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Shape transition and fluctuations in neutron-rich Cr isotopes around N = 40
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The spherical-to-prolate shape transition in neutron-rich Cr isotopes from N = 34 to 42 is studied by solving
the collective Schrödinger equation for the five-dimensional quadrupole collective Hamiltonian. The collective
potential and inertial functions are microscopically derived with use of the constrained Hartree-Fock-Bogoliubov
plus local quasiparticle random-phase approximation method. Nature of the quadrupole collectivity of low-lying
states is discussed by evaluating excitation spectra and electric quadrupole moments and transition strengths. The
result of calculation indicates that Cr isotopes around 64Cr are prolately deformed but still possess transitional
character; large-amplitude shape fluctuations dominate in their low-lying states.
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I. INTRODUCTION

Recent experiments on neutron-rich Cr isotopes show
that quadrupole collectivity appreciably develops toward 64Cr
with N = 40 [1–6]. Going from 58Cr to 64Cr, the excitation
energy of the first excited 2+

1 state decreases and R4/2, the
ratio of the excitation energy of the 4+

1 state to that of
the 2+

1 state, increases. These data seem to indicate that a
quantum phase transition from the spherical to deformed
shapes takes place near N = 40. The microscopic origin
of the enhanced quadrupole collectivity toward N = 40 has
been actively discussed from various theoretical approaches:
the Hartree-Fock-Bogoliubov (HFB) mean-field calculations
using the Skyrme force [8] or the Gogny force [9], the spherical
shell-model [7,10], and the projected deformed shell model
[11]. These calculations have clarified the important role of the
neutron g9/2 and d5/2 single-particle levels in the emergence
of the quadrupole collectivity near N = 40. Although the
spherical shell model calculations reproduce the experimental
data rather well, the character of the quadrupole deformation,
especially, the distinction between the equilibrium shape and
shape fluctuations around it is not sufficiently clear.

In this paper, we investigate the nature of the quadrupole
collectivity in low-lying states of the neutron-rich Cr iso-
topes 58−64Cr using an approach that treats the quadrupole
deformations as dynamical variables. Thus, the distinction of
the equilibrium shape and shape fluctuations is transparent.
The deformation energy curve with respect to the axial
quadrupole deformation was obtained in the Skyrme HFB
mean-field calculation [8], which shows that the quadrupole
instability occurs around N = 38–42. However, the deformed
minima are extremely shallow in these nuclei, suggesting
a transitional character. In such transitional situations, one
naturally expects that large-amplitude shape fluctuations play
an important role in determining the properties of low-lying
excited states. Therefore, we take the five-dimensional (5D)
quadrupole collective Hamiltonian approach [12], which is

capable of describing the large-amplitude quadrupole shape
fluctuations associated with the quantum shape transition.
It enables us to treat a variety of quadrupole deformation
phenomena (vibrational, spherical-prolate transitional, rota-
tional, γ -unstable, triaxial, oblate-prolate shape-coexistent
situations, etc.) on an equal footing. Dynamical variables of
the 5D quadrupole collective Hamiltonian approach are the
magnitude and triaxiality of quadrupole deformation (β, γ )
and the three Euler angles. The 5D collective Hamiltonian
is characterized by seven functions: the collective potential,
three vibrational inertial functions (also called vibrational
masses), and three rotational inertial functions. To evaluate
the inertial functions, the Inglis-Belyaev (IB) cranking formula
has been conventionally used. However, it is well known that
the contribution of the time-odd components of the moving
mean field is ignored in the IB cranking formula, which leads
to the overestimation of excitation energies [14,15].

The constrained Hartree-Fock-Bogoliubov plus local quasi-
particle random-phase approximation (CHFB + LQRPA)
method [16] is a method which can overcome the shortcoming
of the IB cranking formula. This method has been successfully
applied to several phenomena: shape coexistence/fluctuation
in Se and Kr isotopes [14,16,19], development of triaxial
deformation in 110Mo [20], and shape fluctuations in neutron-
rich Mg isotopes [21]. Use of the Skyrme energy density
functional in solving the CHFB + LQRPA equations has
also been initiated for the axially symmetric quadrupole
Hamiltonian [22]. In this paper, we solve the LQRPA equations
with use of the pairing-plus-quadrupole (P + Q) model [12]
including the quadrupole pairing interaction. For the collective
Hamiltonian quantized according to the Pauli prescription,
we solve the collective Schrödinger equation to obtain the
excitation energies, vibrational wave functions, E2-transition
strengths, and moments.

