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Abstract

The physics of nuclei far from the stability is one of the current frontiers in nuclear structure
physics both theoretically and experimentally. The number of unstable nuclei experimentally
accessible will remarkably increase when the next generation of radioactive-ion-beam facilities
in all over the world start running. We then shall be able to study the properties not only
of ground states but also of low-lying excited states of drip-line nuclei in the medium-mass
region. In neutron-rich nuclei, new kinds of many-body correlation would emerge due to
the presence of nearby continuum states; coupling among the bound, resonance and contin-
uum states. Under the new environment, we expect emergence of collective modes unique in
neutron-rich nuclei because low-lying collective motions are quite sensitive to the shell struc-
ture near the Fermi level and detail of the surface property. In studying such a possibility in
neutron-rich nuclei, the effects of nuclear deformation, pairing correlations and con-
tinuum coupling are of main importance. In this Thesis, we study low-frequency modes of
excitation in neutron-rich nuclei simultaneously taken into account these three effects based
on the static and dynamic mean-field theory.

In order to study low-lying modes in neutron-rich nuclei paying attention to above three
effects, we constructed a new computer code that carries out the deformed quasiparticle-
random-phase approximation based on the coordinate-space Hartree-Fock-Bogoliubov for-
malism. Such calculations have scarcely done so far. Especially, the effect of nuclear defor-
mation has been poorly investigated. In this Thesis, therefore, we concentrate on deformation
effects, and discuss possible appearance of collective modes unique in deformed neutron-rich
nuclei.

One of the unique features of low-lying excited state in drip-line nuclei is that the tran-
sition strength becomes extremely large due to the spatial extension of single-particle wave
functions near the Fermi level, which are loosely bound or resonance states. However, the
generation of collectivity is not directly connected to the enhancement of transition strength.
Because spatial structures of single-particle wave functions near the Fermi level are quite
different from each other, it is difficult to generate collectivity in the drip-line region. We
have found that the pairing correlation is indispensable to create coherence among bound
and resonance levels, and that the low-lying Kπ = 0+ mode in deformed neutron-rich nu-
clei is quite sensitive to the pair correlation, where the coupling between vibrations in the
particle-hole and in the particle-particle channels brings forth the collective mode.
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Chapter 1

Introduction

1.1 Exploration of unstable nuclei

At present, we know the existence of about 250 stable nuclei, about 50 naturally radioactive
elements, and about 3000 unstable nuclei. Figure 1.1 shows the nuclear chart. The horizontal
axis indicates the neutron number, while the vertical axis the proton number. This chart
shows several thousands of nuclei that are expected to be bound. The black squares show
the stable nuclei. The nuclei that have shorter half lives are represented by squares in lighter
color. As shown in this figure, there are about 4000–7000 nuclei which are expected to be
bound from several theoretical calculations but have not yet been discovered experimentally.
Many of these nuclei are located in the neutron-rich region and they play an important role
in explaining the nucleosynthesis mechanism beyond iron. It is considered that the rapid
neutron capture process (r-process) synthesizes roughly 50% of all elements past the Fe-peak
and all of the actinides [2].

The physics of nuclei located far from the beta stability line has been one of the most
actively studied subjects in nuclear physics [3, 4, 5]. Thanks to the development of experi-
mental techniques that provide radioactive ion (RI) beams, one can produce many nuclides
that we know little about and can explore the terra incognita. Since the RI beam became
available, a lot of novel structures unique in neutron-rich nuclei have been discovered in the
light mass region of about Z ≤ 8. One of the most striking features in neutron-rich nuclei
is the existence of nuclei that have the “halo” structure [6]. In these nuclei, one or two neu-
trons extend far outside the distribution of protons. This phenomenon shows the breaking
of similar distribution of protons and neutrons well known in stable nuclei. The halo is a
purely quantal structure and this concept has now been extended to atomic and molecular
physics [7]. Another phenomenon is the existence of the Borromean nuclei such as the two-
neutron halo of 11Li [8, 9], where any part of the subsystems (n-9Li and n-n) is unbound
whereas the total three-body system (n-n-9Li) is bound. For the existence of such an exotic
system, importance of pair correlations and emergence of di-neutron correlations have been
pointed out [10, 11, 12, 13].

The number of unstable nuclei experimentally accessible will remarkably increase when
the next generation of RI beam facilities, such as RIBF in RIKEN [14], start running. We then
shall be able to study properties not only of the ground states but also of the low-lying excited
states of drip-line nuclei in the medium-mass region. For heavier neutron-rich nuclei, we can
expect, for instance, novel aspects of single-particle motion and many-body correlations in
dilute systems, emergence of collective motion unique under the new environment.
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Figure 1.1: Nuclear chart as a function of neutron numbers (the horizontal axis) and proton
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numbers”. This figure is taken from LBNL Isotopes Project, Nuclear Structure Systematics
Home Page[1].
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parameters [23]. This figure is taken from [24].
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by the Hartree-Fock-Bogoliubov plus particle-number projection method using the Skyrme
SLy4 interaction for the particle-hole channel and the density-independent contact interaction
for the particle-particle channel [26]. Blue and red circles correspond to oblate and prole
deformations of the ground states, respectively.

1.2 Shell structures unique in neutron-rich nuclei

Single-particle motion in a mean-field potential is one of the most important concepts in
many-body system, and j− j coupling shell model [15, 16] has successfully described ground-
state properties. Because the mean-field potential is determined self-consistently by the
organizing nucleons, new aspects of single-particle motion are expected to appear in weakly
bound systems. In light neutron-rich nuclei, the disappearance of the well-known magic
number N = 8 has been reported from the observed low-lying excitation energy of the 2+

state and large transition amplitude B(E2) in 12Be [17], and analysis of the mixing of the
1p1/2 and 2s1/2 orbitals in the ground-state wave function of 12Be [18]. The disappearance
of N = 20 magic number in 30Ne [19] and 32Mg [20, 21] has been envisaged by measuring
the low-lying 2+ level and large B(E2) value. Instead of the disappearance of N = 20 shell
closure in 30Ne, the emergence of a new shell effect at N = 16 is discussed by the systematic
analysis of neutron separation energies and interaction cross sections [22].

In Fig. 1.2, we show single-particle energies for neutrons in the Woods-Saxon potential.
It is seen that around Enl = −10 MeV, which approximately corresponds to the Fermi level
in stable nuclei, the neutron numbers N = 8 and 20 appear as shell gaps as is well known
in stable nuclei. In contrast, the magic number N = 8 disappears for loosely binding region
Enl = −2 → 0 MeV, and the neutron number N = 16 appears as a new magic number
instead. According to this mean-field calculation, behavior of single-particle orbitals with
small angular momentum, especially the 2s1/2 level, play an important role in changing the
shell structure near the continuum threshold.

The spin-orbit potential, which is crucial for creating the magic numbers above 20, is
proportional to the derivative of the potential. In weakly bound nuclei where the potential
diffuseness becomes large, the spin-orbit splitting and the shell closures will change in the

3
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Figure 1.4: Schematic density distributions of stable nuclei and neutron-rich nuclei with
neutron skins (the upper row), and mean-field potentials for neutrons and protons (the lower
row).

medium-mass neutron-rich nuclei [25]. In Fig. 1.3, we show the quadrupole deformations of
all even-even nuclei expected to be bound in the mean-field calculations [26]. This figure
shows that new regions of deformation are expected in neutron-rich nuclei. For instance, we
can see a domain of nuclear deformation, corresponding to the breaking of the shell closure
at N = 28 in the neutron drip-line region.

Very recently, it became possible to access the region of N = 28 close to the neutron
drip line. Four experimental results have been used to argue that the N = 28 shell closure
is narrowed or collapsed in 42Si as predicted by some theoretical calculations [27, 28, 29, 30,
31, 32, 33]: 1) a measurement of the lifetime of the β-decay of 42Si [34], 2) the determination
that 43Si is bound [35], 3) a mass measurement of 42Si [36], and 4) a measurement of the
excited state of 40Si [37]. On the other hand, in Refs [38, 39] they have argued that the
proton subshell closure at Z = 14 would have a strong effect on the structure of 42Si, which
means that the proton closure at Z = 14 prevents 42Si from being well deformed. Persisting
the magic number N = 28 in 42Si [40] and an evidence of strong subshell closure at Z = 14
in 42Si [41] have been reported based on the measurement of two-proton knockout reaction
cross sections.

Another unique structure in the medium-mass neutron-rich nuclei is emergence of the
“neutron skin”. The root-mean-square matter radii of Na isotopes were deduced from the
interaction cross sections and the radii of neutrons were compared with those of protons for
the first time along a chain of stable and unstable isotopes by Suzuki et al. [42], and they
obtained a monotonic increase in the neutron skin thickness as a neutron number increases.
In Fig. 1.4, we show schematic density distributions of neutron-rich nuclei with the neutron
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Figure 1.5: Schematic illustrations of particle-hole excitations in stable (left) and neutron-
rich nuclei (middle), and two-neutron pair correlations in the continuum as one of the novel
features in superfluid drip-line nuclei (right).

skin structure. Because the Fermi levels for neutrons and protons are quite asymmetric,
the density distribution of neutrons extends outside that of protons. This phenomenon is
different from the “neutron halo” in the sense that many neutrons take part in the formation
of the skin structure, and would appear in many neutron-rich nuclei generically.

1.3 Collective motions under new extreme conditions

The collective vibrational mode of excitation can be described microscopically with the Ran-
dom Phase Approximation (RPA) in which the excited state is written by superposition of
particle-hole excitations [43]

|vib.〉 =
∑
ph

fpha
†
pb

†
h + gphbhap|gs.〉, (1.1)

where a†, b†, a and b are creation and annihilation operators of particles and holes. In Fig. 1.5,
we show schematic illustrations of particle-hole excitations in stable and neutron-rich nuclei.
In stable nuclei, both particle and hole states are bound and their wave functions are spatially
localized, whereas the particle can be easily excited into the continuum state in neutron-rich
nuclei because the Fermi level for neutrons is shallow.

Because the low-frequency collective excitations are quite sensitive to the shell structure
near the Fermi level and surface structure, we expect that new kinds of collective excitation
emerge under new situations of nuclear structure. In order to quest for collective modes of
excitation unique to unstable nuclei associated with new features such as neutron skins, many
attempts have been made using the self-consistent RPA based on the Skyrme-Hartree-Fock
(SHF) method [44, 45, 46] and the Quasiparticle-RPA (QRPA) including pairing correla-
tions [47, 48, 49, 50, 51, 52]. A number of similar approaches using different mean fields have
also been carried out [53, 54, 55, 56, 57, 58, 59, 60, 61]. (See Refs. [52, 58, 62] for extensive
lists of references concerning the self-consistent RPA and mean-field calculations.) Most of
these calculations, however, are restricted to spherical nuclei.

Quite recently, low-frequency RPA modes in deformed nuclei close to the neutron drip
line have been investigated by several groups. The time-dependent Hartree-Fock method
formulated in the three-dimensional coordinate space with a complex absorbing boundary
condition was applied to low-frequency isovector dipole modes [63]. Possible appearance of

5



Chapter 1. Introduction

low-frequency octupole vibrations built on superdeformed states in neutron drip-line nuclei
was discussed in Ref. [64] on the basis of the SHF plus mixed representation RPA [65, 66,
67] calculations. All of these calculations, however, did not take into account the pairing
correlations. In Refs. [68, 69], low-lying Gamow-Teller β-decay strengths were investigated
by means of the proton-neutron RPA using the SHF + BCS approximation. The gamma
vibration in 38Mg was studied using the QRPA with the BCS approximation on the basis
of the response function formalism [70]. It should be noted that these calculations rely
on the BCS approximation, which is inappropriate, because of the unphysical nucleon gas
problem [71], for describing continuum coupling effects in drip-line nuclei.

The nature of pairing correlations in neutron drip-line nuclei is one of the most important
subjects in the physics of unstable nuclei. One of the unique features of drip-line nuclei is that
the pairing correlations take place not only among bound levels but also including continuum
states (see Fig. 1.5). To describe this unique character of pairing, the coordinate-space
Hartree-Fock-Bogoliubov (HFB) formalism is suitable [71, 72]. This has been widely used for
the study of single-particle motion and shell structure near the continuum [25, 73, 74, 75].
Due to the pairing and continuum effects, spatial structures of quasiparticle wave functions
near the chemical potential change significantly, which affects the properties of low-frequency
excitation modes [76], and possible emergence of di-neutron correlations in the medium-mass
neutron-rich nuclei both in the ground and in the excited states has been discussed [77].

1.4 Aim and outline of this thesis

In this thesis, based on the mean-field theory we study the effects of nuclear deformation,
continuum coupling and pairing correlations on low-frequency excitation modes and inves-
tigate microscopic structure of excited states. In particular, we discuss the mechanism of
emergence of collective modes unique in deformed neutron-rich nuclei paying attention to the
existence of neutron skin structure and pairing correlations in the continuum. The methods
that we use are explained in Chapter 2.

In order to clearly see effects of nuclear deformation and continuum coupling on low-
frequency excitation modes in neutron drip-line nuclei, we investigate in Chapter 3 properties
of octupole excitations built on superdeformed states in neutron-rich sulfur isotopes by means
of the RPA based on the deformed Woods-Saxon potential in the coordinate-space mesh-
representation. Discussions in this Chapter are based on Refs. [78, 79].

In Chapter 4, for the purpose of studying the effects of pairing correlation on the low-
frequency vibrational modes in deformed nuclei near the neutron drip line, we have extended
the above work to self-consistently include the pairing correlations, and constructed a new
computer code that carries out the deformed QRPA calculation on the basis of the coordinate-
space HFB formalism. We investigate low-frequency quadrupole vibrational modes with
Kπ = 0+ and 2+ in 36,38,40Mg close to the neutron drip line. Discussions in this Chapter are
based on Refs. [80, 81].

In Chapter 5, we apply the method presented in Chapter 4 for describing low-lying excited
states in 34Mg, and discuss the effect of nuclear deformation on properties of low-lying modes.
We also discuss properties of low-lying Kπ = 0+ mode in 32Ne. In order to see generic feature
of softKπ = 0+ modes in deformed neutron-rich nuclei, we investigate in Chapter 6 properties
of low-lying 0+ modes in neutron-rich Cr and Fe isotopes around N = 40.

In Chapter 7, we study properties of single-particle resonances in a deformed system. In
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1.4. Aim and outline of this thesis

neutron drip-line nuclei, the shell structure in the continuum is one of the key elements in
understanding the emergence of new kinds of many-body correlation and collective mode. In
order to study the resonance wave functions qualitatively, we introduce the Gamow state.
We study the behavior of s−wave component of single-particle wave functions in a deformed
potential around the continuum threshold. Discussions in this Chapter are based on Ref. [82].

In Chapters 3–7, we use the phenomenological potential for the mean field because the self-
consistent calculations simultaneously taken into account the effects of nuclear deformation,
continuum coupling and pairing correlations are very expensive, i.e., this kind of calculations
require much computer memory and CPU time. In Chapter 8, we discuss the perspective
to replace the phenomenological potential with the self-consistent potential based on the
nuclear density-functional theory. As a first step towards description of excitation modes in
deformed neutron-rich nuclei in a self-consistent manner, we construct a new computer mode
that carries out the self-consistent HFB calculation in the cylindrical coordinate using the
Skyrme effective interaction. Some results of such a self-consistent calculation are presented
in this Chapter.

Finally, concluding remarks are given in Chapter 9.
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Chapter 2

Microscopic theory of collective
excitations in deformed
neutron-rich nuclei

Single-particle motion in the mean field is a key concept of the many-body system in the
sense that the mean-field approximation provides us with the classical picture of the quantal
system such as deformation and superfluidity which is regarded as deformation in a gauge
space. Correlations beyond the mean field is, however, essential to understand for instance
the mechanism of emergence of coherent collective motions. The concept of single-particle
motion keeps its importance in studying correlations beyond the mean field because it is a
good starting point and a cornerstone of understanding the correlated many-body system by
constructing the basis for treating many-body Hamiltonian.

In this chapter, we explain the mean-field theory and one of the methods we use in this
thesis that goes beyond the static mean-field theory.

2.1 The Hartree-Fock and the Hartree-Fock-Bogoliubov method

2.1.1 The Hartree-Fock method

Let us consider a system of A Fermions at zero temperature. The Hartree-Fock (HF) approx-
imation consists of assuming that the ground state |HF〉 of the system is a Slater determinant
composed of A orthonormal single-particle orbitals

|HF〉 =
A∏

i=1

c†i |0〉, (2.1)

where c†α, cα are particle creation and annihilation operators associated with the orthonormal
set {ϕα(x)}, and cα|0〉 = 0. We denote by x both space, spin and isospin coordinates of a
particle: x = (r, σ, τ).

Suppose that the Hamiltonian H of the system is the sum of a kinetic energy T and a
two-body interaction V :

H =
∑
αβ

tαβc
†
αcβ +

1
4

∑
αβγδ

vαβγδc
†
αc

†
βcδcγ , (2.2)

9
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where the matrix element vαβγδ is defined by

vαβγδ = 〈αβ|V |γδ − δγ〉 (2.3a)
= (αβ|V |γδ), (2.3b)

and

<αβ|V |γδ>=
∫ ∫

dxdx′ϕ∗
α(x)ϕ∗

β(x′)V (x, x′)ϕγ(x)ϕδ(x′). (2.4)

The expectation value of the Hamiltonian is

E[	] = 〈HF|H|HF〉 =
∑
αβ

tαβ	βα +
1
2

∑
αβγδ

vαβγδ	γα	δβ

=
∑

i

nitii +
1
2

∑
ij

vijijninj, (2.5)

where we defined the single-particle density matrix associated with the state |HF〉 as

	ij = 〈i|	|j〉 = 〈HF|c†jci|HF〉, (2.6)

and eigenvalues ni of the density operator 	. The necessary and sufficient condition for an
antisymmetric state |HF〉 to be a Slater determinant is that the single-particle density matrix
	 satisfies the equation [43, 83]

	2 = 	. (2.7)

It follows that the eigenvalues ni of the density operator 	 are 0 or 1. Since tr	 = A, there
are A eigenvalues equal to 1, and all the others are 0. Therefore the Hartree-Fock energy can
be written as

EHF =
A∑

i=1

ti +
1
2

A∑
ij

vijij . (2.8)

Let us define the single-particle Hamiltonian h by the equation

hij =
δE[	]
δ	ji

. (2.9)

This is evaluated from the energy functional (2.5):

hij = tij +
∑
kl

vikjl	lk

= tij +
∑

k

vikiknk. (2.10)

The variational equation under the constraint (2.7)

δ[E[	] − trΛ(	2 − 	)] = 0 (2.11)

10



2.1. The Hartree-Fock and the Hartree-Fock-Bogoliubov method

reads

tr(h− 	Λ− Λ	+ Λ)δ	 = 0. (2.12)

This equality should hold for any δ	, so that

h− 	Λ− Λ	+ Λ = 0. (2.13)

Using the relation (2.7), one obtains the Hartree-Fock equation

[h, 	] = h	− 	h = 0. (2.14)

The equation (2.14) states that h and 	 can be diagonalized simultaneously. One can therefore
define the Hartree-Fock basis and convert (2.14) into an eigenvalue problem:

hkk′ = tkk′ +
A∑

i=1

vkik′i = εkδkk′ , (2.15)

and one finds instead of (2.15)

− �
2

2m
∇2ϕα(x) +

A∑
i=1

∫
dx′ϕ∗

i (x
′)v(x′, x){ϕi(x′)ϕα(x)− ϕa(x′)ϕi(x)} = εαϕα(x) (2.16)

in the coordinate-space representation. This is called the coordinate-space HF equation.

2.1.2 The Hartree-Fock-Bogoliubov method

Next the HF method is extended to the Hartree-Fock-Bogoliubov (HFB) method in order
to take into account the pair correlation. The HFB approximation assumes that the ground
state |HFB〉 of the system is a product of quasiparticle annihilation operators

|HFB〉 =
∏
k=1

βk|0〉, (2.17)

where quasiparticle operators β†k, βk are defined by the Bogoliubov transformation [43]

β†k =
∑

l

(Ulkc
†
l + Vlkcl), (2.18a)

βk =
∑

l

(V ∗
lkc

†
l + U∗

lkcl). (2.18b)

An HFB vacuum is not an eigenstate of the particle number operator. One therefore imposes
the condition that the average number of particles should be equal to the number of particles
of the system,

〈HFB|N̂ |HFB〉 = 〈HFB|
A∑

i=1

c†i ci|HFB〉 = Ā, (2.19)

and we minimize the the expectation value of the Hamiltonian

H ′ = H − λN =
∑
αβ

(tαβ − λδαβ)c†αcβ +
1
4

∑
αβγδ

vαβγδc
†
αc

†
βcδcγ . (2.20)

11



Chapter 2. Microscopic theory of collective excitations in deformed neutron-rich nuclei

The Lagrange multiplier λ is called the chemical potential or the Fermi energy because it
represents the increase of the energy E′ = 〈HFB|H ′|HFB〉 with respect to the change in the
particle number

λ =
dE′

dN
. (2.21)

The expectation value of the Hamiltonian H ′ in a quasiparticle vacuum is

E′[	, κ, κ∗] = 〈HFB|H ′|HFB〉 =
∑
αβ

(tαβ − λδαβ)	βα +
1
2

∑
αβγδ

vβγδ	γα	δβ +
1
4

∑
αβγδ

κ∗αβvαβγδκγδ

(2.22)

= E′[R],

where we defined the single-particle density matrix 	ij and pair density matrix κij associated
with the state |HFB〉

	ij = 〈i|	|j〉 = 〈HFB|c†jci|HFB〉 = V ∗V T , (2.23a)

κij = 〈ij|κ〉 = 〈HFB|cjci|HFB〉 = V ∗UT = −UV †, (2.23b)

and the generalized density matrix R

R =
(

	 κ
−κ∗ 1− 	∗

)
. (2.24)

In the present case the following theorem holds [43, 83]: The necessary and sufficient condition
for an antisymmetric state |HFB〉 to be a quasiparticle vacuum is that the generalized density
matrix R satisfies the equation

R2 = R. (2.25)

Let us define the single-particle Hamiltonian by the equation

h′ij =
δE′[	, κ, κ∗]

δ	ji
, (2.26)

and the pairing field by

Δij =
δE′[	, κ, κ∗]

δκ∗ij
= −Δji. (2.27)

In the case where the energy functional is given by (2.22), the single-particle Hamiltonian
and the pairing field are

h′ij = 〈i|h′|j〉 = tij − λδij +
∑
kl

vikjl	lk = hij − λ, (2.28a)

Δij = 〈ij|Δ〉 =
1
2

∑
kl

vijklκkl. (2.28b)

12



2.1. The Hartree-Fock and the Hartree-Fock-Bogoliubov method

The variation of the energy with respect to the matrix elements of 	, κ and κ∗ reads

δE′[	, κ, κ∗] =
∑
ij

δE′

δ	ij
δ	ij +

1
2

∑
ij

[
δE′

δκ∗ij
δκ∗ij +

δE′

δκij
δκij

]

= tr
(
h′δ	 − 1

2
Δδκ∗ − 1

2
Δ∗δκ

)

=
1
2
trH δR, (2.29)

where we introduced the quasiparticle Hamiltonian

H =
(

h′ Δ
−Δ∗ −h′∗

)
=
(
h− λ Δ
−Δ∗ −(h− λ)∗

)
= H †. (2.30)

Taking into account the constraint (2.25), the variational equation reads

δ[E′[R]− trΛ(R2 −R)] = 0. (2.31)

As in the case of the HF method, one obtains the HFB equation

[H ,R] = 0, (2.32)

and introducing the quasiparticle basis, one can convert (2.32) to the eigenvalue problem(
h− λ Δ
−Δ∗ −(h− λ)∗

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
. (2.33)

2.1.3 The HFB in the coordinate-space representation

In neutron-rich nuclei, scattering of the pair into the continuum is one of the most important
correlations uniquely appeared in the new region of nuclei. Such a continuum coupling effect
can be described by means of the coordinate-space HFB method [71, 72].

Let us start by introducing the Bogoliubov transformation in the coordinate space,

ψ†(rσ) =
∑

k

U∗
k (rσ)β†k + Vk(rσ)βk =

∑
k

ϕ1,k(rσ̄)β†k + ϕ∗
2,k(rσ)βk, (2.34a)

ψ(rσ) =
∑

k

Uk(rσ)βk + V ∗
k (rσ)β†k =

∑
k

ϕ∗
1,k(rσ̄)βk + ϕ2,k(rσ)β†k, (2.34b)

where the single-quasiparticle wave functions ϕ1,k(rσ) and ϕ2,k(rσ) satisfy the coordinate-
space HFB equation given below. In the coordinate-space representation, one usually uses
ϕ1,k(rσ), ϕ2,k(rσ) instead of Uk(rσ), Vk(rσ) for convenience of notation whereas Uk(rσ) and
Vk(rσ) correspond directly to U, V matrices in the configuration-space HFB formalism ex-
plained above. The notation ϕ(rσ̄) is defined by ϕ(rσ̄) ≡ −2σϕ(r − σ).

The particle (normal) and pairing (abnormal) density matrices are defined as

	(rσ, r′σ′) = 〈HFB|ψ†(r′σ′)ψ(rσ)|HFB〉 =
∑

k

ϕ∗
2,k(r

′σ′)ϕ2,k(rσ), (2.35a)

	̃(rσ, r′σ′) = 〈HFB|ψ(r′σ̄′)ψ(rσ)|HFB〉 = −
∑

k

ϕ∗
1,k(r

′σ′)ϕ1,k(rσ), (2.35b)

13



Chapter 2. Microscopic theory of collective excitations in deformed neutron-rich nuclei

where the index k runs over all the states with positive energy Ek and ϕk(rσ) ≡ ϕ(Ek, rσ).
For the time-reversal invariant state |HFB〉, both density matrices are time even and

Hermitian [71]. Therefore, the pairing density matrix 	̃(rσ, r′σ′) is more convenient than the
standard pairing tensor [43] κ(rσ, r′σ′) = 2σ′	̃(rσ, r′ − σ′), which is asymmetric function in
space-spin arguments.

Since the HFB state is an independent quasiparticle state, 	 and 	̃ commute,

	 · 	̃− 	̃ · 	 = 0, (2.36)

and fulfill the condition

	 · 	+ 	̃ · 	̃ = 	, (2.37)

where a product of operators in the coordinate-space representation is defined by

(	 · 	̃)(r1σ1, r2σ2) =
∫
dr
∑
σ

	(rσ1, rσ)	̃(rσ, r2σ2). (2.38)

Relations (2.36) and (2.37) are expressed using the generalized density

R ·R = R (2.39)

with

R =
(
	 	̃
	̃ δ(r − r′)δσσ′ − 	

)
. (2.40)

Varying the energy expectation value E = 〈HFB|H|HFB〉 with respect to 	 and 	̃, one
obtains the HFB equation,

[H ,R] = 0, (2.41)

where

H =
(
h− λ h̃

h̃ −h+ λ

)
, (2.42)

and h and h̃ are the particle and pairing field operators

h(rσ, r′σ′) =
δE

δ	(r′σ′, rσ)
, (2.43a)

h̃(rσ, r′σ′) =
δE

δ	̃(r′σ′, rσ)
. (2.43b)

We introduce the quasiparticle basis and convert (2.41) to the eigenvalue problem;

∫
dr′∑

σ′

(
h(rσ, r′σ′) h̃(rσ, r′σ′)
h̃(rσ, r′σ′) −h(rσ, r′σ′)

)(
ϕ1(E, r′σ′)
ϕ2(E, r′σ′)

)
=
(
E + λ 0

0 E − λ
)(

ϕ1(E, rσ)
ϕ2(E, rσ)

)
.

(2.44)

This is called the coordinate-space HFB equation.
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2.1. The Hartree-Fock and the Hartree-Fock-Bogoliubov method

In order to see characteristic features of the coordinate-space HFB theory, following
Ref. [71], we investigate the asymptotic solutions of Eq. (2.44) at r → ∞. Since the nu-
cleus has a finite volume, the fields h(rσ, r′σ′) and h̃(rσ, r′σ′) should vanish at large r,r′

except for the kinetic energy. We thus write down the asymptotic equations for ϕ1 and ϕ2,

− �
2

2m
∇2ϕ1(E, rσ) = (λ+ E)ϕ1(E, rσ), (2.45)

− �
2

2m
∇2ϕ2(E, rσ) = (λ− E)ϕ2(E, rσ), (2.46)

with the asymptotic solutions

ϕ1(E, rσ) ∼
{

cos(k1r + δ1) for λ+ E > 0
exp(−κ1r) for λ+ E < 0,

(2.47a)

ϕ2(E, rσ) ∼
{

cos(k2r + δ2) for λ− E > 0
exp(−κ2r) for λ− E < 0,

(2.47b)

with k1 =
√

2m(λ+E)/�, κ1 =
√−2m(λ+ E)/�, k2 =

√
2m(λ− E)/� and κ2=√−2m(λ− E)/�. For λ > 0, the entire spectrum is continuus, while for λ < 0, the spectrum

is either contninuus (E > −λ) or discrete (E < −λ). It has to be noted that the lower
component ϕ2 is always exponentialy decaying at infinity and the densities 	 and 	̃ are thus
always localized as far as the chemical potential is negative.

