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Abstract 
Recent theoretical works done by us on the following subjects are briefly summarized: 

1) Octupole vibrations with K=O, 1, 2 and 3 built on superdeformed yrast states, 
2) Octupole vibration-quasiparticle couplings in superdeformed odd-A nuclei, 
3) Supershell structure in superdeformed nuclei which break the reflection symmetry, 
4) Analysis of the supershell effects in terms of semiclassical theory of quantum level 
density. 

An intimate relationship among octupole instability of the superdeformed shape, the 
rise of supershell effects, and bifurcations of classical periodic orbits is suggested. 

1. INTRODUCTION 

Shell structure associated with independent-particle motions in a superdeformed po- 
tential is drastically different from that in normal deformed potentials. Since properties 
of nuclear surface vibrations are intimately connected with shell structure, we expect that 
new kinds of surface vibrational mode to emerge above the superdeformed yrast states. 
In fact, RPA calculations in a uniformly rotating frame, with the use of single-particle 
states obtained by the cranked Nilsson-Strutinsky-BCS procedure, have indicated that 
we can expect highly collective, low-frequency octupole vibrational modes (with K=O, 
1, 2 and 3) about the superdeformed equilibrium shape [1,2]. The main reason why 
octupole fluctuation in shape is more favorable than quadrupole fluctuation is that each 
major shell consists of about equal numbers of positive- and negative-parity single-particle 
levels which are approximately degenerate in energy at the superdeformed shape. 

Thus, in recent years, importance of octupole correlations in superdeformed high-spin 
states has been lively discussed from various points of view [3-131. Possible existence of 
low-frequency octupole vibrational modes would imply that particle-hole or quasiparticle 
modes of motion in superdeformed nuclei might be significantly affected by the coupling 
effects with these modes. In this talk, we shall report some results of theoretical calculation 
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which indicate the importance of such particle-vibration coupling effects to understand 
the properties of Landau-Zener band-crossing phenomena recently observed in lg3Hg [14]. 

In the latter half of this talk, we shall discuss a relationship between octupole instabil- 
ity of the superdeformed shape and supershell efiect (a modulation in shell structure due 
to the interference between a few periodic orbits with relatively short periods), and sug- 
gest that breaking (in the average potential) of space-reflection symmetry might enhance 
the supershell effect. A possible origin of this enhancement will be pointed out on the 
basis of semiclassical analysis of single-particle level density for a reflection-asymmetric 
superdeformed potential. 

2. THE HARMONIC-OSCILLATOR POTENTIAL WITH wI=2w3 

It is instructive to start from a simple case of the axially-symmetric deformed harmonic- 
oscillator potential with the frequency ratio wJw3 = 2. In this case, the single-particle 
energy e is written as 

e = (nl + l)fLwl + 

with hW,h = hwg, so that single-particle levels having the same values of the shell quantum 
number, Nsh = 2nl+n3 = 2N,,, -n3, constitute a major shell. Thus, in contrast with the 
spherical oscillator potential case, positive- and negative-parity levels coexist in the same 
major shell. By writing the octupole operators Q31~ E r3Y31c in terms of the creation and 
annihilation operators of the oscillator quanta, we see that the lowest-energy particle-hole 
excitations created by these operators satisfy the following selection rules: 

Q30 : ANsh = 1, An3 = 1, AA = 0, 

Q31 : AN,h = 0, An3 = 2, AA = 1, 
Q32 AN,, 1, An3 1, AA 2, 1 (2) : = = = 

Q33 : AN,, = 2, An3 = 0, AA = 3. 

For a doubly-closed-shell configuration where the single-particle levels are completely 
filled up to a certain number of Nsh (for both protons and neutrons), the AN,h=O ex- 
citations appearing in the K=l octupole modes are forbidden by the Pauli principle. 
Thus, we expect that the lowest-energy collective vibrations are octupole modes with 
K=O and 2, which are constituted from coherent superpositions of the AN,h=l particle- 
hole excitations (see Figure 1). Their excitation energies will be shifted down much below 
their unperturbed energies (hW& M 5MeV) due to attractive octupole-octupole residual 
interactions. 

On the other hand, in the case of superdeformed open-shell configurations, the AN,h=O 
excitations are possible among nucleons in the valence shell, so that we expect strongly 
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y32 

Figure 1. (lc~-~an~ side) I~ustration of octupole deformations fK=O, 1, 2 and 3 ) superim- 

posed on the superdeformed shape (the axially symmetric quadrupole shape with axis ratio 2:1 ). 

(righf-hand side) Lowest-energy particle-hole excitations created by the octupob operators 

(r3YaK) on a closed-shell configuration (with A&=7 ) of the snperdeformed oscillator potential. 

collective K=l octupole vibrations to emerge. Although the superdeformed potential 
distorted by the Qsr term looks somewhat different from a banana shape, the K=l 
octupole vibrations are sometimes called “banana modes”. Properties of the K=l modes 
may be sensitive to the pairing correlations among the valence nucleons. This situation is 

analogous to the well-known low-frequency quadrupole vibrations in spherical open-shell 

nuclei. Recall that the isoscalar K=l modes are Nambu-~ol~tone modes corresponding 
to translations and rotations for X=1 (dipole), X=2 ~qu~rupole), respectively. Therefore, 

strongly co~~ec~~ve, lo~-~Teg~e~c~ vibrational X=1 modes appear at X=3 for the first time. 

3. OCTUPOLE VIBRATIONS BUILT ON SUPERDEFORMED YRAST 

STATES 

Next, let us consider the cranked single-particle Hamiltonian of the Nilsson-plus-BCS 

type 

h’ = AmIsson - Ax (c;cj f c;cJ - x,8 - WrO&, (3) 
i 

and use, as residual ~nter~tions, the doubly-stretched octupol~octupole interactions 

(which are extensions of the ordinary octupoleoctupole interactions to nuclei having 
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quadrupole equilibrium shapes [15]). Our Hamiltonian is then written as 

(4) 

where Q!& G (r3Y3~)” are the octupole operators defined in terms of the doubly-stretched 

coordinates z$ = (wi/we)z; with i = 1,2 and 3, (wi/w) denoting the ratios of frequencies 

of the deformed harmonic-oscillator potential to that of the spherical one. 

To investigate properties of the collective octupole vibrations, we solve the RPA equa- 

tions for this Ram~tonian taking into account a large configuration space composed of 9 

major shells (for both protons and neutrons) by means of the coupled dispersion-equation 

technique. The octupole-force strengths xah’ can be determined for the harmonic- 

oscillator potential by the selfconsistency condition between the density distribution and 

the single-particle potential [15]. However, since generalization of this method to a more 

general single-particle potential like Eq. (3) is rather involved, we here treat xJK as pa- 

rameters. 

Figure 2 shows doubly-stretched octupole strengths 1 (nl (r3Ys~)” IO) I2 calculated at 

Wrot = 0 for superdeformed states in the Gd isotopes. Evidently, we always obtain strongly 

collective octupole vibrations with K=O. It is worthy of note that the collectivity of the 

K=l modes grows up when one moves from lsoGd to “‘Gd increasing the number of 

valence neutrons. 

Such a tendency may be more clearly seen in Figure 3, which represents the curvatures 

C’~K against the (r3Y31()” d f e ormations of the potential-energy surfaces evaluated by 

utilizing the sum rule [16] 

I (4 (~3kc)” IO) I2 
En-E0 ’ 

We see that the curvature C~K for K=l drastically decreases when one moves away from 

the superdeformed magic number IV=86 (for Gd isotopes) and N=112 (for Hg isotopes), 

indicating that the potential-ener~ surface becomes soft with respect to the (~~Ysi)” 

deformation. This is because, as is expected from the analysis of the superdeformed 

harmonic-oscillator potential, the K=l octupole correlations between twoquasiparticles 

in the same valence shell (with the same asymptotic quantum number NJ are especially 

strong. Recall that almost equal numbers of positive-parity and negative-parity single- 

particle levels coexist in the same major shell at the superdeformed shape. 