This paper is organized as follows. We recapitulate the
theoretical framework in Sec. II. In Sec. III, we present
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results of calculation for 58−66Cr and discuss the nature of
quadrupole collectivity in their low-lying states. We then
discuss similarities and differences of the quadrupole shape
transition near 64Cr with N = 40 and that near 32Mg with
N = 20. Conclusions are given in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section, we briefly summarize the framework of our
collective Hamiltonian approach. See Ref. [16] for details.

A. 5D quadrupole collective Hamiltonian

The 5D quadrupole collective Hamiltonian is given by

Hcoll = Tvib + Trot + V (β, γ ), (1)

Tvib = 1

2
Dββ(β, γ )β̇2+Dβγ (β, γ )β̇γ̇+1

2
Dγγ (β, γ )γ̇ 2, (2)

Trot = 1

2

3∑
k=1

Jk(β, γ )ω2
k, (3)

where Tvib and Trot represent the vibrational and rotational
kinetic energies, while V the collective potential energy.
The velocities of the vibrational motion are described in
terms of the time derivatives (β̇, γ̇ ) of the quadrupole de-
formation variables (β, γ ) representing the magnitude and
the triaxiality of the quadrupole deformation, respectively.
The three components ωk of the rotational angular velocity
are defined with respect to the principal axes associated
with the rotating nucleus. The moments of inertia are
parametrized as Jk(β, γ ) = 4β2Dk(β, γ ) sin2 γk with γk =
γ − 2πk/3. The inertial functions for vibration (vibrational
masses) Dββ,Dβγ and Dγγ , and those for rotation (rotational
masses) Dk are functions of β and γ .

The collective potential and inertial functions are deter-
mined with the CHFB + LQRPA method as explained in the
next subsection. Once they are determined as functions of
(β, γ ), we quantize the collective Hamiltonian according to
the Pauli prescription. The collective Schrödinger equation for
the quantized collective Hamiltonian is given by

{T̂vib + T̂rot + V }�αIM (β, γ,�) = EαI�αIM (β, γ,�), (4)

where

T̂vib = −1

2
√

WR

{
1

β4

[(
∂ββ2

√
R

W
Dγγ ∂β

)

− ∂β

(
β2

√
R

W
Dβγ ∂γ

)]

+ 1

β2 sin 3γ

[
−∂γ

(√
R

W
sin 3γDβγ ∂β

)

+ ∂γ

(√
R

W
sin 3γDββ∂γ

)]}
(5)

and

T̂rot =
∑

k

Î 2
k

2Jk

. (6)

Here, R(β, γ ) and W (β, γ ) are defined as

R(β, γ ) = D1(β, γ )D2(β, γ )D3(β, γ ), (7)

W (β, γ )={Dββ(β, γ )Dγγ (β, γ )−[Dβγ (β, γ )]2}β−2. (8)

The collective wave function �αIM (β, γ,�) is specified by
the total angular momentum I , its projection onto the z axis of
the laboratory frame M , and α distinguishing the states with
the same I and M . It can be written as a sum of products of
the vibrational and rotational wave functions:

�αIM (β, γ,�) =
∑

K=even


αIK (β, γ )〈�|IMK〉, (9)

where

〈�|IMK〉 =
√

2I + 1

16π2(1 + δK0)

[
DI

MK (�) + (−)IDI
M−K (�)

]
.

(10)

DI
MK is the Wigner rotation matrix and K is the projection

of the angular momentum onto the z axis in the body-fixed
frame. The summation over K is taken from 0 to I for even I

and from 2 to I − 1 for odd I .
The vibrational wave functions in the body-fixed frame,


αIK (β, γ ), are normalized as∫
dβdγ |
αI (β, γ )|2|G(β, γ )| 1

2 = 1, (11)

where

|
αI (β, γ )|2 ≡
∑

K=even

|
αIK (β, γ )|2, (12)

and the volume element |G(β, γ )| is given by

|G(β, γ )| = 4β8W (β, γ )R(β, γ ) sin2 3γ. (13)

The symmetries and boundary conditions of the collective
Hamiltonian and wave functions are discussed in Ref. [23].

B. The CHFB + LQRPA method

We determine the collective potential and inertial functions
with the CHFB + LQRPA method. It is derived on the basis
of the adiabatic self-consistent collective coordinate (ASCC)
method [15,17,18] by assuming that there is a one-to-one
mapping from a point on the collective submanifold embedded
in the large-dimensional time-dependent HFB phase space to a
point in the (β, γ ) deformation space. In the CHFB + LQRPA
method, the inertial functions are derived by transforming the
local canonical coordinates determined by the LQRPA normal
modes to the (β, γ ) degrees of freedom.

