.
Purpose: We systematically investigate the existence of exotic torus isomers and their precession motions for
a series of N = Z even-even nuclei from 28Si to 56Ni. We analyze the microscopic shell structure of the torus
isomer and discuss why the torus shape is generated beyond the limit of large oblate deformation.
Method: We use the cranked three-dimensional Hartree-Fock method with various Skyrme interactions in
a systematic search for high-spin torus isomers. We use the three-dimensional time-dependent Hartree-Fock
method for describing the precession motion of the torus isomer.
Results: We obtain high-spin torus isomers in 36Ar, 40Ca, 44Ti, 48Cr, and 52Fe. The emergence of the torus isomers
is associated with the alignments of single-particle angular momenta, which is the same mechanism as found in
40Ca. It is found that all the obtained torus isomers execute the precession motion at least two rotational periods.
The moment of inertia about a perpendicular axis, which characterizes the precession motion, is found to be close
to the classical rigid-body value.
Conclusions: The high-spin torus isomer of 40Ca is not an exceptional case. Similar torus isomers exist widely
in nuclei from 36Ar to 52Fe and they execute the precession motion. The torus shape is generated beyond the
limit of large oblate deformation by eliminating the 0s components from all the deformed single-particle wave
functions to maximize their mutual overlaps.

DOI: 10.1103/PhysRevC.90.034314 PACS number(s): 21.60.Jz, 21.60.Ev, 27.40.+z

I. INTRODUCTION

Nuclear rotation is a key phenomenon to study the funda-
mental properties of finite many-body quantum systems. In
particular, the rotation about the symmetry (z) axis produces
a unique quantum object with its density distribution of a
torus shape, as shown in our previous studies for 40Ca [1,2].
In a classical picture for such rotation the oblate deformation
develops with increasing rotational frequency due to the strong
centrifugal force [3]. However, such a collective rotation
about the symmetry axis is quantum-mechanically forbidden.
Instead, it is possible to construct extremely high-spin states by
aligning individual angular momenta of single-particle motion
in the direction of the symmetry axis [4,5].

A drastic example is a high-spin torus isomer in 40Ca [1],
where 12 single particles with the orbital angular momenta
� = +4, +5, and +6 align in the direction of the symmetry
axis and construct a z component of the total angular
momentum of Jz = 60�. Thus, a “macroscopic” amount of
circulating current emerges in the torus isomer state, which
may be regarded as a fascinating new form of the nuclear
matter suggested by Bohr and Mottelson [6].

Another important kind of rotation is a collective motion
that restores the symmetry spontaneously broken in the self-
consistent mean field. The density distribution of the torus
isomer largely breaks the symmetry about an (x or y) axis
perpendicular to the symmetry axis [2]. Below, we call this
axis a perpendicular axis. Thus, the torus isomer can rotate

about a perpendicular axis, although the collective rotation
about the symmetry axis is quantum-mechanically forbidden.
This rotational degree of freedom causes the precession motion
of the system as a whole. Then, an interesting question arises
how such a “femtoscale magnet” rotates collectively to restore
the broken symmetry about a perpendicular axis.

A physical quantity characterizing such a collective rotation
is the moment of inertia about a perpendicular axis. It has
been theoretically recognized that an independent-particle
configuration in a deformed harmonic-oscillator potential
rotates with the rigid-body moment of inertia when the
self-consistency between the mean-field potential and the
density is fulfilled [7]. However, measured moments of inertia
for the case of the precession motion of prolately deformed
nuclei are often much smaller than the rigid-body values even
when pairing correlations are negligible [8,9]. This is because
of shell effects in high-K prolate isomers [8]. Although
precession modes of high-K oblate isomers have not been
observed yet, their moments of inertia would be much reduced
from the rigid-body values due to oblate shell structures at
small deformations [10].

From these observations, it might be conjectured that
the moment of inertia about a perpendicular axis for the
torus isomer also significantly deviates from the classical
rigid-body value, because the torus isomer is a unique quantum
object characterized by the alignment of angular momenta
of independent-particle motions. It is thus surprising that the
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moment of inertia about a perpendicular axis, evaluated with
the time-dependent Hartree-Fock (TDHF) method, from the
rotational period of the precession motion of the torus isomer
in 40Ca takes a value close to the classical rigid-body value
[2]. We analyzed the microscopic structure of the precession
motion by using the random-phase approximation (RPA)
method. In the RPA calculation, the precession motion of the
torus isomer is generated by a coherent superposition of many
one-particle-one-hole excitations across the sloping Fermi
surface. We found that the precession motion obtained by the
TDHF calculation is a pure collective motion well decoupled
from other collective modes. In our previous studies, however,
we focused only on the torus isomer of 40Ca. It is thus important
to investigate whether torus isomers exist also in other nuclei
and the properties of the precession motion found there are
universal or not.

In this paper, we first perform a systematic investigation of
the high-spin torus isomers for a series of N = Z even-even
nuclei from 28Si to 56Ni. We show that the high-spin torus
isomer of 40Ca is not an exceptional case. About 40 years ago,
Wong suggested, using a macroscopic-microscopic method,
the possible existence of torus isomers at highly excited states
of a wide region of nuclei [12]. Quite recently, Staszczak and
Wong systematically explored the existence of torus isomers
using the constrained cranked Hartree-Fock (HF) method and
found some torus isomers at highly excited states in several
nuclei [11]. However, they use the harmonic-oscillator basis
expansion method, which is insufficient to treat unbound
states. It is therefore difficult to examine the stability of the
torus isomers against the nucleon emission in their calculation,
although some of them would contain single particles in
unbound states.

