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Abstract

One of the most striking findings in the recent high-spin spectroscopy is the discovery of one-
phonon, and possibly double-phonon, excitation of the nuclear wobbling rotational bands. In this
talk, we first review the properties of observed wobbling motions, and discuss the failure and success
of the possible interpretation in terms of the simple rotor model. Then, we further present results
of our microscopic study in Hf and Lu nuclei by means of the theoretical framework, the cranked
mean-field and the random phase approximation.

1 Introduction

In this talk we would like to discuss the nuclear wobbling motion. The wobbling motion is a spinning

motion of asymmetric top, namely triaxial rigid-body. Quite recently, rotational bands associated with

this motion have been identified in Lu nuclei1), and this discovery of the wobbling rotational bands is one

of the most exciting topics in the nuclear spectroscopy. We must confess that we have been working on

the wobbling motion for rather long period. In fact the talker(YRS)’s doctor thesis is somewhat related

to it. So we are very regrettable that we have not been able to predict the possible existence of them in

the Lu isotopes before the experiments.

The reason why the wobbling motion is so exciting is that it is related to a fundamental question:

How does an atomic nucleus rotate as a three-dimensional object? Namely, the rotational motion is

neither uniform, nor the conventional one where the axis of rotation coincides with one of principal

axes. Here we would like to stress that most of the rotational bands, including the striking high-spin 2:1

superdeformed bands, are supposed to be based on the uniform rotation around the axis perpendicular to

the symmetry-axis of deformation, so they are not genuine three-dimensional rotation. Since the existence

of the wobbling motion requires the triaxial deformation, it also gives a rare chance to study the nuclear

mean-field with triaxial deformation, which is very scarce near the ground state region.

Recently, another type of exotic rotations, other than the usual rotations around the perpendicular

axis of axially symmetric nuclei, have been also reported; that is the “tilted axis rotation” or “magnetic

rotation2)”, which is conceptually different from the wobbling motion. The wobbling motion is non-

uniform rotation and, just like the classical rigid body rotation, the angular momentum vector is not

parallel to the rotational frequency vector, while the tilted axis rotation is an uniform rotation so that

the two vectors are parallel with each other. The typical electromagnetic transitions associated with the

wobbling excitations are electric quadrupole (E2), while the magnetic dipole (M1) transitions are very

large in the tilted rotational bands. Another important difference is that the tilted rotational band appears

as an isolated band (or a pair of bands in the case of recently proposed “chiral rotation/vibration”3),4)),

while the wobbling motion manifest itself as a multi-rotational-band structure, reflecting that the complex

rotational motions are composed of non-linear superposition of three rotations around three principal axes

of triaxially deformed body.

The band structure associated with the wobbling motion is shown schematically in Fig. 1. The lowest

band, namely the yrast band, corresponds to an uniform rotation around the axis of largest moment of

inertia. One-phonon wobbling band is a rotational band with a quantized wobbling phonon being excited



on top of the yrast band, which leads to a fluctuating motion of the rotation axis with respect to the

one in the yrast band. Two-phonon wobbling band corresponds to the band with two-wobbling quanta

being excited on the yrast, and the amplitude of fluctuation of the rotation axis is getting larger. Three

or more phonon bands are similar and based on multi-phonon excitations. The characteristic of this

band structure is that relatively strong non-stretched E2 transitions connect the n-phonon and (n− 1)-

phonon bands: The horizontal bands are usual rotational sequences with strong stretched ∆I = ±2 E2

transitions, while the vertical out-of-band transitions between, e.g., one-phonon to vacuum yrast band

are ∆I = ±1 E2 transitions, which are weaker than the horizontal ones but much stronger than the usual

vibrational transitions. The energy of vertical excitation h̄ωw is common in all the (n − 1)-phonon to

n-phonon excitations and E2 transitions between the n-phonon and (n− 2)-phonon bands are prohibited

in a harmonic approximation. This wobbling energy h̄ωw is given by the well known formula5) in terms

of three moments of inertia around the principal axes of a rotating body, which is discussed more closely

in the following sections.