We first solve the CHFB equation

δ〈φ(β, γ )|ĤCHFB(β, γ )|φ(β, γ )〉 = 0, (14)

ĤCHFB = Ĥ −
∑

τ

λ(τ )N̂ (τ ) −
∑
m

μ(m)D̂
(+)
2m (15)
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with the constraints on the particle numbers and quadrupole
deformation parameters:

〈φ(β, γ )|N̂ (τ )|φ(β, γ )〉 = N
(τ )
0 , (τ = n, p), (16)

〈φ(β, γ )|D̂(+)
2m |φ(β, γ )〉 = D

(+)
2m , (m = 0, 2). (17)

Here, D̂
(+)
2m denotes Hermitian quadrupole operators, D̂20 and

(D̂22 + D̂2−2)/2 for m = 0 and 2, respectively. We define
the quadrupole deformation variables (β, γ ) in terms of the
expectation values of the quadrupole operators

β cos γ = ηD
(+)
20 = η〈φ(β, γ )|D̂(+)

20 |φ(β, γ )〉, (18)

1√
2
β sin γ = ηD

(+)
22 = η〈φ(β, γ )|D̂(+)

22 |φ(β, γ )〉, (19)

where η is a scaling factor (see Ref. [16] for the explicit ex-
pression). Then, we solve the LQRPA equations for vibration
on top of the CHFB states obtained above,

δ〈φ(β, γ )|[ĤCHFB(β, γ ), Q̂i(β, γ )]

−1

i
P̂i(β, γ )|φ(β, γ )〉 = 0, (20)

δ〈φ(β, γ )|
[
ĤCHFB(β, γ ),

1

i
P̂i(β, γ )

]
−Ci(β, γ )Q̂i(β, γ )|φ(β, γ )〉 = 0, (i = 1, 2). (21)

The infinitesimal generators, Q̂i(β, γ ) and P̂i(β, γ ), are
locally defined at every point of the (β, γ ) deformation space.
The quantity Ci(β, γ ) is related to the eigenfrequency ωi(β, γ )
of the local normal mode through ω2

i (β, γ ) = Ci(β, γ ). It is
worth noting that these equations are valid also for regions
with negative curvature (Ci(β, γ ) < 0) where ωi(β, γ ) takes
an imaginary value.

The rotational moments of inertia are calculated by solving
the LQRPA equation for rotation on each CHFB state. It is
an extension of the Thouless-Valatin equation [24] for the
HFB equilibrium state to non-equilibrium CHFB states. We
call the moments of inertia Jk(β, γ ) thus determined ‘LQRPA
moments of inertia.’

We solve the collective Schrödinger equation (4) to obtain
excitation energies and vibrational wave functions. Then,
electric transition strengths and moments are readily calculated
(see Ref. [19] for details).

C. Details of the numerical calculation

The CHFB + LQRPA method can be used in conjunc-
tion with any effective interaction (e.g., density-dependent
effective interaction such as Skyrme functionals, or other
modern nuclear density functionals). In fact, the use of
the Skyrme functional for the LQRPA approach has been
initiated for axially symmetric quadrupole Hamiltonian [22].
In this study, however, we adopt a version of the pairing-
plus-quadrupole (P + Q) model [12] including the quadrupole
pairing interaction as well as the monopole pairing interaction
for computational simplicity. We take two harmonic-oscillator
shells with Nsh = 3, 4 and Nsh = 2, 3 for neutrons and protons,

respectively. The single-particle energies are determined with
the constrained Skyrme-HFB calculations at the spherical
shape using the HFBTHO code [25]. The single-particle energies
in the canonical basis obtained in the Skyrme-HFB calcula-
tions are then scaled with the effective mass of the SkM* func-
tional m∗/m = 0.79 for the use of the P + Q model, because
it is designed to be used for single particles whose mass is the
bare nucleon mass. In these Skyrme-HFB calculations, we em-
ploy the SkM* functional and the volume-type pairing with the
pairing strength V0 = −180 MeV fm−3. The pairing strength
has been adjusted such that the calculated neutron pairing gaps
at the HFB minima reproduce the experimental gaps in 58−64Cr
determined from the odd-even mass differences [26].

To determine the quadrupole pairing strengths in the P + Q
model, we follow the Sakamoto-Kishimoto prescription [27]
to restore the local Galilean invariance broken by the monopole
pairing. With this prescription, once we set the values of the
monopole pairing strengths G

(τ )
0 (τ = n, p), the quadrupole

pairing strengths are self-consistently determined from them
at the spherical shape. The other parameters of the P + Q
model are determined in the following way. For 62Cr (situated
in the middle of the isotopic chain), the monopole pairing
strengths and quadrupole particle-hole interaction strength χ

are adjusted to approximately reproduce the HFB equilibrium
deformation and the pairing gaps at the spherical and HFB
equilibrium shapes. For the other nuclei 58,60,64,66Cr, we
assume the simple mass number dependence according to
Baranger and Kumar [12]: G(τ )

0 ∼ A−1 and χ ′ ≡ χb4 ∼ A−5/3

(b denotes the oscillator-length parameter). We omit the Fock
term as in the conventional treatment of the P + Q model.

