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By means of the adiabatic self-consistent collective coordinate method and the pairing
plus quadrupole interaction, we have obtained the self-consistent collective path connecting
the oblate and prolate local minima in 68Se for the first time. Result of calculation indi-
cates importance of triaxial deformation dynamics in the oblate-prolate shape coexistence
phenomena.

Shape coexistence phenomena are typical examples of large amplitude collective
motion in nuclei. These phenomena imply that different solutions of the Hartree-
Fock-Bogoliubov (HFB) equations (local minima in the deformation energy surface)
appear in the same energy region and that the nucleus exhibits large amplitude collec-
tive motion connecting these different equilibrium points. The identities and mixings
of these different shapes are determined by the dynamics of such collective motion.
Some years ago, we have proposed a new method of describing such large-amplitude
collective motion, which is called Adiabatic Self-Consistent Collective Coordinate
(ASCC) method.1) It yields a new method of solving the basic equations of the SCC
method2) using an expansion in terms of the collective momentum. It does not as-
sume a single local minimum, so that it is expected to be suitable for the description
of the shape coexistence phenomena. The ASCC method also enables us to include
the pairing correlations self-consistently, removing the spurious number fluctuation
modes. To examine the feasibility of the ASCC method, we have first applied it
to an exactly solvable model called the multi-O(4) model, which is a simplified ver-
sion of the pairing-plus-quadrupole (P+Q) interaction model.3) It is shown that the
method yields a faithful description of tunneling motion through a barrier between
the prolate and oblate local minima in the collective potential.4)

In this Letter, we give a brief report of our first application of the ASCC method
to a realistic P+Q interaction model. We illustrate its practicality taking as a typical
example the oblate-prolate shape coexistence phenomenon in 68Se recently observed
in experiments.5) The self-consistent collective path obtained successfully by means
of the ASCC method is found to run approximately along the valley connecting
the oblate and prolate local minima in the collective potential energy landscape.
To the best of our knowledge, this is the first time that a self-consistent collective
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path is obtained for realistic situation starting from the microscopic P+Q Hamil-
tonian. We note that a similar approach to large amplitude collective motions was
recently pursued by Almehed and Walet,6) although they discussed different nuclei
and encountered some difficulties in obtaining self-consistent collective paths.

We assume that large-amplitude collective motions are described by a set of
time-dependent HFB state vectors |φ(q, p, ϕ,N)〉 parametrized by a single collective
coordinate q, the collective momentum p conjugate to q, the particle number N and
the gauge angle ϕ conjugate to N . As discussed in Ref. 1), the state vector can be
written

|φ(q, p, ϕ,N)〉 = e−iϕN̂ |φ(q, p,N)〉 = e−iϕN̂eipQ̂(q)|φ(q)〉. (1)

Making an expansion with respect to p and requiring that the time-dependent vari-
ational principle be fulfilled up to the second order in p, we obtain the following set
of equations to determine |φ(q)〉, the infinitesimal generator Q̂(q), and its canonical
conjugate P̂ (q):

δ 〈φ(q)| ĤM (q) |φ(q)〉 = 0, (2)

δ 〈φ(q)| [ĤM (q), Q̂(q)] −
1

i
B(q)P̂ (q) |φ(q)〉 = 0, (3)

δ 〈φ(q)| [ĤM(q),
1

i
P̂ (q)]−C(q)Q̂(q)−

1

2B(q)
[[ĤM (q), (Ĥ−λ(q)N̂)A], Q̂(q)]−

∂λ

∂q
N̂ |φ(q)〉 = 0.

