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Various electromagnetic properties of the anomalous coupling states (ACS) with spin [ =j — 1
are shown to be well explained by a new point of view on structure of the ACS. In the new point of
view, the ACS are considered as the dressed three-quasiparticle modes which are regarded as a kind
of elementary excitation modes in odd mass nuclei.

§1. The anomalous coupling states (ACS) with spin I = j — | have been known as the typical
phenomena in which the conventional phonon-quasiparticle-coupling theory® is in complete
breakdown.

The importance of unharmonic effects or deviations from the random phase approxima-
tion (RPA) have already become clear in even-even nuclei. It suggests to us the existence
of some hidden correlations in the “‘unharmonic effects,” which may be difficult to take into
account properly within the “phonon space.” 1In clarifing the hidden correlations and to establish
a new microscopic model, the importance of an odd-mass system has come to be recognized,
since the existence of the odd-quasiparticle may reveal the hidden correlations in a clear way
through their interplay with “phonons.”

In recent years, a number of new examples of the ACS with spin 9/2~ have also been
found in Cd, Te and Xe isotopes close in energy to the single-quasiparticle 11/27 state.
Furthermore, the measurement on the electromagnetic properties, such as B(E2), g, B(M1),
have been providing us important information, showing various aspects of the structure of
ACS.*™® The characteristics of the electromagnetic properties of the ACS with spin j — 1
may be summarized as follows;

1) Strongly enhanced E2-transitions between the (j — 1)-states and the j-states. The en-
hancements of the E2-transitions are comparable (or somewhat stronger) to those of phonon
transitions in neighbouring even-even nuclei.

2) The g-factors of the (j — 1)-states are nearly equal to (or slightly deviate from) those of
the single-quasiparticle states with spin ;. '

3) Moderately hindered M1-transitions between the (j — 1)-states and the j-states. In some
experiments, however, they are only weakly retarded.

Based on these characteristic experimental facts, we have proposed a new point of view
on the structure of ACS,'® where the main component of the ACS is regarded as the dressed
three-quasiparticle (3QP) modes which manifest themselves as relatively pure elementary
excitation modes. The concept of dressed n-quasiparticle modes and the theory of quasi-
particle-new-Tamm-Dancoff (NTD)-space spanned by these elementary excitation modes
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has been developed by the present authors and by Kanesaki, Sakata and Takada.'®!Y The
quasiparticle-NTD space is constructed in a complete one-to-one correspondence with the
quasiparticle-Tamm-Dancoff (TD)-space and, therefore, the introduced new collective modes
(dressed 3QP modes) are reduced to the Tamm-Dancoff 3QP states in the limit of neglect
of the ground-state correlations. Thus, the strongly enhanced E2-transitions which char-
acterize the collective nature of ACS can be naturally explained, contrary to the Kisslinger’s
(Tamm-Dancoff) 3QP “intruder” states.'?’ In the proposed point of view, the significance
of the ACS with spin j — | in spherical odd-mass nuclei may be compared with that of phonon
states with J® = 2% in even-even nuclei, in the sense that they are both the typical phenomena
of the collective excitation modes. The well-known phonon modes are, in our classification,
“dressed 2QP modes” which are described by the conventional 2QP-NTD method (RPA)
and the “‘dressed 3QP modes’ are nothing but the ACS under consideration.

Under the special physical condition of shell structure for the appearance of ACS, the
creation operators of the physical dressed 3QP modes are constructed in terms of quasiparticle
creation and annihilation operators as'®

Y1 = 757 5 WAm00) T 3a(n00) + 0i(rp0): Ty 150}

npo
1 . s
+ \751:; {Yr(npy)alalal + oi(npy)ala,a,}, M

with the condition

Y. Yi(nfo) = Y ol(nfo) = 0. )

4

Here Greek letters (n, p, o) are used to specify the single-particle states in the large-spin,
opposite parity level (such as g4, and hy;,,) and Greek letters (a, §, y) denote the other states
(for both protons and neutrons). It should be noticed that the lowering of (j — 1)-states occurs
in odd-mass nuclei in the region of spherical to transitional, when a level of large spin j with
unique parity in the major shell is being filled. In eq. (1), the operators T’ /250(tpa) are the
quasi-spin tensors of rank 3/2 composed of quasi-particle trilinear products:

T3/ 3)2(mpo) = ala,tal >

1 (3)
T3, 12(npo) = \/; {ala,a, + d.ala, + a,d,al}.

The eigenmode operators Y1 thus constructed transfer the seniority Av = 3 to the correlated
ground state |0) and create the dressed 3QP states |n). Under the basic approximation of the
NTD method, it can be shown that the eigenmode operators Y| satisfy the quasi-Fermion
approximation,

<0| {Yn” YI}+|O> = 5rm' . (4)

The equations of motion for the dressed 3QP modes were solved with the use of the pairing-
plus-quadrupole (P + QQ) force in ref. 10). The excitation-energy systematics of the ACS,
which have some similarity with those of 2* phonon states in the sequence of even-even
isotopes, were reproduced very well in the numerical calculations.
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§2. Now, let us discuss how to calculate the electromagnetic quantities in the framework
of the proposed theory and whether the characteristics of the electromagnetic properties of
the ACS mentioned before are explained consistently by the proposed point of view or not.
Since the essence of our theory is to treat the (odd-mass nuclear) system within the “quasi-
particle-NTD-subspace” (which is formed with orthogonal basis vectors consisting of the
correlated ground state |0), the 1QP states |«) = al|0) and the dressed 3QP states [n) =
Y1]0>.), we must transcribe any physical operator o) 1. (Where A means the rank of tensor) into
the “quasiparticle-NTD-subspace.” The transcription can be done unambiguously,'? the
result of which is

6)./.1 = Oi.p = Z <a101nla/>alaa’ + Z, <nlolulnl>YIYn'
+ Y. (a0, ln) - (alY, + Y la). )

The matrix elements of eq. (5) are evaluated by using the quasi-Fermion approximation

4;
(@l0y,la"y = (0l{a,, [0;,, al]-}+10),
(alO,n)y = {n|0,,le)
= (0{a,, [04,> Y11-}+10) (6)
= (Ol{Y,, [0}, al]-}+10),
nlOyln"y = O{Y,, [05,, Y11-3410).
In the same way, our original Hamiltonian H is expressed, after the transcription, as

H =Y Edla, + Y 0,Y}Y, + ¥ 7,(Yla, + al¥)). @)
The third term of the effective Hamiltonian H represents the interaction between the different
modes of elementary excitations, and comes from the Hy-type (original) interactions which
have not played any role in constructing the elementary excitation modes, contrary to the
Hy- and H,-type (original) interactions (Fig. 1). As long as the ACS with spin j — 1 are re-
garded as relatively pure dressed 3QP modes, the third term can safely be dropped. In other
words, the special condition to attenuate the effects of the third term is nothing but the condi-
tion to guarantee the appearance of the ACS in their most simple and pure form. We show
at the first, therefore, the results on the E2-transitions and the magnetic moments of the ACS
in the first-step approximation (by neglecting the third term), with the use of the P + QQ force.
The effects of the third term (i.e., the interplay of the dressed 3QP modes and the 1QP modes)
will be discussed later in connection with the M1-transitions.

§3. The B(E2) from the ACS with spin [ to the 1QP state with spin j is given by

e QUINTH ) + [0.0%)]
2

+ bZ e.0(bc){Yu(p; be) + ¢,(p; bo)} (8)
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Fig. 1. Graphic representation of the matrix elements of the interaction.
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(first step approximation )
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Fig. 2. Graphic representation of our basic states and their electromagnetic properties.

where

O(be) = j=<b||r Yyled - (uppe + o4,

_ 2l 20
=1+ 10{}.12} 5j1’('2].)2—_—1.

In eq. (8), the 3QP-correlation amplitudes, ¥,(p®), V.(p; bc) . . . etc, are related with those
defined in eq. (1), through

O
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Ua(mpo) = % YA} DIMm K jjmam,| IM,

J =even
lpn(nﬂ’))) = lpn(p; bc)<2.]Mm1tlIK><]chmﬂmy|2M>a
V(P QYPD = T3 4(P?), . . . ete. ®

It is interesting to note that, in the P + QQ force, the final results can be expressed in terms
of only the special amplitudes with intermediate angular momentum J = 2. It is also noted
that formally eq. (8) has the similar structure as the corresponding equation obtained by the
conventional RPA in even-even nuclei, in spite of the essential difference due to the incorpora-
tion of the 3QP correlations. For the E2-transition from the excited ACS to the 1QP states,
we therefore expect the well-known enhancement associated with the structure of eq. (8).
In particular, we have the usual relation: the lower the excitation energy of the ACS, the larger
the B(E2) values. Such an enhancement, caused by the collective ground-state correlations due
to the QQ-force is a direct and natural consequence of the present theory.

With the use of egs. (5) and (6), the magnetic moments of the ACS with spin 7 is given by

w=g, 1, , (10)
with
g = g0 + I1 + 1)21-|(-le$ 1) — 6 g(h
I0+D+6-jG+1. an
2 + 1)
The partial g-factors in this equation are
gy” = g, {Wi(p®) — 03P}, (12)
95" = g, L (p; b0)* ~ ¢ulp; b0)’} (13)
and
0. =[5 Z<blkle) - G + 30 {J"; P ’;}
X [Wu(p; ca)(p; ab) — ¢,(p; ca)p,(p; ab)), (14)

respectively. Here g, means the g-factor of a single-particle in the high spin, unique parity
level j. The meaning of each term in eq. (11) is clear. The first term, g, comes from the
quasiparticles in the unique parity level j. If we restrict ourselves only within the unique
parity level j, which is being filled, g{” becomes equal to g, (because in this case y2(p®) —
¢2(p*) = 1). The second and third terms are of the same form as in the Lande-formula; the
second term comes from the odd-quasiparticle in the level j and the third term comes from
the quasi-particles in the core, respectively. It is important to notice that the contributions
from the quasi-particles in the core, (the amplitude of which is represented by V,(p; ab) and
@.(p; ab)), are accompanied with the kinematical factor, which becomes small especially
for I = j — 1. This means that, in some situations, the quasiparticles in the core give rise to
only small effects to the total g-factor and the magnetic moments of the ACS are determined
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mainly by the quasi-particles in the unique parity level j. Therefore, the observed value of g,
nearly equal to g does not necessarily mean the simple (j");-configuration. Even if the wave
functions under consideration be far from those of simple (j");-configurations, the magnetic
moments give us nearly the same values in experiments.

In the first-order approximation with the P + QQ force, in which the ACS with 7 =
j — 1 are regarded as relatively pure dressed 3QP modes, the M1-transition between the ACS
and the 1QP states with spin j is forbidden, as is easily seen by our construction of the eigen-
mode operator (1) with correlation amplitudes (9):

BMI1;I—j)=0. (15)

The attenuation of the MI-transitions is indeed observed in experiments® and is a sensitive
criterion for the purity of the ACS as the dressed 3QP states. In some experiments, however,
it is only weakly retarded.* In order to explain the small M1-transitions, therefore, we must
consider the coupling effects of the dressed 3QP modes with 1QP modes.'?’ The interplay
of the dressed 3QP modes with the 1QP modes is originated from the third term of the effective
Hamiltonian (7) in the quasiparticle-NTD-space under consideration. In the P + QQ force
model, the coupling strength ¥, is given as follows;

_ 1 ,
S \/ 5T KNP Yalp) ity = 0,0,)65,1

X [Q(ppwa{wf) -+ \/ % %(ﬁ)}
+ 3 06OWA(p: bO) + 045 bc)}}, (16)

where y is the (original) strength of the quadrupole-force. The characteristic of the coupling
term is its inclusion of the (u,u, — v,v,)-factor, which comes from the (original) Hy-type
interaction. In the special physical situations in which high-spin, unique parity level j, is
half-filled, we have

utl —12~0 (forp’ =p).

p P~
Furthermore, since a single-particle level p’ (which has the same parity with the level p) with
spin.j,» = I = j, does not exist in the same major shell and is lying in the next upper major
shell, the coupling effect is expected to be rather small.

Including the coupling effects, we obtain an expression for the MI-transition under

consideration:
BMI1;1I-j) = 3
4n

I e <PIRIP Yq.p. + 24N Deorr)?, (17)

where
PP Ygp. = LplIplp™ « (upu, + v,0,)

and <{n|p|n' )., is the reduced matrix element of <0|Y,uY].|0>. The first term of eq. (17)
represents the contribution due to the admixture of the 1QP modes with spin j, = j, — 1
(from the upper major shell) to the ACS with spin / = (j, — 1) and usually small. The second
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Table I. B(E2) values for the transition from the ACS to the 1QP states. The calculated values are
listed in unit of e x 10~5° cm* for polarization charge a = 0.5. '

a) ref. 2, b) ref. 3, c) ref. 4, d) ref. 9.

B(E2;9/2— — 11/27) B(E2; 72+ — 9/2%)
Nucleus Cal. Exp. Nucleus Cal. Exp.
13Cd 9.8 97Tc 8.3
125Te 10.5 { 9.32 99T¢ 12.0 23 4129
11.5 4+ 0.5® 13.5 £ 159

127Te 8.2 99Rh 9.4
129T¢e 6.2 101Rh 14.9
131Xe 15.3

85Sr 6.1

83Kr 13.0

Table II. Gyromagnetic ratio g; for the ACS with I = j — 1. The calculated values are listed in

unit of n.m. for effective spin g-factor g¢f* = 0.6 g,. For the values of g, the following experimental
values are directly adopted;

hi1/2-odd-neutron: g, = —0.19 (**3*Cd)
gg+/2 -odd-neutron: gp = —0.22 (33Kr)
g4), -odd-neutron: g, = 1.37 (°3*Nb)

a) ref. 5, b) ref. 6, ¢) ref. 7, d) ref. 8.

goi2- g2t

Nucleus Cal. Exp. Nucleus Cal. Exp.
113Cd —0.26 97Tc 1.41
125Te —0.21 —0.204 + 0.007 99T¢ 1.40

—0.202 £ 0.016™ 99Rh 1.39

—0.15 4+ 0.02® 101Rh 1.37
127Te —0.22
129Te —0.23 85Sr —0.24
131%e —0.22 83Kr —0.22 —0.268 4 0.001%

Table III.  B(M1) values for the transitions from the ACS to the 1QP states. The calculated values
are listed in unit of (n.m.)? for g = 0.6 g,.

a) ref. 2, b) ref. 3, ¢) ref. 4.

B(M1;9/2- — 11/27) BM1; 7/2%* —9/2%)
Nucleus Cal. Exp. Nucleus Cal. Exp.
H3Cd 0.16 97T¢ 0.038
125Te 0.0001 0.0053= ?°Tc 0.033 0.076 + 0.009*
0.0065 4 0.0003
9°Rh 0.0003
127Te 0.0026 101Rh 0.0011
129Te 0.014
131%e 0.026 85Sr 0.0025

83Kr 0.0080
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term comes from the admixture of the dressed 3QP mode with spin j, to the 1QP state with
spin j,. Because the second term contains the (12 — v2)-factor through the mixing amplitude
&,, the value depends quite sensitively on the single-particle energy adopted and can become
large as one moves away from the special physical situation (for the appearance of ACS)
mentioned before. :

In Tables I ~ 'III, the calculated values on B(E2), g-factors and B(M1) are compared with
experimental values in some examples. In this calculation, the same values of the pairing-
force strength and of the single-particle energies with Uher and Sorensen'*’ were used and
the quadrupole-force strength y was determined to reproduce the excitation energies of the
ACS with spin j — 1. It is seen that the essential character of the various electromagnetic
properties of the ACS has been explained in a unified way by the present theory, if not in fine
detail.
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Discussion

H. YamamURA (Kyoto Univ.): Usually the low lying states of spherical odd nuclei are
investigated in terms of the phonon-quasiparticle-coupling model given by Kisslinger and
Sorensen. But your description seems to be different from theirs. What is the essential differ-
ence? _

MaATtsuyaNAGI: This figure clearly shows the essential difference between our theory
and the Kisslinger-Sorensen theory. The lowering of energies of the / = j—1 states cannot
be explained by the Kisslinger-Sorensen theory, i.e. the conventional phonon-quasiparticle-
coupling theory completely breaks down in reproducing such low-lying anomalous coupling
states. However, we have obtained the result, shown in the figure, by using just the same
parameters as Kisslinger and Sorensen have used. The reason is that, in the conventional
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Calculated excitation energies of dressed three quasi-particle modes. Single quasi-particle energies
in orbit = are written by arrows. It should be noticed that all energies are measured from the ground
states of their modes. Thus the differences of these energies are those which correspond to the spectra
of odd-mass nuclei. The symbol ““ X > means that the calculated energy of (j — 1) state becomes smaller
than the single quasi-particle energy E.. In this case other angular momentum states are written by
broken lines. The nuclei whose (j — 1) states are found below j states are denoted by the asterisk*.

phonon-quasiparticle-coupling theory, elementary excitation modes of spherical odd-mass
nuclei are assumed to be one quasiparticle modes, one phonon modes, and two phonon modes,
etc. On the contrary, in our theory, the elementary excitation modes are considered as one
quasiparticle modes, the ‘dressed’ three quasiparticle modes and the ‘dressed’ five quasiparticle
modes, etc. In the conventional phonon-quasiparticle-coupling theory, the three quasiparticle
correlations based on the Pauli Principle between the odd quasiparticle and the quasiparticles
composing the phonon are completely neglected. Such effects are fully taken into account
in our theory. ~

A. ArRiMA (Stony Brook and Tokyo): I think that the main difference between your
theory and the Kisslinger-Sorensen theory is in the Pauli principle. In your method, I think,
the Pauli principle is correctly taken into account, but in the Kisslinger-Sorensen theory the

effect of the Pauli principle is ignored. That is a most important difference. Is this correct?
MATSUYANAGI: Yes.
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MICROSCOPIC STUDY OF BAND STRUCTURE IN "SPHERICAL" ODD-A NUCLEI

T, Suzuki, M. Fuyuki and K. Matsuyanagi+
Department of Physics, Kyoto University, 606 Kyoto, Japan

* The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

We investigate the band structure of transitional odd-A nuclei with A & 100 by
developing microscopic description of multi-phonon states.

By extending the microscopic descriptionl)

of multi-phonon states into odd-A
nuclei, we investigate the role of anharmonicity effects in characterizing the
band structure of "spherical" (transitional) odd-A nuclei. To precisely define
the multi-phonon states, we first decompose the quasi-particle state space into
pairing and intrinsic spaces according to the method proposed in Ref.z). The
intrinsic space is equivalent to the quasi-particle state space from which all
J = 0-coupled quasi-particle pairs are removed. We then introduce the multi-

rshouon states in the intrinsic space through the recursion relation

' nb)‘ﬂ P\ﬂ M"“> = :fl?’—._Z ( dn-’( i,\ -1 Rn—l)d “' dnj‘n'Rn)< Rn'an-izz[R"M">x;§ ‘Yl‘l, X""R""MM'>’( 1)

+ . . .
where )(22 is the collective Tamm-Dancoff-phonon operatcr and
-1
(d"(J;anq)d]§dn5;Rn) is the c.f.p. for quadrupole bosons. The basis states
for odd-A ruclei are written as ’

2. ReMy 3 TR > @, | o Ra Ma > (2)

The spurious components arizing from the nucleon-number non-conservation are
eliminated from the model space. The important correlations taken into account
in this model are the three-quasi-particle and four-quasi-~particle correlations;
the former results from the Pauli principle between the odd quasi-particle and
the 2+ phonon, and the latter between two phonons. They are simply related to
the C)~ and Pf factors defined by .

Con = ;Z@z.zzz|>\}u><223224l‘/\f*>

A <0 - o + +
(A=0,2.4) ,
= 2,22 mls <2 m | £6>
. +
« <0 Xyse [ Osm Xos ]Cﬂsm \6> (4)
(1j-2i=5372)

which are the measure of deviation of multi-phonon norm from the ideal boson
limit. Note that the multi-phonon states defined by (1) and (2) are not orthonor-

mal, because of the Pauli principle. It is knownl) that the present model re-

duces to the SU(6) boson model3), if Co = C2 = C4.

B

Numerical calculations have been performed for nuclei in the A & 100 region
with the use of pairing plus quadrupole force. The result of calculation shows
that the separation of J = 0-coupled quasi-particle pairs significantly affects
the norm matrix of multi-phonon states:




(1) The magnitude of C)‘—factors increases about 50%, and it makes the collective
phonon space cut off within a rather small number of phonons.

(2) The C,
ensures the orthogonality of multi-phonon states in even-even nuclei to be an

values become close to the C4 values, and the property CZ:; C4

excellent approximation.
(3) "The magnitude of Co values is in many nuclei about twice as large as that
of C2 and C, values, which implies the significant deviation from the SU(6)
symmetry. .

By only taking up the phonon-number conserving part in the Hamiltonian, we
can see the effect of Pauli principle between two phonons (the -four quasi-particle
correlation) on the band structure: The energy spacings of the yrast states in

4

even-even nuclei increase with increasing phonon number and the B(E2) values de-
crease in high-spin states. In odd-A nuclei, the three-quasi-particle correlation
is found to favour the decoupled band-like level ordering of the unique-parity
states with maximum spin alignment I = j + Rn and with I = j + Rn—l. The charac-
teristic selectjon rule of E2 transitions (strong AI = 2 transitions and weak

Al = 1 transitions) results from the geometry of the weak coupling-type basis
states.

When the full Hamiltonian is diagonalized in the model space under considera-
tion, the final spectra are characterized by the competition of two kinds of an-
harmonicity effects; i.e., the correlations resulting from the Pauli principle
and the effect of phonon-number mixing term. In the situation where the three-
quasi-particle correlation is negligible, the level orderings of the yrast states
in odd-A nuclei are determined as usual by the sign of the product of guadiupcle

4>’5). Our calculated result for

5)

moments of the core and the odd quasi-particle

l07Cd being in such a situation agrees with that of D&nau and Hagemann

except
for level spacings. The calculated level spacings are too large compared to
their's and this point needs further investigation.

In the situation where the chemical potential becomes close to the unique-
parity orbit as in Ge isotopes, the band structure is not determined uniquely by
the sign of the product of the quadrupole moments. It becomes indispensable to
inlcude the effect of three-quasi-particle correlation. Thus we conclude Ehat the
proper consideration of both effects is essential to understand the band structure
of "spherical" odd-A nuclei.
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A MODE-MODE COUPLING THEORY OF NUCLEAR ANHARMONICITIES

Kenichi Matsuyanagi

Department of Physics, Kyoto University, Kyoto 606, Japan

We discuss microscopic structure of nuclear anharmonicities by means of a generalized

version of the Marumori boson method.

We then develop a mode-mode coupling theory

capable for treating the dynamical competitions between the pairing and quadrupole

modes of collective excitation.

1. INTRODUCTION

In the first half of this lecture, we review
the boson expansion method of Marumori type.!)
The formulation we are going to present is
slightly different from the original version of
Marumori and Yamamura.?)-*) However, we believe
that the new version is not only faithful to the
original idea of the boson expansion method, but
also suitable for illustrating the flexibility of
the method. In particular, we intend:

1)  to show a typical example how to construct
the collective subspace in the fermion space, to
which the boson expansion is applied.

2)  to make clear the similarity between the
basic idea of the Marumori boson method and that
of the Nuclear Field Theory (NFT)®) developed in
Copenhagen,

The importance of formulating the Marumori
expansion from the outset in a certain (truncat-
ed) subspace in the fermion space has been recog-
nized by Kleber,®) Li, Dreizler and Klein,’) and
Lie and Holzwarth:®) It has been emphasized that
the fast convergence of the boson expansion is
achieved if and only if it is formulated from
the very beginning in terms of the collective
subspace. This new version has been called
"modified Marumori method".

The relation between the boson expansion
method and the NFT has not been discussed very
much. This is mainly due to a technical reason;
namely, the perturbative diagram method used in
the NFT is certainly different from the method
of boson expansion. However, we would like to
emphasize that the basic ideas are very similar
to each other: In both approaches, we enlarge
the fermion space into a direct product space
consisting of both fermion and boson degrees of
freedom:

{|fermion >} > {fermion > ® |boson)}.

The introduction of (redundant) boson degrees of

freedom inevitably brings about the overcomplete-
ness in the degrees of freedom and the violation

of the Pauli principle. Therefore, it is a cen-

tral problem to find the auxiliary conditions

(constraints) which guarantee the one-to-one
correspondence between the state vectors in the
original fermion space and those in the direct
product space. In the NFT, certain rules in
evaluating the Feynman diagrams in the product
space (which guarantee the correspondence men-
tioned above) have been formulated.®) In the
boson expansion method, we shall derive in this
lecture an example which illustrates the auxil-
jary condition.

In the latter half of this lecture, we shall
discuss anharmonicity effects associated with
Tow-frequency quadrupole modes. There, special
emphasis will be put on the dynamical competition
between the pairing and quadrupole modes of exci-
tation. We believe that microscopic analysis of
this mode-mode coupling is of crucial importance
to understand the band structure in transitional
nuclei. In accord with this aim, we shall from
the beginning illustrate the boson expansion
method largely in a simple model system directly
connected with the pairing plus quadrupole-quad-
rupole (P+QQ) force mode].gg

2. MAPPING OF FERMION SPACE INTO BOSON SPACE
— AN ILLUSTRATION

2.1 States with Seniority Zero

Let us consider even number of nucleons con-
fined in a single j-shell (with large j), and
suppose that these nucleons interact with mono-
pole-pairing force:

Hp = -GRA'A, v @ = j+1/2, (2.1)

+ 1 + 4
A =78 wdo CinCin
1 . + +
=5t <JmJ-m|00>cjmcj_m . (2.2)
Here C;m is the nucleon-creation operator in a
shell-model state jm, while c}m denotes the time-
reverse of c}m, i.e., (-l)J'mcg_m. The quantity
1, the reciprocal of which will play a role of

small parameter below, represents the maximum
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number of nucleon pairs A+ which the j-shell
admits.

It is easily found that the following states
are eigenstates of HP:

> = 2 L) o, (00, 1, ..., ®) (2.3)

AlO> = 0 . (2.4)

These are the states called seniority zero, i.e.,
the states in which all nucleons are paired.
Here, kp is the normalization constant defined
by kn=<0|(A)™A*)N|0>/n!, n is the half of the
nucleon number N, and [0> the nucleon vacuum.

Let us see how this pairing-force problem
is transcribed into a boson picture. According
to the boson expansion methgd, we first introduce
monopole boson operators (b", b) which are inde-
pendent of the nucleon operators (c*, c)

b, cl=1[b, ¢'1=0 , (2.5)
and imagine the many-boson states
1 +.n
In) = s&¢ (b)7]0) , blO) =0 . (2.6)

We then construct a direct product space of
nucleons and bosons

{[n>@ |n') ; . T } o (2.7)

The nucleon state space is finite because of the
Pauli principle. On the other hand, the boson
space is infinite since there is nothing to pre-
vent operating again and again on a state with a
boson creation operator.

The basic idea of the boson expansion method
is to perform a mapping of the nucleon states |n>
into the boson states ?n) in such a way that the
following one-to-one correspondence holds:

[n>@ |0) «—— 0> [n),

n=0,1, ..., 0. (2.8)
The operator which performs the mapping is found
to be :

Q
Lo Im (0] © [o<]

1 =172 1 4ayn
I (b -7 K12 (') 1, (2.9)

U

where Ir and Ig are the vacuum projectors for
nucleons and bosons, respectively:

1; = lo> <ol , 1; = |o)(ol (2.10)
Obviously, the following properties hold:
Uln>® |0) = [0>® [n) , (2.11)
+
Uu =1p ,» (2.12)
+ Q
W =IgP, P = %y In)(n] (2.13)

The subspace (in the boson space) projected by P
has been called "physical subspace".

+ By the operator U,

;he nucleon-pair operator
A" is transformed into A

zUATU*:

P Q . +yii+] byn

AT B =1 gy <ot é%ﬁ%TTF 10)(0] (n?),
' (214

From the completeness relation in the boson space,

<

0)(0] + 2y A (69" [0)(0] ()" = 1, (2.15)

we obtain by iteration an explicit expression for
the boson-vacuum projector:

§ (-1) Lk, ar
|0)(0| = réo T (b ) (b)
Inserting (2.16) into (2.14), we obtain
ot
Bt b7 - (1 - Ag)p’ '
(31 + ALY - AL b
-+...]
Let us note that the fermion-norm ratios
172 _ -1/2
(kn+1/kn) = (n+1)
appear in the coefficients of the boson expansion
above. For the pairing-force problem under con-
sideration, these quantities can be analytically

calculable as follows: We first use the property
A|0>=0 to obtain

(2.16)

(2.17)

a1 A’ 0> (2.18)

o1 =TT <OA"IA (AD™Hj0s L (2.19)

We then use the identity
(A, (A" = n(a")"! [a, A"
+ 5 n(n-1)(A"2[[A, &%), A%
+ ... . (2.20)

The right-hand side in fact terminates at the
second term, because the commutators higher than
double exactly vanish. This fact is easily seen
from the commutation relations

[A, AT7=1-1f/a ,
A + + ~ +
i, .zt
(R, AT =20" , f=Fcyey, - (2.21)

We thus obtain a recurrence relation for the
normalization constant kp:

_ n
knep = (1 - ) K, (2.22)

Inserting (2.16), (2.18) and (2.22) intg (2.14),
we obtain an exact boson expansion of A™:

AT =1 I f (b)) (2.23)
with :
fo= gl el DAL )" (). 2.20)

The fact that this expansion rapidly converges
has been emphasized by Kleber.®)
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When the fermion-norm ratio is exactly
calculable, we can obtain another boson represen-
tation as follows: With the definition

1/2

g(n) = (ko/kp_1) , (2.25)
£q.(2.14) may be rewritten as
T'-Ian g(n) /a |n)(n-1]
=1 I |n) nlg(ﬁ)b (2.26)

+ A
= IF Pb g(n+1) s

where g(i) is the operator obta1ned from g{n)

through the replacement n~fA=b*b. From (2.22)
we see that g(n+l)=/1-n/Q Thus,

o+

A =1 P b* V1-b'b/0 (2.27)

This is noth1ng but the Holstein-Primakoff repre-
sentation.!®) Note, however, that the projector

into the physical subspace exp11c1tly appears in

this case.

2.2 States with Finite Seniority

A crucial condition in the above derivation
of the boson representation is the existence of
the vacuum > satisfying

vaac
Alwvac> =0

This condition means that there is no monopole
pair of nucleons in |¢yac>. In general, the
vacua for A may contain many unpaired nucleons.
The nucleon numbers of Yyac>», which we denote
by v, has been called'') seniority: Denoting
these special states as |vx>, we have

(2.28)

ﬁ|\)x> = vlv . (2.29)
Here xstands for a set of quantum numbers other
than v. For example,

+

|\)X> = cJ.m IO) R (\)=1)

‘ 1 L. + +
|\)X> = —ﬁm]zr:nz <Jm1Jm2|2u> ij]ij2|0> . (2.30)

(v=2)

From these special states, we can construct any
nucleon state with the same value of v:

- 1 +.n
v oo = kS (A" e . (2.31)
The normalization constants k,, are independent
of x, provided that the states |vx> are ortho-
normalized.
Similarly to the case of seniority zero,
let us consider the mapping

lvx > n>® [0) -+ |vw> @ |n). (2.32)
This is performed by the operator
u -2-3 In) (0| ® Llvx> <vx » n|
=1 {n 0 kg l/2 (b*a)n Mg, (2.33)

1, = §va><vx| (2.34)
which satisfies
+
uu, = IB s (2.35)
+ Q ]V
u,u, = I,P,, P, = nk 0 [n)(n| . (2.36)

We then obtain a recurrence relation for the norm:

- v n
R,nﬂ"ul'ﬁ)'ﬁ}%,n'

+
An exact boson expansion of A is thus found to
be o,

(2.37)

+.r+l
AT =1, 2 fy o 60" (2.38)
with in(r. 0
_ (_1 min(r, i-v 9 n r
for = __;{T Lo DI " () - (2.39)

Again, we can rewrite (2.38) into the Holstein-
Primakoff form:

[+]
A1 p bt /12t

Q' Q

Apparently, the boson representations (2.38) and
(2.40) are valid for both even and odd nucleon-
numbers.

(2.40)

2.3 Quasi-Spin

The appearance of the factor (1- v/Q) in
(2.40) is connected with the fact that the oper-
ators defined by

=/aA LS = A, S = %-(ﬁ-n) (2.m)

form an SU(2) algebra:

[S4s 5.0 =25, [5p 5.1 =15, . (2.42)
The eigenvg]ue for the states |vx> of the Casimir
operator $¢ is found through

S(S+1) |vx> = Szlvx>

={5,5 + §0( -1 v = 54(Sp-1) v .
(2.43)

We thus see that the factor (1-v/R) is related to
the eigenvalue of the Casimir operator S$=3{Q-v).
Because $5>0, the maximum value of v is . From
the quasi-spin point of view, the vacua |vx> are
nothing but the states with Sp=-S. The vacua and
the space spanned by them were named in Ref. 12)

“yntrinsic states" and "intrinsic space (in the
quasi-spin space)," respectively. From now on,
let us use these terms.

3. MAPPING OF FERMION SPACE INTO BOSON-FERMION
SPACE
3.1 Ideal Boson-Quasiparticle Space

We next consider a direct sum of the spaces
discussed in Sect. 2: Namely, we extend the map-
ping operator to

U= _ZyUy. (3.1)

Then we have
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TS A (3.2)

(3.3)

+
w'o=e , P = IR,

For this extended space, the boson representation
of (A*, A) becomes to

o +
A =pb M0-bb ,

(3.4)
ik = /hobbb P
with O defined by
Slve> = vive> , [9, b1=0 (3.5)

Accordingly, the pairing Hamiltonian (2.1) is
transformed as

Hp » -GAA=PXH,pP (3.6)

dp = -6(a+1)n + 6r% + Go-n (3.7)
In the same way, we find that

N > P (2+2b°D) (3.8)

By the extension of the space, we are now
able to map the single nucleon operators connect-
ing states with even and odd nucleon-numbers to
each other:

+

K. Matsuyanagi

and [ is the projector into the intrinsic space,

? = g z [vye<vy|
I=,% I\J = vk § VX><vy (3.12)
Eqs.(3.9) is readily obtainable by a very ele-
mentary calculation. We only mention that the
square-root operators @ and ¥ arize from the norm
ratios vkup/kvtp', which are calculable by means
of (2.37). The physical meaning of each term in
(3.9b) is shown in Fig. 1.