The CHFB + LQRPA equations are solved at 60 × 60 mesh
points in the (β, γ ) plane defined by

βi = (i − 0.5) × 0.01, (i = 1, . . . , 60), (22)

γj = (j − 0.5) × 1◦, (j = 1, . . . , 60). (23)

For the calculation of the E2 transitions and moments, we use
the standard values of effective charges (e(n)

eff , e
(p)
eff ) = (0.5, 1.5).

III. RESULTS AND DISCUSSION

In this section, we present the numerical results for 58−66Cr
and discuss the nature of quadrupole collectivity in their
low-lying states. We furthermore discuss the similarities and
differences with Mg isotopes around N = 20.

A. Collective potentials and inertial functions

We plot the collective potential V (β, γ ) calculated for
58−66Cr in Fig. 1. The location of the absolute minimum is
indicated by the (blue) circle. In 58Cr, the absolute minimum
is located at a nearly spherical shape. Although the minimum
shifts to larger deformation in 60Cr, the collective potential
is extremely soft in the β direction. A more pronounced
local minimum appears at larger deformation in 62Cr, and the
minimum becomes even deeper in 64Cr. In 66Cr, the collective
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FIG. 1. (Color online) Collective potential energy surfaces
V (β, γ ) for 58−66Cr. The regions higher than 5 MeV (measured from
the HFB minima) are colored rosy-brown.

potential becomes slightly softer than in 64Cr. These potential
energy surfaces indicate that a quantum shape transition from
a spherical to a prolately deformed shape takes place along the
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FIG. 2. Nilsson diagrams for neutrons (upper) and protons
(lower) in 62Cr as functions of β, calculated as in Ref. [13]. The levels
with the positive (negative) parity are plotted with solid (dotted) lines.

isotopic chain toward N = 40. In Fig. 2, we plot the Nilsson
diagrams of neutrons and protons as functions of β calculated
for 62Cr as in Ref. [13]. This is similar to Figs. 5(a) and 5(b)
in Ref. [8]. In 58Cr, the neutron and proton shell effects for
N = 34 and Z = 24 are in competition. The appearance of the
potential minimum in the slightly deformed region in Fig. 1
suggests that the neutron shell effects dominate over the proton
ones. On the other hand, in 62Cr, the deformed shell effects for
N = 38 and Z = 24 are in cooperation and lead to the prolate
potential minimum.

In Fig. 3, we plot the neutron and proton monopole
pairing gaps �

(n)
0 (β, γ ) and �

(p)
0 (β, γ ), the vibrational inertial

function Dββ(β, γ ), and the rotational moment of inertia
J1(β, γ ), calculated for 62Cr. Figure 3(c) clearly shows that
the vibrational inertial function is well correlated with the
magnitudes of the paring gaps: Dββ(β, γ ) becomes small in
the spherical region where �

(n)
0 and �

(p)
0 take large values. One

might be concerned for complicated behaviors of Dββ(β, γ )
in the strongly deformed region. However, they hardly affect
low-lying states, because the collective potential energy is
very high there and contributions from this region to the
vibrational wave functions are negligibly small. Figure 3(d)
clearly indicates that the rotational moment of inertia also
has a strong correlation with the pairing gaps. It takes the
maximum value in the prolate region around β 
 0.35. Both
the neutron and proton pairing gaps become small there due
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(a)

(b)

(c)

(d)

FIG. 3. (Color online) (a) Neutron monopole pairing gap
�

(n)
0 (β, γ ), calculated for 62Cr. (b) Proton monopole pairing gap

�
(p)
0 (β, γ ). (c) Vibrational inertial function Dββ (β, γ ). (d) Rotational

moment of inertia J1(β, γ ).

to the deformed shell gaps for N = 38 and Z = 24, see
Fig. 2. In particular, the proton pairing gap almost vanishes. It
results in the increase of the moment of inertia. As we shall
see later, this enhancement promotes the localization of the
vibrational wave functions in the (β, γ ) plane for excited states
with nonzero angular momenta. The rotational and vibrational
inertial functions for the other isotopes are qualitatively the
same as those for 62Cr. The enhancement of the moments
of inertia mentioned above grows gradually with increasing
neutron number up to N = 40.

 200

 400

 600

 800

 1000

 1200

 1400

 34  36  38  40  42

Exp.