Figure 4 represents octupole strengths for the superdeformed *“Hg evaluated with 

the use of the force-strengths x3K slightly larger than the harmonic-oscillator value x?$. 

We find that the I<=2 octupole mode appears lowest in energy for superdeformed states 
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K=O K=l K=2 K=3 

Excitation Energy (MeV) 

Figure 2. Doubly-stretched octnpole strengths 1 (nl (r3Y3~)” IO) 1’ at w,,, = 0 for superdeformed 
states in the Gd isotopes, calculated with the use of the selfconsistent values x$ of the donbly- 

stretched octnpole interactions, which is valid [15] for the harmonic-oscillator potential. The 

qaadrnpole deformation parameter 6, and the pairing gaps (A,,, A,) are fixed at 0.53 and 

0.5MeV, respectively. The numbers written beside the main peaks indicate the strengths for the 

E3 operators messnred in Weisskopf units. 
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Figure 3. Curvatures CsK against the (r3Ys~)” deformations evaluated for (a) Gd isotopes and 

(b) Hg isotopes. The unit is fiwub;‘. The qusdrupole deformation parameter 6,., is fixed at 0.53 

for (a) and 0.44 for (b). The pairing gaps (A,,, 4) are also fixed to be 0.5MeV. 
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Figure 4. ~onbly-stretc~~ octnpole strengths 1 (nl (r3Y&)” IO) ]” calculated for the superde- 

formed states of rs2Hg at wrOt = 0. The deformation parameter S,,, = 0.43, the neutron gap 

h,=O.7MeV, the proton gap AP=0.7MeV and the doubly-stretched octupole interaction strengths 

xsK = 1.08x:$ are used. The numbers written beside the main peaks indicate the strengths for 

the E3 operators measured in Weisskopf units. 
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Figure 5. The same as Figure 4 but for w,,t=O.25MeV/h. 

around lg2Hg. This is mainly because the [512]5/2 and [624]9/2 Nilsson levels lie just 

above the N=112 superdeformed magic number and the K=2 octupole matrix element 

between these levels is very large (since it satisfies one of the asymptotic selection rule 

ANah=1,An3=1andAh=2). 

Figure 5 shows how the octupole strength distribution changes at a finite value of the 

rotational frequency qOt. In this figure, we can clearly see the K-mixing effects due to 

the Coriolis force; for instance, considerable mixing among the K=O, 1 and 2 components 

is seen for the RPA eigenmode with excitation energy tiw = 1.04MeV. 
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4. OCTUPOLE VIBRATIONAL EFFECTS ON QUASIPARTICLE MODES 
OF EXCITATION IN SUPERDEFORMED lg3Hg 

Starting from the microscopic Hamiltonian (4) and following the standard proce- 
dure [17], we can derive an effective Hamiltonian describing systems composed of quasi- 

particle c$, and octupole vibrations X,! as follows: 

a) 1.2 
Neutrons (ct=-l/2) 

._._...._raza!g/_~________ 

1.0 - [ 512]5/2 -----_______ 
.I_-_-_____- 

0.8 - 

L- 
.z* 

‘9) 0.4 - 

0.2 - 

0.0 

b) le2 ( 

0.1 0.2 0.3 

I I 

1.0 ” 

608- 
._““-*----.__.__________ 

x ’ [512]5/2 -------- T ----___ 
“E 0.6- 

‘9) 
a 
.$ 0.4 - 

0.2 

i 
I 

0.0 
I I 

0.1 0.2 0.3 
Wmt [MeV/fi] 

Figure 6. a) Quasiparticle energy diagram for neutrons with signature Q = --l/2 in “‘Hg, plotted 

as a function of w,*,. b) The same as a) but the energy shifts Ae$, due to the coupling effects 

with the octnpole vibrations are included. Parameters used in the calculation are the same as in 

Figures 4 and 5. Notations Iike [512]5/2 indicate the main components of the wave functions. 
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0.1 

Wrot [Mev/ii 2 

0.3 

Figure 7. Amplitudes Co(p) and Cl(Yn) in the wave function for Band 1, plotted as functions of 

urOt. The full lines indicate the one-quasiparticle amplitudes, while the broken (dotted) lines are 

used for the amplitudes involving the octnpole vibrations with positive (negative) signature. 

We diagonalize % within the subspace {of 10) , a!XL IO)} . The resulting state vectors can 

be written as 

(7) 
P n ” 

Recently, experimental data suggesting octupole correlations in superdeformed states 
have been reported by Cullen et al. [14] for lg3Hg. Figure 6 shows a result of calculation of 
excitation spectra in the rotating frame for this nucleus. By comparing the conventional 
quasiparticle energy diagram (Fig. 6-a) ) with the result of diagonalization of x (Fig. 6- 
b) ), we can clearly identify effects of the octupole vibrations: Energy shifts A&b of 
50 N 3OOkeV due to the coupling effects are seen. In particular, we note that the Landau- 

Zener crossing frequency w,,.. between Band 1 (whose main component is the [512]5/2 
quasiparticle state) and Band 4 (associated with the [761]3/2 quasiparticle) is considerably 

delayed. Namely, we obtain wcross M 0.26MeV/fr in agreement with the experimental value 
wad& M 0.27MeV/$ whereas w,,,, z O.l7MeV/ft if the octupole-vibrational effects are 

neglected. 
The calculated amplitudes Co(p) and Cr(yn) for Band 1 are displayed in Figure 7 

as functions of wrot. It is seen that the main amplitude changes from the [512]5/2 to 
the [761]3/2 qua&particle state at w,t M 0.26MeVlti indicating a Landau-Zener crossing 
phenomenon. We also see that the mixing amplitude of the state composed of the [642]9/2 
quasiparticle and the K=2 octupole vibration is significant. 

Next, let us discuss how the calculated values of the crossing frequency wcroSs, the 
interaction matrix element & between Bands 1 and 4, and the aligned angular mo- 
mentum i of Band 4 depend on the octupole force-strengths x3K. Figure 8 represents 
this dependence. Here these quantities are plotted as functions of the RRA excitation 
energy of the lowest K=2 octupole vibration (which in turn is a function of X3K). It 
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0.0 0.1 0.2 0.3 0.1 0.6 0.6 0.7 0.8 

fbwd-) @4eVf 

Figure 8. Dependence of (a) the crossing frequency wCToW between Bands 1 and 4, (b) the aligned 

angular momentum iBan& of Band 4, and (c) the interaction matrix element q,, between Bands 

1 and 4, on the excitation energy hw&?.z of the lowest I<=2 octupole vibration (with negative 

signature) calculated in the RPA. The excitation energy Aw~&=O.S4MeV at w,,t=0.45MeV/ta 

corresponds to the force-strength xaK = 1.08&‘. 

is seen that wcrosS increases while ih,,dl decreases when &w$!_2 decreases (i.e., when the 
octupole-vibrational effects become stronger). We thus find that the experimental data, 
i&&t X 1.3fi and WcrosB w 0.27MeV/tz, can be simultaneously reproduced by the calcu- 
lation with the use of xBK z ~.OSX~& which corresponds to tiw&Lz w 0.54MeV. We 
note that the calculated value of the aIi~ment for the [761]3/2 quasiparticle state (the 
main component of Band 4 ) would be Pai M 1.8fi if the octupole vibrational effects were 
neglected. On the other hand, the calculated interaction matrix element I& m SkeV, 
which mainly results from the octupole vibrational effects, is still too small in comparison 
with the experimental data (I&t z 26keV), for the parameters xsI, which well reproduce 
the experimental data of ina,& and w,,,,. 
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5. SUPERSHELL STRUCTURE AND OCTUPOLE INSTABILITY OF 

SUPERDEFORMED SHAPE 

As is well known, octupole instabi~ty takes place when the frequency of the octupole 

vibration evaluated by the RPA becomes imaginary. In recent years, octupole softness of 

superdeformed nuclei has been suggested [3-lo] in potential-energy surface calculations 

by means of the Strutinsky method. Nazarewicz and Dobaczewski [9] have discussed 

dynamical symmetry of the h~rno~c-osc~lator potential with ~req~e~c~es ita ~~~~5~~~ ratio, 

and suggested that the octupole instability might occur in the superdeformed closed-shell 

configurations whose uppermost shell quantum numbers Ngh are ePren. 