The operators (a*, a) defined by (3.11) ex-
actly transfer the seniority number by one unit,
and satisfy the following properties:

i) {ajps ajpdy =0, (3.13)

. + - 1

1) fajm agndy 5 a5 (3.142)
a _ +
0=k 8n Ajm

iii) g /2

+ +
{ajm, ajm.}+ =

(3.14b)

+ o+ +
m§0 ajm aiﬁ =JAI =0 (3.15)
In deriving Eqgs.(3.13)-(3.15), it may be helpful
to note that

JmI %
It should be emphasized here that the property
iii) is a direct consequence of the fact that the
monopole pairs are already bosonized. This is an
example exhibiting how the problem of redundancy
in the degrees of freedom is solved within the

+ _ +
Lein I =1 Cim ’ Ic n I (3.16)

Cfm -> E;m =P {ajm g+ aﬁﬁ} s (3.9a) framework of the boson expansion method.
J . + With the fermion-1ike operators (at, a) we
Cim > ij = {q ajy * A3 7P (3.9b) can now explicitly construct the intrinsic states
as + o+ +
Here fvx> = a;-a: ... a; 0> (3.17)
/b%b b LN
+ o
0= leeae , v=m (3.10) The transcribed nucleon operators (c , ¢) in
Q-V Q .
+ + (3.9) act on the extended direct product space
(ba+99=1) 1 , +n v=0, 1 Q
+ {7rTr (b7)" 10) ® |vx> ; n=0’ 1’ Tk (3.18)
an ~ I Cim I, i = 1 Cjm I, (3.11) : L +
Let us name the intrinsic operators (a , a)
) Dy "ideal quasiparticles" and call the
n=n V-1 n=n-I =¥+ extended space (3.18) "ideal boson-
—_— — i quasiparticle space“?a)
3.2 Body-Fixed Frame
" H 1 11 n 41 ™1 If we introduce a number-angle
representation for the monople boson
degree of freedom through
LA 1
....... x S . e®=b" =, A=b'b, (3.19)
[n, e'®)= '® , (3.20)
T 1 1 ™ i T 111 the state vectors in the ideal
boson-quasiparticle space may be
rewritten as
_— — ” ind 0 at_at ... al 0>,
n 1% n v e Ve Jmy Jma iy, |
(a) (b) (3.21)

Fig. 1 Diagrammatic illustration of Eq.(3.9b). The diqgrams
(a) and (b) show the lowest-order effects of the first
and the second term of this equation, respectively.

where '™ E(e]¢)n.l“)
With the expression (3.21), we

are approaching tec a formulation

analogous to that of the well-known
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particle-rotor model. In order to accomplish
this aim, let us move into a body-fixed frame
associated with the pairing rotation:!5) We
jntroduce auxiliary number-angle operators N and
$ satisfying [g, N¥2]=i, and consider the trans-
formation induced by'®),

~

. .H_ .oﬂ
R =2 o 129,107

. A . (3.22)
(N=2fi+v)
We then see that
R =3, RRY =K, (3.23)
+oml _ =i(3-9)/2 ¢+
RajR ~ = e 3m (3.24)

provided the operators ¢ andAN can also be re-
garded as canonical, i.e., [®, N/2]=i. The state
vectors (3.21) are transformed into

e"g(glf)) eagma;mg. . .agm\)|0> E eig& 16) @ |VX)bOﬁl}"
(3.25)
where |6)=R|0) and
gm Rty agm (3.26)
Note that
N, aggl=0 .

A+ + .
whereas [N, ajm]=a The representation (3.25)

therefore correspoﬂ@s to that of the particle-
rotor model.!”) To demonstrate the analogy
between the two, we here summarize their char-
acteristics:

particle-rotor model

pairing-force model

. 1o -, 12

J=R +3} sN=f+5V
J: total angular momentum N:
R: collective angular momentum f:
J: particle angular momentum V:

J IX>1‘ntr1’ns1‘c =0. N va>body =0.

Although the above discussion seems rather
formal, the angle operator ¢ will acquire a de-
finite physical meaning when the concept of pair-

number of unpaired nucleons

ing deformation is explicitly introduced later
in Sect. 6.

4, A SIMPLE MODEL ANALYSIS OF INTERWEAVING

COLLECTIVE EXCITATIONS

The usefulness of the generalization made
in Sect. 3 of the mapping operator U becomes
clear when we consider an interaction, like the
quadrupole force, which does not conserve the
seniority quantum number. Before introducing
the true quadrupcle force, in this section we
consider its simplified version and discuss a
competition between the seniority-conserving
pairing correlation and the seniority-changing
"quadrupole" correlation.

4.1 The 0(4) Model
Let us define a drastically simplified
"quadrupole" force as

*bq=-%x05 , (4.1)
s (4.2)

=z
Q= 0mcjmcjm
{+1 if |m|<Q/2, (assume that Q=even)

l1if Imp>e/2 . (4.3)

As shown in Fig. 2, the operator Q simulates'®)
the p=0 component of the true quadrupole opera-
tor

_ +
QU=0 - % qm ijcjm ’ (4.4)

20y
Gp = <im|rYyqlim>

<jllr?Y.|1j> m
= ‘Jl$?3?%LLl‘ P G§) - (4.5)

s

1.0 : il

05} AN
1
i

0.514 1.0| m
j j

i
~-05 !
g |
-1.0 AU

total number of nucleons
number of monopole pairs Fig. 2 The quantity 8n1simu1ates

the Legendre polinomial in
the sense that sz(z)dz= a(z)dz
=0 with z=m/j.

Note that the condition %qn=0 simulates the
property JdmP>(m/j)=0. If we also introduce
a simplified quadrupole-pairing operator

+ _ -1/2 + 4+

Ay = Q / m20 OnCimCim (4.6)

. cos s +
in a?g1t10n tgvthe monopo]e-ga1r1ngﬂope£ator A8

=0 +
=1 m§8§jmc1m, the set {AO, Ags Ny A5, Ay,
forms a Lie

algebra for 0(4):
+ A~ ~
[AO’ AO] =1- N/Q ’ [AZ’ A;] =1 - N/Q s

~ + <+ ~
[N, Ag) = 2Ag > [N, A;] = 2A; ,
+ + + +(4.7)
[Q’ AO] = 2A2 s [Q, A2] = 2A0 R

[Ay Agl = -0/,  [R, Q] =0

It is then easy to find that the following sub-
space (in the nucleon state space)
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C(A)"0(A2)"2]0> 5 ng +my =51 (a.8)

closes under the Hamiltonian H=H +HQ . This sub-
space is mapped by U into the sugspage

{(6")"0 10) ® (A3)"2[0; ng + n, = ¥3(4.9)

in the ideal boson-quasiparticle space. Here A;
is the pair operators of the quasiparticles in
the intrinsic space,

+ oty - o-l/2 3 + 4+

A2 = IA2 I =0 m30 Tndim ajﬁ‘ (4.10)
Note that the state vectors in (4.9) are ortho-
gonal whereas those in the original space (4.8)
are not.

Next, Tet us proceed to de§pribe in a boson
picture the intrinsic states (A3)"2|0> as well.
Namely we shall perform a secong mapping such
that the following one-to-one correspondence
holds:

-,-1/2(A¥)nd _(dH)d
Ind>lo)—knd ﬁﬁ——rciL'|O>lo)4-’Ind)|0>—7n—()j—!-“lo)lo>v
: (4.11)

+
where d are the quadrupole boson operators.
The mapping operator

Q/2
V= nfio Ing) (0] @ [0><n,| (4.12)
then maps the operator A; as'?)
+ 3+ +.r+l, 1
A2 > A2 - r§0 fr(d ) (d)
+ + +
=d - (1-A-g2pd
1 2__ 4
+1{2 (1+‘/1'sT-'I ae-ka-37)
+ 4 4+
- /i-ﬁ}I.}d dddd -+ ..., (4.13)
where
_ (_lzrmin(r,Q/Z) 1/2 n, .r
fr =7 n;;O (knd+1/knd) (-1)7d (nd)'

(4.14)

We can sum up?°) all terms in (4.13) to obtian
another representation

4. o+
B ASELBZEL . s
Py = :gg% In)(n, | (4.16)

By the two-step mapping described above, the
original nucleon state space has been mapped into
the s-d boson space as

{(Ag)"S(AE)"d|0>10)} > {(s+)"S(d+)"dIO)Io>}(4 )
(ng + ng = N/2) '

Here we have changed our previous ngtation for
the monopole bosons (b*, b) into (s¥, s). Cor-
responding to the mapping (4.17), the nucleon
operators have been transcribed as?!)

Ja AS a5t Yo iR (4.18)

~ + +0
Q- /a{f(nghys + sSTAF(g) 1, (4.19)
N> 2fig=2(A#h,), n.=s's, n,=dd, (4.20)
where

Ay _ o/ Q-np-ng+l
fng) = 2 /o zhg+1) (@-2age2)

4.2 Two Kinds of Attenuation Factor

(4.21)

In the derivation of (4.15), we have used
the exact expression for the norm ratio vk, +1/Kng-
If we neglect the commutators higher than dgub1e
in the expansion®?)

(A, (A)"4] = n,(A5)"dL (A, A%]
+ 3 nglng-1) (A)"42[0 Ay, AT, AST + ...,

(4.24)
we obtain an approximate expression:
(0) , (0)y1/72 _
(knge1/kny')""" = /Itng (4.25)
C=1- knd=2 = 1/(R-1) (4.26)
Then, (4.15) is simplified to
+ +
R =P, 4" VIChy (4.27)

This just corresponds to the lowest-order approx-
imation of the multiphonon method developed by
Holzwarth, Janssenz and Jolos,??) and by Iwasaki,
Sakata and Takada.?") Comparing (4.27) with
(4.15), we clearly see that the approximation

is very good.

Now, let us evaluate the quadrupole transi-
tion matrix e]ement% Between the sd boson states
Ing, ng)=(ng! nq!)~ / (s*)Ns(d*)Nd|0). They are
calculated as

(ng+1, ng-1|@ng, ny)
=R f(nd)(ns+1|s+|ns)(nd-1|K2|nd)
= /R f(nd) /nB-nd¢I LY /l-Cind-li

We see that there are two attenuation factors
which decrease the B(E2) values as the number of
d-boson increases (in comparison with the values
expected from the harmonic vibration picture for
the d-boson excitations):
1) the attenuation factor resulting from the
matrix element of s-boson, ns+1=¢n8-nd+1,
2) the attenuation factor arizing from the
Pauli principle between the "quadrupole
phonons"2®) A, in the intrinsic space,
VI-C{ng-1J.
In the model under discussion, the first

effect is not essential. This is because the
decrease due to /ns‘:I is counterbalanced by the

increase of f(ny).  Namely, there is a tendency
to keep the proguct f(ng) vng+I almost constant
(independent of nq}. This property is quite
reasonable from the viewpoint of the ideal boson-
quasiparticle space: Since

(4.28)
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(ng-1, nd|v|ns, nd) . : .

=(ng-1, n,

s ) 80
ezl ns M

_ 1 A-2nq

=72 %ng
(4.29)

there is no reason
to separately treat
the matrix element
of the numerator
from that of the
denominator. In
fact, the counter-
action of f(ng)
arizes from the
denominator.

Thus, in the
0(4) model, the
attenuation of
B(E2) is essen-
tially determined
by the second
factor coming from
the intrinsic space.

T T Y 2 T T

specirum
=18, N=16

1 Il 1 n

A numerical example
is given in Fig. 3. G
K

o

o)
o
v
N
X

T T T T T T

{n,+1,ns-1]0Q] ns,ndf

Q-18,
N=I6
ng = | 2 3 4 5 6 7

G=00
2K=1.0

G=2K
=1/02

Fig. 4 Excitation spectrum of the 0(4) model,
for the case =18 and N=16. The interac-
tion-strengthé G and x are parametrized
such that (G)¢+(2x)2=1. The solid lines
show the exact solution, while the dotted
lines the lowest-order result of the multi-
phonon method. The fourth-order result of
the modified Marumori expansion overlaps
upon the dotted lines almost completely.
It is apparent that the adopted approxima-
tions are very good.

(G< 2K)

4.3 0(4) Picture vs SU{2)®@SU(2) Picture

The excitation spectra are shown in
Fig. 4. It indicates that a phase transi-
tion occurs if the quadrupole force becomes
stronger than the pairing force. Namely
the static single-particle potential may
break the spherical symmetry due to the
quadrupole deformation: In the Hartree-
Bogoliubov (HB) approximation, we have the
spherical BCS vacuum

Fig. 3 B(E2) values between the sd-boson states in

the 0(4) model. Note that (n Jmay=9 for Q=18.
The solid lines show the exacg vafues; the dashed
lines the lowest-order result of the multiphonon
method; the dashed-dotted lines the third-order
result of the modified Marumori {(mM) method.

The dotted lines indicate the change that occurs
if the value of C is replaced with 2/9.

+
18(8g)> = ¢%0"%Ao~R0) 105 (4.30)

in the pairing limit, which may change into
the deformed BCS vacuum

+
[6(8gs 85)> = eH2/(Az-Rp) |6 (8g)>
(4.31)

+ .+
- &™8(8g Ag+o2A2)-h.c. |0
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when the quadrupole correlation becomes dominant.

For simplicity, consider the case N=Q. Then the

condition <¢(BO)IN|¢(60)>=N yields 6= n/4, and

the potential-energy function is given by

V(egs 8,) = <4(8ys 8,)[H]e(ys 8,)>

=ged +} (6-2)sin?(25,) .
(4.32)

This shows that the structural change of the
vacuum occurs when 2x>G., The equilibrium defor-
mation 87 is given by im/4, i.e., 6,16, and
therefore

o2tk [0> for 6,50 ,
|4(8g, 82)> = S (0 for 6y (4.33)
where
Ky =% KAy + Ay) (4.34)
Ly =% /ARy - A7) (4.35)

K_=(K+)+, and L_=(L+)+. Namely the condensate
of monopole pairs Ag changes its structure into
that of K, or L, wigh increasing strength of the
quadrupole force: The number-projected state
obtained from (4.33) is written as

it + t _ 1 /2
0<m<9/2 ijCEE |0> = (§7ZTT (K+) IO>
(for 62>0) (4.34)

Recall that the Nilsson wave function can also
be viewed as a condensate of collective pairs
which break the angular-momentum conservation:

no + + 1,8 +4+n
;I cier 10> = o7 (GF cien)” o> . (4.37)

The situation is illustrated in Fig. 5.

R

prolate

(a)

Fig. 5 The left-hand side illustrates the SU(2)8SU(2) picture.

single-particle energies are determined from hdef mC3m jm
Note the similarity to the ordinary Ni]sson"gtate
viewed in the pair-condensation picture (right-hand side).

with € =-k<Q>0 .

Together with
(4.38)
(4.39)

KO = %’(ﬁ + Q = Q) s
=1,
L td-a-9 ,

the operators K and L separately satisfy the
commutation relation of SU(2):

Ly LD =2,
(Lo, Led = 2L, .

[K+s K_] = ZKO ’

(4.40)
[Koa Ki] = iKi ’

Thus, whereas the 0(4) picture is appropriate for
the pairing dominant phase, the SU(2)®SU(2) pic-
ture is more suitable for the quadrupole dominant
phase. In fact, the solvable model discussed
here was invented by Piepenbring, Silvestre-Brac
and Szymanski?®) on the basis of the SU(2)®SU(2)
picture.

5. THE P+QQ FORCE IN A SINGLE j-SHELL
5.1 Algebra of Bifermion Operators

Let us define bilinear nucleon operators in
coupled-angular momentum representation as

+ 1 N ot
A =72 mfﬁz <Jmy jm | du> ¢ > (5.1)
+

, M ©jmg
=_ Zz im o § t e =(_1)M
BJ]J m]mz <Jm1Jm2IJu> CJm]cjmz ( ]) BJ-]J )

(5.2)

+ .
The physical meanings of B, with J=0, 1, and 2
are: H

N =/20 Bso , (nucleon number) (5.3)
:ju = 29"'1 BIU » (angular momentum)
(5.4)

! ~ - +
i QU = quu )

I

{quadrupole moment)
(5.5)

where q=<j||r2Y2||j>/¢§:
In terms of these
bifermion operators, -
the P+QQ Hamiltonian

is written as

+ +
~G%o0hgo 220 L By By
(5.6)

¥h bifermion %pera-
tors A7, A, B
constitﬂge aJEie g?gebra
for the 4Q-dimensional
orthogonal group 0(42).

LA A,

{(b) Among these, the subset

{Abo> Aog» Boo! generates
The deformed the quasispin for the
pairing correlation, as
discussed in Sect. 2.
On the other hand, we can

=-Kk<Q>Q = L€ ct .
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construct from the subset {B1u' BZH}={Ju . Qu}
an SU(3) algebra which brings about the rota-
tional spectra of Elliott type.?7) Likewise, we
may construct an SU(6) algebra by making use of
the subset (A5, Agu, By,s 9=0, 1, 2, 3, 4}.
However, it should Ee s%ressed that the latter
two are not exact subgroups. Namely we can
discuss these algebras only if we make certain
truncations. It is therefore required to inves-
tigate the validity conditions of the truncations
adopted. This is by no means an easy task, which
in fact has been one of the central problems in
the microscopic study of nuclear anharmonicities.
Below we briefly review this point for the case
of SU(3). . R

The commutators among Ju and Qu are:

[Ju, Ju,] = /2 <1p 1u'|1p"> Jyn s (5.7)

[y, Q] = -v6 <lu 2u'|2u"> ﬁuu (5.8)
2 ~

A A [} [1] 2
[QU’ Qul] = 310 <2u2u |].lJ > m Juu

Dl weg223, 2 +
+ 10<2u2n'|3u">{557} a3 - (5.9)
Therefore, if the coup]in?Ato the B;uu is neg-
lected in (5.9), the set {Jy,, Q,} may be regard-
ed?®) as the generators of 80(3Y. Thus, the
quadrupole force is equivalent (within the ground-
state rotational band) to

eff _ __ 1 +3
Hgq T Lddy (5.10)
jsua P (5.11)

The effect of B;u neglected above was evaluated
by Gross and Yamamura,?®) and by Belyaev and
Zelevinsky.??) It was found that the inclusion
of the B3, term reduces the moment of inertia
by half ahd recovers the consistency with th
cranking-model of Inglis,®') i.e., J1na1is%2¢ sy
(for the region of nucleon number whicﬁgsaiisfy 3
the condition for the occurence of rotational
spectra).

5.2 sd Boson Representations

Boson representations of the bifermion
operators (5.1) and (5.2) were studied in detail
by Li, Dreizler and Klein.”) They suggested
that a convergent boson expansion is obtainable
if the boson mapping is performed for a certain
subspace (in the nucleon state space). f course,
the choice of the proper nucleon subspace is the
central subject in any microscopic model for
collective excitations, which involves dynamical
considerations (i.e., it depends on the struc-
ture of the Hamiltonian).

Here, let us assume that our collective
subspace is built up out of the nucleon pairs
coupled to either J=0 or J=2

{(A3=o)ns (Aszz)nd |0>}

Evidently, the above assumption is the same with
that adopted by Otsuka, Arima, Ilachello and
Talmi32) in their attempt to give a microscopic
interpretation of the phenomenological interacting

(5.12)

boson model (IBM). However, we shall see below
that the subspace (5.12) yields a boson repre-
sentation different from the IBM. Let us map
this subspace onto a physical boson space by
making use of the two-step method described in
Sect. 4. The first step, i.e., the mapping into
the ideal boson-quasiparticle space is completely
the same as was done, in Sect. 4. In this step
the monopole pairs Agy are replaced with the
s-bosons. In the second step, the pairs of
quasiparticles coupled to J=2 are transcribed
into the d-bosons. This step can also be per-
formed in a similar way. Only one difference is
that we now treat five d-bosons (d,, u=-2, -1,
0, 1, 2) so that we need a technique to classify
the many d-boson states (this causes no problem
since the technique is well established).

The second mapping,

-1/2 +\n

IngodM> [0) = knd‘/)J e (559 10210)
(5.15)

+
- +\n
IngoaM) [0> = ke (") dy 10) 10>,
is carried out by
V= nngMIndpJM)(Ol ® |0><ndpJM| . (5.14)

Here p denotes the d-boson seniority®®) and

+ + 1 o + 4+

AZU = IAzuI =7 m]§n2 <Jm13m2|2u>ajm]ajm2.(5.15)

The resulting Marumori expansion is

+ et oyt
Z‘211 = VAV )
- + +a z 1/2 t +
1 + +,2 2
+ dy gy (@) (d)gy
z 1/2 . +2 a
- pdMy! k2pJ <2u'2u|IM> (d )JM nddu'

+dat B a2
p I kap! +.3 3
(d°(p'9")d| 3 pd)(d ) S g(d) gy
-+... (5.16)

-1
where fi = Zd'd, and (4" (0'3')d[1d"dy) is the
boson cfp.” We can rewrite Eq.(5.16) as

ﬁ;u ) Pd21/2d+ﬁ-1/2

Here Pq is the projector into the physical
d-boson space and k is defined through

(5.17)

In the present case, it is almost impossible to
obtain an analytical expression of kp,pg for all
values of ny. However, with the loweSt-order
approximation of the multiphonon method,”®) we
obtain a recurrence relation for kndDJ:

(0) = z nd-l (R nd 2 (0)
Oy = o @M )DL,

x [1 - %—{F(ndpJ) - F(ng-1, p'd")}] , (5.19)
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with
F(ngod) = (& Co-2C,+3C )(n -0} (n +p+3)
d 80 727354 g g MeV
+ (7824784 )ng(ng-1)
- Hemc) ()60}, (5.20)
CL =1 - ksz (L=0, 2, 4) (5.21)

(0)

The use of kn,pJ in the boson representa-
tion (5.17) implies that we are summing up
all orders of the Marumori expansion in an
approximate way.

The following property is immediately
noticed:
F(ngpd) is independent both on p and J,
leading (5.19) to

0 0
o) = 0-Clng-1)) k%), (5.22)
In this case, (5.17) is drastically simpli-
fied to

o+ +

AZU = Pd Clu Vl-Cﬁd (5.23)
The approximation Cg=C»=C4 just corresponds
to the SU(6) appggximation of Janssen,

Jolos and DOnau. ") 0

10/3 | mmmm e oo

E(@N/ER])

. =15, N=12,
br G& =20

B(E2:2,-2})/B(E2;2}~> O})

0 1 ] ) 1 1q2
I 2 3 4 5 6

Fig. 6 Excitation energy ratio E(4;)/E(2;), +
spectroscopic quadrupole momgnt gf the 2
state, and the ratio B(E2; 25 ~+27)/B(E2;

27 +0f) calculated®®) as functions of xq
for the case =15, N=12 and GQ=2 MeV under
the following approximations: the sd trun-
cation plus the Towest-order multiphonon
method plus the SU(6) approximation with
the value C replaced by 2/Q.

If Cg=C-C4=C then the function 4

Q=15 N=12
GSe=2.
2q%= 5.

0.07

J=0 2 3 4 5 6 7 8

Fig. 7 Theoretical band structure®®) for the
case of strong quadrupole coupling xq2=5‘MeV.
The adopted approximations are the same as
in Fig. 6. Numbers on the arrows denote the
B(E2) valueg in unit of the Tamm-Dancoff
B(E2; 27 ~+07) value.

Other quasiparticle operators, e.qg.
By, =IBg,I, may also be mapped into the
d-goson space in a similar manner. Thus,
under the lowest-order approximation of
the multiphonon method plus the SU(6) approxima-
tion, the sd-boson representation of the quadru
pole operator is given®®) by

~ + X = tera
oy =72 P {f(fg)sd, V1-ChRy + VI-CRy -d3s F(Ai)}

222y .o Q-2Rp .+
- 10 {535 a Pg—-mﬁ (d'd)y,

(g=fg+ig)

(5.24)

This representation accompanies the two kinds of
attenuation factor discussed in subsection 4.2,
i.e., the s-boson and the Pauli principle effect
}/I-i ﬁd'

Numerical examples obtained by diagonalizing
the+P+QQ Hamiltonian within the sd-boson space
{(s")"s(d* ) qu[0), ng+nq=N/2} are presented in
Figs. 6 and 7. It is seen that the present model
produces a gradual change of excitation spectrum
from vibrational to rotational pattern. In par-
ticular, an excited band with JT=2*, 3+, 4* = |
is seen in Fig. 7.
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5.3 Critical Analysis of the Basic Approxima-

tions '
a) Test of the sd truncation

A justification of the above truncation of
the intrinsic space in terms of the pairs of
quasiparticles coupled to J=2 may be found in
Ref. 36): By making comparisons between the
results of truncated calculations and those of
exact Tamm-Dancoff diagonalization of the quadru-
pole force for many-quasiparticle configurations,
the authors of Ref. 36) concluded that the J=2
truncation is very good if it is done in the
intrinsic space (as was done above). It should
be emphasized, however, that the analysis was
limited to the vibrational region, and to states
with angular momentum J < 6.

Very recently, Fuyuki’) diagonalized the
P+QQ Hamiltonian in an enlarged subspace which
includes the set of states

()" (d")pdy 10) @A, o> 5 0=a, 6, LT,
(5.25)

in addition to the states composed of sd bosons
alone. He concluded that, while the truncation

is justified for low-spin yrast states, the
approximation becomes poor with increasing angular
momentum (see Fig. 8). Furthermore, he found

that the E2-matrix elements within the sd sub-
space and those within the extended part (5.%5))
contribute coherently to enhance the total B(E2).
Namely, enhanced EZ2 transitions do not necessarily
imply that the relevant states are composed of
only the nucleon pairs with J=0 and J=2.

100 -
%l mixing probability yn
| Q-=15, N=12, 2
L GR=2. / _
50} _
O/o
[ 2=5..
J:=0 2 4 6 8 10 12

Fig. 8 Mixing probability of the states outside
the sd boson space calculated®?) as a function
of the angular momentum for the ground-state
band. The parameters are: =15, N=12, GR=2
MeV and Xq2=5.0 MeV (dashed lines) or xq2=3.0
MeV (solid lines).

Next, let us discuss about the rotational
region. As we saw in Fig. 7, the sd subspace
was able to produce a spectra of rotational
pattern. However, we should check whether the
moment of inertia (which is a crucial quantity

1.0
MeV 2% state
ost
(O ) \\-o— 2
e L 1 1 1q
I 2 3 4 5
1.0 .
Gap A
MeV
0.5+ 1
(b) 2
L L 1 L z
1 2 3 4 5 q
20}
q
.o}
c
(c) 1q?
0 ! 2 3 4 5

9 (a) Excitation energy of the 2§ state
calculated as a function of xq“ by the
cranking model of Inglis (the dashed-dotted
lines) is compared with the results of the
diagonalization of the P+QQ Hami]ton1qn
either within the sd-boson space (solid
lines) or within the enlarged space includ-
ing (5.25) in the text (dashed lines).

(b) Pairing gap A characterizing the Hartree
Bogoliubov vacuum for the P+QQ Hamiltonian.
(cg Intrinsic quadrupole moment Qp character
izing the Hartree-Bogoliubov vacuum.

Fig.

characterizing the rotational motion) is cor-
rectly reproduced or not. Figure g presents
excitation energies of the first 2° states as a
function of the quadrupole-force strength xgc.
We see that, in the rotational limit, the sd
subspace calculation underestimates the moment
of inertia by an order of magnitude compared to
the Hartree-Bogoliubov-cranking value.

The origin of the above discrepancy may be
understood as follows. Let us recall the commu-
tation relation (5.9) which leads to the SU(3)
scheme, and check to which extent the sd-boson
representations of the quadrupole operators given
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by (5.24) satisfy this relation. We then immedi-
ately find that the structure constant appearing
in the r.h.s. is of order Q-3, whereas the 1.h.s.
obtained from (5.24) is of order Q-1. Therefore,
in order to satisfy this relation, these quanti-
ties of 0( Q1) should cancell in such a way just
to give a quantity of 0(2™3). This is a
stringent requirement which is extremely hard
to meet.
b) Test of the SU(6) approximation

As discussed in subsection 5.2, a measure
which judges the degree of accuracy of the SU(6)
approximation is the quantity CL, which expresses
the Pauli principle effect on the two-phonon norm
(and which represents the repeatability of the
phonon excitations). Its explicit expression is

2

B J 100 {L22}2,
CL T 50{; ] f}* (500) 32 {353 SLeaT)
> for L=0
a-1 J (5.26)
* {101 ]
7—9_2 for L 2, 4 .

Clearly, Cp =Cq but Co¥Cq. Thus, the condition
for the validity of the SU(6) approximation is
not satisfied. Nevertheless, it may be a good
approximation for the multiphonon states with
the highest d-boson seniorities, i.e., for the
states with P=ngq, since the quantity C_-g does
not play any role for these states.

The above property remains unchanged for the
many j-shell case. In this case, the quantity C_
is dynamically determined in relation with the
internal structure of phonon; namely, € is
dependent on the amplitudes y(ab) of the phonon
mode

eoT - % wlab) A7 (ab) (5.27)
1.0
| CL ]
05 .
| «4 1
- _-—d'/ =3
[ —" wTD T
o. s% 1 [ 1 1 1 w
- -1.0 0.0 1.0 20 (MeV)

Fig. 10 Values of Cp, Cp and C4 for 102Ru. The
phonon amplitudes w%
(ugvptvaup) /(Eg+Ep-w) with the normalization

;%wz(ab)=1 are used3®) to show the dependence

of C_ on the parameter w.

transitional nuclei.

which should be determined by dynamical consider-
ations. Here the symbols a, b label the shell-
model orbits. A result of numerical calculation®®)
is presented in Fig. 10. We see that the magni-
tudes of C| are indeed strongly dependent on the
internal structure. Nevertheless, we see at the
same time that the property C = C4<Cy always holds.

The deviation from the SU(6) symmetry dis-
cussed above indicates®®) that there exists a
significant difference in microscopic structure
between the highest boson-seniority states (p=n(d)
and the lower boson-seniority states (0<ny).

6.  DYNAMICAL INTERPLAY OF PAIRING AND QUADRU-
POLE MODES OF EXCITATION
From the model analysis above, we expect
that the presented method of boson-fermion expan-
sion may be very useful for the study of anharmon-
icities associated with low-energy excitations in
We are now in a stage to
discuss real nuclei.

6.1 Derivation of the Mode-Mode Coupling

Hamiltonian

In realistic many j-shell situations, the
pairing vibrational modes come into play, which
are the normal modes arizing from the fluctuations
of the monopole pairing field.'®) To properly
describe them, we now explicitly introduce the
concept of (static) pairing deformation. Then,
the intrinsic quasiparticles defined by (3.11)
may be regarded as single-particle modes in this
deformed pair potential. Of course, the intro-
duction of the pairing deformation necessarily
breaks the conservation law of the nucleon number.
The situation is just the same as the deformed
Nilsson potential breaks the rotational symmetry
in the ordinary three-dimensional space. Let us
here recall the logic of the particle-rotor
model; i.e., the broken-symmetry necessarily
brings about the couplings of the Nilsson parti-
cles to the rotational motions, and it is just
this coupling which restores the symmetry.
Analogously, we can restore the nucleon-number
conservation law by taking into account the

couplings of the quasiparticle motions to the

pairing rotations. This is just the mode-mode

ab) of the form <a||r2Y¥,||b>

coupling point of view we now intend to develop.
Let us proceed to derive from the microscopic
fermion Hamiltonian an (effective) mode-mode
coupling Hamiltonian which describes the dynami-
cal competitions between the pairing and.quadru-
pole modes of excitation.

We construct the collective subspace (in the
many-j shell model space) through the following
steps:

1}  explicit introduction of the pairing
deformation,

2) transformation into the body-fixed frame,

3) explicit description of pairing vibrations
and rotations.

step 1)

Let us assume that the monopole bosons (the
J=0 pairs of nucleons) form a condensate (which
is equivalent to an occurence of equilibrium
deformation). Then, it is convenient to decom-
pose the monopole bosons into static- and fluc-
tuating-parts as
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_ ~+
a =Ry v s, (6.1)
where v, are real parameters connected with the
magnituge of the pairing deformation. Accord-
ingly, the basis vectors in the monopole boson
space are rewritten as”’)

Aoy » (TEH"™ jcon)t  (6.2)

where |coh) is the coherent state of monopole
bosons, defined by salcoh) =0, which corresponds
to the well-known BCS state.

step 2)

The transformation into the body-fixed frame
(associated with the pa1r1ng deformation) can be
done by the operator R defined by (3.22). For
the many j-shell case, the number-angle operators
are generalized to

=z + 9
=3 (ZSasa + a) s (6.3)

$=§ma¢a . (6.4)

The unknown coefficients m, in every orbits will
be determined in step 3). Here, the following
fact should be emphasized: It is the existence
of the finite deformation which enables us to
define the angle operators $a by "%, ")

i$a = %-{1og(l+ ) log(1+ Q:a )}

= 2, GaSa) - amr (57465, )% +..

“a (6.5)
step 32

The normal modes of the pairing fluctuations
(535 33) can be obtained by means of the RPA in
the bogy fixed frame. At this stage, the coeffi-
cients my in the total angle operator $ are
determined by the condition that the pairing
rotation-vibration couplings vanish
in the RPA order. If we denote, the
pairing vibrational modes by (T}, Ty),
the monopole boson space (6.2) can be
further rewritten*®) as

(0 G, )"al coh)} »

{e1—$ J (FA)HAITVIb },
/mE (6.6)
where FA]WV1b Selecting and
retaining gnly the collective
solutions among the RPA solutions
labeled by X=1, 2, ..., we com-
plete the construction of the
pairing-collective subspace (in
the monopole boson space).

On the other hand, the intrisic excitations
can be treated in the same way as in subsection
5 2, except that the J=2 pairs of quasiparticles
Azu % now replaced with the phonon operators
A%(C *given by (5.29). After mapping the
phonons into the d-boson space, we finally
arrive at the collective subspace which we have
been looking for:

intrinsic
( seniority)

,égrquodrupole

{W (d )pJM [0)[0>e e1—8H7_r(I, )"A|\y:;b7)

This is a direct product space of the quadrupole-
and pairing-collective subspaces. By the pro-
cedure described above, the original fermion
Hamiltonian (e.g., the P+QQ force) is transformed
into the (effective) mode-mode coupling Hamil-
tonian of the following form which act on the
collective subspace (6.7):

¥ - ar(pair * a{auad * Aecoup1 . (6.8)

_ + 1 NN2
X oair = Lo +2g (22)

X

. (6.9)

PO 5,4
quad - ¥d'd * rhy(L)i(d'd )LP(dd)LP

~1/2

+ hy [k z(d d )2 d kY2h.c.] (6.10)

2-1/2

+ hy [kllz(d fhoe.] 4.,

)00

(6.11)

U2t

+ § A (%) {k (d'd r k‘l/2

00" 2 + h.c.

Here N and N are, respectively, the auxiliary
nucleon-number opergtor and the expectation value
N=(coh|N|coh)=2Z2,v5. The symbol & denotes the
pairing moment of 1nert1a Some examples of the
mode-mode couplings are illustrated in Fig. 12

in the form of Nuclear Field Theory diagrams.

+oo. .

pairing space

space

7. pairing

Fig. 11 Structure of the nucleon state space
— a schematic illustration.