LQRPA 

E
(2

+ 1)
 [k

eV
]

 

 0

0

 500

 1000

 1500

 2000

 2500

 3000
Exp.

LQRPA 

E
(4

+ 1)
 [k

eV
]

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2 Exp.
LQRPA 

E
(4

1+
) 

/ E
(2

1+
) 

 0

 5

 10

 15

 20

 25

 30

 35

 40

Exp.

LQRPA B
(E

2;
 2

1+  -
>

 0
1+
) 

 [W
. u

.]

-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
 0

 34  36  38  40  42

LQRPA

N

Q
(2

1+  )
  [

ef
m

2
]

(a)

(b)

(c)

(d)

(e)

FIG. 4. (Color online) (a) Excitation energies of the 2+
1 states for

58−66Cr. (b) Excitation energies of the 4+
1 states. (c) Ratios of E(4+

1 )
to E(2+

1 ). (d) Reduced E2 transition probabilities B(E2; 2+
1 → 0+

1 )
in Weisskopf units. (e) Spectroscopic quadrupole moments of the 2+

1

states. Experimental data are taken from Refs. [2,3,5,6].

B. Yrast states in 58−66Cr

We show in Fig. 4 the excitation energies of the 2+
1

and 4+
1 states, their ratios R4/2, the E2 transition strengths
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TABLE I. Excitation energies of the 2+
1 state E(2+

1 ) in keV, the
ratios R4/2 of E(4+

1 ) to E(2+
1 ), and B(E2; 2+

1 → 0+
1 ) in Weisskopf

units for 64Cr and 66Fe. Experimental data are taken from Refs. [6,28].

Calc. Exp.

E(2+
1 ) R4/2 B(E2) E(2+

1 ) R4/2 B(E2)

64Cr 386 2.68 28.8 420 2.69
66Fe 685 2.29 15.5 573 2.47 21.0

B(E2; 2+
1 → 0+

1 ), and the spectroscopic quadrupole moments
of the 2+

1 states, together with the available experimental data.
The decrease in the excitation energies of the 2+

1 and 4+
1

states toward N = 40 and the increase in their ratio from
N = 36 to N = 40 are well described and indicate that the
nature of the quadrupole collectivity gradually changes from
vibrational to rotational as the neutron number increases.
However, the ratio R4/2 at N = 40 is still 2.68, which is
considerably smaller than the rigid-rotor value 3.33. The
B(E2) values and spectroscopic quadrupole moments Q(2+

1 )
also suggest the onset of deformation: B(E2) increases and the
magnitude of the spectroscopic quadrupole moments, which
has a negative sign indicating a prolate shape, increase with
increasing neutron number and both of them reach a maximum
at N = 40.

In Table I, we compare the results for 64Cr with those for
66Fe. (In the calculation for 66Fe, the single-particle energies
and the P + Q parameters are determined following the same
procedure as explained in Sec. II C. In particular, the latter are
exactly the same as those for 66Cr.) Experimental data indicate
that the quadrupole collectivity is stronger in 64Cr than in

66Fe: the smaller E(2+
1 ) and the larger R4/2 and B(E2) values

for 64Cr than those for 66Fe. Our calculation reproduces these
features quite well.

We depict in Figs. 5 and 6 the squared vibrational wave
functions multiplied by β4 for the 0+

1 , 2+
1 and 4+

1 states in
58−66Cr and those without the β4 factor for the 0+

1 and 2+
1

states in 60Cr and 64Cr, respectively. The β4 factor comes from
the volume element and carries its dominant β dependence [see
Eqs. (11) and (13)]. The wave functions look quite different
between the two cases. For instance, while the nonweighted
0+

1 wave function for 60Cr shown in Fig. 6 distributes around
the spherical shape, the β4 factor changes it to the arcuate
pattern seen in Fig. 5. In 58Cr and 60Cr, the β4-weighted 0+

1
wave functions exhibit arcuate distributions around β = 0.2
covering the entire γ region. Closely looking, one finds that,
while the distribution for 58Cr is almost uniform in the γ

direction, it is slightly leaning to the prolate side for 60Cr.
With increasing neutron number, the 0+

1 wave function
localizes more and more on the prolate side, reflecting the
deepening of the prolate minima (see the collective potential
in Fig. 1). In 62Cr, the 0+

1 wave function still spreads over
the entire γ region, although it has a clear concentration on
the prolate side. In 64Cr, one can see a distinct peak around
the prolate potential minimum, and the 0+

1 wave function is
most localized at 64Cr. The vibrational wave functions clearly
indicate the shape transition from spherical to prolate along
the isotopic chain.

