Numerical study of the confinement/deconfinement dynamics

X-QCD Japan
(K. Nagata, Y. Nakagawa, A. Nakamura and T. Saito)
and
M. Chernodub and V. I. Zakharov

Chiral Symmetry and Confinement in Cold, Dense Quark Matter
July 19 - 23, 2010, ECT* Trento
"Finite Density Lattice QCD" submitted to J. Phys. Society of Japan. Unknown if it is accepted, because of too much Joke!
Your Talk contains few Key Words of the Workshop!

Chiral Sym. and Confinement in Cold, Dense Quark Matter

Go Home!
Confinement is Important!
Plan of the Talk

• Magnetic Monopole
• Surface Operators
• Gluon Propagators (SU(3))
• Gluon Propagators and Vortex (SU(2))
• Transport Coefficient and Vortex (SU(2))
Most data are Quench and color SU(2)

Some are SU(3)
Magnetic Degrees of Freedom and the Confinement

Who has seen the Mag. Monopole?

Neither I nor you
Yes, they have seen.
Singular Configuration, or Vortex

Here,
No Monopole!
But it looks like,,,.
Vortices related to the Confinement are a 2-d Object and we need Surface Operator

- S. Gukov and E. Witten, hep-th/0612073.
- A. DiGiacomo and V. I. Zakharov, hep-th/0806.29382

For a Point Charge, Wilson invented Line Operators.
\[\alpha \int d\sigma_{\mu\nu} F_{\mu\nu}^3 + \beta \int d\sigma_{\mu\nu} \tilde{F}_{\mu\nu}^3 \]

\[\tilde{F}_{\mu\nu} = \varepsilon_{\mu\nu\lambda\rho} F_{\lambda\rho} \]

\[\alpha \int d\sigma_{\mu\nu} \left(\sqrt{FF} \frac{d\sigma_{\mu\nu}}{d\sigma_{\mu\nu}} \right) + \beta \int d\sigma_{\mu\nu} \left(\frac{FF}{\sqrt{FF}} \frac{d\sigma_{\mu\nu}}{d\sigma_{\mu\nu}} \right) \]

\[FF = \sum_{\mu\nu} \text{Tr} F_{\mu\nu} F_{\mu\nu} \quad F\tilde{F} = \sum_{\mu\nu} \text{Tr} F_{\mu\nu} \tilde{F}_{\mu\nu} \]
Wilson Loops for a charge
Surface Operator
Center Projection

Del Debbio, Faber, Giedt, Greensite, Olejnik

\[
\text{Max} \sum_{x, \mu} \text{Tr} U_{\mu}(x) \rightarrow \text{Max} \sum \text{Tr} \left(U_{\mu} \right)^2
\]

Landau gauge or Coulomb Gauge

\[Z_{\mu}(x) \equiv \text{sign} \, \text{Tr} U_{\mu}(x) = +1 \text{ or } -1 \]

Gauge Rotation.
Therefore non-local

\[+1 \in Z_2 \]
\[-1 \in Z_2 \]
If $Z_\alpha \times Z_\beta \times Z_\gamma \times Z_\delta = -1$, a Vortex pierces the Plaquette.

1-d Object (Charge) \rightarrow Wilson Loop \rightarrow 2-d Object (Vortex Line) \rightarrow Surface Op.
Vortex Removing

\[U_\mu(x) \Rightarrow Z_\mu(x) \times U_\mu(x) \]

Remember that \(Z_\mu(x) \equiv \text{sign Tr } U_\mu(x) \)

By definition, now \(\text{sign Tr } U_\mu(x) = +1 \) for all links.

All vortices are fading out (by definition).
Surface Operator

\[\alpha \int d\sigma_{\mu\nu} \left(\sqrt{FF} \frac{d\sigma_{\mu\nu}}{d\sigma_{\mu\nu}} \right) + \beta \int d\sigma_{\mu\nu} \left(\frac{\tilde{FF}}{\sqrt{FF}} \frac{d\sigma_{\mu\nu}}{d\sigma_{\mu\nu}} \right) \]

Operator A

Operator B
Size Dependence of Operator A

A

L
Size Dependence of Operator A with/without the Vortices

After removing Vortices
Fitting

$11.2632 \times L^{2.000}$

$10.3888 \times L^{2.000}$
Size Dependence of Operator B

![Graph showing the size dependence of Operator B with data points and error bars.](image-url)
Size Dependence of Operator B with/without the Vortices
No Vortex Removal
With and Without Vortices
L = 1, 2, 3
Another Possibility