6.2 The Anomalous 0+ States

In recent years, Sakata, Iwasaki, Marumori
and Takada“?) have demonstrated that the coupl-
ings between the J7 =0% two-phonon states and
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the pairing vibrations are the most important
anharmonicity effects generating the anomalously
10w-1y1ng excited 0t states which have been found
in nuclei with Nor Z = 40. The second term in
(6.11), illustrated in Fig. 12-(b), is the main
term causing these couplings. Fig. 13 shows a
result of their calculations for Se isotopes.

2' o+
S
quasi - + iri
- Q' pairing
particle | vibration
2 2! 2
phonon phonon

(a) (b)

Fig. 12 (a) Pauli-principle diagram for two-phonon
states, which is characterized by the quantity

CL given by (5.26) in the text.

(b) Typical diagram which brings about the
coupling between the two-phonon JT=0" state
and the pairing vibration.

MeV
+
2L B
$ 2 &
3 X R
b 3 o i
% = 5
% " E5 &
o w 9 =l
H w0 H M
1F B 2t K i
X ] : B
o
o B
Y
¥
0>~
76
Se

Fig. 13 Calculated values*2) (in units of 10 50 2

cm ) for B(E2) associated with the anoma]ous
0* states in Se isotopes.

This calculation successfully reproduces the main
features of, the experimental systematics of the
B(E2: 05> ~+21) as well as of the excitation
energies. By analyzing the microscopic structure
of the vertex A(X), they also suggested that
similar phenomena may occur in other nuclei when-
ever the shell structure near the fermi surface
satisfies one of the following conditions:
1) The existence of high-j intruder orbit (1like
99/2) above the j=1/2 orbit; 2) The existence of
tzo c;osely situated spin- f11p orbits (Tike 97/2
5/2 Very recent calculations*?®) have furthermore
demonstrated that similar phenomena occur in odd-
mass nuclei as well; namely, one finds a new type
of collective excited states composed of one-
yas1part1c1es coupled to the anomalous excited
states.

The two-phonon 0% states have been regarded
as the band heads of the quasi-8 bands in transi-
tional nuclei.**) Thus, it seems extremely
interesting to investigate the role of dynamical '
interweaving between the pairing and quadrupole
correlations in the process of generating the
B-band structure. Concerning this subject,
Sakata and Holzwarth'®) have recently made an
interesting model analysis: By exactly diagonal-
izing the P+QQ force in a simple model system
consisting of two j-shells with opposite parity,
they found that the pairing vibration mediates
the coupling between the collective 2" phonon
and non-collective 2t states to produce a new 2*

state. Furthermore, this new 2* state seems to
MeV
6"‘ 3* 0‘ —2+
g
~3| 0+
+
_ o 3324* -
wn 2+ jo 3 6*
o ~/]
~ e A = +
1'— +
o 9
N RN | B
2 z
7 8
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Fig. 14 Scheme of the collective states
obtained"®) by exactly diagonalizing the
P+QQ force in a model space composed of two

orbits, g7/2 and fg/2.
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play an essential role in building up the side-
band structure based on the excited 0 states
(see Fig. 14).

6.3 Range of Applicability of the Presented

Mode-Mode Coupling Approach

The mode-mode coupling Hamiltonian (6.8)-
(6.11) has been derived on the basis of the trun-
cation of the intrinsic ?pace to the subspace

of multiphonon states {AZCO]])+}23M|0>. It is

therefore possible that the neglected huge number
of non-collective modes as a whole affect some
properties of the calculated collective states,
even when they are not important individually.
In fact, it has been pointed out“®) that we
cannot lower the theoretical excitation energies
to the values of experimental data if the renor-
malization effects coming from the neglected
degrees of freedom are not taken into account.
It remains to be seen whether the same problem
arizes also for the collective subspace under
consideration.

In cases when some non-collective fermion-
like modes need to be explicitly treated, we can
easily extend the subspace to include the fermion-
1ike modes. Namely, specific collective degrees
of freedom are replaced with boson fields while
some single-particle degrees of freedom are ex-
plicitly treated by fermion-l1ike fields. Thus,
the intrinsic subspace is generally written as

1 +.n + + + .
{—/n—d-_r(d )oul0) ® R L e

i= \)—an} . (6.12)
Clearly, this model space is of the same form as
that of NFT. The boson-fermion product space of
the above form has already been used in Refs. 37)
and 47). Very recently, Marshalek“®) has general-
ized the basic idea of boson-fermion expansions
into other related problems, i.e., cluster-vibra-
tion couplings associated with collective vibra-
tions of the closed shell. According to Yamamura
and Kuriyama,“®) the boson-fermion representations
can be regarded as the quantized version of the
axtended time-dependent Hartree-Bogoliubov theory
which explicitly involves both boson and fermion-
1ike degrees of freedom.

A condition crucial for the applicability
of the boson-fermion expansion is the existence
of a vacuum state which enables us to introduce
the boson-vacuum |0). In the many j-shell model,
a closed-shell configuration is usually regarded
as the vacuum, which play the same role as the
zero-nucleon state |0> in the single j-shell
model. In stably deformed nuclei, however, dif-
ferent major shells interweave with each other so
that the spherical magic numbers are destroied.
Thus, the applicability of the mode-mode coupling
approachs which regard the spherical closed-shell
configuration as a vacuum is limited to spherical
and transitional nuclei where equilibrium quadru-
pole deformations are not fully developed.

We have viewed the anharmonicities of the
transitional spectra as couplings between differ-
ent elementary modes which have fixed internal
structures. For instance, the phonon amplitudes

y(ab) in (5.29) have been supposed not to change
from one state to another in a single nucleus.
However, it is possible that the mode-mode
couplings becomes so strong that the internal
structures themselves are changed. In fact, the
model calculation of Sakata and Holzwarth quoted
above indicates that such structural changes of
collective subspace might be essential in gener-

ating the side-band structure in transitional
nuclei: The couplings between the collective
and non-collective quadrupole degrees of freedom
through the intermediation of the pairing collec-

tive excitations might also be expected as one

of the possible mechanisms which reorganize the
quadrupole modes in the process of phase transi-
tion from spherical vibrational to deformed
rotational structure.

Marumori et al.®°) are now proposing a new
theory called "self-consistent collective-coordi-
nate method" which aims at self-consistently
taking into account the mode-mode couplings of
interest as dynamical changes of the internal
structures of phonons. In this approach, the

collective subspace in the many-fermion Hilbert
space is determined in optimal way by the collec-
tive dynamics itself. As is well known, transi-
tional nuclei are characterized by the fact that
the amplitudes of the quantum-mechanical zero-
point motions are larger than the equilibrium
values of deformations. The collective dynamics
of such many-body systems is necessarily complex.
Thus, we consider it always necessary to attack
the subject by a combination of two different
kinds of approach: One is the approach like Ref.
50) which starts from the first principle, and
the other is the approach like the presented one
which constructs microscopic models largely on
the basis of empirical knowledges.

7.  CONCLUDING REMARKS

In concluding this lecture, we would like
to emphasize once more the most important char-
acteristics of our approach:
1) We positively introduce the concept of
pairing deformation which breaks the nucleon-
number conservation law. The symmetry breaking
is inevitable in order to introduce the concept
of intrinsic quasiparticle excitations. It is
possible, however, to restore the broken symmetry
afterwards through the mode-mode couplings.
2) We do not insist on any particular group
theoretical truncation. This is because we do
not want to lose any important dynamical anhar-
monicity effect by imposing such a truncation at
the beginning.
3) We expect that the reorganization of the
collective subspace is indispensable in the
process of phase transition from spherical to
deformed nuclei. Thus, we have emphasized the
range of applicability of the mode-mode coupling
approaches which do not allow the internal struc-
ture of elementary excitations to change.
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MICROSCOPIC APPROACH TO NUCLEAR ANHARMONICITIES

Masayuki MATSUO, Yoshifumi R. SHIMIZU and Kenichi MATSUYANAGI

Department of Physics, Kyoto University, Kyoto 606, Japan

Present status of microscopic study of nuclear anharmonicity phenomena is
reviewed from the viewpoint of the time-dependent Hartree-Bogoliubov approach.
Both classical- and quantum-mechanical aspects of this approach are discussed.
The Bohr-Mottelson-type collective Hamiltonian for anharmonic gamma vibrations
is microscopically derived by me>ns of the selfconsistent-collective-coordinate

method, and applied to the problem of two-phonon states of 168Er.

1. INTRODUCTION

The idea of the time-dependent average potential plays the central role in
providing the link between single-particle and collective modes of motion in
the nucleus. In the time-dependent Hartree-Bogoliubov (TDHB) method, the
collective motion is described semiclassically in terms of the time-evolution
of the selfconsistent potential governed by nonlinear equations of motion,
while the internal particle motions are treated quantum mechanically. Thus,
the quasiparticle RPA, which is obtained under a small-amplitude approximation
of the TDHB method, provides us with a starting point of microscopic theories
of nuclear collective motions. Then, 1in order to perturbatively treat the
anharmonicity effects nég]ected under the RPA, the boson expansion theories
(BET) were developed in the nineteen-sixties.1

It has been gradually recognized that the anharmonicities of the low-
frequency quadrupole vibrations known in a wide region of transitional nuclei
are so strong that we need a new microscopic approach which is capable of
treating such genuine nonlinear vibrations. This recognition was combined with
the need to describe the large-amplitude collective motions taking place in the
process of low-energy heavy-ion collisions. Thus, efforts to construct a new
microscopic theory, which is more safisfactory than BET, have started in the
nineteen-seventies. We can quote, for instance, the approaches by Vil]arsz,
Baranger-Veneron13, Rowe-Bassermann4 and Marumoris. These approaches can now
be summarized in a form of the selfconsistent-collective-coordinate (SCC)
method which was formulated by Marumori, Maskawa, Sakata and Kuriyama.6 An
attractive feature of this method is that it provides us with a selfconsistent
scheme to dynamically determine the collective coordinates and momenta which

govern the time-evolution of the average potential.
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As a first application of the SCC method to real nuclear phenomena, we have
carried out microscopic calculations for the double ¥-vibrational states of
168Er and, quite recently, obtained7 very interesting results. Therefore, in
this talk, we shall mainly discuss the anharmonic Y-vibrations in deformed |
nuclei. We hope that the discussion on this typical case serves as an
illustration of the present status of microscopic approach to nuclear an-

harmonicities.

2. THE SCC METHOD
*
Let us introduce collective variables (%,%) as c-number variables which
parametrize the TDHB state vectors:

l¢cr%n)> = eiCT”'”H’Q (1)

_ N * .
1G(1%7) = é{?{%”»”aca}’ Cch(”»”aJQif, (2)

where a; and a; are the quasiparticle creation and annihilation operators and
PPO) is the HE ground state satisfying ailqz£> = 0. Through the coTp1ex
functions Gij(v »7)s the time-dependence of the collective variables (% ,7%)
determines the time-evolution of the HB state vectors (1). Thus, the functions
Gij(Q*,7 ) define a manifold imbedded in the TDHB phase space, which is called
the collective submanifold or the collective hypersurface (see Fig.1).

TDHB Trajectory

Diffeomorphic Mapping Collective Trajectory

61Ny )
GU(7f7)

Mz TDHB Phase Space
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The fundamental principle to determine the functions Gij(7*’7) is the
"invariance principle of the time-dependent Schrddinger equation"5 which
requires that the collective motion should be maximally decoupled from the
remaining (non-collective) degrees of freedom. Combining this dynamical
principle with the kinematical condition that the collective variables (7*,7 )
should be the canonical variables, we obtain the following set of basic
equations of the SCC method6:

(i) equations of collective motion

. 22
27:5—;7_; and

17——;7 i (3)

where the collective Hamiltonian X is defined by
-6 LG
X¥n) =< le " HeTI$> - <hIHI$> (4)

(ii) equations of collective submanifold

-lq dH At _
S(Qbo’{e He —g 27*0}’¢> O (5)
where
-+ _ —CC7' é iCT _ 'LGT_é‘_ q
O = e > e , O =-e >7¥e , (6)

and the variation means that §|¢,D = a; tal H>0>
(iii) canonical-variables condition

(D107 1P,> = L 7% and <$I01%>= 57 (7)

Once the collective submanifold is determined, it 1is straightforward to
express an arbitrary operator F in terms of (ﬁ?,7 ): The function 37(7;,7 )
_=_<¢0, e 10F oG |¢o> is called the “collective representation” of F. One of
the possible methods of solving the basic equations is to expand the unknown
functions G, J(7¢ 7 ) and the collective Hamiltonian )C(Qf,7 ) in a power series

(7.7, 1.e.,

(1) (2) )

C7£J' = 6',.-/ + G:/- -+ 6:- + .- - R E (8)
Z C‘I (7 ) (7) ; efc.,
Y"S—-YI.

and require that Eqs.(3)-(7) be satisfied in each order. This method succes-
*
sively determines Gij(ﬁ:,7 ) and X)¢(% , ) starting from the Towest-order terms,
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and is called the " % -expansion method".

Thus, the collective submanifold is dynamically extracted from the huge-
dimensional TDHB phase space without introducing any artificial assumption. On
the other hand, the description in terms of the SCC method possesses a c]assicé]
character. This is known as a property common to all descriptions that yse the
time-dependent variational principle for the TDHB state vectors8

3. COLLECTIVE TRAJECTORIES IN THE THREE-LEVEL MODEL
To illustrate the basic idea of the SCC method, we here present the
solution for an exactly solvable model in which N nucleons occupying the Towest

level (i=0) in the ground state can be excited by the operators Kij = ;§;c§hcjm
m=

Three-level model

1) 2)
H = Hy + Hint + Hint

—— i=2

Hy = ;E; e;Kii

1=1 1 2 2
Hine = 2‘;ZLV1(K10 * Koy
I AT7777 77 1777777777777 =12
1 1 . >
© i=0 Hine = 2 ValKjp + Kp) Ky + Ky))
K10 Koo Ky + h.c.
Fig. 2

to higher levels (see Fig.2). This system has two decoupled vibrational modes

XZ(RPA) = (O kf-o T PR )IIN , =1 ang 2, (9)

in the RPA. The residual interaction Hgﬁ% is not effective in this order, but
it gives rise to the coupling between the two RPA modes in higher orders. I[f
'ﬁuﬁéiﬁu%, this mode-mode coupling may be neglected in the description of the
Tow-1ying spectrum. It is expected, however, that the mode-mode coupling
becomes increasingly important with increasing amplitude of the Tow-frequency
vibration so that the collective hypersurface for this system should be

determined by taking this dynamical anharmonicity into account.
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Q1
1 e N=10
-2 - ! 2 e.=1.0
e,=2.0
-1 | V=V -1+
1_0%0667
v3=0.00667
o} Q2 oL e
E=1.35
(a) SCC method (b) TDHF method
Fig., 3

|
4

The TDHF phase space for this three-level model is four dimensional. Thus,
the diffeomorphic mapping Mz—az;determines the two-dimensional hypersurface in
the M4 space (ql, Qps Pys p2), on which the collective trajectory travels.
Figure 3(a) shows a typical Poincaré-section map of the collective trajectory
and the corresponding Lissajous figure, which were calculated by Hashimoto
et a]g under the 4-th order approximation of the 7-expansion. We see that the

trajectory is slightly bent toward the direction of the 9, axis. This is just
(2)
int’
the TDHF trajectory displayed in Fig.3(b), which starts from the same initial

the dynamical anharmonicity effect originating from H By comparing with

point in the M4 space, we can clearly see that the collective trajectory nicely
represents a kind of time-averaged property of the complicated TDHF trajectory.

4. QUANTIZATION OF THE COLLECTIVE HAMILTONIAN

Let us quantize the collective Hami]tonian){(?*,? ) by replacing the collec-
tive variables 7* and 7 with the boson operators B+ and B, and by taking the
normal ordering with respect to (BY, B). Although the quantization of non-
integrable systems is a difficult open subject in general, it is possible to
test the validity of this canonical quantization procedure in the special case
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where the collective hypersurface is generated by the restricted TDHB state
vectors of the form

-4 20 X7
1917 0> = Kermri S 7T ) (10)

where
L + +
K=z 2% wim LTovte =g (11)
Y

. . *
In this case, the function f(7,7 ) can be determined by the canonical-
variables condition (7) alone:

Frigy = 7 JE oy 7%7 (12)
where F'l(x) is the inverse function of
Ifjl}rx n n+l n+l
- L — -1y L Ty x (13)
Fao) =4+ v e x +n§;(o T (¥ x

Obviously, the space generated by (10) is equivalent to the multiphonon state
space

-L
i ’n>:Jr'z=/ an (X+)”[¢°> i m=0,1,--. j . (14)

We can exactly transcribe the dynamics within this subspace into the equivalent
one in a boson space by means of the modified Marumori (mM) BETlO’ll. Thus, for
example, the boson representations of bilinear quasiparticle operators are given

by

-+ -4
U@d)u" = (9, B - (N Fy' + (- N2 W), BETE 1)

where U is a boson-mapping operator and
2
No=1-C  win  C=F T (¥4¥) (16)

The reciprocal of the small quantity C, i.e., SZ E.C'l, represents an effective
number of two-quasiparticle states participating in building up the phonon mode
X+. On the other hand, the same quasiparticle operators may be represented in

the % -expansion as

(rnldias 19D = () T - (¥ - L¢ )~P‘)ﬁ7“7“7 o (17)
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This expansion can be regarded as a kind of the IAQ.expansionlz, because the

(’z*)r(’z)S term is O(GL_(P+S)/2) under the evaluation that %—Tr(vj4)n= 0(§fn+1).
It is evident that the boson representations obtained from (17) by our canonical
quantization approximatly agree with the results of BET, Eq.(15).

In making a comparison with BET, it is important to fix the boundary
condition of the W-expansion in an appropriate way. Because the basic equations
(3)-(7) of the SCC method are invariant under the 1linear canonical trans-
formations

"= 7" + TR yith ST-T =1 (18)
we can choose, within this arbitrariness, any canonical coordinate system
without affecting the structure of the collective submanifo]dlB. We shall
positively utilize this arbitrariness and fix the boundary condition by
choosing such values of § and T that best attain the agreement between the
boson representations obtained by our quantization procedure and those of BET.7
In fact, we have used this prescription in obtaining the solution (12).

>
L 4th order SCC

N=10
e1=1 .0
e2=3.0
V2=0.0
V3=0.3/jN_ ) K
0 05 1.0 1.5
VIN
Fig., 4

Figure 4 shows the excitation spectrum of the three-level model which is

calculated in the 4-th order approximation for the collective Hamiltonian
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3{(7*,7 ). It is clearly seen that the calculated results (broken lines)
agree surprisingly well with the exact spectrum (solid lines). By comparing
with the result (dotted lines) in which the mode-mode coupling between the
lower and higher RPA vibrations is neglected, we can confirm that the SCC
method has succeeded in determining the maximally decoupled collective sub-
manifold by incorporating the mode-mode coupling. The excellent agreement
also suggests the accuracy of our quantization procedure, although it is merely
an approximate scheme valid up to the order 1/3.

Thus, the 7 -expansion can be regarded as a dynamical extension of the BET
in the sense that it selfconsistently determines the collective submanifold by
the collective dynamics of the system itself.

Finally, we want to emphasize that the attempt to construct the quantum
theory of large-amplitude collective motions without going through the classical
description is still in its very outset (see, however, Ref.14).

5. ANHARMONIC Y-VIBRATIONS IN 188

Since the central issue of current 1'nvestigat1’on515'18 toward understanding
the anharmonic ¥-vibrations is the nature of the double ¥ excitations in 168Er,
we shall focus our attention on it.

By means of the SCC method, we can derive the following collective
Hamiltonian describing the anharmqnic 3¢vibrations7:

Hcon = —;‘;( Zlyz Mol vl g?‘)
+e,—2%(322;1 +3b’-§—8— +1)
1€ 35 F §;2 (19)
E (R )
Vg (¥)

Viu®) = —+C, ¥ +-C4X4’ (20)

where the mass-parameter D, the restoring-force parameter C2, and the an-
harmonicity coefficients (el-e3, C4) are microscopically determined. If we
put 63 = 0, this reduces to the approximated version of the Bohr Hamiltonian

investigated in ref.18.

The collective Hamiltonian Hegyy €N be derived by the
following procedure:
(1) We start with the Nilsson potential and use the pairing-force and the

doubly-stretched quadrupole-quadrupole (Q"Q") force as the residual inter-
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actions. The Q"Q" force is naturally derived by applying for the deformed
harmonic-oscillator potential the Landau-Migdal prescription for deriving the
residual interactionszo.

(2) We introduce two collective variables ’?157 and ’?25"}' which carry the
angular momenta along the symmetry axis K = 2 and K = -2, respectively. Thus,

we write the operator iG in Eq.(1) as
G, 1= 2 (G XS - @XanX,) | (21)

where (X;, X)) are the RPA phonon operators related to the RPA coordinate and
momentum operators (qA, PA) through

Xam m (hoiha) |, Xa= g+ ph) (22)

We solve the RPA equation in the (q,p) representation, since it is convenient
to treat the situation where some of the RPA eigenvalues fiw, become zero or
imaginary. Note that the sum in Eq.(21) should be taken over all RPA solutions
labeled by A.

(3) We solve the basic equations (3)-(7) by means of the %7-expansion, and
evaluate the collective Hamiltonian X{ up to the 4-th order with respect to
(5 7).

(4) The }{(71, 7i) is then quantized, in the canonical coordinate system chosen
in a manner stated after Eq.(18), by replacing the classical canonical variables
(7*,’?, ﬁ*,al) with the boson operators (B+, B,‘§+,‘§) and taking the normal-
ordering. '

(5) We rewrite the quantized collective Hamiltonian in terms of the collective
position and momentum operators defined by Q = z(B+ +B)/JZ, P = 1'(§+ - B)/J2 z,
qQ = Q+ and P = p* (z is a scaling parameter), and rearrange the operators (Q,P)
and (Q,P) into the Weyl ordering:

Ho 1y = PP +Fep{ (P202 42pQ2p + Q282) 4 (B2G2 + 2025 + 2B2) §
+ e37(PQ + QP) H(PQ + TF)

+ e4 + e5Q6 + e6Q262 + e7P2§2. (23)

The collective potential Vco]](y) is defined hy the terms independent of P and
P in this Weyl-ordered form. Note that it contains the contraction terms which
arise when the (Q,P) and (Q,P) are rearranged into the Weyl-ordered form.
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Thus, the restoring-force parameter C2 contains the 4-th order contributions of
the W-expansion.

(6) Noticing the similarity to the two-dimensional harmonic oscillator, we can
easily find the representation of Q and P in the polar coordinates (¥,¥):

_F S L L 9 -
P=Tme (F5l¥ 2y 3¢ /) ¢,
(24)
219
Q= L
T Ye
Accordingly, the scaling parameter z is fixed such that the ordinary definition
of the triaxial deformation Y, i.e., tan¥ = J2¢ 622>/(620>, holds in the lowest

order of the collective representation.

E|iMev)
Lok 1ssEr |
YY:0 — 2269
20r ) 2095 -
§ =0.271
0osc ] ‘
= A =0.775 [MeV i ‘ |
A =0.830, & [ . 2 -
} =0.00525 > K .=0.005 0.0 /
4 0 0 §
gl
3-major shells
0 ‘ lb - 210 2
Y (deg)
Fig. 5

Figure 5 shows the solution for 168Er of the collective Schrédinger equation.
According to this resulf, we can expect the double Y-vibrational states to
appear in the 2.0~-2.3 MeV region. Evidently, this prediction is qualitatively
different from that of Soloviev et a116 who obtained extremely strong an-
harmonicities, and also from that of the IRM1®>19 which predicts rather weak
anharmonicities. We find that the collective potential for this nucleus has
the minimum at the triaxial shape, although the amplitude of the zero-point
vibration is comparable to the magnitude of the equilibrium deformation. Thus,
the nucleus 168Er is situated just in the transitional region between the axial
and the triaxial equilibrium shapes. This result agrees with the conclusions
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of Bohr and Mottelson™', and also of Dumitrescu and Hamamoto™“.
Here we want to emphasize the following two points:

i) definition of collective potential. The occurrence of the triaxial

minimum in Fig.5 is a consequence of our definition of VCO]](X). Because the
collective potential of HCOH defined in terms of the Weyl ordering and that of
its Wigner transform is the same, we can give an unambiguous semiclassical
interpretation to VCO]1(X). Note that the ordering prescription for (Q,P) and
(5;5) has nothing to do with the well-known ordering problem in thé quanti-

zation procedure; namely, all observables like quantum spectra are unaffected

by the prescription for dividing the collective Hamiltonian Hcol]’ which is
already quantized in step (4), into the kinetic and potential terms.
ii) collective-non-collective couplings In determining the collective

variables (7:, 71), we have taken into account the coupling effects between the
collective and non-collective RPA modes, a few examples of which are dia-
grammatically shown in Fig.6. It is possible to relate these diagrams with
those of the Nuclear Field Theory (NFT)ZI. To explicitly indicate the collec-
tive-non-collective coupling effects, we compare in Figs.7(a) and 7(b) the
spectra calculated with and without including them. Note that all the non-
collective RPA modes are taken into account in Fig.7(b). We see that the
coupling effects considerably lower the excitation energies. By comparing with
Fig.7(c), we furthermore see that the effects cannot be represented by a simple

168

"renormalization" of the force-strength X . In the case of Er under consid-

eration, we find no distinguished RPA modes which play a predominant role in
the couplings. Accordingly, it is the accumulation of the contributions from a
huge number of non-collective modes that is responsible for the energy-lowerings.
It should be emphasized, however, that the coupling effects sensitively depend
on the shell structure near the chemical potential. Thus, we should expect
different situations in different nuclei: e.g., the two-phonon K=0 state may
strongly couple with a pairing vibration (this is the mechanism that is re-
sponsible for the energy-lowering of the anomalous 0" states in Ge and Se
isotopeszz). In such a situation, we might have to increase the number of
collective coordinates in order to treat such a distinguished mode-mode
coupling. To clarifying the criterion for determining the dimensionality of
the "maximally decoupled" collective hypersurface is an important open subject
which is probably related to the convergence of the %-expansion and also to the
stability of the collective submanifold. In any case, experimental identifi-
cation of the two-phonon states will be a crucial test for any theory of nuclear

anharmonicities.
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6. DIABATIC QUASIPARTICLE REPRESENTATION FOR ROTATING SHELL MODEL

It is possible that the #-expansion is divergent. We want to emphasize,
however, that physically meaningful results can be obtained even in such a case
by a cut-off of the expansion at a finite order, if we choose the collective
varfab1es in an appropriate way. As an illustration of -this idea, we present
in Fig.8 the quasiparticle energy diagram in the rotating potential to be used
in the high-spin yrast spectroscopy. The TDHB state vector describing a

uniform rotation around the x axis may be written as
-eJ 1Gq
1#(Z, 80> = e e 19> (25)

We expand the unknown operator G in a power series (not of the angular momentum
I but) of the rotational frequency w,

, 2 (2)
q____ q(O)_'_ wq() + (A)G 4 e (26)
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and successively determine G(”) so as to satisfy the basic equations of the SCC
method, which take the following form in the present case:

d P -G N
(1) T(w) = -S%{ with W)= <¢ |e T(H—wa)eGrWo} (27)
(i) S<Ble  T(r-wIreTig> =0 (28)

(111) <4, e T e Tie> = Tw) 4q <¢°:é‘q-§—w eTigy=0 (29)

Then, it is found that the cut-off of thew-expansion results in a diabatic
level diagram (in place of the adiabatic one)zo. The construction of the
diabatic basis means that we have extracted from the cranking Hamiltonian a
regular part that just describes the effect of the collective rotation. Thus,
by means of it, we can achieve a clean separation between the collective and
aligned angular momenta. We can then proceed to a stage on which the RPA, BET
and SCC method are applied for treating the anharmonic vibrations and particle-
vibration couplings in the rapidly rotating frame of reference. This interest-

ing subject remains to be done.
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7. CONCLUDING REMARKS

In concluding this talk, we would like to emphasize that we are still in an
early stage toward understanding non-linear collective dynamics in finite quan-
tum systems such as the nucleus. It is our hope that the first application of
the SCC method to real nuclear phenomena, which has been presented here,
represents a small but steady step toward this aim.
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Effects of Static and.Dynamica1 Triaxial Deformations
on Properties of B(M1) and B(E2) in Odd-A, High-Spin States
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Department of Physics, Kyoto University, Kyoto 606, JAPAN
* Department of Physics, Kyushu University, Fukuoka 812, JAPAN

ABSTRACT

Effects of both the static and the dynamical triaxial
deformations on the signature dependence of B(M1) and B(E2) in
odd-A nuclei are studied by applying the RPA formalism based on
the rotating (cranked) shell model to odd-A nuclei. Typical
results of numerical calculation are presented for 'S Lu and
157Ho, for which most detailed experimental data are available.

The main purpose of this talk is to discuss the effects of
triaxial deformations on properties of B(M1) and B(E2) between
high-spin, unique-parity states in odd-A nuclei. We shall consider
both static and dynamical deformations away from axial symmetry. By
"static triaxial deformations" we mean equilibrium shapes deviating
from axial symmetry, while we call vibrations in the gamma degree of
freedom (shape-fluctuations about the equilibrium point) "dynamical
triaxial deformations."

As was pointed out by Hamamoto and Motte]son,l)’z) occurrence of
triaxial equilibrium shapes is expected to bring about a characteris-
tic dependence of B(E2; AlI=-1) on the signature quantum number o« of
the high-spin, unique-parity states in odd-A nuclei. The signature <
is, as is well known, related to the angular momentum I by I=c(+even.
On the other hand, the B(M1l; Al=-1) are expected to exhibit a strong
signature dependence already in the axial symmetric case, since they
are closely related to the signature splittings of the quasiparticle
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energies which generally occur in the rotating frame. As a matter of
fact, the B(M1) is also affected by the triaxial shapes, because the
signature splittings depend on the triaxia1{ty parameter 35 of the
rotating potential.

In fact, strong signature dependences of B(M1) and B(E2) have
been observed in the AI=-1 transitions between high-spin,

3),4)

unique-parity states in odd-A nuclei. These recent experimental

data have been discussed by Hamamoto and MotteWsonl)’z)

mainly by
means of the particle-rotor model.

The basic aim of our work is to develop, on the basis of the
rotating (cranked) shell model, a microscopic description of odd-A
high-spin states along the 1ine parallel to the particle-rotor model.
Our model may be regarded as a particular version of the parti-
cle-rotor model, because the basis of the intrinsic state vectors is
determined by the rotating (cranked) shell model as a function of the

rotational frequency W Our model may also be regarded as an

rot’
extension of the traditional quasiparticle-vibration coupling models,
5) 6) .

into

the rotating frame of reference. One of the merits of our approach

like the Kisslinger-Sorensen's one”’ and the Soloviev's one,
is that it can be easily applied to high-spin states involving many
aligned quasiparticles, whereas in the conventional particle-rotor
model the treatment of the multi-nucleon-aligned bands becomes
increasingly difficult with increasing number of aligned nucleons.
On the other hand, our model has a limitation that the gamma vi-
brations and the wobbling modes are treated by the RPA within the
small amplitude approximation.
Our microscopic approach consists of the following four steps.

1) We construct a diabatic quasiparticle representation for a de-
formed potential which is uniformly rotating with angular fregquency
Ujrot' The single-particle potential is of the Nilsson plus BCS form
and is axially asymmetric in general. This step provides us with a
diabatic basis for the rotating (cranked) shell model. The diabatic
basis enables us to unambiguously specify individual rotational bands
in which internal structures of the quasiparticle state vectors
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smoothly change as functions of u)rot.
2) The residual interaction between quasiparticles consists of the
monopole-pairing and the doubly-stretched quadrupole forces, and is
treated by means of the RPA in the rotating frame. This step deter-
mines the normal modes of vibration.

3) For odd-A nuclei, the couplings between the aligned quasiparticles
and the gamma vibrations 1in the rotating frame (see Fig.l) are
treated in the same manner as in the traditional quasiparticle-phonon

coupling mode]s.s)’s)‘

1 Y
a 5 a=+ >
Y(a=0)
a: +—1- },l a: +i }).
2 2
Fig.1 Elementary vertices of the couplings between - the

quasiparticles (solid 1lines) and the gamma vibrations (wavy
Tines). The signatures o« of these modes are indicated.

The internal wave functions LXB(LUrot)> are then written as superpo-
sitions of the quasiparticle (a ) and the gamma-vibrational (X+)
excitations : '

| Xn(Wyet)) = % Fop) a9

-_:Z ff”cﬁw o Ky 8> + Zﬁ“%ﬁ@%%“” (
where X; and X% represent the gamma vibrations with positive («=0)
and negative (X =1) signatures, respectively. These internal wave
functions are calculated for each value of C*>rot° The gamma vi-
brations are taken into account up to the two-phonon states.
4) We extend the Marshalek's treatment7) of fhe "Nambu-Goldstone
modes", I’+ and [7, in the RPA (which reorient the angular momentum

1)



468

of the collective rotation) to odd-A nuclei., Namely, we make the
following replacement

+ ~
_ L (= s L& _ Fam
r _JZlo(J‘)RPA JzL( L J- >,

(2)

2

— _ _{ 2 1 T _ = (AP)
| —JZIQ(J*)RPA_,—é fﬁc,(I* N

A

where (Ji)RPA denote the RPA approximations for the original
(microscopic) angular momentum operators, and f+ and jﬁqp) represent
the total (external) and the gquasiparticle (internal) angular
momenta, respectively. This ansatz is the most crucial point of our
approach, and corresponds to the fact that the state vectors are
constructed in a direct product form of the rotational and the

internal wave functions :

| ¥ @)y = TIMIO @ [ X (@) > )

We adopt the Holstein-Primakoff-type boson representation for the
D-functions. Then, the rotational wave functions \IMHQ) can be

written in the subspace K =1 in the following form:7)
_ o~ L (I-INS l S I-I,

(4)
where K is the projection on the x-axis which is jdentified with the
rotation axis.

By means of the above procedure, we obtain microscopic ex-
pressions for the intrinsic M1 and E2 operators as follows :

M1 transitions with Al=-1

~cin)

n

A (RP) ceff) ~
M =08, = a0+ (80 - 5,00 55
P2 (S XL e pT XD 9
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where :l(qp) and g(qp) denote the orbital and the spin angular momenta
of quasiparticles. The effective g-factor of the RPA vacuum state,
drpp: CaN be written asl)

8 =5R+(8{_8Q> 1‘-~

RPA <jx> R+

(6)

where i and R are the angular momenta produced by the aligned
quasiparticles and  the collective rotations, respectively, and 9p
denotes the rotational g-factor. We see from the above expression
that B(M1) values would increase when the (vil3/2)2 alignment takes
place, because 9ppA is reduced by this alignment effect.