For all these isotopes, one can see that the prolate peak
grows with increasing angular momentum. This is due to the
enhancement of the moments of inertia on the prolate side we
have already seen in Fig. 3. Even in 58Cr whose ground state
is rather spherical, the 2+

1 and 4+
1 states are weakly localized

9.5x10-4
8.5x10-4

5.0x10-5

7.5x10-4
6.5x10-4
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1.5x10-4

FIG. 5. (Color online) Squared vibrational wave functions multiplied by β4, β4
∑

K |�αIK (β, γ )|2, for the 0+
1 , 2+

1 , and 4+
1 states in 58−66Cr.
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FIG. 6. (Color online) Vibrational wave function squared,
∑

K |�αIK (β, γ )|2, for the 0+
1 and 2+

1 states in 60Cr and 64Cr. The contour lines
are drawn at every twentieth part of the maximum value.

on the prolate side, which results in the finite spectroscopic
quadrupole moment shown in Fig. 4. In 64Cr, the 2+

1 and 4+
1

wave functions are well localized on the prolate side, although
the ground state wave function still exhibits non-negligible
shape fluctuation in the γ direction. Due to the growth of
localization of the wave functions, higher angular momentum
states acquire more rotor-like character than the ground state.
This fact can be quantified by calculating the ratio

R6/4/2 ≡ (E(6+
1 ) − E(2+

1 ))/(E(4+
1 ) − E(2+

1 )). (24)

For instance, R6/4/2 = 2.42 for 64Cr, which is fairly close to
the rigid-rotor value 2.57, although the calculated R4/2 is 2.67
which is far from the rigid-rotor value 3.33. These results
clearly indicate the importance of dynamical effects of rotation
on the nuclear shape.

Lenzi et al. [7] evaluated the intrinsic quadrupole moments
Qint(I ) for the yrast states of 62−66Cr using the spectroscopic
quadrupole moments Q(I ) obtained in their shell-model
calculation and the well-known relation between them for
the axially symmetric deformation with K = 0. The resulting
Qint(I ) stay approximately constant along the yrast sequences
in 62,64,66Cr, and they interpreted this as a fingerprint of a rigid
rotor behavior. We have evaluated Qint(I ) in the same way
as Lenzi et al. but using our calculated Q(I ). The resulting
Qint(I ) values are similar to those of Lenzi et al. We feel,
however, that this fact is insufficient to conclude that 62−66Cr
are good rotors because Q(I ) are average values that are

112

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

6
+
1

0
+
1

2
+
1

4
+
1

6
+
1

0
+
1

2
+
1

4
+
1

E
xc

ita
tio

n 
E

ne
rg

y 
(M

eV
)

60
Cr

2
+
4

3
+
1

2
+
3

0
+
4

0
+
3

0
+
2

4
+
2

LQRPAExp.

252

2
+
2

533208506

703
98

132

327

113

42

222 38

51

667

369

156

272

137

22

180142

58

709

FIG. 7. (Color online) Excitation energies and B(E2) values for
60Cr in comparison with experimental data. Values on arrows indicate
B(E2) in units of e2fm4. Only B(E2) values larger than 1 Weisskopf
unit are shown. Experimental data are taken from Ref. [3].

insensitive to the shape fluctuations. We need to examine
the properties of nonyrast states which are sensitive to shape
fluctuation effects. We also note that Q(I ) does not carry
direct information about the ground state, and that, according
to our calculation, the ground-state vibrational wave function
is significantly different from those of the other yrast states
with I �= 0.

C. Nonyrast states in 58−66Cr

To understand the nature of quadrupole collectivity, it is
important to examine the properties of the excited bands
including their interband transitions to the ground band,
although they have not been observed experimentally yet.
As typical examples of the calculated results, we display in
Figs. 7 and 8 the excitation spectra and the B(E2) values of
the low-lying states in 60Cr and 64Cr. (The low-lying states of
58Cr and 66Cr have qualitatively the same features as those of
60Cr and 64Cr, respectively. Those of 62Cr have an intermediate
character between 60Cr and 64Cr.)

Let us first discuss the 60Cr case. We notice that the calcu-
lated excitation spectrum exhibits some features characteristic
of the 5D harmonic oscillator (HO) limit: approximately equal
level spacing in the ground band, approximate degeneracy of
the 4+

1 and 2+
2 states, nearly equal values of B(E2; 0+

2 → 2+
1 )

and B(E2; 4+
1 → 2+

1 ), which are about twice of B(E2; 2+
1 →

0+
1 ), etc. On the other hand, we also notice significant
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FIG. 8. (Color online) Same as Fig. 7 but for 64Cr. The experi-
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FIG. 9. (Color online) Squared vibrational wave functions multiplied by β4, β4
∑

K |�αIK (β, γ )|2, for the 0+
2 and 2+

2 states in 60Cr and 64Cr.

deviations from that limit. First, the 0+
2 state is considerably

lower than the 4+
1 and 2+

2 states. Second, the E2 transitions
forbidden in the HO limit are sizable; e.g., those from the 2+

2
state to the 4+

1 and 0+
2 states are fairly large. Third, the B(E2)

value from the 2+
2 state to the 2+

1 state is less than half of those
from the 4+

1 and 0+
2 states.