8.0 

6.0 

Figure 9. Single-particle energy diagram (in unit of fiwlb = frw,) for the potential (8) plotted 
aa a function of Xso. The shell quantum numbers Nsh and the magic numbers of closed-shelI 

configurations are indicated. 
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particle number N 

Figure 10. Comparison between the shell-structure energies for the reflection-asymmetric case 

(X30 = 0.4) and for the reflection-symmetric csse (Aso = 0.0). The unit is fiws. 

In order to investigate the origin of the octupole instability in a simple way, let 

us consider the following superdeformed oscillator potential distorted by the reflection- 

asymmetric term (r2Yso)“: 

Rere the double primes indicate that the quantities in parenthesis are defined in terms 

of the doubly-stretched coordinates xi = (wi/wu)xi. We are considering the case w, = 

WY 2WA = 2w,. The frequency wu is determined at each value of the octupole-deformation 

parameter Xse such that the volume conservation condition is fulfilled. l’he single-particle 

energy diagram for this potential is plotted in Figure 9 as a function of Xsu. 

Let us evaluate, by means of the Strutinsky method, how the shell-structure energy for 

this potential changes as a function of the particle number N and the octupole-deformation 

parameter Ass. In Figure 10 we compare the shell-structure energies evaluated at Xsu = 0.4 

with that at Xsu = 0. We can clearly see deep minima at N=62 and 112 for the reflection 

asymmetric case, which are associated with the appearance at Aso w 0.4 of new magic 

numbers {see the single-particle energy diagram, Fig. 9 ), These new magic numbers are 

connected to the superdeformed magic numbers N=60 and 110 where the single-particle 
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Figure 11. Classical periodic orbits in the axial-symmetric harmonic-oscillator potential with 

WI = 2w, and their contributions to the oscillating level density. a) represent those from three- 

dimensional orbits with the period T = 2x/w,, b) those from planar orbits with T = 2r/wl, and 

c) the sum of a) and b). The smoothing width y = 0.58w,h is used. 

levels are filled up to the major shells with ~eh=eVeII. In contrast, the minima at IV=80 

and 140 associated with the major shells with N,h=odd decline when one goes from 

x30 = 0 to x se = 0.4. This result nicely agrees with the suggestion by Nazarewicz et 

al. [9]. It also agrees qualitatively with the result of realistic calculation by Hijller and 

Aberg [5] (see also [18]). 

The odd-even effect in NSh discussed above corresponds to the supershell effect [20] 

in the semiclassical theory of shell structure [21,22]. Figure 11 shows how the supershell 

effect arises in the case of the axially symmetric oscillator potential with the frequency 

ratio WI : w, = 2 : 1. It arises from interference between three-dimensional classical 

closed orbits with the period T = 27r/w, and planar orbits in the (z, y) plane with the 

period T = 2x1~1. 

Figure 12 shows the oscillating components of the single-particle level density for the 

potential (8). W e can clearly see that a beating pattern arising from the interference effect 

becomes more significant at X 30 N 0.4 in comparison with the reflection-symmetric case 
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Figure 12, The oscillating term of the single-particle level density, calculated by means of the 
Strutinsky method for the potential (8) at Aso = 0.4. The smoothing width y = O.Mw,h is used. 
The arrows indicate the closed shells with N& = even. Compare with Figure 11-c) for X30 = 0. 

(Xau = 0). This result strongly suggests that the octupole instability of the superdeformed 

shape is intimately connected with growth of the supershell structure. 

6. RELATION BETWEEN QUANTUM SHELL STRUCTWRE AND 

CLASSICAL PERIODIC ORBITS IN REFLECTION-ASYMMETRIC 

SUPERDEFORMED POTENTIAL 

In order to understand physical reason why certain superdeformed nuclei tend to 

break the reflection symmetry and favor reflection-asymmetric shapes, let us investigate 

the relationship between quantum shell structure and classical periodic orbits associated 

with the singl~parti~le motion in a reflection-symmetric superdeformed potential. 

Hsing the cylindrical coordinates (p, z, 9) and after a suitable scale transformation, we 

can write the Hamiltonian for single-particle motions in the potential (8) as 

Note that this Hamiltonian is non-integrable when X30 # 0, and has some similarities 

with the H&on-Heiles Hamiltonian well known in the study of quantum chaos. 

Figure 13 shows PoincarC surfaces of section (pz, z) in the four-dimensional phase 

space (pp,pz, p, z) obtained by following classical trajectories for the Ha~ltoni~ (9) in 

the case p,+, = 0. We see that orderly and chaotic regions coexist. The tori characterizing 

the orderly region are associated with classical periodic orbits, some of which (having 
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relatively short periods) are displayed in Figure 14. By calculating traces of the stability 

matrices [23-261, RM, for these periodic orbits, we can study how properties of them 

change as the octupole deformation parameter X30 changes. We then find that a period- 

tripling bifwcation of the orbit labeled A occurs at Xau N 0.36. Thus, a pair of new 

periodic orbits is created in the bifurcation. One of them (orbit E) is stable and the 

other (orbit F) is unstable. We indeed see that a chain of three elliptic and hyperbolic 

fixed points appears in Figure 13(b) for X30 = 0.4 in correspondence with orbits E and F, 

respectively. On the other hand, Q period-doubling b~~urcut~o~ of the figure-eight-shaped 

orbit B occurs at X30 N 0.4 indicating an occurrence of instability, and the KAM torus 

associated with this closed orbit disappears thereafter. 

Let us discuss how such bifurcation phenomena are related with growth and decline 

of the supershell structure in the single-particle spectra, which arises from interferences 

between a few periodic orbits with relatively short periods. 

According to the semiclassicrd theory of quantum spectra [21,22,24-261, the single- 

particle level density g(e) consists of a smooth part g(e) and an oscUating part go&e); 

the latter can be written as a sum of contributions from classical periodic orbits. For 

non-integrable Bamiltonian systems, the level density g(e) may thus be written as 

g(e) = C S(e - en) 

= i-?(e) + x fJ qk(e) 03s (k (S-de) - tP7)) , 
r k=l 

(10) 

where y labels all the primitive periodic orbits with the actions S,(e) and the Maslov 

indices fir, and the sum over k accounts for multiple traversals. Tn order to study a 

large-scale ~o~-~~~~oT~~~~ in the e~ge~~ul~e spectrum with a finite energy resolution Ae 

(i.e., shell structure) 1271, ‘t . t 1s sufficient to consider contributions to the oscillating level 

density go&e) from closed orbits with periods T, Iess than fi/Ae [21]. For systems with 

two degrees of freedom, the amplitudes a+.(e) of the oscillating level density goscfe) are 

given by 

where TrMt denotes the trace of the stability matrix Mt for the periodic orbit labeled by 

(y, A). This expression indicates that the amplitude +k diverges at the bifurcation point 

of the periodic orbit y, where the equality TrM$ = 2 holds for a specific value of k [23]_ 

Similar phenomena are expected to occur also for systems with more than two-degrees of 

freedom. 
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(b) E = 1.0 
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L ’ ’ 1 ’ ’ ’ ’ 
L 

Figure 13. PoincarC surface of section (p,, z) for the Hamiltonian (9) with I+ = 0 at (a) A30 = 0.2 

and (b) at X30 = 0.4. 

