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The rotational band built on the high-K multi-quasiparticle state can be interpreted as a multi-
phonon band of the precession mode, which represents the precessional rotation about the axis
perpendicular to the direction of the intrinsic angular momentum. By using the axially symmet-
ric limit of the random-phase-approximation (RPA) formalism developed for the nuclear wobbling
motion, we study the properties of the precession modes in 178W; the excitation energies, B(E2)
and B(M1) values. We show that the excitations of such a specific type of rotation can be well
described by the RPA formalism, which gives a new insight to understand the wobbling motion in
the triaxial superdeformed nuclei from a microscopic view point.

PACS numbers: 21.10.Re, 21.60.Jz, 23.20.Lv, 27.70.+q

I. INTRODUCTION

Rotation is one of typical collective motions in atomic
nuclei. It manifests itself as a rotational band, a sequence
of states connected by strong electromagnetic (e.g. E2)-
transitions. Most of the rotational bands observed so
far are based on the uniform rotation about an axis per-
pendicular to the symmetry axis of axially symmetric
deformation. The well known ground state rotational
bands and the superdeformed rotational bands with axis
ratio about 2:1 are typical examples of this type of rota-
tional motion. Quite recently, exotic rotational motions,
in contrast to the normal ones mentioned above, have
been issues under discussion, which are generally non-
uniform nor rotating about one of three principal axes
of deformation, and clearly indicate possible existence
of three-dimensional rotations in atomic nuclei. The re-
cently observed wobbling rotational bands [1, 2, 3, 4, 5]
and the chiral rotation/vibration bands [6, 7, 8, 9] are
such examples.

Such exotic rotations are very interesting because they
give hints to a fundamental question: How does an
atomic nucleus rotate as a three-dimensional object?
They may also shed light on collective motions in nu-
clei with triaxial deformation, which are characteristic
in these rotational bands, and are very scarce near the
ground state region. Although the triaxial deformation
is crucial for those exotic rotations, it is not a necessary
condition for three-dimensional rotations to occur. For
example, the chiral rotation is a kind of “magnetic ro-
tation” or “tilted axis rotation” [10], where the axis of
rotation is neither along a principal axis of deformation
nor in the plane of two principal axes, but is pointing
inside a triangle composed of three principal axes. In
the case of the typical magnetic rotation observed in the
Pb region, the so-called “shears band” [10], the deforma-
tion is axially symmetric and of weakly oblate. Similarly,
one can think of an axially symmetric limit of the wob-
bling motion; the so-called “precession band”, which is
nothing else but a rotational band excited on a high-K

isomeric state, in analogy to the classical motion of the
symmetric top. The main purpose of the present paper
is to investigate the precession band from a microscopic
view point.

In recent publications [11, 12], we have studied the nu-
clear wobbling motions associated with the triaxial su-
perdeformed (TSD) bands in Lu and Hf isotopes on the
basis of the microscopic framework; the cranked mean-
field and the random phase approximation (RPA) [13,
14, 15, 16, 17, 18, 19]. It has been found that RPA
eigen-modes, which can be interpreted as the wobbling
motions, appear naturally if appropriate mean-field pa-
rameters are chosen. The deformation of the mean-field is
large (ε2 > 0.35) with a positive triaxial shape (γ ≈ +20◦

in the Lund convention), i.e., mainly rotating about the
shortest axis, and the static pairing is small (∆n,p < 0.6
MeV), both of which are in accordance with the poten-
tial energy surface calculation [20]. It should be stressed
that the solution of the RPA eigen-value is uniquely de-
termined, once the mean-field is fixed, as long as the
“minimal coupling” residual interaction is adopted (see
Sec. III). Therefore, it is highly non-trivial that we could
obtain wobbling-like RPA solutions at correct excitation
energies. However, the detailed rotational frequency de-
pendence of the observed excitation energy in Lu iso-
topes, monotonically decreasing with frequency, could
not be reproduced, and the out-of-band B(E2) values
from the wobbling band were considerably underesti-
mated in our RPA calculation.

By restricting to the axially symmetric deformation
with an uniform rotation about a principal axis, the an-
gular momentum of high-spin states is built up either by a
collective rotation, i.e., the rotation axis is perpendicular
to the symmetry axis, or by alignments of single-particle
angular momenta, i.e., the rotation axis is the same as the
symmetry axis. Thus, four rotation schemes are possible;
oblate non-collective, prolate collective, oblate collective,
and prolate non-collective rotations, corresponding to the
triaxiality parameter γ = 60◦, γ = 0◦, γ = −60◦, and
γ = −120◦ in the Lund convention, respectively. The ax-
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ially symmetric limit of the RPA wobbling formalism can
be taken for the so-called non-collective rotation schemes
with oblate or prolate deformation, namely γ = 60◦ or
γ = −120◦ cases. In both cases, long-lived isomers are
observed, but the rotational bands starting from the iso-
mers have not been observed in the oblate non-collective
case. On the other hand, the high-K isomers and the
associated rotational bands have been known for many
years in the Hf and W region with prolate deformation.
Making full use of the axial symmetry, the RPA formal-
ism has been developed [21, 22, 23, 24], which is capable
of describing the rotational band based on the high-K
state as a multi-phonon band, i.e., the precession band.
Recently, the same kind of rotational bands built on high-
K isomers have also been studied by means of the tilted
axis cranking model [25, 26, 27, 28].