Figure 1: Schematic figure representing the multi-rotational-band structure of the wobbling motion.

2 Wobbling Motion: Observation and Simple Model Analysis

The first multi-rotational-band structure associated with the wobbling motion have been observed in
163Lu1),6). The low-spin structure in this nucleus is that of typical well-deformed nucleus; there are many

strongly-coupled and aligned rotational bands. At high-spin states, I >∼ 20h̄, very regular rotational

sequences invade into the yrast region, whose moments of inertia are larger than the usual low-spin

bands. These sequences, totally four bands identified in 163Lu, are believed to be rotational bands based

on triaxial and largely deformed configurations, which had been originally speculated by calculations of

the potential energy surface more than twenty years ago. Nowadays, similar type of rotational bands

are systematically identified in this mass region, Lu and Hf nuclei, and called the triaxial superdeformed

(TSD) band. Their triaxiality and deformation are typically γ ≈ +20◦ and ǫ2 ≈ 0.4 (in the Lund

convention, see Fig. 2), while those of the low-spin normal deformed states are γ ≈ 0◦ and ǫ2 ≈ 0.2. The

recent experimental progress in 163Lu is that the interband transitions between TSD1 and TSD2 bands

have been observed, where the TSD1 is the yrast TSD band and TSD2 is the first excited (one-phonon)

band, and so they indicate clearly the wobbling band structure mentioned in §1. The measured out-of-

band transitions is of I to I − 1, and it has been confirmed to be mainly of E2 character. The B(E2)

values7) are large and can be nicely reproduced by the simple rotor model. Moreover, the transitions

between TSD3 (two-phonon band) and TSD2, and between TSD3 and TSD1 have been also measured



afterward6). Quite recently, the same band structure have been observed in neighbouring Lu isotopes,
165Lu8) and 167Lu9). In even-even Hf isotopes, 168Hf 10) and 174Hf 11), in the same mass region, excited

TSD bands have been also measured, although the linking transitions are not measured yet unfortunately.

The interpretation of the observed band structure nicely fits into the prediction first given by Bohr-

Mottelson5) based on the simple rotor model. Let us recall the argument. The rotor hamiltonian is

composed of the three body-fixed angular momenta (J ’s) and three moments of inertia (J ’s) around the

principal axes in the body-fixed frame:

Hrot =
J2

x

2Jx
+

J2
y

2Jy
+

J2
z

2Jz
≡ AxJ

2
x +AyJ

2
y +AzJ

2
z . (1)

Assuming that Ax < Ay < Az (Jx > Jy > Jz), the yrast state at given angular momentum I is the

uniform rotation around the x-axis,

EI =
h̄2I2

2Jx
; 〈Jx〉 ≈ h̄I, 〈Jy〉, 〈Jy〉 ≈ h̄

√
I. (2)

Then the rotational frequency ωrot is defined, as usual, by h̄ωrot = dEI/dI. In the excited state at

given I a nucleus rotate non-uniformly around the axis which fluctuates around the main rotation axis

(x-axis), so that the fluctuating motion of the angular momentum vector is described, in the harmonic

approximation, by the following normal mode creation operator:

X†
w = a

iJy√
2I

− b
Jz√
2I
, with [iJy, Jx] = Jx ≈ I, (3)

where the amplitude a and b satisfy ab = 1 due to the normalization condition [Xw, X
†
w] = 1, and they

are determined by diagonalizing the rotor hamiltonian (1); [Hrot, X
†
w] = h̄ωwX

†
w. The explicit calculation

leads
√

2 (Ay−Ax)b = h̄ωwa/
√

2I and
√

2 (Az−Ax)a = h̄ωwb/
√

2I, thus (h̄ωw)2 = 4I(Ay−Ax)(Az−Ax),

namely,

h̄ωw = I
√

(1/Jy − 1/Jx)((1/Jz − 1/Jx) = h̄ωrot

√

(Jx − Jy)(Jx − Jz)