Figure 14. Classical periodic orbits with pr = 0 for the Hamiltonian (9) at As0 = 0.4. Only orbits 

with relatively short periods are displayed. 



Now, the classical dynamics for the Hamiltonian (9) satisfy the following relations 

under a scale transformation (q, p) --, (cup, ap): 

h(v, 4 = a2h(P, 4, ji(ne) = a2i7(e), 
qltt~e) = Q&e), Sy(ae) = aS-Je). > 

(12) 

Using these scaling properties and making a Fourier transformation of Eq. (lo), we obtain 

IYen = -27rlj( l)~“(S) 
n 

+ 7rCa,i(l) {e-“fp76(s -i- kSy(l)) + eikf~~6(s - kS,(l))}. 
rk 

(13) 

This relation indicates that the Fourier transformation of the eigenvalue spectrum will 

exhibit peaks at s = lcS-, which corresponds to periodic orbits. It is worth noting here 

that, owing to the scaling properties (12), periods Tr of the primitive periodic orbits are 

equal to actions S,(I) calculated at e = 1, i.e., 

(14) 

Figure 15 represents a Fourier transform of quanta1 spectrum (absolute value of the 

left-hand side of Eq. (13) ) pl o e tt d as a function of action s. It is clearly seen that peaks 

arise at specific values of action that correspond to classical periodic orbits. Interestingly, 

relative heights of the peaks associated with orbit A and a group of orbits (B, C, D) 

change as the octupole-deformation parameter X30 changes from 0.2 to 0.4. In particular, 

the rise of peak at s M 10 is remarkable. As mentioned below Eq. (ll), the amplitude 07k 

is expected to significantly increase near the bifurcation point of the primitive periodic 

orbit y. Since the octupole deformation Xao = 0.4 is rather near the period-tripling 

bifurcation point X30 c 0.36 of orbit A, it is evident that the rise of the peak at s m 10.0 

for X30 = 0.4 is due to the increasing contribution from the triple traversal (Jz=3) of orbit 

A, as well as the new contributions from orbits E and F, which arise for Xsu 2 0.36. Thus, 

the interference effect between contributions from a group of orbits (A, E, F) and from 

(B, C, D) is stronger at X30 = 0.4 than at X30 = 0. It seems that this fact provides us with 

a key to understand the physical reason why the modulation with periodicity 2fiw,k in 

the energy spectrum of the 2:l harmonic-oscillator becomes more pronounced when the 

superdeformed potential breaks the space-reflection symmetry; i.e., why the supershell 

effect is enhanced at Xss N 0.4 (seen in Figure 12). 
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Figure 15. Fourier transforms of the quantal spectrum of the Hamiltonian (9) with Xso = 0.2, 0.3 

and 0.4. The absolute value of the left-hand side of Eq. (13) is plotted as a function of the action 

s. The lowest 150 eigenvalues are taken into account in the sum. Arrows indicate specific values 

of the actions which correspond to periodic orbits A, B, C, D, E and F displayed in Figure 14. 
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Although Figure 14 only displays periodic orbits with pip = 0, we have checked [28] 

that values of action and of TrM for orbits like A, B, C, .., but with p+, # 0 depend only 

very weakly on the value of p,, so that the nice correspondence mentioned above holds 

quite generally. 

7. CONCLUDING REMARKS 

We have discussed the reflection asymmetric degrees of freedom which are superim- 

posed on the superdeformed shapes. In order to understand the reason why supershell 

effects are enhanced due to breaking of the reflection symmetry, we have made a semi- 

classical analysis of the relationship between the quantum shell structure and the classical 

periodic orbits in a reflection-asymmetric superdeformed potential. 

In concluding this talk, we would like to emphasize that the roles of bifurcation phe- 

nomena in characterizing the shell and supershell structures have been rarely investigated 

for non-integrable systems, like those described by the Hamiltonian (9), that have a mix- 

ture of stable and unstable orbits in their phase space, i.e., when order and chaos coexcist. 

This problem is an example illustrating how the study of rapidly rotating superdeformed 

nuclei is related to basic problems of g%sntum chaos in small quantum systems. 
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Periodic Orbits and Deformed Shell Structure 1
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Abstract. Relationship between quantum shell structure and classical periodic orbits is briefly reviewed
on the basis of semi-classical trace formula. Using the spheroidal cavity model, it is shown that three-
dimensional periodic orbits, which are born out of bifurcation of planar orbits at large prolate deformations,
generate the superdeformed shell structure.

Introduction

Existence of superdeformed (SD) nuclei is often explained in terms of the SD magic numbers for the harmonic-
oscillator (HO) potential with axis ratio 2:1. It appears, however, that we need a more general explanation not
restricted to the HO potential, since, up to now, more than 200 SD bands have been found in various regions
of nuclear chart and their shapes in general deviates from the 2:1 shape to some extent. In this talk, we shall
discuss the mechanism how and the reason why the SD shell structure emerges. The major tool for this purpose
is the trace formula, which is the central formula in the semiclassical periodic-orbit (PO) theory and provides
a link between quantum shell structure and classical periodic orbits in the mean field. Here, shell structure is
defined as regular oscillation in the single-particle level density coarse-grained to a certain energy resolution.
An example of coarse-graining for the well-known axially symmetric HO model is displayed in Fig. 1.

In this talk, we discuss the spheroidal cavity model, since, in contrast to the HO model, this model is very
rich in periodic orbits; it is an ideal model for exhibiting the presence of various kinds of periodic orbit and
their bifurcations. We present both Fourier transforms of quantum spectra and semiclassical calculations based
on the PO theory, and identify classical periodic orbits responsible for emergence of the SD shell structure.
The result clearly shows that three-dimensional (3D) periodic orbits, that are absent in spherical and normal
deformed systems and are born out of bifurcations of planar orbits, generate a new shell structure at large
prolate deformations, which may be called “the SD shell structure.” They continue to exist for a wide range
of deformation, once they are born.

The PO theory provides a basic tool to get a deeper understanding of microscopic origin of symmetry
breaking in the mean field. It sheds light, in addition to the stability of the SD nuclei, on the reason of prolate
dominance in normal deformed nuclei, on the origin of left-right asymmetric shapes, etc. It is useful for finite
many-Fermion systems covering such different areas as nuclei, metallic clusters, quantum dots, etc. In this
talk, we shall also touch upon such applications of the PO theory.

Level Bunching and Trace Formula

For the axially symmetric HO potential, the following two conditions coincide:

1) Talk presented by K.M. at the Conference on Frontiers of Nuclear Structure, July 29th - August 2nd, 2002, UC

Berkeley.
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FIGURE 1. Oscillating level density as a function of axis ratio η for the axially symmetric HO potential. Bright and

dark regions correspond to high and low level densities, respectively. The 3D periodic orbits exist only at the 2:1 shape.

