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By means of the random phase approximation (RPA) calculation based on cranked de-
formed Woods-Saxon potential, we investigate how rotational motion affects the properties
of octupole vibrations built on superdeformed states in 40Ca. A major structure change of
the superdeformed yrast states toward a reflection-asymmetric shape is suggested to take
place in the region of angular momentum a little higher than the observed maximum value
16~, owing to a cooperative effect of octupole vibrational correlation and the rotation-aligned
particle-hole excitations from the f7/2 to the g9/2 shell.
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§1. Introduction

In medium and heavy mass regions of nuclei, the effects of rotational motion
on octupole vibrations in deformed nuclei have been investigated extensively.1)–3)

As reviewed by Butler and Nazarewicz,1) how the octupole instability of the mean
field develops as a function of angular momentum is one of the central questions
underlying these investigations. An early work on this subject by Neerg̊ard and Vo-
gel4) demonstrated the importance of Coriolis force already at low-spin band head
states of octupole vibrational bands. In that work, using the particle-rotor model
Hamiltonian,5) the Coriolis coupling effects were evaluated between octupole vibra-
tional modes with K = 0, 1, 2, and 3, determined at the ground state by means
of the random phase approximation (RPA), K being the component of angular mo-
mentum along the symmetry axis of the prolately deformed nuclei. In a succeeding
paper,6) the importance of accurately evaluating the competition between the rota-
tional alignment of angular momenta of octupole vibrations and that of noncollec-
tive two quasiparticle excitations was pointed out. In those works,4),6) the possible
change of internal structure of the octupole vibrations with increasing rotational
angular momentum was ignored.

The limitation mentioned above was removed in the eighties: It became possible
to carry out RPA calculation on the basis of rotating (cranked) shell model;7) it is
called “RPA in the rotating frame” or more shortly “cranked RPA”.8)–12) In this ap-
proach, single-particle basis is constructed taking into account the rotational motion
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of deformed mean field, so that microscopic structure change of RPA eigenmodes as
a function of the rotational frequency can be investigated. Thus, for negative-parity
modes near the yrast line, the importance of competition between octupole corre-
lation energies and energy gain due to alignment of specific single-particle angular
momentum associated with high-j orbits like i13/2 and j15/2 was pointed out.13)–15)

This is so because such high-j single-particle states are usually involved, as a micro-
scopic ingredient, in octupole vibrations described by RPA.

A breakthrough of the study on the nature of negative-parity excitations near
the yrast states was brought about by the discovery of superdeformed rotational
bands.16)–20) In such strongly deformed nuclei exhibiting beautiful rotational spec-
tra, one can investigate the competitions mentioned above in a much clean way.
Thus, on the basis of the RPA calculation in the rotating frame, Mizutori et al.21),22)

and Nakatsukasa et al.23),24) suggested several interesting possibilities of how the ro-
tational alignments of individual single-particle motions and octupole correlations
compete in a new situation of superdeformed shell structure. Some of the theoret-
ical predictions were already confirmed by later experiments25)–27) and some await
further experiments.

In comparison with medium and heavy mass regions of nuclei discussed above,
the properties of octupole vibration in deformed nuclei in lighter mass region are
less understood: Collective octupole vibrations are well known also in light nuclei,
but they are restricted mainly for spherical nuclei. Instead, the possibility of in-
trinsic reflection asymmetry has been discussed largely in connection with cluster
and molecular structure of N = Z nuclei from 12C to 44Ti (see references cited in
Ref. 1)).

Several years ago, a superdeformed (SD) band built on the excited 0+ state
lying at approximately 5.2 MeV in 40Ca was found by Ideguchi et al.28),29) It is
characterized by a strongly deformed prolate shape with axis ratio of approximately
2:1 and exhibits a beautiful rotational spectrum from Jπ = 0+ to 16+. In view of
the fact that the low-angular-momentum portions of the SD bands in heavy nuclei
are unknown in almost all cases (except the fission isomers), the observation of ro-
tational band starting from the 0+ states provides a unique opportunity to study
low-frequency collective vibrations built on SD states as a function of angular mo-
mentum. It may be possible to observe experimentally such collective modes. For
theoretical investigation, the study of 40Ca has additional advantages. First, be-
cause the proton and neutron shell structures are essentially the same for such an
N = Z nucleus, we can expect that strong coherence takes place between the proton
and neutron excitations and brings about an enhanced collectivity of these modes.
Second, because the number of particle-hole configurations is smaller than those in
heavier nuclei, it may be easier to analyze the competition between the rotational
alignment effects of collective octupole and single-particle modes of excitation.

In this paper, we study the possible octupole excitations on the SD states in 40Ca
and change of their properties as a function of rotational frequency ωrot by extending
the previous RPA calculations30) to include the cranking term associated with the
rotating deformed mean field. For this purpose, we construct a new computer code to
solve the single-particle states in rotating deformed Woods-Saxon potential in terms
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of the three-dimensional Cartesian coordinate system. On the single-particle basis
thus obtained, we carry out RPA calculation diagonalizing the RPA matrix. The
result of calculation suggests that a major structure change of the SD yrast states
may take place in the region of angular momentum a little higher than the highest
angular momentum 16� identified in experiments to date, owing to an interplay
between octupole vibrational modes and a rotation-aligned particle-hole excitation
from the f7/2 to the g9/2 shell.