To examine these anharmonicities, let us look into the
vibrational wave functions of the excited states. The β4-
weighted and nonweighted vibrational wave functions of the
0+

2 and 2+
2 states are displayed in Figs. 9 and 10, respectively.

The 0+
2 wave function exhibits two components: one around

the spherical shape and the other around β = 0.35. Although
it has a β-vibrational feature, i.e., a node in the β direction,
it also exhibits a considerable deviation from the 5D HO
limit, in which the deformed component concentrating on the
prolate side would spread uniformly over the γ direction. We
can see a deviation from the 5D HO limit also in the 2+

2
state. The β4-weighted 2+

2 wave function spreads from the
prolate to the oblate sides. However, the nonweighted wave
function reveals that it also has the β-vibrational component.
In fact, this state is a superposition of the large-amplitude
γ -vibrational component spreading over the entire γ region
and the β-vibrational component. In the 5D HO limit, the 2+

3
wave function has a node in the β direction, while the 2+

2
wave function has no node. The calculated 2+

2 wave functions
indicate significant mixing of these components.

Let us proceed to the 64Cr case. We immediately notice
some features different from 60Cr. First, the approximate
degeneracy of the 4+

1 and 2+
2 states seen in 60Cr is completely

lifted here. Second, the E2 transitions within the ground band
are much stronger than those in 60Cr. Third, two low-lying
excited bands appear: one consisting of the 0+

2 , 2+
2 and 4+

2
states (excited band I), and the other consisting of the 2+

3 , 3+
1 ,

4+
3 states (excited band II, the 4+

3 state not shown here is at
2.84 MeV). One might be tempted to interpret these excited
bands in terms of the conventional concept of the β and γ

bands built on a well-deformed prolate ground state, but, in
fact, they are markedly different from them. First, there is a
strong mixing of the β- and γ -vibrational components, as seen
from strong interband E2 transitions between the two excited
bands. Second, the calculated ratio of the excitation energies
relative to E(0+

2 ), (E(4+
2 ) − E(0+

2 ))/(E(2+
2 ) − E(0+

2 )), is 2.51,
which is far from the rigid-body value. Third, the K-mixing
effects are strong, e.g., the K = 0 (K = 2) components of
the 2+

2 (2+
3 ) and 4+

2 (4+
3 ) wave functions are at most 60%.

To sum up, although the prolate deformation is appreciably
developed in the low-lying states of 64Cr, the large-amplitude
shape fluctuations play a dominant role and lead to the strong
β − γ coupling and significant interband E2 transitions.

In Fig. 11, we plot the vibrational wave functions at
γ = 0.5◦ and the probability density P (β) of finding a shape
with a specific value of β for the ground and excited 0+ states
in 60−64Cr. Note that the probability density vanishes at the
spherical shape because of the β4 factor in the volume element.
It is seen that, while the ground-state wave function for 60Cr
distributes around the spherical shape, those for 62Cr and 64Cr
extend from the spherical to deformed regions with β 
 0.4
[see Fig. 11(a)]. Accordingly, the peak of the probability
distribution moves toward larger β in going from 60Cr to
64Cr [see Fig. 11(b)]. Concerning the excited 0+ states, their
vibrational wave functions exhibit two peaks: a large peak
at the spherical shape and a small peak at a prolate shape
[see Fig. 11(c)]. In the probability distribution displayed in
Fig. 11(d), the spherical peaks move to the β ≈ 0.2 region and
the peaks at β = 0.35–0.4 in turn become prominent.

The above results indicate that large-amplitude shape
fluctuations play an important role both in the ground and
excited 0+ states. The growth of the shape fluctuations leads
to an enhancement of the calculated E0 transition strengths
ρ2(E0; 0+

2 → 0+
1 ) in going from 58Cr to 62−66Cr, as displayed

in Fig. 12.

FIG. 10. (Color online) Same as Fig. 6 but for 0+
2 and 2+

2 states. The contour lines are drawn at every twentieth part of the maximum value.