1) Axis ratio 〈x2〉 : 〈z2〉 = 1 : 2
2) Frequency ratio ωx : ωz = 2 : 1 ,

but they are different in general. Condition 2) is nothing but the PO condition, and possesses a more general
significance than condition 1). We can examine this point as follows. For any integrable Hamiltonian system,
we can introduce action and angle variables (I, θ) which satisfy the canonical equations of motion,

θ̇ =
∂H

∂I
= ω(I), (1)

and the energy E can be quantized by the EBK (Einstein-Brillouin-Keller) quantization condition:

En = H(I) with I = h̄ (n + 1
4α), (2)

where n represents a set of quantum numbers, n = (n1, n2, n3) with ni = 0, 1, 2, · · ·, and α the Maslov indices.
We see that level degeneracy occurs when

En+∆n − En = H(I + ∆I) − H(I)

� ∂H

∂I
∆I

= h̄ω · ∆n

= h̄ω1∆n1 + h̄ω2∆n2 + h̄ω3∆n3

= 0, (3)



i.e., when ω1 : ω2 : ω3 are in rational ratios. This is just the condition for the classical orbit to be periodic,
and discussed in detail in the textbook of Bohr and Mottelson [1].

On the basis of the semiclassical PO theory, we can examine, in a more general way, the decisive role of
periodic orbits as origin of level bunching. According to this theory (see, e.g., [2] for a review), the level density
g(E) is given by a sum of the average part ḡ(E) and the oscillation part δg(E) as

g(E) =
∑

n

δ(E − En)

� ḡ(E) + δg(E)

= ḡ(E) +
∑

α

Aα cos
(

1
h̄

Sα(E) − π

2
µα

)
, (4)

where Sα(E) denotes the action of the periodic orbit α, and µα is a phase related with the Maslov index. This
equation is called “trace formula” and provides a link between quantum shell structure and classical periodic
orbits in the mean field. There is a complementarity between the energy resolution and periods of classical
orbits, so that, for the purpose of understanding the origin of regular oscillation patterns in the smoothed
single-particle level density (shell structure), we need only short orbits in the sum over α.

Periodic Orbits and Shell Structure in the Cavity Model

Let us consider the cavity model, which may be regarded as a simplified model of Woods-Saxon potential
for heavy nuclei. In fact their basic patterns of shell structure are similar with each other. Certainly, the
spin-orbit term shifts the magic numbers, but it does not destroy the valley-ridge structure discussed below.
One can confirm these points by comparing Figs. 2, 3 and 4.
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FIGURE 2. Oscillating level density as a function of

axis ratio η for the WS potential without the spin-orbit

term. Bright and dark regions correspond to high and

low level densities, respectively. The calculation was done

following the procedure described on p. 593 of Ref. [1].
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FIGURE 3. Oscillating level density as a function of

axis ratio η for the WS potential. Bright and dark regions

correspond to high and low level densities, respectively.

Here, the spin-orbit term with vls = −0.12 is added to

the Hamiltonian used in Fig. 2.
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FIGURE 4. Ridge-valley structure in the oscillating level density for the spheroidal cavity model. Bright and dark

regions correspond to high (ridge) and low (valley) values of the oscillating level density, respectively. Constant action

lines running along valleys are shown for typical periodic orbits by dashed, thin-solid, and thick-solid curves. Note

that they are indicated as representatives of the meridian-plane orbits, the equatorial-plane orbits, and the 3D orbits,

respectively: There are several families of periodic orbits with similar lengths, and constant-action lines of them also

behave in the same way as those shown here, see Refs. [4] and [10] for details.

Role of periodic orbits for shell structure in this model was originally studied by Balian and Bloch [3], and
has been discussed in the investigations of

1) the reason of prolate dominance in nuclear shape [4–6]

2) the supershell effects in metallic clusters [7]

3) the origin of left-right asymmetric shapes [8,9], etc.

For cavity models, the energy and the momentum are simply related as

E = p2/2m, p = h̄k, (5)

and the action integral is proportional to the length Lα,

Sα =
∮

α

p · dx = h̄kLα. (6)

Accordingly, the trace formula for the level density can be written as

g(k) � ḡ(k) +
∑

α

Aα cos
(
kLα − π

2
µα

)
. (7)

It can be easily confirmed that only short orbits contribute to the level density coarse-grained in energy. Let
us Fourier transform the level density



F (L) =
∫

dkeikLg(k)

�
∑

α

Ãαδ(L − Lα). (8)

This equation indicates that peaks will show up at lengths Lα of periodic orbits α, which may be called “length
spectrum”. Now, the orbit lengths change when the deformation parameter η varies. Let us then consider the
oscillating level density as a function of η,

δg(k, η) �
∑

α

Aα(k, η) cos
(
kLα(η) − π

2
µα

)
. (9)

From this formula, we see that, if a few orbits dominate in the sum, the valley-ridge structure on the (k, η)
plane will be determined by the constant action lines,

kLα(η) = const, (10)

of these dominant orbits [4,10]. In fact, we see in Fig. 4 that the valley-ridge structure is well explained in
terms of three kinds of short periodic orbit.

Bifurcations

As illustrated in Figs. 5 and 6, when the axis ratio η of the spheroidal cavity reaches
√

2, the butterfly-shaped
planar orbits emerge on the meridian plane through bifurcations of the linear orbit along the short diameter.

FIGURE 5. Birth of a butterfly shaped orbit from the short diameter through bifurcation at η =
√

2 on the meridian

plane. This figure illustrates a representative orbit among a continuous family of orbits possessing the same length.

FIGURE 6. Birth of a 3D orbit from the star-shaped orbit on the equatorial plane through bifurcation at η � 1.62.

This figure illustrates a representative orbit among a continuous family of orbits possessing the same length.
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FIGURE 7. Left-hand part: Absolute values of the Fourier amplitudes, |F (L, η)|, of the level density, drawn as a map

on the (L, η) plane. Brightness is proportional to the magnitude. Right-hand part: Lengths of various classical orbits as

functions of axis ratio η. The 3D orbits responsible for the SD shell structure are denoted as (4,2,1), (5,2,1), (6,2,1), etc.,

and their lengths are plotted by thick-solid curves, while those of the equatorial-plane orbits and of the meridian-plane

orbits are plotted by thin-solid and dashed curves, respectively. 　The bifurcation points of the 3D orbits of interest

are indicated by filled circles. (Filled triangles indicate bifurcation points of 3D orbits responsible for hyperdeformed

shell structure not discussed here.) See Refs. [10] and [13] for details.

When η further increases, 3D orbits emerge at η � 1.62 through bifurcation of the five-point star shaped orbits
on the equatorial plane. Likewise, other 3D orbits appear at η =

√
3 through bifurcation of second repetitions

of the triangular orbits on the equatorial plane, . . . , etc. Note that the figure illustrates representative orbits
only. In fact, each α in the trace formula (9) represents a continuous family of orbits with the same topology
possessing the same values of action (length). In contrast to the HO potential, these 3D orbits continue to
exist, once they appear through the bifurcations.

Peaks in the Fourier transform (8) of the level density will follow the variations of orbit lengths Lα with η.
Thus, we can draw a map of the Fourier amplitudes on the (L, η) plane,

F (L, η) =
∑
α

Ãαδ(L − Lα(η)). (11)

In Fig. 7, the Fourier amplitudes are compared with lengths of classical periodic orbits. This figure exhibits
a beautiful quantum-classical correspondence. Furthermore, by comparing the bright regions in the left-side
figure with the bifurcation points indicated in the right-side figure, we find significant enhancement of the shell
structure amplitudes just on the right-hand side of the bifurcation points.