In the next section, we briefly summarize the calculational scheme of the RPA in
the rotating frame. Because the method itself is well known, we describe only those
necessary for discussion on octupole vibrations of present interest. In §3, results of
numerical analysis of octupole excitations built on the SD state in 40Ca are presented
and discussed.

§2. RPA in the rotating frame

2.1. Single-particle motion in a rotating deformed Woods-Saxon potential

Let ĉ†k and ĉk denote nucleon creation and annihilation operators in a single-
particle state k. By using single-particle wave functions ϕk(�r) consisting of two
components, ϕkσ(�r) (σ = ±1), with spin x-components ~

2σ, nucleon creation and
annihilation operators at a spatial position �r are written as

ψ̂†(�r) =
∑

k

ϕ†
k(�r)ĉ

†
k =

∑
k

(
ϕ∗

k,+1(�r), ϕ
∗
k,−1(�r)

)
ĉ†k, (2.1)

ψ̂(�r) =
∑

k

ϕk(�r)ĉk =
∑

k

(
ϕk,+1(�r)
ϕk,−1(�r)

)
ĉk. (2.2)

We consider the following single-particle Hamiltonian describing independent-
particle motion in the axially deformed Woods-Saxon potential that is uniformly
rotating with rotational frequency ωrot about the x-axis perpendicular to the sym-
metry axis (z-axis):

ĥ =
∫
ψ̂†(�r)h(�r, �∇)ψ̂(�r)d3�r =

∑
k,k′

⎡
⎣∑

σ,σ′

∫
ϕ†

k′σ′(�r)hσ′σ(�r, �∇)ϕkσ(�r)d3�r

⎤
⎦ĉ†k′ ĉk (2.3)

with

h(�r, �∇) =
[
− �

2

2m
Δ + VWS(�r)

]
1 + Vso(�r, �∇) − ωrotjx, (2.4)

where 1 denotes the unit matrix in the 2 × 2 spin space, and VWS(�r) and Vso(�r, �∇)
represent the axially deformed Woods-Saxon potential and the spin-orbit potential,
respectively;

VWS(�r) = −V0 [1 + exp((r −R(θ))/a)]−1 , (2.5)

Vso(�r, �∇) =
i

2
�

2q

(
∂VWS(�r)

∂�r
×�σ
)
·�∇, (2.6)
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with

R(θ) = R0(β)

(
1 +

√
5
4π
βP2(cos θ)

)
, (2.7)

where β is the quadrupole deformation parameter, P2(cos θ) is the second-order
Legendre polynomial of cos θ, and R0(β) is fixed under the condition that the volume
enclosed by R(θ) takes the constant value 4

3πr
3
0A, A being the mass number. We

use the parameters of Ref. 31): V0 = 51 MeV, r0 = 1.27 fm, a = 0.67 fm, and
�

2q = −0.44r20.
Because the single-particle Hamiltonian h(�r, �∇) is commutable with the parity

transformation P and the rotation about the x-axis by the angle of π, Rx = eiπjx/~,
we can construct simultaneous eigenfunctions of these operators:

h(�r, �∇)ϕk(�r) = εkϕk(�r), (2.8)
Pϕk(�r) = ℘kϕk(�r), (2.9)

Rxϕk(�r) = αkϕk(�r). (2.10)

The eigenvalues ℘k (= ±1) and αk (= ±i) are called parity and x-signature, re-
spectively. Hereafter, we simply call the latter “signature”. Because we choose
the quantization axis of intrinsic spin to coincide with the rotation axis (x-axis),
we can determine single-particle wave functions such that they satisfy the following
reflection symmetries (see Appendix A):32),33)

ϕkσ(−x, y, z) = −iαk℘kσϕkσ(x, y, z), (2.11)
ϕkσ(x,−y, z) = −iαkσϕ

∗
kσ(x, y, z), (2.12)

ϕkσ(x, y,−z) = ϕ∗
kσ(x, y, z). (2.13)

In diagonalizing the single-particle Hamiltonian, we use three-dimensional Carte-
sian coordinate mesh representation with box boundary condition.32),33) Owing to
the reflection symmetries (2.11)–(2.13), we need to explicitly consider only the oc-
tant region in space with x ≥ 0, y ≥ 0, and z ≥ 0. The major reason why we use the
coordinate mesh representation is that we intend to apply, in due course, the present
approach to neutron-rich unstable nuclei close to the drip line where the continuum
plays an essential role. For this aim, the coordinate mesh representation may be
better suited in comparison with that in terms of the harmonic-oscillator basis. We
also intend to replace, in the future, the Woods-Saxon potential with the Skyrme-
Hartree-Fock (SHF) potential.34) The computer program constructed in this work
will serve as a first step toward such a self-consistent mean-field approach. In nu-
merical calculation, we take the box size extending approximately 2.5 times of the
radius R(θ) in each direction and the space is discretized with the mesh spacing of
0.6 fm. Numerical reliability with respect to the box size and the mesh spacing was
carefully checked by Inakura et al.35) and shown that this choice gives fairly accu-
rate results. Specifically, we take 15 lattice points in the x- and y-directions and 25
lattice points in the z-direction. We use the deformation parameter β = 0.6 and the
same single-particle wave functions for protons and neutrons ignoring the Coulomb
potential.
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2.2. Octupole vibrations on rotating superdeformed states