We then perform a systematic TDHF calculation to in-
vestigate the properties of the precession motion. For all
the high-spin torus isomers obtained by the cranked HF
calculation, we find the periodic solutions of the TDHF
equation of motion, which describe the precession motions.
Among them, the precession motion of the 60� torus iso-
mer of 40Ca is particularly stable and continues for many
periods.

To understand the microscopic origin of appearance of the
torus isomers, we analyze the process during which the shell
structure of the large oblate shape and that of the torus shape
grow up from that of the spherical shape. Using the radially
displaced harmonic-oscillator (RDHO) model [12] and the
oblately deformed harmonic-oscillator potential, we finally
discuss why the lowest 0s components disappear from all the
single-particle wave functions of the occupied states and how
a large ‘hole’ region is created in the center of the nucleus to
generate the torus shape.

This paper is organized as follows. In Sec. II, we describe
the theoretical framework and parameters of the numerical
calculation. In Sec. III, we present results of the systematic
calculation for static and dynamical properties of the high-spin
torus isomers including their precession motions. In Sec. IV,
we analyze microscopic shell structures of the torus isomers
and discuss the reason why the torus shape emerges beyond
the limit of large oblate deformation. Finally, we summarize
our studies in Sec. V.

II. THEORETICAL FRAMEWORK

A. Cranked HF calculation

To investigate systematically the existence of high-spin
torus isomer states in a wide range of nuclei, we use the
cranked three-dimensional Skyrme HF method. To build
high-spin states rotating about the symmetry axis of the density
distribution (z axis), we add a Lagrange multiplier, ω, to the
HF Hamiltonian, Ĥ . Then, the effective HF Hamiltonian,
Ĥ ′, is written as Ĥ ′ = Ĥ − ωĴz, where Ĵz denotes the z
component of the total angular momentum. We minimize this
effective HF Hamiltonian with a given Lagrange multiplier,
which is equivalent to the cranked HF equation given by
δ〈Ĥ − ωĴz〉 = 0.

For this purpose, we slightly modify the code SKY3D. The
details of the code are given in Ref. [13]. In the code, the single-
particle wave functions are described on a Cartesian grid with
a grid spacing of 1.0 fm, which is a good approximation for
not only bound states but also unbound states in contrast to the
harmonic-oscillator basis expansion. We take 32 × 32 × 24
grid points for the x, y, and z directions, respectively. This is
sufficiently accurate to provide converged configurations. The
damped-gradient iteration method [14] is used, and all deriva-
tives are calculated with the Fourier transformation method.

In the calculation, we use the SLy6, SkI3, and SkM∗ Skyrme
forces to check the interaction dependence of the calculated
results. These effective interactions were well constructed
based on nuclear bulk properties but differ in details; SLy6
as a fit which includes information on isotopic trends and
neutron matter [15], SkI3 as a fit taking into account the
relativistic isovector properties of the spin-orbit force [16],
and SkM∗ as a widely used traditional standard [17]. However,
except for the effective mass, the bulk properties (equilibrium
energy and density, incompressibility, and symmetry energy)
are comparable to each other. In the energy density functional,
we omit terms depending on the spin density, because it
may be necessary to extend the standard form of the Skyrme
interaction in order to properly take into account the spin-
density dependent effects [18] (see also a review [19]), but
such effects are inessential to the torus isomers.

B. Setting of initial configurations

In the cranked HF calculations, we first search for stable
torus configurations in a series of N = Z even-even nuclei
from 28Si to 56 Ni. We use, as an initial configuration of the
HF calculation, an α-cluster ring configuration placed on the
x-y plane, as shown in Fig. 1 of Ref. [1]. The α-cluster wave
function is described by a Gaussian function with the width
of 1.8 fm. The center positions of the Gaussian functions are
placed equiangularly along a circle with a radius of 6.5 fm
on the (x,y) plane. Only for the calculations of 52Fe with the
SkM∗ interaction, we use a radius of 7.55 fm and a width
of 1.63 fm. Using these initial configurations, we perform
15 000 HF iterations. We search for stable torus solutions
varying ω from 0.5 to 2.5 MeV/� with a step of 0.1 MeV/�.
After these calculations, we check the convergence of the
total energies, the density distributions, and the total angular
momenta. In the calculations of the excitation energies, we
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subtract the expectation value of the center-of-mass motion in
both the ground and the torus isomer states.

We next calculate all single-particle states including those
above the Fermi energy. To calculate those, we use, as initial
wave functions of the HF calculation, the single-particle wave
functions of the RDHO model [12]. This model is a good
approximation to the mean-field of torus-shaped isomers. In
this model, the single-particle potential is given by

V (r,z) = 1
2mω2

0(r − R0)2 + 1
2mω2

0z
2, (1)

where m denotes the nucleon mass, ω0 the oscillator frequency,
r and z the radial and the z components of the cylindrical
coordinate system, and R0 the radius parameter of the torus
shape. Since the radial wave function of the lowest energy in
the RDHO model is described by a shifted Gaussian function
with the width d = √

�/mω0, we determine ω0 from the radius
of a cross section of a torus ring. The optimal values of R0 and
d are determined through the global investigation mentioned
above. Using this initial condition and a value of ω0 obtained
by the global investigation, we perform the HF iteration over
20 000 times and calculate the single-particle states up to the
40th for both protons and neutrons.