Unfortunately, the amplitude Aα(k, η) in the trace formula (9) diverges at the critical point of deformation
η where the orbit bifurcation takes place. This is because the stationary phase approximation used in the
standard semiclassical PO theory breaks down there. Thus, the standard trace formula is unable to describe
the enhancement phenomena seen in Fig. 7. To overcome this difficulty, in recent years, we have developed a new
semiclassical approximation scheme, called an improved stationary phase approximation, and derived a new
trace formula free from such divergence [11–13]. A numerical example obtained by this approach is presented
in Fig. 8. We see that the basic pattern of oscillation in the quantum level density at large deformation is
nicely reproduced by the semiclassical calculation using the new trace formula. In this way, we have confirmed
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[10,12,13] that, in the region of large prolate deformation with axis ratio η ≥ 1.62 (which corresponds to the
ordinary deformation parameter δ ≥ 0.44), the major pattern of the oscillating level density is determined by
contributions from the bifurcated 3D orbits.

Conclusion

The 3D periodic orbits generate a new shell structure at large prolate deformations. We may call this shell
structure “SD shell structure.” These 3D orbits are born out of bifurcations of planar orbits in the equatorial
plane, and they play dominant roles immediately after the bifurcations. Thus, the SD shell structure is
a beautiful example of emergence of new structure through bifurcation, and may be regarded as quantum
manifestation of classical bifurcation.
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With the use of the symmetry-unrestricted cranked SHF method in the 3D
coordinate-mesh representation, a systematic search for the SD and HD rotational
bands in the N=Z nuclei from 32S to 48Cr has been done, and SD and HD solu-
tions have been found in 32S, 36Ar, 40Ca, 44Ti, and in 36Ar, 40Ca, 44Ti, 48Cr,
respectively. The SD band in 40Ca is found to be extremely soft against both
the axially symmetric (Y30) and asymmetric (Y31) octupole deformations. Possible
presense of SD states in neutron-rich sulfur isotopes from 46S to 52S has also been
investigated, and deformation properties of neutron skins both in the ground and
SD states are discussed.

1. Introduction

Quite recently, superdeformed(SD) rotational bands have been discovered
in 36Ar, 40Ca, and 44Ti.1,2,3 One of the important new features of them
is that they are built on excited 0+ states and observed up to high spin,
in contrast to the SD bands in heavier mass regions where low-spin por-
tions of them are unknown in almost all cases. In this talk, we shall first
report results of the symmetry-unrestricted, cranked Skyrme-Hartree-Fock
(SHF) calculations for these SD bands. The calculation has been carried
out with the use of the fully three-dimensional (3D), Cartesian coordinate-
mesh representation without imposing any symmetry restriction. 4,5,6 The
computational algorithm is basically the same as in the standard one 7

except that the symmetry restrictions are removed. For comparison sake,
we also carry out the standard symmetry-restricted calculations imposing
reflection symmetries about the (x, y)-, (y, z)- and (z, x)-planes. By com-

1
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2

paring these results, we can clearly identify effects of reflection symmetry
breaking in the mean field.

We shall next present results of the cranked SHF calculation for SD
bands in the neutron-rich sulfur isotopes near the neutron drip line. These
nuclei are expected to constitute a new “SD doubly closed” region asso-
ciated with the SD magic numbers, Z = 16 for protons and N � 30-
32 for neutrons. An interesting theoretical subject for the SD bands in
these neutron-rich region is to understand deformation properties of neu-
tron skins. We shall discuss on this point.

2. 40Ca region

Figure 1 shows deformation energy curves evaluated by means of the con-
strained HF procedure. Solid lines with and without filled circles in these
figures represent results of unrestricted and restricted calculations, respec-
tively. In both cases, we otain local minima corresponding to the SD states
for 32S, 36Ar, 40Ca and 44Ti in the region 0.4 ≤ β2 ≤ 0.8. (The local
minimum in 44Ti is triaxial so that it is not clearly seen the γ = 0 sec-
tion.) The local minima in 32S and 36Ar involve four particles in the fp

shell, while those in 40Ca and 44Ti involve eight particles. In addition to
these SD minima, we also obtain local minima in the region β2 ≥ 0.8 for
40Ca, 44Ti and 48Cr. These minima involve additional four particles in the
single-particle levels that reduce to the g9/2 levels in the spherical limit.
Somewhat loosely we call these local minima “hyperdeformed (HD).” The
HD solution in 40Ca corresponds to the 12p-12h configuration.

We notice in this figure that the crossings between configurations in-
volving different numbers of particles in the fp shell are sharp in the re-
stricted calculations, while we always obtain smooth configuration rear-
rangements in the unrestricted calculations. The reason for this different
behavior between the unrestricted and restricted calculations is rather easy
to understand: When the parity symmetry is imposed, there is no way,
within the mean-field approximation, to mix configurations having differ-
ent number of particles in the fp shell. In contrast, as illustrated in Fig. 2,
smooth crossover between these different configurations is possible via mix-
ing between positive- and negative-parity single-particle levels, when such
a symmetry restriction is removed. Octupole deformation parameters β3

are plotted as functions of β2 in the lower portion of Fig. 3 for the case
of 40Ca. We see that values of β3 are zero near the local minima, but rise
in the crossing region. This means that the configuration rearrangements
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Figure 1. Deformation energy curves as functions of the quadrupole deformation β2

calculated at I = 0 by means of the constrained SHF procedure with the SkM∗ inter-
action. The axial-asymmetry parameter γ is constrained to be zero. The curves for
different nuclei are shifted by 20 MeV in order to facilitate the comparison. Solid lines
with and without filled circles represent the results obtained by the unrestricted and re-
stricted versions, respectively (see the text). The notations fngm and (fp)ngm indicate
the configurations in which the f7/2 shell (fp shell) and the g9/2 shell are respectively
occupied by n and m nucleons.

in fact take place through paths in the deformation space that break the
reflection symmetry.

Excitation energies of the SD and HD bands in 40Ca calculated by
using different versions (SIII, SkM∗, SLy4) of the Skyrme interaction are
compared with the experimental data 2 in the left-hand portion of Fig. 4.
The SD band is slightly triaxial with γ = 6◦-9◦(8◦-9◦) and it terminates
at I � 24 for the SIII (SkM∗) interaction. (In the case of 44Ti, the shape
is more triaxial with γ = 18◦-25◦ and 13◦-19◦, and the SD band termi-
nates at I � 12 and 16 for the SIII and SkM∗ interactions, respectively.6)
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lower part: Octupole deformation β3 obtained by the unrestricted SHF calculation with
SkM∗, plotted as a function of β2.
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Figure 4. Comparison between the excitation energies of the SD and HD bands in 40Ca,
calculated by using different versions of the Skyrme interaction and the experimental
data (filled circles). Solid, dashed and dashed-dotted lines indicate the results with the
SIII, SkM∗ and SLy4 interactions, respectively. Results with and without including
the zero-point rotational energy correction are shown in the right- and left-hand sides,
respectively.

One may notice that the excitation energy of the SD band-head state is
overestimated. We have evaluated the zero-point rotational energy correc-
tion, 1

2J(2) 〈(∆Ĵx)2〉, as a function of the rotational frequency ωrot. Here,
∆Ĵx = Ĵx −〈Ĵx〉 and J (2) denotes the dynamical moment of inertia defined
by J (2) = dI/dωrot. Excitation energies including this correction are shown
in the right-hand portion of Fig. 4. We see that the calculated excitation
energies are significantly improved by including this correction.