As a residual interaction for the RPA calculation, we use a density-dependent
contact interaction v̂ whose matrix elements are given by Ref. 36):

vk′
1k′

2k1k2
=
∑
σ1,σ2
σ′
1,σ′

2

∫∫
ϕ∗

k′
1σ′

1
(�r1)ϕ∗

k′
2σ′

2
(�r2)vσ′

1σ1σ′
2σ2

(�r1, �r2)ϕk1σ1(�r1)ϕk2σ2(�r2)d
3�r1d

3�r2 (2.14)

with

vσ′
1σ1σ′

2σ2
(�r1, �r2) =

{[
t0 +

1
6
t3ρ(�r1)

]
δσ1σ′

1
δσ2σ′

2

+
[
t0x0 +

1
6
t3x3ρ(�r1)

]
δσ1σ′

2
δσ2σ′

1

}
δ3(�r1 − �r2), (2.15)

where ρ(�r) denotes the nucleon density and t0 = −1100 MeV·fm3, t3 = 16000 MeV·fm6,
x0 = 0.5, and x3 = 1.0.36)

We now introduce creation and annihilation operators of particle, (â†k, âk) and
hole, (b̂†k, b̂k), defined as

ĉ†k = (1 − θk)â
†
k + θk b̂k, (2.16)

ĉk = (1 − θk)âk + θk b̂
†
k, (2.17)

where θk = 1 when εk ≤ εF (Fermi energy) and 0 otherwise. In terms of these
particle and hole operators, the RPA eigenmode creation operators are written as

X̂†
n =

∑
p,h

(fn
phâ

†
pb̂

†
h − gn

phb̂hâp), (2.18)

where
∑

p,h indicates a summation over particle-hole configurations of both protons
and neutrons. We use the index p (h) to specify the particle (hole) states, while the
index k is used for general cases. From the linearized equation of motion,

[Ĥ, X̂†
n] = �ωnX̂

†
n, (2.19)

we obtain eigenvalue equations in matrix form

∑
p′,h′

(
Aphp′h′ Bphp′h′

−B∗
php′h′ −A∗

php′h′

)(
fn

p′h′

gn
p′h′

)
= �ωn

(
fn

ph

gn
ph

)
(2.20)

for each sector specified by parity ℘ and signature α. In Eq. (2.19), Ĥ = ĥ+:v̂: with
:v̂: denoting the normal product of v̂ with respect to the particle and hole operators.
The matrix elements Aphp′h′ and Bphp′h′ are given as

Aphp′h′ = (εp − εh)δpp′δhh′ + v̄ph′hp′ , Bphp′h′ = v̄pp′hh′ , (2.21)

where v̄k′
1k′

2k1k2
= vk′

1k′
2k1k2

when (k1, k2) represents a pair of a proton and a neutron
while v̄k′

1k′
2k1k2

= vk′
1k′

2k1k2
− vk′

2k′
1k1k2

when (k1, k2) corresponds to a pair of identical
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nucleons. We diagonalize the RPA eigenvalue equation (2.20) treating the rotational
frequency ωrot as a parameter and taking into account all particle-hole configurations
with εp−εh ≤ 30 MeV. It is certainly desirable to check the convergence of numerical
results by comparing with calculation using a larger cutoff energy. Because it is
computationally demanding, this task is deferred to a future work, however.

We evaluate isoscalar transition amplitudes for octupole operators between the
yrast state |0〉 and the RPA excited states |n〉 = X̂†

n|0〉 as functions of ωrot. The
octupole operators are classified in terms of their K values (z-component of angular
momentum) and signature α, and denoted as O(K,α)(�r). The signature α is defined
as RxO

(K,α)(�r)R−1
x = αO(K,α)(�r). Explicitly, they are given as

O(0,−)(�r) = r3Y3,0(θ, φ), (2.22)

O(K,+)(�r) =
i√
2
r3
[
Y3,−K(θ, φ) − (−1)KY3,+K(θ, φ)

]
, (K �= 0) (2.23)

O(K,−)(�r) =
1√
2
r3
[
Y3,−K(θ, φ) + (−1)KY3,+K(θ, φ)

]
, (K �= 0) (2.24)

where the index ± stands for ±1. The isoscalar transition amplitudes are calculated
as

〈0|Ô(K,α)|n〉 = 〈0|[Ô(K,α), X̂†
n]|0〉 (2.25)

=
∑
p,h

(O(K,α)
hp fn

ph +O
(K,α)
ph gn

ph) (2.26)

≡
∑
p,h

M
(K,α)
ph , (2.27)

where the sum is taken over particle-hole configurations of protons and neutrons,
and

Ô(K,α) =
∑
k,k′

O
(K,α)
k′k ĉ†k′ ĉk with O

(K,α)
k′k =

∫
ϕ†

k′(�r)O(K,α)(�r)ϕk(�r)d3�r. (2.28)

The signs of fph, gph, and O(K,α)
ph depend on the chosen signs of single-particle wave

functions. On the other hand, the relative signs of M (K,α)
ph defined above as prod-

ucts of these quantities are uniquely determined. Therefore, relative signs of M (K,α)
ph

between different particle-hole configurations serve as a good indicator of the coher-
ence among them, and thus we can learn about the collectivity of individual RPA
eigenmodes from their properties.