We fix $L' = 2$
After removing Vortices
Surface Operators - Summary

- The surface operators surely feel the Vortices.
- But the we are struggling to understand them more clearly.
I ♥ Gluon Propagators
Gluon Propagator in the confinement (Quench, SU(3), Old Days Calculation)

\[e^{-|\vec{p}|t} \]

48^3 \times 64

\[\beta = 6.8 \]

\[\vec{p} = \left(\frac{2\pi}{N_x}, 0, 0 \right) \]

Landau Gauge

Nakamura, 1995
Coulomb Gauge QCD a la Zwanziger

\[
H = \frac{1}{2} \int d^3 x \left(E_i^{tr} (x) + B_i^2 \right) + \frac{1}{2} \int d^3 x d^3 y (\rho(x) V(x, y) \rho(y))
\]

\[
g^2 \left\langle A_0 (x) A_0 (y) \right\rangle = g^2 D_{00} (x - y)
\]

\[
= V(x - y) + P(x - y)
\]

\[
V(x, y) = \int d^3 z \frac{1}{M(x, z)} \left(-\partial^2 \right) \frac{1}{M(z, y)} M \equiv -\vec{D} \vec{\partial}
\]

\[
= g^2 \left\langle \vec{V}(\vec{x}, \vec{y}) \right\rangle \delta(x_4 - y_4)
\]

\[
V_{phys} (R) \leq V_{coul} (R)
\]
Color Coulomb Potential

\[V(x, y) = \int d^3z \frac{1}{M(x, z)} \left(-\partial^2_{(z)} \right) \frac{1}{M(z, y)} \]

\[g^2 \left\langle A_0(x) A_0(y) \right\rangle = V(x-y) + P(x-y) \]

\[g^2 \left\langle \mathbf{V}(\mathbf{x}, \mathbf{y}) \right\rangle \delta(x_4 - y_4) \]

\[V_{phys}(R) \leq V_{coul}(R) \]
Eigen-Values of FP Operator accumulate near zero, i.e., Gribov boundary.

Ghost Dressing Function. Scaling Test

\[J(p^2) \equiv \bar{p}^2 \left\langle M^{-1}\right\rangle(\bar{p}) \]
Transverse Gluon Propagators

Momentum Space

Co-ordinate Space

Color Coulomb Potential at $T>T_c$

$T/T_c \approx 1.5$

$V(r) \text{ [GeV]}$

$r \text{ [fm]}$

- color-Coulomb potential
- static potential

Transverse Gluon Propagators at $T > T_c$

$D^{tr} (p) T$

- $56^3 \times 4$, $T / T_c \approx 5.6$
- $56^3 \times 6$, $T / T_c \approx 3.7$
- $56^3 \times 4$, $T / T_c \approx 3.8$
- $56^3 \times 6$, $T / T_c \approx 2.5$
- $56^3 \times 8$, $T / T_c \approx 1.9$

Y. Nakagawa, A. Nakamura, T. Saito, H. Toki (in preparation)
Transverse Gluon Propagators at $T>T_c$

Co-ordinate Space

$\xi = 4$

\begin{align*}
24^3 \times 6, \beta=6.10, \quad &T / T_c \approx 4.7 \\
24^3 \times 6, \beta=5.95, \quad &T / T_c \approx 3.7 \\
40^3 \times 6, \beta=5.95, \quad &T / T_c \approx 3.7 \\
40^3 \times 6, \beta=5.75, \quad &T / T_c \approx 2.5
\end{align*}

Y. Nakagawa, A. Nakamura, T. Saito, H. Toki (in preparation)
Gluon Propagators - Summary

• Gribov-Zwanziger Scenario works also at $T>T_c$!
• Is this a good news or bad news?
Gluon Behavior
with/without Vortex
◆ Lattice simulations

- Removing center vortices eliminates confinement and restores chiral symmetry (de Forcrand, D’Elia, PRL82, 4582(1999)
Maximal center projection

◆ Numerical technique
 Direct Maximal Center Projection (MCP) by Debbio, et. al, PRDv58,094501

◆ We apply the MCP to all configurations of the SU(2) gauge field

\[
\text{Maximize } R = \frac{1}{VT} \sum_{x,t} \text{Tr}[U_\mu(x,t)]^2
\]
\[
Z_\mu(x) = \text{sgn} \text{Tr}[U_\mu(x)]
\]

◆ Removing center vortex (via de Forcrand – D’Elia procedure, PRL82,4582(1999)):

\[
U_\mu(x) \rightarrow U'_\mu(x) = Z_\mu(x)U_\mu(x)
\]

