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On the basis of time-dependent mean-field picture, we discuss the na-
ture of the low-frequency quadrupole vibrations from small-amplitude
to large-amplitude regimes as representatives of surface shape vibra-
tions of a superfluid droplet (nucleus). We consider full five-dimensional
quadrupole dynamics including three-dimensional rotations restoring the
broken symmetries as well as axially symmetric and asymmetric shape
fluctuations. We show that the intimate connections between the BCS-
pairing and collective vibrations reveal through the inertial masses gov-
erning their collective kinetic energies.

1. Introduction

In almost all even-even nuclei consisting of even number of protons and

neutrons, aside from the doubly magic nuclei of the spherical shell model,

the first excited states possess angular momentum two and positive parity

(Iπ = 2+). Their excitation energies are much lower than the energy gap

2∆ characterizing nuclei with superfluidity (see Fig. 4 in the contribution of

Bertsch to this volume), and very large electric quadrupole (E2) transition

strengths (in comparison with those of single-particle transitions) between

these first excited 2+ states and the ground states have been systematically

observed. These experimental data clearly indicate that they are collec-

tive excitations of the superfluid system.1,2 They are genuine quantum

vibrations essentially different in character from surface oscillations of a
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classical liquid drop, that is, superfluidity and shell structure of nuclei play

indispensable roles for their emergence. Unfortunately, this point is quite

insufficiently described in several textbooks on nuclear physics.

In a nucleus whose mean field breaks the spherical symmetry but con-

serves the axial symmetry, its first excited 2+ state can be interpreted as a

uniformly rotating state, provided that the amplitudes of quantum shape

fluctuations are smaller than the magnitude of equilibrium deformation.

Nuclei exhibiting very small ratios of the excitation energy to the energy

gap, E(2+)/2∆, (less than about 0.1) belong to this category (see Fig. 4

in the contribution of Bertsch to this volume). The rotational moment of

inertia evaluated from E(2+) turned out to be about half of the rigid-body

value. This was one of the most clear evidences leading to the recognition

that their ground states are in superfluid phase. Large portion of nuclei

exhibiting regular rotational spectra have the prolate shape. Origin of the

asymmetry between the prolate and oblate shapes is an interesting funda-

mental problem still under study.3

The first excited 2+ states other than the rotational states have been

regarded as quadrupole vibrations around the spherical shape. Their fre-

quencies are low and decrease as the numbers of neutrons and protons

increasingly deviate from the magic numbers of the spherical shell model.

Eventually, they turn into the rotational 2+ states discussed above. Thus,

low-frequency quadrupole vibrations may be regarded as soft modes of the

quantum phase transitions breaking the spherical symmetry of the mean

field. In a finite quantum system like nuclei, however, this phase transi-

tion takes place gradually as a function of nucleon number, and there is a

wide region of nuclei whose low-energy excitation spectra exhibit charac-

teristics intermediate between the vibrational and the rotational patterns.

The softer the mean field toward the quadrupole deformation, the larger

the amplitude and the stronger the nonlinearity of the vibration.

In this Chapter, we discuss mainly the low-frequency (slow) quadrupole

vibrations rather than summing up the diversity of nuclear vibrational phe-

nomena. The reason is not only because they dominate in low-lying spectra

but also because they represent most typically the intimate connection be-

tween the BCS-pairing and the emergence of collective vibrational modes

in nuclei. Many ideas developed here are applicable also to low-frequency

octupole (3−) vibrations. We here restrict ourselves to the time-dependent

mean-field approach, because it provides a clear correspondence between

the quantum and classical aspects of the surface shape vibrations. Fur-

thermore, this approach enables us to microscopically derive the collective
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coordinates and momenta on the basis of the time-dependent variational

principle. We shall show that the inertial masses determining the collective

kinetic energies of the low-frequency quadrupole modes clearly reveal their

character as surface shape vibrations of a superfluid droplet (nucleus).

We shall start from small-amplitude vibrations around the spherical

equilibrium shape and then go to large-amplitude regime where we need to

consider full five-dimensional (5D) quadrupole dynamics including three-

dimensional rotations restoring the broken symmetries as well as axially

symmetric and asymmetric shape fluctuations. Through this Chapter, we

would like to stress that construction of microscopic quantum theory of

large-amplitude collective motion (LACM) is one of the most challenging

open subjects in nuclear structure physics. Nowadays, the dimension of

nuclear collective vibrational phenomena awaiting applications of such a

microscopic quantum theory is enormously increasing covering wide regions

from low to highly excited states, from small to large angular momenta, and

from the proton-drip line to the neutron-drip line.