We call the quantities S3Kα ≡ |〈0|Ô(K,α)|n〉|2 “transition strengths”, although
these are defined in the rotating coordinate frame so that we cannot directly compare
these quantities with experimental data. For this, it is necessary to construct wave
functions in the laboratory frame by the Bohr-Mottelson approach5) or the angular
momentum projection method.37) This subject is left for a future work, however.

2.3. Elimination of spurious center of mass modes

It is well known that, provided the same Hamiltonian is consistently used in the
mean-field and the RPA calculations, the spurious center of mass modes appear at
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zero energy and they are decoupled from other eigenmodes of RPA. This is no longer
true for the RPA calculation in the rotating frame, because the cranking term −ωrotjx
in the Hamiltonian Ĥ does not commute with the y- and z-components of linear
momentum operators. Thus, some recipe to decouple such spurious modes from
octupole vibrational modes in deformed nuclei has been proposed.38) Fortunately,
the numerical calculation of Ref. 13) indicates that the center of mass corrections
is unimportant for excitation energies and B(E3) values of heavy nuclei (see also
Ref. 1)). Thus, instead of trying to achieve exact decoupling of the center of mass
modes, we adopt a procedure to eliminate the spurious mixing components from the
RPA eigenmodes in the following two steps. First, we note that here are three center
of mass modes representing the displacements in the x-, y-, and z-directions and they
carry quantum numbers (K,α) = (1,+1), (1,−1), and (0,−1), respectively. Among
them, only the (K,α) = (1,+1) mode commutes with the cranking term −ωrotjx,
so that it should appear as a zero-frequency mode even in a rotating frame if a self-
consistent mean-field plus RPA calculation is carried out. Because we are using a
phenomenological Woods-Saxon potential in place of the self-consistent mean field,
this merit of the RPA theory is lost, unfortunately. To remedy this shortcoming,
we multiply a common factor λ to the interaction matrix elements vk′

1k′
2k1k2

and
determine its value for each ωrot such that the lowest eigenvalue of the RPA matrix
in the α = +1 sector becomes zero. We can easily identify the spurious modes among
solutions of the RPA eigenvalue problem by evaluating the isoscalar dipole transition
strength, since it has an extremely large value.

If separation of the spurious modes is perfectly done, the transition amplitudes
for the x̂-, ŷ-, and ẑ-operators should vanish for the octupole excited states of interest:

〈0|x̂|n〉 = 〈0|ŷ|n〉 = 〈0|ẑ|n〉 = 0. (2.29)

In practice, it is difficult to satisfy this condition owing to the small but nonnegligible
mixture of the spurious components. Thus, in the next step, we remove such a
mixture from the octupole excited states obtained in the RPA calculation “by hand”,
as for example, in Ref. 39). Namely, we subtract the center of mass components from
every RPA excited states |n〉 in each sector:

|n〉 −→
{
Nx(|n〉 − χxx̂|0〉) for α = +1,
Nyz(|n〉 − χyŷ|0〉 − χz ẑ|0〉) for α = −1,

(2.30)

where

Nx =
[
1 − |χx|2〈0|x̂2|0〉]−1/2

, (2.31)

Nyz =
[
1 − |χy|2〈0|ŷ2|0〉 − |χz|2〈0|ẑ2|0〉]−1/2

, (2.32)

χx =
〈0|x̂|n〉
〈0|x̂2|0〉 , χy =

〈0|ŷ|n〉
〈0|ŷ2|0〉 , and χz =

〈0|ẑ|n〉
〈0|ẑ2|0〉 . (2.33)

It is easily seen that this is equivalent to the replacement of the RPA forward and
backward amplitudes, (fn

ph, g
n
ph), in the following manner:



364 H. Ogasawara, K. Yoshida, M. Yamagami, S. Mizutori and K. Matsuyanagi

• For modes with α = +1,

fn
ph + gn

ph −→ fn
ph + gn

ph −

∑
p′,h′

xp′h′(fn
p′h′ + gn

p′h′)

∑
p′,h′

|xp′h′ |2
x∗ph, (2.34)

fn
ph − gn

ph −→ fn
ph − gn

ph. (2.35)

• For modes with α = −1,

fn
ph + gn

ph −→ fn
ph + gn

ph −

∑
p′,h′

yp′h′(fn
p′h′ + gn

p′h′)

∑
p′,h′

|yp′h′ |2
y∗ph, (2.36)

fn
ph − gn

ph −→ fn
ph − gn

ph −

∑
p′,h′

zp′h′(fn
p′h′ − gn

p′h′)

∑
p′,h′

|zp′h′ |2
z∗ph. (2.37)

Here, xph, yph, and zph represent 〈0|x̂|ph〉, 〈0|ŷ|ph〉, and 〈0|ẑ|ph〉, respectively. After
the above replacements, we renormalize them such that new amplitudes satisfy the
normalization condition

∑
p,h(|fn

ph|2 − |gn
ph|2) = 1.