→ Color confinement disappears and chiral symmetry restores.
Center removal for quark potential

- Removing vortices eliminates confinement.

\[V(r)/\sigma \]

Confinement region (T=0)

- Removing center vortices eliminates confinement and restores chiral symmetry (de Forcrand, D’Elia, PRL82, 4582(1999))
Gluon propagators in the Landau gauge

SU(2)

Landau gauge

$T/T_c = 1.40$
\[T / T_c = 3.0 \quad \text{SU}(2) \]

\[T / T_c = 6.0 \]
Gluon propagators in the Coulomb gauge

\[D_{\text{Electric}} \quad D_{\text{Magnetic}} \]

- Time-time (electric) correlator diverges in the infrared limit.
 - Instantaneous linearly rising potential and non-zero thermal string tension that depends on magnetic scaling
- Spatial-Spatial (magnetic) correlator is suppressed in the infrared limit.

SU(2)
Gluon Propagators with and without Vortex

Summary

• Gluons at $T>T_c$ have contribution of Vortex.
One of X-QCD Japan projects is to calculate Transport Coefficients at RHIC and LHC temperature regions and to see if they are different. What does “Perfect Fluid” mean?
\[\eta = -\int d^3 x' \int_{-\infty}^{t} dt_1 e^{\varepsilon(t_1-t)} \int_{-\infty}^{t_1} dt' < T_{12}(\vec{x},t) T_{12}(\vec{x}',t') >_{ret} \]

\[\frac{4}{3} \eta + \varsigma = -\int d^3 x' \int_{-\infty}^{t} dt_1 e^{\varepsilon(t_1-t)} \int_{-\infty}^{t_1} dt' < T_{11}(\vec{x},t) T_{11}(\vec{x}',t') >_{ret} \]

\[\chi = -\frac{1}{T} \int d^3 x' \int_{-\infty}^{t} dt_1 e^{\varepsilon(t_1-t)} \int_{-\infty}^{t_1} dt' < T_{01}(\vec{x},t) T_{01}(\vec{x}',t') >_{ret} \]

\(\eta \) : Shear Viscosity

\(\varsigma \) : Bulk Viscosity

\(\chi \) : Heat Conductivity

we do not consider in Quench simulations.

\[T_{\mu\nu}(\vec{x}',t') \]

\[T_{\mu\nu}(\vec{x},t) \]

\[-\infty < t' < t_1 < t \]
History

1995

U(1)
Coulomb and Confinement Phases

SU(2)
Two Definitions:
F = \log U
F = U - 1

1995

SU(2): \beta = 3.0
Dia\& Pert

1998

SU(3)
Improved Action

2005

The first calculation of \(\eta/s \) on the lattice, which is consistent with KSS bound.

\[\eta \]
\[s \]
Viscosity by Lattice, 2007

Nakamura and Sakai

\[\frac{\eta}{s} \quad (2007) \]

\(\eta \): shear viscosity
\(s \): Entropy density

\(16^3 \times 8 \), \(24^3 \times 8 \)

Meyer

KSS bound

\[\frac{T}{T_c} \]
Fluctuations in MC sweeps

SU(3), T=2

$\langle G(T=2) \rangle_{10000}$

Stand, $\beta=6.25$: $\langle G(2) \rangle_{all} = 1.7 \times 10^{-6}$

Imp, $\beta=3.3$: $\langle G(2) \rangle_{all} = 6.4 \times 10^{-7}$

Sweep $x 10^4$

Standard Action

Improved Action
$16^3 \times 8$, $\beta = 6.539$ (Wilson), $\beta = 3.05$ (Iwasaki)
中川君のデータ

$4 / \approx \quad cTT \quad 5 / \approx \quad cTT$

$G_{12}(\tau)$

$T / T_c \approx 4$

$T / T_c \approx 5$
\[
\langle T_{12}(0)T_{12}(t) \rangle
\]

\[\beta = 2.66 \quad (T / T_c \approx 3.24)\]

\[16^3 \times 8\]
\[\langle T_{12}(0)T_{12}(t) \rangle \]

\[\beta = 3.0 \ (T / T_c \approx 5.1) \]

\[16^3 \times 8 \]

\[SU(2) \]

60 × 1000 Sweeps

With Multi-Hit
+ Vortex Removal

With Multi-Hit

Standard Plaq. Action
\(\langle T_{12}(0)T_{12}(t) \rangle \)

Improve Action (Symanzik)