E2 transitions with Al=-1

A cin) j (%P> : T %P j@?)
,_/_ n _ _ i 2 J 2
Q. = oECQy T f €Q,> (2 o )

~1) +1 | -2 CEP)
+Z(/\: X:‘*/\(n)x“) T T,
I‘é’ L\.(%F)
~ _ 13 _ AE \.}3
i [F @y« @p(1raen T2 T
-1 + +1
£ (NVXL « NPRD)
" ’ (7)

where lerll) is quantized along the x-axis while <QK>(K=O,2) are
along the z-axis. In Eq.(7), we have eliminated the operator 13yq
by using an approximate relation

po]
~—

Sy 1-s

- E
iJ} ~ 1) A

-H u)"rdt

2 (3p)
2

’ (8)
which becomes exact in the axially symmetric limit. Here I is the

angular momentum of the initial state, and AE denotes the signature
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splitting of the quasiparticle energies associated with the large-j,
unique-parity orbit. We note that the phase factor (-1)1'J is
positive (negative) for the favoured (unfavoured) states. This
alternation in sign brings about a characteristic signature depen-
dence of the B(E2; AlI=-1) when <:Q2> #0. If the vibrational
contributions are neglected, this expression (educes to that of
Hamamotol) when j=1/2, because the factor (-1)I'JLAE/ﬁu)rO
(-1)1"Y2 for j-1/2.

;| becomes

Below we present typical results of numerical calculations for

165 157

Lu and Ho, for which most detailed experimental data are
available. In these calculations, we use the same static triaxial
deformation parameters as in Hamamoto and Motte1son,1)’2) except for
the five-quasiparticle aligned band of 16-5Lu where Xb=0° is assumed.
The procedure for fixing other parameters entering in the calculation
js described in Ref.8).

Figure 2 shows the ratio B(M1; I->1-1)/B(E2; I->I-2) for

as a function of O

165Lu

rot* The solid (broken) 1lines represent the
ratios calculated by (without) taking into account the couplings with
the gamma vibrations. The observed rotational bands may be roughly
classified into three groups according to the number of aligned
quasiparticles. The first group (15/2<1<29/2) involves the aligned
quasiparticle Ap or Bp. The second (35/2<1<51/2) involves the
quasiparticle configuration ApAan or BpAan. The third (I259/2)
involves ApAanCnDn or BpAanCnDn' Here, Ap, Bp and An’Bn’ Cn’ Dn
are the familiar notations denoting the aligned quasiparticle states
associated with the 7th11/2- and ui13/2-orbits, respectively. Note
that we obtain the crossing between the second and the third
configurations at Rw ~ 0.4 MeV in good agreement with the

rot 3)
suggestion from the experiment.

The interactions between the two
configurations are neglected in our calculation with the use of the
diabatic representation, although the experimental data indicate that
these are rather strong. We have selfconsistently calculated the

pairing gaps. The resulting neutron gap Zln is, for instance, 0.72
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Fig.2 The ratios B(Ml; I5I-1)/B(E2;1>1-2) plotted as a function
of Wwsr. The solid triangles and the solid circles with error
bars denote the experimental data. The solid (broken) Tines
represent the results of calculation with (without) taking into
account the couplings with the gamma-vibrations. The triaxial
deformation parameters are assumed to be 2, =18°,10° and 0° for
the one, three and five quasiparticle bands, respectively. Note

- that our definition of the sign of &, is opposite to the Lund
convention. Other parameters of calculation are : 3=0.21,
S =20,7gSF=>, & =1.18 MeV, &n=1.16 MeV for the
one-quasiparticle band, &p =1.18 MeV, &, =0.72 MeV for the
three-quasiparticle band, and &p =1.18 MeV, &,.=0 for the
five-quasiparticle band. In the upper portion of this figure,
calculated values for the signature-splittings of the
qguasiparticle energies are compared with the experimetnal ones.
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Fig.3

B(E2:I-T-1)
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The calculated values of B(E2; I-=I-1) divided by
(5/16 T ){eQ, Y ¢1,7/2,2,0|1-1,7/2>%  The three cases with
different &, values ( ¥,=%15°,0°) are displayed. The solid
(broken) 1lines show the results with (without) taking the
couplings with the gamma-vibrations into account. The deforma-
tion parameters used are (3=O.20, Akp=l.21 and 4$n=l,25 MeV.
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MeV at Fc0r0t=0.2 MeV for the three-quasiparticle band and vanishes
for the five-quasiparticle band. We see 1in this figure that the
signature dependence is well reproduced especially 1in the
highest-spin region. Another interesting feature of Fig.2 is that
the ratio increases when the 113/2 neutrons align. This trend is
caused by the decrease of the 9rpA- The calculated values of 9rpA
are 0.29~0.27 for the one-guasiparticle band, -0.12~-0.04 for the
three-quasiparticle band, and -0.05~0.04 for the five quasiparticle
band. These values of 9ppa smoothly change as a function of ujrot
within individual bands. For the sake of reference, we mention that
the static triaxial deformations (which we calculated by using the
"isotropic velocity distribution condition"B)) are B’O==O°~=8° for
the one-quasiparticle band, Eb = 6°~11° for the three-quasiparticle
band, and quz 0° for the five quasiparticle band (Note that our
definition of the sign of }B is opposite to the Lund convention.l))
These values of Xo smoothly change as a function of Lorot within
individual bands.
Figure 3 shows the calculated values of B(E2; I>I-1) for 157Ho.
It is seen that the signature dependence originating from the
couplings with the gamma-vibrations 1is stronger than that from the
static triaxial deformations. Consequently, the B(E2; I->1-1) from
the favoured states (whose I=j+even) become always larger than those
from the unfavoured states (whose I=j+odd), in agreement with the
experimental data.4) On the other hand, the calculated signature
dependence of B(E2) is smaller in magnitude than experimental data.
Also, the large experimental va]ues4) of the ratio B(E2; I-1-1)/B(E2;
I>1-2) could not be reproduced. In this connection, we note that
the calculated values of the factor 4AE/ﬂu>rOt are 0.43, 0.08 and
12%05 for BB=15°, 0° and -15°, respectively, at tcorot=0.2 MeV in
Ho, which are considerably smaller than unity. Thus, the
signature dependence originating from the static triaxial defor-
mations is significantly suppressed in this nucleus.
We have carried out a systematic analysis also for other odd-A
nuclei, and the results of calculation are available for further
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discussions.
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ABSTRACT

Strength functions for giant octupole resonances built on the superdeformed
_rotational bands are calculated by means of the RPA based on the cranking

{;_\)nodel. It is suggested that strongly collective octupole vibrational bands appear

very near to the superdeformed yrast line.
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1. Introduction

In 1986, discrete gamma-rays from a superdeformed (SD) rotation band were
identified!)?) in !52Dy. This year, 1989, several exciting progress have been
achieved in the study of the superdeformed high-spin states®>: (1) A band-
crossing between two different SD bands was first observed?) in *6Gd, (2) A
new region of SD bands was found®) in 91~19*Hg, (3) Excited SD bands were
identified® in 1*°Gd, 13!Tb, 133Gd and "% Hg. Thus, a new .high-spih frontier,
called SD spectroscopy, is just opening.

The excited SD bands may be interpreted in terms of the rotating shell model
(cranked shell model) as one-particle and/or one-hole excitations across the closed

3). Thus, we can learn from these

shells associated with the 2:1 shell structure
new experimental data various properties of single-particle modes in the rotating

superdeformed potential with axis ratio about 2:1.

In the near future, more efficient gamma-ray multi-detector arrays, like the
ones in Gammasphere project in U.S.A. and Euroball project in Europe, will
be constructed. Then it will become possible to observe not only noncollective
particle-hole excited configurations of the SD shape but also discrete gamma-rays
associated with the collective vibrations built on the SD high-spin states. Due
to large equilibrium deformations and rapid rotations, we should expect drastic
changes of the characters of the multipole shape vibrations when they are built on
the SD shape. As is well known, properties of nuclear vibrations are intimately
connected to the shell structure. For instance, the existence of two kinds of
qua-drupole vibration, i.e., the giant quadrupole resonances with AN,,. = 2
and the low-lying 2% phonons with AN,;c = 0, is a direct consequence of the
shell structure. Because we have new shell structure, called 2:1 shell structure,
for the SD states, it is reasonalbe to expect that new properties emerge for the
collective vibrations built on the SD bands. We would even speculate a new type

of vibration associated with the 2:1 shell structure.

For the purpose of giving theoretical suggestions for the open questions men-
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tioned above, we have been calculating strength functions for multipole shape
vibrations built on the SD bands by means of the RPA based on the cranked
Nilsson model. Numerical calculations have been carried out up to now for the
isoscalar A = 0,1,2 and 3 modes, and for the isovector A = 0,1 and 2 modes.
Recently, we have obtained a conclusion that strongly collective octupole vibra-
tions are expected to appear near the SD yrast band. Excitation energies of the
octupole vibrations are so low that they might appear below the barrier between

the first and the second minimum of the collective potential energy surface.

2. Formulation of Microscopic Model

We start from the cranked Nilsson Hamiltonian,

/
h' = hN‘il.’Soh— WrotJz,

and use the doubly-stretched multipole-multipole interactions as residual inter-

actions:

H=# - 0@k
AK
where Q;K are the multipole operators'defined in terms of the doubly-stretched
coordinates z; = (w;/wg)z; with i = 1,2 and 3. Here (w;/wo) denotes the ratios
of the frequencies of the deformed harmonic-oscillator (h.o.) potential to that of
the spherical one. The importance of the doubly-stretched multipole-multipole
interaction for deformed nuclei was first pointed out by Kishimoto? in connection
with the deformation splitting of the giant quadrupole resonances. The force-
strength X)x can be determined from the selfconsistency conditions between the
potential and the density, once the single-particle potential at the equilibrium
is given. The details can be found in a recent publication by Sakamoto and

Kishimoto®). For instance, the octupole coupling strength X3k is given by

Yo =M (1)) + 38 = (P,

R T LR
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-1
+ 8%(1{?(71{? —67) + 72)((#134)”)0} ,

where P, denotes the Legendre polinomial. We evaluate the expectation val-
ues appearing in the r.h.s. by using the calculated yrast configurations for the
cranking Hamiltonian h’. We then treat the residual interactions in the RPA,
and calculate the strength functions for the multipole operators @, through the

response functions R( QT\K, Qrx):

S(Qag;w) = %me(QL;, Qai;w + ie€)
ﬂ Z 5(“-’71 - w)l (nl Q/\K IO) |2‘

The RPA-response functions are calculated from the unperturbed response func-

tions Rg through the well-known relation:
R =(1- Rox)™'Ro,

where R, Ry and X are to be regarded as matrices with respect to the indices
(AK) denoting different multipole fields. Of cource, X is a diagonal matrix whose
elements are X . In fact, we first calculate the response functions for the doubly-
stretched multipole operators Q:\IK and then make a linear transformation into
the representation in terms of the ordinary multipole operators Qyr. Details
of this procedure can be found in Ref.9). Thus, although we call the modes
associated with the Q;K operators “octupole modes ” for brevity, they are in fact
linear combinations of the ordinary octupole fields r3Y3x and the compressional
dipole fields 73Y, . It should also be mentioned that the spurious center of mass

motions associated with the rY) g operators are also separated out in a similar

manner as in Ref.10).

The strength functions thus obtained are those defined in the rotating frame.

Within the uniform-rotation approximation inherent to the cranking model, the

il o
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strength functions in the laboratory frame are obtained through the relation?)

S(Quiw) = ~ImR(QL,, Qausw = prer).

Here ), are the multipole operators whose components p are defined with re-
spect to the rotation axis (x-axis). They are related to Qyx, with K being the
symmetry axis (z-axis) component, by linear transformations®). We do not cal-
culate the widths of the multipole vibrations. Instead, we treat the imaginary
part T of the energy as an energy-smoothing parameter in order to focus our

attention on the gross features of the strength functions.

Procedure of numerical calculation is essentially the same as in Rel.9). The
parameters v, and vy of the Nilsson Hamiltonian are the same as in Ref.1l),
except that we use the doubly-stretched coordinates also for the ({-s)— and (21—
terms. The RPA calculation is done using 9 major shells; N,oc = 2 - 10 for
the neutrons and N, = 1 — 9 for protons. The pairing correlations and the
hexadecapole deformations are neglected in this calculation. The equilibrium
deformation is fixed to be 8, = 0.56 for ¥*?Dy. This value was estimated at
Wrot/wo = 0.05 by means of the Strutinsky method and assumed to be inden-
pendent of wyo. Numerical calculations have been carried out for the isoscalar
A =0,1,2 and 3 modes and the isovector A = 0,1 and 2 modes. The results for
the A = 0,1 and 2 modes were partly reported in Ref.12). Quite recently, we
obtained an interesting result for isoscalar octupole modes, so that let us focus

our attention on them in the following,.
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3. Octupole Strength Functions

Figure 1 shows the octupole strength functions calculated for "Dy at wo =
0. We clearly see a prominent peak of the K = 0 component at about 2 MeV. To
understand the microscopic structure of this peak, we show in Fig.2 the major
part of the unperturbed particle-hole configurations in the Nilsson potential,
which contribute to the K = 0 peak. We see that they transfer the asymptotic
quantum numbers (N, n3, A) of the Nilsson diagram by AN,,c = 1,Ang =.1
and AA = 0. Their excitation energies degenerate at hw; = 5 MeV in the limit
of the deformed h.o. potential. In spite of the splittings due to the (£-s)— and
£~ terms, these particle-hole configurations cluster at about 5 MeV also in the
case of the Nilsson potential. Due to the attractive octupole-octupole residual
interactions, their energies are lowered, and coherently contribute to form the
collective octupole vibration at about 2 MeV. Similar consideration applies also

to the low-energy K = 2 peak, though its strength is much weaker than that of
the A’ = 0 peak.

Figure 3 displays the strength functions which are calculated at hw,y =0.5
MeV and transformed into the laboratory frame of reference. In this figure, the
strength functions are classified according to the rotation axis (x-axis) component
u, instead of the K-quantum number (z-axis component) used in Fig.l. In the
cranking model, the p—value corresponds to the transferred angular momentum
AT between the states belonging respectively to the octupole vibrational SD
band and the yrast SD band. We see prominent low-energy peaks of the p = £3

components. They are associated with the K = 0 peak shown in Fig.1.

|
I
i
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STRENGTH FUNCTION
6
A= 13
.20E+E§_
DELTA= 0.56
OMEGA= 0.00
2
Y D}f
K=0
.10E+04]
l
|
s
\ K=0
\
\
K=2\
/2.h\ / e,
.00E-00 St - , 1
0l.00 15.00

30.00
EXCITATION ENERGY(MEV)

Fig.1 Strength functions (in the intrinsic frame) for the octupole operators r3Y;

(K =0,1,2 and 3), calculated for !*?Dy with the use of the Nilsson

potential with §,,c = 0.56. Energy-smoothing width T' = 0.3 MeV is used.
The unit is 7(h/Mwg)?®/hwg.
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(301 1/2]—= 411 1/2] —
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—-—1[532 5/2 (651 1/2] == 1523 7/2)
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Fig.2 Particle-hole configurations with respect to the closed shells, Z = 66 and
N = 86, for the Nilsson potential with §,,. = 0.56, which constitute the

low-frequency K = 0 octupole vibration.
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STRENGTH FUNCTION
5 = 3
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Fig.3 Octupole strength functions (in the laboratory frame) at the rotational
frequency hw,e = 0.5 MeV. Parameters used in the calculation are the
same as in Fig.l. Note, however, that the components p of the octupole

operator r?Y;, here denote the projections on the rotation axis (instead of

the symmetry axis).
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4. Multipole Vibrations for the SD H.O. Potential

The above result of large-scale numerical calculation is in good agreement

with that expected from an analysis of the multipole shape vibrations associated

with a deformed h.o. potential. Let us here briefly discuss the properties of them.

Table 1

Poles of the unperturbed response function in the case of the deformed h.o.

potential at the 2:1 shape. Energies are given in unit of Aw,. The repeated same

numbers in the third column mean the degeneracy.

A K energy
(rYig)" 0 1
1 2
(r*Yar)" 0 2.4
1 1,3
2 4
(r*Ysx)" 0 1,3,3,5
1 0,2,4,6
2 1,3,5
3 2,6
(r*Yag)" 0 2,2,4,4,6,8
1 1,1,3,5,7
2 2,2,4,6,8
3 1,3,5,7
4 4,8

-~ -
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In Table 1 are listed the poles of the unperturbed response functions Rq
for the doubly streched multipole operators (r’\Y,\K)” at the 2:1 shell structure.
Due to the relation hw; = hwy = 2hw,, they appear at the integer multiples of
hw,. Let us focus our attention on low-frequency collective modes. The Ohw,
excitation for the (7‘3Y31)“ field is particulary interesting from this point of view.
This mode, however, corresponds to excitations within the valence space of the
2:1 shell structure. It is therefore forbidden at the closed shell. In the case
of isoscalar modes, the 1hw, poles for (rY};) and (T2Y21)” become the zero-
frequency Nambu-Goldstone modes when the residual interactions are switched
on, corresponding to translations and rotations, respectively. Thus, the lhw,
poles for (r3Y3g)", (r3Y3s) (r4Y41)“ and (r4Y43)“ are the candidates for the low-

frequency collective vibrations. It may be instructive to compare the properties

1

of the isoscalar (r3Y3K)” excitations with those of the well-known isovector giant
dipole resonance (GDR) associated with the (rYix)" field. For K = 0 and I,
their poles appear at hw, ~ 5 MeV and hw; = 2hw, =~ 10 MeV, respectively. In
the case of GDR, they are shifted up by repulsive residual interactions to about
8 MeV and 16 MeV, respectively. On the contrary, in the case of the isoscalar
octupole vibration, they are shifted down by attractive residual interactions to
about 2 MeV (K =0) and 6 MeV (K = 1), respectively.

The octupole strength functions calculated at the closed shell (Z = N = 80)
for the deformed h.o. potential with the axis ratio 2:1 are displayed in Fig.4.

They are remarkably similar to the result of realistic calculation presented in
Fig.1.

-
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STRENGTH FUNCTION
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Fig.4 Octupole strength functions (in the intrinsic frame) calculated at the closed
shell (Z = N = 80) for the deformed h.o. potential with the axis ratio 2:1.
Energy-smoothing width T' = 0.3 MeV is used. The unit is 7(h/Mwp)*/hwy.
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5. Concluding Remarks

We have suggested that extremely collective K = 0 octupole vibrational
SD bands might exist very near to the yrast SD bands. Since B(E1) for the
octupole vibrations in deformed nuclei is propor‘tional to B2(B3), we expect that
discrete gamma-rays associated with E1 decays of these octupole vibrations will
be observed by means of the next generation of gamma-ray multi-detector arrays.
It is also possible that these E1 transitions associated with the octupole vibrations

play certain roles in the population process of the SD bands.

It should be emphasized that the K = 0 octupole vibration discussed in this
talk is only one instance out of many possible modes of vibrations which may be
built on the SD configurations. Search for new modes of vibration is certainly one
of the most important subjects in the future SD spectroscopy, which is growing

with increasing resolving power of gamma-ray multi-detector system.

Finally, we mention that a candidate for the octupole vibrations built on the

SD states was recently suggested'®) at 830 keV (from the second minimum) in

the case of the fission isomer of 235U,

The autors would like to dedicate this paper to late Professor Taro Tamura.
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SOFT OCTUPOLE VIBRATIONS WITH K =0,1,2,3
BUILT ON SUPERDEFORMED BANDS

S. Mizutori and K. Matsuyanagi
Department of Physics, Kyoto University, Kyoto 606, Japan

Y. R. Shimizu
Department of Physics,Kyushu University, Fukuoka 812, Japan

~
ABSTRACT

Properties of low-frequency octupole vibrations built on superdeformed
rotational bands are investigated by means of the RPA in a uniformly ro-
tating frame. Large configuration space composed of 9 major shells is used.
Numerical examples are presented both for the 12Dy and the *?Hg regions.
We always obtain extremely collective octupole vibrations with K=0. We
also obtain strongly collective octupole vibrations with K=1, 2 and 3. It
is shown that the properties of the K=1 octupole vibrations are especially
sensitive to the amount of the static pairing correlations. Microscopic struc-
tures of these soft octupole vibrations and their character changes associated
with the increase of the Coriolis-mixing effects are investigated.

INTRODUCTION

Quite recently, many excited configurations as well as yrast states of
superdeformed rotational bands have been found in both the Hg region and
the Gd-Dy region.! Their microscopic structures are now lively discussed
mainly in terms of the particle-hole excitations from the yrast configurations
for rotating deformed potentials.? Thus,a new field of yrast spectroscopy for
nuclear structure, called “superdeformed spectroscopy” is just opening.

We are interested in the question which kind of collective vibrations
could be built on such superdeformed rotational bands. As is well known,
properties of nuclear vibrations are intimately connected to the shell stru-
ture. Because of the new shell structure called “the 2:1 shell structure” in
superdeformed nuclei, which is drastically different from that of ordinary
deformed nuclei, we expect that new properties emerge for the collective
vibrations about the superdeformed equilibrium shape.

© 1992 American Institute of Physics 287
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288 Soft Octupole Vibrations with K=0,1,2,3

One of the most important characteristics of the 2:1 shell structure
is that each major shell consists of about equal number of positive- and
negative-parity single-particle levels. This approximate degeneracy of
positive- and negative-parity levels is very favourable to build collective
shape vibrations with negative parity. In this talk, we show that we can
indeed expect extremely collective, low-frequency octupole vibrations with
K=0, 1, 2, 3 built on superdeformed rotational bands.

PROCEDURE OF MICROSCOPIC CALCULATIONS

Basic framework of our calculation is the RPA based on the cranked
Nilsson plus BCS potential. This microscopic method is easily adapted for

investigating the properties of collective vibrations built on the superde-
formed rotational bands.

We start from the cranked Nilsson plus BCS Hamiltonian,

b =‘hNiIsson - AZ(CIC% + C';C{) — AN - wrotja: )
)

with A and A being the pairing gap and the chemical potential, respectively,

and use the doubly-stretched octupole-octupole interactions as residual in-
teractions :

1
H=h"- §ZX3KQ§}<Q3’K )
K

where Q;K are the octupole operators defined in terms of the doubly-
stretched coordinates :z:: = (wif/wo)z; with ¢ = 1,2, and 3. Here (w;/wp)
denote the ratios of the frequencies of the deformed harmonic-oscillator
potential to that of the spherical one. The force-strengths X3k can be de-
termined from the selfconsistency conditions between the potential and the
density.? The equilibrium deformation is calculated by means of the Struti-
nsky method. The pairing gaps, A, and A,, are determined as functions
of wr,t by solving the gap equations for protons and neutrons. The pairing-

force strengths, G, and G, are determined by means of the smoothed
gap-equation method.

We treat the residual interactions in the RPA, using a large configuration
space composed of 9 major shells (for both protons and neutrons). (See

Ref.4) for more details.) All solutions of the RPA equations whose eigen-
frequencies are less than 3 MeV/k are found.
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QUALITATIVE CONSIDERATIONS

Before discussing the result of large-scale numerical calculations, it is
instructive to consider at wy,; = 0 the simple case of the deformed harmonic-
oscillator potential with axis ratio 2:1. By writing the octupole operators
Qsx = mYag in terms of the creation and annihilation operators of the
oscillator quanta, we can classify the particle-hole excitations associated
with these operators in the following way. The particle-hole excitations
energies for the K = 0 modes are classified into four cases: w;,2w; —
w;, 3w, or 2w + w,;, where w; and w, denote the harmonic-oscillator
frequencies perpendiciular and parallel to the symmetry axis, respectively,
and where we put A = 1. In a similar manner, those for the K =1 modes
are classified into four cases: w; — 2w,,w),w; + 2w, and 3w,. Likewise,
the K = 2 modes are classified into w;,2w; — w, and 2w, + w,, and the
K = 3 modes are divided into w, and 3w, . Following Bohr and Mottelson,®
let us now define the shell quantum number Ny, by N,, = any + bng
and the spacing of the shells w3 by wy = wy/a = w,/b, for a deformed
axially symmetric oscillator potential with a rational ratio a : b between the
frequencies w; and w,. In the case of axis ratio 2:1 under consideration,
they are given by Ny, = 2n) + n3 = 2N, 5. — n3 and w,, = w,, respectively.
Thus the K = 0 octupole modes consist of w,j, two kinds of 3w,p, and 5w,y
excitations, which transfer the shell quantum number N,; by AN,, = 1,3
and 5, respectively. In a similar way, the K = 1 octupole modes consist of
0, 2wy, 4w,y and bwy, excitations which correspond to AN,; = 0,2,4 and
6, respectively. Likewise, the K = 2 modes consist of AN,, = 1,3 and 5
excitations, and the K = 3 modes AN,; = 2 and 6 excitations. For a doubly
closed shell nucleus where the single-particle levels are completely filled up
to a certain number of N, (for both protons and neutrons), the AN, =0
excitations appearing in the K = 1 octupole modes are forbidden by the
Pauli principle. Thus, the lowest-energy particle-hole excitations are those
with AN,; = 1 which occur for the octupole modes with K = 0 and 2. Due
to the attractive octupole-octupole residual interactions, collective octupole
vibrations with K = 0 and 2 constituted from coherent superpositions of
the AN, = 1 particle-hole excitations are shifted down in energy much
below their unperturbed energies w,; ~ 5 MeV.

Figure 1 shows the transition strengths for the lowest solutions of the
RPA with different values of K. The lower part shows the strengths for
the octupole oeprators @Q3x = r’Y3g, while the upper part those in the
doubly-stretched coordinate system. We see that the octupole strengths
are appreciably shifted to the modes with lower values of K, whereas they
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]
b
§

are of comparative magnitude for all K in the doubly-stretched coordinate
system. This property can be easily understood by analytically calculating
the energy-weighted sum-rule values,

Si(K) =S wn | (n]Qax |0) |2 and S{(K) = wal(n|Qsx 0}’

At the superdeformed shape with w) = 2w,, their ratios are evaluated to
be

SUK =0):S(K=1):S1(K=2):5(K=23)=50:39:15:5,
SHK=0):8(K=1):5(K=2):5(K=3)=8:12:15:20 .

Strength [(fi/mw,)*/?]

K=3 D-Stretched
30.0} g
K=1
=2
20.0F
10.0k I % : Ur:perturbed |
i : |
———
K=0 ) .
500l Original
K=1
40.0¢ .
30.0F K=2
20.0¢F =3
10.0¢F I 1
I I
. : . !
0.5 1.0 1.5 2.0
Excitation Energy [fiw.]
Fig.1 Octupole strengths for the lowest RPA modes with K = 0,1,2,3 cre-

ated on the harmonic-oscillator potential with the axis ratio 2 : 1

Next, let us consider the situation where appreciable amount of the
static pairing correlations is present. In this case, two-quasiparticle excita-
tions with K = 1 within the same major shells (AN,; = 0) are alowed (see
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Fig.2). Then, because positive- and negative-parity levels are degenerate
within the same major shells, they are strongly correlated by the attractive
octupole-octupole interactions to generate a very collective octupole vibra-
tion. In this respect, the low-frequency K ='1 octupole vibrations have
some similarities with the low-frequency quadrupole vibrations in spherical
open-shell nuclei. Obviously, the above consideration on the K = 1 octupole
modes is relevant especially to superdeformed open-shell nuclei having va-

lence particles(holes) outside (inside) of the closed shells, since they are
expected to have finite pairing gaps A.

ity _ - - - 77—~
P e T --C particle
® " __L____
T e Ferme
sutface
Par.‘ty . _ Y
% —éL— ____ ____ hole

A=0 A%X0
AN =4 ANgpey = O

Fig.2 Illustration of the K = 0 and K = 1 octupole vibrations built on the
superdeformed shell structure.

RESULTS OF CALCULATION FOR, THE 32Dy AND ¥?Hg REGIONS

Let us proceed to discussions on typical examples of the RPA calculation
based on the cranked Nilsson-plus-BCS potential.

Figure 3 shows the octupole strength functions with K = 0,1,2 and
3, calculated for ®?Dy at w,oy = 0 . The upper columns display the
RPA strengths, while the lower columns the unperturbed ones without the
octupole-octupole interactions. We see prominent peaks with K = 0 be-

IR PN -~

.

STt R S e

. 4 “m@ﬁzm}pﬁ P

L

NS T

AN Tl T AReTErNG 1 ) il

Y AN 'v“‘"‘?w’. AI vy

I hd

VAR



TN 6 BIRC A 4 i e

292 Soft Octupole Vibrations with X=0,1,2,3

2500, _
B RPA strength function RPA strength function
2000 K=0 mode T K=1 mode
237.6 152Dy
1500+ "4 Bosc=0.56 T~
A, =0.00
A, =0.00
1000 -
91.2
50071 -+ 31
50 IlllllIrfllllflIll(l’flll[!rlllll!ll llrI[frrTﬁllll|lllllllllllrl’llllll
unperturbed strength function unperturbed strength function
40 T T
30 T T
20 T T+
10 T T
1 Al N P | | | - L ]
lllilllll l|7l7rllll'rl'l Ilrllfl—lfil’l] rTf[[lerlﬁlllrrlllllll[l’llllll Il
25001 -+
007 RPA strength function RPA strength function
2000 K=2 mode _{ K=3 mode
15001 T
1000 T 19
q
5001 12 .
5& Il'IIr"llIIIIIllllllllrflllllllltlll lllf]lllTOIlfl'lllllI[Illlllllll[lrr1
40 + unperturbed strength function A4 unperturbed strength function
30 T -+
20 + -
10 T -+
llll]lrllIIFIII‘V_VTﬂrTr‘llI:lilrfjfllllilhl.l[)ll Ilrilll)l'llll[lrlllllllllIrrlr'llllTrl

Fig.3 RPA strength functions for the doubly-
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stretched octupole oeprators

Qsxs calcula?ed for 32Dy at hw,or = 0. The unit is (A/Muwg)®. The
numbers beside the prominent peaks indicate the B(E3) values in

Weisskopf units.
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low 2 MeV in the RPA strength function. The calculated B(E3) values
for these peaks are written in Weisskopf units. These values indicate that
they are strongly collective in character. In fact, the calculated B(E3) val-
ues are much larger than the largest known value B(E3; 3= — 0%) = 40
w.u. of the 3~ state in 298Pb. This figure represents a typical example
for the superdeformed doubly closed-shell nuclei whose pairing gaps A are
zero for both protons and neutrons. The low-frequency K = 0 octupole
vibrations are generated mainly from one-particle-one-hole excitations with
AN, = 1,Anz = 1 and AA = 0. Their configurations are displayed in
Fig.4. We see that relative single-particle energies for these particle-hole
configurations cluster at about 5 MeV =& hw;y, ie., at almost the same
energy expected for the case of the harmonic-oscillator potential, in spite
of the large shifts in individual energies due to the £ and (£-s) terms.
Owing to the attractive octupole-octupole interactions, these particle-hole
excitations coherently contribute to generate the K = 0 collective vibrations

below 2 MeV.
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Fig.4 Particle-hole configurations generating the K = 0 octupole vibrations
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Figure 5 shows the octupole strength functions with X =0,1,2 and 3,
calculated for *?Hg at wy,; = 0. This is a typical example of calculation for
superdeformed nuclei that have finite pairing gaps A. Again, we see strongly
collective K = 0 peaks at about 2 MeV. A remarkable new feature of the
192Hg case is that the low-lying K = 1 peak below 2 MeV now acquires
strong collectivity. Comparing the RPA strength function with the unper-
turbed one, we see that it emerges from many two-quasiparticle excitations
distributing above 2 MeV which transfer the quantum numbers (N3, n3, A)
by AN,;, = 0,An3 = 2 and AA = £1. The octupole strengths of these indi-
vidual two-quasiparticle configurations are rather small, but they coherently
contribute to generate the strongly collective K = 1 octupole vibration. In
the limit of the deformed harmonic-oscillator potential, these éxcitations
correspond to those within the same N;j; shell of the 2:1 shell structure,
and are therefore forbidden at the closed shell nucleus. However, if the par-
ing gap A is finite as is the case for }*?Hg, nucleon distributions over the
superdeformed closed shells become smooth and the two-quasiparticle ex-
citations corresponding to such Qhw,; excitations are allowed. It shoud be
emphasized that this mode of excitation exhibits truly a new feature of the
superdeformed shell structure in which the major shell is evenly composed
of both positive- and negative-parity single-particle orbits. It is also worth
emphasizing that this mode is the first example of the isoscalar shape vibra-
tions with K = 1, since the isoscalar dipole and quadrupole modes corre-
spond to the zero-frequency Nambu-Goldstone modes, i.e., translations and
rotations, respectively.

In Fig.5, we also see that the octupole strength for the low-frequency
K = 2 vibration is very strong. This mode is formed by superpositions of the
particle-hole excitations across the closed shells and the two-quasiparticle
excitations within the major shells.* Thus, its character is intermediate
between the K = 0 and 1 vibrations discussed above. Here, we note that
there exists many AN, = 1 configurations with low energies, some of which
come even within the same major shells in the Nilsson potential for the
superdeformed shape.

Concerning the K = 3 octupole vibrations, their B(E3) values are rela-
tively small in comparison with the K = 0,1 and 2 modes discussed above,
although they are also collective if their collectivities are measured in terms
of the doubly-stretched coordinates. The main reason for this is that the
octupole strengths are considerably shifted from the high-K components
to the low-K components, as is analytically shown in terms of the energy-
weighted sum rule for the case of the harmonic-oscillator potential.
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Fig.6 RPA strength functlons (in Weisskopf units) for the electric octupole
operators QsA , calculated at hw,,; = 2 MeV for 192Hg.
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Next, we show in Fig.6 the transition stengths | (n| Qg\) |0) |? in Weis-

skopf units calculated for *?Hg at hw,,x = 0.2 MeV, where Qg}f{) denote
the electric octupole operators. At finite w,o, the octupole modes having
different K values mix with each other, due to the Coriolis force. On the
other hand, the signature r, which represents the transformation property
with respect to the rotation of = about the rotation axis, remains as a good
quantum number, and properties of the RPA modes are expected to depend
on the signature r. In Fig.6, the left (right)-hand side shows the strengths
for the modes belonging to the r=+1(—1) sector. We see in this figure
that the K-mixing effects become important already at fiwyot = 0.2 MeV,
although the signature dependence is rather weak. (Note here that there
is no r=+1 mode with K = 0.) For instance, the peaks at 1.1 MeV seen
in both the X = 1 and 2 strength functions in the r=—1 sector are as-
sociated with the same RPA eigenmode. Likewise, the peaks at 1.3 MeV
seen in both the K = 0 and 1 strength functions represent the same RPA
eigenmode in which both components are fairly mixed. With increasing
Wror, such K-mixing effects become stronger, and the classification of the
RPA eigenmodes in terms of the approximate K quantum number gradu-
ally becomes inappropriate.* Furthermore, the pairing gaps, A, and Ay for
protons and neutrons, decrease. The decrease of the static pairing correla-
tion affects most strongly on the K = 1 component of the octupole strength
function.*

CONCLUDING REMARKS

We have shown that the octupole vibrations built on superdeformed
shapes have quite different characteristics according to the K quantum num-
ber. The low-frequency K = 0 octupole vibrations are composed mainly
of one-particle-one-hole excitations with AN,; = 1 across the closed shells
of the superdeformed shell structure. Therefore, they are expected to ex-
ist independent of the pairing correlations. In contrast, the low-frequency
K =1 octupole vibrations are composed mainly of two-quasiparticle excita-
tions with AN, = 0 within the same major shells. This kind of excitations
is allowed even for doubly-closed shell configrations if the superdeformed
states have finite pairing gaps. We have seen that they have extremely large
octupole strengths reflecting the fact that each major shell at the superde-
formed shape consists of about equal numbers of positive- and negative-

parity levels. Similar analysis can be made also for the octupole vibrations
with K =2 and 3.