C. Sloping Fermi surface

It is important to note that the cranking term −ωĴz does
not change the single-particle wave functions for rotation
about the symmetry axis. Thus, it is useful to introduce the
concept of “sloping” Fermi surface. As usual, the single-

particle Hamiltonian is given by Ĥ ′ = ∑
i(ĥi − ωĵz

(i)
), where

ĥi and ĵz
(i)

denote the mean-field Hamiltonian and the
z component of the total angular momentum for each single
particle, respectively. The eigenvalue of Ĥ ′ is written as
E′ = ∑

i[(ei − λ) − �ω�i], where λ denotes the Fermi energy
at ω = 0. The symbols ei and �i denote the single-particle

energy and the eigenvalue of ĵz
(i)

, respectively. By introducing
the sloping Fermi surface defined by λ′(�) = λ + �ω�, we
can rewrite E′ as E′ = ∑

i{ei − λ′(�i)}. Therefore, aligned
configurations can be easily constructed by plotting the single-
particle energies as a function of � and tilting the Fermi surface
in the (e,�) plane. It is important to note that the value of ω
to specify an aligned configuration is not unique. As we can
immediately see in Figs. 3–7 below, individual configurations
do not change for a finite range of ω.

D. Optimally aligned torus configurations

Let us focus on optimally aligned torus configurations
where all the single-particle states below the sloping Fermi
surface are occupied. They are expected to be more stable
than other aligned configurations involving particle-hole ex-
citations across the sloping Fermi surface. Before carrying
out the cranked HF calculations, we can easily presume
candidates of optimally aligned torus configurations. Since the
effects of the spin-orbit potential are negligibly weak in the
torus configurations, not only � but also the z component
of the orbital angular momentum, �, are good quantum
numbers (� = � + �, where � denotes the z component of
the spin, ±1/2) [1]. Single-particle states having the same

� value with different spin directions are approximately
degenerated and simultaneously occupied. Thus, the lowest-
energy configurations for the torus shapes at ω = 0 are � = 0,
±1, ±2, and ±3 for 28Si, � = 0, ±1, ±2, ±3, and +4 or −4
for 32S, � = 0, ±1, . . ., ±4 for 36Ar, � = 0, ±1, . . ., ±4, and
+5 or −5 for 40Ca, � = 0, ±1, . . ., ±5 for 44Ti, � = 0, ±1,
. . ., ±5, and +6 or −6 for 48Cr, � = 0, ±1, . . ., ±6 for 52Fe,
and � = 0, ±1, . . ., ±6, and +7 or −7 for 56Ni.

For instance, in 40Ca, possible aligned configurations at ω �=
0 are (i) � = 0, ±1, . . ., ±4, and +5 for Jz = 20� [=5� × 2
(spin degeneracy) ×2 (isospin degeneracy)], (ii) � = 0, ±1,
±2, ±3, +4, and +5 for Jz = 60� [=15� × 2 × 2], and
(iii) � = 0, ±1, ±2, +3, +4, +5, +6, and +7 for Jz = 100�

[=25� × 2 × 2]. However, we could not obtain stable HF
solutions for the configurations (i) and (iii): the centrifugal
force is insufficient for stabilizing the configuration (i), while
the last occupied single-particle state with � = 7 is unbound
for the configuration (iii). Indeed, we confirmed that the torus
isomer configuration (iii) with Jz = 100� slowly decays. In the
systematic calculations, it is often difficult to discuss the sta-
bility of torus isomers when such unbound states are included.
To avoid this difficulty, in this paper, we focus on torus con-
figurations without involving unbound single-particle states.

E. TDHF calculation for the precession motion

For the stable torus isomers obtained above, we performed
TDHF calculations to investigate their precession motions.
The time evolution of the density distribution is determined
by solving the TDHF equation of motion i�ρ̇ = [Ĥ ,ρ]. When
an impulsive force is provided in a direction perpendicular
to the symmetry axis at t = 0, the torus isomer starts to
execute the precession motion. This precession motion is
associated with a rotation about a perpendicular axis, i.e.,
an axis perpendicular to the symmetry axis. In Ref. [2], we
already showed that this precession motion is a pure collective
motion to restore the broken symmetry and well described
as coherent superpositions of many 1p-1h excitations across
the sloping Fermi surface. We investigate whether other torus
isomers also execute the precession motion well decoupled
from other collective modes and whether their moments of
inertia are close to the rigid-body values or not. In this way,
we can also check the stability of the obtained torus isomers
against given impulsive forces.

Figure 1 illustrates the schematic picture of the precession
motion taken from Ref. [2]. At t = 0, the torus isomer is placed
on the x-y plane with the angular momentum K (=Jz) along
the z axis in the laboratory frame. When an impulsive force is
provided in the negative x direction (the dotted line) at t = 0,
the total angular momentum becomes �I (the dashed line). We
call this vector the precession axis. After that, the symmetry
axis of the density distribution in the body-fixed frame (the
bold solid line) starts to rotate about the precession axis with
the rotational angle φ. In the precession motion, the value K
is conserved and its direction is identical to the bold solid line.
The tilting angle θ is defined as the angle between the bold
solid and the dashed lines. Then, the moment of inertia for the
rotation about a perpendicular axis, T⊥, can be estimated by
T⊥ = I/ωprec, where ωprec denotes the rotational frequency of
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x
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zφ

θ

I

K

z’

FIG. 1. Schematic picture for the precession motion of torus
isomers taken from Ref. [2]. The bold solid line denotes the symmetry
axis of the density distribution. The dashed line denotes the precession
axis. The symbols θ and φ denote the tilting and the rotational angles,
respectively.

the precession motion. To build the first excited state of the
precession motion, we provide an impulsive force such that
the total angular momentum becomes I = K + 1.

