Nuclear matter
from strong coupling lattice QCD

Philippe de Forcrand
ETH Zürich and CERN

PhD thesis of Michael Fromm (ETH)

arXiv:0811.1931, 0907.1915 → PRL, 0912.2524
and in progress
Physics of color singlets

- “One-body” physics: confinement
 hadron masses
 form factors, etc..

\[\beta = 0 \text{ LQCD} \]
Scope of lattice QCD simulations

Physics of color singlets

- “One-body” physics: confinement
 - hadron masses
 - form factors, etc..

- “Two-body” physics: nuclear interactions
 - pioneers: Hatsuda et al, Savage et al

hard-core + pion exchange?
QCD phase diagram according to Wikipedia

- **many-body** physics: hadron ↔ nuclear matter transition
- **two-body**: $T = 0$ nuclear interactions
A different approach to the sign problem

\[Z = \int \mathcal{D} A \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left(-\frac{1}{4} F_{\mu \nu} F_{\mu \nu} + \sum_{i=1}^{N_f} \bar{\psi}_i (\not{D} + m + \mu \gamma_0) \psi_i \right) \]

\(\det(\not{D} + m + \mu \gamma_0) \) complex \(\rightarrow \) try integrating over the gauge field first!

- Problem: \(-\frac{1}{4} F_{\mu \nu} F_{\mu \nu} \rightarrow \beta_{\text{gauge}} \text{Tr} U_{\text{Plaquette}}, \text{ie. 4-link interaction} \)

- Solution: set \(\beta_{\text{gauge}} = \frac{2 N_c}{g^2} \) to zero, ie. \(g = \infty \), strong coupling limit

- Then integral over gauge links factorizes: \(\sim \int \prod dU \exp(\bar{\psi}_x U_{x,\hat{\mu}} \psi_{x+\hat{\mu}}) \)
 - analytic 1-link integral \(\rightarrow \) only color singlets survive
 - perform Grassmann integration last \(\rightarrow \) hopping of color singlets
 \(\rightarrow \) **hadron worldlines**

 - sample gas of worldlines by Monte Carlo

Note: when \(\beta_{\text{gauge}} = 0 \), quarks are *always* confined \(\forall (\mu, T) \), ie. **nuclear matter**
The price to pay: not continuum QCD

Strong coupling LQCD: why bother?

Asymptotic freedom: \(a(\beta_{\text{gauge}}) \propto \exp\left(-\frac{\beta_{\text{gauge}}}{4N_c b_0}\right) \)

ie. \(a \to 0 \) when \(\beta_{\text{gauge}} \equiv \frac{2N_c}{g^2} \to +\infty \). Here \(\beta_{\text{gauge}} = 0 \)

- Lattice “infinitely coarse”
- Physics not universal

Nevertheless:
- Properties similar to QCD: confinement and \(\chi_{\text{SB}} \)
- Include (perhaps) next term in strong coupling expansion, ie. \(\beta_{\text{gauge}} > 0 \)

When \(\beta_{\text{gauge}} = 0 \), sign problem is manageable \(\to \) complete solution

Valuable insight?

Ph. de Forcrand
Trento, July 2010
\(\beta = 0 \) LQCD
Further motivation

- 25+ years of analytic predictions:
 - 80’s: Kluberg-Stern et al., Kawamoto-Smit, Damgaard-Kawamoto
 \[\mu_c(T = 0) = 0.66, \quad T_c(\mu = 0) = 5/3 \]
 - 90’s: Petersson et al., 1/g^2 corrections
 - 00’s: detailed \((\mu, T)\) phase diagram: Nishida, Kawamoto,...

 now: Ohnishi et al. \(O(\beta)\) & \(O(\beta^2)\), Münster & Philipsen,...

 How accurate is mean-field \((1/d)\) approximation?

- Almost no Monte Carlo crosschecks:
 - 89: Karsch-Mütter \(\rightarrow\) MDP formalism \(\rightarrow\) \(\mu_c(T = 0) \sim 0.63\)
 - 92: Karsch et al. \(T_c(\mu = 0) \approx 1.40\)
 - 99: Azcoiti et al., MDP ergodicity ??