Jy Jz
, (4)

where ωrot = I/Jx is the rotational frequency of the yrast rotational band. By using this eigen-mode

(wobbling mode), the electric E2 transition probabilities of both in-band transitions in the yrast or the

one-phonon wobbling bands and out-of-band transitions between them can be also calculated. The basic

features are summarized in Fig. 2. As is usual, B(E2) values are sensitive to the deformation, especially in

this case to the triaxiality. Here it is to be noted that 0 ≤ γ ≤ 60◦ is enough for the triaxiality parameter

γ to specify the shape at zero spin (no rotation). At high-spin states, however, there is an axis of rotation

and there are two more regions of triaxial deformation relative to the direction of the rotation axis (x-

axis). In the figure four possible rotation schemes with axially symmetric deformation are shown, and

there are three regions of rotations with triaxial deformation in-between them. As for the E2 transitions

from the one-phonon wobbling band to the yrast band, there are two possible transitions, namely from

I to I + 1 or from I to I − 1. Which transition is stronger is different in each region of triaxiality; the I

to I − 1 transition is stronger in the region 1 and 3, i.e. 0◦ < γ < 60◦ or −120◦ < γ < −60◦, while the I

to I + 1 transition is stronger in the region 2, i.e. i.e. −60◦ < γ < 0◦.

Taking into account the basic properties of the wobbling motion in the rotor model, the key quantities

are 1) three moments of inertia, Jx, Jy, Jz , and 2) the triaxial deformation, especially the sign of the

triaxiality parameter, γ; both are related in some way. In order for the existence of the wobbling motion,

Jx should be the largest (see Eq. (4)), where x-axis is the axis of main rotation of the yrast TSD band.

On the other, the B(E2) data suggests positive γ shape, 0◦ < γ < 60◦, since only the I to I−1 transitions

are observed†, which is also consistent to the calculated position of minimum corresponding to the TSD
†The possibility of −120◦ < γ < −60◦, the region 3 in Fig. 2, cannot be excluded, but it is very unlikely from the spectra

of the yrast TSD band.



Figure 2: Schematic figure depicting the relation between the triaxial deformation and the properties of the
out-of-band E2 transition. The shape corresponding to the triaxiality parameter γ (Lund convention) is shown
relative to the main rotation axis, which is chosen to the x-axis in the left panel. In the middle, the out-of-band
B(E2) values with ∆I = ±1 are plotted as functions of the angular momenta or the rotational frequency, for
which stronger transitions are marked in the right panel.

band in the potential energy surface, i.e. γ(PES) ≈ +20◦. It is, however, stressed that the irrotational

moments of inertia, which are commonly used in the rotor model, require Jy > Jx > Jz at positive γ

(0◦ < γ < 60◦), and clearly contradict the existence of the wobbling motion (h̄ωw in Eq. (4) becomes

imaginary). The classical rigid moments of inertia satisfies the condition, in fact Jx > Jy > Jz at positive

γ, but they do not meet the basic quantum mechanics criteria that the rotation should not occur around

the symmetry axis, in contrast to the irrotational inertia.

One of the other observed features of the wobbling motion in Lu isotopes is that the wobbling excitation

energy h̄ωw decreases as a function of the spin I or the rotational frequency ωrot (see the left panel of

Fig. 7 shown later). This trend seems common to all the observed cases in Lu isotopes, but completely

opposite to that predicted by the simple rotor model; h̄ωw in Eq. (4) is proportional to the rotational

frequency if three moments of inertia are assumed to be constant. Therefore, the ωrot-dependence of the

wobbling energy requires that three moments of inertia should depend on ωrot in such a way to decrease

h̄ωw. Another interesting feature to be pointed out is the magnitude of out-of-band B(E2)I→I−1
out , which

amounts to 100 or more Weisskopf units. Note that the in-band B(E2)I→I−2
in value is larger and about 500

or more Weisskopf units in TSD bands, which are consistent with the calculated deformation parameters