Next we show another feature of the coordinate-space HFB theory. Let us discuss the
HF+BCS approximation to the HFB equation, in which one assumes the pairing field to be

h̃BCS(rσ, r′σ′) = −Δδ(r − r′)δσσ′ , (2.48)

where Δ is called the gap parameter. In this approximation, the pairing field is not localized
to the region of small r and r′, and thus the asymptotic properties of the solutions are
different. The wave functions ϕ1 and ϕ2 are now proportional to the canonical-basis wave
functions ψα,

ϕ1(Eα, rσ) = uαψα(rσ), (2.49a)
ϕ2(Eα, rσ) = vαψα(rσ), (2.49b)

which are eigenfunctions of the Hartree-Fock field h∫
dr′∑

σ′
h(rσ, r′σ′)ψα(r′σ′) = εαψα(rσ), (2.50)

where εα, uα and vα are related to E,Δ and λ by the usual BCS formulas [43]. The spectrum of
the HF equation (2.50) is discrete for εα < 0 and continuus for εα > 0 and the wave functions
are respectively localized and non-localized. The BCS densities are thus non-localized for
weakly bound nuclei and the nucleus is surrounded by an unphysical nucleon gas. Therefore,
in descriprion of the neutron-rich nuclei where the continuum coupling effect is important
the BCS approximation breaks down and the coordinate-space HFB is the only method to
treat the pair correlations and the continuum conupling effects simultaneously.
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Chapter 2. Microscopic theory of collective excitations in deformed neutron-rich nuclei

2.1.4 The HFB method in the cylindrical-coordinate representation

In this thesis, we study the nuclear defomation effects in addition to the pair correlations and
the contitnuum coupling effects. We assume that the nucleus is symmetric with respect to
the z−axis in the intrinsic frame of reference. We are going to follow the formulation given
in Refs. [84, 85, 86]. In this case, the HFB Hamiltonian is invariant under rotation R̂z about
the z−axis,

[H , R̂z ] = 0. (2.51)

It is advantageous to introduce the cilyndrical coordinates (ρ, z, φ). The rotation about the
z−axis is generatred by the operator

R̂z(φ) = exp(−iφĵz/�). (2.52)

This requirement is equivalent to

[H , ĵz ] = 0. (2.53)

Thanks to the axial symmetry, it is possible to construct simultaneous eigenfunctions of the
HFB Hamiltonian H and the z−component of the angular momentum ĵz,

H

(
ϕ1,i(ρ, z, φ, σ)
ϕ2,i(ρ, z, φ, σ)

)
= Ei

(
ϕ1,i(ρ, z, φ, σ)
ϕ2,i(ρ, z, φ, σ)

)
, (2.54a)

ĵz

(
ϕ1,i(ρ, z, φ, σ)
ϕ2,i(ρ, z, φ, σ)

)
= �Ωi

(
ϕ1,i(ρ, z, φ, σ)
ϕ2,i(ρ, z, φ, σ)

)
, (2.54b)

and the eigenfunctions are expressed in the spinor form

ϕi(ρ, z, φ, σ) =

(
ϕ+

i (ρ, z)eiΛ
−
i φ

ϕ−
i (ρ, z)eiΛ

+
i φ

)
, (2.55)

where Λ±
i = Ωi ± 1/2. Since the angular denpendence is determined by Ω, we can define

the Hamiltonian h that is uniquely defined by Ω, namely that is block diagonal in each Ω.
Therefore we can write down the single quasiparticle Hamiltonian as

h(ρ, z, φ) =
(

h↑↑(ρ, z) e−iφh↑↓(ρ, z)
eiφh↓↑(ρ, z) h↓↓(ρ, z)

)
, (2.56a)

h̃(ρ, z, φ) =
(

h̃↑↑(ρ, z) e−iφh̃↑↓(ρ, z)
eiφh̃↓↑(ρ, z) h̃↓↓(ρ, z)

)
. (2.56b)

Inserting (2.56) into (2.44), we obtaine the HFB equation in the cylindrical-coordinate
representation for each Ω sector

⎛
⎜⎜⎝
h↑↑ − λ h↑↓ h̃↑↑ h̃↓↑
h↓↑ h↓↓ − λ h̃↓↑ h̃↓↓
h̃↑↑ h̃↓↑ −(h↑↑ − λ) −h↑↓
h̃↓↑ h̃↓↓ −h↓↑ −(h↓↓ − λ)

⎞
⎟⎟⎠
⎛
⎜⎜⎝
ϕ+

1,i

ϕ−
1,i

ϕ+
2,i

ϕ−
2,i

⎞
⎟⎟⎠ = Ei

⎛
⎜⎜⎝
ϕ+

1,i

ϕ−
1,i

ϕ+
2,i

ϕ−
2,i

⎞
⎟⎟⎠ . (2.57)
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2.2. The Random Phase Approximation and the Quasiparticle-RPA

2.2 The Random Phase Approximation and the Quasiparticle-
RPA

The collective motions can be described by means of the time-dependent mean-field theory.
In this thesis, we use the Random Phase Approximation (RPA) in order to take into account
correlations beyond the mean field and study nuclear collective modes. The RPA was orig-
inally introduced to describe the plasma oscillation by Sawada in 1957 [87] and applied to
the collective octupole vibration in closed-shell nuclei [88, 89] soon after the pioneering work
of Sawada. The Quasiparticle-RPA (QRPA) including pairing correlations was formulated in
1960 by several authors [90, 91, 92, 93].

2.2.1 Linearization of the TDHF equation

The RPA is equaivalent to the small amplitude limit of the time-dependent mean-field theory.

The time-dependent Schrödinger equation for the many-body wave function |Ψ(t)〉

i�∂t|Ψ(t)〉 = H|Ψ(t)〉 (2.58)

is equaivalent to the time-denepdent variational principle

δ〈Ψ(t)|i�∂t −H|Ψ(t)〉 = 0. (2.59)

The time-dependent Hartree-Fock (TDHF) theory assumes that the wave function |Ψ(t)〉
is a Slater determinant at any time.

Suppose that |Φ0〉 is a HF state at t = 0. One can define creation and annihilation
operators of particles and holes associated with |Φ0〉,

c†α = (1− nα)c†α + nαc
†
α = a†α + bα, (2.60)

where

nα =

{
1 for εα ≤ εF
0 for εα > εF .

(2.61)

The HF state is the vacuum for these particles and holes,

am|Φ0〉 = 0, bi|Φ0〉 = 0. (2.62)
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Chapter 2. Microscopic theory of collective excitations in deformed neutron-rich nuclei

Using the particle and hole operators, the nuclear Hamiltonian (2.2) can be rewritten as

H = E0 +H0 +Hint (2.63a)

E0 = 〈H〉 =
∑

i

⎛
⎝εi − 1

2

∑
j

vijij

⎞
⎠ (2.63b)

H0 =
∑
α

εα : c+α cα :=
∑
m

εma
+
mam −

∑
i

εib
+
i bi (2.63c)

Hint =
1
4

∑
αβγδ

vαβγδ : c+α c
+
β cδcγ := Hpp +Hhh +Hph +HV +HY (2.63d)

Hpp =
1
4

∑
mnm′n′

vmnm′n′a+
ma

+
n an′am′ (2.63e)

Hhh =
1
4

∑
iji′j′

viji′j′b
+
i b

+
j bj′bi′ (2.63f)

Hph =
∑
mnij

vmjina
+
mb

+
i bjan (2.63g)

HV =
1
4

∑
mnij

vmnij(a+
ma

+
n b

+
j b

+
i + amanbjbi) (2.63h)

HY =
1
2

⎧⎨
⎩
∑

mnm′i

vmnm′i(a+
ma

+
n b

+
i am′ + a+

m′bianam) +
∑
miji′

vmji′i(a+
mb

+
i b

+
i′ bj + b+j bi′biam)

⎫⎬
⎭ .

(2.63i)

The time-dependent variational principle (2.59) reads

∂

∂g∗mi(t)
〈Φ(t)|i�∂t −H|Φ(t)〉 = 0. (2.64)

Suppose that |Φ(t)〉 has a form of vibrational solution at time t

|Φ(t)〉 = e−iE0t/�eiG(t)|Φ0〉 (2.65)

= e−iE0t/� exp

(∑
mi

{gmi(t)a†mb
†
i − g∗mi(t)biam}

)
|Φ0〉, (2.66)

where eiG(t) is a unitary operator.

Here we consider the solution

gmi(t) = xmie
−iωt + y∗mie

iωt. (2.67)
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Evaluating the expectation value 〈Φ(t)|H|Φ(t)〉 up to the second order in gmi(t),

〈Φ(t)|H|Φ(t)〉 = 〈Φ0|e−iG(t)HeiG(t)|Φ0〉
= E0 +

∑
mi

(εm − εi)gmi(t)g∗mi(t) +
∑
mnij

vmjingmi(t)g∗nj(t)

+
1
2

∑
mnij

vmnijgmi(t)gnj(t) +
1
2

∑
mnij

vmnijg
∗
mi(t)g

∗
nj(t), (2.68a)

〈Φ(t)|i�∂t|Φ(t)〉 = E0 +
∑
mi

g∗mi(t)(i�∂t)gmi(t). (2.68b)

One obtains the eigenvalue equation

�ωxmi = (εm − εi)xmi +
∑
nj

{vmjinxnj + vmnijynj}, (2.69a)

−�ωymi = (εm − εi)ymi +
∑
nj

{vmjinynj + vmnijxnj}. (2.69b)

This is written in a matrix form∑
nj

(
Aminj Bminj

B∗
minj A∗

minj

)(
xnj

ynj

)
= �ω

(
1 0
0 −1

)(
xmi

ymi

)
, (2.70)

where

Aminj = (εm − εi)δmnδij + vmjin, (2.71)
Bminj = vmnij . (2.72)

For the case of superfluid systems, one can derive the QRPA equation in a similar manner
as the small amplitude limit of the TDHFB equation [83].

2.2.2 The equation-of-motion method

We discuss here an alternative method to derive the RPA equation, called the equation-of-
motion method [95, 96, 97]. Let us strat with exact eigenstates of the Hamiltonian (2.2),

H|Ψ0〉 = E0|Ψ0〉, (2.73a)
H|Ψλ〉 = Eλ|Ψλ〉. (2.73b)

We here introduce the creation and annihilation operators O†
λ,Oλ satisfying{

|Ψλ〉 = O†
λ|Ψ0〉, |Ψ0〉 = Oλ|Ψλ〉,

Oλ|Ψ0〉 = 0.
(2.74)

It is easy to derive the equation of motion

[H,O†
λ]|Ψ0〉 = (Eλ − E0)O

†
λ|Ψ0〉, (2.75)

or equivalently

〈Ψ0|[δO, [H,O†
λ]]|Ψ0〉 = (Eλ − E0)〈Ψ0|[δO,O†

λ]|Ψ0〉. (2.76)
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Here we define the phonon operator and the approximated groud state |ΨRPA
0 〉 as

O†
λ =

∑
mi

fλ
mia

†
mb

†
i − gλ

mibiam, (2.77a)

Oλ|ΨRPA
0 〉 = 0. (2.77b)

Taking a†mb†i |ΨRPA
0 〉 and biam|ΨRPA

0 〉 as a variation δO|Ψ0〉, one obtains

〈ΨRPA
0 |[biam, [H,O

†
λ]]|ΨRPA

0 〉 = �ωλ〈ΨRPA
0 |[biam, O

†
λ]|ΨRPA

0 〉, (2.78a)

〈ΨRPA
0 |[a†mb†i , [H,O†

λ]]|ΨRPA
0 〉 = �ωλ〈ΨRPA

0 |[a†mb†i , O†
λ]|ΨRPA

0 〉, (2.78b)

where �ωλ is the excitation energy of the state |ΨRPA
λ 〉.

In calculating the expectation values in Eq.(2.78), we replace |ΨRPA
0 〉 by |ΨHF

0 〉. This
approximation is valid if the correlated state |ΨRPA

0 〉 does not differ very much from |ΨHF
0 〉.

Under this approximation, Eq. (2.78) reads Eq. (2.69), where

〈ΨRPA
0 |biam|ΨRPA

λ 〉 � 〈ΨHF
0 |[biam, O

†
λ]|ΨHF

0 〉 = xλ
mi, (2.79a)

〈ΨRPA
0 |a†mb†i |ΨRPA

λ 〉 � 〈ΨHF
0 |[a†mb†i , O†

λ]|ΨHF
0 〉 = yλ

mi. (2.79b)

The orthonormality of the one-phonon states |ΨRPA
λ 〉, |ΨRPA

λ′ 〉 is satisfied by the condition;

〈ΨRPA
λ′ |ΨRPA

λ 〉 �
∑
mi

∑
nj

{xλ′∗
nj 〈ΨHF

0 |[bjan, a
†
mb

†
i ]|ΨHF

0 〉xλ
mi − yλ′∗

nj 〈ΨHF
0 |[biam, a

†
nb

†
j ]|ΨHF

0 〉yλ
mi}

=
∑
mi

xλ∗
mix

λ′
mi − yλ∗

miy
λ′
mi

= δλλ′ , (2.80)

which gives the normalization of the amplitudes xλ
mi and yλ

mi.

2.2.3 Invariances and spurious solutions in the RPA

We introduce the generalized coordinates Qν and momenta Pν [94] defined by

Pν =
�

i

√
Mνων

�

1√
2
(Oν −O†

ν), (2.81a)

Qν =
√

�

Mνων

1√
2
(Oν +O†

ν), (2.81b)

where the numbers Mν are arbitrary. The operators Pν ,Qν fulfill the commutation relations

[Pν ,Pν′ ] = [Qν ,Qν′ ] = 0, (2.82a)

[Pν ,Qν′ ] =
�

i
δνν′ . (2.82b)

The Hamiltonian H is now expressed in terms of these operators

H = ERPA +
∑

ν

(
1

2Mν
P2

ν +
Mν

2
ω2

νQ
2
ν

)
(2.83)
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in the RPA order with

ERPA = EHF −
∑

ν

�ων

∑
mi

|yν
mi|2. (2.84)

The operators Pν ,Qν obey the equations of motion

[H,Pν ] = i�ω2
νMνQν , (2.85a)

[H,Qν ] = − i�

Mν
Pν , (2.85b)

which are written in a matrix representation as(
A B
B∗ A∗

)(
P
−P ∗

)
= i�ω2

νMν

(
Q
Q∗

)
, (2.86a)(

A B
B∗ A∗

)(
Q
−Q∗

)
=

�

i

1
Mν

(
P
P ∗

)
. (2.86b)

The vectors P,Q are determined by the condition (2.82b)

(
P ∗ P

)
ν

(
Q
−Q∗

)
ν′

=
�

i
δνν′ . (2.87)

Let us assume that the HamiltonianH is invariant under a continuous symmetry operation
generated by a Hermitian one-body operator P̂ . The exact Hamiltonian commutes with P̂ :

[H, P̂ ] = 0. (2.88)

It is easily confirmed that P̂ is a spurious solution of the RPA equation [83]

〈HF|[δO, [H, P̂ ]|HF〉 = 0. (2.89)

In the matrix representation, this is written as(
A B
B∗ A∗

)(
P
−P ∗

)
= 0. (2.90)

The RPA equation (2.69) or (2.86) has this solution for the case in which the symmetry
is broken by the HF solution; [	(0), P̂ ] 
= 0. Otherwise the matrix elements Pmi vanish
identically. We can determine the constant M0 for the spurious mode using Eqs.(2.86) and
(2.87). This constant M0 corresponds to the total mass of the nucleus M0 = Am and the
moment of inertia M0 = J for the case of breaking the translational and the rotational
invariances, respectively.

2.2.4 The Quasiparticle-RPA equation

Next we present the explicit expression of the QRPA equation based on the coordinate-space
HFB formalism. We redefine the RPA phonon operator as

O†
λ =

∑
i<j

fλ
ijβ

†
i β

†
j − gλ

ijβj̄βī =
∑
i<j

fλ
ijA

†
ij − gλ

ijAīj̄ , (2.91)
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where {ij} runs over all two-quasiparticle combinations and ī denotes the time-reversed state
of i. The time-reversed state is defined by

ϕī(rσ) = T ϕi(rσ) = −2σϕ∗
i (r − σ). (2.92)

Here we introduce the Fermion bilinear operatorsA†
ij = β†i β

†
j and Aij = βjβi. These operators

satisfy the following boson-like commutation relations

〈HFB|[A†
ij , A

†
i′j′ ]|HFB〉 = 〈HFB|[Aij , Ai′j′ ]|HFB〉 = 0, (2.93a)

〈HFB|[Aij , A
†
i′j′ ]|HFB〉 = δii′δjj′ − δij′δji′ = δij

i′j′ . (2.93b)

The QRPA equation is written in a simple matrix form [96]

∑
γδ

(
Aαβγδ Bαβγδ

B∗
αβγδ A∗

αβγδ

)(
fλ

γδ

gλ
γδ

)
= �ωλ

(
1 0
0 −1

)(
fλ

αβ

gλ
αβ

)
, (2.94)

where

Aαβγδ = 〈HFB|[Aαβ , [H,A
†
γδ ]]|HFB〉, (2.95a)

Bαβγδ = −〈HFB|[Aαβ , [H,Aγ̄δ̄]]|HFB〉. (2.95b)

Explicit expressions of the matrix elements are

Aαβγδ = (Eα + Eβ)δαγδβδ

+
∑

σ1,σ2,σ′
1,σ′

2

∫
dr1dr2dr

′
1dr

′
2 ×

{U∗
α(r1σ1)U∗

β(r2σ2)v̄pp(r1σ1, r2σ2; r′
1σ

′
1, r

′
2σ

′
2)Uγ(r′

1σ
′
1)Uδ(r′

2σ
′
2)

+ V ∗
α (r1σ1)V ∗

β (r2σ2)v̄pp(r1σ1, r2σ2; r′
1σ

′
1, r

′
2σ

′
2)Vγ(r′

1σ
′
1)Vδ(r′

2σ
′
2)

− U∗
α(r1σ1)Vγ(r2σ2)v̄ph(r1σ1, r2σ2; r′

1σ
′
1, r

′
2σ

′
2)V

∗
β (r′

1σ
′
1)Uδ(r′

2σ
′
2)

− V ∗
α (r1σ1)Uγ(r2σ2)v̄ph(r1σ1, r2σ2; r′

1σ
′
1, r

′
2σ

′
2)U

∗
β(r′

1σ
′
1)Vδ(r′

2σ
′
2)

+ U∗
α(r1σ1)Vδ(r2σ2)v̄ph(r1σ1, r2σ2; r′

1σ
′
1, r

′
2σ

′
2)V

∗
β (r′

1σ
′
1)Uγ(r′

2σ
′
2)

+ V ∗
α (r1σ1)Uδ(r2σ2)v̄ph(r1σ1, r2σ2; r′

1σ
′
1, r

′
2σ

′
2)U

∗
β(r′

1σ
′
1)Vγ(r′

2σ
′
2)}, (2.96)

Bαβγδ =
∑

σ1,σ2,σ′
1,σ′

2

∫
dr1dr2dr

′
1dr

′
2 ×

{−U∗
α(r1σ1)U∗

β(r2σ2)v̄pp(r1σ1, r2σ2; r′
1σ

′
1, r

′
2σ

′
2)V

∗
γ̄ (r′

1σ
′
1)V

∗̄
δ (r′

2σ
′
2)

− V ∗
α (r1σ1)V ∗

β (r2σ2)v̄pp(r1σ1, r2σ2; r′
1σ

′
1, r

′
2σ

′
2)U

∗
γ̄ (r′

1σ
′
1)U

∗̄
δ (r′

2σ
′
2)

+ U∗
α(r1σ1)U∗

γ̄ (r2σ2)v̄ph(r1σ1, r2σ2; r′
1σ

′
1, r

′
2σ

′
2)V

∗
β (r′

1σ
′
1)V

∗̄
δ (r′

2σ
′
2)

+ V ∗
α (r1σ1)V ∗

γ̄ (r2σ2)v̄ph(r1σ1, r2σ2; r′
1σ

′
1, r

′
2σ

′
2)U

∗
β(r′

1σ
′
1)U

∗̄
δ (r′

2σ
′
2)

− U∗
α(r1σ1)U ∗̄

δ (r2σ2)v̄ph(r1σ1, r2σ2; r′
1σ

′
1, r

′
2σ

′
2)V

∗
β (r′

1σ
′
1)V

∗
γ̄ (r′

2σ
′
2)

− V ∗
α (r1σ1)V ∗̄

δ (r2σ2)v̄ph(r1σ1, r2σ2; r′
1σ

′
1, r

′
2σ

′
2)U

∗
β(r′

1σ
′
1)U

∗
γ̄ (r′

2σ
′
2)}. (2.97)
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Using the wave functions ϕ1 and ϕ2, the solutions of the coordinate-space HFB equation,
they are written as

Aαβγδ = (Eα + Eβ)δαγδβδ

+
∑

σ1,σ2,σ′
1,σ′

2

∫
dr1dr2dr

′
1dr

′
2 ×

{ϕ1,α(r1σ̄1)ϕ1,β(r2σ̄2)v̄pp(r1σ1, r2σ2; r′
1σ

′
1, r

′
2σ

′
2)ϕ

∗
1,γ(r′

1σ̄
′
1)ϕ

∗
1,δ(r

′
2σ̄

′
2)

+ ϕ2,α(r1σ1)ϕ2,β(r2σ2)v̄pp(r1σ1, r2σ2; r′
1σ

′
1, r

′
2σ

′
2)ϕ

∗
2,γ(r′

1σ
′
1)ϕ

∗
2,δ(r

′
2σ

′
2)

− ϕ1,α(r1σ̄1)ϕ∗
2,γ(r2σ2)v̄ph(r1σ1, r2σ2; r′

1σ
′
1, r

′
2σ

′
2)ϕ2,β(r′

1σ
′
1)ϕ

∗
1,δ(r

′
2σ̄

′
2)

− ϕ2,α(r1σ1)ϕ∗
1,γ(r2σ̄2)v̄ph(r1σ1, r2σ2; r′

1σ
′
1, r

′
2σ

′
2)ϕ1,β(r′

1σ̄
′
1)ϕ

∗
2,δ(r

′
2σ

′
2)

+ ϕ1,α(r1σ̄1)ϕ∗
2,δ(r2σ2)v̄ph(r1σ1, r2σ2; r′

1σ
′
1, r

′
2σ

′
2)ϕ2,β(r′

1σ
′
1)ϕ

∗
1,γ(r′

2σ̄
′
2)

+ ϕ2,α(r1σ1)ϕ∗
1,δ(r2σ̄2)v̄ph(r1σ1, r2σ2; r′

1σ
′
1, r

′
2σ

′
2)ϕ1,β(r′

1σ̄
′
1)ϕ

∗
2,γ(r′

2σ
′
2)}, (2.98)

Bαβγδ =
∑

σ1,σ2,σ′
1,σ′

2

∫
dr1dr2dr

′
1dr

′
2 ×

{−ϕ1,α(r1σ̄1)ϕ1,β(r2σ̄2)v̄pp(r1σ1, r2σ2; r′
1σ

′
1, r

′
2σ

′
2)ϕ2,γ̄(r′

1σ
′
1)ϕ2,δ̄(r

′
2σ

′
2)

− ϕ2,α(r1σ1)ϕ2,β(r2σ2)v̄pp(r1σ1, r2σ2; r′
1σ

′
1, r

′
2σ

′
2)ϕ1,γ̄(r′

1σ̄
′
1)ϕ1,δ̄(r

′
2σ̄

′
2)

+ ϕ1,α(r1σ̄1)ϕ1,γ̄(r2σ̄2)v̄ph(r1σ1, r2σ2; r′
1σ

′
1, r

′
2σ

′
2)ϕ2,β(r′

1σ
′
1)ϕ2,δ̄(r

′
2σ

′
2)

+ ϕ2,α(r1σ1)ϕ2,γ̄(r2σ2)v̄ph(r1σ1, r2σ2; r′
1σ

′
1, r

′
2σ

′
2)ϕ1,β(r′

1σ̄
′
1)ϕ1,δ̄(r

′
2σ̄

′
2)

− ϕ1,α(r1σ̄1)ϕ1,δ̄(r2σ̄2)v̄ph(r1σ1, r2σ2; r′
1σ

′
1, r

′
2σ

′
2)ϕ2,β(r′

1σ
′
1)ϕ2,γ̄(r′

2σ
′
2)

− ϕ2,α(r1σ1)ϕ2,δ̄(r2σ2)v̄ph(r1σ1, r2σ2; r′
1σ

′
1, r

′
2σ

′
2)ϕ1,β(r′

1σ̄
′
1)ϕ1,γ̄(r′

2σ̄
′
2)}. (2.99)

In the HF limit, these matrix elements reduce to those in the RPA equation.

Aminj =(εm − εi)δmnδij

+
∑

σ1,σ2,σ′
1,σ′

2

∫
dr1dr2dr

′
1dr

′
2φ

∗
m(r1σ1)φ∗j (r2σ2)v̄ph(r1σ1, r2σ2; r′

1σ
′
1, r

′
2σ

′
2)φi(r′

1σ
′
1)φn(r′

2σ
′
2)

(2.100)

Bminj =
∑

σ1,σ2,σ′
1,σ′

2

∫
dr1dr2dr

′
1dr

′
2φ

∗
m(r1σ1)φ∗n̄(r2σ2)v̄ph(r1σ1, r2σ2; r′

1σ
′
1, r

′
2σ

′
2)φi(r′

1σ
′
1)φj̄(r

′
2σ

′
2)

(2.101)

Here, v̄ph and v̄pp are the antisymmetrized two-body effective interactions. In Chapters 3–
6, we use the Skyrme-type interaction without momentum-dependent terms [98],

v(r1, r2) =
[
t0(1 + x0Pσ) +

1
6
t3(1 + x3Pσ)	(r1)

]
δ(r1 − r2) (2.102)

for the particle-hole channel. The anitisymmetrized interaction reads

v̄ph(1, 2) = t0

[
3
4
− 1

4
(1 + 2x0)τ 1 · τ 2 − 1

4
(1− 2x0)σ1 · σ2 − 1

4
σ1 · σ2τ 1 · τ 2

]
δ(r1 − r2)

+
t3
6

[
3
4
− 1

4
(1 + 2x3)τ 1 · τ 2 − 1

4
(1− 2x3)σ1 · σ2 − 1

4
σ1 · σ2τ 1 · τ 2

]
	(r1)δ(r1 − r2)

(2.103)
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
t0
2

(1− x0) +
t3
12

(1− x3)	(r1)
]

×(1− σ1 · σ2)δ(r1 − r2) for the n-n and p-p channels,[
t0(x0 + 2)

2
+
t0x0

2
σ1 · σ2

+
(
t3(x3 + 2)

12
+
t3x3

12
σ1 · σ2

)
	(r1)

]
δ(r1 − r2) for the n-p channel,

(2.104)

where we neglect the rearrangement term [99] coming from the density dependence of the ef-
fective interactoin. When we take into account the rearrangement effect, the antisymmetrized
interaction vph reads

v̄ph(1, 2) = t0

[
3
4
− 1

4
(1 + 2x0)τ 1 · τ 2 − 1

4
(1− 2x0)σ1 · σ2 − 1

4
σ1 · σ2τ 1 · τ 2

]
δ(r1 − r2)

+
[

3
48
t3(α+ 2)(α+ 1)− t3

24
(1 + 2x3)τ 1 · τ 2 − t3

24
(1− 2x3)σ1 · σ2 − t3

24
σ1 · σ2τ 1 · τ 2

]
× 	α(r1)δ(r1 − r2)

− α
[
t3
24

(1 + 2x3)(	ν(r1)− 	π(r1))(τ1,z + τ2,z)
]
	α−1(r1)δ(r1 − r2)

− α(α − 1)
[
t3
48

(1 + 2x3)(	ν(r1)− 	π(r1))2
]
	α−2(r1)δ(r1 − r2), (2.105)

where α is the exponent of the density denpendence. We adopt the density-dependent power
α = 1 in the calculations of this thesis.
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Chapter 3

Octupole excitations on
superdeformed states in neutron
drip-line nuclei – effects of
continuum coupling and nuclear
deformation

3.1 Introduction

In order to clearly see the effect of nuclear deformation on properties of low-frequency modes of
excitation in neutron-rich nuclei, we study octupole excitations on superdeformed (SD) states
in neutron drip-line nuclei. Because we would like to understand the effects of continuum
coupling and nuclear deformation, we do not take into account the pairing correlation in this
chapter.