§3. Numerical analysis and discussions

3.1. Dependence of single-particle energies on rotational frequency

Let us first examine the single-particle energy diagram in the uniformly rotating
frame. Figure 1 shows the single-particle energies as functions of the rotational
frequency ωrot. We can clearly see the shell gap at N = Z = 20 associated with the
superdeformed state in 40Ca. An interesting feature seen in this figure is that the
single-particle energy of the level labelled [440]1/2 at ωrot = 0 gradually decreases
with increasing ωrot and crosses the Fermi surface at approximately ωrot = 2 MeV/�.
This indicates that a major structure change of the SD yrast states will occur in the
vicinity of the angular momentum corresponding to this rotational frequency. This
level originates from the g9/2 shell. In the spherical shell model, its energy is much
higher but, owing to the superdeformation, it comes down to this position. Its energy
further decreases owing to the Coriolis effect. At ωrot = 0, this level is situated at
approximately 6 MeV above the Fermi level, so that its aligned angular momentum
is estimated to be approximately 6 [MeV] / 2 [MeV/�] = 3�. In analyzing numerical
results of the RPA calculation, we shall focus our attention on the role this level
plays.

3.2. Properties of octupole excitations on SD states in 40Ca

The results of the RPA calculation for negative-parity excitation modes on the
SD yrast states in 40Ca are presented in Fig. 2. In this figure, the RPA excitation
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Fig. 1. Single-particle energies ε in the N = Z nucleus 40Ca for the rotating deformed Woods-

Saxon plus spin-orbit potentials of Eq. (2.4), plotted as functions of rotational frequency ωrot.

The deformation parameter β is fixed at 0.6. Single-particle levels are classified according to the

parity (℘) and signature (α) quantum numbers; solid lines for (℘, α) = (+1, +i), broken lines for

(℘, α) = (+1,−i), dotted lines for (℘,α) = (−1, +i), and dot-dashed lines for (℘,α) = (−1,−i).

For convenience, they are labelled at ωrot = 0 with asymptotic quantum numbers indicating

the largest components of their wave functions. These single-particle energies are used for both

protons and neutrons.

energies, the octupole transition strengths S30− (K = 0) and S31± (K = 1) for
individual RPA modes, and the sum, denoted as S(sum)

3Kα , of individual S3Kα values
(over the RPA modes with excitation energies less than 5.5 MeV) are plotted as
functions of rotational frequency ωrot. Note that there is no positive-signature mode
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Fig. 2. Results of the RPA calculation for negative-parity excitation modes on the SD yrast states

in 40Ca, plotted as functions of the rotational frequency ωrot. Positive-signature excitations

are displayed on the left-hand side, while negative-signature excitations on the right-hand side.

From the top to the bottom, the RPA excitation energies, the octupole transition strengths S30−
(K = 0) and S31± (K = 1) for individual RPA modes, and the sum S

(sum)
3K± of individual S3K±

values (over the RPA modes with excitation energies less than 5.5 MeV) are plotted as functions

of ωrot. The numbers adjacent to individual lines indicate their sequential order according to

excitation energy. (On each side, except the bottom panel, line types correspond to individual

excitation modes.) The deformation parameter β is fixed at 0.6. Note that there is no positive-

signature mode for K = 0. Note also that other RPA solutions in the region approximately

5 MeV are not displayed in order to avoid complicating the figure. Continuations of some of the

RPA modes of interest are also not shown when they strongly mix with other RPA modes and

lose their identities. The S31− strength of the fourth excitation mode is very small so that it is

hardly seen in this figure. In the bottom panel, the solid, broken, dotted, and dash-dotted lines

indicate the sum S
(sum)
3K± for K = 0, 1, 2, and 3, respectively, while the bold-solid line shows the

sum of these,
P

K S
(sum)
3K± . The sum S

(sum)
33± is very small so that it is hardly seen in this figure.
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for K = 0. Because we find no octupole modes with K = 2 or 3 possessing a large
strength below 5.5 MeV, the transition strengths of individual RPA eigenmodes are
shown only for K = 0 and 1. This point is reflected in the S(sum)

3K± values shown in
the bottom panels; it is seen that these values for K = 2 and 3 are much smaller
than those for K = 0 and 1.