(ǫ2 ≈ 0.4, γ ≈ +20◦) by the potential energy surface, and so the out-of-band transitions is about 20% of

the in-band transitions. These transitions are extremely strong and suggests that both are of rotational

origin, which are nicely reproduced by the simple rotor model. As examples of strong out-of-band E2

transitions, those between the ground state band and the collective β- or γ-vibrational band are known

in well-deformed nuclei. Their B(E2) values are typically about 5 – 8 Weisskopf units, while the typical

in-band E2 transition probabilities of normal deformed nuclei are 100 – 200 Weisskopf units.

In the Lu isotopes the odd proton particle exists in addition to the simple rotor. Therefore one has to

consider the more elaborated particle-rotor coupling model12). The essential features discussed above are

not changed as long as three moments of inertia satisfying Jx > Jy > Jz are used, although the presence

of the odd particle makes the rotational spectra more complex.



3 Microscopic RPA Model

Considering the observed features of the wobbling motion discussed in the previous section, the simple

rotor model fails; namely one cannot use the irrotational moments of inertia and the dependence of three

moments of inertia on the rotational frequency should be taken into account. Since we do not know what

kind of moments of inertia should be used a priori, we have to calculate three moments of inertia, which

requires a microscopic framework to study the wobbling motions. Such a framework were proposed by

Marshalek13), and examined in details in some realistic cases in Ref. 14).

The theory is based on the random phase approximation (RPA) on top of the cranked mean-field, which

is used to describe the uniform rotation of the yrast (vacuum) rotational band by the stationary mean-

field hamiltonian, h′ = hdef − ωrotJx. In the one-phonon wobbling band the fluctuating motion is not so

large, and the small amplitude approximation of time-dependent mean-field around h′ can be used, which

results in the RPA eigen-mode equation. Thus, with using the QQ type force as a residual interaction,

the n-th eigen-energy h̄ωn and eigen-mode creation operator X†
n =

∑

αβ

[

ψ(αβ)a†αa
†
β − φ(αβ)aβaα

]

as

a superposition of two-quasiparticle excitations can be calculated. If the n-th mode is identified as a

wobbling motion, X†
n and h̄ωn correspond to X†

w and h̄ωw in Eqs. (3), (4) in the simple rotor model. The

QQ type force contains the quadrupole tensor, Qij =
√

15
4π

∑A
a=1

[

xixj − 1
3r

2δij
]

a
(i, j = x, y, z, in the

Cartesian representation), but, because of the symmetry such that the wobbling excitation changes the

angular momentum by ±1 unit, only the two components, Qy ≡ −Qzx and Qz ≡ i Qxy are responsible

for dynamical time-dependence†. Thus the time-dependent mean-field is

hUR(t) = hdef − ωrotJx − κyQy(t)Qy − κzQz(t)Qz , (5)

where κy,z are the QQ type force strengths, and Qy,z(t) = 〈t|Qy,z|t〉 describe the time-dependence of the

relevant quadrupole components. The subscript UR is attached because this time-dependent hamiltonian

is defined in the uniformly rotating (UR) frame, where the rotation axis is pointing to the main rotation

axis (x-axis) of the vacuum band. The wobbling excitation on it induces the shape fluctuation of the

non-diagonal quadrupole tensor, Qy(t) and Qz(t), in the mean-field, and the out-of-band E2 transition

probabilities are calculated by

B(E2)I→I∓1
out = 1

2 |Q
(E)
y (n) ±Q(E)

z (n)|2, (6)

where Q(E)
y,z (n) are the electric (proton) part of tensor calculated with only the n-th eigen-mode being ex-

cited. In order to recover the wobbling picture of the angular momentum fluctuation, the time-dependent