2. Collective motion as moving self-consistent mean field

2.1. Small-amplitude regime

Let us consider even-even nuclei whose ground states consist of correlated

nucleon pairs occupying time-reversal conjugate single-particle states. The

Hartree-Fock-Bogoliubov (HFB) method is a generalized mean-field theory

treating the formation of the HF mean field and the nucleon pair condensate

in a self-consistent manner,4 and yields the concept of quasiparticles as

single-particle excitation modes in the presence of the pair condensate.

As is well known, Bohr and Mottelson opened the way to a unified un-

derstanding of single-particle and collective motions of nuclei by introducing

the concept of moving self-consistent mean field.5–7 The time-dependent

extension of the HFB mean field, called the time-dependent HFB (TD-

HFB) theory, is suitable to formulate their ideas.8,9 The TDHFB state

vector |φ(t)〉 can be written in a form of generalized coherent state:

|φ(t)〉 = eiĜ(t)|φ(t = 0)〉 = eiĜ(t)|φ0〉, (1)

iĜ(t) =
∑

(ij)

(gij(t)a
†
ia

†
j − g∗ij(t)ajai), (2)

where the HFB ground state |φ0〉 is a vacuum for quasiparticles (a†i , aj) ,

ai|φ0〉 = 0, (3)
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with the suffix i distinguishing different quasiparticle states. The functions

gij(t) in the one-body operator Ĝ(t) is determined by the time-dependent

variational principle

δ〈φ(t)|i ∂
∂t

−H |φ(t)〉 = 0. (4)

For small-amplitude vibrations around a HFB equilibrium point, one can

make a linear approximation to the TDHFB equations and obtain the quasi-

particle random phase approximation (QRPA) which is a starting point of

microscopic theory of collective motion.10,11 Expanding Eq. (4) as a power

series of Ĝ(t) and taking only the linear order, we obtain

δ〈φ0|[H, iĜ] +
∂Ĝ

∂t
|φ0〉 = 0. (5)

Writing Ĝ(t) in terms of the creation and annihilation operator (Γ†,Γ) of

the excitation mode as

iĜ(t) = η(t)Γ− η∗(t)Γ†, η(t) = ηe−iωt, (6)

we obtain the QRPA equation which determines the microscopic structure

of (Γ†,Γ) as a coherent superposition of many two-quasiparticle excitations.

Alternatively, we can write Ĝ(t) in terms of the collective coordinate and

momentum operators (Q̂, P̂ ) and their classical counterparts (q(t), p(t)) as

Ĝ(t) = p(t)Q̂− q(t)P̂ (7)

and obtain the QRPA equation,

[ Ĥ, Q̂ ] = −iP̂ /D, (8)

[ Ĥ, P̂ ] = iCQ̂, (9)

for (Q̂, P̂ ). Here C, D and ω2 = C/D respectively denote the stiffness,

the inertial mass and the frequency squared of the vibrational mode (with

~ = 1). For Anderson-Nambu-Goldstone (ANG) modes,12,13 C and ω are

zero but D are positive. Note that Eqs. (8) and (9) can be used also

for unstable HFB equilibria where C is negative and ω is imaginary. For

simplicity, we assumed above that there is only a single collective mode,

but in reality Ĝ(t) is written as a sum over many QRPA normal modes.

The self-consistent mean field of a finite quantum system generates a

variety of shell structure dependent on its shape, and single-particle wave

functions possess individual characteristics. In addition to rich possibilities

of spatial structure, collective excitations associated with the spin-isospin
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degrees of freedoms of nucleons occur. Thus, diversity of collective vibra-

tions emerges.14,15 Even restricting to the 2+ surface oscillation, there are

two modes of different characters. One is the low-frequency mode generated

mainly from two-quasiparticle excitations within partly filled major shells

(for both protons and neutrons). The other is the high-frequency mode,

called giant quadrupole resonance, generated from single-particle excita-

tions across two major shells. While giant resonances are small amplitude

vibrations, low-frequency collective modes in open shell nuclei exhibit sig-

nificant nonlinear effects and we need to go beyond the QRPA. In the

QRPA, the quadrupole vibrational modes can be regarded as phonons of

5D harmonic oscillator and excitation spectra are expected to show a simple

pattern: e.g., the two-phonon states (double excitations of the 2+ quanta)