Let us start the discussion from the case of ωrot = 0. In this case, signature
partners (α = ±1) with K �= 0 are degenerate in energy. Counting these signature
partners as units, we find seven eigenmodes below 5.5 MeV. Among them, the most
collective mode is the fourth excitation mode at approximately 3.5 MeV. This mode
has K = 0 and an extremely large value of octupole transition strength S30−. Note
that the Weisskopf unit (W.u.) is approximately 95 fm6 for 40Ca. Its major micro-
scopic components are the particle-hole excitations [202]5/2 → [312]5/2, [321]3/2 →
[431]3/2, and [330]1/2 → [440]1/2 for both protons and neutrons. Another interest-
ing mode is the seventh excitation mode at approximately 5.3 MeV. This mode has
K = 1 and a large value of S31α. It is characterized, in a very good approximation,
as particle-hole excitations of protons and neutrons from the single-particle level
[321]3/2 to [440]1/2. In comparison to these modes, the octupole transition strength
of the first excitation mode at approximately 1.9 MeV is not very large, although it
has strength several times of W.u. for K = 1. Its major component is the particle-
hole excitation from [321]3/2 to [200]1/2. The second excitation mode with K = 2
at approximately 2.5 MeV is an almost pure particle-hole excitation from [321]3/2
to [200]1/2. The third excitation mode at approximately 3.5 MeV (which is almost
degenerate, in energy, by chance, with the fourth mode discussed above) has K = 3.
Although it consists of several particle-hole configurations like [321]3/2 → [202]3/2,
[202]5/2 → [321]1/2, and [211]1/2 → [312]5/2, its transition strength S33α is very
small, because, for each configuration, either the octupole matrix element O(3,±)

ph or

the RPA amplitude fph is small so that their product M (3,−)
ph is small.

It is interesting to note that the particle-hole excitations, like [321]3/2 → [431]3/2,
[330]1/2 → [440]1/2, and [321]3/2 → [440]1/2, are the major sources of the large oc-
tupole transition strengths of the fourth and seventh eigenmodes. They correspond
to the excitation from the f7/2 shell to the g9/2 shell in the spherical j-j coupling
shell model. At the spherical shape, the f7/2 shell is unoccupied and the g9/2 shell
is situated far above the Fermi surface. The energies of low-Ω single-particle states
originating from such high-j orbits markedly decrease owing to the superdeforma-
tion, Ω being the component of angular momentum along the symmetry axis of the
mean field. It is well known that such high-j shells play an important role in gen-
erating low-lying octupole vibrations in both spherical and normal deformed nuclei.
However, the particle-hole excitation from the lower high-j shell to the higher high-j
shell is a new feature unique to superdeformed states. It is also well known that
the response of such high-j orbits to rotational motion is very strong because their
Coriolis matrix elements are large. Thus it is interesting to examine how the micro-
scopic structures and properties of the collective octupole vibrational modes change
when the rotational frequency ωrot increases, focusing our attention to the fourth
and seventh excitation modes.
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3.3. Rotational frequency dependence of the octupole vibrations

We are particularly interested in the strongly collective K = 0 mode that be-
longs to the negative-signature sector and its interaction with other eigenmodes. By
comparing the positive- and negative-signature sectors in Fig. 2, we can imagine that
the properties of the α = +1 and α = −1 octupole excitations with K �= 0 would
be similar to each other if the K = 0 collective mode and its interactions with other
modes were absent. Thus, we focus our attention on the negative-signature sector
in the discussion below.

It is immediately seen in Fig. 2 that strong mixings among the RPA modes
take place following the variation of ωrot. The most conspicuous trend is that the
seventh excitation mode (bold-solid line) quickly comes down in energy and strongly
interacts with other modes. The origin of this trend is the rotational alignment
of the [440]1/2 (α = +i) single-particle state, which is the major ingredient of the
seventh mode; owing to the Coriolis coupling effect, its energy quickly decreases
as ωrot increases (see Fig. 1). In the region approximately ωrot = 0.5 MeV/�, we
see a strong interaction of the collective mode possessing a large K = 0 strength
S30− with other modes. Note that K is no longer a good quantum number, even
approximately, already in this region of ωrot. Namely, these modes contain both
the K = 0 and 1 components, owing to the Coriolis K-mixing effects. Thus, they
exhibit avoided crossing phenomena and exchange their main characters when going
through the adiabatic crossing region. Similar avoided crossings successively take
place. Accordingly, the octupole transition strengths S30− and S31− are redistributed
among these modes, keeping the sum of their strengths for each K approximately
constant, as shown in the bottom panel of Fig. 2.

Details of numerical data useful for understanding microscopic structures and
properties of collective octupole excitation modes of interest are presented in Figs. 3–
6 for some representative cases.

In Fig. 3, the RPA forward and backward amplitudes, fph and gph, the un-
perturbed particle-hole matrix elements of the octupole operator with K = 0 and
α = −1, O(0,−)

ph and individual contributions to the RPA octupole transition ampli-

tude, M (0,−)
ph , are displayed for the fourth excitation mode with (℘, α) = (−1,−1)

at ωrot = 0. Some important particle-hole configurations constituting this mode are
also illustrated. Because of the reason mentioned below Eq. (2.28), values of M (0,−)

ph
are presented with their signs, while absolute values are shown for the other quan-
tities. It is seen that the signs of M (0,−)

ph associated with the major configurations
denoted A, B, and C are in phase, indicating the collective character of this mode.
It is also seen that the particle-hole excitation C, [330]1/2 → [440]1/2, possesses
an extremely large octupole matrix element O(0,−)

ph (in absolute magnitude). This
excitation mode corresponds to the collective K = 0 mode obtained in the mixed
representation RPA calculation by Inakura et al.,35) but its detailed microscopic
structure was not clarified in that previous work.