(4)
Here

ĤM (q) = Ĥ − λ(q)N̂ −
∂V

∂q
Q̂(q) (5)

is the Hamiltonian in the moving frame;

C(q) =
∂2V

∂q2
+

1

2B(q)

∂B

∂q

∂V

∂q
(6)

is the local stiffness; (Ĥ − λN̂)A represents the two-quasiparticle creation and anni-
hilation parts of (Ĥ − λN̂); Q̂(q) and P̂ (q) satisfy the canonical variable condition

〈φ(q)| [Q̂(q), P̂ (q)] |φ(q)〉 = i. (7)

Once |φ(q)〉 and the infinitesimal generators are determined for every values of q, we
obtain the collective Hamiltonian H(q, p) = 1

2B(q)p2+V (q) with the collective poten-

tial V (q) = 〈φ(q)| Ĥ |φ(q)〉 and the inverse mass B(q) = −〈φ(q)| [[Ĥ, Q̂(q)], Q̂(q)] |φ(q)〉.

Table I. Spherical single-particle orbits and their energies used in the calculation.

Energies relative to those of 1g9/2 are written in MeV.

orbits 1f7/2 2p3/2 1f5/2 2p1/2 1g9/2 2d5/2 1g7/2 3s1/2 2d3/2

protons -8.77 -4.23 -2.41 -1.50 0.0 6.55 5.90 10.10 9.83

neutrons -9.02 -4.93 -2.66 -2.21 0.0 5.27 6.36 8.34 8.80
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We use the P+Q interaction model with the prescriptions of Ref. 3) for the
microscopic Hamiltonian Ĥ, but here the pairing and quadrupole force parameters
are chosen as G = 0.320 MeV (for both protons and neutrons) and χ′ = 0.248
MeV so that the constrained HFB potential energy surface (shown by contour lines
in Fig.1) exhibits two local minima at prolate and oblate shapes, whose pairing
gaps, quadrupole deformation and energy difference approximately reproduce those
obtained in a recent Skyrme-HFB calculation by Yamagami et al.7) The spheri-
cal single-particle energies are taken from those of the modified oscillator model of
Ref. 8) and listed in Table I. In this way the effective Hamiltonian provides a suitable
situation with which shape coexistence dynmamics can be studied, although further
improvements, e.g., by including the quadrupole pairing and/or neutron-proton pair-
ing interactions, may better be taken into account for quantitative comparison with
experimental data.

We have used the following algorithm to solve the set of ASCC equations (2),
(3), (4) and (7). Let the state vector |φ(q)〉 be known at a specific value of q. We first
solve the local harmonic equations in the moving frame (the moving frame RPA),
(3) and (4), under the condition (7) to obtain Q̂(q) and P̂ (q). This is done by a
straightforward extension of the procedure described in Ref. 4). We then construct
a state vector at the neighboring point q + δq by using the infinitesimal generator
P̂ (q) as

|φ(q + δq)〉 = e−iδqP̂ (q)|φ(q)〉, (8)

and solve the moving frame RPA with respect to this state to obtain Q̂(q + δq)
and P̂ (q + δq). Though the above |φ(q + δq)〉 does not necessarily satisfy the HFB
equation in the moving frame (2), we can use this state vector as an initial solution
of (2) at q + δq. We search for the solution of (2) under the constraints

〈φ(q + δq)|N̂ |φ(q + δq)〉 = N, (9)

〈φ(q + δq)|Q̂(q)|φ(q + δq)〉 = δq (10)

by means of the gradient method. Here the nucleon-number constraint (9) is actually
applied for both proton and neutron numbers. Equation (10) is the constraint for
the increment δq of the collective coordinate. After finding a solution of Eq. (2), we
renew Q̂(q+δq) and P̂ (q+δq) by solving again the moving frame RPA equations, (3)
and (4), for the new state vector |φ(q+δq)〉 obtained above. Then we again solve Eq.
(2) with the renewed Q̂(q + δq). If the above iterative procedure converges, we get
the selfconsistent solutions that satisfy Eqs. (2), (3), (4) and (7) simultaneously at
q+δq, and we can proceed to the next point q+2δq. In actual numerical calculation,
we start the procedure from one of the HFB local minimum and examine whether
we arrive at the other local minimum by going along the collective path obtained
above. We have checked that the same collective path is obtained by starting from
the other local minimum and proceeding in an inverse way.

