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Pure collective precession motion of a high-spin torus isomer
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We investigate the precession motion of the exotic torus configuration in high-spin excited states of 40Ca. For
this aim, we use the three-dimensional time-dependent Hartree-Fock (TDHF) method. Although the high-spin
torus isomer is a unique quantum object characterized by the alignment of angular momenta of independent
single-particle motions, we find that the obtained moment of inertia for rotations about an axis perpendicular to
the symmetry axis is close to the rigid-body value. We also analyze the microscopic structure of the precession
motion using the random-phase approximation (RPA) method for high-spin states. In the RPA calculation, the
precession motion of the torus isomer is generated by coherent superposition of many one-particle–one-hole
excitations across the sloping Fermi surface that strongly violates the time-reversal symmetry. By comparing
results of the TDHF and the RPA calculations, we find that the precession motion obtained by the TDHF
calculation is a pure collective motion well decoupled from other collective modes.
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Nuclear rotation is a collective motion that restores the
symmetry spontaneously broken in the self-consistent mean
field. When deformed nuclei break the spherical symmetry
but preserve the axial symmetry, the rotation about the
symmetry (z) axis is quantum mechanically forbidden. For
instance, in high-spin oblate isomer states, the total angular
momentum about the symmetry axis is constructed not by the
collective rotation but the alignments of the angular momenta
of individual nucleons [1,2]. However, even such a state can
rotate about an axis perpendicular to the symmetry axis,
because the density distribution breaks the rotational symmetry
about that axis. Below we call this (x or y) axis a perpendicular
axis. This rotational degree of freedom causes the precession
motion of the system as a whole [3].

In our previous paper [4], we showed the existence of a
stable torus configuration in high-spin excited states of 40Ca,
whose z component of the total angular momentum, K , is
K = 60 �. This large angular momentum is generated by
alignment of single-particle angular momenta of a total of
twelve nucleons; the z components of the orbital angular
momenta, � = +4, +5, and +6 � for spin-up or -down
neutrons and protons, are summed up to K = 60 �. Thus, this
torus isomer has a significant amount of circulating current.
A question then arises how such a “femto-scale magnet”
rotates collectively to restore the broken symmetry about a
perpendicular axis.

A key physical quantity to understand fundamental prop-
erties of nuclear rotation is the moment of inertia about
a perpendicular axis. It is theoretically known that an
independent-particle configuration in a deformed harmonic-
oscillator potential rotates with rigid moment of inertia,
provided that the self-consistency between the potential and
the density distribution is fulfilled [5]. In reality, however,
measured moments of inertia for deformed nuclei largely
deviate from the rigid-body values. For instance, measured
moments of inertia for precession motions of high-K prolate
isomers are significantly smaller than rigid-body values [6,7].

This reduction has been seen at high spin where pairing
correlations are negligible, and is attributed to shell effects [6].
For high-K oblate isomers, precession modes have not yet been
observed. A possible reason is that their moments of inertia
are much reduced from rigid-body values due to oblate shell
structure at small deformation [8]. Then excitation energies of
precession motion become higher. This would be a reason why
the search for precession modes of a high-K oblate isomer
is difficult and remains as an experimental challenge. The
high-K torus isomer can be regarded as an extreme limit of
the high-K oblate isomer. Therefore, dynamical properties of
the high-K torus isomer revealed in its moment of inertia about
a perpendicular axis will provide a fresh insight into dynamical
properties of high-K oblate isomers as well.

In this Rapid Communication, we present a periodic
numerical solution of the precession motion of the high-K
torus isomer in 40Ca described by the three-dimensional
time-dependent Hartree-Fock (TDHF) equation. We trigger
the precession motion by applying a certain amount of angular
momentum in the direction of a perpendicular axis. We
estimate the moment of inertia characterizing such an exotic
mode of nuclear collective rotation. We find that the obtained
moment of inertia is close to the rigid-body value. This result
is surprising, because the high-K torus isomer is created by
aligned angular momenta of independent particle motion and
possesses strong time-odd components in the self-consistent
mean field. We shall also analyze the microscopic structure of
the precession motion using the random-phase approximation
(RPA) method and compare with the result of the TDHF
calculation.