To solve the TDHF equation, we use the code SKY3D and
take the Taylor expansion of the time-development operator
up to the 12th order. The setups of spatial grid points
and interactions are the same as those of the cranked HF
calculations described above. We start to perform calculations
from the initial density distribution obtained by the cranked
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FIG. 2. (Color online) Density distributions on the z = 0 plane
of the obtained stable torus isomers. The contours correspond to
multiple steps of 0.015 fm−3. The color is normalized by the largest
density in each plot.

TABLE I. Stable torus isomers obtained in the cranked HF calcu-
lation with various Skyrme interactions. The excitation energy, Eex, is
measured from the ground state. The calculated density distributions
are fitted to the Gaussian function ρ(r,z) = ρ0e

−[(r−R0)2+z2]/d2
and

the resulting values of the parameters, ρ0, R0, and d , are listed.
The symbols, T rid

⊥ and T rid
‖ , denote the rigid-body moments of

inertia for the rotations about a perpendicular and the symmetry axes,
respectively.

System Jz Eex ρ0 R0 d T rid
⊥ T rid

‖
(�) (MeV) (fm−3) (fm) (fm) (�2/MeV) (�2/MeV)

(SLy6)
36Ar 36 123.89 0.137 5.12 1.62 14.3 26.4
40Ca 60 169.71 0.129 6.07 1.61 21.0 39.6
44Ti 44 151.57 0.137 6.30 1.61 24.6 46.5
48Cr 72 191.25 0.132 7.19 1.60 33.8 64.7
52Fe 52 183.70 0.138 7.47 1.60 39.1 75.1

(SkI3)
36Ar 36 125.15 0.146 5.01 1.58 13.7 25.3
40Ca 60 173.52 0.138 5.90 1.58 19.9 37.5
44Ti 44 153.02 0.146 6.17 1.58 23.6 44.6
48Cr 72 193.66 0.141 7.00 1.57 32.0 61.3
52Fe 52 183.70 0.147 7.31 1.57 37.5 71.9

(SkM∗)
36Ar 36 124.80 0.131 5.16 1.65 14.6 26.9
40Ca 60 167.84 0.122 6.17 1.64 21.8 41.0
44Ti 44 152.20 0.131 6.36 1.64 25.1 47.5
48Cr 72 192.40 0.125 7.30 1.63 34.9 66.7
52Fe 52 187.08 0.132 7.55 1.63 40.0 76.7

HF calculations. The time step of the TDHF calculations is
0.2 fm/c. We calculate the time evolution until 3000 fm/c.
To excite the precession motion, we provide an impulsive
force at t = 0 by the external potential given by Vext(r,ϕ,z) =
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FIG. 3. Single-particle energies versus the z component of the
total angular momentum, �, for 36Ar. Solid and open circles denote
the single-particle energies of the positive- and negative-parity states,
respectively. To illustrate the degeneracy of positive- and negative-
parity states, some negative-parity states are shown by double open
circles.
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FIG. 4. Single-particle energies versus � for 40Ca. All symbols
are the same as in Fig. 3.

V0z cos ϕ exp[−(r − R0)2/d2]. This impulsive force gives an
angular momentum in the negative x direction at t = 0. The
parameter V0 is chosen such that the total angular momentum
becomes I = K + 1.

III. RESULTS OF CALCULATION

A. Static properties

We have carried out a systematic search for stable torus
isomers for the N = Z even-even nuclei from 28Si to 56Ni.
The result of the calculation is summarized in Table I. We
obtain the stable torus isomers in 36Ar for Jz = 36 �, 40Ca for
Jz = 60�, 44Ti for Jz = 44 �, 48Cr for Jz = 72 �, and 52Fe for
Jz = 52 � with all the three Skyrme interactions used in this
study. On the other hand, we have not found any stable torus
isomer in 28Si, 32S, and 56Ni. In Fig. 2, we plot the total density
distributions of the torus isomers obtained in the cranked HF
calculation with the SLy6 interaction.
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FIG. 5. Single-particle energies versus � for 44Ti. All symbols
are the same as in Fig. 3.
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FIG. 6. Single-particle energies versus � for 48Cr. All symbols
are the same as in Fig. 3.

The total density distribution of each of the torus isomers
obtained in the cranked HF calculation is well fitted by the
Gaussian function ρ(r,z) = ρ0e

−[(r−R0)2+z2]/d2
, where ρ0, R0,

and d denote the maximum value of the nucleon density, the
radius of the torus ring, and the width of a cross section of the
torus ring, respectively. The resulting values of the parameters,
ρ0, R0, and d, are tabulated in the middle part of Table I. We
see that the values ρ0 and d are almost constant for all the torus
isomers. The interaction dependence of these values is weak.
It is interesting that, in all the results, ρ0 is smaller than the
saturation nuclear density (ρsat ∼ 0.17 fm−3) and d is close
to the width of an α particle used in Brink’s α-cluster model
(dα ∼ 1.46 fm) [20].