Recently, Inakura et al.[64] investigated properties of negative-parity collective excitations
built on SD states in neutron-rich sulfur isotopes by means of the mixed representation RPA
[65, 66, 67] based on the SHF mean field, and found many low-energy modes possessing
strongly enhanced isoscalar octupole transition strengths. They also studied excitation modes
built on the SD states in the 40Ca region with N = Z, for which the SD yrast states have been
discovered in recent experiments [101, 102]. In the mixed representation RPA, the particle
states are treated using the coordinate-mesh representation, while the HF basis is used for
the hole states. This approach is fully self-consistent in that the same effective interaction is
used in both the mean-field and RPA calculations. Also, it is unnecessary to introduce an
upper cutoff with respect to the energies of the particle states. On the other hand, it is not
easy in this method to identify microscopic particle-hole configurations generating individual
RPA modes. Therefore, in this chapter, using the deformed Woods-Saxon potential and
the conventional matrix formulation of the RPA, we have made a detailed analysis of the
microscopic structure of octupole excitation modes built on the SD states in the 40Ca region
with N = Z and the 50S region close to the neutron drip line. In this approach, we can easily
obtain a simple and transparent understanding of the particle-hole configurations generating
the RPA eigenmodes.

This chapter is organized as follows. In the next section, the frameworks of the mean-
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field and RPA calculations are described. In §3.3.1, the results of the RPA calculation for
the SD states in 32S, 36S and 40Ca are presented and discussed. In §3.3.2, we present the
result for 50S close to the neutron drip line and suggest that some low-lying states associated
with excitations of a single neutron from a loosely bound state to a resonance state acquire
extremely strong transition strengths. In §3.3.3, we discuss excitation modes in the oblately
deformed 40Mg and suggest that the results obtained for 50S are not restricted to the SD
states but are rather general phenomena. Conclusions are given in §3.4.

This work was reported in Refs. [78, 79].

3.2 Method of calculation

3.2.1 Mean-field calculation

We consider the single-particle motion in an axially symmetric deformed potential. Using
the standard notation, the Schrödinger equation is written{

− �
2

2m
∇2 + VWSf(r) + VSO∇f (r) · (σ × p) + VC(r)

(1− τ3)
2

}
Φi = eiΦi. (3.1)

The solutions to this equation take the following form:

Φi(x) = Φi(r, σ, τ) = χqi(τ)
[
φ+

i (ρ, z)eiΛ
−
i ϕχ 1

2
(σ) + φ−i (ρ, z)eiΛ

+
i ϕχ− 1

2
(σ)
]
. (3.2)

Here, Λ±
i = Ωi± 1/2, where Λi and Ωi are the z-components of the total and orbital angular

momenta, respectively, and (ρ, z, ϕ) are the cylindrical coordinates of r = (x, y, z):

x = ρ cosϕ, y = ρ sinϕ, z = z. (3.3)

The subscript qi = +1/2 (−1/2) denotes neutrons (protons). In terms of the wave functions
given in (3.2), the nucleon density is given by

	(ρ, z) =
∑

i

[|φ+
i (ρ, z)|2 + |φ−i (ρ, z)|2], (3.4)

and the mean-square radii of protons and neutrons are calculated as

〈r2〉τ =
∫
ρdρdzr2	τ (ρ, z)∫
ρdρdz	τ (ρ, z)

, (3.5)

where r =
√
ρ2 + z2 and τ=π or ν, with 	π(ρ, z) and 	ν(ρ, z) being the proton and neutron

densities.
We employ the phenomenological Woods-Saxon potential

f(r) = (1 + exp[(r −R(θ))/a])−1, (3.6)
R(θ) = c(1 + β2Y20(θ)), (3.7)

where c is determined by the volume conservation condition. Though an angle dependent
diffuseness parameter a(θ) is better for a more accurate calculation [103], we use a constant
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a = 0.67 fm for simplicity. We also use the standard parameter values [23] for the central
and spin-orbit potentials,

VWS = −51 + 33
N − Z
A

τ3, (3.8)

VSO =
1
2
r20

(
−22 + 14

N − Z
A

τ3

)
, (3.9)

with r0 = 1.27 fm. The spin-orbit term is written

V̂ls = −1
2
VSO

[
σ+e

−iϕ

{
∂f

∂ρ

∂

∂z
− ∂f

∂z

(
∂

∂ρ
+
l̂z
ρ

)}

+ σ−eiϕ
{
−∂f
∂ρ

∂

∂z
+
∂f

∂z

(
∂

∂ρ
− l̂z
ρ

)}
+ σz2

∂f

∂ρ

l̂z
ρ

]
, (3.10)

where σ± = σx±iσy and l̂z = −i∂/∂ϕ. For protons, we solve the Poisson equation,∇2VC(r) =
4πe	π(r), to obtain the Coulomb potential VC . In the present calculation, we approximate
the proton density 	π(r) by a Woods-Saxon form.

We can rewrite the Schrödinger equation (3.1) in the matrix form

hφ =
(
h↑↑ h↑↓
h↓↑ h↓↓

)(
φ+

i (ρ, z)
φ−i (ρ, z)

)
= ei

(
φ+

i (ρ, z)
φ−i (ρ, z)

)
, (3.11)

where

h↑↑ = − �
2

2m

[
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

∂2

∂z2
−
(

Λ−

ρ

)2
]

+ VWSf(ρ, z)− VSO
∂f(ρ, z)
∂ρ

Λ−

ρ
, (3.12a)

h↓↓ = − �
2

2m

[
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

∂2

∂z2
−
(

Λ+

ρ

)2
]

+ VWSf(ρ, z) + VSO
∂f(ρ, z)
∂ρ

Λ+

ρ
, (3.12b)

h↑↓ = −1
2
VSO

[
∂f(ρ, z)
∂ρ

∂

∂z
− ∂f(ρ, z)

∂z

(
∂

∂ρ
+

Λ+

ρ

)]
, (3.12c)

h↓↑ = −1
2
VSO

[
−∂f(ρ, z)

∂ρ

∂

∂z
+
∂f(ρ, z)
∂z

(
∂

∂ρ
− Λ−

ρ

)]
. (3.12d)

Because this equation possesses time-reversal symmetry, we know that if Φi={φ+
i , φ

−
i ,Ωi} is

a solution, then Φī = {−φ−i , φ+
i ,−Ωi} is also a solution with the same eigenvalue ei, and

thus it is sufficient to solve it for positive Ω only. We also assume reflection symmetry with
respect to the x-y plane. Then, the wave function φ± possesses z-parity π(−1)Λ

∓
as a good

quantum number (π being the parity), and therefore it is sufficient to consider only positive
z.

We solve Eq. (3.11) directly in coordinate space. In comparison to the conventional
method of using a deformed harmonic oscillator basis [104], this method is believed to be
more effective in the treatment of spatially extended wave functions, like loosely bound states,
resonant states and continuum states. The Hamiltonian matrix (3.11) is discretized by use
of a coordinate mesh in the (ρ, z) plane. The mesh points are chosen as

ρi =
(
i− 1

2

)
Δ, i = 1, 2, · · ·N, (3.13)
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to avoid division by zero, where Δ represents the lattice mesh size. The mesh points in the
z direction are taken as

zj = (j − 1)Δ, j = 1, 2, · · ·M. (3.14)

The boundary conditions are set as

φi,M = φN,j = 0, (3.15)

where φi,j = φ(ρ, z). We construct the discretized Hamiltonian matrix by use of the finite
difference method for derivatives and then diagonalize the matrix to obtain the single-particle
wave functions on the two-dimensional lattice. The kinetic energy term is evaluated using
the 9-points formula; its explicit expression is given in Appendix A.

3.2.2 RPA calculation

Using the single-particle basis obtained in the previous subsection, we solve the RPA equation
in the standard matrix formulation [43],

∑
p′h′

(
Aphp′h′ Bphp′h′

B∗
php′h′ A∗

php′h′

)(
fλ

p′h′

gλ
p′h′

)
= �ωλ

(
1 0
0 −1

)(
fλ

ph

gλ
ph

)
, (3.16)

where

Aphp′h′ = (ep − eh)δpp′δhh′ + v̄ph′hp′, Bphp′h′ = v̄pp′hh′ . (3.17)

Here, the subscripts p and h denote the single-particle states above and below the Fermi en-
ergy (particles and holes), respectively. The antisymmetrized matrix elements of the residual
interaction v are denoted v̄ph′hp′ and v̄pp′hh′. For v, we employ the Skyrme-type interac-
tion [98] without momentum-dependent terms,

v(r, r′) =
[
t0(1 + x0Pσ) +

1
6
t3(1 + x3Pσ)	(r)

]
δ(r − r′), (3.18)

with t0 = −1100 MeV·fm3, t3 = 16000 MeV·fm6, x0 = 0.5, and x3 = 1.0, Pσ being the
spin exchange operator. Because our calculation is not self-consistent in the sense that the
residual interaction is not related to the mean-field potential, we renormalize the residual
interaction by multiplying it by a factor f to obtain the spurious modes at zero excitation
energy: v → f · v.

The intrinsic matrix elements 〈0|Q3K |λ〉 of the octupole operator Q3K between the excited
state |λ〉 and the ground state |0〉 are given by

〈0|Q3K |λ〉 =
∑
ph

(
Qhp

3Kf
λ
ph +Qph

3Kg
λ
ph

)
=
∑
ph

Mph
3K , (3.19)

and

Qph
3K = 2πδK,Ωp−Ωh

∫
ρdρdz

(
φ+

p (ρ, z)φ+
h (ρ, z) + φ−p (ρ, z)φ−h (ρ, z)

)
Q3K(ρ, z) (3.20)

≡ 2πδK,Ωp−Ωh

∫
dρdzQph

3K(ρ, z), (3.21)
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where Q3K(ρ, z) = Q3K(r)e−iKϕ = r3Y3K(θ, ϕ)e−iKϕ.
The isoscalar octupole strength function is

SIS(ω) =
∑

λ

|〈0|QIS
3K |λ〉|2δ(�ω − �ωλ), (3.22)

where QIS
3K = Qπ

3K +Qν
3K , and Qπ

3K and Qν
3K are the proton and neutron octupole operators.

The reduced isoscalar octupole transition probability is defined by B(QIS3) = |〈0|QIS
3K |λ〉|2.

The reduced proton and neutron octupole transition probabilities, B(E3) and B(Qν3), are
obtained by replacing QIS

3K with eQπ
3K and Qν

3K , respectively. Note that these quantities
represent intrinsic transition strengths, and hence the appropriate Clebsh-Gordan coefficients
should be multiplied to obtain transition probabilities in the laboratory frame [126].

3.2.3 Details of numerical calculation

We numerically solved the Schrödinger equation (3.11) in a rectangular box, using a lattice
mesh size Δ = 0.5 fm. The size of the box used was 2.5 (3.5) times the half density radii in the
directions of the major and minor axes for 32,36S and 40Ca (50S). The Bode’s rule was used for
the numerical integrations of the RPA matrix elements (see Appendix A). The deformation
parameters β2 were determined so as to approximately reproduce the shell structure near the
Fermi level obtained in the SHF calculation by Inakura et al. [100]. Their values for protons
and neutrons are not necessarily the same. The actual values of the box size used in the
calculations are indicated in the figure captions for individual cases, together with the β2

values adopted. The RPA matrix (3.17) was diagonalized with the cutoff at 30 MeV for the
particle-hole excitation energy. In spherical systems, there is only one spurious Jπ = 1− mode
associated with the center-of-mass motion. In deformed systems, this mode splits into the
Kπ = 0− and 1− modes. We find that, e.g., for 32S, the factors f0 = 0.7545 and f1 = 0.7723
are needed to obtain the spurious Kπ = 0− and Kπ = 1− modes at zero energy. Using these
f0 and f1 values, we obtain low-lying Kπ = 2− states at 2.653 and 2.557 MeV, respectively.
This difference of about 0.1 MeV indicates the magnitude of the numerical uncertainty caused
by ignoring self-consistency in our calculation. In the following, we choose the factor f such
that the excitation energy of the spurious Kπ = 1− mode becomes zero.

3.3 Results and Discussion

3.3.1 The SD states in 32S, 36S and 40Ca

We first discuss the result of the RPA calculation for the SD state in 32S. Although the
existence of the SD band in 32S has been conjectured for a long time [105], it has not yet
been observed, and this remains a great challenge: As discussed in Refs. [106, 107, 108, 109,
110], the SD local minimum in 32S corresponds to the doubly closed shell configuration with
respect to the SD magic number Z = N = 16. It involves two protons and two neutrons
in the down-sloping single-particle levels originating from the f7/2 shell (see Fig. 3.1). The
calculated octupole transition strengths with Kπ = 2− are displayed in Fig. 3.2. A prominent
peak is seen at about 2.6 MeV with a strongly enhanced transition strength of about 23
Weisskopf units (1 W.u. � 61 fm6 for 32S). There are no peaks representing strengths
greater than 1 W.u. for other values of K in this energy region. As shown in Table 3.1, the
major component of this RPA mode is the particle-hole excitation from the [211]1/2 state to

29



Chapter 3. Octupole excitations on superdeformed states in neutron drip-line nuclei –
effects of continuum coupling and nuclear deformation

-15

-10

-5

0

0 0.2 0.4 0.6 0.8 1

E
ne

rg
y 

(M
eV

)

β2

16

20

34

f7/2

[330]1/2

[211]1/2

[321]3/2
[202]5/2

[310]1/2

[431]3/2

[200]1/2

[440]1/2

[422]5/2

[303]7/2

[321]1/2

Figure 3.1: Neutron single-particle levels in the deformed Woods-Saxon potential, plotted as
functions of the quadrupole deformation parameter β2. The solid and dotted curves denote
positive- and negative-parity levels, respectively. The SD magic numbers are N = 16, 20 and
34. They are responsible for the appearance of the SD states in 32S, 36S, 40Ca and 50S.

the [321]3/2 state. The proton and neutron excitations act coherently. Other particle-hole
configurations also contribute coherently. Here we note that, although the RPA amplitude fph

for the particle-hole excitation from the [330]1/2 state to the [202]5/2 state is appreciable, its
contribution to the transition matrix element Mph

32 is very small. This can be understood from
the asymptotic selection rules [111] for low-energy octupole transitions in the SD harmonic-
oscillator potential with the axis ratio 2:1 :

Q30 : ΔNsh = 1, Δn3 = 1, ΔΛ = 0, (3.23a)
Q31 : ΔNsh = 0, Δn3 = 2, ΔΛ = 1, (3.23b)
Q32 : ΔNsh = 1, Δn3 = 1, ΔΛ = 2, (3.23c)
Q33 : ΔNsh = 2, Δn3 = 0, ΔΛ = 3. (3.23d)

Here, the shell quantum number is defined as Nsh = 2n⊥ + n3. These selection rules hold
approximately also for the SD Wood-Saxon potential under consideration. Accordingly, the
[330]1/2 → [202]5/2 octupole matrix element is very small, while that of the [211]1/2 →
[321]3/2 excitation is large. Thus, the coherent proton and neutron excitations from the
[211]1/2 hole state to the [321]3/2 particle state are the major origin of the large octupole
transition strength for this RPA mode.

Next, let us discuss the result of the RPA calculation for the SD state in 40Ca. As
mentioned in §3.1, for this nucleus, the SD yrast band has been discovered in recent exper-
iments [101, 102]. The SD shell gap at Z = N = 20 is associated with the 4p-4h excitation
(for both protons and neutrons) from below the spherical closed shell to the f7/2 shell. Figure
3.3 presents the calculated octupole transition strengths with Kπ = 1−. It is seen that there
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Figure 3.2: Left: The isoscalar and proton octupole strengths, B(QIS3) and B(E3)/e2, for
the Kπ = 2− excitations on the SD state in 32S are plotted in the top and middle panels
as functions of the excitation energy. These were obtained using an RPA calculation with
β2 = 0.78 for both protons and neutrons, using a box of size ρmax × zmax = 8.25 fm ×14.0
fm. The unperturbed particle-hole strengths are also plotted with dashed lines in the bottom
panel. Right: Particle-hole configurations generating the lowest Kπ = 2− state at 2.6 MeV.
Excitations satisfying the asymptotic selection rule Eq. (3.23) are indicated by thick arrows.
The asymptotic quantum numbers [Nn3Λ]Ω are displayed for pertinent levels. The Fermi
surfaces for protons and neutrons are indicated by the dashed lines.

Table 3.1: RPA amplitudes for the 2− state at 2.6 MeV in 32S, calculated with β2 = 0.78 for
both protons and neutrons. It is characterized by B(E3) = 408 e2fm6, B(Qν3) = 306 fm6,
B(QIS3) = 1422 fm6, and

∑ |gph|2 = 1.86× 10−1. The single-particle levels are labeled with
the asymptotic quantum numbers [Nn3Λ]Ω. Only components with |fph| > 0.1 are listed.

particle hole εp − εh fph Qph
32 Mph

32

(MeV) (fm3) (fm3)
ν[202]5/2 ν[330]1/2 4.01 −0.293 −0.101 0.040
ν[321]3/2 ν[211]1/2 4.19 −0.631 −13.0 11.5
ν[321]1/2 ν[211]3/2 12.6 −0.141 −11.2 2.27
π[202]5/2 π[330]1/2 3.97 −0.282 −0.248 0.096
π[321]3/2 π[211]1/2 3.93 −0.733 −13.8 13.7
π[321]1/2 π[211]3/2 12.3 −0.138 −11.8 2.35
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Figure 3.3: Left: The isoscalar and proton octupole strengths, B(QIS3) and B(E3)/e2, for
the Kπ = 1− excitations on the SD state in 40Ca are plotted in the top and middle panels
as functions of the excitation energy. These were obtained using an RPA calculation with
β2 = 0.6 for both protons and neutrons, using a box of size ρmax × zmax = 8.25 fm ×14.0
fm. The unperturbed particle-hole strengths are also plotted with dashed lines in the bottom
panel. Right: Particle-hole configurations generating the lowest Kπ = 1− state at 2.2 MeV.
The notation here is the same as in Fig. 3.2.

are no peaks representing strengths greater than 1.5 W.u. for other values of K in this energy
region. There is a prominent peak at 2.2 MeV with an isoscalar strength of about 6 W.u. (1
W.u. � 95 fm6 for 40Ca). As shown in Table 3.2, this RPA eigenstate consists of components
from the coherent proton and neutron excitations from [321]3/2 to [200]1/2, which satisfy
the asymptotic selection rule (3.23b).

The SD states in 32S and 40Ca are associated with the SD magic numbers N = Z = 16
and 20, respectively. It is thus interesting to consider the SD state in 36S, which has Z = 16
and N = 20. Evidence for the existence of the SD band in this nucleus has been obtained
from an SHF calculation [100]. The result of the RPA calculation is presented in Fig. 3.4,
Table 3.3 and Table 3.4. There is a peak corresponding to Kπ = 1− at 2.6 MeV with
an isoscalar strength of about 3.4 W.u. and another peak corresponding to Kπ = 2− at
3.9 MeV with an isoscalar strength of about 11 W.u. (1 W.u. � 77 fm6 for 36S). The
Kπ = 1− peak is associated with the particle-hole excitation from [321]3/2 to [200]1/2, while
the Kπ = 2− peak corresponds to the [211]1/2 → [321]3/2 excitation. These particle-hole
configurations are the same as for the Kπ = 1− state in 40Ca and the Kπ = 2− in 32S
discussed above. However, in contrast to the N = Z nuclei, 32S and 40Ca, the coherence of
proton and neutron excitations is absent in the case of 36S. Thus, these RPA modes in 36S
are dominated by specific particle-hole configurations, although appreciable amounts of other
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Table 3.2: RPA amplitudes for the 1− state at 2.2 MeV in 40Ca, calculated with β2 = 0.6 for
both protons and neutrons. It is characterized by B(E3) = 122 e2fm6, B(Qν3) = 153 fm6,
B(QIS3) = 549 fm6, and

∑ |gph|2 = 4.69×10−2. Only components with |fph| > 0.1 are listed.

particle hole εp − εh fph Qph
31 Mph

31

(MeV) (fm3) (fm3)
ν[200]1/2 ν[321]3/2 2.46 0.836 9.08 8.87
π[200]1/2 π[321]3/2 2.59 0.568 10.1 7.06

Table 3.3: RPA amplitudes for the 1− state 2.6 MeV in 36S, calculated with β2 = 0.565 and
0.685 for protons and neutrons, respectively. It is characterized by B(E3) = 5.95 e2fm6,
B(Qν3) = 189 fm6, B(QIS3) = 262 fm6, and

∑ |gph|2 = 9.18× 10−3. Only components with
|fph| > 0.03 are listed.

particle hole εp − εh fph Qph
31 Mph

31

(MeV) (fm3) (fm3)
ν[200]1/2 ν[321]3/2 2.71 −0.999 9.71 −10.5
ν[200]1/2 ν[330]1/2 6.11 −0.038 4.46 −0.22
π[200]1/2 π[330]1/2 5.23 −0.062 3.62 −0.28

Table 3.4: RPA amplitudes for the 2− state 3.9 MeV in 36S, calculated with β2 = 0.565
and 0.685 for protons and neutrons, respectively. It is characterized by B(E3) = 352 e2fm6,
B(Qν3) = 97.0 fm6, B(QIS3) = 819 fm6, and

∑ |gph|2 = 3.52× 10−2. Only components with
|fph| > 0.1 are listed.

particle hole εp − εh fph Qph
32 Mph

32

(MeV) (fm3) (fm3)
ν[321]1/2 ν[202]5/2 4.75 −0.141 −8.37 1.34
ν[440]1/2 ν[321]3/2 5.19 0.137 6.34 1.01
ν[321]1/2 ν[211]3/2 11.7 −0.114 −12.5 1.85
π[321]3/2 π[211]1/2 4.45 −0.970 −12.5 14.2
π[321]1/2 π[211]3/2 12.9 −0.101 −10.8 1.43
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Figure 3.4: Upper left: The isoscalar octupole strength B(QIS3) distribution for the Kπ = 1−

excitations on the SD state in 36S is plotted in the top panel as a function of the excitation
energy. This was obtained using an RPA calculation with β2 = 0.565 and 0.685 for protons
and neutrons, respectively, using a box of size ρmax × zmax = 8.25 fm ×14.0 fm. The un-
perturbed particle-hole strength distribution is also plotted with dashed lines in the bottom
panel. Upper right: Particle-hole configurations generating the lowest Kπ = 1− state at 2.5
MeV. The notation is the same as in Fig. 3.2. Lower left: Same as above, but for the Kπ = 2−

excitations. Lower right: Same as above, but for the Kπ = 2− excitation at 3.9 MeV.
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Figure 3.5: Left: The isoscalar octupole strength B(QIS3) distribution for the Kπ = 2−

excitations built on the SD state in 50S is plotted in the top panel as a function of the
excitation energy. This was obtained using an RPA calculation with β2 = 0.54 and 0.73 for
protons and neutrons, respectively, using a box of size ρmax×zmax = 14.25 fm ×22.0 fm. The
unperturbed particle-hole strengths are also plotted with dashed lines in the bottom panel.
The arrow indicates the threshold energy, Eth = 1.4 MeV. Right: Particle-hole configurations
generating the lowest Kπ = 2− state at 3.1 MeV. The notation here is the same as in Fig. 3.2.

particle-hole configurations collectively contribute to the Kπ = 2− mode (see Table 3.4). The
collectivity of these modes is apparently weak in comparison with the octupole vibrations built
on the SD states in heavy nuclei [112, 113], because the number of particle-hole configurations
contributing to the RPA modes is rather small in the nuclei under consideration. It should
be mentioned, however, that transition strengths much larger than those in our results are
obtained for these nuclei in the mixed representation RPA calculation carried out by Inakura
et al. [64], where no cutoff is imposed in the particle-hole excitation energy. The major cause
of this difference may be the rather severe energy cutoff in the present RPA calculation.
(See Ref. [99] for a numerical analysis of the contributions from very high-lying particle-hole
configurations to the transition strengths of the low-lying RPA modes.)

3.3.2 The SD state in 50S

In this subsection, we discuss the result for 50S, which is, according to the SHF calcula-
tions [28, 100], close to the neutron drip line. The existence of the SD band in this nucleus
is suggested in Ref. [100]. The isoscalar octupole strength distribution with Kπ = 2− calcu-
lated with the RPA is presented in Fig. 3.5. There are no peaks at any values of K in this
energy region other than those corresponding to excitations to the discretized continuum.
As we explain in detail below, the highest peak, at 3.1 MeV, with Kπ = 2− is associated
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Figure 3.6: The neutron particle-hole excitation contributing to the strongly enhanced tran-
sition strength of the Kπ = 2− state at 3.1 MeV in superdeformed 50S. The particle and hole
states are labeled by their asymptotic quantum numbers. Their wave functions are plotted
by the dotted curves. The solid curve denotes the neutron single-particle potential including
the centrifugal barrier for Λ = 2. The horizontal axis represents

√
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line.

with the excitation of a single neutron from the loosely bound [310]1/2 state to the resonance
[422]5/2 state. We obtain a peak of similar nature but with a smaller strength at 2.9 MeV.
It is associated with the excitation of a single neutron from the loosely bound [431]3/2 state
to the resonance [303]7/2 state. This difference in strength between the two peaks can be
understood from the asymptotic selection rule (3.23c): The former particle-hole excitation
satisfies it, whereas the latter does not. On the other hand, the second highest peak, at 2.8
MeV, is due to a neutron excitation from the [431]3/2 state to a discretized continuum state
with Ωπ = 1/2−.

We now discuss the microscopic structure of the Kπ = 2− excitation at 3.1 MeV in
detail. It has an extremely strong isoscalar strength of B(QIS3) = 41 W.u. and a weak
electric strength of B(E3) = 0.13 W.u. (1 W.u. � 149 fm6 for 50S). As shown in Table 3.5,
the major component of this RPA mode is the [310]1/2 → [422]5/2 excitation of a neutron.
Their wave functions are plotted in Fig. 3.6. Because the [310]1/2 state is loosely bound and
the [422]5/2 state is a resonance state, their wave functions extend significantly outside of the
half-density radius of this nucleus. Together with the fact that this particle-hole configuration
satisfies the asymptotic selection rule (3.23c), the very extended spatial structures of their
wave functions are the main reason why it has the extremely large transition strength.

This [422]5/2 state has an interesting property: Because the centrifugal barrier is angle
dependent, it lies below the barrier along the z-axis and 0.2 MeV above it along the ρ-axis
(see Fig. 3.7). To determine whether or not the resonance interpretation of this state is valid,
we first examined the box size dependence of calculated single-particle energies. As shown
in Fig. 3.8, the energy of the [422]5/2 state is found to be stable with respect to variation
of the box size. We next evaluated the sum of the eigenphase, Δ(E) =

∑
a δa(E), following

the procedure of Ref. [114]. The eigenphase is obtained through eigenvalues of the S-matrix,
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Table 3.5: RPA amplitudes for the 2− state at 3.1 MeV in 50S, calculated with β2 = 0.54
and 0.73 for protons and neutrons, respectively. It is characterized by B(E3) = 19.4 e2fm6,
B(Qν3) = 5359 fm6, B(QIS3) = 6023 fm6, and

∑ |gph|2 = 6.42 × 10−3. Only components
with |fph| > 0.1 are listed.

particle hole εp − εh fph Qph
32 Mph

32

(MeV) (fm3) (fm3)
ν[303]7/2 ν[431]3/2 3.01 0.133 −11.6 −1.49
ν[422]5/2 ν[310]1/2 3.20 0.967 65.7 66.1
π[321]3/2 π[211]1/2 4.69 −0.138 −12.4 2.26
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and their sum has the same energy dependence around a resonance as the phase shift in a
spherical system [115],

tan(Δ(E)−Δ0(E)) =
Γ

2(E − ER)
, (3.24)

where ER and Γ denote the resonance energy and the total width, respectively. The sum of
the background eigenphases, Δ0(E), is considered a slowly-varying quantity. The result of
this calculation, presented in Fig. 3.9, confirms that the [422]5/2 state can be regarded as
a resonance. Its width is estimated to be about 0.14 MeV. Furthermore, we confirmed that
the root-mean-square radius of this state is clearly distinguishable from those of discretized
continuum states (see Fig. 3.10). In this figure, the root-mean-square radius of various single-
particle states are plotted. We find that not only the resonance [422]5/2 state but also the
weakly bound [310]1/2 state has a root-mean-square radius about 2 fm larger than the average
value for neutrons,

√〈r2〉ν = 4.44 fm. This is because the low angular momentum p1/2

component that has a spatially extended structure becomes dominant in such a Ωπ = 1/2−

neutron level as the binding energy approaches zero [116, 117].
In contrast to the peak at 3.1 MeV discussed above, the peak at 2.8 MeV corresponds to

the excitation of the loosely bound [431]3/2 neutron to a discretized continuum state with
Ωπ = 1/2−. Therefore, its position and height do not have definite physical meanings. In
fact, these values change as the box size is varied. This peak even disappears when smaller
boxes are used in the numerical calculation (see Fig. 3.11), whereas the peak position and the
height associated with the [310]1/2 → [422]5/2 excitation is stable, as long as a box larger
than ρmax× zmax = 12.25 fm ×20.0 fm is used. We should also mention that the convergence
of the numerical calculation is insufficient for the unperturbed strength of the [310]1/2 →
[422]5/2 transition, because the root-mean-square radius of the [422]5/2 state still increases
from 5.90 fm to 6.54 fm for a larger box, with ρmax × zmax = 14.25 fm ×22.0 fm. Therefore,
the calculated transition strength has only qualitative meaning.