non-unitary transformation to the principal axis (PA) frame should be performed by requiring that the

non-diagonal part of quadrupole tensor should vanish. Then the time-dependent mean-field in the PA

frame is now

hPA(t) = hdef − ωx(t)Jx − ωy(t)Jy − ωz(t)Jz , (7)

where ωx(t) ≈ ωrot in the small amplitude limit, and ωy,z(t) being related to Qy,z(t) describe the fluc-

tuation of the angular frequency vector. In this frame, the fluctuation of the angular momentum vector

naturally arises, 〈t|Jy,z|t〉: Then the three RPA moments of inertia are introduced through

Jx ≡ 〈Jx〉/ωrot, Jy,z(n) ≡ Jy,z(n)/ωy,z(n), (8)

where the frequencies ωy,z(n) and the expectation values Jy,z(n) are calculated with only the n-th eigen-

mode being excited. What Marshalek found is that using these three moments of inertia the RPA phonon

energy can be expressed in the same way as in Eq. (4) in the simple rotor model, namely the wobbling

energy equation is equivalent to the RPA eigen-mode equation. The dynamical pictures of the wobbling

motion in the UR and PA frames are shown schematically in Fig. 3.

†If is used the usual spherical tensor representation with classification by the signature quantum number, Q
(±)
2K

, then

Qy = Q
(−)
21 and Qz = Q

(−)
22 , i.e. they transfer signature by one unit.



Figure 3: Schematic figure depicting the two dynamical pictures in the uniformly rotating frame (UR frame) and
the principal axis frame (PA frame).

In this way, the wobbling phonon energy, the B(E2) values, and the three moments of inertia can be

calculated in a microscopic framework without ambiguity. We would like to stress that the QQ type force

strengths κy,z in Eq. (5) are not free parameters but fixed by the requirement of the decoupling of the

Nambu-Goldstone modes in the RPA. Therefore, there is no adjustable parameters once the mean-field

parameters are fixed selfconsistently. It should also be noticed that the number of RPA eigen-modes are

that of independent two-quasiparticle states, but most of the solutions do not have a proper wobbling

property. For example, the defined Jy,z(n) can take negative values, or the fluctuation amplitude of the

angular momentum vector is too small if the obtained E2 amplitudes Qy(n) and Qz(n) are not collective;

such solutions are not wobbling mode at all. In fact, the RPA solution which can be interpreted as a

wobbling motion do not always appear: Some condition on the mean-field is necessary.
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Figure 4: Wobbling excitation energy calculated as a function of the deformation parameter ǫ2 (left), and of the
static pairing gap parameter ∆n,p (right), in an even-even nucleus 168Hf. Taken from Ref. 16).

In Figs. 4 and 5 we show an example depicting the dependences of the wobbling energy h̄ωw on various

mean-field parameters, ǫ2, γ and pairing gap ∆n,p calculated at h̄ωrot = 0.3 MeV in a even-even nucleus
168Hf. The collective wobbling solution indeed exists around the expected values of parameters ǫ2 ≈ 0.4

and γ ≈ +20◦, and it is stable against the change of the pairing gap parameters, which are supposed to

be small (∆ <∼ 0.5 MeV) in the TSD bands. It should be noted that the wobbling mode becomes softer

(h̄ωw decreases) as ∆ increases, which is opposite behaviour to the case of the conventional collective

vibrational modes, and may indicate that it is of rotational character. The three RPA moments of

inertia are also shown in Fig. 5, from which it is clear that they are neither irrotational nor rigid-body

like. We further show the wobbling energy and RPA moments of inertia as functions of the rotational

frequency ωrot in Fig. 6; unfortunately the wobbling motion is not established yet in this nucleus. Here

the mean-field parameters are fixed for simplicity; ǫ2 = 0.43, γ = +20◦, and ∆n = ∆p = 0.3 MeV. In the
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Figure 5: Wobbling excitation energy (left) and three moments of inertia (right) as functions of the triaxiality
parameter γ, in an even-even nucleus 168Hf. Taken from Ref. 16).

microscopic RPA calculation the ωrot-dependence naturally arises as a result of cranking prescription of

the quasiparticle orbits, and the wobbling energy is not simply proportional to the rotational frequency.
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Figure 6: Wobbling excitation energy (left) and three RPA moments of inertia (right) as functions of the rotational
frequency ωrot, in an even-even nucleus 168Hf. Taken from Ref. 16).