Using the total density distribution, we also calculate the
rigid-body moments of inertia for rotation about a perpendic-
ular axis, T rid

⊥ , and the symmetry axis, T rid
‖ . The results are

also shown in Table I. Later, we shall compare these values
for T rid

⊥ with those obtained by an analysis of the precession
motions in the TDHF time evolution.
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FIG. 7. Single-particle energies versus � for 52Fe. All symbols
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FIG. 8. Regions of ω for which each of the torus isomers stably
exists. The solid, dashed, and dotted lines denote the results calculated
with the SLy6, SkI3, and SkM∗ interactions, respectively.
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FIG. 10. Time evolution of the precession motion for the torus
isomers of 40Ca. All symbols are the same as Fig. 9.

To investigate microscopic structures of the torus isomers,
we plot in Figs. 3–7 neutron single-particle energies versus �
for each torus isomer calculated with the SLy6 interaction. In
the figures, the solid and the open circles denote the positive-
and negative-parity states, respectively. The gray area in each
plot denotes the occupied states. In each plot, we see that the
single-particle energies with the same � are almost degenerate.
This indicates that the effects of the spin-orbit force are
negligibly small and � is approximately a good quantum
number in all the torus isomers. One may also notice that
the Kramer’s degeneracy for a pair of single-particle states
with ±� is lifted. This is due to the time-odd components
(dependent on the current density) of the cranked HF mean
fields associated with the macroscopic currents, which are
produced by the alignment of the single-particle angular
momenta with large values of �.

Because of the negligible spin-orbit splittings, the spin-orbit
partners are always occupied simultaneously. Therefore, the
Jz values of the optimally aligned configurations are easily
determined by summing up the � values of the occupied
single-particle states: they are � = 0,±1,±2,±3,+4,+5
[Jz = 9 � ×2 (spin degeneracy) ×2 (isospin degeneracy) = 36
�] for 36Ar, � = 0,±1,±2,±3,+4,+5,+6 [Jz = 15 � ×2 ×
2 = 60 �] for 40Ca, � = 0,±1, . . . ,±4,+5,+6 [Jz = 11
� ×2 × 2 = 44 �] for 44Ti, � = 0,±1, . . . ,±4,+5,+6,+7
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FIG. 11. Time evolution of the precession motion for the torus
isomers of 44Ti. All symbols are the same as Fig. 9.

[Jz = 18 � ×2 × 2 = 72 �] for 48Cr, and � = 0,±1,
. . . ,±5,+6,+7 [Jz = 13 � ×2 × 2 = 52 �] for 52Fe.

We can estimate from the figures a region of ω for
which each of the torus isomers stably exist. This is done
by determining the steepest and the most gradual slopes
of the Fermi surface for which the occupied single-particle
configuration remains the same. The results are plotted in
Fig. 8. The solid, dashed, and dotted lines denote the regions
of ω for each of the stable torus isomers obtained with the
SLy6, SkI3, and SkM∗ interactions, respectively. We see that
the result does not strongly depend on the Skyrme interaction
employed, although the width is weakly dependent on it.

B. Dynamic properties

We carried out a systematic TDHF calculation for each of
the torus isomers and found that that the TDHF time evolution
of the density distribution is quite similar to that displayed in
Fig. 2 of [2]. Figures 9–13 show the calculated time evolution
of the precession motion for each of the torus isomers obtained
with the SLy6 interaction. In each plot in the figures, panels (a),
(b), and (c) denote the total angular momentum, I , the tilting
angle, θ , and the rotational angle, φ, respectively. In panel (a)
in each plot, we can see that the total angular momentum is
conserved very well. This indicates that the TDHF calculations
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FIG. 12. Time evolution of the precession motion for the torus
isomers of 48Cr. All symbols are the same as Fig. 9.

are sufficiently accurate. We find that the precession motion
of the 40Ca torus isomer is especially stable [see panel (b) in
each plot], where the rotational angle φ lineally increases with
time, indicating that the rotation of the symmetry axis about
the precession axis keeps a constant velocity through all the
periods. This indicates that the strong shell effects responsible
for the appearance of the torus isomer in 40Ca also stabilize
the precession motion. We find that the precession motions
emerge also for other torus isomers and they are stable at least
for two periods. After that, however, the tilting angle gradually
starts to fluctuate. Correspondingly, the rotational angle φ also
starts to deviate from the linear time evolution [see panel (c) in
each plot]. We have also carried out similar TDHF calculations
with the use of the SkI3 and SkM∗ interactions. The results
are similar to those shown above for the SLy6 interaction,
which implies that the properties of the precession motion are
robust and depend on the choice of the Skyrme interaction
only weakly.

To evaluate the moment of inertia for the rotation about
a perpendicular axis, we take the average of the two periods
starting from t = 0 during which the precession motion is
especially stable. The results are tabulated in the third column
of Table II. Using these values, we calculate the frequency of
the precession motion by ωprec = 2π/Tprec and the moment of
inertia for the rotation about a perpendicular axis by T TDHF

⊥ =
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FIG. 13. Time evolution of the precession motion for the torus
isomers of 52Fe. All symbols are the same as Fig. 9.

I/ωprec. The results are tabulated in the forth and fifth columns
of Table II. The obtained moments of inertia are very close to
the rigid-body values tabulated in Table I for all the Skyrme
interactions employed. As discussed in Ref. [2], these results
indicate that the precession motions under consideration are
pure collective motions generated by coherent superpositions
of many 1p-1h excitations across the sloping Fermi surface.