024316-8



SHAPE TRANSITION AND FLUCTUATIONS IN NEUTRON- . . . PHYSICAL REVIEW C 86, 024316 (2012)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5  0.6
β

|Φ
α=

1,
 Ι=

0,
 Κ

=0
(β

, γ
)|2 (a)

60
Cr

62
Cr

64
Cr

01
+

60
Cr

62
Cr

64
Cr

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0  0.1  0.2  0.3  0.4  0.5  0.6
β

P
(β

)

(b) 01
+

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6
β

|Φ
α=

2,
 Ι=

0,
 Κ

=0
(β

, γ
)|2 (c)

60
Cr

62
Cr

64
Cr

02
+

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0  0.1  0.2  0.3  0.4  0.5  0.6
β

P
(β

)

(d)
60

Cr
62

Cr
64

Cr

02
+

FIG. 11. (Color online) (a) Vibrational wave function
squared |
α=1,I=0,K=0(β, γ = 0.5◦)|2 of the ground states
in 60−64Cr. (b) Probability densities integrated over γ ,
P (β) = ∫

dγ |
α=1,I=0,K=0(β, γ )|2|G(β, γ )|1/2. (c) Same as
(a) but for the 0+

2 states. (d) Same as (b) but for the 0+
2 states.

In Ref. [9], Gaudefroy et al. studied the collective structure
in the N = 40 isotones and obtained the low-lying states with a
vibrational character for 64Cr. Our calculated results indicates
that 64Cr is rather deformed but still has a transitional character.
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FIG. 12. (Color online) E0 transition strengths ρ2(E0; 0+
2 → 0+

1 )
calculated for 58−66Cr.

D. Similarities and differences with the Mg isotopes
around N = 20

In Ref. [7], Lenzi et al. emphasized similarities between
the shell structure of the neutron-rich Cr isotopes near N = 40
and that of the neutron-rich Mg isotopes around N = 20:
the neutron g9/2 and d5/2 single-particle levels above the
N = 40 subshell play a similar role to the neutron f7/2 and
p3/2 levels above the N = 20 shell. The quadrupole matrix
elements between these levels are large (because they are
spin-nonflip and �l = 2). The single-particle levels above
and below the N = 40 subshell gap (N = 20 shell gap) have
opposite parities so that the pairing excitations across the gap
play an indispensable role to activate the role of the g9/2 and
d5/2 levels (f7/2 and p3/2 levels) in generating quadrupole
collectivity. Also, for protons, the f7/2 and p3/2 levels in Cr
isotopes may play a parallel role to the d5/2 and s1/2 levels in
Mg isotopes.

Indeed, we have found notable similarities between Cr
isotopes near N = 40 and Mg isotopes around N = 20 in our
calculation. First of all, the growth of quadrupole collectivity
in going from 60Cr to 64Cr is similar to that from 30Mg to
32Mg. In Fig. 6, while the ground state wave function in 60Cr
distributes around the spherical shape, they are considerably
extended to the prolately deformed region in 64Cr. The 2+

1 wave
function has a peak on the prolate side in 60Cr and it shifts to
larger β in 64Cr. These features are similar to those seen in
going from 30Mg to 32Mg in our calculation [21]. Concerning
the excited 0+

2 states in 60Cr and 64Cr, as shown in Figs. 11(c)
and 11(d), both vibrational wave functions exhibit a two-hump
structure. Similar two-hump structures of the excited 0+ states
have been obtained also in our calculation for 30Mg and 32Mg.

On the other hand, we have also found significant differ-
ences between the 64Cr region and the 32Mg region. First
of all, the K mixing is strong in the excited bands in the
Cr isotopes, whereas they are weak in the Mg region. The
shape fluctuations toward the γ direction and the effect of the
β − γ coupling are larger in the Cr isotopes than in Mg. This
can be clearly seen, for instance, in the 2+

2 wave functions
displayed in Figs. 9 and 10. Lenzi et al. [7] found significant
mixture of n-particle–n-hole excitations (n =2,4 and 6) to the
wave functions of Cr isotopes in their shell model calculation.
This is consistent with the strong K-mixing found in our
calculation.
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IV. CONCLUSIONS

In this paper, we have investigated the nature of the
quadrupole collectivity in the low-lying states of neutron-rich
Cr isotopes 58−66Cr by solving the 5D collective Schrödinger
equation. The vibrational and rotational inertial functions
and the collective potential in the 5D quadrupole collective
Hamiltonian are microscopically derived with use of the
CHFB + LQRPA method. The calculated inertial functions
include the contributions from the time-odd components of
the moving mean field. The results of calculation are in
good agreement with the available experimental data. The
prolate deformation remarkably develops along the isotopic
chain from N = 36 to 40. It is not appropriate, however,
to characterize the low-lying state of Cr isotopes around
64Cr in terms of the prolate rigid-rotor model: the excitation

spectra are still transitional and the large-amplitude shape
fluctuations dominate in their low-lying states. The calculated
excited bands exhibit strong couplings between the β and γ

vibrational degrees of freedom. For close examination of the
nature of quadrupole collectivity in these nuclei, experimental
exploration of their excited bands is strongly desired.
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