 06: PdF-Kim, HMC \(\rightarrow\) hadron spectrum \(\sim 2\%\) of mean-field

Can one trust the details of analytic phase-diagram predictions?
Phase diagram from Nishida (2004, mean field, cf. Fukushima)

- Very similar to conjectured phase diagram of $N_f = 2$ QCD
- But no deconfinement here: high density phase is nuclear matter
- Baryon mass $= M_{\text{proton}} \Rightarrow$ lattice spacing $a \sim 0.6$ fm not universal
Strong coupling $SU(3)$ with staggered quarks

$$Z = \int \mathcal{D}U \mathcal{D}\bar{\psi} \mathcal{D}\psi \exp(-\bar{\psi}(\mathcal{D}(U) + m_q)\psi), \text{ no plaquette term (\(\beta_{\text{gauge}} = 0\))}$$

- **One** complex colored fermion field per site (no Dirac indices, spinless)
- $\mathcal{D}(U) = \frac{1}{2} \sum_{x,\nu} \eta_\nu(x)(U_\nu(x) - U_\nu^\dagger(x - \hat{\nu}))$, $\eta_\nu(x) = (-)^{x_1 + \ldots + x_{\nu-1}}$

$U(1)_V \times U(1)_A \text{ symmetry}$ when $m = 0$:

\[
\begin{align*}
\psi(x) &\rightarrow e^{i\theta}\psi(x) \\
\bar{\psi}(x) &\rightarrow e^{-i\theta}\bar{\psi}(x)
\end{align*}
\]

unbroken \Rightarrow quark number \Rightarrow chem. pot.

\[
\begin{align*}
\psi(x) &\rightarrow e^{i\gamma_5(x)\theta}\psi(x) \\
\bar{\psi}(x) &\rightarrow e^{i\gamma_5(x)\theta}\bar{\psi}(x)
\end{align*}
\]

spont. broken ($m = 0$) \Rightarrow quark condensate

$$\gamma_5(x) = (-)^{x_1 + x_2 + x_3 + x_4}$$

($N_f = 1 \longrightarrow U(1) \text{ chiral symmetry}$)
Strong coupling $SU(3)$ with staggered quarks

\[Z = \int D U D \bar{\psi} D \psi \exp(-\bar{\psi}(\slashed{D}(U) + m_q)\psi), \] no plaquette term ($\beta_{\text{gauge}} = 0$)

- **One** complex colored fermion field per site (no Dirac indices, spinless)
- $\slashed{D}(U) = \frac{1}{2} \sum_{x,\nu} \eta_\nu(x)(U_\nu(x) - U_\nu^\dag(x - \hat{\nu})))$, $\eta_\nu(x) = (-)^{x_1 + \ldots + x_{\nu - 1}}$
- Chemical potential $\mu \rightarrow \exp(\pm a\mu) U_{\pm 4}$
- $D U = \prod dU$ factorizes \rightarrow integrate over links Rossi & Wolff

Color singlet degrees of freedom:

- **Meson** $\bar{\psi}\psi$: *monomer*, $M(x) \in \{0, 1, 2, 3\}$
- **Meson hopping**: *dimer*, non-oriented $n_\nu(x) \in \{0, 1, 2, 3\}$
- **Baryon hopping**: oriented $\bar{B}B_\nu(x) \in \{0, 1\}$ \rightarrow *self-avoiding loops* C

Point-like, hard-core baryons in pion bath

No πNN vertex

Ph. de Forcrand
Trento, July 2010
$\beta = 0$ LQCD
MDP Monte Carlo

\[Z(m_q, \mu) = \sum_{\{M, n_\nu, C\}} \prod_x \frac{m_q^M(x)}{M(x)!} \prod_{x, \nu} \frac{(3 - n_\nu(x))!}{n_\nu(x)!} \prod_{\text{loops } C} \rho(C) \]

with constraint \((M + \sum_{\pm \nu} n_\nu)(x) = 3 \ \forall x \notin \{C\} \)

Constraint: 3 blue symbols or a baryon loop at every site
$Z(m_q, \mu) = \sum_{\{M, n_\nu, C\}} \prod_x \frac{m_q^M(x)}{M(x)!} \prod_{x, \nu} \frac{(3 - n_\nu(x))!}{n_\nu(x)!} \prod_{\text{loops } C} \rho(C)$

with constraint $(M + \sum_{\pm \nu} n_\nu)(x) = 3 \ \forall x \notin \{C\}$

The dense (crystalline) phase: 1 baryon per site
MDP Monte Carlo

\[Z(m_q, \mu) = \sum_{\{M, n_{\nu}, C\}} \prod_x \frac{m_q^{M(x)}}{M(x)!} \prod_{x, \nu} \frac{(3 - n_{\nu}(x))!}{n_{\nu}(x)!} \prod_{\text{loops } C} \rho(C) \]

with constraint \((M + \sum_{\nu} n_{\nu})(x) = 3 \quad \forall x \notin \{C\}\)

Remaining difficulties:

- Baryons are fermions: mild sign problem from \(\rho(C)\)
 \(\rightarrow \) volumes up to \(16^3 \times 4 \quad \forall \mu\)
- tight-packing constraint \(\rightarrow \) local update inefficient, esp. as \(m \rightarrow 0\)
 Solved with worm algorithm
 (Prokof’ev & Svistunov 1998)
 Efficient even when \(m_q = 0\)

Local Metropolis, \(4^3 \times 2\) at \(\mu_c, m_q = 0.025\)

Worm, same parameter set

\(\beta = 0\) LQCD
(μ, T) phase diagram in the chiral limit $m_q = 0$, and for $m_q \neq 0$

- Phase boundary for breaking/restoration of $U(1)$ chiral symmetry
- 2nd order at $\mu = 0$: 3d $O(2)$ universality class
- 1st order at $T = 0$: ρ_B jumps from 0 to 1 baryon per site \Rightarrow tricrit. pt. TCP

Finite-size scaling: $(\mu, T)_{TCP} = (0.33(3), 0.94(7))$ vs $(0.577, 0.866)$ (mean-field)

Beware of quantitative mean-field predictions for phase diagram
(μ, T) phase diagram in the chiral limit $m_q = 0$, and for $m_q \neq 0$

- Phase boundary for breaking/restoration of $U(1)$ chiral symmetry
- 2nd order at $\mu = 0$: 3d O(2) universality class
- 1st order at $T = 0$: ρ_B jumps from 0 to 1 baryon per site \Rightarrow tricrit. pt. TCP

Finite-size scaling: $(\mu, T)_{TCP} = (0.33(3), 0.94(7))$ vs $(0.577, 0.866)$ (mean-field)

Beware of quantitative mean-field predictions for phase diagram

- $m_q \neq 0$: liquid-gas transition $T_{CEP} \sim 200$MeV – traj. of CEP obeys tricrit. scaling
Nuclear matter: spectroscopy

- Can compare masses of differently shaped “isotopes”
- $E(B=2) - 2E(B=1) \sim -0.4$, ie. “deuteron” binding energy ca. 120 MeV
- $am(A) \sim a\mu_B^{\text{crit}} A + (36\pi)^{1/3} \sigma a^2 A^{2/3}$, ie. (bulk + surface tension)
 - Bethe-Weizsäcker parameter-free (μ_B^{crit} and σ measured separately)
- “Magic numbers” with increased stability: $A = 4, 8, 12$ (reduced area)
Nuclear potential: more than hard core

- Nucleons are point-like \rightarrow no ambiguity with definition of static potential
- Nearest-neighbour attraction ~ 120 MeV at distance ~ 0.5 fm: cf. real world
- Baryon worldlines self-avoiding \rightarrow no direct meson exchange (just hard core)
 Attraction due to bath of neutral pions: cf. Casimir effect (see next)
How the nucleon got its mass

- Point-like nucleon **distorts pion bath** cf. Casimir

![Graphs showing vacuum, static baryon, and effect on pions]

- Energy = nb. time-like pion lines
 - Constraint: 3 pion lines per site \((m_q = 0)\) → energy density = \(3/4\) in vacuum
 - No spatial pion lines connecting to site occupied by nucleon → energy increase

Steric effect
- \(am_B \approx 2.88 = (3 - 0.75) + \Delta E_\pi\), ie. "valence"(78%) + "pion cloud"(22%)
How the nucleon got its mass

- Point-like nucleon **distorts pion bath** cf. Casimir

$$<n(R) \approx 3/4$$

- Energy = nb. time-like pion lines

 Constraint: 3 pion lines per site ($m_q = 0$) \rightarrow energy density = $3/4$ in vacuum

 No spatial pion lines connecting to site occupied by nucleon \rightarrow energy increase

Steric effect

- $am_B \approx 2.88 = (3 - 0.75) + \Delta E_\pi$, ie. "valence"(78%) + "pion cloud"(22%)
So, in fact, nucleon is *not* point-like

Point-like “bag” of 3 valence quarks \rightarrow macroscopic disturbance in pion vacuum
So, in fact, nucleon is *not* point-like

Point-like “bag” of 3 valence quarks \rightarrow macroscopic disturbance in pion vacuum

Static baryon prevents monomers = static (t-invariant) monomer “source”

Linear response \propto Green’s fct. of lightest t-invariant meson, ie. rho/omega

(pion has factor $(-1)^t$)
So, in fact, nucleon is *not* point-like

Point-like “bag” of 3 valence quarks → **macroscopic** disturbance in pion vacuum

Static baryon prevents monomers = static \((t\)-invariant\) monomer “source”

Linear response \(\propto\) Green’s fct. of lightest \((t\)-invariant\) meson, ie. rho/omega