will appear as a triplet with Iπ = 0+, 2+ and 4+. Closely examining ex-

perimental data, e.g., on their E2 transition properties, one finds that they

often exhibit significant anharmonicities even when a candidate of such a

triplet is seen.16 The vibrational amplitude becomes very large in transient

situations of the quantum phase transition from spherical to deformed,

where the spherical mean field is barely stable or the spherical symmetry is

broken only weakly. Many nuclei are situated in such transitional regions.

2.2. Quadrupole collective dynamics

One of the microscopic approaches to treat nonlinear vibrations is the bo-

son expansion method, where the collective QRPA normal modes at the

spherical shape are regarded as bosons and nonlinear effects are evaluated

in terms of a power series expansion with respect to the boson creation and

annihilation operators. This method has been widely used for low-energy

collective phenomena.17

In the investigation of low-energy excitation spectra, the pairing-plus-

quadrupole (P+Q) model18,19 and its extension20 have played a central

role. This phenomenological effective interaction represents the competi-

tion between the pairing correlations favoring the spherical symmetry and

the quadrupole (particle-hole) correlations leading to the quadrupole de-

formation of the mean field. Combining the P+Q model with the TD-

HFB theory, Belyaev,8 Baranger and Kumar9 microscopically derived the

5D quadrupole collective Hamiltonian describing the quadrupole vibrations

and rotations in a unified manner:

H = Tvib + Trot + V (β, γ), (10)
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Tvib =
1

2
Dββ(β, γ)β̇

2 +Dβγ(β, γ)β̇γ̇ +
1

2
Dγγ(β, γ)γ̇

2, (11)

Trot =
∑

k

I2k
2Jk(β, γ)

. (12)

Here, Tvib and Trot denote the kinetic energies of vibrational and rotational

motions, while V (β, γ) represents the collective potential energy defined

through the expectation value of an effective interaction with respect to

the TDHFB state. The velocities of the vibrational motion are described in

terms of the time-derivatives (β̇, γ̇) of the quadrupole deformation variables

(β, γ) representing the magnitude and the triaxiality of the quadrupole

deformation, respectively. They are defined in terms of the expectation

values of the quadrupole moments or through a parametrization of the

surface shape. The three components Ik of the rotational angular momen-

tum and the moments of inertia Jk = 4β2Dk(β, γ) sin
2(γ − 2πk/3) in the

rotational energy Trot are defined with respect to the intrinsic frame of ref-

erence; that is, an instantaneous principal-axis frame of the time-dependent

shape-fluctuating mean field.

After quantization with the Pauli prescription, the vibrational kinetic

energy takes the following form:21

T̂vib = − 1

2
√
WR

[

1

β4

∂

∂β
β2

√

R

W

(

Dγγ
∂

∂β
−Dβγ

∂

∂γ

)

− 1

β2 sin 3γ

∂

∂γ

√

R

W
sin 3γ

(

Dβγ
∂

∂β
−Dββ

∂

∂γ

)

]

, (13)

where

W = β−2
[

Dββ(β, γ)Dγγ(β, γ)−D2
βγ(β, γ)

]

, (14)

R = D1(β, γ)D2(β, γ)D3(β, γ). (15)

If the β and γ dependences of the inertial functions, Dββ, Dβγ , Dγγ and

Dk, are ignored, Eq. (13) reduces to a simpler expression used in many

papers. However, such an approximation is valid only for small-amplitude

vibrations around the spherical shape. It is mandatory to use the above

expression to describe large-amplitude vibrations in transitional regions

toward the quadrupole deformation.

In an axially deformed nucleus whose collective potential V (β, γ) has a

deep minimum at β 6= 0 and γ = 0◦ (prolate shape) or γ = 60◦ (oblate

shape), a regular rotational spectrum appears. At the same time, one can
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identify β and γ bands involving vibrational quanta of fluctuations of the

β and γ variables. Close examination of their properties, however, reveals

significant nonlinear character of the γ vibration.22 It has been known

that the β vibration couples, often strongly, with the pairing vibration

associated with the fluctuation of the pairing gap ∆. Recent experiments

reveal further interesting features of the excited 0+ states23 upon which we

shall touch in Section 3.