With increasing w;,¢, the Coriolis-mixing effects among the soft octupole
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vibrations with different K values become increasingly important. Also, sig-
nificant changes in their microscopic structures associated with the decrease
of the static pairing correlations are expected.

It is well known that the octupole vibrations in deformed nuclei decay
mainly by electric dipole transitions (rather than octupole). Since B(E1)
values in deformed nuclei are proportional to §2,,B(E3), we expect that the
dipole transitions associated with the octupole vibrations play important
roles in superdeformed nuclei. According to our preliminary calculations,
the B(E1) values are of the order 103 to 10~* in Weisskopf units, and there-
fore the decay probabilities of the octupole vibrations by E1 are expected

to be larger, of the order 10% to 10%, than those by E3.

The octupole softness of the superdeformed rotational bands has been
suggested?® also in the potential-energy calculations by means of the Struti-
nsky method. In these calculations, only the K = 0 component of the
octupole degrees of freedom has been taken into account. In view of the
results obtained here, it is strongly desired to extend such calculations to
include the compoents with K # 0.

Finally, we mention that interesting experimental data suggesting strong
octupole correlations in superdeformed rotational bands are recently re-
ported for 13 Hg.”
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ABSTRACT

We suggest that properties of single-particle motions in superdeformed
nuclel may be significantly affected by coupling effects with low-frequency
octupole vibrational modes with K = 0,1,2 and 3. We also indicate a
possible relationship between octupole instability of superdeformed shape
and supershell effects. In this connection, stability of classical periodic
orbits and of KAM tori for single-particle motions in a reflection-asymmetric
superdeformed potential are investigated.

INTRODUCTION

As is well known, properties of nuclear surface vibrations are strongly
dependent on shell structures of average potentials. Since we have a new
shell structure in superdeformed nuclei, which is drastically different from
that of ordinary deformed nuclei, we expect that new kinds of nuclear surface
vibrational mode to emerge above the superdeformed yrast states. In fact,
the RPA calculation in the uniformly rotating frame, with the use of the
single-particle states obtained by the cranked Nilsson-Strutinsky-BCS pro-
cedure, has indicated that we can expect highly collective, low-frequency
octupole vibrational modes (with K =0, 1, 2 and 3) about the superde-
formed ‘equilibrium shape.}? The main reason why the octupole™ is more
favorable than the quadrupole is that each major ‘shell consists of about
equal numbers of positive- and negative-parity single-particle levels which
are approximately degenerate in energy at the superdeformed shape.

* Rigorously. speaking, these reflection-asymmetric modes are not pure octupole, but
are superpositions of odd-multipoles.
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Existence of low-frequency octupole modes would imply that particle-
hole or quasiparticle modes of motion in superdeformed nuclei might be
significantly affected by the coupling effects with these vibrational modes.
In this talk, we report some results of theoretical calculation which indicate
the importance of such particle-vibration coupling effects to understand the
properties of Landau-Zener band-crossing phenomena recently observed in
193¢ 3

In the latter half of this talk, we would like to suggest a possible relation-
ship between octupole instability of the superdeformed shape and supershell
effects. We also discuss stabilities of periodic orbits and of KAM tori for the
single-particle motions in reflection-asymmetric superdeformed potentials.

OCTUPOLE VIBRATIONS BUILT ON SUPERDEFORMED
YRAST STATES

We solve the RPA equations for the Hamiltonian
/ 1 “T 1]
H=h - 5;9631\’@31{@31{ ) (1)
8¢

where h' is a cranked single-particle Hamiltonian of the Nilsson-plus-BCS
type,

R = hNilsson — A Z(cfcf + c;¢;) — AN — wiorJz , (2)

and QgK are the doubly-stretched octupole operators.? We determine the
equilibrium quadrupole deformation by means of the Strutinsky method
and use a large configuration space composed of 9 major shells (for both
protons and neutrons) when solving the coupled RPA dispersion equations.

As an example, we show in Fig. 1 octupole strengths evaluated at wyop =
0 for the superdeformed ¥2Hg. We see that the collectivity is highest in this
case for the K = 2 octupole mode. Figure 2 represents how the octupole
strength distribution changes at a finite value of the rotational frequency
wrot- In this figure, we can clearly see the K-mixing effects due to the
Coriolis force; for instance, considerable mixing among the K = 0, 1 and
2 components is seen for the RPA eigenmode with excitation energy hw =

. 0.8MeV.
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Fig. 1 Octupole strengths | (n| (r*Y3k)" |0) |2 calculated for the superdeformed
states of '%?Hg at w,o, = 0. The neutron gap A = 0.9MeV and the doubly-
HO Q

stretched octupole interaction strengths xax = 1.1x5%2, with X?K being the self-

consistent values for the harmonic-oscillator potential,? are used.
Fig. 2 The same as Fig. 1 but for Wrot = 0.25MeV /A.

OCTUPOLE VIBRATIONAL EFFECTS ON QUASIPARTICLE MODES

IN'SUPERDEFORMED '%3Hg

Starting from the microscopic Hamiltonian (1), we can derive the follow-

ing effective Hamiltonian describing excited states composed of quasiparticle

aL and octupole vibrations X,]:

H=> Eyala, + > hwa XX, + DO falp)(X) + Xa)ala, . (3)
13 n n v

After diagonalization of M, state vectors are written as

I8) = Co(wal 10) + 33" Cr(wn)af X} [0) + - -- . (4)
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Fig. 3 a) Quasiparticle energy diagram for neutrons with signature « = —1/2
in 193Hg, plotted as a function of wyey.

b) The same as a) but the energy shifts Ael;, due to the coupling effects with
the octupole vibrations are included. Parameters used in the calculation are the
same as in Figs. 1 and 2. Notations like [512]5/2 indicate the main components

of the wave functions.

Recently, experimental data suggesting octupole correlations in superde-
formed states have been reported by Cullen et al.3 for 1*3Hg. Figure 3 shows
a result of calculation for excitation spectra in the rotating frame of this nu-
cleus. By comparing the conventional quasiparticle energy diagram (Fig. 3-
a)) with the result of diagonalization of H (Fig. 3-b)), we can clearly identify
effects of the octupole vibrations: Energy shifts Ael, of 50~400keV due to
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the coupling effects are seen. In particular, we note that the Landau-Zener
crossing frequency between Band 1 (whose main component is the [512]5/2
quasiparticle state) and Band 4 (associated with the [761]3/2 quasiparti-
cle) is considerably delayed in agreement with experiment.> We also note
that the interaction between these bands is increased. This is because in-
teractions between different quasiparticle states through intermediate con-
figurations composed of one quasiparticle and octupole vibrations are now
possible. Although quantitative details depend on the parameters entering
into the calculation (the force-strength x3x, the pairing gap A, etc.), which
are not necessarily well known at present, we show here an example of wave
functions for Band 1 and Band 4 at wyot = 0 in order to indicate qualitative
characteristics:

|#Band1) = 0.88][512]5/2(a = —1/2))
+0.10[752]5/2(a = —1/2))
~0.32 1[624]9/2(a =-1/2) @il 2>
+0.32 |[624]9/2(a = +1/2) 8w}, )

+ sy
|#Bands) = —0.96[761]3/2(a = —1/2))
+0.17[642)3/2(a = +1/2) @ w72 >

(
(

—~0.16 |[640]1/2(c = ~1/2) ® wid) >
(

«x

+0.16 |[640]1/2(c = 1/2)®w§<_=)1>

(+)

Here wi -123 and ""5\ )0 123 Tepresent the octupole vibrations with
positive- and negatwe—agnatures respectively. We note that the mixing ef-

fects of the K = 2 octupole vibrations are especially strong in the [512]5/2
quasiparticle state.

SUPERSHELL STRUCTURE AND OCTUPOLE INSTABILITY
OF SUPERDEFORMED SHAPE

In recent years, octupole softness of superdeformed nuclei has been
suggested®8 in shell-structiire energy calculations by means of the Struti-
nsky met‘hod. As is well known, octupole instability takes place when the
frequency of the octupole vibration evaluated by RPA becomes imaginary.
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To understand the origin of the octupole instability, Nazarewicz and
Dobaczewski’® have discussed dynamical symmetry of the harmonic-
oscillator potential with frequencies in rational ratio, and suggested that
the octupole instability might occur in the superdeformed closed-shell con-
figurations whose uppermost shell quantum numbers Ny, = 2n) + n, are
even.

Figure 4 shows the shell-structure energies as functions of particle num-
ber N for the single-particle potential

V= %ng(rz)” — Ao Mwd(r?Ya0)" (5)
where the double primes indicate that the quantities in parenthesis are de-
fined in terms of the doubly-stretched coordinates :z:;' = (wj/wo)z;. The
frequency wp is determined at each value of the octupole-deformation pa-
rameter Asg so that the volume conservation condition is fulfilled. We can
clearly see deep minima at N = 62 and 112 for the case of A3y = 0.38.
These new magic numbers are connected to the superdeformed magic num-
bers N = 60 and 110 where the single-particle levels are filled up to the
major shells with Ny, = even. In contrast, the minima at N = 80 and 140
associated with the major shells with Ny, = odd decline when one goes
from the case of A3g = 0 to the case of A\3g = 0.38. This result nicely agrees
with the suggestion by Nazarewicz et al.’ It also agrees qualitatively with
the result of realistic calculation by Héller and Aberg®.

0.5 T T
(hn] | \30=0.38

O:J '3;) ll‘” 1.2) 140 160
particle number

Fig. 4 Comparison between the shell-structure energies for the reflection-asymmetric
case (A3o = 0.38) and for the reflection-symmetric case (Aa0 = 0.0). The unit is Awo.
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Fig. 5 Classical periodic orbits in the axially-symmetric harmonic-oscillator
potential with w; = 2w, and their contributions to the oscillating level density.
u) represent those from three-dimensional orbits with the period T = 27 /w., b)
those from planar orbits with T = 27 /wy, and c) the sum of a) and b). The
smoothing width v = 0.5Aw; is used.

The odd-even effect in Ny}, discussed above corresponds to the supershell
effect!® in the semiclassical theory of shell structure.!! Figure 5 shows how
the supershell effect arises in the case of the axially-symmetric oscillator
potential with the frequency ratiow; : w, = 2 : 1. It arises from interference
between three-dimensional classical closed orbits with the period T' = 27 /w,
and planar-orbits in the (z,y) plane with the period T' = 27 /w .

Figure 6 shows the oscillating components of the single-particle level
density for the potential (5). We can clearly see that the beating pattern
arising from the interference effect becomes more significant at A3g = 0.38
compared to the reflection-symmetric case (A3p = 0). This result strongly
suggests that the octupole instability of the superdeformed shape is inti-
mately connected with growth and decline of the supershell structure.
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Fig. 6 Comparison between the oscillating components of the single-particle
level density for the reflection-asymmetric case (A3g = 0.38) and for the reflection-

symmetric case (A3g = 0.0). The smoothing width v = 0.5Aw, is used.

STABILITY OF PERIODIC ORBITS IN REFLECTION-ASYMMETRIC
SUPERDEFORMED OSCILLATOR POTENTIAL

In order to understand physical reason why certain superdeformed nuclei
tend to break reflection symmetry and favor reflection-asymmetric shapes,
let us investigate, on the basis of the semiclassical theory of shell structure,!?
stabilities of classical periodic orbits in the potential (5). Using the cylin-
drical coordinates (p,z) and after a suitable scale transformation, we can
write the Hamiltonian as

2

_1 2 92 m 7 Z_6Zp

ar m (6)

Note that this Hamiltonian is non-integrable when A # 0, and has some
similarities with the Hénon-Heiles Hamiltonian well known in the study of
quantum chaos.

1
5(4102 +2°) -

Figure 7 shows, for the case of m = 0, a Poincaré surface of section

(P2, 2) in the four-dimensional phase space (p,, pz, p, z) and several closed
orbits with relatively short periods.
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Fig.7 Poincaré surface of section (p;, z) and classical periodic orbits with m = 0
for the Hamiltonian (6) with A = 0.2.

Let us evaluate stabilities of these periodic orbits by calculating the
traces of the monodromy matrices,'? Tr M, associated with them. As an ex-
ample, we show Fig. 8 which indicates that the value of Tr M for the figure-
eight orbit (B in Fig. 7) becomes negative at A & 0.4 implying an occurrence
of instability. Thus, a period-doubling bifurcation of the figure-eight or-
bit occurs at A ~ 0.4, and the KAM
torus associated with this closed orbit
disappears thereafter. This is shown
in Fig.9 together with the appearance
of new tori associated with other
period-doubling and -tripling bifurca-
tions.

6.0 T T T T

TrM

It is a very interesting open prob-
lem to clarify how the stabilities of
these periodic orbits and of the KAM
tori are related with growth and de-
cline of the supershell structure in the
single-particle spectra which arises Fig.8 Trace of the monodromy ma-
from interferences between different trix M for the figure-eight orbit B eval-
periodic orbits. uated as a function of A. »
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Abstract

Recent theoretical works done by us on the following subjects are briefly summarized:
1) Octupole vibrations with K=0, 1, 2 and 3 built on superdeformed yrast states,
2) Octupole vibration-quasiparticle couplings in superdeformed odd-A nuclei,
3) Supershell structure in superdeformed nuclei which break the reflection symmetry,
4) Analysis of the supershell effects in terms of semiclassical theory of quantum level
density.

An intimate relationship among octupole instability of the superdeformed shape, the
rise of supershell effects, and bifurcations of classical periodic orbits is suggested.

1. INTRODUCTION

Shell structure associated with independent-particle motions in a superdeformed po-
tential is drastically different from that in normal deformed potentials. Since properties
of nuclear surface vibrations are intimately connected with shell structure, we expect that
new kinds of surface vibrational mode to emerge above the superdeformed yrast states.
In fact, RPA calculations in a uniformly rotating frame, with the use of single-particle
states obtained by the cranked Nilsson-Strutinsky-BCS procedure, have indicated that
we can expect highly collective, low-frequency octupole vibrational modes (with K'=0,
1, 2 and 3) about the superdeformed equilibrium shape [1,2]. The main reason why
octupole fluctuation in shape is more favorable than quadrupole fluctuation is that each
major shell consists of about equal numbers of positive- and negative-parity single-particle
levels which are approximately degenerate in energy at the superdeformed shape.

Thus, in recent years, importance of octupole correlations in superdeformed high-spin
states has been lively discussed from various points of view [3-13]. Possible existence of
low-frequency octupole vibrational modes would imply that particle-hole or quasiparticle
modes of motion in superdeformed nuclei might be significantly affected by the coupling
effects with these modes. In this talk, we shall report some results of theoretical calculation

0375-9474/93/$06.00 © 1993 — Elsevier Science Publishers B.V. All rights reserved.
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which indicate the importance of such particle-vibration coupling effects to understand
the properties of Landau-Zener band-crossing phenomena recently observed in !*3Hg [14].

In the latter half of this talk, we shall discuss a relationship between octupole instabil-
ity of the superdeformed shape and supershell effect (a modulation in shell structure due
to the interference between a few periodic orbits with relatively short periods), and sug-
gest that breaking (in the average potential) of space-reflection symmetry might enhance
the supershell effect. A possible origin of this enhancement will be pointed out on the
basis of semiclassical analysis of single-particle level density for a reflection-asymmetric
superdeformed potential.

2. THE HARMONIC-OSCILLATOR POTENTIAL WITH w, =2w3

It is instructive to start from a simple case of the axially-symmetric deformed harmonic-
oscillator potential with the frequency ratio w, /ws = 2. In this case, the single-particle
energy e is written as

1
e=(ny+ Nhw, + <n3+§) hws
) o
= (Nsh + E) huwsh

with Awgp = Aws, so that single-particle levels having the same values of the shell quantum
number, Ngp, = 2n) +ng = 2Ngsc —ng, constitute a major shell. Thus, in contrast with the
spherical oscillator potential case, positive- and negative-parity levels coexist in the same
major shell. By writing the octupole operators @3 = r3Y3x in terms of the creation and
annihilation operators of the oscillator quanta, we see that the lowest-energy particle-hole
excitations created by these operators satisfy the following selection rules:

Qs : ANgp=1, Anz=1AA=0,
Qn : ANg =0, Ang=2 AA=1,
Qs : ANy =1 Anz=1 AA=2, @
Qsz3 : ANg =2, Anz=0, AA=3.

For a doubly-closed-shell configuration where the single-particle levels are completely
filled up to a certain number of Ny, (for both protons and neutrons), the ANy, =0 ex-
citations appearing in the K'=1 octupole modes are forbidden by the Pauli principle.
Thus, we expect that the lowest-energy collective vibrations are octupole modes with
K=0 and 2, which are constituted from coherent superpositions of the ANy,=1 particle-
hole excitations (see Figure 1). Their excitation energies will be shifted down much below
their unperturbed energies (Awg, =~ 5MeV) due to attractive octupole-octupole residual
interactions.

On the other hand, in the case of superdeformed open-shell configurations, the A Ny, =0
excitations are possible among nucleons in the valence shell, so that we expect strongly
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Figure 1. (left-hand side) Illustration of octupole deformations (K'=0, 1, 2 and 3 ) superim-
posed on the superdeformed shape (the axially symmetric quadrupole shape with axis ratio 2:1 ).
{right-hand side) Lowest-energy particle-hole excitations created by the octupole operators
(r3Y3k) on a closed-shell configuration (with N;p=7 ) of the superdeformed oscillator potential.

collective K=1 octupole vibrations to emerge. Although the superdeformed potential
distorted by the Q31 term looks somewhat different from a banana shape, the K=1
octupole vibrations are sometimes called “banana modes”. Properties of the K=1 modes
may be sensitive to the pairing correlations among the valence nucleons. This situation is
analogous to the well-known low-frequency quadrupole vibrations in spherical open-shell
nuclei. Recall that the isoscalar K'=1 modes are Nambu-Goldstone modes corresponding
to translations and rotations for A=1 (dipole}, A=2 {quadrupole), respectively. Therefore,
strongly collective, low-frequency vibrational K'=1 modes appear at A=3 for the first time.

3. OCTUPOLE VIBRATIONS BUILT ON SUPERDEFORMED YRAST
STATES

Next, let us consider the cranked single-particle Hamiltonian of the Nilsson-plus-BCS
type

K= ANilsson — A Z (Cgcf + Cgcg) - )‘Nﬁ - wrotjm (3)
i

and use, as residual interactions, the doubly-stretched octupole-octupole interactions
(which are extensions of the ordinary octupole-octupole interactions to nuclei having
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quadrupole equilibrium shapes [15]). Our Hamiltonian is then written as
- al
=h - ZX:»,KQ:H{ Q3k (4)

where QYf - = (rY3)" are the octupole operators defined in terms of the doubly-stretched
coordinates z' = (w;/wo)z; with i = 1, 2 and 3, (w;/wo) denoting the ratios of frequencies
of the deformed harmonic-oscillator potential to that of the spherical one.

To investigate properties of the collective octupole vibrations, we solve the RPA equa-
tions for this Hamiltonian taking into account a large configuration space composed of 9
major shells (for both protons and neutrons) by means of the coupled dispersion-equation
technique. The octupole-force strengths x,, can be determined for the harmonic-
oscillator potential by the selfconsistency condition between the density distribution and
the single-particle potential [15]. However, since generalization of this method to a more
general single-particle potential like Eq. (3) is rather involved, we here treat x,z as pa-
rameters.

Figure 2 shows doubly-stretched octupole strengths | {n| (r3Y3x)" |0} |? calculated at
wrot = 0 for superdeformed states in the Gd isotopes. Evidently, we always obtain strongly
collective octupole vibrations with K'=0. It is worthy of note that the collectivity of the
K=1 modes grows up when one moves from *°Gd to !*3Gd increasing the number of
valence neutrons.

Such a tendency may be more clearly seen in Figure 3, which represents the curvatures
C3i against the (r3Y3x)” deformations of the potential-energy surfaces evaluated by
utilizing the sum rule [16]

22| n| 3Y31\ )”|0) lz (5)

CsK

We see that the curvature Csg for K'=1 drastically decreases when one moves away from
the superdeformed magic number N=86 {for Gd isotopes) and N=112 {for Hg isotopes},
indicating that the potential-energy surface becomes soft with respect to the (r3Y3 )"
deformation. This is because, as is expected from the analysis of the superdeformed
harmonic-oscillator potential, the K'=1 octupole correlations between two-quasiparticles
in the same valence shell (with the same asymptotic quantum number Nj),) are especially
strong. Recall that almost equal numbers of positive-parity and negative-parity single-
particle levels coexist in the same major shell at the superdeformed shape.

Figure 4 represents octupole strengths for the superdeformed °2Hg evaluated with
the use of the force-strengths x5 slightly larger than the harmonic-oscillator value x{R
We find that the K'=2 octupole mode appears lowest in energy for superdeformed states
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Figure 2. Doubly-stretched octupole strengths | {n| (7*Y3x )" |0} |? at wyey = O for superdeformed
states in the Gd isotopes, calculated with the use of the selfconsistent values x?,? of the doubly-
stretched octupole interactions, which is valid [15] for the harmonic-oscillator potential. The
quadrupole deformation parameter §o,. and the pairing gaps (Aa, A,) are fixed at 0.53 and
0.5MeV, respectively. The numbers written beside the main peaks indicate the strengths for the
E3 operators measured in Weisskop{ units.
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Curvatures for Hg Isotopes
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Figure 3. Curvatures Csx against the (#*Yag )" deformations evaluated for (a) Gd isotopes and
{b) Hg isotopes. The unit is hwyby 8. The quadrupole deformation parameter 8., is fixed at 0.53
for (a) and 0.44 for (b). The pairing gaps (An, Ap) are also fixed to be 0.5MeV.
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Figure 4. Doubly-stretched octupole strengths | (] {r®Y3x )" |0} | calculated for the superde-
formed states of *?Hg at w;o, = 0. The deformation parameter 8,5 = 0.43, the neutron gap
Ap=0.7MeV, the proton gap A, =0.7MeV and the doubly-stretched octupole interaction strengths
Xax = 1.08xE2 are used. The numbers written beside the main peaks indicate the strengths for
the E3 operators measured in Weisskopf units.
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Figure 5. The same as Figure 4 but for w;e=0.25MeV /A.

around 92Hg. This is mainly because the [512]5/2 and [624]9/2 Nilsson levels lie just
above the N=112 superdeformed magic number and the K'=2 octupole matrix element
between these levels is very large (since it satisfies one of the asymptotic selection rule
ANgh=1,Ang=1and AA=2).

Figure 5 shows how the octupole strength distribution changes at a finite value of the
rotational frequency wrot. In this figure, we can clearly see the K-mixing effects due to
the Coriolis force; for instance, considerable mixing among the K'=0, 1 and 2 components
is seen for the RPA eigenmode with excitation energy Aw = 1.04MeV.
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4. OCTUPOLE VIBRATIONAL EFFECTS ON QUASIPARTICLE MODES
OF EXCITATION IN SUPERDEFORMED %3Hg

Starting from the microscopic Hamiltonian (4) and following the standard proce-
dure [17], we can derive an effective Hamiltonian describing systems composed of quasi-

particle aL and octupole vibrations X,t as follows:

H= Z Eﬁaza“ + Z hun X1X, + Z Z Falu)(X) + )z’,,)a,ta,,. (6)
# n n av

Neutrons (a=-1/2)
a) 1.2 G249z ;
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Figure 6. a) Quasiparticle energy diagram for neutrons with signature @ = —1/2 in 19%Hg, plotted
as a function of wyet. b) The same as a) but the energy shifts Ael;; due to the coupling effects
with the octupole vibrations are included. Parameters used in the calculation are the same as in
Figures 4 and 5. Notations like [512]5/2 indicate the main components of the wave functions.



S. Mizutori et al. | Octupole correlations in superdeformed high-spin states 133c

1 . 0 T 1 1 ] ]
[512]5/2 (a=—172)
(761]3/2
0.5} |
[B24fo/28wx
[614]7/2 A
0.0 = : : 1 .

0.2
(Urot [I\/IeV / h]

Figure 7. Amplitudes Co() and C;(vn) in the wave function for Band 1, plotted as functions of
wrot. The full lines indicate the one-quasiparticle amplitudes, while the broken (dotted) lines are
used for the amplitudes involving the octupole vibrations with positive (negative) signature.

We diagonalize H within the subspace {a}, |0}, a} X1 |0)} . The resulting state vectors can
be written as

) = Co(w)al[0) + D> Ci(vn)al X1 0). (™
I n v

Recently, experimental data suggesting octupole correlations in superdeformed states
have been reported by Cullen et al. [14] for 193Hg. Figure 6 shows a result of calculation of
excitation spectra in the rotating frame for this nucleus. By comparing the conventional
quasiparticle energy diagram (Fig. 6-a) ) with the result of diagonalization of # (Fig. 6-
b) ), we can clearly identify effects of the octupole vibrations: Energy shifts Ael;y of
50 ~ 300keV due to the coupling effects are seen. In particular, we note that the Landau-
Zener crossing frequency weross between Band 1 (whose main component is the [512]5/2
quasiparticle state) and Band 4 (associated with the [761]3/2 quasiparticle) is considerably
delayed. Namely, we obtain wepes = 0.26MeV /A in agreement with the experimental value
Werass = 0.27MeV /h, whereas weross = 0.17MeV /A if the octupole-vibrational effects are
neglected.

The calculated amplitudes Co(u) and Cj(vn) for Band 1 are displayed in Figure 7
as functions of wy. It is seen that the main amplitude changes from the {512]5/2 to
the [761]3/2 quasiparticle state at wrot = 0.26MeV /# indicating a Landau-Zener crossing
phenomenon. We also see that the mixing amplitude of the state composed of the [642]9/2
quasiparticle and the K'=2 octupole vibration is significant.

Next, let us discuss how the calculated valués of the crossing frequency weross, the
interaction matrix element Vi, between Bands 1 and 4, and the aligned angular mo-
mentum ¢ of Band 4 depend on the octupole force-strengths xs5. Figure 8 represents
this dependence. Here these quantities are plotted as functions of the RPA excitation
energy of the lowest K'=2 octupole vibration (which in turn is a function of xzx). It
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Figure 8. Dependence of (a) the crossing frequency weyoss between Bands 1 and 4, (b) the aligned
angular momentum ¢ganq4 Of Band 4, and (c) the interaction matrix element Vi between Bands
1 and 4, on the excitation energy hwy), of the lowest K=2 octupole vibration {with negative
signature) calculated in the RPA, The excitation energy hwyl,=0.54MeV at wi=0.45MeV /A
corresponds to the force-strength x5 = 1.08x5R2.

is seen that werogs increases while ip,,q4 decreases when hw(s), decreases (i.e., when the
octupole-vibrational effects become stronger). We thus find that the experimental data,
Banat =2 1.3% and weross & 0.27MeV /R, can be simultaneously reproduced by the calcu-
lation with the use of x,5x ~ 1.08x52, which corresponds to hw), = 0.54MeV. We
note that the calculated value of the alignment for the [761]3/2 quasiparticle state (the
main component of Band 4 ) would be i ~ 1.8% if the octupole vibrational effects were
neglected. On the other hand, the calculated interaction matrix element Vi, ~ 5keV,
which mainly results from the octupole vibrational effects, is still too small in comparison
with the experimental data (Vin; = 26keV), for the parameters x35 which well reproduce
the experimental data of ig,uqs and Weross-
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5. SUPERSHELL STRUCTURE AND OCTUPOLE INSTABILITY OF
SUPERDEFORMED SHAPE

As is well known, octupole instability takes place when the frequency of the octupole
vibration evaluated by the RPA becomes imaginary. In recent years, octupole softness of
superdeformed nuclei has been suggested [3-10] in potential-energy surface calculations
by means of the Strutinsky method. Nazarewicz and Dobaczewski [9] have discussed
dynamical symmetry of the harmonic-oscillator potential with freqguencies in rational ratio,
and suggested that the octupole instability might occur in the superdeformed closed-shell
configurations whose uppermost shell quantum numbers Ny, are even.

elhw]

12.0

10.0

Nyp=3

Figure 9. Single-particle energy diagram (in unit of Aw,y = Aw,) for the potential (8) plotted
as a function of Azp. The shell quantum numbers N, and the magic numbers of closed-shell
configurations are indicated.
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Figure 10. Comparison between the shell-structure energies for the reflection-asymmetric case
{X30 = 0.4) and for the reflection-symmetric case (Azp = 0.0). The unit is fiwg.

In order to investigate the origin of the octupole instability in a simple way, let
us consider the following superdeformed oscillator potential distorted by the reflection-
asymmetric term (rY3o)":

= SMu(r) ~ N Mud(r"¥so)". (®)

Here the double primes indicate that the quantities in parenthesis are defined in terms
of the doubly-stretched coordinates 2 = (w;/wg)z;. We are considering the case w, =
wy = wy = 2w,. The frequency wy is determined at each value of the octupole-deformation
parameter Azo such that the volume conservation condition is fulfilled. The single-particle
energy diagram for this potential is plotted in Figure 9 as a function of Azo.

Let us evaluate, by means of the Strutinsky method, how the shell-structure energy for
this potential changes as a function of the particle number N and the octupole-deformation
parameter A3o. In Figure 10 we compare the shell-structure energies evaluated at Aap = 0.4
with that at Azo = 0. We can clearly see deep minima at N=62 and 112 for the reflection
asymmetric case, which are associated with the appearance at Agp = 0.4 of new magic
numbers (see the single-particle energy diagram, Fig. 9 ). These new magic numbers are
connected to the superdeformed magic naumbers N=60 and 110 where the single-particle
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Figure 11. Classical periodic orbits in the axial-symmetric harmonic-oscillator potential with
wy = 2w, and their contributions to the oscillating level density. a) represent those from three-
dimensional orbits with the period T' = 27 /w,, b) those from planar orbits with T = 27 /w, , and
c) the sum of a) and b). The smoothing width 7 = 0.5kwgy, is used.

levels are filled up to the major shells with N ,=even. In contrast, the minima at N=80
and 140 associated with the major shells with Nj,=odd decline when one goes from
Azp = 0 to Azp = 0.4. This result nicely agrees with the suggestion by Nazarewicz et
al. [9]. It also agrees qualitatively with the result of realistic calculation by Héller and
Aberg [5] (see also [18]).

The odd-even effect in Ny, discussed above corresponds to the supershell effect [20]
in the semiclassical theory of shell structure [21,22]. Figure 11 shows how the supershell
effect arises in the case of the axially symmetric oscillator potential with the frequency
ratio wy : w, = 2 : 1. It arises from interference between three-dimensional classical
closed orbits with the period T = 27/w, and planar orbits in the (z,y) plane with the
period T = 27 /w, .

Figure 12 shows the oscillating components of the single-particle level density for the
potential (8). We can clearly see that a beating pattern arising from the interference effect
becomes more significant at Azyp ~ 0.4 in comparison with the reflection-symmetric case
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Figure 12. The oscillating term of the single-particle level density, calculated by means of the
Strutinsky method for the potential (8) at A3 = 0.4. The smoothing width ¥ = 0.5Kw, is used.
The arrows indicate the closed shells with N, = even. Compare with Figure 11-¢) for A3 = 0.

(X3¢ = 0). This result strongly suggests that the octupole instability of the superdeformed
shape is intimately connected with growth of the supershell structure.

6. RELATION BETWEEN QUANTUM SHELL STRUCTURE AND
CLASSICAL PERIODIC ORBITS IN REFLECTION-ASYMMETRIC
SUPERDEFORMED POTENTIAL

In order to understand physical reason why certain superdeformed nuclei tend to
break the reflection symmetry and favor reflection-asymmetric shapes, let us investigate
the relationship between quantum shell structure and classical periodic orbits associated
with the single-particle motion in a reflection-asymmetric superdeformed potential.

Using the cylindrical coordinates (p, z, ¢) and after a suitable scale transformation, we
can write the Hamiltonian for single-particle motions in the potential (8) as

L2 o Pe 1o 2 7 2% —6zp
h= 2(pp+pz)+2p2 +2(4’p +Z) A30 471'\/4—52-_—}——55. (9)

Note that this Hamiltonian is non-integrable when X3¢ # 0, and has some similarities
with the Hénon-Heiles Hamiltonian well known in the study of quantum chaos.

Figure 13 shows Poincaré surfaces of section (p;, z} in the four-dimensional phase
space (pp, Pz, p, z) obtained by following classical trajectories for the Hamiltonian (9) in
the case p, = 0. We see that orderly and chaotic regions coexist. The tori characterizing
the orderly region are associated with classical periodic orbits, some of which (having
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relatively short periods) are displayed in Figure 14. By calculating traces of the stability
matrices [23-26], TrM, for these periodic orbits, we can study how properties of them
change as the octupole deformation parameter Azp changes. We then find that a period-
tripling bifurcation of the orbit labeled A occurs at Azg = 0.36. Thus, a pair of new
periodic orbits is created in the bifurcation. One of them (orbit E) is stable and the
other (orbit F) is unstable. We indeed see that a chain of three elliptic and hyperbolic
fixed points appears in Figure 13(b) for A3g = 0.4 in correspondence with orbits E and F,
respectively. On the other hand, a period-doubling bifurcation of the figure-eight-shaped
orbit B occurs at Azp =~ 0.4 indicating an occurrence of instability, and the KAM torus
associated with this closed orbit disappears thereafter.

Let us discuss how such bifurcation phenomena are related with growth and decline
of the supershell structure in the single-particle spectra, which arises from interferences
between a few periodic orbits with relatively short periods.