Finally, let us make a comparison between the spatial distributions of the Kπ = 2− oc-
tupole strength associated with individual particle-hole excitations on the SD state in the drip
line nucleus 50S and those in the stable nucleus 32S. Figure 3.12 plots the spatial distribution
functions Qph

3K(ρ, z) for some major configurations generating the low-lying Kπ = 2− modes
in 32S and 50S. It is clear that the particle-hole excitations in 50S have spatial distributions
significantly extended outside of the nucleus, while those in 32S are peaked around the surface
region. This spatially extended structure brings about a strong enhancement of the octupole
strength in 50S. This can be regarded as one of the unique properties of excitation modes in
nuclei close to the drip line. Note that this mechanism of transition strength enhancement is
different from the threshold effect associated with the excitation of a loosely bound neutron
into the non-resonant continuum [118].

3.3.3 The oblately deformed state in 40Mg

To show that the strong enhancement of the transition strength for an excitation from a
loosely bound state to a resonance state is not restricted to the SD states but expected to
be a rather general phenomenon in nuclei close to the drip line, we present in this subsection
another example of the RPA calculation for 40Mg. According to the HFB calculations [26, 29],
this nucleus is situated close to the neutron drip line and possesses both prolate and oblate
local minima.
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Figure 3.11: The isoscalar octupole strength B(QIS3) distributions for the Kπ = 2− excita-
tions on the SD state in 50S, obtained using an RPA calculation with β2 = 0.54 and 0.73
for protons and neutrons, respectively, using a box of size ρmax × zmax = 10.25 fm ×16.0 fm
(left) and 12.25 fm ×20.0 fm (right). The neutron root-mean-square radii

√〈r2〉ν are 4.42
fm and 4.44 fm. The unperturbed particle-hole strengths are also plotted with dashed lines
in the bottom panels. The arrows indicate the threshold energy, Eth = 1.4 MeV.

Table 3.6: RPA amplitudes for the 3− state at 6.2 MeV in the oblately deformed 40Mg,
calculated with β2 = −0.2 for both protons and neutrons. It is characterized by B(E3) =
1.09 e2fm6, B(Qν3) = 9280 fm6, B(QIS3) = 9482 fm6, and

∑ |gph|2 = 1.46×10−3. The parti-
cle states other than the ν[404]9/2 and ν[404]7/2 resonances represent discretized continuum
states. Only components with |fph| > 0.1 are listed.

particle hole εp − εh fph Qph
33 Mph

33

(MeV) (fm3) (fm3)
ν 7/2+ ν[301]1/2 5.84 −0.142 −56.0 7.81
ν 5/2+ ν[301]1/2 5.92 0.156 49.6 7.58
ν 5/2+ ν[301]1/2 6.06 0.211 −0.526 −0.109
ν[404]9/2 ν[301]3/2 6.24 0.909 −96.7 −89.5
ν 3/2+ ν[301]3/2 6.45 0.171 −37.4 −6.51
ν[404]7/2 ν[301]1/2 6.52 0.160 −82.1 −13.3
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Figure 3.12: Spatial distribution functions Qph
32(ρ, z) for some particle-hole excitations gen-

erating the low-lying Kπ = 2− states in superdeformed 32S and 50S. The contour lines are
plotted at intervals of 0.02 fm. The panels denoted (a), (b) and (c) correspond to the [211]1/2
→ [321]3/2, [211]3/2 → [321]1/2, and [330]1/2 → [202]5/2 excitations in 32S, respectively,
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Figure 3.13 displays the octupole transition strengths for the Kπ = 3− excitations on the
oblately deformed state in 40Mg. Among several peaks in the isoscalar strength distribution,
we can give a clear physical interpretation for the two prominent peaks at 6.2 and 6.6 MeV:
The former is created by the excitation of a neutron from the loosely bound [301]3/2 state to
the resonance [404]9/2 state, while the latter is from the loosely bound [301]3/2 state to the
resonance [404]7/2 state. These resonance states are associated with the g9/2 orbit, which has
a high centrifugal barrier. Due to the spatially extended structure of this type of particle-hole
excitation, they acquire extremely large transition strengths; the isoscalar octupole strength
of the former (latter) is about 90 (39) W.u. (1 W.u. � 95 fm6 for 40Mg). The major
components of the RPA amplitudes of the Kπ = 3− mode at 6.2 MeV are presented in
Table 3.6. Other peaks in this figure are due to excitations to discretized continuum states;
e.g., the peak at 3.8 (5.8) MeV is associated with the excitation from the [301]3/2 ([301]1/2)
state to the discretized continuum Ωπ=3/2+ (7/2+) state. Therefore, their positions and peak
heights do not have definite physical meanings. This conclusion was obtained by examining
the box size dependence of single-particle energies and their eigenphase sums. Typical results
of these calculations are presented in Figs. 3.14 and 3.15. The widths of the resonant [404]9/2
and [404]7/2 states are estimated to be about 0.8 and 1.2 MeV, respectively.

Finally, we show in Fig. 3.16 the spatial distribution functionsQph
33(ρ, z) for the [301]3/2→

[404]9/2 and [301]1/2 → [404]7/2 excitations, together with the neutron density distribution
of the oblately deformed state in 40Mg. It is clearly seen that the strengths of these particle-
hole excitations extend far from the nuclear surface. Furthermore, we notice that the peak
positions of the two distributions, shown in (b) and (c), differ considerably. This can be
regarded as the major reason that the two particle-hole configurations do not strongly mix
with each other in the RPA eigenmodes, despite the fact that their unperturbed energies
are fairy close (see Table 3.6). This is quite different from the familiar situations for low-
frequency RPA modes in stable nuclei, in which the strength distribution functions of many
particle-hole configurations have peaks near the nuclear surface and tend to mix with each
other, generating collective vibrational modes.

3.4 Summary

By means of the RPA calculation based on the deformed Woods-Saxon potential in the
coordinate-mesh representation, we have carried out a comparative study of octupole excita-
tions built on the SD states in the 40Ca region and those in 50S. In the N = Z stable nuclei,
32S and 40Ca, the enhancement of the octupole transition strength results from the coherence
between the proton and neutron excitations. By contrast, in 50S close to the neutron drip
line, we have found that the low-lying state created by the excitation of a single neutron from
a loosely bound low Ω state to a high Ω resonance state acquires an extremely large transition
strength. We have made a detailed study of the spatial distributions of particle-hole transi-
tion strengths and confirmed that this enhancement of the strength is a natural consequence
of the fact that these particle and hole wave functions extend significantly outside of the
nuclear surface. To show that this kind of enhancement phenomenon is not restricted to the
SD states, we have also presented another example for oblately deformed 40Mg close to the
neutron drip line.

The present calculation indicates that, as we approach the drip line, it becomes increas-
ingly difficult to generate collective modes of excitation by coherent superpositions of many
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particle-hole excitations. This is because the bound particle states disappear and individ-
ual resonance wave functions possess different spatial structures. It should be emphasized,
however, that the pairing correlation is not taken into account in the present calculation.
Quite recently, Yamagami showed [76] that collectivity emerges in nuclei close to the drip
line, owing to the pairing anti-halo effect [122]: The self-consistent pairing correlation in the
continuum brings about spatial localization of particle-hole excitations, which helps in gen-
erating the collective modes of excitation. Thus, it is an important next step to investigate
how the results presented in this chapter are modified by the pairing correlation.
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Chapter 4

Quadrupole vibrations in Mg
isotopes close to the neutron drip
line – further effects of pairing
correlations

4.1 Introduction

The nature of pairing correlations in neutron drip-line nuclei is one of the most important
subjects in the physics of unstable nuclei. One of the unique features of drip-line nuclei is that
the pairing correlation takes place not only among bound levels but also including continuum
states. To describe this unique character of pairing, the coordinate-space HFB formalism is
suitable [71, 72]. Due to the pairing and continuum effects, spatial structure of quasiparticle
wave functions near the chemical potential changes significantly, which affects the properties
of low-frequency excitation modes in spherical neutron drip-line nuclei [76]. In order to
study the effects of pairing on the low-frequency excitation modes in deformed nuclei near
the neutron drip line, we have extended the work presented in the previous chapter to self-
consistently include pairing correlations, and constructed a new computer code that carries
out the deformed QRPA calculation on the basis of the coordinate-space HFB formalism.

The aim of this chapter is to carry out the deformed QRPA calculation for neutron drip-
line nuclei and investigate the low-frequency quadrupole vibrational modes withKπ = 0+ and
2+ in 36,38,40Mg close to the neutron drip line. According to the Skyrme-HFB calculations [26,
29] and Gogny-HFB calculation [33], these isotopes are well deformed. The shell-model
calculation [39] also suggests that the ground state of 40Mg is dominated by the neutron
two-particle-two-hole components, which is consistent with the breaking of the N = 28 shell
closure discussed in Ref. [119]. We investigate properties of low-frequency modes of excitation
in these Mg isotopes simultaneously taking into account the deformed mean-field effects, the
pairing correlations, and excitations into the continuum.

This chapter is organized as follows: In the next section, the framework of the mean-
field and QRPA calculations is briefly described. In §4.3, results of the QRPA calculation
for low-frequency quadrupole vibrations with Kπ = 0+ and 2+ in 36,38,40Mg are presented
and discussed focusing our attention to the microscopic mechanism of emergence of collective
modes in deformed superfluid nuclei close to the neutron drip line. Concluding remarks are
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given in §4.4.
This work was reported in Refs. [80, 81].

4.2 Method

4.2.1 Mean-field calculation

In order to discuss simultaneously effects of nuclear deformation and pairing correlations
including the continuum, we solve the HFB equation [71, 72, 84](

hτ (rσ)− λτ h̃τ (rσ)
h̃τ (rσ) −(hτ (rσ)− λτ )

)(
ϕτ

1,α(rσ)
ϕτ

2,α(rσ)

)
= Eα

(
ϕτ

1,α(rσ)
ϕτ

2,α(rσ)

)
(4.1)

directly in the cylindrical-coordinate space assuming axial and reflection symmetry. In com-
parison to the conventional method of using a deformed harmonic oscillator basis, this method
is more effective in the treatment of spatially extended wave functions, like loosely bound
states, resonant states and continuum states. As is well known, when the quasiparticle energy
E is greater than the absolute magnitude |λ| of the chemical potential, the upper component
ϕ1(rσ) obeys the scattering-wave boundary condition, while the lower component ϕ2(rσ) is
always exponentially decaying at infinity.

For the mean-field Hamiltonian h, we employ the deformed Woods-Saxon potential with
the parameters used in [78], except the isovector potential strength for which a slightly smaller
value, 30 MeV in stead of 33 MeV, is adopted in order to describe 40Mg as a drip-line nucleus
in accordance with the Skyrme-HFB [26, 29] and Gogny-HFB calculations [33]. The pairing
field is treated self-consistently by using the density-dependent contact interaction [10, 120],

vpp(r, r′) = V0
1− Pσ

2

[
1− η

(
	IS(r)
	0

)]
δ(r − r′), (4.2)

with V0 = −450 MeV·fm3 and 	0 = 0.16 fm−3, where 	IS(r) denotes the isoscalar density
and Pσ is the spin exchange operator. The pairing force strength V0 is chosen such that the
average pairing gap roughly agrees with the systematics (see Table 4.1). For the parameter η,
which represents density dependence, we use η = 1.0 (surface type). Sensitivity of calculated
results to the parameter η will be examined in §4.3.4. The pairing Hamiltonian is then given
by

h̃τ (r) =
V0

2

[
1− η

(
	IS(r)
	0

)]
	̃τ (r). (4.3)

The normal (particle) and abnormal (pairing) densities are given by

	τ (ρ, z) =
∑
α

∑
σ=±1/2

|ϕτ
2,α(ρ, z, σ)|2, (4.4)

	̃τ (ρ, z) = −
∑
α

∑
σ=±1/2

ϕτ
1,α(ρ, z, σ)ϕτ

2,α(ρ, z, σ) (4.5)

and the mean-square radii of protons and neutrons are calculated as

〈r2〉τ =
∫
ρdρdzr2	τ (ρ, z)∫
ρdρdz	τ (ρ, z)

, (4.6)
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Table 4.1: Ground state properties of 36,38,40Mg obtained by the deformed WS-HFB calcula-
tion with β2 = 0.28. Chemical potentials, average pairing gaps, and root-mean-square radii
for protons and neutrons are listed.

λπ 〈Δπ〉
√〈r2〉π λν 〈Δν〉

√〈r2〉ν
nucleus (MeV) (MeV) (fm) (MeV) (MeV) (fm)
36Mg −20.0 0.0 3.06 −2.09 1.93 3.74
38Mg −23.0 0.0 3.08 −1.15 2.05 3.86
40Mg −25.1 0.0 3.10 −0.41 2.15 3.99

where r = (ρ, z), r =
√
ρ2 + z2 and τ=π or ν; 	π(ρ, z) and 	ν(ρ, z) being the proton and

neutron densities. The average gaps are defined by [121, 122, 123, 124]

〈Δτ 〉 = −
∫

dr	̃τ (r)h̃τ (r)/
∫

dr	̃τ (r). (4.7)

We construct the discretized Hamiltonian matrix by use of the finite difference method
for derivatives and then diagonalize the matrix to obtain the quasiparticle wave functions
on the two-dimensional lattice consisting of the cylindrical coordinates ρ and z. The kinetic
energy term and the spin-orbit potential are evaluated using the 9-point formula. Because
the time-reversal symmetry and the reflection symmetry with respect to the x− y plane are
assumed, we have only to solve for positive Ω and positive z. We use the lattice mesh size
Δρ = Δz = 0.8 fm and the box boundary condition at ρmax = 10.0 fm and zmax = 12.8 fm.
The quasiparticle energy is cut off at 50 MeV and the quasiparticle states up to Ωπ = 13/2±

are included. This model space is larger than that used in Ref. [81]. It is certainly desirable to
use a larger box for a better evaluation of matrix elements involving spatially very extended
quasiparticle wave functions. This improvement remains as a future task, however.

We impose the condition on the convergence of the pairing energy as |(E(i)
pair−E(i−1)

pair )/E(i)
pair|

< 10−5, where i denotes the iteration number and the pairing energy is defined by [74]

Epair =
1
2

∑
τ=π,ν

∫
dr	̃τ (r)h̃τ (r). (4.8)

We use the same deformation parameter β2 = 0.28 in the Woods-Saxon potential for both
neutrons and protons. This parameter is chosen to approximately reproduce the Q−moments
calculated in Ref. [29]. We checked that properties of the QRPA modes do not change
significantly when the deformation parameter is varied around β2 ∼ 0.3.

4.2.2 Quasiparticle-RPA calculation

Using the quasiparticle basis obtained in the previous subsection, we solve the QRPA equation
in the standard matrix formulation [96]

∑
γδ

(
Aαβγδ Bαβγδ

Bαβγδ Aαβγδ

)(
fλ

γδ

gλ
γδ

)
= �ωλ

(
1 0
0 −1

)(
fλ

αβ

gλ
αβ

)
. (4.9)
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This method is convenient to analyze microscopic structures of the QRPA eigenmodes in
comparison with other RPA formalisms based on the Greens function method. Namely,
individual two-quasiparticle components, (αβ), (γδ), etc., constituting the QRPA mode λ are
directly represented by the amplitudes fλ

γδ and gλ
γδ, whereas an additional procedure is needed

to obtain them in the latter method [125].
The residual interactions in the particle-particle channel appearing in the QRPA matrices

A and B are self-consistently treated using the density-dependent contact interaction (4.2).
On the other hand, for residual interactions in the particle-hole channel, we use the Skyrme-
type interaction [98]

vph(r, r′) =
[
t0(1 + x0Pσ) +

t3
6

(1 + x3Pσ)	IS(r)
]
δ(r − r′), (4.10)

with t0 = −1100 MeV·fm3, t3 = 16000 MeV·fm6, x0 = 0.5, and x3 = 1.0. Because the
deformed Wood-Saxon potential is used for the mean-field, we renormalize the residual inter-
action in the particle-hole channel by multiplying a factor fph to get the spurious Kπ = 1+

mode (representing the rotational mode) at zero energy (vph → fph · vph). This factor is
found to be 0.380, 0.376 and 0.374 for 36Mg, 38Mg, and 40Mg, respectively. It is desirable to
carry out the QRPA calculation by using a model space which is consistent with that adopted
in the HFB calculation. It requires, however, excessively demanding computer memory, so
that we cut the model space by Eα + Eβ ≤ 30 MeV. Accordingly, we need another self-
consistency factor fpp for the particle-particle channel. We determine this factor such that
the spurious Kπ = 0+ mode associated with the number fluctuation appears at zero energy
(vpp → fpp · vpp). This factor is found to be 1.536 for 36−40Mg. The dimension of the QRPA
matrix is about 3700 for the Kπ = 0+ modes in 40Mg. We checked accuracy of the numerical
calculation by applying our procedure to quadrupole excitations of the spherical nucleus 24O
and comparing the result with that of the continuum QRPA calculation by Matsuo [47] which
exactly fulfills the energy-weighted sum-rule. It turned out that, although the overall struc-
ture of the strength distribution was well reproduced, the energy-weighted sum-rule value
was underestimated by 14% due to the truncation of the model space. This shortcoming
should be overcome in future by enlarging the QRPA model space.

In terms of the nucleon annihilation and creation operators in the coordinate representa-
tion, ψ̂(rσ) and ψ̂†(rσ), the quadrupole operator is represented as Q̂2K =

∑
σ

∫
drr2Y2,−K(r̂)×

ψ̂†(rσ)ψ̂(rσ). The intrinsic matrix elements 〈λ|Q̂2K |0〉 of the quadrupole operator between
the excited state |λ〉 and the ground state |0〉 are given by

〈λ|Q̂2K |0〉 =
∑
αβ

Q
(uv)
2K,αβ(fλ

αβ + gλ
αβ) =

∑
αβ

M
(uv)
2K,αβ , (4.11)

where

Q
(uv)
2K,αβ ≡ 2πδK,Ωα+Ωβ

∫
dρdzQ(uv)

2K,αβ(ρ, z), (4.12)

with

Q
(uv)
2K,αβ(ρ, z) = ρ{ϕ1,α(ρ, z, ↑)ϕ2,β(ρ, z, ↓)− ϕ1,α(ρ, z, ↓)ϕ2,β(ρ, z, ↑)

− ϕ1,β(ρ, z, ↑)ϕ2,α(ρ, z, ↓) + ϕ1,β(ρ, z, ↓)ϕ2,α(ρ, z, ↑)}Q2K (ρ, z). (4.13)
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Figure 4.1: Single-particle energies in the deformed WS potential for neutrons in 40Mg,
plotted as functions of the quadrupole deformation parameter β2. Solid and dotted lines
denote positive- and negative-parity levels, respectively. Single-particle levels are labeled
with the asymptotic quantum numbers [Nn3Λ]Ω.

Here Q2K(ρ, z) = Q2K(r)eiKφ = r2Y2,−K(θ, φ)eiKφ.

We calculate the transition strength functions

SIS(ω) =
∑

λ

|〈λ|Q̂IS
2K |0〉|2δ(�ω − �ωλ) (4.14)

for isoscalar quadrupole operators Q̂IS
2K = Q̂π

2K+Q̂ν
2K , and use notationsB(Qτ2) = |〈λ|Q̂τ

2K |0〉|2
for transition strengths and Mτ = 〈λ|Q̂τ

2K |0〉 for transition matrix elements (τ = π, ν, IS).
Note that these quantities are defined in the intrinsic coordinate frame associated with the
deformed mean field, so that appropriate Clebsh-Gordan coefficients should be multiplied to
obtain transition probabilities in the laboratory frame [126]. For instance, a factor 1/5 should
be multiplied for obtaining the transition strength B(E2; 2+

1 → 0+
β ) from the 2+

1 state to the
0+

β state, while the factor is unity for obtaining the transition strength B(E2; 0+
gs → 2+

β ) from
the ground state to the 2+

β state built on the excited Kπ = 0+ state. Here, 2+
1 denotes the 2+

member of the ground-state rotational band, while 0+
β and 2+

β indicate the rotational band
members associated with the Kπ = 0+ intrinsic excitations.
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Chapter 4. Quadrupole vibrations in Mg isotopes close to the neutron drip line – further
effects of pairing correlations

4.3 Results and Discussion

4.3.1 Some features of calculated results

The single-particle shell structure around the Fermi surface for neutrons in 36,38,40Mg exhibits
an interesting feature. Figure 4.1 shows the single-particle energy diagram for the WS po-
tential as a function of deformation parameter β2. As β2 increases, a level crossing between
the up-sloping [303]7/2 level and the down-sloping [310]1/2 level takes place, and a deformed
shell gap is formed at N = 28 around β2 = 0.3. This deformed closed shell approximately
corresponds to the (f7/2)−2(p3/2)2 configuration in the spherical shell model representation.
The highest occupied level in this deformed closed shell is situated very near to the continuum
threshold, so that there is no bound level above it. However, neutron particle-hole excitations
may take place into resonance levels like [303]7/2, [301]1/2 [312]3/2 lying just above the con-
tinuum threshold. In fact, as we shall discuss below, these resonance levels participate in the
pairing correlations and play an important role in generating low-frequency collective modes
of excitation in 36,38,40Mg. Thus, 40Mg and its neighboring isotopes provide an interesting
situation to investigate collective modes unique in unstable nuclei near the neutron drip line.
The resonance character of these levels just above the continuum threshold is confirmed by
means of the eigenphase-sum method (see Appendix).

Results of the deformed WS plus HFB calculation for the ground state properties of
36,38,40Mg are listed in Table 4.1. Calculated values of the average pairing gap for neutrons
are rather close to the value estimated in terms of the conventional systematics [23] Δsyst �
12/
√
A � 1.9MeV. On the other hand, the average pairing gaps for protons vanish. As shown

in this table, the neutron root-mean-square radius increases as approaching the neutron drip
line, while the proton root-mean-square radius remains almost constant. This means that
the neutron skin structure emerges in these nuclei; the difference between the neutron and
proton radii in 40Mg is about 0.9 fm.

Results of the QRPA calculation for quadrupole transition strengths are displayed in
Fig. 4.2. We see prominent peaks at about 3 MeV for both the Kπ = 0+ and 2+ excitations.
Their strengths are much larger than the single-particle strengths indicating collective char-
acter of these excitations. The strength of the lowest Kπ = 2+ excitation gradually increases
as approaching the neutron drip line, while the lowest Kπ = 0+ excitations in 36Mg and 40Mg
seem to be split into two peaks in the case of 38Mg. In the following, we make an extensive
analysis on microscopic structure of these low-frequency collective excitations.

4.3.2 Kπ = 0+ modes

We first discuss the Kπ = 0+ excitation modes in 40Mg. The QRPA transition strengths are
compared with unperturbed two-quasiparticle strengths in Fig. 4.3 . A prominent peak is
seen at about 3.2 MeV in the QRPA strength distribution; it possesses an enhanced strength
of about 22 Weisskopf unit (1 W.u. � 8.1 fm4 for 40Mg). From the QRPA amplitudes listed
in Table 4.2, it is clear that this collective mode is generated by coherent superposition of
neutron excitations of both particle-hole and particle-particle types. In Fig. 4.3, the QRPA
strengths are also compared with the strengths without the dynamical pairing effects, i.e.,
the result of QRPA calculation ignoring the residual pairing interactions. One immediately
notice that the transition strength to the lowest excited state is drastically reduced when the
dynamical pairing effects are ignored.
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Figure 4.2: Isoscalar quadrupole transition strengths B(QIS2) for the K = 0+ excitations
(upper panel) and the K = 2+ excitations (lower panel) built on the prolately deformed
ground states of 36,38,40Mg. The arrows beside the abscissa axes indicate the neutron threshold
energies, Eth = 4.06 MeV (one-quasiparticle (1qp) continuum; |λ|+ minEα), 4.12 MeV (two
quasiparticle (2qp) continuum; 2|λ|) for 36Mg, 2.31 MeV (2qp continuum) for 38Mg and 0.82
MeV (2qp continuum) for 40Mg. The QRPA calculations are made by using the surface-type
pairing interaction and β2 = 0.28 for both protons and neutrons.

Table 4.2: QRPA amplitudes of the Kπ = 0+ mode at 3.2 MeV in 40Mg. This mode has
B(E2) = 3.4 e2fm4, B(Qν2)=136 fm4, and B(QIS2) = 182 fm4. The single-particle levels
are labeled with the asymptotic quantum numbers [Nn3Λ]Ω of the dominant components of
the wave functions. Only components with |fαβ|2 − |gαβ |2 > 0.01 are listed.

α β Eα + Eβ |fαβ|2 − |gαβ |2 Q
(uv)
20,αβ M

(uv)
20,αβ

(MeV) (fm2) (fm2)
(a) ν[310]1/2 ν[310]1/2 3.54 0.438 6.36 4.27
(b) ν[301]1/2 ν[310]1/2 3.93 0.067 −2.57 0.925
(c) ν[312]3/2 ν[312]3/2 3.99 0.280 −2.03 1.08
(d) ν[301]1/2 ν[301]1/2 4.32 0.027 0.992 −0.176
(e) ν[303]7/2 ν[303]7/2 5.76 0.077 −3.39 0.966
(f) ν[321]3/2 ν[321]3/2 7.15 0.011 3.23 0.396
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Figure 4.3: Left: Isoscalar quadrupole transition strengths B(QIS2) for the Kπ = 0+ excita-
tions in 40Mg. Results of the QRPA calculation with and without including the dynamical
pairing effects are plotted in the upper and middle panels, respectively, while unperturbed
two-quasiparticle strengths are shown in the lower panel. Notice that different scale is used
for the unperturbed strengths. The arrow beside the abscissa axis indicates the neutron
threshold energy 2|λ| = 0.82 MeV. Right: Two-quasiparticle excitations generating the low-
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are labeled with the asymptotic quantum numbers [Nn3Λ]Ω. The chemical potential λ is
indicated by the dashed line.
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generating the lowest Kπ = 0+ mode in 40Mg. The contour lines are plotted at intervals
of 0.002. The solid and dashed lines represent positive and negative quantities, respectively.
The thick solid line indicates the neutron half-density radius; 	ν(0)/2 ∼ 0.045fm−3.

Let us discuss the reason why the lowest Kπ = 0+ mode acquires eminently large tran-
sition strength. There are two points to understand this mechanism: 1) existence of unper-
turbed two-quasiparticle configurations possessing large transition strengths, and 2) effect of
residual interactions producing coherence among various two-quasiparticle configurations.

To examine the first point, we plot in Fig. 4.4 spatial distributions of the quadrupole
transition amplitudes for major two-quasiparticle configurations generating the lowest Kπ =
0+ mode. We see that they are notably extended beyond the half-density radius. This is a
situation similar to that encountered in Ref. [78], where a neutron excitation from a loosely
bound state to a resonance state brings about very large transition strength. We also note
that the transition strength associated with the ν[301]1/2⊗ ν[310]1/2 configuration is much
enhanced although it should be hindered if the selection rule ΔN = 2 for the asymptotic
quantum numbers [126] is applied. This selection rule is broken for matrix elements associated
with loosely bound states, because their radial wave functions are spatially extended and quite
different from those of the the harmonic oscillator potential.

Concerning the second point, we have found that the dynamical pairing plays an especially
important role. This point is easily seen by comparing the QRPA calculations with and
without the dynamical pairing effects, which are shown in Fig. 4.3. It is apparent that the
prominent lowest peak disappears when the dynamical paring effects are ignored. We can
say that the coherent superpositions among the particle-hole, particle-particle and hole-hole
excitations are indispensable for the emergence of this mode. The importance of the coupling
between the (particle-hole type) β vibration and the (particle-particle and hole-hole type)
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old energy 2|λ| = 2.31 MeV. Right: Two-quasiparticle excitations generating the low-lying
Kπ = 0+ modes at 3.3 MeV and 3.9 MeV.

pairing vibration has been well known in stable deformed nuclei [126]. A new feature of the
Kπ = 0+ mode in neutron drip-line nuclei under discussion is that this coupling takes place
among two-quasiparticle configurations that are loosely bound or resonances, so that their
transition strengths are strikingly enhanced. In addition, as seen in Fig. 4.4, their spatial
structures (peak positions and distribution) are rather similar with each other. This is a
favorable situation to generate coherence among them [76]. The importance of dynamical
pairing effects in generating soft dipole excitations has been demonstrated by Matsuo et
al. [77] for spherical unstable nuclei near the neutron drip line.