2.3. Quantum shape fluctuations and collective rotations

restoring the broken symmetry

As is well known, the fundamental concept underlying the BCS supercon-

ductivity is ‘spontaneous symmetry breaking and appearance of collective

modes restoring the broken symmetry.’12,13 Nuclear rotation can be re-

garded as a manifestation of this dynamics in a finite quantum system;

that is, it is a collective motion restoring the spherical symmetry broken

by the self-consistently generated mean field.5,7 It is important, however,

to keep in mind that any HFB equilibrium shape inevitably accompanies

quantum zero-point fluctuations. The well-known I(I +1) pattern of rota-

tional spectrum will not appear if the fluctuation amplitude is larger than

the equilibrium value of β 6= 0. Even when the minimum in the collective

potential V (β, γ) is deep in the β direction, it may be soft with respect to

the γ direction breaking the axial symmetry. In the axially symmetric limit,

the rotational motion about the symmetric axis is absent. However, as soon

as the axial symmetry is dynamically broken by quantum shape fluctua-

tions, all rotational degrees of freedom about the three principal axes (of

the instantaneous shape) are activated. Low energy excitation spectrum in

such a situation exhibits a feature more complex than the simple rotational

pattern. It seems that many nuclei belong to this category.

2.4. Microscopic theory of LACM

The TDHFB theory describes the time evolution of the superfluid mean field

without explicitly introducing collective variables. To derive the collective

Hamiltonian, we have to assume that the time evolution is governed by

a few collective coordinates and momenta. In the work of Baranger and

Kumar,9 the 5D collective Hamiltonian was derived by giving the role of

collective coordinates to the quadrupole operators. We note, however, that

there are two kinds of 2+ vibration, and the high frequency quadrupole giant

resonance carries the major part (about 90%, see Fig. 5 in the contribution
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of Bertsch to this volume) of the energy-weighted sum-rule value for the

quadrupole operator. On the other hand, the collective variables are defined

in terms of the low-frequency 2+ QRPA modes in the derivation of the

5D collective Hamiltonian by means of the boson-expansion method.20 In

the QRPA modes, contributions of the two-quasiparticle excitations near

the Fermi surface are much larger than those in the quadrupole operators.

Therefore, the two definitions are different significantly.

Attempts to construct microscopic theory of LACM on the basis of

the TDHFB mean field dates back to the latter half of the seventies (see

Refs. 24,25 for reviews). The major challenge was how to extract the collec-

tive submanifold embedded in the TDHFB phase space, which is maximally

decoupled from other microscopic degrees of freedom.26 Once such a collec-

tive submanifold is extracted, we can set up a local canonical coordinates

on it. Such canonical coordinates may be called “collective coordinates.”

Below we sketch the basic ideas of the LACM theory.

Let us assume that the time evolution of the TDHFB state is deter-

mined by the collective coordinate q(t) and momentum p(t). To restore the

gauge invariance broken by the HFB mean-field approximation for super-

fluid nuclei, it is necessary to find a way extending the QRPA procedure

to non-equilibrium. For this purpose, we introduce the number fluctuation

variable n(t) and the gauge angle ϕ(t) conjugate to it and write the TDHFB

state vector in the following form:

|φ(q, p, ϕ, n)〉 = e−iϕÑ |φ(q, p, n)〉 , (16)

|φ(q, p, n)〉 = eipQ̂(q)+inΘ̂(q) |φ(q)〉 . (17)

Here |φ(q, p, n)〉 represents an intrinsic state for the pairing rotational de-

gree of freedom parametrized by ϕ, |φ(q)〉 a non-equilibrium HFB state, Ñ

nucleon number fluctuation, and Q̂(q), Θ̂(q) infinitesimal generators. We

also define an infinitesimal displacement operator P̂ (q) by

|φ(q + δq)〉 = e−iδqP̂ (q) |φ(q)〉 . (18)

Microscopic structures of Q̂(q), P̂ (q), Θ̂(q) and |φ(q)〉 are determined on the

basis of the time-dependent variational principle:

δ 〈φ(q, p, ϕ, n)| i ∂
∂t

− Ĥ |φ(q, p, ϕ, n)〉 = 0, (19)

where Ĥ is a microscopic many-body Hamiltonian. (For simplicity, we

assume that there is only a single canonical set of collective variables.)