Since the TDHF method describes time evolution of a wave
packet, quantization is necessary to obtain quantum spectra.
If we succeed in obtaining periodic numerical solutions in
real-time evolution of the TDHF mean field, then we can adopt
the semiclassical quantization procedure. It is, however, very
difficult to obtain the periodic solutions, because nonlinear
effects tend to destroy the periodic motion and lead to chaotic
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FIG. 1. Schematic picture of the precession motion of a high-K
torus isomer. The bold solid arrow denotes the symmetry axis of
the density distribution. The dashed arrow denotes the precession
axis. The symbols θ and φ denote the tilting and the rotation angles,
respectively.

motion. Thus, up to now, periodic solutions have been found
only for a few relatively simple cases such as large-amplitude
monopole vibrations in 4He and 16O [9]. Periodic solutions
for rotational modes have not yet been reported. In this
Rapid Communication, we will also show that the precession
frequency obtained in the TDHF calculation agrees with that of
the RPA method in good approximation. That is, we have, for
the first time, succeeded in obtaining the quantum excitation
energy of the precession motion by the numerical application
of the TDHF method.

Figure 1 shows a schematic picture for the precession
motion of a high-K torus isomer. In the figure, the bold solid

arrow denotes the symmetry (z′) axis of the density distribution
in the body-fixed frame. At t = 0, this axis is identical to
the z axis in the laboratory frame and the torus isomer has
the angular momentum, K , along this axis. When we give an
angular momentum to the (negative) direction of the x axis (the
dotted line) at t = 0, the total angular momentum changes to
�I . Then, the precession motion starts. The symmetry (z′) axis
rotates about a fixed axis (the dashed arrow) that coincides
with the direction of the total angular momentum �I . We call
this axis the precession axis. In the precession motion, the
value K is conserved. The tilting angle, θ , is defined as the
angle between the symmetry (z′) axis and the precession axis
(the direction of the total angular momentum). The symbol
φ denotes the rotation angle of the z′ axis rotating about the
precession axis. The moment of inertia for the rotation about
a perpendicular axis of the torus configuration, T⊥, is then
given by T⊥ = I/ωprec, where ωprec denotes the rotational
frequency of the precession motion. The first excited state of
the precession motion is the state with I = K + 1. Since the
torus isomer of 40Ca has K = 60 �, we calculate the precession
motion with I = 61 �.

To calculate the precession motion by means of the TDHF
method, we use the code SKY3D [10]. We calculate the
initial state of the torus configuration for 40Ca with the z
component of the total angular momentum K = 60 � by
the cranked HF method using this code. The details are
given in Ref. [4]. In the calculations, the single-particle wave
functions are described on a Cartesian grid with a grid spacing
of 1.0 fm. We take 32 × 32 × 24 grid points for the x, y,

FIG. 2. (Color online) Snapshots of the time evolution of the density distribution of the high-K torus isomer in 40Ca obtained by the TDHF
calculations. The (red) surface indicate that the density is half of the maximum value there. The time step of each snapshot is 50 fm/c. The
solid and the dotted lines denote the symmetry and the precession axes, respectively.
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and z directions, respectively. In all the calculations, we
use the SLy6 interaction [11]. As shown in Ref. [4], the
interaction dependence is negligible, because the spin-orbit
force effects are weak in the torus configuration. The obtained
density distribution on the plane at z = 0 is well fitted by
ρ(r) = ρ0e

−(r−R0)2/σ 2
, where ρ0 = 0.12 fm−3, R0 = 6.06 fm,

and σ = 1.64 fm. The rigid-body moment of inertia calculated
using the obtained density distribution is T rid

⊥ = 21.1 �
2/MeV.

To excite the precession motion, we provide an impulsive
force at t = 0 fm/c by the external potential given by
Vext(r,ϕ,z) = V0z cos ϕ exp[−(r − R0)2/σ 2]. The parameter
V0 is chosen such that the total angular momentum becomes
I = 61 �, that is, the x component of the total angular momen-
tum, Ix , is Ix = −11.0 � at t = 0 [I =

√
602 + (−11)2 � =

61 �]. Here, we use V0 = 0.12757 MeV. We determine the
time evolution of the density distribution by solving the TDHF
equation of motion, i�ρ̇ = [h,ρ], where h is the single-particle
Hamiltonian and ρ is the one-body density matrix. To solve
the TDHF equation, we take a Taylor expansion to the time-
development operator up to the 12th order in the code. The
time step of the TDHF calculations is 0.2 fm/c. We calculate
the time evolution until 3000 fm/c. Thus, we obtain about 7.5
periods of the precession motion.