In Fig. 4, the quantities fph, gph, O(0,−)
ph , O(1,−)

ph , M (0,−)
ph , and M (1,−)

ph are displayed
for the sixth excitation mode (dash-dotted line in Fig. 2) with (℘, α) = (−1,−1) at
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Fig. 3. Microscopic structure of the fourth excitation mode with (℘, α) = (−1,−1) at ωrot = 0.

The RPA forward and backward amplitudes, fph and gph, are shown in the upper-left and

upper-middle panels, respectively, while the unperturbed particle-hole matrix elements of the

octupole operator with K = 0 and α = −1, O
(0,−)
ph and individual contributions to the RPA

octupole transition amplitude, M
(0,−)
ph , are displayed in the lower-left and lower-middle panels,

respectively, at positions of the abscissa axis representing unperturbed excitation energies, εp −
εh, of individual particle-hole configurations. Labels A, B, and C indicate some important

particle-hole configurations illustrated on the right-hand side. Here, the asymptotic quantum

numbers [Nosc, nz, Λ]Ω are used to label the single-particle levels for convenience. Note that

absolute values are shown except for M
(0,−)
ph . Note also that different scales are used for fph and

gph.

ωrot = 0.4 MeV/�. It is clearly seen that the particle-hole excitation D1, [321]3/2
(α = −i) → [440]1/2 (α = +i), is mainly responsible for the large K = 1 octupole
strength S31− of this mode. This indicates that the sixth excitation mode at ωrot =
0.4 MeV/� inherits the major component of the seventh excitation mode at ωrot = 0.
At the same time, it is seen that this same configuration carries also the K = 0
strength indicating that the Coriolis K-mixing effect is important already at this
rotational frequency.

The same quantities are shown in Fig. 5 for the third excitation mode (dotted
line in Fig. 2) with (℘, α) = (−1,−1) at ωrot = 0.8 MeV/�. It is clearly seen that
this mode takes over the main characteristics of the sixth excitation mode discussed
above at ωrot = 0.4 MeV/�. A remarkable new feature realized at this value of ωrot

is a beautiful coherence over many particle-hole configurations. The coherence takes
place among almost all K = 0 and K = 1 transition amplitudes associated with
individual particle-hole excitations. Namely, almost all individual contributions,
M

(0,−)
ph and M (1,−)

ph , exhibited in the bottom panels of this figure take the same sign.
This result suggests an interesting possibility that the rotation-aligned high-j particle
and the octupole vibrations collaborate to produce a new type of correlation at high
angular momentum. It would be interesting to examine this conjecture in a more
systematic calculation in the future.



370 H. Ogasawara, K. Yoshida, M. Yamagami, S. Mizutori and K. Matsuyanagi

Fig. 4. Microscopic structure of the sixth excitation mode with (℘, α) = (−1,−1) at ωrot =

0.4 MeV/~. In the left part, the RPA forward amplitude fph, the unperturbed particle-hole

matrix elements of the octupole operator with (K, α) = (0,−1), O
(0,−)
ph , and individual contri-

butions to the RPA octupole transition amplitude, M
(0,−)
ph , are displayed in the top, middle,

and bottom panels, respectively, at positions of the abscissa axis representing unperturbed ex-

citation energies, εp − εh, of individual particle-hole configurations. In the middle part, the

RPA backward amplitudes gph, the matrix elements O
(1,−)
ph , and M

(1,−)
ph for (K, α) = (1,−1)

are shown in a similar fashion. Labels C2 and D1 indicate important particle-hole configura-

tions illustrated on the right-hand side. Here, the asymptotic quantum numbers [Nosc, nz, Λ]Ω

are used to label the single-particle levels for convenience. Note that signature partners with

α = ±i (degenerated at ωrot = 0) are split at finite ωrot (signature splitting). Since the signature

splitting of the [321]3/2 level is small, it is hard to see but the configuration D1 involves a hole

in the α = −i level. Note also that absolute values are shown except for M
(K,−)
ph and different

scales are used for fph and gph.