Let us assume that time variation of the mean field is slow (in com-

parison with the single-particle motion in the mean field), and expand
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|φ(q, p, n)〉 in powers of p and n. Requiring that the time-dependent vari-

ational principle be satisfied at each order, we obtain the equations de-

termining the infinitesimal generators, Q̂(q), P̂ (q), and Θ̂(q), which are a

generalization of the QRPA about an HFB equilibrium to non-equilibrium

HFB states. Solving these equations in a self-consistent way, we obtain

a classical collective Hamiltonian written in terms of canonical variables,

which can be readily quantized and yield the collective Schrödinger equa-

tion for collective wave functions. The procedure outlined above has been

formulated as the adiabatic self-consistent collective coordinate (ASCC)

method.27 Quite recently, we have developed a practical approximation

scheme called “constrained HFB+ local QRPA (LQRPA) method” to ef-

ficiently carry out such calculations.28 Examples of numerical application

are presented in Figs. 1 and 2. In both cases, we see clear correlations

between the β-γ dependence of the paring gap ∆ and of the inertial mass

Dββ; that is, Dββ becomes small in the region where ∆ is large.

2.5. Microscopic mechanism of determining the inertial

mass

The reason why the pairing correlation plays a crucial role in determining

the inertia mass of collective motion may be understood in the following

way.29 The single-particle energy levels change following the motion of the

mean field and encounter a number of level crossings. When a level cross-

ing occurs near the Fermi surface, the lowest-energy configuration changes.

Without the pairing, it is not always easy to rearrange the system to en-

ergetically more favorable configurations. In the presence of the pairing

correlation, in contrast, it is easy for nucleon pairs to hop from up-sloping

levels to down-sloping levels. The easiness/hardness of the configuration re-

arrangements at the level crossings determines the adiabaticity/diabaticity

of the collective motion. Since the inertia represents a property of the sys-

tem trying to keep a definite configuration, we expect that the stronger the

pairing, the smaller the inertial mass.

In this connection, let us note the following fact. The nucleon pair in a

deformed mean field is not simply a monopole (J = 0) pair but a superpo-

sition of different angular momenta J , because the spherical symmetry is

broken. Especially, one cannot ignore the quadrupole pairing correlations

acting among the J = 2 components. For example, when the prolately de-

formed nucleus develops toward a larger value of β, single-particle energy

levels favoring the prolate shape go down while those favoring the oblate
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Fig. 1. Application of the LQRPA method to anharmonic quadrupole vibrational exci-

tations in 76Se. Note that the colors are used differently for ∆
(n)
0 and Dββ.

shape go up. At their level crossing point, the ability of the rearrangement

depends on the pairing matrix element between the crossing levels. The

spacial overlap between the prolate-favoring and the oblate-favoring single-

particle wave functions is smaller than its value at the spherical limit. This

effect is taken into account by including the quadrupole pairing correlation.

If this effect is ignored, the inertial mass will be underestimated.28 The in-

teraction strengths of the monopole and quadrupole components are linked

by the requirement of Galilean invariance.20
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3. Remarks on some current topics