IV. DISCUSSION

A. Radial density distributions of individual
single-particle states

Let us examine the radial density distributions of individual
single-particle wave functions on the z = 0 plane for the torus
isomer of 40Ca. For this purpose, we interpolate the density dis-
tributions described with a Cartesian coordinate in the cranked
HF calculations by means of a third-order B-spline function.
After that, we transform those to a cylindrical coordinate
representation [ρi(x,y) → ρi(r,ϕ)]. We then integrate ρi(r,ϕ)
in the ϕ direction and obtain ρi(r). The calculated results are
plotted in the upper panel of Fig. 14.

As shown in Refs. [1,2], the RDHO model can describe well
the microscopic structures of torus isomers. To illustrate this,
we solve the Schrödinger equation with the RDHO potential,
Eq. (1), by means of the deformed harmonic-oscillator basis

TABLE II. Results of the TDHF calculation for the precession
motions of the torus isomers from 36Ar to 52Fe. The symbol I

denotes the resulting total angular momentum after an impulsive
force is provided. The symbol Tprec denotes the average over the
two periods from t = 0 for the precession motion. The symbol ωprec

denotes the precession frequency estimated by ωprec = 2π/Tprec. The
symbol T TDHF

⊥ denotes the moment of inertia for the rotation about
a perpendicular axis estimated by T TDHF

⊥ = I/ωprec.

System I Tprec ωprec T TDHF
⊥

(�) (MeV/�) (MeV) (�2/MeV)

(SLy6)
36Ar 37 450.1 2.75 13.5
40Ca 61 402.5 3.08 19.8
44Ti 45 651.0 1.90 23.7
48Cr 73 554.5 2.24 32.6
52Fe 53 872.8 1.42 37.3

(SkI3)
36Ar 37 427.9 2.90 12.8
40Ca 61 378.6 3.28 18.6
44Ti 45 624.4 1.99 22.7
48Cr 73 524.5 2.36 30.9
52Fe 53 839.0 1.48 35.9

(SkM∗)
36Ar 37 464.2 2.67 13.9
40Ca 61 418.2 2.96 20.6
44Ti 45 666.1 1.86 24.2
48Cr 73 572.8 2.16 33.7
52Fe 53 894.8 1.39 38.3

expansion and calculate ρi(r). In the calculation, we take
R0 = 6.07 fm and d = 1.61 fm for the RDHO model and
the same aligned single-particle configuration as that obtained
by the cranked HF calculation for 40Ca. The obtained radial
density distributions of the individual single-particle states are
plotted in the lower panel of Fig. 14. Using these density
distributions, we calculate the rigid-body moments of inertia
about a perpendicular axis and the symmetry axis: they
are T RDHO

⊥ = 21.3 �
2/MeV and T RDHO

‖ = 40.2 �
2/MeV,

respectively. These values are in good agreement with those
obtained by the cranked HF calculation.

In Fig. 14, it is clearly seen that the radial density
distributions of the individual single-particle states in the
RDHO model are quite similar to those obtained by the
cranked HF calculations. In particular, the peak positions of
each radial density distribution are in good agreement between
the two calculations. As a matter of fact, the peak position of
each density distribution shifts to a larger r with increasing
orbital angular momentum. Looking into details of the density
distributions obtained by the cranked HF calculations, one may
notice that some radial density distributions with high angular
momentum slightly shift due to the spin-orbit potential. In
Fig. 4, the degeneracy of single-particle energies with the same
high � is indeed slightly broken for the spin-orbit partner with
�π = 9/2− and 11/2− (� = 5) and that with �π = 11/2+
and 13/2+ (� = 6). These spin-orbit effects are absent in the
RDHO model.
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FIG. 14. Radial density distributions of individual single-particle
states on the z = 0 plane for 40Ca obtained by the cranked HF
calculations (upper panel) and the RDHO model (lower pannel). The
densities for the φ direction in cylindrical coordinates are integrated.

B. Shell structure of torus nucleus

Using the RDHO model, we next investigate shell structures
of a torus isomer and examine how single-particle config-
urations change from spherical to torus shapes. Figure 15
shows a Nilsson diagram versus the parameter η = R0/d for
40Ca. At η = 0, the nuclear shape is spherical. At η = 4, a
torus shape is well developed, which is a size similar to that
obtained by the cranked HF calculations. Note that we take into
account volume conservation inside an equipotential surface
of a torus isomer (see Ref. [12] and the Appendix for the
volume conservation in 0 � η � 1). To eliminate the volume
effect, we plot the single-particle energies in unit of �ω0(η). In
this figure, we slightly shift the single-particle energies with
higher � in order to illustrate the degeneracy of the states.

In Fig. 15, we see the spherical major shell with E =
�ω0(Nsh + 3/2) at η = 0, where Nsh denotes the total number
of oscillator quanta. With increasing η, the single-particle
energies with � = 1/2 approach the asymptotic value given
by E = �ω0(N ′

sh + 1), where N ′
sh = nr + nz, nz and nr denote

the quantum number for oscillations in the z and the radial
directions, respectively. The energies of other single-particle
states with larger � in the same Nsh shell steeply decrease
as a function of η. At η = 4, the tenth and 11th (from the
bottom) single-particle states with �p = 11/2− and 13/2−
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FIG. 15. Nilsson diagram versus η = R0/d of the RDHO model
for 40Ca. The solid and dashed lines denote the single-particle states
with positive and negative parities, respectively. The single-particle
energies are plotted in units of �ω0(η). To illustrate the degeneracy
of the levels, the single-particle energies with higher � are slightly
shifted.