It is known that the microscopically calculated γ-dependence of three moments of inertia at zero

rotational frequency, e.g. by the Inglis cranking formula, look very similar to the irrotational inertia.

If that is the case, why does the wobbling solution appear in our microscopic RPA calculations? The

reason is the following: The Jx inertia in the RPA formalism in Eq. (8) is that of kinematic moment

of inertia, so that the alignments of quasiparticle orbits contribute to it. Actually the occupation of the

high-j proton i13/2 quasiparticle is essential to generate a minimum at the positive γ shape for the TSD

bands. As is seen in Fig. 6, the alignment of two πi13/2 quasiparticles occurs around h̄ωrot ≈ 0.2 MeV,

which suddenly increases Jx. Because of this effect the condition Jx > Jy(n) > Jz(n) is satisfied and

the wobbling solution appears. Thus the increase of Jx due to the quasiparticle alignments is crucial for

the appearance of the wobbling motion in our RPA calculations; see Ref. 15) and 16) for details.

Now we compare the calculated results with experimental data for 163Lu in Fig. 7, where, again, all the

mean-field parameters are fixed. The calculated wobbling energy h̄ωw is smaller than the experimental

data and stays almost constant against the rotational frequency ωrot, while, as already mentioned, the

experimental wobbling energy decreases with ωrot. Thus, the result of calculation is not very successful

to reproduce the detailed ωrot-dependence. This requires that the change of the mean-field parameters as

functions of ωrot should be considered. Even more problematic is the out-of-band B(E2) values, which are

about 2–3 times smaller than the experimentally measured values. Here we would like to recall that the

measured B(E2) is very large, more than 100 Weisskopf units: Although the calculated B(E2) values are

extremely large compare to those in the case of usual collective vibrations, it is not enough to reproduce

those of the wobbling mode. Considering the sum-rule like argument in Ref. 16), we feel it is very difficult
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√
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shown, see Ref. 15) for details.

for the microscopic RPA theory to understand that the macroscopic rotor limit of the out-of-band B(E2)

value is almost reached in the actual nucleus.

4 Summary and Discussions

In this talk, recently identified nuclear wobbling motions in the Lu and Hf region are reviewed and

discussed from the microscopic view point. The original picture of the wobbling motion is based on the

simple rotor model. It is, however, apparent that the atomic nucleus is not macroscopic object like a

rotor. Therefore, the observed properties of the wobbling motion cannot be always understood by the

rotor model, and one has to invoke more fundamental microscopic theories. We summarize the points of

our investigations up to now, which have been done by means of the microscopic RPA framework in the

previous section, as follows:

(1) By suitable choice of the mean-field parameters, i.e. large enough ǫ2 and positive γ ≈ +20◦, we

have found that low-energy wobbling solutions appear naturally among the RPA eigen-modes. The

wobbling solution is insensitive to the pairing gap parameters; the eigen-energy decreases as the gap

increases, which is a completely opposite behaviour compared with the case of low-lying collective

vibrations.

(2) The proton i13/2 quasiparticle alignments are crucial to obtain the condition Jx > Jy(n) > Jz(n)

for the RPA moments of inertia, which is required for the existence of the associated wobbling

mode. It is consistent with the fact that the occupation of the same proton i13/2 quasiparticle is

necessary for the positive γ TSD shape to be minimum in the potential energy surface calculations.