According to the semiclassical theory of quantum spectra [21,22,24-26)], the single-
particle level density g{e) consists of a smooth part g(e) and an oscillating part gosc(e);
the latter can be written as a sum of contributions from classical periodic orbits. For
non-integrable Hamiltonian systems, the level density g{e) may thus be written as

9(&) = 3 5(e — en)
= g(e) + gosc(e) (10)

= ge) + Z i ayk(e) cos (k (S.Y(e) - %,u.,)) ,
k!

k=1

where v labels all the primitive periodic orbits with the actions Sy(e) and the Maslov
indices fty, and the sum over k& accounts for multiple traversals. In order to study @
large-scale non-uniformity in the eigenvalue spectrum with a finite energy resolution Ae
(i.e., shell structure) [27], it is sufficient to consider contributions to the oscillating level
density gosc{e) from closed orbits with periods T, less than h/Ae [21]. For systems with
two degrees of freedom, the amplitudes a,t(e) of the oscillating level density gosc(e) are
given by
1 T,

PO S N (11)
mh . Jl2 - Temk]

where ’I‘rMﬂf denotes the trace of the stability matrix Mff for the periodic orbit labeled by
(v, k). This expression indicates that the amplitude a,; diverges at the bifurcation point
of the periodic orbit +, where the equality ’I‘r]\af,‘:,t = 2 holds for a specific value of £ [23].
Similar phenomena are expected to occur also for systems with more than two-degrees of
freedom.
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Figure 13. Poincaré surface of section (p,, z) for the Hamiltonian (9) with p, = 0 at (a) Azp = 0.2
and (b) at Azp = 0.4.
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Figure 14. Classical periodic orbits with p, = 0 for the Hamiltonian (9) at A3p = 0.4. Only orbits
with relatively short periods are displayed.
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Now, the classical dynamics for the Hamiltonian (9) satisfy the following relations
under a scale transformation (q, p) — (ag, ap):

h(ap,aq) = *h(p,q), §(ae) = o?j(e), } (12)

ayi(ae) = ap(e), Sy(ae) = aS,(e).
Using these scaling properties and making a Fourier transformation of Eq. (10}, we obtain

D ePen = —2mg(1)8"(s)

+7Y ap(l) {e“ik%"75(s + kS, (1)) + e TH15(s — :cs,(l))} :

vk

(13)

This relation indicates that the Fourier transformation of the eigenvalue spectrum will
exhibit peaks at s = kS, which corresponds to periodic orbits. It is worth noting here
that, owing to the scaling properties (12), periods Ty of the primitive periodic orbits are
equal to actions S,(1) calculated at e =1, 1.e.,

T, = 3‘2’56) = B(e?jl)) = 5,(1). (14)

Figure 15 represents a Fourier transform of quantal spectrum (absolute value of the
left-hand side of Eq. (13) ) plotted as a function of action s. It is clearly seen that peaks
arise at specific values of action that correspond to classical periodic orbits. Interestingly,
relative heights of the peaks associated with orbit A and a group of orbits (B, C, D)
change as the octupole-deformation parameter Azp changes from 0.2 to 0.4. In particular,
the rise of peak at s = 10 is remarkable. As mentioned below Eq. (11), the amplitude a
is expected to significantly increase near the bifurcation point of the primitive periodic
orbit 7. Since the octupole deformation Az = 0.4 is rather near the period-tripling
bifurcation point Ao = 0.36 of orbit A, it is evident that the rise of the peak at s =~ 10.0
for Azp = 0.4 is due to the increasing contribution from the triple traversal (k=3) of orbit
A, as well as the new contributions from orbits E and F, which arise for A3g 2 0.36. Thus,
the interference effect between contributions from a group of orbits (A, E, F) and from
(B, C, D) is stronger at Azg = 0.4 than at Azp = 0. It seems that this fact provides us with
a key to understand the physical reason why the modulation with periodicity 2fw,y, in
the energy spectrum of the 2:1 harmonic-oscillator becomes more pronounced when the
superdeformed potential breaks the space-reflection symmetry; i.e., why the supershell
effect is enhanced at Az ~ 0.4 (seen in Figure 12).
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Figure 15. Fourier transforms of the quantal spectrum of the Hamiltonian (9) with A30 = 0.2, 0.3
and 0.4. The absolute value of the left-hand side of Eq. (13) is plotted as a function of the action
s. The lowest 150 eigenvalues are taken into account in the sum. Arrows indicate specific values
of the actions which correspond to periodic orbits A, B, C, D, E and F displayed in Figure 14.
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Although Figure 14 only displays periodic orbits with p, = 0, we have checked [28]
that values of action and of TrM for orbits like A, B, C, ... but with p, # 0 depend only
very weakly on the value of p,, so that the nice correspondence mentioned above holds
quite generally.

7. CONCLUDING REMARKS

We have discussed the reflection asymmetric degrees of freedom which are superim-
posed on the superdeformed shapes. In order to understand the reason why supershell
effects are enhanced due to breaking of the reflection symmetry, we have made a semi-
classical analysis of the relationship between the quantum shell structure and the classical
periodic orbits in a reflection-asymmetric superdeformed potential.

In concluding this talk, we would like to emphasize that the roles of bifurcation phe-
nomena in characterizing the shell and supershell structures have been rarely investigated
for non-integrable systems, like those described by the Hamiltonian (9), that have a mix-
ture of stable and unstable orbits in their phase space, ¢.e., when order and chaos coexist.
This problem is an example illustrating how the study of rapidly rotating superdeformed
nuclei is related to basic problems of guantum chaos in small quantum systems.
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Periodic Orbits and New Shell Structure Generated by a Combination of
Quadrupole and Octupole Deformations

K. Arita and K. Matsuyanagi

Department of Physics, Kyoto University, Kyoto 606, Japan

1. Introduction

In this talk, we would like to present a simple model in which a prominent shell structure
emerges for a combination of quadrupole and octupole deformations. We shall then discuss the
origin of such a new shell structure in terms of the periodic orbits and their bifurcations.

Importance of shell effects for the occurrence of reflection-asymmetric deformed shapes
have been lively discussed in various region of nuclei [1,2] and also in micro-clusters [3,4].

According to the semi-classical theory, the shell structure, i.e., the oscillating structure in the
single-particle level density is generated by classical closed orbits with short periods. Thus, our
task is to identify important periodic orbits and study how they are born and how their properties
change as function of deformation parameters.

This subject is deeply related with the general subjects of quantum chaos; in particular, quan-
-tum manifestation of bifurcation phenomena in classical Hamiltonian dynamics. We would like
to emphasize that, although “quantum chaos” in the chaotic limit has been much discussed, bi-
furcation of periodic orbits is characteristic for mixed systems where regular and chaotic motion
coexist and remains largely unexplored. Finite quantum systems possessing both quadrupole
and octupole deformations are situated in an intermediate region between regular and chaotic
systems [5,6], and therefore provide us with a very good opportunity to study, from both theory
and experiment, this important subject.

2. Model

Let us consider the reflection-asymmetric deformed oscillator Hamiltonian

2
p 1

h=—+=

2M 2

where the double primes denote that the variables in square bracket are defined in terms of
the doubly-stretched coordinates x; = (w;/wo)x;. We calculate classical periodic orbits and

Ma? (o +y%) + %Mcozz2 — AaoM @} [PY 3], ¢))

quantum energy spectra for this Hamiltonian as functions of the deformation parameters dosc =
(0, — @,)/® and As.
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3. An Example

In the previous work [7], we discussed the superdeformed case with the frequency ratio
o, /®, = 2. Today, we first show the result [8] for an irrational ratio ®, /@, = V3.

A new shell structure

Figure 1 shows the single-particle spectrum calculated as a function of Asp. There is no
prominent shell structure at A3y = 0 because of irrationality of the frequency ratio. However,
a significant shell structure appears at A3 ~ 0.3. The oscillating level density smoothed by
means of the Strutinsky method is shown in Fig. 2. A prominent shell structure is clearly seen.
Evidently, this new shell structure is generated by an octupole deformation superposed on the
quadrupole deformation. You can also notice a supershell pattern associated with the inter-
ference between classical periodic orbits with the periods T' ~ 27t/®; and 27/®,, which we
discussed in the previous work [7].
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Figure 1 Figure 2
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Classical periodic orbits and bifurcations

Figure 3 shows some periodic orbits for Ayo = 0.3. We have found that the orbit named PB
(planar B-type) is born at A3g ~ 0.29 due to the bifurcation of orbit IL (isolated linear orbit
along the z-axis). Likewise, orbits PC and PD are born by the bifurcation at Az ~ 0.28.

To see how these bifurcations occur, let us examine the Poincaré surface of section. Due to
the axial symmetry, our system is two dimensional with cylindrical coordinates (p, z) having a
fixed angular momentum p,. Figure 4 are the Poincaré sections (p, py) withz =0, p, < 0, and
Py = 0. The origin corresponds to the orbit IL, which is stable at A3p = 0.28 and accompanies
tori about it. These tori are significantly distorted until the bifurcation occurs at A5y = 0.283.
Thus, at A3y = 0.29 we find a pair of islands (associated with the stable orbit PD) and a pair of
saddles (unstable orbit PC). At A5y = 0.292, another bifurcation occurs generating a new pair of
islands (seen for A3y = 0.3) associated with the stable orbit PB. Then, the central torus becomes
unstable.

PA
(> .
PE PF
> ‘
Figure 3 Figure 4
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Classical-quantum correspondence

To find the link between the quantum shell structure seen in Figs. 1, 2 and the properties
of the classical periodic orbits, let us consider the Fourier transform of the single-particle level
density g(E; Ay) =Y, 8(E - E,,),

oo 1 .
F(s) = /0 dE —=g(B) eiE, @)

According to the Gutzwiller trace formula, the oscillating part of the level density is represented
as a sum of contributions from periodic orbits. Combining this with the scaling property of our
Hamiltonian H(ap, aq) = a2H(p, q), we expect that the Fourier transform will exhibit peaks
at the periods of the classical periodic orbits, the height of each peak representing the intensity
of the contributing orbit.

Figure 5 shows absolute values of the Fourier transform as a function of both s and Aso.
Let us notice that the peak at s ~ V3 (in unit of T, = 21/, ) significantly grows up with
increasing octupole deformation, and reaches the maxima at Azp = 0.3 ~ 0.4. This value of s
just corresponds to the periods of the newly born orbits PB, PC and PD. In this way, we find a
nice classical-quantum correspondence. In particular, the prominent shell structure at A3 ~ 0.3
may be regarded as a quantum manifestation of the bifurcations of classical periodic orbits.
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4. Contour Map of the Shell-Structure Energy

Next, let us investigate how the shell structure changes when both the quadrupole and oc-
tupole deformation parameters are varied. As a measure of the intensity of shell effect, we
define

ne (v x (B2

where Eg, (V) is the shell structure energy for particle number N.

Figure 6 shows a contour map of I,. The significant maxima on the horizontal axis at dos; =
—0.75, 0.0, 0.6 and 0.86 correspond to oblate-superdeformed, spherical, prolate-superdeformed
and hyperdeformed shapes, respectively. The thick lines represent the points where various
kinds of bifurcation occur. We see that some thick lines run along the ridges of the Ig-contour,
indicating the significance of their contributions to the shell effect [9].

}"30

Figure 6
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5. Concluding Remarks

We have discussed the origin of the shell structure appearing in a reflection-asymmetric de-
formed oscillator potential in terms of classical periodic orbits and their bifurcations. It woulq
be an interesting future subject to study how the nice classical-quantum correspondence foung
for the Hamiltonian (1) persists in more realistic Hamiltonian like Woods-Saxon potential in-
cluding the spin-orbit term.
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We have investigated the semiclassical origin of superdeformed shell structure and
also of reflection-asymmetric deformed shapes by means of the periodic orbit theory and
the deformed cavity model. Systematic analysis of the quantum-classical correspondence
reveals that bifurcation of equatorial orbits into three-dimensional ones play predominant
role in the formation of these shell structures.

1 Introduction

The shell structure, i.e., a regular oscillating pattern in the smoothed single-
particle level density, coarse-grained with respect to energy resolution, plays decisive
role in determining the shapes of finite Fermion systems [1-6]. According to the
periodic-orbit theory [7-11] based on the semiclassical approximation to the path
integral, the shell structure is determined by the classical periodic orbits with short
periods. Finite Fermion systems like nuclei and metallic clusters favor such shapes
at which prominent shell structures are formed and their Fermi surfaces lie in the
valley of the oscillating level density, increasing thus their binding.

In this talk, we investigate the axially-symmetric deformed cavity model as a sim-
ple representation of single-particle motions in nuclei and metallic clusters [8,10,12],
and try to find the correspondence between quantum shell structure and classical
periodic orbits. Our major purpose is to identify the most important periodic orbits
that determine major patterns of oscillating level densities at exotic deformations
including prolate superdeformations, prolate hyperdeformations, oblate superdefor-
mations and reflection-asymmetric shapes.

In the cavity model, the action integral S, for a periodic orbit 7 is proportional
to its length L,, Sy = § p-dq = kL., and the trace formula for the oscillating
part of the level density 1s written as

A(E) Y Ayk =212 cos(k Ly — 7y /2), (1)

¥

where d, and p, denote the degeneracy and the Maslov phase of the periodic orbit

*) Presented by K. Matsuyanagi at the International Conference on “Atomic Nuclei and Metallic
Clusters”, Prague, September 1-5, 1997.
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7, respectively. Fourier transform F(L) of p(E) with respect to wave number £ is
F(L) = / dk k== D2k 5B = 1%k /2M)

~ Y ALS(L— Ly), (2)

which may be regarded as ‘length spectrum’ exhibiting peaks at lengths of individ-
ual periodic orbits. In the following, we shall make full use of the Fourier transforms
in order to identify important periodic orbits.

We solve the Schrodinger equation for single-particle motions in the cavity under
the Dirichlet boundary condition. We have constructed a computer program by
means of which we can efficiently obtain a large number of eigenvalues as function
of deformation parameters of the cavity [13]. We have systematically searched for
classical periodic orbits in the three-dimensional (3D) cavities on the basis of the
monodromy method [14].

2 Periodic-orbit bifurcations

As is well known, only linear and planar orbits exist in the spherical limit. When
quadrupole deformation sets in, linear (diameter) orbits bifurcate into those along
the major axis and along the minor axis. Likewise, planar orbits bifurcate into those
in the meridian plane (containing the symmetry axis) and in the equatorial plane
(perpendicular to the symmetry axis).

With variation of deformation, 3D and new 2D periodic orbits are successively
born through bifurcations. Bifurcations that are important in the following discus-
sions are
(i) bifurcations from multiple repetitions along the minor axis, which generate
butterfly-shaped planar orbits in the meridian plane, and
(ii) bifurcations from multiple traversals of planar orbits in the equatorial plane,
which generate 3D periodic orbits.

For prolate shapes (i) may be regarded as a limit of (ii), while this distinction is
important for oblate shapes. We shall see that bifurcations of type (ii) are especially
important for shell structure with prolate super- and hyper-deformations and with
reflection-asymmetric shapes. Bifurcation points for (ii) are determined by stability
of equatorial-plane orbits against small displacements in the longitudinal direction.
Bifurcations occur when the following condition is valid:

Ry _ sin(mt/p)?
Ry  sin(wq/p)?’

where R; and R, denote the main curvature radii for the longitudinal and equatorial
directions, respectively, and (p,t,q) are positive integers.

At the bifurcation points, trace of the (2 x 2) reduced monodromy matrix M
representing stabilities of equatorial-plane orbits becomes Tr M = 2, indicating
that they are of neutral stability at these points. The above equation was first

(3)
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derived by Balian and Bloch [8]. We note that, for the special case of prolate
spheroidal shapes, Ry/R; is simply related to the axis ratio a/b as Ry/ Ry = (a/b)?,
a and b being the lengths of the major and the minor axes, respectively, and (p,t,q)
represent the numbers of vibrations or rotations of the periodic orbits with respect
to the three sphieroidal coordinates. They correspond to (n¢, ng, n¢) and (n,, ng, nu)
of Refs. [10, 15], respectively. Periodic-orbit bifurcations in spheroidal cavities have
been thoroughly studied by Nishioka et al. [15,16].

3 Semiclassical origin of superdeformations

Let us first discuss spheroidal cavities. In Fig. 1 oscillating parts of the smoothed
level densities are displayed in a form of contour map with respect to energy and de-
formation. Regular patterns consisting of several valley-ridge structures are clearly

200
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Fig. 1. Oscillating parts of the smoothed level densities for spheroidal cavities, displayed

as a function of energy (in unit of 2/2M R3) and deformation. Constant-action lines for

some short periodic orbits are indicated by thick solid and broken lines (see text). The

deformation parameter § is related to the axis ratio 9 = a/b by § = 3(y — 1)/(29 +1) in
the prolate case and by § = —3(y — 1)/(n + 2) in the oblate case.
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seen. Thick solid and broken lines indicate constant-action lines for some important
periodic orbits which we are going to discuss, We note here that, as emphasized by
Strutinsky et al. [10], when few families of orbits having almost the same values of
action integral S, dominate in the sum in Eq. (1), the valleys in the contour map
may follow such lines along which S, stay approximately constant.

Figure 2 displays Fourier transforms of the level densities. At normal deformation
with 6 = 0.3, we notice peaks associated with triangular and quadrilateral orbits
in the meridian plane.

Constant-action lines for the triangular orbits are indicated in Fig. 1 for several
values of ep that go through the spherical closed shells. It is clear that the valleys
run along these lines. ~

With increasing deformation, bifurcations of linear and planar orbits in the
equatorial plane successively take place [15]: Butterfly-shaped planar orbits with
(p:t:g)=(4:2:1) bifurcate at § ~ 0.32 from double repetitions of linear orbits along
the minor axis. Then, 3D orbits (5:2:1) bifurcate at § = 0.44 from five-point star-
shaped orbits in the equatorial plane. Similar 3D orbits (6:2:1), (7:2:1), (8:2:1),
etc. successively bifurcate from double traversals of triangular orbits, 7-point star-
shaped orbits, double traversals of rectangular orbits, etc. in the equatorial plane.
These 3D orbits form the prominent peaks seen in the range L = 8-9 in the Fourier
transform for § = 0.6 (axis ratio 2:1).

Constant-action lines for the 3D orbits (5:2:1) are indicated by thick solid lines
in the region § > 0.44 of Fig. 1. Good correspondence is found between these lines
and shapes of the valleys seen in the superdeformed region. Constant-action lines
for the other 3D orbits mentioned above also behave in the same manner.

40 40
8=0.30 8=0.60
304 30
,—é 204 = 20
3
E o4 & 101
0 [} n
T ™ 7T TTITr™| [ [T IR L
2 3 4 5 & 7 8 9 10 11 12 2 3 4 5 & 7 8 98 10 11 12
L
40 40
8=0.85 8=-0.75
30+
— 201 -
S 10 4 E
0 A
T T TTI BRI
2 3 4 5 6 7 8 9 {0 11 12
L L

Fig. 2. Fourier transforms of quantum level densities for spheroidal cavities with § =
0.3, 0.6 (prolate superdeformation), 0.85 (prolate hyperdeformation) and —0.75 (oblate
superdeformation). In the bottoms of all figures, lengths (in unit of Ro) of classical periodic
orbits are indicated by vertical lines. Long, middle and short vertical lines are used for 3D
orbits, planar orbits in the equatorial and the meridian planes, respectively.
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Some of these 3D orbits are displayed in Fig. 3. They possess similarities with
figure-eight shaped orbits in the superdeformed harmonic oscillator with frequency
ratio w; : w, = 2 : 1. An important difference between the cavity model under
consideration and the harmonic oscillator model should be noted, however: In the
former one they exist for all deformation parameters § larger than the bifurca-
tion points, whereas in the latter one such periodic orbits only appear for special
deformations corresponding to rational ratios of the major and the minor axes.!)
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Fig. 3. Projections of the three-dimensional orbits (5:2:1) and (6:2:1) in the superdeformed
prolate cavity on the (z,y), (y,2) and (z, z) planes.

On the other hand, Fourier peak heights associated with new orbits created by
bifurcations quickly increase with increasing deformation and reach the maxima.
Then, they start to decline. Thus, with variation of deformation, they are replaced
by different periodic orbits bifurcated later. We can confirm this, for instance, by
comparing the Fourier transform for § = 0.6 (axis ratio 2:1) with that for § = 0.85
(axis ratio 3:1). In the latter, we see prominent peaks in the region L = 11-12
associated with 3D orbits (7:3:1), (8:3:1), (9:3:1) that are bifurcated, respectively, at
6 =~ 0.68,0.73,0, 76 from 7-point, 8-point star-shaped orbits, and triple traversals of
the triangular orbits in the equatorial plane. These 3D orbits resemble the Lissajous
figures of the hyperdeformed harmonic oscillator with the frequency ratio 3:1.

For oblate spheroidal cavities with § = —0.75 (axis ratio 1:2), we see prominent
peaks at L & 5.8 associated with butterfly-shaped planar orbits (4:1:1), which are
bifurcated at § &~ —0.36 (axis ratio 1:1/2) from double repetitions of linear orbits
along the minor axis. In addition, just at this shape, new planar orbits (6:1:1)
bifurcate from triple repetitions of linear orbits along the rinor axis [16]. We indeed
see that a new peak associated with this bifurcation arises at L = 7.6.

Constant-action lines for these bifurcated orbits (4:1:1) and (6:1:1) are indicated
by thick solid lines in the region § < —0.36 of Fig. 1. We see clear correspondence
between the shapes of these lines and of valleys in the oscillating level density. Com-
bining this good correspondence with the behavior of the Fourier peaks mentioned

1) Note, however, that periodic orbits appear through bifurcations also for irrational ratios, if
anharmonic terms like octupole deformations are added; see [17].
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Table 1. List of bifurcation points of important periodic orbits in the spheroidal cavity
model. For more details, see Nishioka et al. [15,16].

Orbit (p:t:q) | Axis ratio (a/b) | Deformation § | Orbit length in Ry
(4:2:1) 1.41 0.32 7.1
(5:2:1) 1.62 0.44 8.1
(6:2:1) 1.73 0.49 8.7
(7:2:1) 1.80 0.52 9.0
(8:2:1) 1.85 0.54 9.2
(6:3:1) 2.0 0.6 9.5
(7:3:1) 2.26 0.68 10.3
(8:3:1) 2.42 0.73 10.9
(9:3:1) 2.53 0.76 11.4
(4:1:1) 1.41 —0.36 6.4
(6:1:1) 2.0 ~0.73 7.6

above, it is evident that these periodic orbits are responsible for the shell structure
at oblate superdeformation.

The spheroidal cavities are special because all the bifurcated orbits form con-
tinuous families of degeneracy two, which means that we need two parameters to
specify a single orbit within a continuous set of orbits belonging to a family having
a common value of action integral (length). We have checked [18], however, that
the results obtained for spheroidal cavities persist also for other parametrizations
of quadrupole shapes where the degeneracy is one. The present results for prolate
normal- and super-deformations confirm the qualitative argument by Strutinsky
et al. [10], except for the strong deformation dependence, found above, of relative
contributions of different periodic orbits.

4 Reflection-asymmetric shapes

To explore the possibilities that significant shell structures emerge in the single-
particle spectra for non-integrable Hamiltonians, we have carried out analysis of
single-particle motions in reflection-asymmetric cavities by parametrizing the sur-
face as

R(e) = L + (l3Y30(9) . (4)

Ro \/Ecosﬁ)2 (sin9>2
+ —_—
a b

When octupole deformation is added to the prolate shape (at normal defor-
mation), spheroidal symmetry is broken and, accordingly, the contribution of the
triangular and quadrilateral orbits in the meridian plane declines. However, we
have found that remarkable shell structure emerges for certain combinations of
quadrupole and octupole deformations [13,17]. As an example, Fig. 4 shows the
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Fig. 4. Shell structure energies (in units of #%/2M R3) of the reflection-asymmetric cavity
with § = 0.1 and a3 = 0.2, evaluated with the Strutinsky method and plotted as function
of particle number N counting the spin degeneracy factor of two. For comparison, those
for § = 0.1 and a3 = 0.0 are plotted by broken lines.
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shell-structure energies calculated using the Strutinsky procedure for § = 0.1 and
az = 0.2. Remarkable shell-energy gains are obtained by such deformations for
systems above the spherical closed shells. This appears consistent with the result
of realistic calculations by Frauendorf and Pashkevich [5] for the shapes of sodium
clusters.

Semiclassical origin of this quadrupole-octupole shell structure is again connected
with bifurcation of ‘equatorial’-plane orbits. Figure 5 shows the Fourier transform.
We can clearly identify new peaks associated with orbits (3:1:1) and (4:1:1) bifur-
cated from triangular and square orbits in the ‘equatorial’ plane at the center of
the larger cluster of the pear-shaped cavity.

The key to understand the reason why bifurcations from ‘equatorial’-plane orbits
play important roles at finite octupole deformations may lie in the following point:

40
8=0.1 a5=0.2

30
~ 201
=
= 101
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[ l Il I [
2 3 4 5 6 7 8 9

L

Fig. 5. Same as Fig. 2, but for reflection-asymmetric cavity with § = 0.1 and a3 = 0.2.

Fig. 6. Illustration of a shape at the bifurcation point. A sphere tangent to the boundary
at the ’equatorial’ plane is indicated by a broken line.
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Fig. 7. Some short periodic orbits bifurcated from ‘equatorial’-plane orbits.

stability of these orbits is crucially dependent on the curvature of the boundary.
The curvature radius in the longitudinal direction changes as the octupole defor-
mation parameter as varies, and at certain combinations of § and a3, it matches
the equatorial radius, as illustrated in Fig. 6. At this point, periodic orbits in the
equatorial plane acquire local spherical symmetry, and form local continuous set
of periodic orbits leaving from the ‘equatorial’ plane. This continuous set makes
a coherent contribution to the trace integral and significantly enhances the ampli-
tudes associated with these orbits. This is just the bifurcation point of orbits in the
‘equatorial’ plane, and 3D orbits bifurcate from the above local continuous set. One
can readily check that for R, = R; all orbits (p = 2,3,4,...) in the ‘equatorial’
plane simultaneously satisfy the bifurcation condition (3) with t = ¢ = 1.

Some periodic orbits born out of these bifurcations are displayed in Fig. 7. Note
that octupole deformations play crucial role in creating this kind of bifurcations,
that occur from a single turn (¢t = 1) of the ‘equatorial’-plane orbits (it does not
occur for quadrupole shapes).

5 Conclusions

Classical periodic orbits responsible for the emergence of superdeformed shell
structure for single-particle motions in spheroidal cavities are identified and their
relative contributions to the shell structures are evaluated. Both prolate and oblate
superdeformations as well as prolate hyperdeformations are investigated. Fourier
transforms of quantum spectra clearly indicate that 3D periodic orbits born out of
bifurcations of planar orbits in the equatorial plane become predominant at large
prolate deformations, while butterfly-shaped planar orbits bifurcated from linear
orbits along the minor axis are important at large oblate deformations.

We have also investigated shell structures for reflection-asymmetric cavities. It
is found that remarkable shell structures emerge for certain combinations of qua-
drupole and octupole deformations. Fourier transforms of quantum spectra clearly
indicate that bifurcations of triangular and square orbits in the ‘equatorial’ plane
play crucial roles in the formation of these new shell structures.
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Abstract
By means of periodic orbit theory and deformed cavity model, we have investigated
semiclassical origin of superdeformed shell structure and also of reflection-asymmetric
deformed shapes.  Systematic analysis of quantuwm-classical correspoudence reveals
that bifurcation of equatorial orbits into three-dimensional ones play predominant
role i the formation of these shell structures.

1 Introduction

Shell structure, i.c.. regular oscillating patteru in the smoothed single-particle level density,
coarse-grained with respect to cuergy resolution. plays decisive role in deterinining shapes
of finite Fermion systems (1 6]. According to the periodic-orbit theory [7-11] based on the
sciniclassical approximation to the path integral. shell structure is determined by classical
periodic orbits with short periods. Finite Fermion systeins like nuclei and metallic clusters
favor such shapes at which prominent shell structures are formed and their Ferini surfaces
lic in the valley of the oscillating level density. increasing their binding energics in this
Lianuer. ,

In this talk. we investigate the axially-synunetrie deformed cavity model as a simple
wodel of single-particle wotions in nuclei and metallic clusters {8, 10. 12], and try to find
the correspondence between quantwun shell structure and classical periodic orbits. Qur
major purposc is to identify most important periodic orbits that deternine major patterns
of oscillating level deusitics at cxotic deformations including prolate superdeformations.
prolate hyperdeformations. oblate superdeformations and reflection-asynunetric shapes.

In the cavity model. the action integral S, for a periodic orbit 7 is proportional to the
length L, of it, S, = §. p-dg = RAL.. aud the trace formula for the oscillating part of
the level density is written as

ME) =" ARG cog(KL, — wp,/2). (1)

where d, and p, denote the degeneracy and the Maslov phase of the periodic orbit 7,
respectively. Fourier trausforiu F(L) of p(E) with respect to wave nuuber & is

(L) = / dk kD2~ kL 5 B 5212 90

R
]
P
=
o~
|
Ly
S



[

which may be regarded as ‘length spectruin’ exhibiting peaks at lengths of individual
periodic orbits. In the following, we shall make full use of the Fourier transforms in order
to identify important periodic orbits.

- We solve the Schrédinger equation for single-particle motions in the cavity under the
Dirichlet boundary condition. We have constructed a computer program by which we
can efficiently obtain a large nwnber of cigenvalucs as function of deformation paramecters
of the cavity [13]. We have systematically scarched for classical periodic orbits in the
three-dimensional(3D) cavities ou the basis of the monodromy method [14].

2 Periodic-orbit bifurcations

As is well known, only linear and planar orbits cxist in the spherical limit. When
quadrupole deformation sets i, lincar (diameter) orbits bifurcate into those along the
major axis and along the minor axis. Likewise, planar orbits bifurcate into .those in the
meridian plane (containing the synunctry axis) and in the equatorial plane (perpendicular
to the symmetry axis).

With variation of deformation, 3D and new 2D periodic orbits are successively born
through bifurcations. Bifurcations that arc important in the following discussions are
(i) bifurcations from multiple repetitions along the mwinor axis, which generate butterfly-
shaped planar orbits in the meridian plane, and
(ii) bifurcations frow wmultiple traversals of planar orbits in the equatorial plane, which
generate 3D periodic orbits.

For prolate shapes (i) may be regarded as a limit of (ii), while this distinction is
important for oblate shapes. We shall sce that bifurcations of type (ii) arc especially
important for shell structure at prolate super- and hyper-deformations and at reflection-
asymunetric shapes. Bifurcation points for (ii) are determined by stability of equatorial-
plane orbits against small displaceinents in the longitudinal direction. Bifurcations occur
when the following condition is wmet:

Ry sin(mt/p)?

Ry sin(ng/p)?’ )

where R; and R, denote the main curvature radii for the longitudinal and equatorial
directions, respectively, and (p.t.q) arc positive integers.

At the bifurcation poiuts. trace of the (2 x 2) reduced monodromny matrix M repre-
senting stabilities of equatorial-planc orbits becomes Tr M = 2, indicating that they are
of neutral stability at these points. The above equation was first derived by Balian and
Bloch [8]. We note that, for the special case of prolate spheroidal shapes, Ro/R; is simply
related to the axis ratio a/b as Ra/R; = (a/b)?, a and b being lengths of the major and
the minor axes. respectively, and (p.t.q) represent the nuinbers of vibrations or rotations
of the periodic orbits with respect to the three spheroidal coordinates. They correspond
to (ne.ng,n¢) and (n,, ng, n,) of Refs. [10, 15], respectively. Periodic-orbit bifurcations in
spheroidal cavities have been thoroughly studied by Nishioka et al.[15, 16]

3 Semiclassical origin of superdeformations

Let us first discuss spheroidal cavities. In Fig. 1 osci]latiﬁg parts of the smoothed level
densities are displayed in a forimn of contour map with respect to energy and deformation.
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Figure 1: Oscillating parts of the smoothed level densities for spheroidal cavities, displayed as function of
energy (in unit of 2*/2M Rj) and deformation. Constant-action lines for some short periodic orbits are
indicated by thick solid and broken lines (see text). The deformation parameter ¢ is related to the axis
ratio n = a/b by § = 3(n—1)/(21+ 1) in the prolate case and by 6§ = —3(n— 1)/(n+ 2) in the oblate case.

Regular patterns consisting of several valley-ridge structures are clearly seen. Thick solid
and broken lines indicate coustant-action lines for some important periodic orbits on which
we are going to discuss. We here notc that, as emphasized by Strutinsky et al.[10], if few
families of orbits having almost the same values of action integral S, dominate in the
sum in Eq. (1), the valleys in the contour map may follow such lines along which S, stay
approximately constant.

Figure 2 displays Fourier trausforins of the level densities. At normal deformation
with § = 0.3, we notice peaks associated with triangular and quadrilateral orbits in the
meridian plane.

Constant-action lines for the triangular orbits are indicated in Fig. 1 for several values
of er that go through the spherical closed shells. It is clear that the valleys run along
these lines.

With increasing deformation. bifurcations of linear and planar orbits in the equatorial
plane successively take place [15]: Butterfly-shaped planar orbits with (p:t:q)=(4:2:1) bi-
furcate at 6 ~ 0.32 fromn double repetitions of linear orbits along the minor axis. Then,
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Figure 2: Fourier transforms of quantum level densities for spheroidal cavities with 6 = 0.3, 0.6 (prolate
superdeformation), 0.85 (prolate hyperdeformation) and —0.75 (oblate superdeformation). In the bottoms
of every figures, lengths (in unit of Rg) of classical periodic orbits are indicated by vertical lines. Long,
middle and short vertical lines are used for 3D orbits, planar orbits in the equatorial and the meridian
planes, respectively.

3D orbits (5:2:1) bifurcate at § ~ 0.44 from five-point star-shaped orbits in the equatorial
plane. Similar 3D orbits (6:2:1), (7:2:1), (8:2:1), etc. successively bifurcate from double
traversals of triangular orbits, 7-point star-shaped orbits, double traversals of rectangular
orbits, etc. in the equatorial plane. These 3D orbits form the prominent peaks seen in the
range L = 8 ~ 9 in the Fourier transform for é = 0.6 (axis ratio 2:1).

Constant-action lines for the 3D orbits (5:2:1) are indicated by thick solid lines in the
region § > 0.44 of Fig. 1. Good correspondence is found between these lines and shapes
of the valleys seen in the superdeformed region. Constant-action lines for the other 3D
orbits mentioned above also behave in the same fashion.

Some of these 3D orbits are displayed in Fig. 3. They possess similarities with
figure-eight shaped orbits in the superdeformed harmonic oscillator with frequency ratio
wiw,=2:1. An important difference between the the cavity model under consideration
- and the harmonic oscillator model should be noted, however: In the former they exist for
all deformation parameters § larger than the bifurcation points, whereas in the latter such
periodic orbits appear only for special deformations corresponding to rational ratios of the
major and the minor axes.!

On the other hand, Fourier peak heights associated with new orbits created by bifur-
cations quickly increase with increasing deforination and reach the maxima. Then, they
start to decline. Thus, with variation of deformation, they are replaced by different peri-
odic orbits bifurcated later. We can confirm this, for instance, by comparing the Fourier
transform for § = 0.6 (axis ratio 2:1) with that for § = 0.85 (axis ratio 3:1). In the latter,
we see prominent peaks in the region L = 11 ~ 12 associated with 3D orbits (7:3:1),
(8:3:1), (9:3:1) that are bifurcated, respectively, at § ~ 0.68,0.73,0, 76 from 7-point, 8-

' Note, however, that periodic orbits appear through bifurcations also for irrational ratios, if anharmonic
terms like octupole deformations are added; see [17].
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Figure 3: Three-dimensional orbits (5:2:1) and (6:2:1) in the superdeformed prolate cavity. Their projec-
tions on the (r, y), (y.z) and (=..r) planes are displayed.

point star-shaped orbits. and triple traversals of the triangular orbits in the equatorial
plane. These 3D orbits resciuble with Lissajous figures of the hyperdeforined harmonic
oscillator with the frequency ratio 3:1.