(� = 6) become lower than the 14th level with N ′
sh = 1 (the

1�ω0 state). These two single-particle states originate from
those with a spherical harmonic-oscillator quantum number of
Nsh = 5 (the 5�ω0 state).

It is easy to understand these behaviors. As Wong showed
in Ref. [12], the single-particle energies for large R0 are
approximately given by E ∼ �ω0(N ′

sh + 1) + �
2�2/2mR2

0.
Thus, the single-particle energies belonging to the same N ′

sh
shell are proportional to �2 at lager R0.

Figure 16 shows the single-particle energies in the RDHO
model versus � from η = 0 to 4. At η = 0 [Fig. 16(a)], the
familiar shell structure of the spherical harmonic-oscillator is
seen. With increasing η [Figs. 16(b)–16(d)], single-particle
energies with high � rapidly decrease. Then, the single-
particle energies start to form parabolic structures. At η = 4
[Fig. 16(e)], two important properties emerge: (i) the curvature
of the parabolic structure becomes large, and (ii) the single-
particle energies within the same N ′

sh shell are proportional to
�2. These two properties play an essential role in stabilizing
the torus isomers when single particles are aligned in the
direction of the symmetry axis.

It is surprising that the single-particle shell structure of the
RDHO model at η = 4 is very similar to that of Fig. 5 obtained
by the cranked HF calculation. The RDHO model is therefore a
good approximation for describing the microscopic structures
of the torus isomers.
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single-particle states with positive and negative parities, respectively.

C. Emergence of the torus shape beyond the
limit of oblate deformation

Lastly, let us discuss the reason why the torus nucleus
emerges beyond the limit of large oblate deformation. In the
spherical harmonic-oscillator potential, the radial wave func-
tion of the lowest single-particle state is given by a Gaussian
function peaked at the center (the 0s state): accordingly, the
central part of the total density distribution is quite stable.
Then, a question arises why such a stable and robust wave
function vanishes and how the torus shape emerges.

To investigate why the 0s state disappears, we calculate the
single-particle energies for the deformed harmonic-oscillator
potential as a function of oblate deformation. Figure 17
shows the obtained Nilsson diagram versus the aspect ratio
of the short (the z direction) to the long (the radial direction)
axes for an ellipsoidal nuclear surface (oblate deformation).
The aspect ratio 1 : 1 corresponds to the spherical shape.
The aspect ratio 1 : 5 corresponds to an oblate shape with the
same aspect ratio as that of the torus isomer of 40Ca
obtained by the cranked HF calculation. The single-particle
energies are plotted in unit of �ω0(ε), where ω0(ε) denotes
the frequency of the harmonic-oscillator potential depending
on the Nilsson perturbed-spheroid parameter ε to describe
ellipsoidal nuclear shapes. In ω0(ε), the volume conservation
inside an equipotential surface is taken into account [21]. In
the figure, we see that some single-particle energies associated
with high Nsh spherical major shells rapidly decrease with
increasing oblate deformation. At the aspect ratio 1 : 5, the
last occupied state for 40Ca (N = 20) originates from that with
a spherical harmonic-oscillator quantum number of Nsh = 3
(the 3�ω0 state).

In Fig. 18, the single-particle energies are plotted versus �
at each aspect ratio. We see that the shell gaps of the single-
particle energies decrease with increasing oblate deformation.
However, the basic pattern of deformed shell structure does

not change, in contrast to that of the RDHO model shown
in Fig. 16. In Fig. 18(e), the dashed line denotes the Fermi
level for N = 20 at ω = 0. The neutron density distribution,
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ρ(r,z), for the occupied configuration is shown in Fig. 19(a).
The densities in the ϕ direction are integrated. Two prominent
peaks are seen in the density distribution. We next consider
an aligned single-particle configuration at ω = 1.6 MeV/�.
This ω corresponds to a value for the torus isomer of 40Ca.
The occupied states at this ω are shown by the gray area
in Fig. 18(e). By the alignments, totally five single-particle
states with 11/2−[505] and 9/2−[505] (� = 5), 9/2+[404]
and 7/2+[404] (� = 4), and 5/2+[402] (� = 2) are occupied
(the asymptotic Nilsson label �π [Nnz�] is used here). On
the other hand, the single particle states with −7/2−[303] and

–5  0  5

z (fm)

–10

–5

 0

 5

 10

r 
(f

m
)

(a)

–5  0  5

z (fm)

(b)

FIG. 19. (Color online) (a) Density distributions of neutrons in
40Ca calculated for the deformed harmonic-oscillator model at an
oblate deformation of the aspect ratio 1 : 5 with ω = 0. The contours
correspond to multiple steps of 0.05 fm−2. The densities for the φ

direction in the cylindrical coordinate are integrated. (b) The same as
(a) but with ω =1.6 MeV/�. The colors are normalized by the largest
density of (a).