(3) The detailed rotational frequency dependence of the wobbling excitation energy could not be repro-

duced in the present RPA calculation, although it is much improved compared with the result of the

simple rotor model with fixed moments of inertia, which gives completely opposite dependence to

the experimental data. All the mean-field parameters are assumed to be constant for simplicity in

our calculations. This result suggests that change of the mean-field against the rotational frequency

should be properly taken into account.

(4) A severe problem of the RPA calculations is that the out-of-band B(E2) values are smaller by

about factor two or three than the experimentally measured values. Although the obtained RPA

solution is extremely collective, the collectivity (enhancement of B(E2)) is not enough. This poses

an important future challenge for the microscopic theory like RPA.



Finally we would like to discuss a possible explanation of the calculated dependence of the wobbling

energy h̄ωw on the rotational frequency ωrot (or spin I), i.e. increasing in the lower frequency and de-

creasing in the higher frequency, which are shown in Figs. 6 and 7 (see Ref. 16) for more examples of

calculation). It is based on a rotor model with a modification to include the effect of quasiparticle align-

ments, which is investigated in Ref. 12), but the possibility is not thoroughly explored†. The hamiltonian

is the same as Eq. (1) except that the Jx is now replaced to (Jx − j), where j is a constant and cor-

responds to the aligned angular momentum of quasiparticle(s). Expanding the (Jx − j)2 term, a linear

term −jJx/Jx in Jx appears. Treating this term by Jx =
[

I2 − (J2
y + J2

z )
]

1

2 ≈ I − (J2
y + J2

z )/2I in the

high-spin limit, the modified rotor hamiltonian and the yrast energy are given by

H̃rot ≈
J2

x

2Jx
+

J2
y

2J̃y(I)
+

J2
z

2J̃z(I)
+

(

j2 − 2Ij

2Jx

)

, EI =
(I − j)2

2Jx
, (9)

and the rotational frequency is now given by h̄ωrot = (I − j)/Jx. The last term in H̃rot is constant, and

J̃y,z(I) = Jy,z

[

1 +
jJy,z

IJx

]−1

(10)

are the modified I-dependent moments of inertia. Namely, the effect of the quasiparticle alignments

makes J̃y,z(I) inertia smaller. Since the diagonalization of Eq. (9) in terms of the wobbling mode (3) is

the same if Jy,z are replaced by J̃y,z(I), the wobbling mode appears in the spin range, j < I < Icrit ≡
j[1 − Jx/Jy]−1, because the condition Jx > J̃y(I) > J̃z(I) is satisfied in I < Icrit (j < I is required for

h̄ωrot = dEI/dI > 0), even when the original three inertia are Jy > Jx > Jz like the irrotational inertia

at the positive γ shape. An example of the wobbling excitation energy calculated with this modified H̃rot

is shown in Fig. 8. Even though the original three inertia are constants, a similar ωrot-dependence to those

in the realistic RPA calculations emerges because of the presence of the quasiparticle alignments. It is,

however, mentioned that the appearance mechanism of the wobbling motion is somewhat different from

the interpretation of the RPA calculation given in §3: Jx is increased by the alignments in the RPA, while

Jy,z are decreased in this modified rotor model, although the quasiparticle alignments play an essential

role in both explanations. At this stage we are not sure that this model serves as a possible model

explaining the results of the microscopic RPA calculations. But we hope that this kind of interpretation

of the calculated results by an intuitive model deepens insight into the appearance mechanism of the

wobbling motion, and gives some clues for improving the microscopic framework.

Figure 8: An example of the wobbling excitation energy in the modified rotor hamiltonian (9) as a function
of h̄ωrot = (I − j)/Jx. The (rather arbitrarily) chosen values of the quasiparticle alignment j and three inertia
Jy > Jx > Jz are shown in the figure. The dashed line is the original wobbling energy (4) calculated by replacing

Jx and Jy (so-called γ-reversed inertia12)).

†The following argument results from the discussion with Stefan Frauendorf.
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