Figure 2 shows snapshots of the time-evolution of the
density distribution obtained by the TDHF calculations. In the
figure, we plot the surface at the half of the maximum value
of the density distribution. The time step of each snapshot is
50 fm/c. We can clearly see in this figure about one period of
the precession motion of the high-K torus isomer of 40Ca.

Figure 3 shows the time evolution of (a) the total angular
momentum I , (b) the tilting angle θ , and (c) the rotational
angle φ. In Fig. 3(a), we see that the value of the total angular
momentum converges to about 61 �, indicating that the TDHF
calculations work well for long duration. The total energy also
converges well. By the impulsive force, −∂Vext/∂z, exerted at
t = 0, not only the precession motion but also other collective
motions such as the γ vibrations might be excited. However,
the tilting angle fluctuates only slightly between 10◦ and
11◦ [see Fig. 3(b)]. This indicates that the coupling effects
between the precession motion and other collective modes
are rather weak. In Fig. 3(c), we see that the rotational angle
linearly increases in each period. The obtained periods are
401.4, 403.5, 404.6, 405.4, 403.5, 400.9, and 401.5 fm/c. The
fluctuations of the period indicate the extent of the effects
due to the couplings with other collective modes and/or
precision of numerical calculation. They are much smaller
(less than 1%) than the time scale of the precession motion.
The average period, Tprec, is 403.0 fm/c. Thus, the average
frequency is ωprec = 2π/Tprec = 3.08 MeV/�. We can identify
�ωprec with the �I = 1 excitation energy of the precession
mode of the high-K torus isomer. We shall later confirm this
interpretation in connection with the RPA treatment of this
mode. The moment of inertia obtained in this way is T TDHF

⊥ =
I/ωprec = 19.8 �

2/MeV, which is very close to the rigid-body
value T rid

⊥ = 21.1 �
2/MeV. The high-K torus isomer is a

unique quantum object characterized by the alignment of
angular momenta of independent single-particle motions. The
alignment causes a significant amount of circulating current
and, as a consequence, the self-consistent mean field strongly
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FIG. 3. Time-evolution of (a) total angular momentum I , (b) the
tilting angle θ , and (c) the rotational angle φ of the precession motion
for the high-K torus isomer in 40Ca.

violates the time-reversal symmetry. Although these features
are essentially different from the classical rigid body, we find
that the high-K torus isomer performs a collective rotation
about a perpendicular axis with the moment of inertia close to
the rigid-body value.

To obtain a deeper understanding of the microscopic
particle-hole structure generating the collective precession
motion, we have performed an RPA calculation with the radial
displaced harmonic-oscillator (RDHO) model [12]. We also
confirm the validity of the relation T TDHF

⊥ = I/ωprec used
to extract the moment of inertia from the real-time TDHF
evolution. The RDHO model represents the major features
of the torus isomer and works well, because effects of the
spin-orbit force are negligible in the torus configuration. We
can also avoid the complications for the treatment of unbound
single-particle states by using this model. In the RDHO model
for the torus configuration, the single-particle potential V is
given, in the cylindrical coordinates, by V (r,z) = 1

2mω2
0(r −

R0)2 + 1
2mω2

0z
2, where m and R0 denote the nucleon mass

and the torus radius, respectively. The Coulomb potential is
ignored for simplicity. The harmonic-oscillator frequency ω0

is determined such that the density distribution calculated
with this model agrees, in good approximation, with that
of the torus isomer obtained by the cranked HF calculation.
The rigid-body moment of inertia calculated with the RDHO
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density distribution is T RDHO
⊥ = 21.1 �/MeV, which agrees

with the rigid-body value, T rid
⊥ , for the torus isomer.