Next we discuss the Kπ = 0+ excitations in 38Mg and 36Mg. The quadrupole transition
strengths calculated for 38Mg are presented in Fig. 4.5, which exhibits two peaks below 4
MeV. The major two-quasiparticle excitations generating these peaks are illustrated in the
middle and right panels of this figure. Their QRPA amplitudes are listed in Tables 4.3 and
4.4. From these Tables, it is seen that the peak at 3.3 MeV is mainly generated by the
particle-particle type ν[310]1/2⊗ ν[310]1/2 and ν[312]5/2⊗ ν[312]5/2 excitations, while the
peak at 3.9 MeV is mainly associated with the particle-hole type ν[301]1/2⊗ ν[310]1/2 and
ν[312]3/2⊗ ν[321]3/2 excitations.

The quadrupole transition strengths calculated for 36Mg are displayed in Fig. 4.6. We
notice a prominent peak at about 3.4 MeV below the one-neutron threshold energy (4.1 MeV),
which possesses a strongly enhanced transition strength of about 24 W.u. (1 W.u. � 7.1 fm4

for 36Mg). This peak exhibits a clear character of collective vibration: As seen from Table 4.5,
this collective mode is created by coherent neutron excitations. Its main components are the
particle-hole type ν[310]1/2⊗ν[330]1/2 and ν[301]1/2⊗ν[310]1/2 excitations and the particle-
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Table 4.3: QRPA amplitudes of the Kπ = 0+ mode at 3.3 MeV in 38Mg. This mode has
B(E2) = 1.67 e2fm4, B(Qν2)=66.3 fm4, B(QIS2)=89.0 fm4, and

∑ |gαβ |2 = 2.32 × 10−2.
Only components with |fαβ|2 − |gαβ |2 > 0.01 are listed.

α β Eα + Eβ |fαβ|2 − |gαβ |2 Q
(uv)
20,αβ M

(uv)
20,αβ

(MeV) (fm2) (fm2)
(a) ν[310]1/2 ν[310]1/2 3.37 0.673 6.08 5.25
(b) ν[312]5/2 ν[312]5/2 4.84 0.146 0.821 −0.293
(c) ν[310]1/2 ν[330]1/2 5.35 0.023 −3.59 0.769
(d) ν[303]7/2 ν[303]7/2 6.35 0.066 −2.64 0.614
(e) ν[202]3/2 ν[202]3/2 7.82 0.021 −1.29 0.149

Table 4.4: QRPA amplitudes of the Kπ = 0+ mode at 3.9 MeV in 38Mg. This mode has
B(E2) = 4.72 e2fm4, B(Qν2)=68.1 fm4, B(QIS2)=109 fm4, and

∑ |gαβ |2 = 2.71 × 10−2.
Only components with |fαβ|2 − |gαβ |2 > 0.01 are listed.

α β Eα + Eβ |fαβ|2 − |gαβ |2 Q
(uv)
20,αβ M

(uv)
20,αβ

(MeV) (fm2) (fm2)
(a) ν[310]1/2 ν[310]1/2 3.37 0.037 6.08 1.34
(b) ν[301]1/2 ν[310]1/2 4.42 0.258 1.67 −1.20
(c) ν[312]3/2 ν[312]3/2 4.90 0.048 0.716 0.169
(d) ν[312]3/2 ν[321]3/2 5.47 0.250 −3.04 −2.20
(e) ν[301]1/2 ν[301]1/2 5.47 0.018 0.802 0.131
(f) ν[321]3/2 ν[321]3/2 6.04 0.058 1.66 −0.411
(g) ν[303]7/2 ν[303]7/2 6.35 0.084 −2.64 −0.853
(h) ν[330]1/2 ν[330]1/2 7.33 0.099 4.57 −1.48

Table 4.5: QRPA amplitudes of the Kπ = 0+ mode at 3.4 MeV in 36Mg. This mode has
B(E2) = 8.1 e2fm4, B(Qν2)=104 fm4, B(QIS2)=170 fm4, and

∑ |gαβ |2 = 3.91× 10−2. Only
components with |fαβ |2 − |gαβ |2 > 0.01 are listed.

α β Eα + Eβ |fαβ |2 − |gαβ |2 Q
(uv)
20,αβ M

(uv)
20,αβ

(MeV) (fm2) (fm2)
(a) ν[310]1/2 ν[310]1/2 4.06 0.071 5.80 −1.58
(b) ν[321]3/2 ν[321]3/2 4.48 0.098 4.60 −1.61
(c) ν[312]5/2 ν[312]5/2 4.87 0.227 0.714 0.347
(d) ν[310]1/2 ν[330]1/2 4.91 0.211 −3.08 −2.11
(e) ν[301]1/2 ν[310]1/2 5.69 0.033 2.02 −0.511
(f) ν[330]1/2 ν[330]1/2 5.76 0.116 3.98 −1.50
(g) ν[202]3/2 ν[202]3/2 5.79 0.046 −1.47 −0.271
(h) ν[303]7/2 ν[303]7/2 7.67 0.049 −1.82 −0.411
(i) π[211]1/2 π[220]1/2 6.44 0.054 −0.251 -0.599
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Figure 4.6: Left: Isoscalar quadrupole transition strengths B(QIS2) for the Kπ = 0+ excita-
tions in 36Mg are plotted in the upper panel, while unperturbed two-quasiparticle strengths
are shown in the lower panel. The arrows beside the abscissa axis indicate the neutron
threshold energy Eth = 4.06 MeV (1qp continuum) and 4.12 MeV (2qp continuum). Right:
Two-quasiparticle excitations generating the lowest Kπ = 0+ mode at 3.4 MeV in 36Mg.
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Figure 4.7: Left: Isoscalar quadrupole transition strengths B(QIS2) for the Kπ = 2+ excita-
tions in 40Mg. Results of the QRPA calculation with and without including the dynamical
pairing effects are plotted in the upper and middle panels, respectively, while unperturbed
two-quasiparticle strengths are shown in the lower panel. Notice that different scale is used for
the unperturbed strengths. The arrow beside the abscissa axis indicates the neutron threshold
energy 2|λ| = 0.82 MeV. Right: Two-quasiparticle excitations generating the lowest Kπ = 2+

mode at 2.9 MeV. Two-quasiparticle excitations satisfying the asymptotic selection rule for
the γ vibration (ΔN = 0,Δn3 = 0,ΔΛ = 2) are drawn by thick arrows.

particle type ν[312]5/2 ⊗ ν[312]5/2 and ν[321]3/2 ⊗ ν[321]3/2 excitations. These particle-
particle type and particle-hole type excitations are coherently superposed to generate this
collective neutron mode.

4.3.3 Kπ = 2+ modes

Let us now turn to the Kπ = 2+ excitation modes. The quadrupole transition strengths
calculated for 40Mg are displayed in Fig. 4.7. We notice a prominent peak at about 2.8
MeV which possesses strongly enhanced transition strength of about 19 W.u. The QRPA
amplitudes of this excitation are listed in Table 4.6. From this Table, we see that this
peak represents a collective excitation consisting of a coherent superposition of the proton
particle-hole excitation from the [211]3/2 level to the [211]1/2 level and a number of neutron
two-quasiparticle excitations. Similarly to the Kπ = 0+ excitation modes discussed in the
previous subsection, the asymptotic selection rule (ΔN = 0,Δn3 = 0,ΔΛ = 2) well known
for the γ vibrations is violated for the neutron excitations, because these levels are loosely
bound or resonances and their quasiparticle wave functions are significantly extended outside
of the nucleus. On the other hand, proton particle-hole excitations satisfy the selection rule
because they are deeply bound. We also show in Fig. 4.7 the result of QRPA calculation
where the residual pairing interaction is turned off. Comparing with the full QRPA result,
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Table 4.6: QRPA amplitudes of the Kπ = 2+ mode at 2.9 MeV in 40Mg. This mode has
B(E2) = 11.7 e2fm4, B(Qν2)=75.7 fm4, B(QIS2)=147 fm4, and

∑ |gαβ |2 = 6.73×10−2 . Only
components with |fαβ|2−|gαβ|2 > 0.01 are listed. The label ν1/2− denotes a discretized non-
resonant continuum state.

α β Eα + Eβ |fαβ|2 − |gαβ |2 Q
(uv)
22,αβ M

(uv)
22,αβ

(MeV) (fm2) (fm2)
(a) ν[312]3/2 ν[310]1/2 3.77 0.013 1.22 −0.145
(b) ν[301]1/2 ν[312]3/2 4.16 0.098 −5.37 −1.75
(c) ν[310]1/2 ν[312]5/2 4.51 0.085 −4.37 −1.34
(d) ν[312]3/2 ν[303]7/2 4.88 0.011 −5.03 −0.454
(e) ν[301]1/2 ν[312]5/2 4.90 0.016 −2.07 −0.296
(f) ν[310]1/2 ν[321]3/2 5.34 0.047 −2.67 −0.663
(g) ν1/2− ν[312]5/2 6.96 0.015 1.93 −0.298
(h) ν1/2− ν[321]3/2 7.28 0.018 1.46 −0.265
(i) π[211]1/2 π[211]3/2 4.32 0.596 −2.11 −2.02

we see that the transition strength is reduced about 30%. Thus, the dynamical pairing effect
is important, though its effect is weaker than for the Kπ = 0+ mode. This is because the
Kπ = 2+ mode consists of both proton and neutron excitations and the pairing is effective
only for neutrons.

The quadrupole transition strengths calculated for 38Mg and 36Mg are displayed in Figs. 4.8
and 4.9, respectively. For each case, we see a prominent peak at about 2.9 MeV which pos-
sesses strongly enhanced transition strength (about 15 W.u. and 12 W.u. for 38Mg and
36Mg, respectively). The QRPA amplitudes of these modes are listed in Tables 4.7 and 4.8.
These modes possess essentially the same microscopic structure as the collective Kπ = 2+

mode in 40Mg discussed above. They also correspond to the γ vibrational mode obtained in
the previous QRPA calculation [70] for 38Mg. In our calculation, however, the collectivity of
these modes remains almost the same even if we use different deformations for protons and
neutrons, differently from Ref. [70].

4.3.4 Dependence on pairing interaction

In this subsection, we examine sensitivity of the low-frequency Kπ = 0+ and 2+ modes on
the density dependence of the pairing interaction. For this purpose, we repeated the HFB
and QRPA calculations using pairing interactions with density dependence different from
the surface type (η = 1.0 in Eq. (4.2)); i.e., the mixed type (η = 0.5) and the volume type
(η = 0.0). Since the result for the mixed-type pairing is intermediate between those for
the surface-type and the volume-type, we show in Fig. 4.10 only the quadrupole transition
strengths obtained using the volume-type pairing interaction. In this calculation, the pairing
interaction strength V0 = −215.0 MeV·fm3 is chosen to yield approximately the same average
pairing gaps as those for the surface type. Comparing with the results obtained using the
surface-type pairing, shown in Fig. 4.2, we see that the transition strengths for the Kπ = 0+

collective modes are appreciably reduced, while those for the Kπ = 2+ collective modes are
almost the same. We have checked that, although the strengths are reduced, the microscopic
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Figure 4.8: Left: Isoscalar quadrupole transition strengths B(QIS2) for the Kπ = 2+ excita-
tions in 38Mg are plotted in the upper panel, while unperturbed two-quasiparticle strengths
are shown in the lower panel. The arrow beside the abscissa axis indicates the neutron
threshold energy 2|λ| = 2.31 MeV. Right: Two-quasiparticle excitations generating the low-
est Kπ = 2+ mode at 2.9 MeV in 38Mg.

Table 4.7: QRPA amplitudes of the Kπ = 2+ mode at 2.9 MeV in 38Mg. This mode has
B(E2) = 11.2 e2fm4, B(Qν2)=53.0 fm4, B(QIS2)=113 fm4, and

∑ |gαβ |2 = 6.95 × 10−2.
Only components with |fαβ|2 − |gαβ |2 > 0.01 are listed.

α β Eα +Eβ |fαβ |2 − |gαβ |2 Q
(uv)
22,αβ M

(uv)
22,αβ

(MeV) (fm2) (fm2)
(a) ν[310]1/2 ν[312]5/2 4.10 0.146 -3.89 -1.54
(b) ν[312]3/2 ν[310]1/2 4.13 0.016 -0.221 -0.032
(c) ν[310]1/2 ν[321]3/2 4.70 0.108 2.81 -1.05
(d) ν[301]1/2 ν[312]5/2 5.15 0.010 1.81 -0.204
(e) ν[301]1/2 ν[312]3/2 5.18 0.031 -3.58 -0.690
(f) ν[312]5/2 ν[330]1/2 6.08 0.017 -1.42 -0.239
(g) ν[321]3/2 ν[330]1/2 6.68 0.029 1.61 -0.344
(h) π[211]1/2 π[211]3/2 4.43 0.541 -2.09 -1.94
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Figure 4.9: Left: Isoscalar quadrupole transition strengths B(QIS2) for the Kπ = 2+ excita-
tions in 36Mg are plotted in the upper panel, while unperturbed two-quasiparticle strengths
are shown in the lower panel. The arrows beside the abscissa axis indicate the threshold en-
ergies 4.06 MeV (1qp continuum) and 4.12 MeV (2qp continuum). Right: Two-quasiparticle
excitations generating the lowest Kπ = 2+ mode at 2.9 MeV.

Table 4.8: QRPA amplitudes of the Kπ = 2+ mode at 2.9 MeV in 36Mg. This mode has
B(E2) = 10.6 e2fm4, B(Qν2)=35.3 fm4, B(QIS2)=84.6 fm4, and

∑ |gαβ |2 = 7.06 × 10−2.
Only components with |fαβ |2−|gαβ |2 > 0.01 are listed. The columns (f) and (f′) are assigned
the same configuration, because we obtain two discretized continuum states associated with
the ν[200]1/2 level for which E > |λ|.

α β Eα + Eβ |fαβ|2 − |gαβ |2 Q
(uv)
22,αβ M

(uv)
22,αβ

(MeV) (fm2) (fm2)
(a) ν[310]1/2 ν[321]3/2 4.27 0.087 1.68 0.552
(b) ν[310]1/2 ν[312]5/2 4.46 0.045 −2.62 0.551
(c) ν[321]3/2 ν[330]1/2 5.12 0.165 2.51 1.20
(d) ν[312]5/2 ν[330]1/2 5.31 0.034 −1.36 0.305
(e) ν[301]1/2 ν[312]5/2 6.09 0.011 1.66 0.202
(f) ν[202]3/2 ν[200]1/2 6.90 0.010 −2.633 0.270
(f′) ν[202]3/2 ν[200]1/2 7.23 0.013 0.981 0.136
(g) π[211]1/2 π[211]3/2 4.54 0.547 −2.09 1.87
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Figure 4.10: Isoscalar quadrupole transition strengths B(QIS2) for the K = 0+ excitations
(upper panel) and the K = 2+ excitations (lower panel) built on the prolately deformed
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except that the volume-type pairing interaction is used here. The arrows indicate the neutron
threshold energies; 3.69 MeV (1qp continuum) and 3.71 MeV (2qp continuum) for 36Mg, 1.77
MeV (2qp continuum) for 38Mg, and 0.15 MeV (2qp continuum) for 40Mg.

structure of these collective modes are basically the same as discussed above on the basis
of the results of calculation using the surface-type pairing interaction. Thus, we can say
that the quadrupole transition strengths for the low-frequency Kπ = 0+ collective modes are
especially sensitive to the density dependence of the pairing interaction. Such a sensitivity
has been stressed also in Refs. [47, 50, 77] in their continuum QRPA calculations for E1 and
E2 strength functions in neutron-rich spherical nuclei.

4.4 Summary

We have carried out the QRPA calculations on the basis of the deformed WS plus HFB
mean field in the coordinate representation, and obtained the low-frequency Kπ = 0+ and
2+ collective modes in deformed 36,38,40Mg close to the neutron drip line. It has been shown
that these modes possess very strong isoscalar quadrupole transition strengths. One of the
reasons of this enhancement is that the quasiparticle wave functions participating in these
collective excitations have spatially extended structure. The other reason is that the residual
pairing interactions, in addition to the particle-hole type residual interactions, enhance the
collectivity of these modes. The result of the present calculation suggests that the low-
frequency Kπ = 0+ collective mode is a particularly sensitive indicator of the nature of
pairing correlations in nuclei close to the neutron drip line.

This calculation should be regarded as an exploratory work toward understanding low-
frequency collective modes of excitation in unstable nuclei close to the neutron drip line. It is
certainly desirable to improve the treatment of the continuum at least in the following points.
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Figure 4.11: The eigenphase sum (upper panel) and its derivative (lower panel) for the
Ωπ = 1/2−, 3/2− and 7/2− states in 40Mg are plotted as functions of energy.

First, one may try to use a smaller mesh size and a larger box by implementing an adaptive
coordinate method [63]. Second, one may try to take into account the width of resonance by
employing Gamow states as basis of the QRPA calculation [129, 130, 131, 132]. The result of
the present work indicates that calculations using such an improved framework will be very
interesting and worthwhile. We plan to attack this subject in future.

Appendix: Eigenphase sum for single-particle resonance states

We examine properties of three single-particle states in the continuum, which play a key role
in generating the low-lying excitations modes in 36,38,40Mg. The resonance energy and width
in a deformed potential can be estimated using the eigenphase sum Δ(E). It is defined in
terms of the eigenvalues of the scattering matrix (S-matrix) as

(U †SU)aa′ = e2iδa(E)δaa′ , Δ(E) =
∑

a

δa(E). (4.15)

We evaluate the eigenphase sum for three states following the procedure of Ref. [114].
The resonance energy and width are identified with the peak energy of 1

πdΔ(E)/dE and
its FWHM, respectively [127, 128]. This evaluation is in good correspondence with another
definition of the resonance; the Gamow state in a deformed potential [82] which represents
the pole of the S−matrix in the complex momentum plane, as shown in chapter 7.

The result of this calculation, presented in Fig.4.11, indicates that the [301]1/2 and
[312]3/2 states can be regarded as resonances with rather large widths; their energies are
0.53 − i0.46 (MeV) and 0.42 − i0.33 (MeV), respectively. On the other hand, the [303]7/2
state is evaluated as a narrow resonance with energy 0.44 − i0.0005 (MeV). Obviously, the
small width is due to its high centrifugal barrier.
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Chapter 5

Low-lying excitation modes in
neutron-rich 34Mg region

5.1 introduction

Presently, the breaking of N=20 spherical magic number and striking enhancements of
B(E2; 0+

1 → 2+
1 ) in 32Mg and 34Mg are under lively discussions in connection with onset

of the quadrupole deformation, the pairing correlation and the continuum coupling effects.
In order to get clear understanding of the nature of quadrupole deformation and pairing corre-
lations in these nuclei, it is strongly desired to explore, both experimentally and theoretically,
excitation spectra of these nuclei.

According to the recent experiments at MSU [133] by intermediate Coulomb excitations
and at RIKEN [134] by proton inelastic scattering reactions at intermediate energy, the
excitation energy of the 2+

1 state in 34Mg are 659 keV and 685 keV, respectively. Furthermore,
the RIKEN experiment by fragmentation reactions reported the excitation energy 660 keV
and 2120 keV for the 2+

1 and 4+
1 states, respectively [135]. In Fig. 5.1, we show the systematics

of the excitation energy ratio E(4+)/E(2+) as a function of the proton number for the N = 22
isotones. The energy ratio of 34Mg is close to 3.3 corresponding to the rotational limit, while
that of Si, S and Ar is close to 2 corresponding to the vibrational limit. These experiments
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Figure 5.1: Systematics of the E(4+) to E(2+) ratio for Mg, Si, S and Ar isotones with
N = 22. Experimental values are taken from Refs. [135, 136] and ENSDF [137].
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Figure 5.2: Potential energy surfaces for the N = 22 isotones, 32Ne, 34Mg and 36Si, plotted as
functions of deformation parameter β2. These are calculated by using the HFBTHO code [138]
with the SkM* interaction and the surface-type pairing with V0 = −418 MeV·fm3, where the
particle number projection is not performed.

thus suggest that 34Mg is well deformed.
In Fig. 5.2, we show the potential energy surfaces calculated with HFBTHO code [138] for the

N = 22 isotones, 32Ne, 34Mg and 36Si, as functions of the quadrupole deformation parameter
β2 using the Skyrme effective interaction (SkM* interaction) for the particle-hole channel and
the surface-type delta interaction with V0 = −418 MeV·fm3 for the particle-particle channel.
We have no experimental data on the low-lying excited states in 32Ne. According to this
calculation, this nucleus has minima at spherical and prolately deformed states which are
very shallow. For 34Mg, we can see a clear minimum at prolately deformed state and it is
consistent with the experimental situation. And we obtained a spherical minimum in 36Si,
which is also consistent with experiments.

In order to study the effect of nuclear deformation on properties of low-lying excited
state in 34Mg, in this chapter, we carry out the QRPA calculation simultaneously taken into
account the deformation of the mean field, pairing correlation and coupling to the continuum.

This chapter is organized as follows: In the next section, we explain the method for
estimating the moment of inertia microscopically. In §5.3, results of the QRPA calculation
for low-frequency quadrupole and octupole vibrations in 34Mg are presented, and the result
for the low-lying Kπ = 0+ mode in 32Ne is also presented. Summary is given in §5.4.

5.2 Method

In order to investigate properties of low-frequency mode of excitation in deformed neutron-
rich nuclei, we perform the deformed QRPA calculation based on the coordinate-space HFB
formalism as presented in the previous chapter. The method we use in this chapter is same
as in the previous chapter. For the residual interaction in the particle-hole channel, we take
into the rearrangement effect (2.105). Furthermore, we estimate moments of inertia using
the spurious solution of the RPA equation (2.86)

(
A B
B∗ A∗

)(
Jx

−J∗
x

)
= 0 (5.1a)
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(
A B
B∗ A∗

)(
Θ
−Θ∗

)
=

�

i

1
JTV

(
Jx

J∗
x

)
. (5.1b)

When we use the phase convention that the matrix element Jx is pure imaginary, the
moment of inertia can be calculated

JTV = 2�
2
∑

αβα′β′
(Jx)∗αβ(A−B)−1

αβα′β′(Jx)α′β′ . (5.2)

5.3 Results

In Fig. 5.3, the single-particle energy diagram for the WS potential is shown as a function of
deformation parameter β2. At around β2 = 0.3, the deformed shell gap is formed at N = 22.
Here the up-sloping level [202]3/2 and the down-sloping levels [330]1/2 and [321]3/2 play a
role in creating the deformed gap.

Results of the deformed WS plus HFB calculation for the ground state properties of 34Mg
and 32Ne are listed in Table 5.1. We determined the parameters for deformation and the
pairing strength so that the calculated moment of inertia is consistent with the experimental
data. In Fig. 5.4, we show the calculated levels obtained by the present scheme together with
the experimental data. As shown in this figure, the 2+

1 and 4+
1 states are well reproduced

with reasonable parameters, where we assume the rotation-vibration model [139]

E(I,K) = �ωRPA +
�

2

2JTV
(I(I + 1)−K2), (5.3)
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Chapter 5. Low-lying excitation modes in neutron-rich 34Mg region

Table 5.1: Ground state properties of 34Mg and 32Ne obtained by the deformed WS-HFB
calculation with β2 = 0.4 and V0 = −400 MeV·fm3 for the pairing interaction. Chemical
potentials, average pairing gaps, and root-mean-square radii for protons and neutrons are
listed.

λπ 〈Δπ〉
√〈r2〉π β2,π λν 〈Δν〉

√〈r2〉ν β2,ν

nucleus (MeV) (MeV) (fm) (MeV) (MeV) (fm)
34Mg −20.0 0.0 3.08 0.45 −3.20 1.28 3.67 0.35
32Ne −25.1 0.0 2.92 0.45 −0.636 1.48 3.83 0.33
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Figure 5.4: Left: Excited 2+ and 4+ states in 34Mg [135]. Right: Calculated levels using
βWS = 0.4 and V0 = −400 MeV·fm3. Here, we assume the rotation-vibration model for the
energy of each state.
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Figure 5.5: Isoscalar transition strengths for the Kπ = 0+ and 2+ modes of quadrupole vibra-
tion in 34Mg (the upper panel), and the transition strengths of unperturbed 2qp excitations
(the lower panel) at prolately deformation with βWS = 0.4 for both neutrons and protons.
The threshold energy, 4.55 MeV is indicated by the arrows. We obtained the self-consistency
factors as fpp = 1.367 and fph = 0.742.

where the vibration phonon and the moment of inertia are calculated microscopically. The
measured reduced transition probability B(E2; 0+

1 → 2+
1 ) is 541(102) e2fm4 [133], and the

calculated B(E2 ↑) is 412 e2fm4.

5.3.1 Quadrupole vibrations

In Fig. 5.5, we show strength distributions for the Kπ = 0+ and 2+ states in 34Mg. For both
the Kπ = 0+ and 2+ states, we can see prominent peaks at around 2 MeV. The intrinsic
transition strength for the Kπ = 0+ state is about 43 Weisskopf unit (1 W.u. � 6.5 fm4 for
34Mg). From the QRPA amplitude listed in Table. 5.2, it is clear that this Kπ = 0+ state is
created by coherent excitations of neutron pairs.

In order to understand the mechanism of generating the softKπ = 0+ mode in a deformed
nucleus, we show here a simple model by Bohr and Mottelson [126]. Let us consider the case
where only two λλ̄ components are present in the wave functions both of the ground 0+

gs and
of the excited 0+

2 states;

|0+
gs〉 =

a√
a2 + b2

|λ1λ̄1〉+ b√
a2 + b2

|λ2λ̄2〉 (5.4a)

|0+
2 〉 = − b√

a2 + b2
|λ1λ̄1〉+ a√

a2 + b2
|λ2λ̄2〉. (5.4b)
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Chapter 5. Low-lying excitation modes in neutron-rich 34Mg region

Table 5.2: QRPA amplitudes for the 0+ state at 1.37 MeV in 34Mg. This mode has B(E2) =
15.9 e2fm4, B(Qν2)=162 fm4, B(QIS2)=279 fm4, and

∑ |gαβ |2 = 0.14. The single-particle
levels are labeled with the asymptotic quantum numbers [Nn3Λ]Ω. Only components with
f2

αβ − g2
αβ > 0.01 are listed.

α β Eα + Eβ f2
αβ − g2

αβ Q
(uv)
20,αβ M

(uv)
20,αβ

(MeV) (fm2) (fm2)
ν[202]3/2 ν[202]3/2 2.79 0.471 4.962 3.673
ν[330]1/2 ν[330]1/2 2.70 0.326 −1.815 1.534
ν[321]3/2 ν[321]3/2 4.50 0.134 6.177 2.676
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Figure 5.6: Matrix elements M (uv)
20,αβ of 2qp excitations generating the lowest Kπ = 0+ state

in 34Mg and 40Mg. Solid and dashed lines indicate 2qp excitations of neutron and proton,
respectively.
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The matrix element of r2Y20 is then

〈0+
gs|r2Y20|0+

2 〉 =
2ab

a2 + b2
[〈λ1|r2Y20|λ1〉 − 〈λ2|r2Y20|λ2〉] (5.5)

and the transition matrix element becomes proportional to the difference in the quadrupole
moments of the individual orbitals composing the 0+ states. In the case that the quadrupole
moment of the orbitals has opposite sign each other, this matrix element becomes large. As
the number of components increases, the wave function becomes more complicated but the
general principle remain the same.