16^3 \times 8, Symanzik, \(\beta = 2.2 \) (\(T \sim 2.5T_c \)), \(\sim 6k \) confs.

\[G_{12} = [\langle T_{11}, T_{12} \rangle T_{12}^2] \]

\(\beta = 2.2 \) (\(T / T_c \approx 2.5 \))

16^3 \times 8

SU(2)

60000 \times 100\) Sweeps
Transport Coefficient
Summary

• Transport Coefficient knows if there are Vortices or not!
• It is interesting to see if Vortices change the Viscosity or not.
Conclusion

• QCD is a Quantum Field Theory.
• QCD has a very special feature, the Confinement.
• If a singular structure of the quantum field (gluon field) explains the confinement, it is very interesting (at least to me).
• The surface operators feel Vortex.
• Transport Coefficients change if we remove the Vortex.
• We want to understand QGP natures in terms of the Surface operators in future.
In other words,

QCD/QGP physics provides an opportunity to see a new quantum field mechanism, the singularities on surfaces.

K.R.
Backup Slides
Gluon propagators at finite temperature

◆ Self-energy and propagators

$$\Pi^{\mu\nu} = G P_T^{\mu\nu} + F P_L^{\mu\nu} \quad D^{\mu\nu} = \frac{1}{G + k^2} P_T^{\mu\nu} + \frac{1}{F + k^2} P_L^{\mu\nu} + \frac{\rho}{k^2} \frac{k^\mu k^\nu}{k^2} \quad \rho = 0 : \text{Landau gauge}$$

◆ Projection operators

$$P_T^{00} = P_T^{0i} = P_T^{i0} \quad P_T^{ij} = \delta^{ij} - \frac{k^i k^j}{k^2}, \quad P_L^{\mu\nu} = \delta^{\mu\nu} - \frac{k^\mu k^\nu}{k^2} - P_T^{\mu\nu}, \quad (P_T) = P_T, \quad (P_L) = P_L, \quad P_T P_L = 0$$

◆ Electric and magnetic gluon propagators

$$D_E(k, k_0 = 0) = D^{00} = \frac{1}{F + k^2}, \quad F(0, 0) = m_E \sim g(T)T$$

$$D_M(k, k_0 = 0) = D^{ii} = \frac{1}{G + k^2}, \quad G(0, 0) = m_M \sim g^2(T)T$$

◆ Gauge field, correlator and unequal time propagators

$$A^a_\mu(x, t) = \text{Tr} \sigma^a U_\mu(x, t) \quad D_{\mu\nu}(\vec{q}, t) = \frac{1}{V(N_c^2 - 1)} \sum_x A^a_\mu(x, t') A^a_\nu(y, t'') e^{i\vec{q}(x - y)}$$

◆ After taking a sum of t with $q_0 = 0$,

$$D_{\mu\nu}(\vec{q}, q_0 = 0) = \frac{1}{N_t} \sum_t D_{\mu\nu}(\vec{q}, t)$$

◆ Note that for Coulomb gauge case we use equal-time propagators here.
Lattice setup

- SU(2) lattice calculation with quenched Wilson-gauge action
- Landau (Coulomb) gauge on the lattice in the path-integral formula satisfies the following condition:

\[\partial_\mu A_\mu(x,t) = 0 \Rightarrow \text{Maximize } R = \frac{1}{VT} \sum_{x,t} \text{Re} \text{Tr} U_\mu(x,t) \left| \sum_\mu \text{Tr} \sigma^a \left(U_\mu(x) - U_\mu(x - \hat{\mu}) \right) \right|^2 \leq 10^{-\text{eps}} \]

Wilson-Mandula Method (PLB185,127(1987))

- Parameters:
 - Lattice size: 24x24x24x4
 - beta: 2.2-2.6, corresponding to the temperatures \(T/T_c \) are approx. 1.40, 3.00 and 6.00.
 - Configurations: 10k discarded and about 20-30 confs. are used to measure.
 - Convergence criteria: \(\text{eps} = 10^{-8} \) for gauge fixing and \(\text{eps} = 10^{-16} \) for maximal center projection.

- Procedure:

 \textit{Gauge updated} --> \textit{Maximal center projection} --> \textit{Gauge fixing}
Transport Coefficients of QGP

We measure Correlations of Energy-Momentum tensors

$\langle T_{\mu\nu}(0)T_{\mu\nu}(\tau) \rangle$

Convert them (Matsubara Green Functions) to Retarded ones (real time).

Transport Coefficients (Shear Viscosity, Bulk Viscosity and Heat Conductivity)