For oblate spheroidal cavitics with 6 = —0.75 (axis ratio 1:2), we see prowminent peaks
at L ~ 5.8 associated with butterfly-shaped planar orbits (4:1:1), which are bifurcated at
§ ~ —0.36 (axis ratio 1:v/2) from double repetitions of linear orbits along the winor axis.
In addition, just at this shape. new planar orbits (6:1:1) bifurcate from triple repetitious
of lincar orbits along the minor axis [16]. We indeed sce that a new peak associated with
this bifurcation arises at L ~ 7.6.

Coustant-action lines for these bifurcated orbits (4:1:1) and (6:1:1) are indicated by
thick solid lines iu the region & < —0.36 of Fig. 1. We sce clear correspondence between
shapes of these lines and of valleys in the oscillating level density. Cowmbining this good
correspoudence with the behavior of the Fourier peaks mentioned above, it is evident that
these periodic orbits are respousible for the shell structure at oblate superdeformation.

The spheroidal cavitics are special in that every bifurcated orbits form coutinuous
families of degeneracy two. which means that we need two paramncters to specify a single
orbit among continuous sct of orbits belonging to a family having a common value of

-action integral (length). We have checked [18]. however. that the results obtained for

spheroidal cavitics persist also for other paramcterizations of quadrupole shapes where
the degeneracy is onc. The preseut results for prolate normal- and super-deformations
confirm the qualitative argument by Strutinsky ct al.[10]. except for the strong deformation
dependence, found above. of relative contributions of different periodic orbits.

4 Reflection-asymmetric shapes

To explore the possibilitics that significant shell structures emerge in the single-particle
spectra for non-integrable Hamiltonians. we have carried out analysis of single-particle
motions in reflection-asymunetric cavitics by paramcterizing the surface as

R(0)/Ry =

1
cos8 2 sin 612 +ag¥a(8). (4)
V(E22)2 4 (s20)2 -
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Table 1: List of bifurcation points of important periodic orbits in the spheroida.l cavity model. For more
details, see Nishioka et al. {15, 16] '

orbit (p:t:q) axis ratio (a/b) deformation 6 orbit length in Ry
(@:2:0) 141 0.32 7.1
(5:2:1) 1.62 0.44 8.1
(6:2:1) 1.73 0.49 8.7
(7:2:1) 1.80 0.52 9.0
(8:2:1) 1.85 0.54 9.2
(6:3:1) 2.0 0.6 9.5
(7:3:1) 2.26 0.68 10.3
(8:3:1) 2.42 0.73 10.9
(9:3:1) 2.53 0.76 11.4
(4:1:0) 141 ~0.36 64
(6:1:1) 2.0 ~0.73 7.6

When octupole deformmation is added to the prolate shape (at normal deformation),
spheroidal symmetry is broken and. accordingly. coutribution of the triangular and quadri-
lateral orbits in the meridian planc decline. However, we have found that remarkable
shell structure emcrges for certain combinations of quadrupole and octupole deformations
(17, 13]. As an exawple, Fig. 4 shows shell-structure cnergies calculated for 6 = 0.1 and
ay = 0.2 with the Strutinsky procedurc. Remarkable shell-energy gains are obtained by
such deformations for systeis above the spherical closed shells. This appears cousistent
with the result of realistic calculations by Fraucndorf and Pashkevich [5] for shapes of
sodiun clusters.

Semiclassical origin of this quadrupole-octupole shell structure is again connected with
bifurcation of ‘equatorial’-planc orbits. Figurc 5 shows the Fourier transformn. We can
clearly identify new peaks associated with orbits (3:1:1) and (4:1:1) bifurcated frowm trian-

- gular and square orbits in the "equatorial” planc at the ccuter of the larger cluster of the
pear-shaped cavity. '

The key to understand the reason why bifurcations from ‘equatorial’-plane orbits play
nuportant roles at finite octupole deformations may lic in the following point: Stability

40
30 1
20 1
10 4

-10 4

Eghent [P/2MRy’]

[ARN)
5 o
P

A
)

o

50 100 150 200 250
N

Figure 4: Shell structure energies (in unit of A*/2M R3) of the reflection-asymmetric cavity with § = 0.1
and a3 = 0.2, evaluated with the Strutinsky method and plotted as function of particle number N counting

the spin degeneracy factor of two. For comparison, those for § = 0.1.and a3 = 0.0 are plotted by broken
lines.
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Figure 5: Same as Fig. 2, but for reflection-asymmetric cavity with § = 0.1 and a5 = 0.2.

Figure 6: Illustration of a shape at the bifurcation point. A sphere tangent to the boundary at the
‘equatorial’ plane is indicated by a broken line.

of these orbits is crucially dependent on the curvature of the boundary. The curvature
radius in the longitudinal direction changes as the octupole deformation parameter a3
varies, and at certain combinations of § and a3, it matches with the equatorial radius,
as illustrated in Fig. 6. At this point, periodic orbits in the equatorial plane acquire
local spherical symmetry, and form local continuous set of periodic orbits leaving from the
‘equatorial’ plane. This continuous set makes a coherent contribution to the trace integral
and significantly enhances the amplitudes associated with these orbits. This is just the
bifurcation point of orbits in the ‘equatorial’ plane, and 3D orbits bifurcate from the above
local continuous set. Oue can readily check that for Ry = Ry all orbits (p =2,3,4,...) in
the ‘equatorial’ plane siinultancously satisfy the bifurcation condition (3) with t = ¢ = 1.

Some periodic orbits born out of these bifurcations are displayed in Fig. 7. Note that
octupole deformatious play crucial role in creating this kind of bifurcations, that occurs

from a single turn (¢ = 1) of the ‘equatorial’-plane orbits (it did not occur for quadrupole
shapes).

Figure 7: Some short periodic orbits bifurcated from ‘equatorial’-plane orbits.
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5 Conclusions

Classical periodic orbits responsible for the emergence of superdeformed shell structure for
single-particle motions in spheroidal cavities are identified and their relative contributions
to the shell structures are evaluated. Both prolate and oblate superdeformations as well as
prolate hyperdeformations are investigated. Fourier transforms of quantum spectra clearly
indicate that 3D periodic orbits boru out of bifurcations of planar orbits in the equatorial
plane become predominant at large prolate deforinations, while butterfly-shaped planar
orbits bifurcated from linear orbits along the minor axis are important at large oblate
deformations.

We have also investigated shell structures for reflection-asymunetric cavities. It is
found that remarkable shell structures emerge for certain combinations of quadrupole
and octupole deformations. Fourier transforms of quantum spectra clearly indicate that
bifurcations of triangular and square orbits in the ‘equatorial’ plane play crucial roles in
the formation of these new shell structures.
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Exotic Shapes in %S suggested by the
Symmetry-Unrestricted
Cranked Hartree-Fock Calculations

Masayuki Yamagami and Kenichi Matsuyanagi

Department of Physics, Graduate School of Science, Kyoto University,
Kitashirakawa, Kyoto 606-8502, Japan

Abstract.

High-spin structure of 32S is investigated by means of the cranked Skyrme-Hartree-Fock method in the
three-dimensional Cartesian-mesh representation. Some interesting suggestions are obtained: 1) An internal
structure change (toward hyperdeformation) may occur at I > 20 in the superdeformed band, 2) A non-
axial Y3; deformed band may appear in the yrast line with 5 < I < 13.

Introduction

Since the discovery of the superdeformed(SD) band in 12Dy, about two hundreds SD bands have been found
in various mass (A=60, 80, 130, 150, 190) regions [1]. Yet, the doubly magic SD band in 32S, which has been
expected quite a long time (2,3] remains unexplored, and will become a great challenge in the coming years.

Quite recently, we have constructed a new computer code for the cranked Skyrme Hartree-Fock (HF) cal-
culation based on the three-dimensional (3D) Cartesian-mesh representation, which provides a powerful tool
for exploring exotic shapes (breaking both axial and reflection symmetries in the intrinsic states) at high spin
in unstable nuclei as well as in stable nuclei. As a first application of this new code, we have investigated
high-spin structure of 32S and obtained some interesting results on which we are going to discuss below.

Cranked Skyrme HF Calculation
We solve the cranked HF equation
§ < H = wporJz >=0 1)

in the 3D Cartesian-mesh representation. We adopt the standard algorithm [4-7] but completely remove various
restrictions on spatial symmetries. When we allow for the simultaneous breaking of both reflection and axial
symmetries, it is crucial to fulfill the center-of-mass condition

A A A
<Y zi>=< Y pi>=< Y z>=0, (2)
i=1 i=1 i=1 )

and the principal-axis condition

A A A
< inyi >=< Zyizi >=< Zz,-x,- >=0. (3)
i=1 i=1

i=1

CP481, Nuclear Structure 98, edited by C. Baktash
© 1999 American Institute of Physics 1-56396-858-4/99/$15.00
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FIGURE 1. Excitation energy versus angular-momentum plot of the yrast structure of 3?S calculated with the Skyrme
III interaction. Density distributions projected on the plane perpendicular to the rotation axis are shown, as insets, for
the SD band (solid line with filled squares). and the Y31 band (broken line with open circles).

Special care is taken to accurately fulfill the above conditions during the iteration procedure. We solve these
equations inside the sphere with radius R=8[fm] and mesh size h=1[fm], starting with various initial configura-
tions. We use the Skyrme III interaction which has been successful in describing systematically the ground-state
quadrupole deformations in a wide area of nuclear chart [7]. Results of the calculation are presented in Figs.
1-3. Figure 1 shows the structure of the yrast line. The expected superdeformed(SD) band becomes the yrast
for I > 14. In addition to the SD band, we obtained an interesting band possessing the Y3; deformation,
which appears in the yrast line with 5 < I < 13. Let us call this band “Y3; band.” The calculated angular
momentum I and deformation § for the SD band and the Y3; band are shown in Figs. 2 and 3 as functions of
the rotational frequency wyo;. Below we shall first discuss the SD band and then about the Y3; band.

High-Spin Limit of the Superdeformed Band

The SD band is obtained from I = 0 to about I = 20A. The potential energy surface for the SD state at
I = 0 is shown in Fig. 4. We see that the excitation energy of the SD state at I = 0 is about 12 MeV. ! It
becomes the yrast above I = 14h.

A particularly interesting point is the behavior of the SD band in the high-spin limit: It is clearly seen in

) The rotational zero-point energy corrections are evaluated to be -4.3 MeV and -1.1 MeV for the SD and the ground-

state configurations, respectively. If we take these corrections into account, the excitation energy becomes about 9
MeV.
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FIGURE 3. Deformation § plotted as a function of the rotation frequency wro: for for the SD band
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that for the ground state configuration (dotted line with open squares). This calculation was done by means of the
constrained HF procedure (8].

Figs. 2 and 3 that a jump occurs both in the angular momentum I and the deformation § at wpe: ~ 3 MeV/A.
" At this point, I jumps from about 22 to 26%, and § increases from about 0.56 to 0.66. This is due to the level
crossing with the rotation-aligned [440]% orbit. Thus the states above I ~ 247 may be better characterized as
the hyperdeformed configuration rather than the SD configuration. Such a singular behavior of the SD band
can be noticed also in the previous cranked HF calculation with the BKN force [9], but no explanation of its
microscopic origin was given there. Let us note that if we regard the SD configuration as to correspond to
the j-j-coupling shell model 4p-12h configuration m[(f1/2)%(sd) %] ® v[(f72)?(sd) %] (relative to *°Ca) in the
spherical limit, the maximum angular momentum that can be generated by aligning the single-particle angular
momenta toward the direction of the rotation axis is 244, and thus “the SD band termination” may be expected

at this angular momentum. Interestingly, our calculation suggests that a crossover to the hyperdeformed band
takes place just at this region of the yrast line.

Effects of Time-Odd Components

It would be interesting to examine the effect of rotation-induced time-odd components in the mean field. In
Fig. 5 we compare the results of calculation with and without the time-odd components. From this figure we can
easily confirm that the dynamical moment of inertia J(2) = 8I /8wy of the SD band increases about 30% due
to the time-odd components. This increase is well compared with the effective-mass ratio m/m* = 1/0.76 ~ 1.3
for the Skyrme ITI interaction, and seems to be consistent with what expected from the restoration of the local
Galilean invariance [10] (more generally speaking, local gauge invariance [11]) of the Skyrme force; namely, the
major effect of the time-odd components is to restore the decrease of the moment of inertia due to the effective
mass m” and bring it back to the value for the nucleon mass m.
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P31 is defined through the mass-octupole moments in the usual manner .
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31 Deformation

As noticed in Fig. 1, we found that a non-axial Y3; deformed band (6 ~ 0.2 and B3; = 0.1 ~ 0.15) appears
in the yrast line with 5 < I < 13. It should be emphasized that this band does not exist at I = 0 but emerges
at high spin: As shown in Fig. 6, the Y3; deformation quickly rises when wy,; exceeds 1 MeV/h.

Formation mechanism of this band is well described as a function of angular momentum I by means of the
new cranked HF code allowing for the simultaneous breaking of both axial and reflection symmetnes We
found that this band emerges as a result of the strong coupling between the rotation-aligned [330]1 5 orbit and
the [211]2 orbit. The matrix element of the Y3; operator between these single-particle states is large, since
they satisfy the selection rule for the asymptotic quantum numbers (AA =1, An, = 2).

Conclusions

We have investigated high-spin structure of 32S by means of the cranked Skyrme HF method in the 3D
Cartesian-mesh representation, and suggested that
1) an internal structure change (toward hyperdeformatlon) may occurs at I > 20 in the superdeformed band,
2) a non-axial Y3; deformed band may appear in the yrast line with 5 < I < 13.

We have obtained similar results also in calculations with the Skyrme M* interaction. More detailed study
including dependence on effective interactions is in progress.
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Symmetry-Unrestricted Skyrme-HFB Calculations for Exotic
Shapes in Proton-Rich N=Z Nuclei in the A=60-80 Region*

M. Yamagami!, K. Matsuyanagi', and M. Matsuo?

! Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
2 Graduate School of Science and Technology, Niigata University, Niigata 950-21 01, Japan

Abstract:

By performing a fully 3D symmetry-unrestricted Skyrme-HFB calculation, we discuss the possi-
bility of exotic deformations violating both reflection and axial symmetries in proton-rich N = Z
nuclei; *Ge, ®8Se, ™K, "5Sr, 8Zr, and 84Mo. The calculation indicates that the oblate ground
state of %8Se is extremely soft against the Y3 triangular deformation, and that the low-lying “spher-
ical” minimum coexisting with the prolate ground state in 80Zr may be unstable against the Y33
tetrahedral deformation.

1 Introduction |

In N = Z nuclei with A = 60-80, proton and neutron shell effects act coherently and rich possi-
bilities arise for coexistence/competition of different shapes. Recently, on the basis of the Skyrme
Hartree-Fock(HF) plus BCS calculation with no restriction on the nuclear shape, Takami, Yabana
and Matsuo suggested that the oblate ground state of ®3Se is extremely soft against the Y33 trian-
gular deformation, and that the low-lying “spherical” minimum coexisting with the prolate ground
state in 8Zr has the Y3, tetrahedral shape [1, 2]. We examine this prediction by carrying out a
fully three dimensional (3D), selfconsistent Skyrme HF-Bogoliubov (HFB) calculation with the
use of the density-dependent, zero-range pairing interaction.

2 A fully 3D HFB calculation

Two years ago, we had constructed a new computer code for cranked Skyrme HF calculation on
a 3-dimensional Cartesian-mesh space without imposing any restrictions on the spatial symmetry.
The first application of this code was made for investigation of the high-spin yrast structure of
328 [3, 4]. This code has also been used (see Fig. 1) for the analysis of the superdeformed (SD)
band recently discovered [5] in % Ar. We are presently investigating what will happen above the
SD band termination at spin 16 [6]. This code has been extended to the HF-Bogoluibov (HFB)
version including the pairing correlations by means of the algorithm called the "two basis method”
[8, 9]. Here, the imaginary-time evolution method is combined with a diagonalization of the HFB
Hamiltonian matrix to construct the canonical basis. Single-particle wave functions and densities
are represented on a 3-dimensional Cartesian mesh space in a spherical box without assuming
any spatial symmetry. The radius of spherical box and mesh spacing are set to 10.0 [fm] and
1.0 [fm], respectively. Potential energy surfaces are evaluated by means of the constrained HFB

*Contribution presented by K. Matsuyanagi.
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Figure 1: Excitation energies and deformation parameters of the superdeformed solution in *®Ar, obtained
in the cranked Skyrme HF calculation [6].

procedure. As in Ref. [9], we use Skyrme III for the mean-field (particle-hole) channel and the
| density-dependent zero-range interaction

Vousr (71, 72) = Vo (1- Fo) (1— p('F1)> 5 (71— 72) M

for the pairing (particle-particle) channel, where p(7) denotes the total nuclear density and P, the
spin exchange operator. The standard parameters [10], 1, = —1000.0 [MeV - fm®] and p, = 0.16
[fm~3], are used. We are presently examining the dependence on different versions of the Skyrme
force as well as on the pairing-force strength 15 [7].

3 Shapes coexisting near the ground states

Results of calculation are shown in Figs. 2-4 and Table 1. As is expected, the calculated ground-
state shape changes from triaxial (®*Ge), oblate (®3Se, "?Kr) to large prolate shape ("8Sr, 8°Zr)
with increasing Z(= NV). As seen in Fig. 2, we obtain two or three local minima close in energy,
indicating shape coexistence, in #3Se, ™Kr, "®Sr and *°Zr. Quite recently, a prolate excited band
(B> = 0.27) was found near the oblate ground band (8 = —0.27) in %8Se [11]. Our result of
calculation is consistent with these data. The calculated barrier height (about 300 keV) between the
: oblate and prolate minima, shown in Fig. 3, might seem too low to sustain the shape coexistence.
We would like to stress, however, that careful consideration of dynamics is required to evaluate
the mixing between the two minima. This is a quite challenging open subject. As seen in Fig. 4,
our calculation indicates that the oblate solution of %8Se is unstable (extremely soft) with respect
to the triangular Y33 deformation, and that the spherical solution of ¥Zr is unstable (extremely
! soft) against the tetrahedral Y3, deformation. As mentioned in Ref. [1], the instability toward the
triangular deformation in the oblate regime in 3Se is caused by the strong Y33 coupling between
! the high-(2 [404]9/2 and [413]7/2 levels (stemming from gq/» ) and the [301]3/2 and [310]1/2 levels
(associated with p3/»). On the other hand, the tendency toward the tetrahedral Y3 shape in *Zr is
associated with the fact that N = Z = 40 is a magic number for this shape [12].
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Table 1: HFB solutions for proton-rich N = Z nuclei in the A = 60-80 region. The number's ilj the first lines
indicate excitation energies measured from the ground state solutions. Thfa'symbol ~ indicates that the
potential energy surface is extremely shallow about the equilibrium Yalue. Ea!rlpg gaps A, anq A, are here
defined as averages of diagonal elements A; over 5 MeV interval in the vicinity of the Fermi surface, and
their values at the equilibrium deformations are listed.

| Oblate Spherical Prolate
g.s.
BGe || B, = 0.27,25° (triaxial) -
B3 = 0.0
A, =1.254, =1.12
g.s. 0.52
%Se B8,y = 0.28,60° B, 75= 002% 0°
ation Bs = Bs3 ~ 0.08 3 = U.
" A, =1.28,A, =113 Ap=129,4, =115
gs. 0.92
"Kr B,v = 0.32,60° B,y =0.40,0°
,33 =0.0 133 =0.0
A, =1.03,A, =1.23 A, =1.25 A, =0.92
1.79 g.s.
St 8,7 = 0.30, 60° B,v = 0.51,0°
Bas = Baz = 0.0 p3 = 0.0
A, =147, A, = 1.43 A, = 0.67,A, = 0.50
0.86 1.01 g.s.
807r B,v = 0.20, 60° B,y =0.0,0° B,v = 0.51,0°
B3 =0.0 B3 = B33 = 0.15 B3 =0.0
A, =1.02,A, =0.82 A, =068,47A,=039 A,=0.79,A,=0.78
0.20 g.s. 1.52
84Mo B, = 0.16, 60° B,~v = 0.0,0° B,v = 0.66,0°
,63 = OO ,83 = 530 ~ 0.0 ﬁg =0.0
A, =1.46,A, =142 A, =0.74,A, = 0.72 A, =0.0,4,=0.0

4 Concluding remarks

For N = Z nuclei in the **Se-**Zr region, we have presented some examples of the HFB solution
that indicate instabilities toward non-axial octupole deformations. The result is consistent with
that of Refs. [1, 2]. Investigation of excitation spectra associated with the new type of symmetry

breaking in the selfconsistent mean fields remains as a challenging subject of coming years for
both theorists and experimentalists.

s of 80Zr,
] for their
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Abstract

Classical periodic orbits responsible for emergence of the superdeformed
shell structure of single-particle motion in spheroidal cavities are identified
and their relative contributions to the shell structure are evaluated. Fourier
transforms of quantum spectra clearly show that three-dimensional periodic
orbits born out of bifurcations of planar orbits in the equatorial plane become
predominant at large prolate deformations. A new semiclassical method
capable of describing the shell structure formation associated with these
bifurcations is briefly discussed.

1. Introduction

Regular oscillation in the single-particle level density
(coarse-grained to a certain energy resolution) is called shell
structure, and plays a decisive role in determining shapes
of a finite Fermion system [1,2]. According to the periodic-
orbit theory [3-7] based on the semiclassical approximation
to the path integral, shell structure is determined by classical
periodic orbits with short periods. A finite Fermion system
(like a nucleus and a metallic cluster) favors such shapes
at which prominent shell structures are formed and its Fermi
surface lies in a valley of oscillating level density, increasing
its binding energy in this way.
In this contribution, I would like to point out that

(1) thereis a unique application of the periodic orbit theory
to a modern nuclear structure problem; i.e. to under-
stand the mechanism of emergence of the super-
deformed shell structure, and

bifurcation of periodic orbits is responsible for the for-
mation of this new shell structure.

2)

It is my impression that bifurcations are often discussed in
connection with “routes to chaos’, but emergence of new
ordered structure (in quantum spectra) through bifurcations
is rarely discussed.

2. Nuclear superdeformation

Superdeformed states are cold quantum states embedded in
the highly excited warm region consisting of a huge number
of compound nuclear states (see Fig. 1). Their shapes are
similar to the spheroid with the major to minor axes ratio
about 2:1. Of course, when we talk about ““shapes” of a finite
quantum system like a nucleus, we means intrinsic shapes
associated with selfconsistent mean fields. Thus the super-
deformation is a striking example of spontaneous symmetry
breakdown. The mean field is rapidly rotating and generates
a beautiful rotational band spectrum (to restore the broken

* e-mail: ken@ruby.scphys.kyoto-u.ac.jp

Physica Scripta T90

symmetry). The reason why superdeformed states can main-
tain their identities against compound nuclear states (whose
level density is high) is that there is a barrier preventing
the mixing between these different kinds of quantum states
(associated with two local minima in the Hartree-Fock
potential-energy surface). Therefore, in order to understand
why superdeformed nuclei exist, we need to investigate
the mechanism of producing the second minimum in the
potential energy. It is certainly connected to an extra
binding-energy gained by the formation of a new shell struc-
ture called the superdeformed shell structure. Our major sub-
ject is thus to understand the mechanism how and the reason
why such a new shell structure emerges. The semiclassical
periodic orbit theory is useful to gain an insight into the
dynamical origin of it.

3. Spheroidal cavity model

Let us consider the spheroidal cavity model as a simplified
model for single-particle motions in heavy nuclei, and try
to find the correspondence between quantum shell structure
and classical periodic orbits. As emphasized in [6], the shell
structure obtained for this model contains, apart from shifts
of deformed magic numbers due to the spin-orbit potential
(although they are important for realistic calculation of
nuclear structure), the basic features similar to those
obtained by the Woods-Saxon potential for heavy nuclei.
Of course, it is necessary to examine the dependence on sur-
face diffuseness. In fact, periodic orbits with small angular
rotations between two successive reflections at the surface

) I"=24*~60*

Excitation Energy

0 0.6 Deformation B

Fig. 1. Illustration of the rapidly rotating superdeformed nucleus. Here 7'
denotes the temperature, and the values of angular momentum 7 and parity
7 are those appropriate to the superdeformed band in '3?Dy, which was dis-
covered in 1985 by Twin et al. [8].
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(like pentagons) disappear with increasing diffuseness par-
ameter [9]. But, periodic orbits with larger angular rotations
(like star-shaped orbits) survive at the realistic value of the
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and bifurcations occur when the condition
a sin(rnt/p)
n=g = @

diffuseness parameter for the nucleus [10]. Needless to say,
the spheroidal cavity is a special integrable system. But,
we have obtained similar results also for other para-
metrizations of prolate cavities (for which the Hamiltonian
is non-integrable) [11]. Thus I believe that the spheroidal
cavity model contains the basic features to get an insight
into the problem of our primary concern; i.e. what is a
proper semiclassical interpretation of the superdeformed
shell structure.

In the cavity model, single-particle equations of motion
are invariant with respect to the scaling transformation
(x,p, 1) = (x,ap, o~ 'f) and the action integral S, for a peri-
odic orbit r is proportional to its length L,:

S(E = p*/2M) = 7§p -dx = pL, = hkL,. (1)

Thus the semiclassical trace formula for the level density is
written as

8(E) = Y 0(E— B =5 > ok~ ko)

2
= &(E)+ ) Ak) cos(kL, — n,/2).

where g(F) denotes the smooth part corresponding to the

contribution of the zero-length orbit and u, is the Maslov

phase of the periodic orbit r. The Fourier transform F(L)

of the level density g(E) with respect to the wave number

k is written as

F(L) = / dke *Lg(E = IPk*/2M)

3
~F(L)+n ) e ™2 4,(0,) (L — Ly). ®

By virtue of the scaling property of the cavity model, the
Fourier transform exhibits peaks at lengths of classical peri-
odic orbits, so that it may be regarded as the “length
spectrum” [4]. In the following, we shall make use of the
Fourier transforms in order to identify the most important
periodic orbits that determine the major pattern of
oscillations in the coarse-grained quantum spectrum.

4. Bifurcation of periodic orbit

As is well known, only linear and planar orbits exist in a
spherical cavity. When spheroidal deformations occur,
the linear (diameter) orbits bifurcate into those along the
major axis and along the minor axis. Likewise, the planar
orbits bifurcate into orbits in the meridian plane and those
in the equatorial plane. Since the spheroidal cavity is
integrable, periodic orbits are characterized by three positive
integers (p, t, ¢), which represent numbers of vibrations or
rotations with respect to three spheroidal coordinates. When
the axis ratio 5 of the prolate spheroid increases, hyperbolic
orbits in the meridian plane and three-dimensional (3D)
orbits successively appear through bifurcations of (repeated)
linear and planar orbits in the equatorial plane. Bifurcation
points are determined by stability of equatorial-plane orbits
against small displacements in the longitudinal direction,

© Physica Scripta 2001

b sin(ng/p)’
is satisfied [4,12], where « and b denote the lengths of the
major and the minor axes, respectively. With increasing
n, planar orbits (4:2:1) bifurcate from the linear orbit that
repeats twice along the minor axis. With further increase
of n, 3D orbits (p:t:q)=(p:2:1) with p=15,6,7,---
successively bifurcate from the planar orbits that turns twice
(t =2) about the symmetry axis. These new-born orbits
resemble the Lissajous figures of the superdeformed har-
monic oscillator with frequency ratio w, : w, = 2:1. Every
bifurcated orbit forms a continuous family of degeneracy
two, which implies that we need two parameters to specify
a single orbit among a continuous set of orbits belonging
to a family having a common value of the action integral
(or equivalently, the length).

5. Constant-action lines and Fourier transform

Figure 2 displays the oscillating part of the smoothed level
density in the form of a contour map with respect to the
energy and deformation parameter. Regular patterns con-
sisting of several valley-ridge structures are clearly seen.
As emphasized by Strutinsky et al. [6], if few families of
orbits having almost the same values of action integral S,
dominate in the sum in Eq. (2), the valleys in the contour
map may follow such lines along which S, stay approxi-
mately constant. In this figure, tick solid lines running
through the spherical closed shells indicate the con-
stant-action lines for tetragonal orbits in the meridian plane.
It is clear that the valleys run along these lines. A detailed
discussion on this point is made in Ref. [14]. On the other

E [R2/2MRy]

80+

60

40— S T
1 08 06 04 02 0

S

T T T ll
02 04 06 08 1

Fig 2. Oscillating part of the smoothed level density displayed as a function of
the energy (in unit of #* /2MR}) and deformation parameter 6. Here M and
Ry denote the mass of the particle and the radius at the spherical shape,
respectively. The deformation parameter ¢ is related to the axis ratio
n=a/b by 6 =3(—1)/(2n+ 1) in the prolate case discussed in the text.
Solid, dashed and dotted contour curves correspond to negative, zero and
positive values, respectively. Constant-action lines for important periodic
orbits are indicated by thick solid and broken lines (see text). This figure
is taken from [13].
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Table 1. Bifurcation points of short periodic orbits.

orbit (p:z:q) axis ratio (a/b)  deformation o orbit length in Ry
(4:2:1) V2 0.32 7.1
(5:2:1) 1.62 0.44 8.1
(6:2:1) V3 0.49 8.7
(7:2:1) 1.80 0.52 9.0
(8:2:1) 1.85 0.54 9.2
10
g 806 ©:21) _
(5:2:1) 7:2:1)
6 (8:2:1)
5
=5
=h—
SOSYNY
0 h
I TN T | | I’ I| IIH‘HI T T
2 3 4 5 6 1 8 8 10 11 12

Fig. 3. Length spectrum (Fourier transform of quantum level density) for the
spheroidal cavity with 6 = 0.6 (axis ratio 2:1). At the bottom, the lengths
(in unit of Ry) of classical periodic orbits are indicated by vertical lines.
Long, middle and short vertical lines are used for 3D orbits, planar orbits
in the meridian, and planar orbits in the equatorial planes, respectively. This
figure is taken from [13].

IF(Ly(O)) 1

0.3 04 0.5 0.6 0.7 0.8

Fig. 4. Deformation dependence of the Fourier amplitudes defined in Eq. (3),
at lengths L = L, of the butterfly-shaped hyperbolic orbit (4:2:1) in the mer-
idian plane and of 3D orbits (p:2:1). Solid curves correspond to those for
equatorial-plane orbits from which these orbits are bifurcated. This figure
is taken from [13].

hand, tick broken and solid lines in the region 6 = 0.3 ~ 0.8
indicate those for the five-point star-shaped orbits in the
equatorial plane and for the 3D orbits (5:2:1) bifurcated
from them, respectively. Good correspondence is found
between these lines and the valley structure seen in the
superdeformed region. Constant-action lines for the other
3D orbits listed in Table I also behave in the same fashion.

The magnitudes of contributions of individual orbits are
found to exhibit a remarkable deformation dependence.
Figure 3 shows the Fourier transform of the quantum
spectrum at 6 = 0.6 (axis ratio 2:1). We see that these 3D
orbits form prominent peaks in the range L =8 ~09.
Figure 4 displays the deformation dependence of the Fourier
amplitudes |F(L)| defined in Eq. (3) at lengths L = L, of
these orbits. We see that the Fourier peak heights associated
with new orbits created by bifurcations quickly increase with
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Fig. 5. Three-dimensional orbits (5:2:1) and (6:2:1) in the superdeformed
prolate cavity (axis ratio # = 2). Their projections on the (x,y), (y,z) and
(z, x) planes are displayed. This figure is taken from [13].

increasing deformation and reach maximal values. Then,
they start to decline. Thus we conclude that the bifurcations
of equatorial-plane orbits play essential roles in the forma-
tion of the superdeformed shell structure, and this shell
structure is characterized by the 3D orbits (p:2:1).

Some of these 3D orbits are displayed in Fig. 5. They
possess similarities with the figure-eight shaped orbits in
the axially symmetric harmonic-oscillator, that appear when
the frequency ratio becomes exactly 2:1 [15]. It is important,
however, to note a difference in that they exist in the cavity
model for all deformation parameters ¢ larger than the bifur-
cation points (not restricted to the special point of axis ratio
2:1). In view of the fact that more than 200 superdeformed
rotational bands have been systematically observed and they
have varying deformations in the range 6 =0.4 ~ 0.6
[16-18], it seems more appropriate and general to define
the concept of superdeformation in terms of the shell struc-
ture generated by these 3D orbits (p:t:q)=(p:2:1) (rather than
geometrical shapes alone).

6. Semiclassical method capable of treating the bifurcation

We have evaluated the amplitudes A4 in the trace formula (2)
by means of the Fourier transforms of quantum spectra.
Now we attempt to calculate them by semiclassical method.
As is well known, however, the amplitude 4 evaluated by
the conventional stationary-phase approximation diverges
at the bifurcation point. Thus, for describing the bifurcation
phenomena under consideration, Magner et al. have devel-
oped a periodic-orbit theory free from the divergence [19].
Here I would like to briefly discuss basic ideas of this work.

Since the spheroidal cavity is integrable, we can develop
semiclassical method along the line initiated by Berry and
Tabor [5]. As usual, we start from the trace integral for
the level density in action-angle variables. In the conven-
tional scheme, however, one considers families of orbits with
the highest degeneracies (like 3D orbits) but those with lower
degeneracies (like equatorial-plane orbits) are not necess-
arily taken into account. Hence we need to extend the
Berry-Tabor approach in order to treat the bifurcation of
interest. We thus consider all kinds of stationary points,
and calculate (for the lower degeneracy orbits) the integrals
over angles, too, by an improved stationary-phase method.
“Improved” here means that the trace integrals over both
action and angle variables are calculated, as usual, by
expanding the exponent of the integrand about the station-
ary point up to the second order, but the integrations are
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Fig. 6. Deformation dependence of the amplitudes A4 for the second repetition
of the short diameter 2(1,2) and the butterfly orbits 1(1,4) in the elliptic billiard,
calculated at KRy = 50 by the improved stationary-phase method of Ref. [19].
Their absolute values are drawn by solid curves as functions of the axis ratio #.
For comparison, standard results of the extended Gutzwiller trace formula
are plotted by short-dashed curves. This figure is taken from [19].

done within the finite physical region as in [5]. If the inte-
gration ranges are extended, as usual, to +oo, singularity
arises in the amplitude, since, at the bifurcation, a stationary
point lies just on the edge of the physical integration range.
The stationary points need not necessarily lie inside the
physical region of integration over the action-angle
variables, but they are assumed to be close to the integration
limits. In fact, a bifurcation occurs when one of the station-
ary points crosses the border from the unphysical region
(negative values of the action variable) and enter the physi-
cal region. As we move away from the bifurcation points,
thus obtained contributions from the lower degeneracy orbit
families asymptotically approach the results of the conven-
tional stationary-phase approximation.