In the present case, the wave functions of the 0+
gs and 0+

2 states are described by a lot
of 2qp combinations in the QRPA. The main components generating the lowest 0+ state
are [202]3/2[202]3/2 and [330]1/2[330]1/2, which are up-sloping and down-sloping levels with
opposite quadrupole moments. Therefore, the transition matrix element becomes enhanced.
Furthermore, many other 2qp excitations coherently participate to generate the lowest 0+

state as shown in the left panel in Fig. 5.6.
As discussed in the previous chapter, in 40Mg we obtained the soft Kπ = 0+ mode

possessing the extremely large transition strength. This enhancement mostly comes from the
fact that the quasiparticle wave functions generating this mode have a spatially extended
structure due to the strong effect of coupling to the continuum states. Also in the present
case, the continuum coupling effect is important. The different feature of the soft Kπ = 0+

states in 34Mg and 40Mg is the coupling between the motion of neutrons and protons. In
Fig. 5.6, we show the structure of Kπ = 0+ state in 40Mg together with that in 34Mg.
We can see that there are appreciable contributions of 2qp excitations around 20 MeV for
the Kπ = 0+ state in 34Mg. They are mostly the 2�ω excitations of proton and can be
identified as; π[211]3/2 → π[431]3/2 (at 19.5 MeV), π[101]3/2 → π[321]3/2 (at 17.3 MeV),
π[110]1/2 → π[330]1/2 (at 19.6 MeV) and π[220]1/2 → π[440]1/2 (at 20.4 MeV). This
analysis indicates that the obtained soft Kπ = 0+ mode is mainly generated by neutron
2qp excitations near the Fermi level (coupling between β vibration and pairing vibration)
and coupling to the high-lying 2�ω excitations brings about further enhancement of the
transition strength.

The pair correlation is indispensable for generation of the soft Kπ = 0+ mode in deformed
nuclei. In order to clearly see unique features of pairing in a deformed system, we show
strength distributions for the two-neutron pair transition in Fig. 5.7. We show in this figure
two kinds of strength for pair transition, one is the monopole-pair transition and another the
quadrupole-pair transition;

P̂ †
00 =

∫
drψ̂†(r ↑)ψ̂†(r ↓), (5.6a)

P̂ †
20 =

∫
drr2Y20(r̂)ψ̂†(r ↑)ψ̂†(r ↓). (5.6b)

For the quadrupole-pair transition, the strengths at 1.37 MeV are enhanced compared with
the unperturbed ones, whereas we cannot see a peak for the monopole-pair transition. We
can say that the quadrupole pairing plays an important role in generating the soft Kπ = 0+

mode in deformed nuclei.
The excited 0+ state in 34Mg is predicted also by the shell model calculation [140]. In

Fig. 5.8, we show the level structure of 34Mg calculated by the Monte Carlo Shell Model [141].
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Figure 5.7: Strength distributions of the pair transition for the Kπ = 0+ mode in 34Mg. The
strengths for the monopole- and quadrupole-pair transition are shown in the left and right
panels, respectively.

Figure 5.8: Level structure of 34Mg calculated by the Monte Carlo Shell Model. This figure
is taken from Ref. [140].
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Table 5.3: QRPA amplitudes for the 2+ state at 2.01 MeV in 34Mg. This mode has B(E2) =
6.28 e2fm4, B(Qν2)=71.3 fm4, B(QIS2)=120 fm4, and

∑ |gαβ |2 = 0.105.

α β Eα + Eβ f2
αβ − g2

αβ Q
(uv)
22,αβ M

(uv)
22,αβ

(MeV) (fm2) (fm2)
ν[202]3/2 ν[200]1/2 3.51 0.647 4.228 −4.166
ν[310]1/2 ν[321]3/2 4.14 0.164 2.620 −1.375
ν[312]5/2 ν[310]1/2 5.39 0.019 −1.275 −0.217
ν[200]1/2 ν[202]5/2 7.16 0.023 −1.847 −0.345
π[211]1/2 π[211]3/2 4.57 0.096 −2.067 −1.060

Although the excitation energies of 0+
2 and 2+

2 states are slightly different from our results,
their 0+

2 state might have a similar structure to our soft Kπ = 0+ mode.
In Table. 5.3, we show the QRPA amplitude for the lowest Kπ = 2+ state in 34Mg.

As in 36,38,40Mg, the π[211]1/2 ⊗ π[211]3/2 excitation is one of the main components for
generating the γ−vibration. Because this proton excitation satisfies the selection rule for the
γ−vibration, the transition matrix element is large. In addition to this proton excitation,
many neutron excitations coherently generate this Kπ = 2+ mode. This structure is quite
similar to that of the Kπ = 2+ mode in 36,38,40Mg.

5.3.2 Octupole vibrations

In Fig. 5.9, we show the isoscalar strength distributions for the Kπ = 0−, 1− and 2− modes
of octupole vibration in 34Mg. For the Kπ = 0− and 1− states, we obtained prominent peaks
with about 30 W.u. at around 3 MeV (1 W.u. � 67 fm6 for 34Mg). We did not obtain
excited states possessing enhanced transition strengths below 5 MeV for the Kπ = 3− mode.

In Fig. 5.10, we show the structures of the lowest and the second lowest Kπ = 0− states
in 34Mg. The lowest excited state at 2.6 MeV with Kπ = 0− has 2230 fm6 in intrinsic
isoscalar transition strength. This state is generated mainly by the ν[202]3/2 ⊗ ν[321]3/2
excitation whose component is about 90.4% and its excitation energy is 2.74 MeV. We can
see another peak at 4.8 MeV possessing 4017 fm6. This state is created mainly by the
ν[310]1/2 ⊗ ν[200]1/2 and ν[330]1/2 ⊗ ν[200]1/2 excitations whose components are 69.7%
and 8.12%, respectively. Although these two states are created by single-particle excitations
dominantly, many 2qp excitations coherently participate in generating these modes as shown
in Fig. 5.10, which brings about the enhancement of the transition strengths. It is noted that
the lowest 2qp excitation of ν[202]3/2 ⊗ ν[321]3/2 is in and out of phase to the other 2qp
excitations in these two states at 2.6 and 4.8 MeV.

In Table. 5.4, we show the QRPA amplitude generating the lowest Kπ = 1− state at
3.1 MeV. The main component is the ν[321]3/2⊗ ν[200]1/2 excitation. Furthermore, many
2qp excitations also participate in generating this state. Though the contribution of 2qp
excitations other than the ν[321]1/2 ⊗ ν[200]1/2 excitation is small, these 2qp excitations
coherently generate this Kπ = 1− state as shown in Fig. 5.11.

Neutron numbers N = 20 and 22 are known to be superdeformed magic numbers, which
correspond to the existence of superdeformed (SD) states in 40Ca [101, 102] and 44Ti [142].
In Fig. 5.3, we can see a deformed shell gap at around β2 = 0.6 for N = 22 and at around
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Figure 5.9: Isoscalar transition strengths for the Kπ = 0−, 1− and 2− modes of octupole
vibration in 34Mg (the upper panel), and the transition strengths of unperturbed 2qp ex-
citations (the lower panel). We obtained the self-consistency factors as fpp = 1.367 and
fph = 0.751.
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Table 5.4: QRPA amplitudes for the 1− state at 3.09 MeV in 34Mg. This mode has
B(E3) = 34.4 e2fm6, B(Qν3)=946 fm6, B(QIS3)=1341 fm6, and

∑ |gαβ |2 = 1.52 × 10−2.
Only components with f2

αβ − g2
αβ > 0.01 are listed.

α β Eα + Eβ f2
αβ − g2

αβ Q
(uv)
31,αβ M

(uv)
31,αβ

(MeV) (fm3) (fm3)
ν[321]3/2 ν[200]1/2 3.56 0.709 −11.28 −9.796
ν[202]3/2 ν[330]1/2 3.60 0.031 0.134 −0.025
ν[202]3/2 ν[312]5/2 4.00 0.015 −2.922 −0.382
ν[310]1/2 ν[202]3/2 4.09 0.160 10.47 −4.467
ν[310]1/2 ν[200]1/2 4.90 0.027 11.72 −2.186
ν[321]3/2 ν[202]5/2 6.39 0.025 10.11 −1.868
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Figure 5.11: Matrix elements M (uv)
31,αβ of 2qp excitations generating the low-lying Kπ = 1−

state at 3.1 MeV in 34Mg.

Table 5.5: QRPA amplitudes for the 1− state at 2.60 MeV in 34Mg for βWS = 0.6. This mode
has B(E3) = 38.5 e2fm6, B(Qν3)=1046 fm6, B(QIS3)=1486 fm6, and

∑ |gαβ |2 = 1.26×10−2.
Only components with f2

αβ − g2
αβ > 0.01 are listed.

α β Eα + Eβ f2
αβ − g2

αβ Q
(uv)
31,αβ M

(uv)
31,αβ

(MeV) (fm3) (fm3)
ν[310]1/2 ν[200]1/2 3.01 0.238 13.67 7.141
ν[200]1/2 ν[321]3/2 3.06 0.648 −10.71 8.702
ν[202]3/2 ν[310]1/2 3.73 0.066 6.679 1.670
ν[321]3/2 ν[202]5/2 5.64 0.021 7.405 1.117
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Figure 5.12: The same as Fig. 5.9 except for the deformation parameter βWS = 0.6. The
threshold energy, 4.16 MeV is indicated by the arrows. We obtained the self-consistency
factors as fpp = 1.369 and fph = 0.763.

Table 5.6: QRPA amplitudes for the 2− state at 2.89 MeV in 34Mg for βWS = 0.6. This mode
has B(E3) = 23.0 e2fm6, B(Qν3)=1493 fm6, B(QIS3)=1904 fm6, and

∑ |gαβ |2 = 1.74×10−2.
Only components with f2

αβ − g2
αβ > 0.01 are listed.

α β Eα + Eβ f2
αβ − g2

αβ Q
(uv)
32,αβ M

(uv)
32,αβ

(MeV) (fm3) (fm3)
ν[200]1/2 ν[321]3/2 3.06 0.256 −2.639 1.343
ν[312]5/2 ν[200]1/2 3.47 0.653 25.16 22.07
ν[202]3/2 ν[310]1/2 3.73 0.035 −7.767 1.500
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β2 = 0.7 for N = 20. On top of these SD states, possible appearance of octupole excitations
is discussed in Ref. [64]. Because the nucleus 34Mg under discussion has the neutron number
N = 22, let us study low-lying octupole excitations built on the SD state of this nucleus.

In Fig. 5.12, we show the isoscalar strength distributions for the Kπ = 0−, 1− and 2−

modes of octupole vibration in 34Mg at βWS = 0.6. For Kπ = 1− and 2−, we obtained
prominent peaks at around 3 MeV below the neutron threshold, and several excited states
with large transition strengths for Kπ = 0−. The lowest Kπ = 0− state at 3.1 MeV possessing
4729 fm6 is created mainly by the ν[310]1/2⊗ν[200]1/2 excitation, whose contribution is 88%.
We show in Tables. 5.5,5.6, the QRPA amplitudes for the lowest Kπ = 1− and 2− states.
From analysis of these three state, we found that they are generated by one or two 2qp
excitations dominantly. As in the case of octupole excitations built on the normal deformed
state, many other 2qp excitations coherently participate in creating these states, which brings
about the enhancement of the transition strengths.

5.3.3 Excited states in 32Ne

As shown in Fig. 5.2, 32Ne has a minimum at prolately deformed state. This local minimum,
however, is very shallow. Let us assume here that 32Ne has a static deformation of β2 = 0.4
as in 34Mg, and perform the QRPA calculation and investigate properties of low-frequency
excitation mode.

In Fig. 5.13, we show the levels below 3 MeV obtained by the present procedure. 32Ne
is a drip-line nucleus according to the calculations with the standard parameter set for the
Woods-Saxon potential [23] and the Skyrme SLy4 interaction [26]. The chemical potential
is −0.64 MeV in the present calculation. The neutron threshold energy thus is 2|λ| = 1.27
MeV, indicated in Fig. 5.13 by a dotted line. Therefore, both the Kπ = 0+ and 2+ states are
embedded in the continuum.

Figure 5.14 shows the strength distributions of isoscalar quadrupole, monopole- and
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Figure 5.14: Isoscalar quadrupole and neutron-pair transition strengths for the Kπ = 0+

mode are shown together with the unperturbed 2qp transition strengths. The threshold
energy, 1.27 MeV is indicated by the arrows. We obtained the self-consistency factors as
fpp = 1.41 and fph = 0.795.

Table 5.7: QRPA amplitudes for the 0+ state at 1.62 MeV in 32Ne. This mode has B(E2) =
13.6 e2fm4, B(Qν2)=235 fm4, B(QIS2)=362 fm4, and

∑ |gαβ |2 = 0.14. Only components with
f2

αβ − g2
αβ > 0.01 are listed. The state without label represents a non-resonant continuum

state.

α β Eα + Eβ f2
αβ − g2

αβ Q
(uv)
20,αβ M

(uv)
20,αβ

(MeV) (fm2) (fm2)
ν[202]3/2 ν[202]3/2 3.16 0.433 −2.229 1.877
ν[321]3/2 ν[321]3/2 3.25 0.223 5.627 3.174
ν[310]1/2 ν[310]1/2 3.61 0.047 7.558 1.852
ν[310]1/2 ν[330]1/2 4.27 0.052 −3.133 1.292
ν[330]1/2 ν[330]1/2 4.92 0.081 3.198 1.165
ν1/2− ν[330]1/2 5.74 0.020 −0.016 0.005
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quadrupole-pair transitions for the Kπ = 0+ mode. We obtained a prominent peak at
1.62 MeV which has a large transition strength, 362 fm4, in intrinsic quadrupole transition
strength. Table 5.7 lists the QRPA amplitudes for this state. This state has a similar struc-
ture to the lowest state in 34Mg: This mode is created by the pair vibration associated mainly
with the up-sloping (ν[202]3/2)2 and the down-sloping (ν[321]3/2)2 levels which have oppo-
site signs in the quadrupole moments. Furthermore, the quadrupole pairing is indispensable
for the enhancement of the transition strength.

5.4 Summary

We have studied properties of low-frequency mode of excitation in 34Mg by means of the
deformed QRPA based on the coordinate-space HFB method. We found that the lowest
Kπ = 0+ mode has a interesting property: The Kπ = 0+ mode is generated mainly by the
pair vibration and the quadrupole pairing plays an important role in the enhancement of
the transition strength. This feature is not restricted to 34Mg. We found the similar soft
Kπ = 0+ mode in 32Ne. For generation of this soft Kπ = 0+ mode, it is crucial that the shell
structure around the Fermi level has the following character; orbitals both of up-sloping and
of down-sloping are existing. Therefore, the excited 0+ state is a good indicator for studying
the pair correlation and the nuclear deformation in neutron-rich nuclei.

Furthermore, in 34Mg, we obtained the low-lying negative-parity state possessing large
transition strength. However the collectivity is smaller than the positive-parity vibrational
states.
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Chapter 6

Soft Kπ = 0+ modes in neutron-rich
chromium and iron isotopes around
N = 40

6.1 Introduction

The subshell closure at 40 created by the gap between 1g9/2 and 2p1/2, 1f5/2 orbitals has
attracted much attention [119] for several reasons. The proton-rich N = Z nucleus 80Zr
lies in the center of the well-deformed A � 80 region [143]. A shell gap at 40 is again
appeared in deformation region (see Fig. 6.2), and the shell effect of protons and neutrons
coherently stabilize the nucleus deformed. On the other hand, the existence of N = 40
subshell closure was suggested experimentally for the neutron-rich nucleus 68Ni [144]. This is
because a weakening of the spin-orbit surface term for neutron-rich nuclei since their surface
is expected to be more diffuse [25], which enlarges the gap of N = 40. The strength of this
subshell closure and its persistence for Z < 28 determine the waiting point for the r-process
at 64Cr [145], which is considered to be a progenitor of 68Ni.

The half-life measurement at CERN/ISOLDE have deduced that the neutron-rich 66Fe
is deformed with a quadrupole deformation β2 ∼ 0.26 [146]. Since the Cr isotopes lie at
mid proton 1f7/2 shell, protons could additionally destabilize the nucleus and favor defor-
mation. Recent measurement of the first excited 2+ state in neutron-rich Cr isotopes [147]
indicates that the deformation develops towards N = 40, as shown in Fig. 6.1. The cal-
culated excitation energies by the shell model using different model spaces [148] are also
plotted in this figure. Calculations labeled by fp, fpg and fpgd correspond to the model
space with full pf−shell, 48Ca as a core and {2p3/2, 1f5/2, 2p1/2, 1g9/2}, and 54Ca as a core
and {1f5/2, 2p1/2, 1g9/2, 2d5/2}, respectively. The pf−shell calculation gives a good descrip-
tion of the experimental data up to N = 36. The drop in the excitation energy beyond
N = 36 requires the inclusion of the upper orbits, implying the onset of deformation.

The deformation region near the shell closure gives a favorable situation for the emergence
of the soft Kπ = 0+ mode discussed in the previous chapters because many orbitals with
opposite quadrupole moments are crossing around the Fermi level. Since the excited 0+ state
is quite sensitive to pairing correlations and deformation, we study in this chapter properties
of low-lying 0+ state in neutron-rich Cr and Fe isotopes with N � 40 region. In order to
investigate properties of low-frequency mode of excitation in these isotopes, we perform the
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Figure 6.1: Left: Excitation energies of the 2+ state in Fe isotopes, taken from Ref. [148].
Right: Excitation energies of the 2+ state in Cr isotopes, taken from Ref. [147].
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number projection is not performed.
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Table 6.1: Ground-state properties of 62−70Cr and 62−72Fe obtained by the deformed WS-
HFB calculation with β2 = 0.3 and V0 = −420 MeV·fm3 for the pairing interaction. Chemical
potentials, average pairing gaps, root-mean-square radii and quadrupole deformations for
protons and neutrons are listed.

λπ 〈Δπ〉
√〈r2〉π β2,π λν 〈Δν〉

√〈r2〉ν β2,ν

nucleus (MeV) (MeV) (fm) (MeV) (MeV) (fm)
62Cr −16.2 0.0 3.69 0.323 −4.58 1.29 4.15 0.301
64Cr −17.4 0.0 3.70 0.325 −3.92 1.37 4.23 0.294
66Cr −18.6 0.0 3.71 0.327 −3.28 1.42 4.30 0.283
68Cr −19.7 0.0 3.73 0.329 −2.68 1.44 4.36 0.274
70Cr −20.9 0.0 3.74 0.330 −2.09 1.42 4.43 0.271
64Fe −13.2 0.0 3.78 0.309 −5.85 1.13 4.13 0.312
66Fe −14.5 0.0 3.79 0.311 −5.14 1.19 4.20 0.304
68Fe −15.6 0.0 3.78 0.312 −4.47 1.28 4.27 0.290
70Fe −16.8 0.0 3.81 0.314 −3.85 1.30 4.33 0.278
72Fe −17.9 0.0 3.83 0.316 −3.23 1.27 4.39 0.272

deformed QRPA calculation based on the coordinate-space HFB formalism. The method we
use in this chapter is same as in the previous chapters.

6.2 Results and Discussion

In Fig. 6.2, we show neutron single-particle energies for 64Cr as functions of deformation
parameter β2 using a deformed Woods-Saxon potential. In prolately deformation region
around β2 � 0.3, we can see deformation shell gaps of N = 38 − 46. For creation of these
shell gaps, the ν[431]1/2 orbit coming from 2d5/2, ν[440]1/2 from 1g9/2 and ν[301]3/2 from
2p3/2 play an important role. Figure 6.3 shows the calculated potential energy surfaces for
neutron-rich Cr and Fe isotopes around N = 40 using HFBTHO [138]. We used the Skyrme
effective interaction SkM* for the particle-hole channel and the surface-type delta interaction
for the particle-particle channel, where the particle number projection was not performed.
We can see that the deformation well develops in these nuclei at around β2 = 0.2 ∼ 0.3,
which is consistent with the recent experiments [146, 147].

Table. 6.1 lists ground-state properties of 62−70Cr and 64−72Fe obtained by the deformed
WS-HFB calculation. We set the deformation parameter β2 = 0.3 for the Woods-Saxon
potential. In these nuclei, the root-mean-square radii for neutrons are about 0.4 − 0.7 fm
larger than those for protons. The neutron skin structure well develops in this calculation.
The pairing gap for protons vanishes, whereas that for neutrons is finite for all nuclei in this
region.

We next discuss properties of low-lying Kπ = 0+ mode in 62−70Cr and 64−72Fe isotopes.
Figure 6.4 shows the isoscalar quadrupole transition strengths for the Kπ = 0+ mode. We can
see a prominent peak at around 1 MeV in all nuclei under discussion. Because 1 Weisskopf unit
is 14.6−17.1 fm4 for 62−70Cr and 15.2−17.8 fm4 for 64−72Fe, all low-lying states obtained here
have extremely enhanced transition strengths. In 72Fe, for instance, the strength becomes
about 141 W.u. in the intrinsic isoscalar transition strength, and B(E2; 0+

2 → 2+
1 ) about 9.3
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Figure 6.4: Isoscalar quadrupole transition strengths for Kπ = 0+ mode in 62−70Cr and
64−72Fe.

Table 6.2: QRPA amplitudes for the 0+ state at 1.04 MeV in 62Cr. This mode has B(E2) =
57.5 e2fm4, B(Qν2)=570 fm4, B(QIS2)=990 fm4, and

∑ |gαβ |2 = 0.139. The single-particle
levels are labeled with the asymptotic quantum numbers [Nn3Λ]Ω. Only components with
|f2

αβ − g2
αβ | > 0.01 are listed.

α β Eα + Eβ f2
αβ − g2

αβ Q
(uv)
20,αβ M

(uv)
20,αβ

(MeV) (fm2) (fm2)
(a) ν[301]3/2 ν[301]3/2 2.13 0.385 −3.105 −2.190
(b) ν[431]3/2 ν[431]3/2 2.78 0.133 7.235 −3.611
(c) ν[440]1/2 ν[440]1/2 3.20 0.300 9.276 −7.062
(d) ν[301]1/2 ν[301]1/2 3.36 0.079 −2.171 −0.727
(e) ν[303]5/2 ν[303]5/2 5.51 0.028 −1.519 −0.336

W.u.
In Tables 6.2-6.11, we show the QRPA amplitudes for the lowest 0+ state in these nuclei.

The mechanism of generating these states are same as in 34Mg: These states are mainly
generated by neutron-pair vibrations, where 2qp excitations of time-reversed states coherently
create the low-lying 0+ state. The coherence comes from the fact that the 2qp excitations
around the Fermi level have positive- and negative-quadrupole matrix elements in the level-
crossing region.

Figure 6.4 shows the following feature: The transition strength of the lowest state be-
comes large at N = 38 and 46. The 2qp excitations of (ν[440]1/2)2 and (ν[431]1/2)2 whose
quadrupole transition matrix element are large have an appreciable contribution to generate
the 0+ state in 62Cr38, 64Fe38 and 70Cr46, 72Fe46, respectively.

Furthermore, the transition strengths for quadrupole-pair creation become much en-
hanced, whereas those for monopole-pair creation are small. One example is shown in Fig. 6.5.
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Table 6.3: QRPA amplitudes for the 0+ state at 1.46 MeV in 64Cr. This mode has B(E2) =
44.9 e2fm4, B(Qν2)=499 fm4, B(QIS2)=843 fm4, and

∑ |gαβ |2 = 0.098. Only components
with |f2

αβ − g2
αβ | > 0.01 are listed.

α β Eα + Eβ f2
αβ − g2

αβ Q
(uv)
20,αβ M

(uv)
20,αβ

(MeV) (fm2) (fm2)
(a) ν[301]3/2 ν[301]3/2 2.60 0.082 −2.843 −1.007
(b) ν[301]1/2 ν[301]1/2 2.65 0.181 −3.108 −1.661
(c) ν[431]3/2 ν[431]3/2 3.07 0.336 7.044 −4.397
(d) ν[422]5/2 ν[422]5/2 3.48 0.028 3.220 −0.429
(e) ν[440]1/2 ν[440]1/2 3.88 0.258 9.178 −5.330
(f) ν[303]5/2 ν[303]5/2 4.40 0.033 −2.131 −0.642

Table 6.4: QRPA amplitudes for the 0+ state at 1.66 MeV in 66Cr. This mode has B(E2) =
38.4 e2fm4, B(Qν2)=460 fm4, B(QIS2)=764 fm4, and

∑ |gαβ |2 = 0.108. Only components
with |f2

αβ − g2
αβ | > 0.01 are listed.

α β Eα +Eβ f2
αβ − g2

αβ Q
(uv)
20,αβ M

(uv)
20,αβ

(MeV) (fm2) (fm2)
(a) ν[301]1/2 ν[301]1/2 2.42 0.227 −3.707 2.263
(b) ν[422]5/2 ν[422]5/2 3.14 0.225 3.826 1.679
(c) ν[303]5/2 ν[303]5/2 3.55 0.039 −2.819 1.059
(d) ν[431]1/2 ν[431]1/2 3.63 0.111 7.772 2.428
(e) ν[431]3/2 ν[431]3/2 3.71 0.231 6.271 2.988
(f) ν[440]1/2 ν[440]1/2 5.10 0.066 3.683 8.620

Table 6.5: QRPA amplitudes for the 0+ state at 1.65 MeV in 68Cr. This mode has B(E2) =
42.1 e2fm4, B(Qν2)=549 fm4, B(QIS2)=894 fm4, and

∑ |gαβ |2 = 0.113. Only components
with |f2

αβ − g2
αβ | > 0.01 are listed.

α β Eα + Eβ f2
αβ − g2

αβ Q
(uv)
20,αβ M

(uv)
20,αβ

(MeV) (fm2) (fm2)
(a) ν[301]1/2 ν[301]1/2 2.69 0.130 −3.457 1.710
(b) ν[431]1/2 ν[431]1/2 2.82 0.354 8.697 5.104
(c) ν[303]5/2 ν[303]5/2 3.08 0.107 −3.310 1.705
(d) ν[422]5/2 ν[422]5/2 3.23 0.181 3.927 1.561
(e) ν[431]3/2 ν[431]3/2 4.54 0.081 5.762 1.525
(f) ν[431]1/2 ν[440]1/2 4.60 0.020 −2.856 0.697
(g) ν[440]1/2 ν[440]1/2 5.94 0.030 4.724 7.046
(g′) ν[440]1/2 ν[440]1/2 6.38 0.010 1.629 0.124
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Table 6.6: QRPA amplitudes for the 0+ state at 1.51 MeV in 70Cr. This mode has B(E2) =
44.3 e2fm4, B(Qν2)=640 fm4, B(QIS2)=1021 fm4, and

∑ |gαβ |2 = 0.090. Only components
with |f2

αβ − g2
αβ | > 0.01 are listed.

α β Eα + Eβ f2
αβ − g2

αβ Q
(uv)
20,αβ M

(uv)
20,αβ

(MeV) (fm2) (fm2)
(a) ν[431]1/2 ν[431]1/2 2.32 0.547 10.73 −8.231
(b) ν[303]5/2 ν[303]5/2 3.11 0.182 −3.238 −1.844
(c) ν[301]1/2 ν[301]1/2 3.33 0.068 −2.800 −0.971
(d) ν[422]5/2 ν[422]5/2 3.67 0.018 3.566 −0.433
(e) ν[420]1/2 ν[431]1/2 3.68 0.038 −1.670 −0.584
(f) ν[420]1/2 ν[420]1/2 5.06 0.016 3.444 −0.464
(g) ν[431]3/2 ν[431]3/2 5.11 0.015 4.734 −0.663

Table 6.7: QRPA amplitudes for the 0+ state at 0.546 MeV in 64Fe. This mode has B(E2) =
147 e2fm4, B(Qν2)=978 fm4, B(QIS2)=1881 fm4, and

∑ |gαβ |2 = 0.474. Only components
with |f2

αβ − g2
αβ | > 0.01 are listed.

α β Eα + Eβ f2
αβ − g2

αβ Q
(uv)
20,αβ M

(uv)
20,αβ

(MeV) (fm2) (fm2)
(a) ν[301]3/2 ν[301]3/2 1.89 0.474 −2.935 2.813
(b) ν[431]3/2 ν[431]3/2 2.42 0.137 7.039 5.222
(c) ν[440]1/2 ν[440]1/2 3.11 0.204 7.980 7.223
(d) ν[301]1/2 ν[301]1/2 3.55 0.069 −1.718 0.668
(e) ν[303]5/2 ν[303]5/2 5.30 0.035 −1.318 0.402

Table 6.8: QRPA amplitudes for the 0+ state at 1.13 MeV in 66Fe. This mode has B(E2) =
80.2 e2fm4, B(Qν2)=579 fm4, B(QIS2)=1090 fm4, and

∑ |gαβ |2 = 0.207. Only components
with |f2

αβ − g2
αβ | > 0.01 are listed.

α β Eα + Eβ f2
αβ − g2

αβ Q
(uv)
20,αβ M

(uv)
20,αβ

(MeV) (fm2) (fm2)
(a) ν[301]3/2 ν[301]3/2 2.27 0.068 −2.765 1.205
(b) ν[301]1/2 ν[301]1/2 2.62 0.091 −2.620 1.355
(c) ν[431]3/2 ν[431]3/2 2.81 0.446 6.341 4.664
(d) ν[422]5/2 ν[422]5/2 2.97 0.070 3.177 0.680
(e) ν[440]1/2 ν[440]1/2 3.92 0.235 7.473 4.300
(f) ν[303]5/2 ν[303]5/2 4.06 0.015 −1.915 0.680
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Table 6.9: QRPA amplitudes for the 0+ state at 1.19 MeV in 68Fe. This mode has B(E2) =
88.6 e2fm4, B(Qν2)=636 fm4, B(QIS2)=1199 fm4, and

∑ |gαβ |2 = 0.364. Only components
with |f2

αβ − g2
αβ | > 0.01 are listed.