(pion has factor \((-1)^t\))

\[
\langle n_t(R) \rangle - \frac{3}{4} \propto \frac{\exp(-m_\rho/\omega r)}{r} \times (-1)^x y z
\]

Ph. de Forcrand

Trento, July 2010

\(\beta = 0\) LQCD
Nuclear interaction via pion clouds (thanks W. Weise)

- Here, baryons make self-avoiding loops \rightarrow no direct meson exchange
- Interaction comes because of pion clouds

The two pion clouds can interpenetrate at \approx constant energy (2nd order effect)
But each set of valence quarks disturbs pion cloud of other baryon

$$V_{NN}(R) \approx -2 \times \Delta E\pi(R) \propto \left(\frac{\mathrm{exp}\left(-m_p/\omega R\right)}{R}\right) \times (-1)^{x+y+z}$$
Nuclear interaction via pion clouds (thanks W. Weise)

- Here, baryons make self-avoiding loops \rightarrow no direct meson exchange
- Interaction comes because of pion clouds

The two pion clouds can interpenetrate at \approx constant energy (2nd order effect)
But each set of *valence* quarks disturbs pion cloud of other baryon

$$V_{NN}(R) \approx -2 \times \Delta E_\pi(R) \propto \frac{\exp\left(-\frac{m_p}{2\omega R}\right)}{R} \times (-1)^{x+y+z}$$
Nuclear interaction via pion clouds (thanks W. Weise)

- Here, baryons make self-avoiding loops \(\rightarrow \) **no direct meson exchange**
- Interaction comes because of **pion clouds**

The two pion clouds can interpenetrate at \(\approx \) constant energy (2nd order effect)
But each set of *valence* quarks disturbs pion cloud of other baryon

\[
V_{NN}(R) \approx -2 \times \Delta E_{\pi}(R) \propto \exp\left(\frac{-m_\rho/\omega R}{R}\right) \times (-1)^{x+y+z}
\]

Meson exchange potential without meson exchange!
Is pion bath essential? Classical hard spheres

$g(r) \equiv \langle \rho(0)\rho(r) \rangle$ relaxes to $\langle \rho \rangle^2$ with damped oscillations \rightarrow liquid
Is pion bath essential? Classical hard spheres

“Potential of mean force” $V_{\text{eff}}(r) \equiv -\log(g(r))$ is hard-core + damped oscillatory
Is pion bath essential? Classical hard spheres

"Potential of mean force" \(V_{\text{eff}}(r) \equiv -\log(g(r)) \) is hard-core + damped oscillatory

Consistent with Yukawa form \(\frac{\exp(-mr)}{r} \times \cos(\Gamma r) \)
Is pion bath essential? Classical hard spheres

\[\log(|V_{\text{eff}}(r)|) + \text{Yukawa fit} \]

Perfect fit at large distance

Hard-sphere “potential of mean force” is of Yukawa form

\[V_{\text{eff}}(r) = \text{Re} \left[\frac{e^{-(m+i\Gamma)r}}{r} \right] \]
Recap & speculation

- Baryons are not point-like: pion cloud $\sim \exp(-m_\rho/\omega r)$

- Nuclear potential:
 - Hard-core from Pauli principle
 - Yukawa potential (times $(-1)^r$) from the two pion clouds

- Exactly like a **classical hard-sphere fluid**:
 - “Pion cloud” from ripples around tagged sphere
 - Density-density correlation $\leftrightarrow V_{\text{eff}}(r) \sim \exp(-(m + i\Gamma)r)/r$

- **Note**: at high density (packing fraction $\eta \in [0.4945, 0.6802]$),

 hard-sphere system in solid phase
 cf. Kepler, microsphere exp. @ ISS

 $\rho_0 = 0.16/fm^3$ and $r \sim 0.5$ fm $\rightarrow \eta \sim 0.08 \sim \frac{1}{6} \eta_{\text{crit}}$

- **Speculation**: IF baryons similar to hard [enough] billiard balls,
 THEN expect solid phase at high enough density ($\sim 6\rho_0$)

Solid phase due to (close packing + hard core) \Rightarrow robust w.r.t. details of potential
Conclusions

Summary

- Phase diagram: take mean-field results with a grain of salt
- [Crude, crystalline] nuclear matter from QCD: tabletop simulations of first-principles nuclear physics
- Nucleon: point-like “bag” (\rightarrow hard core) + large pion cloud (\rightarrow Yukawa)
- Hard core \Longrightarrow solid phase at high density

Outlook

- Include second quark species \rightarrow isospin
- Include $O(\beta)$ effects?