We can easily determine the frequency of the preces-
sion motion by solving the RPA dispersion equation [7],
T RPA

⊥ (ω) = K/ω, where the moment of inertia, T RPA
⊥ , is a

function of ω defined by

T RPA
⊥ (ω) = �

2

2

∑
ph

{
|Jph

+ |2
(εph − �ω)

+ |Jph
− |2

(εph + �ω)

}
. (1)

Here the sum is taken over the one-particle–one-hole (1p-1h)
excitations across the sloping Fermi surface (see Fig. 3
in Ref. [4]) and εph denote their excitation energies. The
quantities J

ph
± represent the matrix elements of the angular

momentum raising and lowering operators, Jph
± = 〈ph|Ĵ±|0〉,

between the torus configuration |0〉 and the 1p-1h excited
states |ph〉. This RPA dispersion equation is valid for
velocity-independent residual interactions, and it yields the
classical relation, T rid

⊥ = I/ω, except that anharmonic effects
higher order in 1/K are ignored and, accordingly, I is
approximated by K . By solving the RPA dispersion equation,
we can simultaneously determine the frequency, ω, and the
moment of inertia, T⊥, of the precession motion. The lowest
eigenfrequency that satisfies the above equation is just the RPA
precession frequency of interest. We denote this solution ωRPA.
The precession motion is generated by coherent superposition
of many 1p-1h excitations across the sloping Fermi surface.
The value of T RPA

⊥ at ωRPA is the RPA moment of inertia
for the precession motion. In the limit ωRPA = 0, T RPA

⊥
reduces to the adiabatic cranking formula, T crank

⊥ . Using the
single-particle wave functions obtained by the RDHO model,
we determine ωRPA and T RPA

⊥ . In the calculations, we take all
1p-1h excitations whose energies are below εph � 30 MeV.
We obtain ωRPA = 3.02 MeV/� and T RPA

⊥ = 19.6 �
2/MeV.

This value of the RPA moment of inertia is different from the
adiabatic cranking value T crank

⊥ = 20.0 �
2/MeV only slightly,

indicating that the effect of the finite frequency (ωRPA �= 0) is
rather small for the precession motion under consideration.

The RPA frequency ωRPA and the moment of inertia T RPA
⊥

agree with the TDHF results for ωprec and T TDHF
⊥ in very

good approximation. If K is replaced with I = K + 1 in the
RPA dispersion equation, the agreement becomes even better

(ωRPA = 3.07 MeV/�). This almost perfect agreement clearly
indicates that the periodic numerical solution obtained in the
real-time TDHF evolution describes the collective rotation
well decoupled from other collective modes. The agreement
between the TDHF and RPA results furthermore suggests that
the net effect of the velocity-dependent interactions such as
the spin-orbit interaction is small, despite the presence of
a significant amount of circulating current which strongly
violates the time-reversal symmetry in the self-consistent mean
field. As we have seen in [4], the effects of the spin-orbit
potential almost cancel out between the inside and outside of
the torus radius R0. This suggests that the velocity-dependent
interaction effects are almost canceled out for the precession
motion under consideration. The results of the TDHF and the
RPA calculations thus suggest that basic physical conditions
for the occurrence of the rigid precession motion are (1) the
independent-particle configuration is pure and stable, (2) the
symmetry breaking about a perpendicular axis is sufficiently
strong, and (3) the net effect of the velocity-dependent
interactions is small.

In summary, we have obtained a periodic numerical solution
in the TDHF time evolution that describes the precession
motion of the high-K torus isomer with K = 60 � in 40Ca.
Although the high-K torus isomer is a unique quantum
object characterized by the alignment of angular momenta
of independent single-particle motions, we find that the
torus isomer performs a collective rotation about an axis
perpendicular to the symmetry axis with the moment of
inertia close to the classical rigid-body value. We have also
performed the RPA calculation for the precession motion with
the RDHO model. By comparing the results of the TDHF and
the RPA calculations, we have confirmed that the periodic
TDHF solution corresponds to the precession mode generated
by coherent superposition of many 1p-1h excitations across
the sloping Fermi surface. This exotic mode of rotation at high
spin is ideally decoupled from other collective modes.
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