α β Eα +Eβ f2
αβ − g2

αβ Q
(uv)
20,αβ M

(uv)
20,αβ

(MeV) (fm2) (fm2)
(a) ν[301]1/2 ν[301]1/2 2.26 0.039 −3.453 2.162
(b) ν[422]5/2 ν[422]5/2 2.73 0.469 3.811 2.383
(c) ν[301]3/2 ν[301]3/2 3.17 −0.022 −2.255 0.375
(d) ν[303]5/2 ν[303]5/2 3.21 −0.032 −2.696 1.355
(e) ν[431]3/2 ν[431]3/2 3.67 0.270 5.384 2.747
(f) ν[431]1/2 ν[431]1/2 3.73 0.112 6.498 1.975
(g) ν[413]7/2 ν[413]7/2 5.04 −0.011 −0.057 0.003
(h) ν[440]1/2 ν[440]1/2 5.18 0.073 3.062 0.721
(i) ν[312]3/2 ν[312]3/2 6.53 0.012 0.426 0.032

Table 6.10: QRPA amplitudes for the 0+ state at 1.14 MeV in 70Fe. This mode has B(E2) =
98.4 e2fm4, B(Qν2)=776 fm4, B(QIS2)=1428 fm4, and

∑ |gαβ |2 = 0.505. The columns (g)
and (g′) are assigned the same configuration, because we obtain two discretized continuum
states associated with the ν[440]1/2 level for which E > |λ|. Only components with |f2

αβ −
g2
αβ | > 0.01 are listed.

α β Eα + Eβ f2
αβ − g2

αβ Q
(uv)
20,αβ M

(uv)
20,αβ

(MeV) (fm2) (fm2)
(a) ν[301]1/2 ν[301]1/2 2.42 −0.076 −3.361 1.550
(b) ν[303]5/2 ν[303]5/2 2.77 −0.107 −3.199 1.789
(c) ν[431]1/2 ν[431]1/2 2.83 0.422 7.504 4.638
(d) ν[422]5/2 ν[422]5/2 2.92 0.467 3.744 2.242
(e) ν[301]3/2 ν[301]3/2 4.08 −0.022 −1.841 0.235
(f) ν[431]3/2 ν[431]3/2 4.58 0.136 4.830 1.534
(g) ν[440]1/2 ν[440]1/2 6.09 0.052 4.103 0.737
(g′) ν[440]1/2 ν[440]1/2 6.56 0.015 1.242 0.091
(h) ν[404]9/2 ν[404]9/2 8.63 −0.012 −1.743 0.151
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Table 6.11: QRPA amplitudes for the 0+ state at 0.756 MeV in 72Fe. This mode has B(E2) =
165 e2fm4, B(Qν2)=1393 fm4, B(QIS2)=2516 fm4, and

∑ |gαβ |2 = 0.672. The state without
label represents a non-resonant continuum state. Only components with |f2

αβ − g2
αβ | > 0.01

are listed.

α β Eα + Eβ f2
αβ − g2

αβ Q
(uv)
20,αβ M

(uv)
20,αβ

(MeV) (fm2) (fm2)
(a) ν[431]1/2 ν[431]1/2 2.19 0.813 9.771 9.585
(b) ν[303]5/2 ν[303]5/2 2.80 −0.079 −3.020 2.379
(c) ν[301]1/2 ν[301]1/2 2.98 −0.055 −2.666 1.344
(d) ν[413]7/2 ν[413]7/2 3.33 −0.028 −0.057 0.005
(e) ν[422]5/2 ν[422]5/2 3.47 0.079 3.201 0.629
(f) ν[420]1/2 ν[431]1/2 3.70 0.044 −1.413 0.666
(g) ν[301]3/2 ν[301]3/2 5.02 −0.022 −1.475 0.289
(h) ν[420]1/2 ν[420]1/2 5.21 0.044 2.911 0.582
(i) ν[431]3/2 ν[431]3/2 5.38 0.058 4.941 1.210
(j) ν[440]1/2 ν[440]1/2 7.23 0.017 2.882 0.235
(k) ν[404]9/2 ν[404]9/2 7.36 −0.012 −1.945 0.200
(l) ν1/2− ν1/2− 8.45 0.015 3.080 0.326
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Figure 6.5: Isoscalar quadrupole transition strengths and neutron-pair transition strengths for
the Kπ = 0+ mode are shown together with the unperturbed 2qp transition strengths. The
threshold energy is 4.32 MeV as indicated by the arrows. We obtained the self-consistency
factors as fpp = 1.418 and fph = 0.787.
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Chapter 6. Soft Kπ = 0+ modes in neutron-rich chromium and iron isotopes around N = 40

In the left panel, the isoscalar quadrupole transition strength for Kπ = 0+ mode in 72Fe
and the unperturbed 2qp transition strength are shown. We can see a prominent peak at
0.76 MeV. In the central and right panels, we show strength distributions of monopole- and
quadrupole-pair transitions. The strengths for monopole-pair transition are comparable to
the unperturbed ones. For the quadrupole-pair transitions, on the other hand, the strengths
are quite large, much enhanced compared to the unperturbed ones. It is clear that the
quadrupole pairing plays an crucial role in generating coherence among 2qp excitations for
Kπ = 0+ mode.

6.3 Summary

We have studied low-lying vibrational modes in neutron-rich Cr and Fe isotopes around
N = 40 by means of the deformed QRPA calculation. Neutron-rich 62Cr and 64,66Fe are
suggested to be deformed experimentally, and Cr and Fe isotopes around N = 40 are expected
to be deformed by the theoretical calculation. In these deformed neutron-rich nuclei, we have
found that the soft Kπ = 0+ mode is triggered by the neutron-pair vibration. Furthermore,
it is pointed out that the quadrupole pairing plays an important role in the enhancement of
the transition strength.
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Chapter 7

Single-particle resonances in
deformed nuclei

7.1 Introduction

Understanding of single-particle levels in the continuum is essential in describing the nuclear
structure close to, and beyond, the drip line, since the shell structure of both bound and
continuum levels plays an important role in many-body correlations such as deformation and
pairing.

It has been argued recently that, as the binding energy approaches zero, the s-wave
component of a bound single-particle wave function behaves uniquely in a deformed potential,
and plays a dominant role in Nilsson levels with Ωπ = 1/2+ [116, 117]. Naively, resonant levels
can be considered as an extension of bound states into the positive energy regime. Therefore,
if the s-wave component keeps dominant in the continuum, the level with Ωπ = 1/2+ might
not exist as a physical state. Notice that, for a Nilsson Hamiltonian [149], single-particle
levels with Ω = 1/2 belonging to high-j orbit comes down in energy in a prolately deformed
potential. These states play an important role in generating the deformed shell structure. It
is therefore crucially important to investigate the role of low-l component in a deformed wave
function for Ω = 1/2 states and its transition from bound to resonant levels.

The structure of deformed single-particle levels in the continuum has been investigated
in a few publications. In Ref. [150], the resonance energy of negative parity states was
studied by employing the Gamow wave function. The Analytic Continuation in the Coupling
Constant (ACCC) method was applied to study single-particle resonance states in spherical
and deformed nuclei [151]. Using the multi-channel scattering approach, Ref. [152] has studied
how the single-particle energies change from bound to resonant levels when the depth of the
potential is varied. In order to fully understand the structure of deformed single-particle
levels in the continuum, however, a detailed study of the wave function components is still
necessary, in addition to the resonance energy itself.

In this chapter, we investigate the structure of deformed wave functions around zero
energy using the Gamow state representation for a resonant state. To this end, we use a
schematic model: a Y20 deformed finite square-well potential without spin-orbit force. This
enables us to determine the single-particle wave function analytically. To use the Gamow
state for resonance has a certain advantage in analyzing the deformed wave function. That
is, we are able to treat the bound and the resonant levels on the same footing, because the
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Gamow states are normalizable just like the bound states [153]. It is then straightforward
to see how the fraction of each component in the deformed wave functions changes when the
single-particle level changes its character from bound to resonant. A slight disadvantage of
this approach is that the expectation value with the Gamow states, including the probability
of wave function components, becomes complex numbers. However, this is not a big defect
for our purpose, since the physical quantity of the expectation values can be obtained by
taking their real part [154, 155].

This work was reported in Ref. [82].

7.2 Model

Our purpose is to study the structure of wave function in a deformed single-particle potential.
To this end, we employ a schematic model for the single-particle potential, that is, a deformed
square-well potential without the spin-orbit force,

V (r) = −V0 θ(R(r̂)− r), (7.1)

where R(r̂) = R0(1+β2Y20(r̂)). For simplicity, we expand this potential up to the first order
of deformation parameter β2 and obtain

V (r) � −V0 [θ(R0 − r) +R0β2Y20(r̂)δ(r −R0)] . (7.2)

In order to solve the Schrödinger equation with this potential, we expand the wave function
in the multipoles as

ΨK(r) =
∑

l

ulK(r)
r

YlK(r̂), (7.3)

where the quantum number K(= Λ) is the z-component of the orbital angular momentum l.
By projecting out each multipole component, we obtain the coupled equations for the radial
wave functions given by

[
− �

2

2m
d2

dr2
− V0θ(R0 − r) +

�
2l(l + 1)
2mr2

− E
]
ulK(r)

= V0R0β2δ(r −R0)
∑
l′
〈lK|Y20|l′K〉ul′K(r). (7.4)

For the positive energy solution, E > 0, we impose the boundary condition corresponding
to the Gamow state for resonance. That is, the wave function is regular at the origin and
satisfies the out-going boundary condition u(r) ∼ eikr asymptotically. This boundary condi-
tion is satisfied only if the energy is complex, E = �

2k2/2m = ER − iΓ/2, where ER and Γ
are the resonance energy and the width, respectively. In the case for Γ = 0 and ER < 0, the
Gamow state wave function is equivalent to the bound state wave function, which satisfies
the decaying asymptotics u(r) ∼ e−αr, where α =

√−2mER/�2.
The solutions of the coupled-channels equations (7.4) therefore read (we omit the subscript

K for simplicity of notation),

ul(r) =

{
Al rjl(k1r) (r < R0),
Bl rh

(+)
l (kr) (r ≥ R0),

(7.5)
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where k1 =
√

2m(E + V0)/�2, k =
√

2mE/�2, and jl(x), h
(+)
l (x) are the spherical Bessel and

Hankel functions, respectively. The amplitudes Al and Bl are determined by the matching
condition at r = R0 given by,

ul(R−) =ul(R+), (7.6)

− �
2

2m
[
u′l(R+)− u′l(R−)

]
=V0R0β2

∑
l′
〈lK|Y20|l′K〉ul′(R0), (7.7)

where R± represents limε→0R0 ± ε.
The bound state wave function is normalized as

1 =
∫

dr |ΨK(r)|2 =
∑

l

Nl, (7.8)

where

Nl =
∫ ∞

0
dr|ul(r)|2. (7.9)

The Gamow state wave function can be also normalized by introducing the regularization
factor as Zel’dovich proposed [156]

Nl = lim
ε→0

∫ ∞

0
dre−εr2{ul(r)}2 (7.10)

=
∫ R0

0
dr{Al rjl(k1r)}2 + lim

ε→0

∫ ∞

R0

dre−εr2{Bl rh
(+)
l (kr)}2. (7.11)

Using a property of the spherical Bessel function [157], one can evaluate the first term as

∫ R0

0
dr {Al rjl(k1r)}2 =

A2
lR

3
0

2

(
{jl(k1R0)}2 − jl−1(k1R0)jl+1(k1R0)

)
. (7.12)

The second term can be also evaluated using the contour integral method or equivalently the
Complex Scaling Method (CSM). The result is given by [158],

lim
ε→0

∫ ∞

R0

dre−εr2{Bl rh
(+)
l (kr)}2 = −B

2
l R

3
0

2

(
{h(+)

l (kR0)}2 − h(+)
l−1(kR0)h

(+)
l+1(kR0)

)
. (7.13)

Note that the fraction of multipole components Nl is in general a complex number for the
Gamow state wave function.

7.3 Results and Discussion

Let us now discuss the behavior of the low-l components in deformed wave functions. In
§7.3.1, we vary the potential depth for a fixed deformation parameter, while we vary the
deformation parameter for a fixed potential depth in §7.3.2.
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Figure 7.1: The real part of the energy and the resonance width for a Kπ = 0+ state with
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corresponding potential depths are shown in Fig.7.2.
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Figure 7.3: Same as Fig.7.1, but in the logarithmic scale. The solid line is an expectation for
the pure s-wave configuration given by Eq. (7.14).

7.3.1 Dependence on potential depth

We first study the wave functions at a fixed deformation, β2 = 0.5. Figure 7.1 shows the real
and imaginary parts of the energy for a Kπ = 0+ state in varying the potential depth V0.
The correspondence between the potential depth and the real part of the energy is shown in
Fig.7.2. We observe that the width is quite large even for a small values of positive energy.
This large width is caused by the admixture of the l = 0 component in the wave function.
Indeed, as shown in Fig.7.3, in the small positive energy region (0.1 MeV < �(E) < 1.0 MeV),
the behavior of the width is consistent with the relation expected for the s-wave resonance
state [150, 152, 159],

Γ ∝ �(E)l+1/2 ×�(Nl)
∣∣∣
l=0
, (7.14)

where �(E) denotes the real part of E.
Below ER =0.1 MeV, the width is larger than the solid line, which predicts Γ = 0 at

ER = 0. Also, we found a non-monotonic behavior in the eigen-energy between V0= 41.62
and 41.68 MeV, where the solution has ER < 0 and Γ > 0, as is shown in the inset of Fig.7.2.
These facts might be related to the possible presence of the anti-bound (κ = 0, γ > 0) and/or
‘crazy’ resonant (0 < κ < γ) states, where k = κ−iγ, as presented in Ref. [160] for a spherical
square-well potential (see Fig.1 of Ref. [160]). In order to study the presence of these states in
the present deformed potential, we plot the trajectory for the pole of S-matrix in the complex
momentum plane in Fig.7.4. As the potential depth is made shallower, the pole comes down
along the imaginary axis. In the present example, the pole goes through k = 0 and comes
into the anti-bound (virtual) state region. With a shallower potential, the pole begins to
have a finite real part, which corresponds to the ’crazy’ resonance, and eventually comes into
the normal resonance region (κ > γ > 0). It is thus apparent that this state has finite width
even in the limit of ER → 0+.

Above 1.0 MeV also, the width is larger than that expected by Eq.(7.14). This is due to
the fact that the relation Eq.(7.14) is valid only for small values of k [159].
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Figure 7.4: The trajectory for the pole of S-matrix in the complex momentum plane. In the
inset, the behavior around zero momentum is enlarged.

In Fig.7.2, we see that the slope of the single-particle energy as a function of the potential
depth, dE/dV0, or equivalently dE/dA, where A is the mass number, becomes smaller in
approaching the zero binding energy. For a spherical square-well potential, it has been shown
that dEl/dA→ 0 for l = 0 in the limit of zero binding [161]. This is due to the fact that the s-
wave function can be easily extended outside the nuclear potential and also the kinetic energy
is reduced due to the absence of the centrifugal barrier [161]. This property implies that the
l = 0 component becomes dominant in a deformed wave function around the zero-binding
region. On the other hand, the slope has a finite value in the positive energy region even in
the limit of zero energy, thus the slope has a discontinuity around zero energy. Therefore, a
care must be taken, as discussed in Ref. [160], when one estimates the energy of a deformed
resonant level with Kπ = 0+ by using the ACCC method [151].

The resonance energy and width can be also estimated using the eigenphase sum Δ(E) [114].
It is defined in terms of the eigenvalues of the scattering matrix (S-matrix) as

(U †SU)aa′ = e2iδa(E)δa,a′ , Δ(E) =
∑

a

δa(E). (7.15)

The resonance energy and width are identified with the peak energy of dΔ(E)/dE and its
FWHM, respectively [128]. Figure 7.5 shows the eigenphase sum for the Kπ = 0+ state with
two different potential depths. Comparing Figs.7.1, 7.2 and 7.5, we see a good correspondence
between the two definitions of resonance state, i.e., the Gamow state representation and the
approach with the eigenphase sum.

We now discuss the energy dependence of the fraction of the multipole components in
the deformed wave function. Figure 7.6 shows the real part of the fraction for each multipole
component in the Gamow state wave function with Kπ = 0+. When the binding energy
approaches zero, the s-wave component in the deformed wave function becomes dominant.
In contrast, in the positive energy region, all the multipole components have a finite value
even in the zero energy limit and show similarity with the well bound cases. As we will
discuss in the next subsection, the state shown in Fig. 7.6 originates from the 2d orbit in
the spherical limit. This state couples with the lower-lying 2s, 1g and the higher-lying 3s
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states. The dominant component is l = 4 both in well bound and in resonant levels, as one
sees in Fig.7.6. This suggests that both the well bound and the resonant levels have a similar
property to each other and the intuitive picture that the resonant level is an extension of a
bound level into the continuum is valid.

Only at the limit of zero binding, the singular behavior of the l = 0 component appears.
This is entirely due to the property of the normalization integral, Eq.(7.13). Since the Gamow
state wave function is equivalent to the bound state wave function for ER < 0,Γ = 0,
Eq.(7.13) holds both for the resonance and the bound states. For small values of k, Eq.(7.13)
is proportional to k2l−1 as discussed in Refs. [117, 162], that diverges only for l = 0 as k → 0.
When the total wave function ΨK is normalized according to Eq.(7.8), then only the s-wave
component is allowed in the wave function [117]. This condition is always met for the bound
state when the binding energy approaches the threshold. In principle, the same consideration
can apply also to the resonance state when the resonance energy approaches zero from the
positive energy side. However, as we show in Fig.7.1, the resonance state acquires a relatively
large width even when the real part of the energy is infinitesimally small. Since k is defined
as k =

√
2m(ER − iΓ/2)/�2, it remains a constant even if ER itself approaches zero. This

leads to the disappearance of the “s-wave dominance” in the positive energy side.
We next study the case for Kπ = 0−. In Fig. 7.7, we show the dependence of the single-

particle energy on the potential depth. In contrast to the case for Kπ = 0+, due to the
presence of the centrifugal barrier, we do not see any singular behavior around zero energy.
Single-particle energies are connected smoothly when changing the potential depth, and the
width increases gradually in the small positive energy region. Figure 7.8 shows the fraction
of each multipole component in the Gamow state wave function. As the binding energy
approaches zero, the p-wave component becomes relatively large, that is consistent with the
dominance of low-l component in the limit of zero binding energy discussed in Ref. [116]. The
fractions are connected smoothly and asymptotically in the bound and resonant regions.

7.3.2 Deformation dependence

In this subsection, we study the deformation dependence of the low-l component in deformed
wave functions for a fixed potential depth. In the realistic situation, the location of single-
particle levels changes as a function of nuclear deformation. Especially, the levels of Ω = 1/2
(K = 0) with (without) spin-orbit force belonging to high-j (high-l) orbit in the spherical
limit play an important role in nuclear deformation.

Figure 7.9 shows the resonance energy and width when the deformation parameter is
varied from β2 = 0.0 to 0.5. The potential depth V0 and the radius R0 are set to be 45.0
MeV and 5.0 fm, respectively. This state belongs to the 2d orbit at β2 = 0.0 as shown in
Fig.7.10. At around zero energy, we see the similar behavior as in Fig.7.1: the width is quite
large even for the small values of positive energy, which implies that the l = 0 component is
responsible for the width of the resonant level.

The corresponding wave function components for this state are shown in Fig.7.11. As
in Fig.7.6, we see the singular behavior for the s-wave component at around zero-binding
energy, corresponding to the “s-wave dominance” in the limit of zero binding. Except for the
zero-energy region, however, we see that the fraction of each multipole components is linked
asymptotically and is smoothly connected to the d-state resonant level in the spherical limit.
From this calculation, it is evident that the singular behavior of the l = 0 component for the
Kπ = 0+ state occurs only just below the continuum threshold and this state is connected to
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the physical resonant level in the continuum. Furthermore, the fraction of each-l components
in the deformed wave function is connected smoothly from the bound to the resonant levels
except for the region near the threshold.

7.4 Summary

We have analyzed the structure of the deformed wave functions around zero energy using the
Gamow state wave function for resonance, with which one can treat the resonant and bound
levels on the same footing and thus analyze the wave function continuously from the negative
to the positive energy regions. For this purpose, we developed a schematic model with a
deformed square-well potential. Since the wave functions can be obtained analytically with
this model, detailed analyses of the deformed wave functions were possible. For a Kπ = 0+

state, we have found a singularity in the resonance width as well as in the s-wave component in
the deformed wave function at around zero energy. That is, the width becomes considerably
large even in the small positive energy region and the l = 0 component approaches unity in
the limit of zero binding. We have shown that the “s−wave dominance” occurs only at the
threshold of continuum. Far from the zero energy region, the probability of each-l components
is connected asymptotically. This implies that the Kπ = 0+ resonant level exists unless the
l = 0 component is large inherently when extrapolated to the well bound region. In contrast,
for the Kπ = 0− state, we did not find any singular behavior even in the zero-energy limit.
The single-particle energies are connected smoothly when changing the potential depth, and
the width increases gradually in the small positive energy region. The probability of each-l
component in the wave function is also connected smoothly and asymptotically between the
bound and the resonant regions.

101





Chapter 8

Towards self-consistent calculation
based on the nuclear
density-functional theory

8.1 Introduction

In 1956, one monumental paper was written by Hohenberg and Kohn [163]. This was the dawn
of the density-functional approach in investigating the many-body system. They showed two
theorems in their paper:

1. The ground state electron density of a many electron system in the presence of an
external potential uniquely determines the external potential: There is a one-to-one
mapping between the external potential and the electron density.

2. The functional for the ground state energy is minimized by the ground state electron
density.

This theorem says that the ground state energy of N−particle systems can be deter-
mined by minimization of the universal functional of the density. We do not need to solve
Schrödinger equation for the N−particle system. This theorem, however, does not provide
any functionals; i.e., this is only the existence theorem.

In 1965, Kohn and Sham provided a prescription for constructing the density functional
introducing the single-particle orbit [164]. In this approach, we have only to solve single-
particle Schrödinger equation. At present, the determination of the effective potential in-
cluding exchange-correlation effects is the remaining problem. For the nuclear system, the
Skyrme interaction is often used as an effective interaction in constructing the nuclear density
functional.

8.2 Skyrme energy functional

As shown in Appendix B, one of the most important features of the Skyrme effective inter-
action is that its mathematical form, which contains δ−functions, simplifies calculation in
coordinate-mesh representation. Namely, the Skyrme energy functional can be written using
the local density and current.
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The total energy E of the system consists of the kinetic energy Ekin, the Skyrme energy
ESky, the Coulomb energy ECoul, the pairing energy Epair and the correction of center-of-mass
motion and rotational motion Ecorr;

E = Ekin + ESky + ECoul + Epair + Ecorr, (8.1)

where the kinetic energy is given by

Ekin =
∫
dr

�
2

2m
τ. (8.2)

The Skyrme energy is given as:

ESky =
∫
drHSky(r), (8.3)

HSky =
∑
t=0,1

{
Cρ

t [	00]	2
t0 + Cs

t [	00]s2
t0 +C
ρ

t 	t0�	t0 + C
�

t st0 · �st0

+Cτ
t (	t0τt0 − j2

t0) + CT
t (st0 · T t0 −←→J 2

t0) + C∇J
t (	t0∇ · J t0 + st0 · ∇ × jt0)

}
,

(8.4)

where s denotes the spin density, τ the kinetic density, T the kinetic spin density, j the
current tensor, ←→J the spin-current tensor and J the spin-orbit current. All densities are
labeled by isospin indices t tz, where t takes value zero and one and tz is always assumed to
be zero; i.e., we assume no isospin mixing. A more general theory could violate isospin at
the single-quasiparticle level, which leads additional densities 	1±1 [71].

The particle density is defined as

	(rσ, r′σ′) = 〈ψ†(r′σ′)ψ(rσ)〉, (8.5)

where ψ(rσ) and ψ†(rσ) are nucleon annihilation and creation operators, and | 〉 denotes
the ground state of the many-body system. The isoscalar and isovector densities are

	00(rσ, r′σ′) = 	ν(rσ, r′σ′) + 	π(rσ, r′σ′), (8.6)
	10(rσ, r′σ′) = 	ν(rσ, r′σ′)− 	π(rσ, r′σ′), (8.7)

where σ = ±1
2 labels the spin component. Defining

	t0(r, r′) =
∑
σ

	t0(rσ, r′σ), (8.8)

st0(r, r′) =
∑
σ,σ′

	t0(rσ, rσ′)〈σ′|σ|σ〉, (8.9)
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we can write the local densities and currents as

	t0(r) = 	t0(r, r), (8.10)
st0(r) = st0(r, r), (8.11)
τt0(r) = ∇ · ∇′	t0(r, r′)|

�=�
′ , (8.12)

T t0(r) = ∇ · ∇′st0(r, r′)|
�=�

′ , (8.13)

jt0(r) = − i
2
(∇−∇′)	t0(r, r′)|

�=�
′ , (8.14)

Jt0,ij(r) = − i
2
(∇−∇′)ist0,j(r, r′)|

�=�
′ , (8.15)

←→
J 2

t0(r) =
∑

ij=xyz

J2
t0,ij , (8.16)

J t0(r) = − i
2
(∇−∇′)× st0(r, r′)|�=�

′ . (8.17)

Using the parameters of t0 through t3, W0, x0 through x3 and α, the Skyrme energy
functional (8.4) can be explicitly written as;

HSky =
t0(2 + x0)

4
	2 − t0(1 + 2x0)

4
(	2

ν + 	2
π) +

t3(2 + x3)
24

	α+2 − t3(1 + 2x3)
24

	α(	2
ν + 	2

π)

+
t0x0

4
s2 +

t3x3

24
	αs2 − t0

4
(s2

ν + s2
π)− t3

24
	α(s2

ν + s2
π)

− 3t1(2 + x1)− t2(2 + x2)
32

	�	+
3t1(1 + 2x1) + t2(1 + 2x2)

32
(	ν�	ν + 	π�	π)

− 3t1x1 − t2x2

32
s · �s +

3t1 + t2
32

(sν · �sν + sπ · �sπ)

+
t1(2 + x1) + t2(2 + x2)

8
(	τ − j2)− t1(1 + 2x1)− t2(1 + 2x2)

8
(	ντν − j2

ν + 	πτπ − j2
π)

+
t1x1 + t2x2

8
(s · T −←→J 2)− t1 − t2

8
(sν · T ν −←→J 2

ν + sπ · T π −←→J 2
π)

− W0

2
(	∇ · J + s · ∇ × j + 	ν∇ · Jν + sν · ∇ × jν + 	π∇ · Jπ + sπ · ∇ × jπ).

(8.18)

The Coulomb energy is given as

ECoul =
e2

2

∫
drdr′	π(r)

	π(r′)
|r − r′| −

3e2

4

∫
dr	4/3

π (r), (8.19)

where the exchange term in the Coulomb energy is treated in the Slater approximation [167],
and the higher order correction was found to be small [168].

When we use for the pairing interaction the following form

vpair(r, r′) =V (q)
0

1− Pσ

2
F (r)δ(r − r′), (8.20)

F (r) =1−
(
	(r)
	0

)γ

, (8.21)

the pairing energy is given as

Epair =
∫
dr

[
V

(ν)
0

4
	̃ν

2 +
V

(π)
0

4
	̃π

2

]
F (r), (8.22)
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where 	̃ denotes the pairing density;

	̃(rσ, r′σ′) = 〈ψ(r′σ̄′)ψ(rσ)〉 = (−2σ′)〈ψ(r′ − σ′)ψ(rσ)〉, (8.23)

	̃(r) =
∑
σ=±

	̃(rσ, rσ) (8.24)

For the correction energy Ecorr, we only consider in this thesis the correction of center-
of-mass motion with the simplest prescription

Ecorr = − �
2

2mA

∫
drτ. (8.25)

8.3 Ground state

When we consider the ground states of even-even nuclei, the 0+ states, the time-odd compo-
nents in Eq.(8.4) vanish thanks to the time-reversal invariance. In this case, the expression
for the Skyrme energy becomes simpler using the b parameters as;

HSky =
b0
2
	2 − b′0

2
(	2

ν + 	2
π) +

b3
3
	α+2 − b′3

3
	α(	2

ν + 	2
π) + b1	τ − b′1(	ντν + 	πτπ)

− b2
2
	�	+

b′2
2

(	ν�	ν + 	π�	π)− b4	∇ · J − b′4(	ν∇ · Jν + 	π∇ · Jπ), (8.26)

where we neglect the ←→J 2 term [165, 166], and transformation from the t and x parameters
to the b parameters are explained in Appendix C.