3.1. Shape coexistence and quantum shape fluctuations

In the situations where two different HFB equilibrium shapes coexist in

the same energy region, LACM tunneling through the potential barrier

between the two HFB local minima may take place. This a macroscopic

tunneling phenomenon where the potential barrier itself is generated as

a consequence of the dynamics of the self-bound quantum system. For

instance, two strongly distorted rotational bands built on the oblate and

prolate shapes have been found in 68Se, which seems to coexist and interact

with each other.30 Figure 2 shows an application of the LQRPA method

to this oblate-prolate shape coexistence/fluctuation phenomenon.28 Such

phenomena are widely seen in low-energy spectra from light to heavy nu-

clei.23

One of the recent hot issues related to the shape coexistence/fluctuation

is to clarify the nature of deformation in neutron-rich nuclei around 32Mg,

where two-particle-two-hole configurations of neutrons across the spherical

magic number N = 20 play a crucial role.23 It seems that the pairing

and quadrupole correlations act coherently in this situation to generate a

large-amplitude quadrupole shape fluctuations.31

3.2. Mysterious 0+ excited states

There are only a few nuclei in which the first excited 0+ state appears below

the first excited 2+ state. An example is the 0+ state of 72Ge which is known

from old days but still poorly understood. This anomaly occurs in the

vicinity of N = 40 where the g9/2 shell starts to be partly filled (due to the

pairing). It has been pointed out32,33 that the neutron pairing vibrations

strongly couple with the quadrupole vibrations there and generates such

anomalous 0+ states. It is an open problem whether such 0+ excited states

are describable within the 5D quadrupole dynamics or it is mandatory to

extend the dimension of the collective submanifold explicitly treating the

pairing gaps as dynamical variables. Closely examining the properties of

low-lying excited 0+ states throughout the nuclear chart, one finds that

they exhibit features difficult to understand within the traditional models

of nuclear collective motions.23
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the volume element for the 5D collective Hamiltonian.

3.3. Vibrational modes at high angular momentum

Experimental data for low-frequency vibrations near the high-spin yrast

states (‘ground’ states for given angular momenta) are scarce. As the nu-

cleus rotates more rapidly, excitations of aligned quasiparticles take place

step by step,34,35 the shell structure changes with varying mean-field, and

the pair field may eventually disappear.36 Such drastic changes of the mean-
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field and the presence of aligned quasiparticles will significantly modify the

properties of vibrational motions. The presence of low-frequency vibra-

tions itself is not self-evident, if we recall that the BCS pairing plays an

essential role in the emergence of the low-frequency 2+ vibrations. On the

other hand, we could also expect that vibrations may compete with rota-

tions in high-spin yrast region, because the rotational frequency increases

with increasing angular momentum and eventually become comparable to

vibrational frequencies.37

Discovery of superdeformed bands opened a new perspective to the

above open question. We learned that a new shell structure, called superde-

formed shell structure, is formed and a new type of soft octupole vibrations

simultaneously breaking the axial symmetry and space-reflection symme-

try emerge in the near yrast regions of rapidly rotating superdeformed

nuclei.38,39 Quite recently, a number of new data suggesting appearance

of γ-vibrations (shape fluctuation modes toward triaxial deformation) at

high spin have been reported.40,41 Appearance of triaxial deformation at

high spin due to the weakening of the pairing correlation has been discussed

for a long time, but it is only recent years that a variety of experimental

data unambiguously indicating the triaxial deformation has been obtained.

New rotational modes appearing when the mean field breaks the axial sym-

metry, called wobbling motions, have been discovered.42 It is shown that

the aligned quasiparticle plays an important role for their emergence.43

Another new type of rotational spectra expected to appear in triaxially

deformed nuclei under certain conditions is the chiral rotation34 and ex-

perimental search for the predicted chiral doublet bands and its precursor

phenomena, called chiral vibrations,44 are now going on.

3.4. Vibrational modes near the neutron drip line

The mean field in unstable nuclei near the neutron drip line possesses new

features like large neutron-to-proton ratios, formation of neutron skins,

weak binding of single-particles states near the Fermi surface, excitations

of neutron pair into the continuum.45 In stable nuclei, overlaps of dif-

ferent single-particle wave functions become maximum at the surface and

generate a strong coherence among quasiparticle excitations. In unstable

nuclei, weakly bound single-particle wave functions significantly extend to

the outside of the half-density surface and acquire strong individualities.

It is therefore very interesting to investigate how the pairing correlation in

such a situation acts to generate the collectivity of vibrational modes. It is
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suggested, for instance, in a recent HFB+QRPA calculation simultaneously

taking into account the deformations of the mean field, the pairing corre-

lations and the excitations into the continuum,46 that a strong coherence

of the pairing and shape fluctuations may generate collective vibrations

unique to weakly bound neutron-rich nuclei.

3.5. Concluding remarks

Quite recently, it becomes possible to carry out fully self-consistent QRPA

calculations on the basis of density functional theory for superfluid nuclei

and treat low- and high-frequency vibrations as well as the ground states

in a unified way for all nuclei from the proton-drip line to the neutron-drip

line.47–49 Fully self-consistent microscopic calculations for large-amplitude

vibrations are also initiated.50 A new era toward understanding vibrational

motions of nuclear superfluid droplet is opening.
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