This approach has been successfully applied to the elliptic
billiard model, and it is shown that the bifurcation of the
(butterfly-shaped) hyperbolic orbit family from the repeated
short-diameter orbit is responsible for emergence of shell
structure at large deformations. For instance, it is clearly
seen in Fig. 6 that the amplitude of the bifurcating orbit
is significantly enhanced in the vicinity of the bifurcation
point. Namely, we obtain the maximum instead of the diver-
gence at the bifurcation point. We are now applying this
approach to the spheroidal cavity model, and the result will
be published in the very near future [19].

7. Concluding remarks

We have discussed quantum manifestations of short periodic
orbits and of their bifurcations in the spheroidal cavity, and
identified the classical periodic orbits responsible for the
emergence of the quantum shell structure at large prolate
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deformations. Fourier transforms of quantum spectra
clearly indicate that 3D periodic orbits born out of bifur-
cations of the planar orbits in the equatorial plane generate
the superdeformed shell structure. A new semiclassical
method capable of describing the shell-structure formation
associated with these periodic-orbit bifurcations is briefly
discussed.
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Abstract. Relationship between quantum shell structure and classical periodic orbits is briefly reviewed
on the basis of semi-classical trace formula. Using the spheroidal cavity model, it is shown that three-
dimensional periodic orbits, which are born out of bifurcation of planar orbits at large prolate deformations,
generate the superdeformed shell structure.

Introduction

Existence of superdeformed (SD) nuclei is often explained in terms of the SD magic numbers for the harmonic-
oscillator (HO) potential with axis ratio 2:1. It appears, however, that we need a more general explanation not
restricted to the HO potential, since, up to now, more than 200 SD bands have been found in various regions
of nuclear chart and their shapes in general deviates from the 2:1 shape to some extent. In this talk, we shall
discuss the mechanism how and the reason why the SD shell structure emerges. The major tool for this purpose
is the trace formula, which is the central formula in the semiclassical periodic-orbit (PO) theory and provides
a link between quantum shell structure and classical periodic orbits in the mean field. Here, shell structure is
defined as regular oscillation in the single-particle level density coarse-grained to a certain energy resolution.
An example of coarse-graining for the well-known axially symmetric HO model is displayed in Fig. 1.

In this talk, we discuss the spheroidal cavity model, since, in contrast to the HO model, this model is very
rich in periodic orbits; it is an ideal model for exhibiting the presence of various kinds of periodic orbit and
their bifurcations. We present both Fourier transforms of quantum spectra and semiclassical calculations based
on the PO theory, and identify classical periodic orbits responsible for emergence of the SD shell structure.
The result clearly shows that three-dimensional (3D) periodic orbits, that are absent in spherical and normal
deformed systems and are born out of bifurcations of planar orbits, generate a new shell structure at large
prolate deformations, which may be called “the SD shell structure.” They continue to exist for a wide range
of deformation, once they are born.

The PO theory provides a basic tool to get a deeper understanding of microscopic origin of symmetry
breaking in the mean field. It sheds light, in addition to the stability of the SD nuclei, on the reason of prolate
dominance in normal deformed nuclei, on the origin of left-right asymmetric shapes, etc. It is useful for finite
many-Fermion systems covering such different areas as nuclei, metallic clusters, quantum dots, etc. In this
talk, we shall also touch upon such applications of the PO theory.

Level Bunching and Trace Formula

For the axially symmetric HO potential, the following two conditions coincide:

Y Talk presented by K.M. at the Conference on Frontiers of Nuclear Structure, July 29th - August 2nd, 2002, UC
Berkeley.
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FIGURE 1. Oscillating level density as a function of axis ratio n for the axially symmetric HO potential. Bright and
dark regions correspond to high and low level densities, respectively. The 3D periodic orbits exist only at the 2:1 shape.

1) Axisratio (2?):(z%)=1:2
2) Frequency ratio w,:w,=2:1,
but they are different in general. Condition 2) is nothing but the PO condition, and possesses a more general

significance than condition 1). We can examine this point as follows. For any integrable Hamiltonian system,
we can introduce action and angle variables (I, ) which satisfy the canonical equations of motion,

6 = %—if = w(I), (1)

and the energy E can be quantized by the EBK (Einstein-Brillouin-Keller) quantization condition:
E,=H(I) with I=h(n+ia), (2)
where n represents a set of quantum numbers, n = (n1,ng,n3) with n; =0,1,2, - -, and o the Maslov indices.

We see that level degeneracy occurs when

Enian — En=H(I + AI — H(I)
~ 08

~ I AT

=hw-An
= hwi1Any + hwaAng + hwsAns
=0, (3)



i.e., when w; : wy : w3 are in rational ratios. This is just the condition for the classical orbit to be periodic,
and discussed in detail in the textbook of Bohr and Mottelson [1].

On the basis of the semiclassical PO theory, we can examine, in a more general way, the decisive role of
periodic orbits as origin of level bunching. According to this theory (see, e.g., [2] for a review), the level density
g(E) is given by a sum of the average part g(E) and the oscillation part dg(F) as

9(B) = Y 6(E - )
n
~ g(E) + b9(E)
1 ™

=g(E) + > Aqcos (ESQ(E) - §Ma> , (4)
where S, (E) denotes the action of the periodic orbit «, and i, is a phase related with the Maslov index. This
equation is called “trace formula” and provides a link between quantum shell structure and classical periodic
orbits in the mean field. There is a complementarity between the energy resolution and periods of classical

orbits, so that, for the purpose of understanding the origin of regular oscillation patterns in the smoothed
single-particle level density (shell structure), we need only short orbits in the sum over «.

Periodic Orbits and Shell Structure in the Cavity Model

Let us consider the cavity model, which may be regarded as a simplified model of Woods-Saxon potential
for heavy nuclei. In fact their basic patterns of shell structure are similar with each other. Certainly, the
spin-orbit term shifts the magic numbers, but it does not destroy the valley-ridge structure discussed below.
One can confirm these points by comparing Figs. 2, 3 and 4.

(Woods-Saxon) 3 (Woods-Saxon+LS)

15 2.5

n n

FIGURE 2. Oscillating level density as a function of FIGURE 3. Oscillating level density as a function of
axis ratio n for the WS potential without the spin-orbit axis ratio n for the WS potential. Bright and dark regions
term. Bright and dark regions correspond to high and correspond to high and low level densities, respectively.
low level densities, respectively. The calculation was done Here, the spin-orbit term with v;; = —0.12 is added to
following the procedure described on p. 593 of Ref. [1]. the Hamiltonian used in Fig. 2.
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FIGURE 4. Ridge-valley structure in the oscillating level density for the spheroidal cavity model. Bright and dark
regions correspond to high (ridge) and low (valley) values of the oscillating level density, respectively. Constant action
lines running along valleys are shown for typical periodic orbits by dashed, thin-solid, and thick-solid curves. Note
that they are indicated as representatives of the meridian-plane orbits, the equatorial-plane orbits, and the 3D orbits,
respectively: There are several families of periodic orbits with similar lengths, and constant-action lines of them also
behave in the same way as those shown here, see Refs. [4] and [10] for details.

Role of periodic orbits for shell structure in this model was originally studied by Balian and Bloch [3], and
has been discussed in the investigations of

1) the reason of prolate dominance in nuclear shape [4-6]
2) the supershell effects in metallic clusters [7]

3) the origin of left-right asymmetric shapes [8,9], etc.

For cavity models, the energy and the momentum are simply related as
E =p?/2m, p = hk, (5)
and the action integral is proportional to the length L,

Sy = f p-dx = hkL,. (6)

Accordingly, the trace formula for the level density can be written as

g(k) = g(k) + 3 Aq cos (kLa - gua) : (7)

It can be easily confirmed that only short orbits contribute to the level density coarse-grained in energy. Let
us Fourier transform the level density



F(L) = [ dke*tg(k)

—

And(L — Ly). (8)

R
*[]

This equation indicates that peaks will show up at lengths L, of periodic orbits o, which may be called “length
spectrum”. Now, the orbit lengths change when the deformation parameter n varies. Let us then consider the
oscillating level density as a function of 7,

dg(k,n) ~ ZAa(k:,n) cos (kjLa(n) — %MQ) . 9)

From this formula, we see that, if a few orbits dominate in the sum, the valley-ridge structure on the (k,n)
plane will be determined by the constant action lines,

kL, (n) = const, (10)

of these dominant orbits [4,10]. In fact, we see in Fig. 4 that the valley-ridge structure is well explained in
terms of three kinds of short periodic orbit.

Bifurcations

As illustrated in Figs. 5 and 6, when the axis ratio 1 of the spheroidal cavity reaches v/2, the butterfly-shaped
planar orbits emerge on the meridian plane through bifurcations of the linear orbit along the short diameter.

FIGURE 5. Birth of a butterfly shaped orbit from the short diameter through bifurcation at 1 = /2 on the meridian
plane. This figure illustrates a representative orbit among a continuous family of orbits possessing the same length.

FIGURE 6. Birth of a 3D orbit from the star-shaped orbit on the equatorial plane through bifurcation at n ~ 1.62.
This figure illustrates a representative orbit among a continuous family of orbits possessing the same length.
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FIGURE 7. Left-hand part: Absolute values of the Fourier amplitudes, |F'(L,n)|, of the level density, drawn as a map
on the (L, n) plane. Brightness is proportional to the magnitude. Right-hand part: Lengths of various classical orbits as
functions of axis ratio n. The 3D orbits responsible for the SD shell structure are denoted as (4,2,1), (5,2,1), (6,2,1), etc.,
and their lengths are plotted by thick-solid curves, while those of the equatorial-plane orbits and of the meridian-plane
orbits are plotted by thin-solid and dashed curves, respectively. [OThe bifurcation points of the 3D orbits of interest
are indicated by filled circles. (Filled triangles indicate bifurcation points of 3D orbits responsible for hyperdeformed
shell structure not discussed here.) See Refs. [10] and [13] for details.

When 7 further increases, 3D orbits emerge at 1 ~ 1.62 through bifurcation of the five-point star shaped orbits
on the equatorial plane. Likewise, other 3D orbits appear at n = v/3 through bifurcation of second repetitions
of the triangular orbits on the equatorial plane, ..., etc. Note that the figure illustrates representative orbits
only. In fact, each « in the trace formula (9) represents a continuous family of orbits with the same topology
possessing the same values of action (length). In contrast to the HO potential, these 3D orbits continue to
exist, once they appear through the bifurcations.

Peaks in the Fourier transform (8) of the level density will follow the variations of orbit lengths L, with 7.
Thus, we can draw a map of the Fourier amplitudes on the (L,n) plane,

F(La 77) = Zja(s(lf - La(n))' (11)

In Fig. 7, the Fourier amplitudes are compared with lengths of classical periodic orbits. This figure exhibits
a beautiful quantum-classical correspondence. Furthermore, by comparing the bright regions in the left-side
figure with the bifurcation points indicated in the right-side figure, we find significant enhancement of the shell
structure amplitudes just on the right-hand side of the bifurcation points.

Unfortunately, the amplitude A, (k,n) in the trace formula (9) diverges at the critical point of deformation
1 where the orbit bifurcation takes place. This is because the stationary phase approximation used in the
standard semiclassical PO theory breaks down there. Thus, the standard trace formula is unable to describe
the enhancement phenomena seen in Fig. 7. To overcome this difficulty, in recent years, we have developed a new
semiclassical approximation scheme, called an improved stationary phase approximation, and derived a new
trace formula free from such divergence [11-13]. A numerical example obtained by this approach is presented
in Fig. 8. We see that the basic pattern of oscillation in the quantum level density at large deformation is
nicely reproduced by the semiclassical calculation using the new trace formula. In this way, we have confirmed
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FIGURE 8. Comparison between the oscillating level densities evaluated by the semiclassical trace formula (dotted
lines denoted ISPM) and those obtained by quantum mechanics (solid lines denoted Quantum). They are plotted for
several values of n as function of kR, where R denotes the radius of the cavity in the spherical limit (the volume of
cavity is conserved during variation of 7).

[10,12,13] that, in the region of large prolate deformation with axis ratio n > 1.62 (which corresponds to the
ordinary deformation parameter § > 0.44), the major pattern of the oscillating level density is determined by
contributions from the bifurcated 3D orbits.

Conclusion

The 3D periodic orbits generate a new shell structure at large prolate deformations. We may call this shell
structure “SD shell structure.” These 3D orbits are born out of bifurcations of planar orbits in the equatorial
plane, and they play dominant roles immediately after the bifurcations. Thus, the SD shell structure is
a beautiful example of emergence of new structure through bifurcation, and may be regarded as quantum
manifestation of classical bifurcation.
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With the use of the symmetry-unrestricted cranked SHF method in the 3D
coordinate-mesh representation, a systematic search for the SD and HD rotational
bands in the N=Z nuclei from 32S to “8Cr has been done, and SD and HD solu-
tions have been found in 328, 36Ar, 40Ca, 44Ti, and in 3%Ar, *0Ca, *4Ti, *8Cr,
respectively. The SD band in 40Ca is found to be extremely soft against both
the axially symmetric (Y3g) and asymmetric (Y31 ) octupole deformations. Possible
presense of SD states in neutron-rich sulfur isotopes from 46S to 528 has also been
investigated, and deformation properties of neutron skins both in the ground and
SD states are discussed.

1. Introduction

Quite recently, superdeformed(SD) rotational bands have been discovered
in 36Ar, 49Ca, and **Ti.»?3 One of the important new features of them
is that they are built on excited 0T states and observed up to high spin,
in contrast to the SD bands in heavier mass regions where low-spin por-
tions of them are unknown in almost all cases. In this talk, we shall first
report results of the symmetry-unrestricted, cranked Skyrme-Hartree-Fock
(SHF) calculations for these SD bands. The calculation has been carried
out with the use of the fully three-dimensional (3D), Cartesian coordinate-
mesh representation without imposing any symmetry restriction. 4> The
computational algorithm is basically the same as in the standard one 7
except that the symmetry restrictions are removed. For comparison sake,
we also carry out the standard symmetry-restricted calculations imposing
reflection symmetries about the (z,y)-, (v, 2)- and (z, z)-planes. By com-
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paring these results, we can clearly identify effects of reflection symmetry
breaking in the mean field.

We shall next present results of the cranked SHF calculation for SD
bands in the neutron-rich sulfur isotopes near the neutron drip line. These
nuclei are expected to constitute a new “SD doubly closed” region asso-
ciated with the SD magic numbers, Z = 16 for protons and N ~ 30-
32 for neutrons. An interesting theoretical subject for the SD bands in
these neutron-rich region is to understand deformation properties of neu-
tron skins. We shall discuss on this point.

2. 49Ca region

Figure 1 shows deformation energy curves evaluated by means of the con-
strained HF procedure. Solid lines with and without filled circles in these
figures represent results of unrestricted and restricted calculations, respec-
tively. In both cases, we otain local minima corresponding to the SD states
for 325, 36Ar, 9°Ca and **Ti in the region 0.4 < By < 0.8. (The local
minimum in *Ti is triaxial so that it is not clearly seen the v = 0 sec-
tion.) The local minima in S and ¢Ar involve four particles in the fp
shell, while those in “°Ca and #*Ti involve eight particles. In addition to
these SD minima, we also obtain local minima in the region G > 0.8 for
40Ca, *Ti and *®Cr. These minima involve additional four particles in the
single-particle levels that reduce to the gg/o levels in the spherical limit.
Somewhat loosely we call these local minima “hyperdeformed (HD).” The
HD solution in 4°Ca corresponds to the 12p-12h configuration.

We notice in this figure that the crossings between configurations in-
volving different numbers of particles in the fp shell are sharp in the re-
stricted calculations, while we always obtain smooth configuration rear-
rangements in the unrestricted calculations. The reason for this different
behavior between the unrestricted and restricted calculations is rather easy
to understand: When the parity symmetry is imposed, there is no way,
within the mean-field approximation, to mix configurations having differ-
ent number of particles in the fp shell. In contrast, as illustrated in Fig. 2,
smooth crossover between these different configurations is possible via mix-
ing between positive- and negative-parity single-particle levels, when such
a symmetry restriction is removed. Octupole deformation parameters (3
are plotted as functions of (2 in the lower portion of Fig. 3 for the case
of °Ca. We see that values of 85 are zero near the local minima, but rise
in the crossing region. This means that the configuration rearrangements



December 29, 2003 15:53 WSPC/Trim Size: 9in x 6in for Proceedings inakura

110

2100

Me
©
o

N W A (a) (] ~ (o]
o O o O o O o

[y
o

Deformation Energy ( shifted ) [

0 [ by PR S I |
-0.40.20.00.20.40.60.81.0

Quadr upol e Deformation (B,

Figure 1. Deformation energy curves as functions of the quadrupole deformation (2
calculated at I = 0 by means of the constrained SHF procedure with the SkM* inter-
action. The axial-asymmetry parameter ~ is constrained to be zero. The curves for
different nuclei are shifted by 20 MeV in order to facilitate the comparison. Solid lines
with and without filled circles represent the results obtained by the unrestricted and re-
stricted versions, respectively (see the text). The notations f¢g™ and (fp)"g™ indicate
the configurations in which the f7/2 shell (fp shell) and the gg/2 shell are respectively
occupied by n and m nucleons.

in fact take place through paths in the deformation space that break the
reflection symmetry.

Excitation energies of the SD and HD bands in 4°Ca calculated by
using different versions (SIII, SkM*, SLy4) of the Skyrme interaction are
compared with the experimental data 2 in the left-hand portion of Fig. 4.
The SD band is slightly triaxial with v = 6°-9°(8°-9°) and it terminates
at I ~ 24 for the SIII (SkM*) interaction. (In the case of 4Ti, the shape
is more triaxial with v = 18°-25° and 13°-19°, and the SD band termi-
nates at / ~ 12 and 16 for the SIII and SkM* interactions, respectively.%)
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Figure 2. Level crossing between single-particle levels having opposite parities. Config-

uration rearrangement can take place by breaking the reflection symmetry in the mean
field. The r3Y3; matrix element between levels with the asymptotic quantum numbers
[321%} and [200%] is large, and significantly contributes to the tendency toward the
non-axial Y31 octupole deformation discussed in the text.
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The upper part: Deformation energy curve for 4°Ca (same as in Fig. 1). The

lower part: Octupole deformation 33 obtained by the unrestricted SHF calculation with
SkM*, plotted as a function of 3s.
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Figure 4. Comparison between the excitation energies of the SD and HD bands in 4°Ca,
calculated by using different versions of the Skyrme interaction and the experimental
data (filled circles). Solid, dashed and dashed-dotted lines indicate the results with the
SIII, SkM* and SLy4 interactions, respectively. Results with and without including
the zero-point rotational energy correction are shown in the right- and left-hand sides,
respectively.

One may notice that the excitation energy of the SD band-head state is
overestimated. We have evaluated the zero-point rotational energy correc-
tion, T@((AJAI)Q}, as a function of the rotational frequency wyor. Here,
Ay = J, — (L) and J® denotes the dynamical moment of inertia defined
by J@?) = dI /dw,et. Excitation energies including this correction are shown
in the right-hand portion of Fig. 4. We see that the calculated excitation
energies are significantly improved by including this correction.

Let us examine stabilities of the SD local minimum in 4°Ca against
octupole deformations. Figure 5 shows deformation energy curves as func-
tions of the octupole deformation parameters (B3, (|m| = 0,1,2,3) about
the SD minimum. We immediately notice that the SD state is extremely
soft with respect to the (339 and (337 deformations.

Quite recently, Imagawa and Hashimoto have carried out a selfconsistent
RPA calculation in the 3D Cartesian-mesh representation on the basis of the
SHF mean field, and they have obtained, for the SIII (SkM*) interaction,
a strongly collective octupole vibrational mode with K™ = 1~ at about
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Figure 5. Deformation energy curves (measured from the energy at 83 = 0) as functions
of the octupole deformation parameters B3, (|m| = 0,1,2,3), calculated for 4°Ca by
means of the constrained HF procedure with SkM*. The quadrupole deformation pa-
rameters are fixed at 82 = 0.6 and v = 8°. One of the B3, (Jm| = 0,1,2,3) is varied
while the other B33,,’s are fixed to zero.

1.1 (0.6) MeV excitation from the SD band head.® Thus, it is extremely
interesting to search for negative-parity rotational bands associated with

the non-axial K™ = 1~ octupole vibrational modes built on the SD yrast
band.

3. 308 region

Figure 6 shows deformation energy curves for neutron-rich sulfur isotopes
from %S to 528, which indicates that the SD local minima is deepest at 5°S.
As shown in Fig. 7, this result is common for the SHF calculations with
the use of SIII, SkM* and SLy4 interactions. Thus, the neutron SD shell
structure seems to be slightly modified from that known in the Zn region
with N ~ Z, where N ~ 30-32 are the SD magic numbers.

Figures 8 and 9 show the neutron and proton density profiles for the
ground and the SD states, respectively. We see that deformed neutron skins
are present in both cases. These calculations are done with use of a small
mesh size of 0.25 fm. In order to examine deformation properties of these
neutron skins in more detail, we have made a least square fitting to the den-
sity distribution along each principal axis direction with the Woods-Saxon
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Figure 6. Deformation energy curves as functions of (2 calculated at I = 0 by means of
the constrained SHF procedure with the SLy4 interaction. The axial-asymmetry param-
eter +y is constrained to be zero. The curves for different nuclei are shifted by 10 MeV to
facilitate the comparison. Solid lines with and without filled circles represent the results
obtained by the unrestricted and restricted versions, respectively. The notations f¢g™
indicate the configurations in which the f7,5 shell and the gg/o shell are respectively
occupied by n and m nucleons.

function. The half-density radii and the diffuseness parameters extracted in
this way for the SD state are listed in Table 1. We see that the neutron skin
is formed mainly due to the difference in the diffuseness between protons
and neutrons (rather than the difference in the half-density radius). It is
interesting to note that the proton diffuseness parameter along the major
axis is significantly smaller than that along the minor axis.

The presence of the deformed neutron skins may be detected through
excitation spectra of these nuclei. Thus, search for soft K™ = 0~ and 1~
(dipole + octupole) vibrational modes in unstable nuclei with deformed
neutron skins seems especially interesting. Note that octupole modes will
be mixed with dipole modes in deformed nuclei. For studying these modes,
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Figure 7. Comparison of deformation energy curves for °°S obtained by using different
versions of the Skyrme interaction. The curves for different versions are shifted by 10
MeV.

Table 1. Root-mean square radii ( Rrms ), quadrupole deforma-
tion parameters ( B2 ), half-density radii for the major and minor
axes ( R} /2 RY /2 ), surface diffuseness parameters along the
major and minor axes ( a* , a® ), evaluated by the SHF method
with SLy4 for the SD state in °°S. The proton and neutron con-
tributions are separately shown together with their differences.

SD Rems | B2 | Ri, | RE,y | o | af

neutrons 4.15 0.59 5.65 3.09 0.72 0.61
protons 3.75 0.70 5.76 2.77 0.38 | 0.47
differences 0.41 -0.11 | -0.12 0.32 0.34 | 0.14

we need to develop the SHF-Bogoliubov + quasiparticle RPA approach such
that we can take into account deformation, pairing, and continuum effects
simultaneously. We can further envisage to go beyond the quasiparticle
RPA by means of the selfconsistent collective coordinate method.’
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Figure 8. Neutron and proton density distributions in the ground state of 98, calcu-
lated by the unrestricted SHF with SLy4 and with a mesh size of 0.25 fm. Left-hand side:
equi-density lines with 50% and 1% of the central density in the (z,z) and (z,y) planes
are drawn. Solid and dashed lines indicate those for protons and neutrons, respectively.
Right-hand side: Density distributions along the major and minor axes are drawn by
thin-solid lines with filled circles. The least-square fits of them with the Wood-Saxon
function are also shown by solid lines. The former densities are shifted up by 0.05 fm~—3
to facilitate the comparison.
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Figure 9. The same as Fig. 8 but for the SD state.
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4. Summary

With the use of the symmetry-unrestricted cranked SHF method in the 3D
coordinate-mesh representation, we have carried out a systematic theoret-
ical search for the SD and HD rotational bands in the N=Z nuclei from
329 to 48Cr. We have found the SD solutions in 328, 36 Ar, 4°Ca, 44Ti, and
the HD solutions in 26Ar, 4°Ca, 44Ti, ®Cr. Particular attention has been
paid to the recently discovered SD band in “°Ca, and we have found that
the SD band in “°Ca is extremely soft against both the axially symmetric
(Y30) and asymmetric (Y31) octupole deformations. Thus, it will be espe-
cially interesting to search for negative-parity rotational bands associated
with non-axial K™ = 17 octupole vibrations built on the SD yrast band.
We have also discussed possible presense of SD states in sulfur isotopes
from 46S to 525, which are situated near the neutron drip line. An interest-
ing subject in this region is the appearance of deformed neutron skins both
in the ground and SD states. The presence of the deformed neutron skins
may be detected through excitation spectra of these nuclei. Thus, search
for new kinds of soft K™ = 0~ and 1~ (dipole + octupole) vibrational
modes of excitation is challenging, both theoretically and experimentally.
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On the basis of the symmetry-unrestricted, cranked Skyrme-Hartree-Fock (SHF) calcu-
lations, we discuss superdeformed (SD) rotational bands in (1) the 4°Ca region along
the N=Z line, and (2) neutron-rich Sulfur isotopes up to the neutron-drip line. The
calculation was carried out with the use of the three-dimensional (3D) coordinate-mesh
representation without imposing any symmetry restriction. Stability of the SD bands
against exotic deformations breaking both reflection and axial symmetries were care-
fully examined. The analysis indicates possible appearance of negative-parity rotational
bands associated with octupole shape vibrational excitations built on the SD yrast band.
We then present results of selfconsistent RPA calculation for such a new type of collective
vibrational modes. The selfconsistent RPA calculations based on the SD local minima
obtained by the SHF calculation were carried out by means of the mixed representation
on the 3D Cartesian mesh in a box.

1. Introduction

Low-frequency vibrational modes in cold nuclei close to the yrast lines are quite
unique; their properties are intimately connected with shell structure. As is well
known, shell structure associated with single-particle motion in a superdeformed
(SD) potential is drastically different from that in normal deformed potentials,
and the existence of SD nuclei are just due to the new shell structure, called SD
shell structure, that emerges at large deformation. Thus, we expect a new kind
of surface vibrational modes to emerge in SD nuclei. In fact, each major shell at
the SD shape consists of about equal numbers of positive- and negative-parity
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single-particle levels, and provides a very favorable situation for octupole shape
fluctuations.

Various mean-field calculations and quasiparticle RPA*5 on the basis of
the rotating mean field (cranked shell model) indicate that SD nuclei are very
soft against both axial and non-axial octupole deformations and, accordingly, low-

1,2,3

frequency octupole vibrations may appear near the SD yrast lines. In fact, such

6 and

octupole vibrations have been discovered in SD nuclei in the Hg-Pb region,
also in 1%2Dy.”

Quite recently, SD bands were discovered also in the 4°Ca region.?%1% One of
the important new features of them is that they are built on excited 0T states
and observed up to high spin, in contrast to the SD bands in heavier mass regions
where low-spin portions of them are unknown in almost all cases. In this talk,
we first report results of the symmetry-unrestricted, Skyrme-Hartree-Fock (SHF)
calculations for these SD bands. The calculation were carried out with the use of the
fully three-dimensional (3D) coordinate-mesh representation without imposing any
symmetry restriction.!!*12:13:14 The computational algorithm is basically the same
5 except that the symmetry restrictions are removed. For

comparison sake, we also carry out the standard symmetry-restricted calculations

as in the standard one!

imposing reflection symmetries about the (x,y)-, (v, 2)- and (z, z)-planes. We next
present results of calculation for SD bands in neutron-rich Sulfur isotopes near the
neutron drip line. These nuclei are expected to constitute a new “SD doubly closed”
region associated with the SD magic numbers, Z = 16 for protons and N ~ 30-
32 for neutrons. Finally, we shall present a new result of RPA calculation for soft
octupole vibrations built on the SD minima found in the SHF calculations. The
RPA calculation has been carried out quite recently in a fully selfconsistent manner
utilizing the mixed representation, i.e., adopting the coordinate and configuration

representations for particles and holes, respectively. 16:17:18:19

2. Superdeformations in the 4°Ca Region

Figure 1 shows deformation energy curves evaluated by means of the constrained
HF procedure. We obtain local minima corresponding to the SD states for 328,
36Ar, 4°Ca and #*Ti in the region 0.4 < B < 0.8. (The local minimum in 44Ty g
triaxial so that it is not clearly seen in the y=0 section.) The local minima in
323 and 26Ar involve four particles in the fp shell, while those in 4°Ca and
44T involve eight particles. In addition to these SD minima, we also obtain local
minima in the region B, > 0.8 for 4°Ca, **Ti and *®*Cr. These minima involve
additional four particles in the single-particle levels that reduce to the gg /o levels in
the spherical limit, and may be called “hyperdeformed (HD).” Stabilities of these
SD and HD minima againt axial and non-axial octupole deformations are carefully
analyzed in Ref. 13.
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Fig. 1. Deformation energy curves as functions of the quadrupole deformation (2 calculated
at I=0 by means of the constrained SHF procedure with the SkM* interaction.!® The axial-
asymmetry parameter 7 is constrained to be zero. The curves for different nuclei are shifted by
20 MeV in order to facilitate the comparison. Solid lines with and without filled circles represent the
results obtained by the symmetry-unrestricted and restricted versions, respectively. The notations
g™ and (fp)"g™ indicate the configurations in which the f7/5 shell (fp shell) and the gg /o
shell are respectively occupied by n and m nucleons.

3. Superdeformations in Neutron-Rich Sulfur Isotopes

Figure 2 shows deformation energy curves for Sulfur isotopes. This result of calcu-
lation indicates that, in addition to the well-known candidate 32S, the neutron-rich
365 and the the drip-line nuclei, 43S and ®°S, are also good candidates for finding
SD bands (see Ref. 14 for details). It is interesting to note that calculated density
distributions for the SD state in °°S, which are situated close to the neutron-drip
line, exhibit superdeformed neutron skins (compare the proton and neutron density
profiles for ®°S presented in Fig. 3).
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Fig. 2. Deformation energy curves for Sulfur isotopes calculated at I=0 as functions of B2 by
means of the constrained SHF procedure with the SkM* interaction.'® Solid curves with and
without filled circles represent the results obtained by the symmetry-unrestricted and restricted
versions, respectively. The notation fi! f,'? indicates a configuration in which single-particle levels
originating from the f7/5 shell are occupied by n; protons and n2 neutrons. Likewise, fr'g,>
indicates that levels from the f7,o shell are occupied by ni protons and those from the gg /o shell
by n2 neutrons.

Fig. 3. Left-hand side: Density distributions in the (y,z)- and (z,x)- planes of the SD band
at =0 in 328, 363 and 5°S, calculated with the use of the SLy4 interaction. Neutron (proton)
equi-density lines with 50% and 1% of the central density are shown by dashed (solid) lines (the
inner and outer lines correspond to the 50% and 1% lines, respectively). Right-hand side: Same
as the left-hand side but for I = 20, 22, 28 for 328, 363, and %98, respectively. This figure is taken
from Ref. 14.
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4. Soft Octupole Vibrations built on the SD States

Quite recently, Imagawa and Hashimoto!®1?

carries out a selfconsistent RPA calculation in the mixed representation'® on the
basis of the SHF mean field (see also Muta et al..!”) In the mixed representation,
the RPA phonon creation operators are written in the following manner:

= 3SRl @] - 0 @hiale))

Here, af(x) and a(x) are creation and annihilation operators of particles at the

constructed a new computer code that

coordinate z= (7, o, 7), while b;-r and b; are those of holes in the single-particle
configuration ¢. The notation ) means the integration with respect to the space
coordinate r and the sum with respect to the spin ¢ and isospin 7. Note that

{a(2),a(2")} = P(z,2'),

where P(x,z’) is the projection operator onto the particle space. It should be em-
phasized that the well-known problem of upper energy cut-off does not arise in this
approach. The RPA eigenvalue equation takes the following form:

Z Z{Ai,j (2,2 )9} (2') + Bij(2,2")} ()} = hwoav)d (@),
ZZ{B z,a )} (@) + A7 (2,09} (2')} = ~hwad} (=),

where Aw) denotes the eigenvalue of the eigenmode .

Solving these RPA eigenvalue equations on the 3D Cartesian mesh in a box,
Imagawa obtained, for the SIIT (SkM*) interaction, a strongly collective octupole
vibrational mode with K™ = 1~ at about 1.1 (0.6) MeV excitation from the SD band
head of 4°Ca.'® This RPA calculation has been carried out in a fully selfconsistent
manner taking into account all terms of the residual interaction (including time-odd
components in the mean field and the Coulomb interaction).

Figure 4 shows the result of the same RPA calculation for soft octupole vi-
brations built on the SD states in Sulfer isotopes. It is very interesting to observe
that the collective excitations in neutron-rich Sulfur isotopes are created mainly
by neutron excitations. In particular, there is no bound single-particle level in the
particle space for the drip-line nucleus °YS, so that these collective RPA modes
are generated mainly by neutron excitations from bound levels to the continuum.
Details of this work will be published elsewhere.?? We are presently extending this
SHF+RPA scheme to include pairing correlations.

5. Outlook

Although, in this talk, we focused our attention on soft octupole vibrations built
on the SD states in neutron-rich nuclei, similar situations are expected to arise
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Fig. 4. Low-energy collective excitation spectra at the SD shapes in Sulfur isotopes obtained by
the selfconsistent RPA calculation with the use of the SkIII, SkMx* and SLy4 interactions. Only
negative-parity levels with large transition matrix elements are displayed, and they are labeled by
the K quantum number and the parity. Numbers beside the arrows indicate the squared transition
matrix elements for the mass octupole operators (sums of proton and neutron contributions) in
the Weisskopf unit. Compare them with the numbers in parentheses that indicate the proton
contributions only. Note that these are intrinsic excitation spectra, so that rotation bands are
expected to be built on top of every levels. The RPA matrix in the mixed representation is
constructed using 30 mesh points in each direction with mesh size h=0.6 fm (see Ref. 19 for
details of the numerical calculation and convergence check with respect to the mesh size). The
center of mass modes are decoupled from these vibrational modes in a very good approximation.

also in normal deformed neutron-rich unstable nuclei. In particular, investigation
of collective excitation spectra in unstable nuclei possessing deformed neutron skins
seems extremely interesting. Because soft octupole modes will be mixed with soft
dipole modes in deformed nuclei, search for new kinds of soft (dipole + octupole)
vibrational modes of excitation in neutron-rich deformed nuclei is challenging, both
theoretically and experimentally.
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