8.3.1 Single-particle Hamiltonian

The ground state is obtained by the variational principle

δE[	, 	̃, τ,J ] = 0, (8.27)

and the Skyrme-HFB equation is written as

∑
σ′

(
hq(r, σ, σ′)− λq h̃q(r, σ, σ′)
h̃q(r, σ, σ′) −(hq(r, σ, σ′)− λq)

)(
ϕq

1,α(r, σ′)
ϕq

2,α(r, σ′)

)
= Eα

(
ϕq

1,α(r, σ)
ϕq

2,α(r, σ)

)
, (8.28)

where the local fields h(r, σ, σ′) and h̃(r, σ, σ′) can be calculated in the coordinate space by
the following explicit expressions;

hq = −∇ · �
2

2m∗
q

∇+ Uq + UCδq,π − iBq · (∇× σ), (8.29a)

h̃q =
V

(q)
0

2
F (r)	̃q. (8.29b)

Here the first term in (8.29a) corresponds to the kinetic energy, Uq to the central potential,
UC to the Coulomb potential for protons and the last term to the spin-orbit potential. They
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Table 8.1: Calculated properties of 16O obtained by the Skyrme HFB calculation with the
SLy4 and SkM* interactions and the density dependent surface-type delta pairing interaction
with V0 = −418 MeV·fm3, using box size of about 10 fm × 10 fm. The quasiparticle energy
is cut off at 50 MeV. Calculated energies are compared with the ones obtained by the HFBTHO
code [138].

SLy4 SkM*
THO 0.8 fm THO 0.8 fm 0.8 fm 0.4 fm

Energy (MeV) (Simpson)
Kinetic 222.00 214.81 220.00 212.75 210.52 211.07
Volume −423.87 −414.70 −414.18 −403.65 -403.78 −400.99
Surface 60.75 55.49 53.30 48.13 49.03 49.10
Spin-orbit −0.959 −1.28 −1.21 −1.52 −1.29 −1.02
Coulomb (direct) 16.48 15.71 16.44 15.63 14.48 14.70
Coulomb (exchange) −2.81 −2.77 −2.81 −2.76 −2.76 −2.75
Pairing 0 0 0 0 0 0
Total biding −128.41 −132.74 −127.65 −131.42 −133.80 −129.88

are given by

�
2

2m∗
q

=
�

2

2m
+ b1	− b′1	q (8.30a)

Uq =b0	− b′0	q + b1τ − b′1τq +
b3
3

(α+ 2)	α+1 − b′3
3

[
α	α−1

∑
q

	2
q + 2	α	q

]

−b4∇ · J − b′4∇ · J q − b2∇2	+ b′2∇2	q +
δF

δ	

∑
q

	̃2
q (8.30b)

Bq =b′1J q + b4∇+ b′4∇	q. (8.30c)

8.3.2 Numerical results

We solve the coordinate-space HFB equation (8.28) by diagonalizing the HFB Hamiltonian
on the cylindrical grid points. We use the finite difference method for the derivative and
the Bode’s rule for the numerical quadrature as explained in Appendix A. In calculating the
Coulomb potential, we use the method in Ref. [169].

In Tables 8.1 and 8.2, we show properties of 16O and 40Ca calculated by using the
coordinate-space HFB with the Skyrme interaction for the particle-hole channel and the
surface-type delta interaction for the particle-particle channel. We compare the calculated
results with those obtained by using the HFBTHO code [138], in which the coordinate-space
HFB equation is solved in the harmonic oscillator basis and the local scale transformation is
employed in order to express the proper tail structure.

For both cases of 16O and 40Ca, the calculated binding energies are overestimated. This
overestimation is due to the finite mesh size. Namely, accuracy of the derivative and the
integration in the present calculation is not enough in comparison with the result of HFBTHO.
In order to see this finite mesh-size effect, in Table 8.1, we show results obtained by using
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Table 8.2: The same as Table 8.1 except for 40Ca.

SLy4 SkM*
Energy (MeV) THO 0.8 fm THO 0.8 fm
Kinetic 634.94 620.27 632.96 616.42
Volume −1161.02 −1150.33 −1142.28 −1128.18
Surface 111.02 108.19 97.86 94.85
Spin-orbit −1.32 −1.23 −1.62 −1.44
Coulomb (direct) 79.41 77.63 79.59 77.76
Coulomb (exchange) −7.49 −7.42 −7.48 −7.39
Pairing 0 0 0 0
Total biding −344.17 −352.89 −341.03 −347.98

the smaller mesh size and another technique for the numerical integration called the Simpson
method. As we explain in Appendix A, the Bode’s rule that we use in the present calculation
has higher accuracy than the Simpson method. Comparing two results with mesh size of
0.8 fm using the Bode’s rule and the Simpson method, the result with the Simpson method
is worse. When we use smaller mesh size of 0.4 fm, the calculated binding energy becomes
better.

Table 8.3 lists single-particle energies of occupied states in 40Ca. They are compared with
the result of the HFBTHO calculation. Though the total binding energy is overestimated in
comparison with that of HFBTHO as shown in Table 8.2, single-particle energies are reproduced
rather well. Because the ground state of 40Ca is spherical, single-particle energies with
different m belonging to the same j should be identical. In the HFBTHO calculation, this
degeneracy is perfect whereas the present calculation shows 0.9 MeV deviation at worst. This
shortcoming would come from the finite mesh size, and it might be improved by employing
smaller mesh size.

Next we show our results for a superfluid system, the spherical 22O. In Table 8.4, we show
properties of 22O. We use two different model spaces for the cut off of Ω, the z−component
of the angular momentum j. The calculated binding energy is overestimated as in 16O and
40Ca, although it is converged with respect to Ωmax. This overestimation is also due to the
finite mesh-size artifact.

8.4 Summary

We have performed the coordinate-space HFB calculation using the cylindrical coordinates
and the Skyrme effective interaction, in order to construct the energy density functional with
which we are going to describe the excited states self-consistently. We made numerical checks
for several isotopes in comparison to the other HFB calculations [26, 138]. Although the total
binding energies are overestimated, the single-particle energies are well reproduced. This
shortcoming would be due to the poor accuracy of the numerical integration and the finite
mesh size. This limitation will be overcome in the near future thanks to the development
of the supercomputer power. Because the low-lying excitation modes are sensitive to the
single-particle levels around the Fermi level not to the binding energy, it will be meaningful
to proceed to study excited states based on the density functional obtained in this chapter.
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Table 8.3: Single-particle energies (in MeV) in 40Ca in comparison with those of HFBTHO.

SLy4 SkM*
THO 0.8fm THO 0.8fm

ν1s1/2(m = 1/2) −48.3 −48.2 −43.8 −43.5
ν1p3/2(m = 1/2) −35.0 −35.1 −32.7 −32.6
ν1p1/2(m = 3/2) −35.0 −34.7 −32.7 −32.3
ν1p1/2(m = 1/2) −31.1 −30.9 −28.6 −28.4
ν1d5/2(m = 1/2) −22.0 −22.1 −21.4 −21.3
ν1d5/2(m = 3/2) −22.0 −21.9 −21.4 −21.2
ν1d5/2(m = 5/2) −22.0 −21.5 −21.4 −20.8
ν2s1/2(m = 1/2) −17.3 −17.1 −16.7 −16.5
ν1d3/2(m = 1/2) −15.3 −15.4 −14.3 −14.4
ν1d3/2(m = 3/2) −15.3 −15.0 −14.3 −14.0
π1s1/2(m = 1/2) −40.3 −40.2 −36.3 −36.2
π1p3/2(m = 1/2) −27.5 −27.8 −25.4 −25.6
π1p1/2(m = 3/2) −27.5 −27.3 −25.4 −25.2
π1p1/2(m = 1/2) −23.7 −23.7 −21.4 −21.4
π1d5/2(m = 1/2) −14.9 −15.4 −14.3 −14.7
π1d5/2(m = 3/2) −14.9 −15.1 −14.3 −14.5
π1d5/2(m = 5/2) −14.9 −14.5 −14.3 −13.9
π2s1/2(m = 1/2) −10.2 −10.4 −9.74 −9.84
π1d3/2(m = 1/2) −8.35 −8.82 −7.47 −7.95
π1d3/2(m = 3/2) −8.35 −8.82 −7.47 −7.95

Table 8.4: The same as Table 8.1 except for 22O. The cut off for Ω is 9/2 and 13/2.

SLy4 SkM*
THO 0.8 fm THO 0.8 fm

Energy (MeV) Ωmax = 9/2 Ωmax = 13/2 9/2 13/2
Kinetic 344.86 334.37 334.11 348.04 334.96 334.81
Volume −573.98 −567.15 −566.48 −570.00 −560.36 −559.62
Surface 73.52 69.51 69.28 65.21 61.07 60.84
Spin-orbit −18.44 −17.28 −17.11 −19.47 −18.19 −18.00
Coulomb (direct) 16.17 15.32 15.32 16.21 15.45 15.46
Coulomb (exchange) −2.77 −2.74 −2.74 −2.78 −2.75 −2.74
Pairing −3.87 −2.20 −2.55 −6.46 −3.93 −4.49
Total biding −164.51 −170.17 −170.17 −169.25 −173.75 −173.74
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Concluding remarks

We have studied excitation modes in neutron-rich nuclei, taking account of the effects of
nuclear deformation, pairing correlations and continuum coupling simultaneously. Although
there have been many attempts to explore collective motions unique in neutron-rich nuclei, the
effect of the nuclear deformation on low-lying excitation modes have not been well investigated
so far. Thus we first studied the deformation effect on low-frequency modes of excitation built
on the superdeformed states in sulfur isotopes close to the neutron drip line, in the limit of
large deformation and high isospin, by use of the deformed RPA method. We found that the
low-lying state created by the excitation of a single neutron from a loosely bound low-Ω state,
which has a spatially extended structure to a high-Ω resonance state trapped in a pocket of
centrifugal barrier, acquires an extremely large transition strength. We also found in this
calculation that it becomes increasingly difficult to generate collective modes of excitation
by coherent superpositions of many particle-hole excitations as we approach the drip line.
This is because the bound particle states disappear and individual resonance wave functions
possess different spatial structures.

It is well known that the pair correlation plays an important role in the low-lying states as
well as the ground states of stable nuclei. Furthermore, novel features of the pair correlation
in neutron-rich nuclei have been actively investigated in the spherical system. We extended,
therefore, the previous work to take into account the pair correlation, and investigated low-
frequency modes of excitation in magnesium isotopes close to the neutron drip line. We
performed for the first time the deformed QRPA calculation based on the coordinate-space
HFB formalism. We showed the possible emergence of collective motion unique in neutron
drip-line nuclei in the presence of the pair correlation. New type of this excitation mode is
generated by the superposition of two-quasiparticle excitations near the Fermi level whose
wave functions have spatially extended structure. It is found that the dynamical pairing
correlation, the pairing vibration, enhances its collectivity.

We furthermore found that the coupling between the pairing vibration and the neutron-
skin vibration brings forth the soft Kπ = 0+ modes in deformed 34Mg region. Appearance of
low-lying Kπ = 0+ modes in deformed neutron-rich nuclei is not restricted to the neutron-
rich Mg isotopes. We showed similar examples in 32Ne and neutron-rich Cr and Fe isotopes
around N = 40. In these cases, the quadrupole pairing plays a crucial role in generating
coherence among 2qp excitations. The coherent coupling between the quadrupole-pairing
vibration and the beta vibration of neutron skin brings about the striking enhancement of
the transition strength.

A major theoretical challenge in description of neutron-rich nuclei, especially weakly
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bound nuclei, is the rigorous treatment of both the many-body correlations and the con-
tinuum of positive-energy states and decay channels simultaneously. One possible strategy
of tackling this challenge is by use of the resonant state expansion, e.g., the Berggren en-
semble that consists of the Gamow states and the complex non-resonant continuum. Since
this theory incorporates continuum states into the single-particle basis, they can be used
for a microscopic description of many-body correlations such as pairing correlation in the
“Gamow-HFB” method and collective motions in the “Gamow-QRPA” method. As a first
step to apply the Gamow basis to the mean-field model and in order to understand the shell
structure of deformed nuclei in the continuum, we investigated a structure of resonance wave
functions in a deformed potential in the coupled-channels method. We revealed that the low-
angular-momentum component in deformed wave functions behaves uniquely in the vicinity
of the continuum threshold, where the virtual or the anti-resonance states play an important
role. This result indicates that the novel picture of single-particle motion emerges and might
affect the collective motions in weakly-bound deformed nuclei. We plan to attack the subject
of “Gamow-QRPA” in order to study the novel features of collective motion embedded in the
continuum.
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Appendix A

Numearical derivative and
integration

A.1 Finite difference method

For the wave functions of the form Φ(ρ, ϕ, z) = φ(ρ, z)eiΛϕ, we have

∇2φ(ρ, z)eiΛϕ =
(

1
ρ

∂

∂ρ
+

∂2

∂ρ2
− Λ2

ρ2
+

∂2

∂z2

)
φ(ρ, z)eiΛϕ. (A.1)

Using the coordinate-mesh representation and the 9-points formula, the derivative parts can
be written as(

1
ρ

∂

∂ρ
+

∂2

∂ρ2
+

∂2

∂z2

)
φi,j

=
1

Δ2

[
287000
5040

φi,j +
(

8064
5040

+
672

840(i− 1/2)

)
φi+1,j +

(
8064
5040

− 672
840(i− 1/2)

)
φi−1,j

−
(

1008
5040

+
168

840(i− 1/2)

)
φi+2,j −

(
1008
5040

− 168
840(i− 1/2)

)
φi−2,j

+
(

128
5040

+
32

840(i− 1/2)

)
φi+3,j +

(
128
5040

− 32
840(i− 1/2)

)
φi−3,j

−
(

9
5040

+
3

840(i− 1/2)

)
φi+4,j −

(
9

5040
− 3

840(i− 1/2)

)
φi−4,j

+
8064
5040

(φi,j+1 + φi,j−1)− 1008
5040

(φi,j+2 + φi,j−2)

+
128
5040

(φi,j+3 + φi,j−3)− 9
5040

(φi,j+4 + φi,j−4)

]
. (A.2)

A.2 Numerical quadrature

For numerical integration, we use the Bode’s rule given by∫ xi+4

xi

f(x)dx =
2Δ
45

(7fi + 32fi+1 + 12fi+2 + 32fi+3 + 7fi+4) +O(Δ7). (A.3)
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This formula is a generalization of the well-known Simpson’s rule, and it is derived by taking
into account polynomials up to quartic order in the Taylor expansion for interpolation between
the mesh points [170].
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Matrix elements

B.1 Matrix elements for one-body operators

Let us first consider matrix elements for one-body operators

〈ab|Ô(uv)
K |HFB〉, (B.1)

where

Ô
(uv)
K =

∑
σσ′

∫
drdr′δσ,σ′δ(r − r′)O(uv)

K (r)ψ̂†(r′σ′)ψ̂(rσ), (B.2)

and the HFB ground state and the 2qp excited states

βi|HFB〉 = 0, (B.3a)

|ab〉 = β†aβ
†
b |HFB〉 (B.3b)

are described by the quasiparticle operators. These operators are defined by the generalized
Bogoliubov transformation

ψ†(rσ) =
∑

k

ϕ1,k(rσ̄)β†k + ϕ∗
2,k(rσ)βk, (B.4a)

ψ(rσ) =
∑

k

ϕ∗
1,k(rσ̄)βk + ϕ2,k(rσ)β†k, (B.4b)

as explained in Chapter 2.
The matrix elements are calculated as

〈ab|Ô(uv)
K |HFB〉 = 〈HFB|βbβaÔ

(uv)
K |HFB〉

=
∑
kk′

∑
σσ′

∫
drdr′δσ,σ′δ(r − r′)O(uv)

K (r)ϕ1,k(r′σ̄′)ϕ2,k′(rσ)〈HFB|βbβaβ
†
kβ

†
k′ |HFB〉

=
∫
drO

(uv)
K (r){−ϕ1,a(r ↓)ϕ2,b(r ↑) + ϕ1,a(r ↑)ϕ2,b(r ↓)

+ ϕ1,b(r ↓)ϕ2,a(r ↑)− ϕ1,b(r ↑)ϕ2,a(r ↓)} (B.5)
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using the quasiparticle wave functions, and we employed the Wick’s theorem. In the cylin-
drical coordinate representation, we can rewrite as

〈ab|Ô(uv)
K |HFB〉 = 2πδK,Ωa+Ωb

∫
ρdρdzO

(uv)
K (ρ, z){ϕ1,a(ρ, z, ↑)ϕ2,b(ρ, z, ↓) − ϕ1,a(ρ, z, ↓)ϕ2,b(ρ, z, ↑)

− ϕ1,b(ρ, z, ↑)ϕ2,a(ρ, z, ↓) + ϕ1,b(ρ, z, ↓)ϕ2,a(ρ, z, ↑)},
(B.6)

where

O
(uv)
K (ρ, z) = O

(uv)
K (r)eiKφ. (B.7)

Next we consider the pair creation operators consisting of nucleons with opposite direction
of spins

Ô
(uu)
K =

∫
drdr′δ(r − r′)O(uu)

K (r)ψ̂†(r′ ↑)ψ̂†(r ↓). (B.8)

The matrix elements read

〈ab|Ô(uu)
K |HFB〉 = 〈HFB|βbβaÔ

(uu)
K |HFB〉

=
∑
σ′=↑

∑
kk′

δσ,−σ′

∫
drdr′δ(r − r′)O(uu)

K (r)ϕ1,k(r′σ̄′)ϕ1,k′(rσ̄)〈HFB|βbβaβ
†
kβ

†
k′ |HFB〉

=
∫
drO

(uu)
K (r){−ϕ1,a(r ↓)ϕ1,b(r ↑) + ϕ1,b(r ↓)ϕ1,a(r ↑)}

= 2πδK,Ωa+Ωb

∫
ρdρdzO

(uu)
K (ρ, z){ϕ1,a(ρ, z, ↑)ϕ1,b(ρ, z, ↓) − ϕ1,a(ρ, z, ↓)ϕ1,b(ρ, z, ↑)},

(B.9)

where

O
(uu)
K (ρ, z) = O

(uu)
K (r)eiKφ. (B.10)

B.2 Matrix elements for two-body interactions

We show some examples of matrix elements appearing in the A,B matrices in the QRPA
equation. The two-body residual interaction can be written in a from of

v̄(1, 2) = [f(r1) + σ1 · σ2g(r1)]δ(r1 − r2) (B.11)

as in Eq.(2.104) unless we take into account the momentum dependent terms in the Skyrme
interaction.

As an example of matrix elements in the QRPA, let us consider the term

∑
σ1,σ2,σ′

1,σ′
2

∫
dr1dr2dr

′
1dr

′
2ϕ1,α(r1σ̄1)ϕ∗

2,δ(r2σ2)v̄ph(r1σ1, r2σ2; r′
1σ

′
1, r

′
2σ

′
2)ϕ2,β(r′

1σ
′
1)ϕ

∗
1,γ(r′

2σ̄
′
2)

(B.12)
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in Eq.(2.98). Let us first consider the spin-independent term f(r) in Eq.(B.11). Eq.(B.12)
reads∫

dr{ϕ1,α(r ↓)ϕ∗
2,δ(r ↑)ϕ2,β(r ↑)ϕ∗

1,γ(r ↓) + ϕ1,α(r ↑)ϕ∗
2,δ(r ↓)ϕ2,β(r ↓)ϕ∗

1,γ(r ↑)
− ϕ1,α(r ↓)ϕ∗

2,δ(r ↓)ϕ2,β(r ↑)ϕ∗
1,γ(r ↑)− ϕ1,α(r ↑)ϕ∗

2,δ(r ↑)ϕ2,β(r ↓)ϕ∗
1,γ(r ↓)}f(r).

(B.13)

In the cylindrical coordinate this becomes

2πδΩα+Ωβ ,Ωγ+Ωδ

∫
ρdρdz{ϕ1,α(ρ, z, ↓)ϕ2,δ(ρ, z, ↑)ϕ2,β(ρ, z, ↑)ϕ1,γ (ρ, z, ↓)

+ ϕ1,α(ρ, z, ↑)ϕ2,δ(ρ, z, ↓)ϕ2,β(ρ, z, ↓)ϕ1,γ (ρ, z, ↑)
− ϕ1,α(ρ, z, ↓)ϕ2,δ(ρ, z, ↓)ϕ2,β(ρ, z, ↑)ϕ1,γ (ρ, z, ↑)
− ϕ1,α(ρ, z, ↑)ϕ2,δ(ρ, z, ↑)ϕ2,β(ρ, z, ↓)ϕ1,γ (ρ, z, ↓)}f(ρ, z). (B.14)

Next we consider the spin-dependent term σ1 · σ2g(r). Eq.(B.12) reads∫
dr{ϕ1,α(r ↓)ϕ∗

2,δ(r ↑)ϕ2,β(r ↑)ϕ∗
1,γ(r ↓) + ϕ1,α(r ↑)ϕ∗

2,δ(r ↓)ϕ2,β(r ↓)ϕ∗
1,γ(r ↑)

+ ϕ1,α(r ↓)ϕ∗
2,δ(r ↓)ϕ2,β(r ↑)ϕ∗

1,γ(r ↑) + ϕ1,α(r ↑)ϕ∗
2,δ(r ↑)ϕ2,β(r ↓)ϕ∗

1,γ(r ↓)
+ 2ϕ1,α(r ↓)ϕ∗

2,δ(r ↓)ϕ2,β(r ↓)ϕ∗
1,γ(r ↓) + 2ϕ1,α(r ↑)ϕ∗

2,δ(r ↑)ϕ2,β(r ↑)ϕ∗
1,γ(r ↑)}g(r),

(B.15)

and in the cylindrical coordinate, we obtain the expression

2πδΩα+Ωβ ,Ωγ+Ωδ

∫
ρdρdz{ϕ1,α(ρ, z, ↓)ϕ2,δ(ρ, z, ↑)ϕ2,β(ρ, z, ↑)ϕ1,γ (ρ, z, ↓)

+ ϕ1,α(ρ, z, ↑)ϕ2,δ(ρ, z, ↓)ϕ2,β(ρ, z, ↓)ϕ1,γ (ρ, z, ↑)
+ ϕ1,α(ρ, z, ↓)ϕ2,δ(ρ, z, ↓)ϕ2,β(ρ, z, ↑)ϕ1,γ (ρ, z, ↑)
+ ϕ1,α(ρ, z, ↑)ϕ2,δ(ρ, z, ↑)ϕ2,β(ρ, z, ↓)ϕ1,γ (ρ, z, ↓)
+ 2ϕ1,α(ρ, z, ↓)ϕ2,δ(ρ, z, ↓)ϕ2,β(ρ, z, ↓)ϕ1,γ (ρ, z, ↓)
+ 2ϕ1,α(ρ, z, ↑)ϕ2,δ(ρ, z, ↑)ϕ2,β(ρ, z, ↑)ϕ1,γ (ρ, z, ↑)}g(ρ, z). (B.16)

Here we use the following relations. The Pauli spin matrix σ is written in the cylindrical
coordinate

σ = iρσρ + iφσφ + izσz (B.17)

with the components

σρ = σ · iρ = cosφσx + sinφσy =
(

0 e−iφ

eiφ 0

)
, (B.18a)

σφ = σ · iφ = − sinφσx + cosφσy =
(

0 −ie−iφ

ieiφ 0

)
, (B.18b)

σz =
(

1 0
0 −1

)
. (B.18c)
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Then the matrix elements of the spin part become

〈σ′|σ|σ〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

iz for σ′ = σ = 1
2

−iz for σ′ = σ = −1
2

iρe
−iφ + iφ(−ie−iφ) for σ′ = 1

2 , σ = −1
2

iρe
iφ + iφ(ieiφ) for σ′ = −1

2 , σ = 1
2 .

(B.19)
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Skyrme interaction

C.1 Parameter of the Skyrme interaction

The Skyrme effective interaction is one of the most widely used force in calculations of nuclear
structure. It was originally proposed in 1956 by Skyrme [171, 172] and first applied to the
Hartree-Fock method in 1972 by Vautherin and Brink [173].

The density-dependent two-body effective nucleon-nucleon interaction under the Skyrme
parameterization is given by

v(r, r′) =t0(1 + x0Pσ)δ(r − r′) +
t1
2

(1 + x1Pσ)
[
δ(r − r′)k2 + k′2δ(r − r′)

]
+ t2(1 + x2Pσ)k′ · δ(r − r′)k +

t3
6

(1 + x3Pσ)δ(r − r′)	α

(
r + r′

2

)
+ iW0(σ1 + σ2) ·

[
k′ × δ(r − r′)k

]
, (C.1)

where k = 1
2i (∇1−∇2) acting on the ket | 〉, k′ = − 1

2i(∇1−∇2) acting on the bra 〈 |, and
Pσ = 1

2(1 + σ1 · σ2) being the spin exchange operator. The t0 and t1 terms corresponds to
the S−wave interaction, the t2 term the P−wave interaction, and the t3 term represents the
phenomenological many-body effects, the W0 term the spin-orbit interaction. There are many
parameter sets for t0, t1, t2, t3,W0, x0, x1, x2, and α, and they are parameterized in order to
reproduces various fundamental properties such as binding energies, charge radii, and single-
particle energies of some spherical nuclei. In this thesis we use mainly the SkM* [165] and
SLy4 [166] parameter sets. The former was adjusted to reproduce the the fission barrier height
of 240Pu in addition to the above observables. The latter was designed to reproduce properties
of neutron-rich nuclei and the neutron matter. The values in these two parameterizations
are shown in Table. C.1. Parameterization in b, b′ [119] is equivalent through the following
transformation.

b0 = t0

(
1 +

1
2
x0

)
, (C.2)

b′0 = t0

(
1
2

+ x0

)
, (C.3)

b1 =
1
4

[
t1

(
1 +

1
2
x1

)
+ t2

(
1 +

1
2
x2

)]
, (C.4)
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Table C.1: Parameters of the Skyrme interactions. Units for t0 is MeV·fm3, t1, t2 and W0 are
MeV·fm5, t3 is MeV·fm3(1+α), �

2/2m is MeV·fm2, and remaining terms are dimensionless.

SkM* SLy4
t0 −2645.0 −2488.913
t1 410.0 486.818
t2 −135.0 −546.395
t3 15595.0 13777.0
W0 130 123
x0 0.090 0.8340
x1 0.0 −0.3438
x2 0.0 −1.0
x3 0.0 1.3540
α 1/6 1/6
�2

2m 20.73398 20.73553

SkM* SLy4
b0 −2764.025 −3526.790
b′0 −1560.55 −3320.210
b1 68.75 32.484
b′1 68.125 −49.289
b2 170.625 185.325
b′2 68.437 62.665
b3 3898.75 5776.007
b′3 1949.375 6385.639
b4 65.0 61.5
b′4 65.0 61.5

b′1 =
1
4

[
t1

(
1
2

+ x1

)
− t2

(
1
2

+ x2

)]
, (C.5)

b2 =
1
8

[
3t1(1 +

1
2
x1)− t2(1 +

1
2
x2)
]
, (C.6)

b′2 =
1
8

[
3t1(

1
2

+ x1) + t2(
1
2

+ x2)
]
, (C.7)

b3 =
1
4
t3

(
1 +

1
2
x3

)
, (C.8)

b′3 =
1
4
t3

(
1
2

+ x3

)
, (C.9)

b4 =
1
2
W0, (C.10)

b′4 =
1
2
W0. (C.11)

In some parameter sets like the SkI [175], SkP [71], SkO [119, 49] interactions, the con-
stants b4 and b′4 take different values.
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[65] R. H. Lemmer and M. Vénéroni, Phys. Rev. 170 (1968) 883.

[66] A. Muta, J-I. Iwata, Y. Hashimoto, and K. Yabana, Prog. Theor. Phys. 108 (2002) 1065.

[67] H. Imagawa and Y. Hashimoto, Phys. Rev. C 67 (2003) 037302.

[68] P. Urkedal, X. Z. Zhang and I. Hamamoto, Phys. Rev. C 64 (2001) 054304.
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F. Šimkovic, Phys. Rev. C 70 (2004) 064309, and references therein.

[70] K. Hagino, N. Van Giai and H. Sagawa, Nucl. Phys. A731 (2004) 264.

125



BIBLIOGRAPHY

[71] J. Dobaczewski, H. Flocard and J. Treiner, Nucl. Phys. A422 (1984) 103.

[72] A. Bulgac, Preprint No. FT-194-1980, Institute of Atomic Physics, Bucharest, 1980.
[arXiv:nucl-th/9907088]
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