At ωrot = 1.2 MeV/�, as exhibited in Fig. 6, the first excitation mode (solid line
in Fig. 2) takes over the major characteristics of the third excitation mode discussed
above at ωrot = 0.8 MeV/�. We again see the beautiful coherence among many
particle-hole configurations indicating the collective character of this mode. Recall
that the collectivity of the first excitation mode at ωrot = 0 is much weaker. Namely,
the microscopic structure and properties of the first excitation mode are essentially
changed in this region of rotational frequency owing to the avoided crossing. Note
that, as seen in Fig. 1, the down-sloping [440]1/2 (α = +i) level strongly interacts
with the [200]1/2 (α = +i) level just above the Fermi surface so that the two single-
particle wave functions are strongly mixed with each other in this region of rotational
frequency. Accordingly, the particle state in the configuration labelled E1 contains
an appreciable fraction of the [440]1/2 (α = +i) wave function. As seen in Fig. 2,
the K = 0 octupole transition strength S30− of the first excitation mode gradually
increases when ωrot exceeds 1.0 MeV/�, and this mode acquires a sizable fraction
of the K = 0 strength, which originally resides in the fourth excitation mode at
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Fig. 5. Same as Fig. 4 but for the third excitation mode with (℘, α) = (−1,−1) at ωrot =

0.8 MeV/~. Labels C1, C2, and D1 indicate some important particle-hole configurations il-

lustrated on the right-hand side.

Fig. 6. Same as Fig. 4 but for the first excitation mode with (℘,α) = (−1,−1) at ωrot = 1.2 MeV/~.

Labels B2, C1, C2, D1, E1, and F1 indicate some important particle-hole configurations illus-

trated on the right-hand side. The C1 and D1 configurations both involve a particle in the

single-particle level labelled [440]1/2 (α = +i).

ωrot = 0.
It is quite interesting to ask what will happen if the rotational frequency is in-

creased further. Unfortunately, we encountered a difficulty in our RPA calculation
when the RPA vibrational frequency becomes very small. In such a situation, aside
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Fig. 7. Expectation value of the angular momentum with respect to the SD yrast states, 〈0|Ĵx|0〉,
in 40Ca plotted as a function of rotational frequency ωrot. An instability of the axially symmetric

SD shape with respect to the octupole vibrational mode is expected to occur beyond ~ωrot �
1.7 MeV, which corresponds to angular momentum approximately 16~.

from the well-known limitation of the RPA, our recipe (described in §2.3) of approx-
imately eliminating the spurious center of mass mode gradually loses its accuracy
and we finally failed to obtain a reliable numerical result for ωrot ≥ 1.6 MeV/�. A
better method of eliminating the spurious components is badly needed, but this task
is deferred to a future work. Nevertheless, it seems reasonable to assume that the
trend discussed above, which is induced by the rotation-aligned particle (originating
from the g9/2 shell), will continue. Namely, the energy of the first excitation mode
will further decrease and cross the yrast line. This may indicate the occurrence of an
instability of the SD shape against the octupole vibration. Then, we would expect
that a major structure change of the SD yrast states, like the breaking of reflec-
tion symmetry of the mean field, may take place. As shown in Fig. 7, this region
of rotational frequency corresponds to angular momentum slightly higher than the
maximum value 16� so far observed in experiments.28),29) The suggested value of
the critical angular momentum is a little lower than 24� obtained in the symmetry-
unrestricted cranked SHF calculation by Inakura et al.40) In that work, the nature
of the instability occurring at this angular momentum was not clarified.

§4. Concluding remarks

By means of the RPA calculation based on the cranked deformed Woods-Saxon
potential, we have investigated how rotational motion affects the properties of
octupole vibrations built on SD states in 40Ca. A major structure change of the
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SD yrast states toward a reflection-asymmetric shape is suggested to take place
in the region of angular momentum a little higher than the observed maximum
value 16�, owing to a cooperative effect of octupole vibrational correlation and the
rotation-aligned particle-hole excitations from the f7/2 to the g9/2 shell.
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Appendix A
Derivation of Eqs. (2.11)–(2.13)

Equation (2.11) is derived through the following steps:

ϕk(−x, y, z) = Peiπ�x/~ϕk(x, y, z) (A.1)

= e−i π
2
σxPRxϕk(x, y, z) (A.2)

= −iαk℘kσxϕk(x, y, z). (A.3)

To derive Eq. (2.13), we note that the eigenvalue equations (2.8)–(2.10) are invariant
against the transformation I = KPeiπ�z/~, where K denotes complex conjugation.
The eigenvalues for the transformation I can take ±1. We then notice that

Iϕk(x, y, z) = ϕk(x, y, z) (A.4)

and
I{iϕk(x, y, z)} = −{iϕk(x, y, z)} (A.5)

are equivalent. Therefore, we can choose the eigenvalue +1 without loss of generality.
It is easily seen that the left-hand side of Eq. (A.4) is equal to ϕ∗

k(x, y,−z). Thus,
Eq. (2.13) follows.

Equation (2.12) is derived in a similar manner:

ϕk(x,−y, z) = Peiπ�z/~eiπ�x/~ϕk(x, y, z) (A.6)

= e−i π
2
σxKIRxϕk(x, y, z) (A.7)

= −iαkσxϕ
∗
k(x, y, z). (A.8)

The above derivations are essentially the same, albeit slightly more detailed, as in
Refs. 32) and 33).
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39) G. Colò, N. Van Giai, P. F. Bortignon and M. R. Quaglia, Phys. Lett. B 485 (2000), 362.
40) T. Inakura, S. Mizutori, M. Yamagami and K. Matsuyanagi, Nucl. Phys. A 710 (2002),

261.