−5/2−[303] (� = 3), −5/2+[202] (� = 2), and −3/2−[301]
and −1/2−[301] (� = 1) become unoccupied. Summing
up the aligned single-particle angular momenta, we obtain
the neutron contribution to the z component of the total
angular momentum Jz = 31�. Taking into account the proton
contribution as well, we finally obtain the total angular
momentum Jz = 62 � for this oblate configuration, which is
close to that of the torus isomer for 40Ca obtained by the
cranked HF calculation. The neutron density distribution at
ω = 1.6 MeV/� is shown in Fig. 19(b). The two peaks seen
in Fig. 19(a) vanish and densities in the central region become
flat and stretch to radial direction, as the single-particle states
with high � are occupied.

Figure 20 shows the density distributions of individual
single-particle states of special interest at aspect ratio 1 : 5.
The densities for the ϕ direction in the cylindrical coordinate
are integrated. The dashed line shows the density distribution
of the lowest � = 0 state. On the other hand, the solid lines
depict those of the aligned � = 2, 4, and 5 states mentioned
above that are occupied at ω = 1.6 MeV/�. The single-particle
density distributions of these aligned states peak around r =
6 fm. Apparently, the overlap between the aligned nucleons and
the nucleons in the lowest � = 0 state is very small. Namely,
the lowest � = 0 state largely containing the spherical 0s
component is rather isolated from the others. To gain the
attractive interactions between nucleons, the total system tends
to maximize the overlaps between the density distributions
of individual single particles. Thus, it would be energetically
favorable to concentrate the densities of individual nucleons
around r = 6 fm. In this way, the nucleus with extremely large
oblate deformation may start to generate the torus shape. This
seems to be the basic reason why a large ‘hole’ is created in
the central region of the nucleus by eliminating the spherical
0s wave function.
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FIG. 20. Density distributions of the single-particle states of
special interest for 40Ca on the z = 0 plane in an oblate deformation of
the aspect ratio 1 : 5 calculated with the deformed harmonic-oscillator
model. The densities in the φ direction in the cylindrical coordinate
are integrated. The solid lines show the density distributions of the
aligned single-particle states with � = 2, 4, and 5 that are occupied
at ω = 1.6 MeV/�. The dashed line shows the density distribution of
the lowest � = 0 state.

V. SUMMARY

We have systematically investigated the existence of high-
spin torus isomers for a series of N = Z even-even nuclei
from 28Si to 56Ni using the cranked HF method. We found
the stable torus isomers from 36Ar to 52Fe for all the Skyrme
interactions used in this study. In the obtained torus isomers,
the z components of the total angular momentum are Jz = 36�

for 36Ar, 60� for 40Ca, 44� for 44Ti, 72� for 48Cr, and 52� for
52Fe. We fitted the density distribution of each of the obtained
torus isomers with the Gaussian function. We also analyzed
the microscopic structure of the obtained torus isomers by
plotting the single-particle energies versus � and using the
concept of sloping Fermi surface. We determined the regions
of ω for which the obtained torus isomers can stably exist
in each Skyrme interaction. The dependence of the obtained
results on the Skyrme interactions employed is found to be
weak.

We have also performed TDHF calculations to explore
the properties of the precession motion rotating with angular

momentum I = K + 1, which is built on each of the obtained
torus isomer with I = K . For all the obtained torus isomers,
the precession motion emerges and the symmetry axis rotates
about the precession axis for at least two periods. It was
found that the precession motion of the 60� isomer in 40Ca
is especially robust and stably rotates for many periods, We
obtained similar results for all the Skyrme interactions used,
We also estimated the moment of inertia for the rotation about
a perpendicular axis from the calculated rotational periods of
the precession motion. The obtained moments of inertia are
close to the rigid-body values for all the obtained torus isomers.

We have discussed the radial density distribution of each
single-particle wave function in the high-spin torus isomer
of 40Ca. We showed that the density distributions are well
approximated by those of the RDHO model. We then discussed
how the shell structure develops from spherical to torus shapes.
There are two important mechanisms for stabilizing torus
isomers: (i) the development of the major shells consisting
of single-particle states whose energies are given by E =
(N ′

sh + 1) + �
2�2/2mR2

0, where N ′
sh = nr + nz and � is the z

component of orbital angular momentum. (ii) a large value of
R0 that reduces the energies of high � single-particle states.
We finally discussed why the 0s components of all the single-
particle wave functions vanish and generate a torus shape.
We showed that in an aligned single-particle configuration
with extremely large oblate deformation, the overlaps between
the density distributions of the lowest � = 0 single-particle
state and the aligned high-� single-particle states become
very small due to the strong centrifugal force. To gain the
attractive interaction energy as much as possible, nucleons tend
to maximize the overlaps of their wave functions. An optimal
configuration beyond the limit of large oblate deformation
is the one creating the localization of single-particle density
distributions around a torus ring. This seems to be a basic
mechanism of the emergence of high-spin torus isomers.
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APPENDIX: PARAMETERS AND VOLUME CONSERVATION IN THE RDHO MODEL

In the RDHO model, we take the oscillator frequency, ω0, to conserve the inner volume of an equipotential energy surface. It
is given by

(
ω0
◦
ω0

)3

=
{(

1 + η2

2

)√
1 − η2 + 3

4πη
(
1 + 2

π
arctan η√

1−η2

)
(0 � η < 1)

3
2πη (η � 1),

(A1)

where η = R0/d and
◦
ω0 denotes the oscillator frequency in the spherical limit. Here, we take �

◦
ω0= 41A−1/3ρtorus/ρgr MeV,

where A is the number of nucleons, and ρtorus and ρgr denote the average densities of a torus isomer and the ground state,
respectively [11]. In the calculations, we use ρtorus = (2/3)ρgr.
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