Let us examine stabilities of the SD local minimum in 40Ca against
octupole deformations. Figure 5 shows deformation energy curves as func-
tions of the octupole deformation parameters β3m(|m| = 0, 1, 2, 3) about
the SD minimum. We immediately notice that the SD state is extremely
soft with respect to the β30 and β31 deformations.

Quite recently, Imagawa and Hashimoto have carried out a selfconsistent
RPA calculation in the 3D Cartesian-mesh representation on the basis of the
SHF mean field, and they have obtained, for the SIII (SkM∗) interaction,
a strongly collective octupole vibrational mode with Kπ = 1− at about
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Figure 5. Deformation energy curves (measured from the energy at β3 = 0) as functions
of the octupole deformation parameters β3m(|m| = 0, 1, 2, 3), calculated for 40Ca by
means of the constrained HF procedure with SkM∗. The quadrupole deformation pa-
rameters are fixed at β2 = 0.6 and γ = 8◦. One of the β3m(|m| = 0, 1, 2, 3) is varied
while the other β3m’s are fixed to zero.

1.1 (0.6) MeV excitation from the SD band head.8 Thus, it is extremely
interesting to search for negative-parity rotational bands associated with
the non-axial Kπ = 1− octupole vibrational modes built on the SD yrast
band.

3. 50S region

Figure 6 shows deformation energy curves for neutron-rich sulfur isotopes
from 46S to 52S, which indicates that the SD local minima is deepest at 50S.
As shown in Fig. 7, this result is common for the SHF calculations with
the use of SIII, SkM∗ and SLy4 interactions. Thus, the neutron SD shell
structure seems to be slightly modified from that known in the Zn region
with N � Z, where N � 30-32 are the SD magic numbers.

Figures 8 and 9 show the neutron and proton density profiles for the
ground and the SD states, respectively. We see that deformed neutron skins
are present in both cases. These calculations are done with use of a small
mesh size of 0.25 fm. In order to examine deformation properties of these
neutron skins in more detail, we have made a least square fitting to the den-
sity distribution along each principal axis direction with the Woods-Saxon
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Figure 6. Deformation energy curves as functions of β2 calculated at I = 0 by means of
the constrained SHF procedure with the SLy4 interaction. The axial-asymmetry param-
eter γ is constrained to be zero. The curves for different nuclei are shifted by 10 MeV to
facilitate the comparison. Solid lines with and without filled circles represent the results
obtained by the unrestricted and restricted versions, respectively. The notations fngm

indicate the configurations in which the f7/2 shell and the g9/2 shell are respectively
occupied by n and m nucleons.

function. The half-density radii and the diffuseness parameters extracted in
this way for the SD state are listed in Table 1. We see that the neutron skin
is formed mainly due to the difference in the diffuseness between protons
and neutrons (rather than the difference in the half-density radius). It is
interesting to note that the proton diffuseness parameter along the major
axis is significantly smaller than that along the minor axis.

The presence of the deformed neutron skins may be detected through
excitation spectra of these nuclei. Thus, search for soft Kπ = 0− and 1−

(dipole + octupole) vibrational modes in unstable nuclei with deformed
neutron skins seems especially interesting. Note that octupole modes will
be mixed with dipole modes in deformed nuclei. For studying these modes,
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MeV.

Table 1. Root-mean square radii ( Rrms ), quadrupole deforma-
tion parameters ( β2 ), half-density radii for the major and minor
axes ( Rz

1/2
, Rx

1/2
), surface diffuseness parameters along the

major and minor axes ( az , ax ), evaluated by the SHF method
with SLy4 for the SD state in 50S. The proton and neutron con-
tributions are separately shown together with their differences.

SD Rrms β2 Rz
1/2

Rx
1/2

az ax

neutrons 4.15 0.59 5.65 3.09 0.72 0.61

protons 3.75 0.70 5.76 2.77 0.38 0.47

differences 0.41 -0.11 -0.12 0.32 0.34 0.14

we need to develop the SHF-Bogoliubov + quasiparticle RPA approach such
that we can take into account deformation, pairing, and continuum effects
simultaneously. We can further envisage to go beyond the quasiparticle
RPA by means of the selfconsistent collective coordinate method.9
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Figure 8. Neutron and proton density distributions in the ground state of 50S, calcu-
lated by the unrestricted SHF with SLy4 and with a mesh size of 0.25 fm. Left-hand side:
equi-density lines with 50% and 1% of the central density in the (x, z) and (x, y) planes
are drawn. Solid and dashed lines indicate those for protons and neutrons, respectively.
Right-hand side: Density distributions along the major and minor axes are drawn by
thin-solid lines with filled circles. The least-square fits of them with the Wood-Saxon
function are also shown by solid lines. The former densities are shifted up by 0.05 fm−3

to facilitate the comparison.
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4. Summary

With the use of the symmetry-unrestricted cranked SHF method in the 3D
coordinate-mesh representation, we have carried out a systematic theoret-
ical search for the SD and HD rotational bands in the N=Z nuclei from
32S to 48Cr. We have found the SD solutions in 32S, 36Ar, 40Ca, 44Ti, and
the HD solutions in 36Ar, 40Ca, 44Ti, 48Cr. Particular attention has been
paid to the recently discovered SD band in 40Ca, and we have found that
the SD band in 40Ca is extremely soft against both the axially symmetric
(Y30) and asymmetric (Y31) octupole deformations. Thus, it will be espe-
cially interesting to search for negative-parity rotational bands associated
with non-axial Kπ = 1− octupole vibrations built on the SD yrast band.

We have also discussed possible presense of SD states in sulfur isotopes
from 46S to 52S, which are situated near the neutron drip line. An interest-
ing subject in this region is the appearance of deformed neutron skins both
in the ground and SD states. The presence of the deformed neutron skins
may be detected through excitation spectra of these nuclei. Thus, search
for new kinds of soft Kπ = 0− and 1− (dipole + octupole) vibrational
modes of excitation is challenging, both theoretically and experimentally.
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On the basis of the symmetry-unrestricted, cranked Skyrme-Hartree-Fock (SHF) calcu-
lations, we discuss superdeformed (SD) rotational bands in (1) the 40Ca region along
the N=Z line, and (2) neutron-rich Sulfur isotopes up to the neutron-drip line. The
calculation was carried out with the use of the three-dimensional (3D) coordinate-mesh
representation without imposing any symmetry restriction. Stability of the SD bands
against exotic deformations breaking both reflection and axial symmetries were care-
fully examined. The analysis indicates possible appearance of negative-parity rotational
bands associated with octupole shape vibrational excitations built on the SD yrast band.
We then present results of selfconsistent RPA calculation for such a new type of collective
vibrational modes. The selfconsistent RPA calculations based on the SD local minima
obtained by the SHF calculation were carried out by means of the mixed representation
on the 3D Cartesian mesh in a box.

1. Introduction

Low-frequency vibrational modes in cold nuclei close to the yrast lines are quite
unique; their properties are intimately connected with shell structure. As is well
known, shell structure associated with single-particle motion in a superdeformed
(SD) potential is drastically different from that in normal deformed potentials,
and the existence of SD nuclei are just due to the new shell structure, called SD
shell structure, that emerges at large deformation. Thus, we expect a new kind
of surface vibrational modes to emerge in SD nuclei. In fact, each major shell at
the SD shape consists of about equal numbers of positive- and negative-parity
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single-particle levels, and provides a very favorable situation for octupole shape
fluctuations.