Carrying out the above procedure we have successfully obtained the collective
path connecting the oblate and prolate local minima in 68Se. The result is shown in
Fig. 1. The deformation parameters β and γ are here defined as usual through the
expectation values of the quadrupole operators.7) Roughly speaking, the collective
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Fig. 1. The bold curve represents the ASCC

path connecting the oblate and prolate

minima in 68Se projected on the (β, γ)

plane. The contour lines are calculated by

the conventional constrained HFB method

and plotted for every 100 keV.

Fig. 2. Collective potential V (q) plotted as

a function of the collective coordinate q.

Here the origin of q is chosen to coin-

cide with the prolate local minimum and

its scale is defined such that the collective

mass M(q) = 1 MeV−1.

Fig. 3. Collective Mass M(s) with respect to

the geometrical length s along the collec-

tive path in the (β, γ) plane is plotted as a

function of the triaxiality parameter γ.

Fig. 4. The triaxiality parameter γ plotted as

a function of the collective coordinate q.

path goes through the valley that exists in the γ direction and connects the oblate
and prolate minima. If one treats the β as collective coordinate and connects the
oblate and prolate shapes through the spherical point, variation of the potential
energy would be much greater than that along the collective path we obtained. The
potential energy curve V (q) along the collective path evaluated by the ASCC method
is shown in Fig. 2. We have defined the scale of the collective coordinate q such that
the collective mass M(q) = B(q)−1 = 1 MeV−1. The collective mass as a function of
the geometrical length s along the collective path in the (β, γ) plane may be defined
by M(s) = M(q)(ds/dq)−2 with ds2 = dβ2 + β2dγ2. This quantity is presented
in Fig. 3 as a function of γ. The triaxial deformation parameter γ is plotted as a
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Fig. 5. Neutron and proton pairing gaps, ∆n

and ∆p, plotted as functions of γ.

Fig. 6. Lowest three eigen-frequencies squared,

ω2 = BC, of the moving frame RPA, plot-

ted as functions of γ.

function of q in Fig. 4. Variations of the pairing gaps and of the lowest few eigen-
frequencies of the moving frame RPA along the collective path are shown in Figs. 5
and 6. The solid curve in Fig. 6 represents the squared frequecy ω2(q) = B(q)C(q),
given by the product of the inverse mass B(q) and the local stiffness C(q), for the
moving frame RPA mode that develops from the γ-vibration in the oblate and prolate
limits and determines the infinitesimal generators Q̂(q) and P̂ (q) along the collective
path. The other two curves are solutions of the moving frame RPA having characters
of the collective rotational motion and the β-vibration, which are however irrelevant
to the collective path. Note that the frequency of the γ mode becomes imaginary in
the region 12◦ < γ < 45◦. These results will reveal interesting dynamical properties
of the shape coexistence phenomena in 68Se. For instance, the large collective mass
in the vicinity of γ = 60◦ (Fig. 3) might increase stability of the oblate shape in the
ground state. Detailed discussions on these quantities as well as the solutions of the
collective Schrödinger equation will be given in a forthcoming full-length paper.11)

In summary, we have applied the ASCC method to the oblate-prolate shape co-
existence phenomena in 68Se. It was found that the collective path goes through the
valley of the potential energy landscape in the (β, γ) plane along which the triaxial
deformation parameter γ changes between 0◦ and 60◦ keeping the axially symmet-
ric deformation parameter β approximately constant. This is the first time that a
self-consistent collective path between the oblate and prolate minima is obtained for
the realistic P+Q interaction model. Currently, the generater coordinate method
has often been used to describe variety of shape coexistence phenomena taking the
β as the generater coordinate.9) The triaxial shape vibrational degrees of freedom is
ignored also in the extensive microscopic calculation of Ref. 10). The result of the
ASCC calculation, however, strongly indicates the necessity of taking into account
the γ degree of freedom at least for describing the oblate-prolate shape coexistence
in 68Se. Effects of triaxial deformation dynamics on various properties of shape co-
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existence, including results of calculation for neighboring nuclei, will be discussed in
a full-length paper.11)
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