Various mean-field calculations1,2,3 and quasiparticle RPA4,5 on the basis of
the rotating mean field (cranked shell model) indicate that SD nuclei are very
soft against both axial and non-axial octupole deformations and, accordingly, low-
frequency octupole vibrations may appear near the SD yrast lines. In fact, such
octupole vibrations have been discovered in SD nuclei in the Hg-Pb region,6 and
also in 152Dy.7

Quite recently, SD bands were discovered also in the 40Ca region.8,9,10 One of
the important new features of them is that they are built on excited 0+ states
and observed up to high spin, in contrast to the SD bands in heavier mass regions
where low-spin portions of them are unknown in almost all cases. In this talk,
we first report results of the symmetry-unrestricted, Skyrme-Hartree-Fock (SHF)
calculations for these SD bands. The calculation were carried out with the use of the
fully three-dimensional (3D) coordinate-mesh representation without imposing any
symmetry restriction.11,12,13,14 The computational algorithm is basically the same
as in the standard one15 except that the symmetry restrictions are removed. For
comparison sake, we also carry out the standard symmetry-restricted calculations
imposing reflection symmetries about the (x, y)-, (y, z)- and (z, x)-planes. We next
present results of calculation for SD bands in neutron-rich Sulfur isotopes near the
neutron drip line. These nuclei are expected to constitute a new “SD doubly closed”
region associated with the SD magic numbers, Z = 16 for protons and N � 30-
32 for neutrons. Finally, we shall present a new result of RPA calculation for soft
octupole vibrations built on the SD minima found in the SHF calculations. The
RPA calculation has been carried out quite recently in a fully selfconsistent manner
utilizing the mixed representation, i.e., adopting the coordinate and configuration
representations for particles and holes, respectively. 16,17,18,19

2. Superdeformations in the 40Ca Region

Figure 1 shows deformation energy curves evaluated by means of the constrained
HF procedure. We obtain local minima corresponding to the SD states for 32S,
36Ar, 40Ca and 44Ti in the region 0.4 ≤ β2 ≤ 0.8. (The local minimum in 44Ti is
triaxial so that it is not clearly seen in the γ=0 section.) The local minima in
32S and 36Ar involve four particles in the fp shell, while those in 40Ca and
44Ti involve eight particles. In addition to these SD minima, we also obtain local
minima in the region β2 ≥ 0.8 for 40Ca, 44Ti and 48Cr. These minima involve
additional four particles in the single-particle levels that reduce to the g9/2 levels in
the spherical limit, and may be called “hyperdeformed (HD).” Stabilities of these
SD and HD minima againt axial and non-axial octupole deformations are carefully
analyzed in Ref. 13.
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Fig. 1. Deformation energy curves as functions of the quadrupole deformation β2 calculated
at I=0 by means of the constrained SHF procedure with the SkM∗ interaction.13 The axial-
asymmetry parameter γ is constrained to be zero. The curves for different nuclei are shifted by
20 MeV in order to facilitate the comparison. Solid lines with and without filled circles represent the
results obtained by the symmetry-unrestricted and restricted versions, respectively. The notations
fngm and (fp)ngm indicate the configurations in which the f7/2 shell (fp shell) and the g9/2

shell are respectively occupied by n and m nucleons.

3. Superdeformations in Neutron-Rich Sulfur Isotopes

Figure 2 shows deformation energy curves for Sulfur isotopes. This result of calcu-
lation indicates that, in addition to the well-known candidate 32S, the neutron-rich
36S and the the drip-line nuclei, 48S and 50S, are also good candidates for finding
SD bands (see Ref. 14 for details). It is interesting to note that calculated density
distributions for the SD state in 50S, which are situated close to the neutron-drip
line, exhibit superdeformed neutron skins (compare the proton and neutron density
profiles for 50S presented in Fig. 3).
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Fig. 3. Left-hand side: Density distributions in the (y, x)- and (z, x)- planes of the SD band
at I=0 in 32S, 36S, and 50S, calculated with the use of the SLy4 interaction. Neutron (proton)
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from Ref. 14.
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4. Soft Octupole Vibrations built on the SD States

Quite recently, Imagawa and Hashimoto18,19 constructed a new computer code that
carries out a selfconsistent RPA calculation in the mixed representation16 on the
basis of the SHF mean field (see also Muta et al..17) In the mixed representation,
the RPA phonon creation operators are written in the following manner:

O†
λ =

∑

i

∑

x

{ψλ
i (x)a†(x)b†i − φλ

i (x)bia(x)}

Here, a†(x) and a(x) are creation and annihilation operators of particles at the
coordinate x= (r, σ, τ), while b†i and bi are those of holes in the single-particle
configuration i. The notation

∑
x means the integration with respect to the space

coordinate r and the sum with respect to the spin σ and isospin τ . Note that

{a(x), a†(x′)} = P (x, x′),

where P (x, x′) is the projection operator onto the particle space. It should be em-
phasized that the well-known problem of upper energy cut-off does not arise in this
approach. The RPA eigenvalue equation takes the following form:

∑

j

∑

x′
{Ai,j(x, x′)ψλ

j (x′) +Bi,j(x, x′)φλ
j (x′)} = �ωλψ

λ
i (x),

∑

j

∑

x′
{B∗

i,j(x, x
′)ψλ

j (x′) +A∗
i,j(x, x

′)φλ
j (x′)} = −�ωλφ

λ
i (x),

where �ωλ denotes the eigenvalue of the eigenmode λ.
Solving these RPA eigenvalue equations on the 3D Cartesian mesh in a box,

Imagawa obtained, for the SIII (SkM∗) interaction, a strongly collective octupole
vibrational mode withKπ = 1− at about 1.1 (0.6) MeV excitation from the SD band
head of 40Ca.18 This RPA calculation has been carried out in a fully selfconsistent
manner taking into account all terms of the residual interaction (including time-odd
components in the mean field and the Coulomb interaction).

Figure 4 shows the result of the same RPA calculation for soft octupole vi-
brations built on the SD states in Sulfer isotopes. It is very interesting to observe
that the collective excitations in neutron-rich Sulfur isotopes are created mainly
by neutron excitations. In particular, there is no bound single-particle level in the
particle space for the drip-line nucleus 50S, so that these collective RPA modes
are generated mainly by neutron excitations from bound levels to the continuum.
Details of this work will be published elsewhere.20 We are presently extending this
SHF+RPA scheme to include pairing correlations.

5. Outlook

Although, in this talk, we focused our attention on soft octupole vibrations built
on the SD states in neutron-rich nuclei, similar situations are expected to arise
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Fig. 4. Low-energy collective excitation spectra at the SD shapes in Sulfur isotopes obtained by
the selfconsistent RPA calculation with the use of the SkIII, SkM∗ and SLy4 interactions. Only
negative-parity levels with large transition matrix elements are displayed, and they are labeled by
the K quantum number and the parity. Numbers beside the arrows indicate the squared transition
matrix elements for the mass octupole operators (sums of proton and neutron contributions) in
the Weisskopf unit. Compare them with the numbers in parentheses that indicate the proton
contributions only. Note that these are intrinsic excitation spectra, so that rotation bands are
expected to be built on top of every levels. The RPA matrix in the mixed representation is
constructed using 30 mesh points in each direction with mesh size h=0.6 fm (see Ref. 19 for
details of the numerical calculation and convergence check with respect to the mesh size). The
center of mass modes are decoupled from these vibrational modes in a very good approximation.

also in normal deformed neutron-rich unstable nuclei. In particular, investigation
of collective excitation spectra in unstable nuclei possessing deformed neutron skins
seems extremely interesting. Because soft octupole modes will be mixed with soft
dipole modes in deformed nuclei, search for new kinds of soft (dipole + octupole)
vibrational modes of excitation in neutron-rich deformed nuclei is challenging, both
theoretically and experimentally.
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