In this paper, we would like to make a link between
the two RPA formalisms, those for the (triaxial) wob-
bling and for the (axially symmetric) precession motions.
Moreover, by applying the formalism to the typical nu-
cleus 178W, where many high-K isomers have been ob-
served, the properties of the precession bands are stud-
ied in detail; not only the excitation energies but also
the B(E2) and B(M1) values. This kind of study for
the precession band sheds a new light on understanding
the recently observed wobbling motion. In order to ex-
plain the limiting procedure, we review a schematic rotor
model in Sec. II, while in Sec. III the RPA wobbling for-
malism and the connection to the precession band in the
axially symmetric limit are considered. The result of cal-
culations for 178W is presented and discussed in Sec. IV.
Sec. V is devoted to some concluding remarks. Prelimi-
nary results for the magnetic property of the precession
band were already reported [29].

II. WOBBLING AND PRECESSION IN
SCHEMATIC ROTOR MODEL

The macroscopic rotor model is a basic tool to study
the nuclear collective rotation, and its high-spin proper-
ties have been investigated within a harmonic approxima-
tion [30] or by including higher order effects [31, 32, 33].
In this section we review the consequences of the sim-
ple rotor model according to Ref. [30]. We use � = 1
unit throughout in this paper. The Hamiltonian of the
simplest triaxial rotor model is given by

Hrot =
I2
x

2Jx
+

I2
y

2Jy
+

I2
z

2Jz
, (1)

where I’s are angular momentum operators in the body-
fixed coordinate frame, and the three moments of inertia,
Jx, Jy and Jz , are generally different. We assume, for
definiteness, the rotor describes the even-even nucleus
(integer spins).

Following the argument of Ref. [30], let us consider the
high-spin limit, I � 1, and assume that the main rota-
tion is about the x-axis, namely the yrast band is gener-

ated by a uniform rotation about the x-axis. Then, the
excited band at spin I can be described by the excitation
of the wobbling phonon,

X†
wob =

a√
2I

iIy +
b√
2I

Iz , (2)

where a and b are the amplitude determined by the eigen-

mode equation, [Hrot, X
†
wob] = ωwob(I)X†

wob, at each spin
I in the harmonic approximation. The resultant eigen-
value ωwob(I) is given by the well-known formula,

ωwob(I) = I
√

(1/Jy − 1/Jx)(1/Jz − 1/Jx)

= ωrot(I)

√
(Jx − Jy)(Jx − Jz)

Jy Jz
, (3)

with the rotational frequency of the main rotation,

ωrot(I) ≡ I

Jx
. (4)

It should be noted that the triaxial deformation of
the nuclear shape is directly related to the intrinsic
quadrupole moments, e.g. tanγ = −√

2Q22/Q20, but
does not give a definite relation between three moments
of inertia: One has to introduce a model, e.g. the irrota-
tional flow model, in order to relate the triaxiality param-
eter γ of deformation to three inertia. Actually, if the ir-
rotational moment of inertia is assumed, Jy > Jx,Jz for
the positive γ shape, and then the wobbling frequency (3)
becomes imaginary. In our microscopic RPA calculation,
the quasiparticle alignments contribute to the Jx inertia
and, as a result, the wobbling mode appears as a real
mode even if the mean-field deformation has positive γ,
see Refs. [11, 12] for details.

The spectra of the rotor near the yrast line are given,
in the harmonic approximation, by

Erot(I, n) =
I(I + 1)

2Jx
+ ωwob(I)

(
n +

1

2

)
, (5)

and are composed of two sequences, the ∆I = 2 horizon-
tal ones,

E(hor)
n (I) = Erot(I, n), I = n, n + 2, n + 4, ... (6)

with given phonon numbers n = 0, 1, 2, ..., and the ∆I =
1 vertical ones,

E
(ver)
I0

(I) = Erot(I, I−I0), I = I0, I0 +1, I0 +2, ... (7)

with given band head spins I0 = 0, 2, 4, ..., both of which
are connected by E2 transitions. The horizontal ones
are conventional rotational bands with transition energies
Eγ ≈ 2ωrot, and the ∆I = −2 in-band B(E2) values are
proportional to the square of the quadrupole moment
about the x-axis. The vertical ones look like phonon
bands with transition energies Eγ ≈ (ωwob + ωrot) and
the ∆I = −1 vertical B(E2) values are O(1/I) smaller
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than the horizontal ones. These features are summarized
schematically in Fig. 1. In fact, the ∆I = −1 out-of-band
transition was crucial to identify the wobbling motion in
Lu isotopes [1]. If the wobbling-phonon energy ωwob(I)
is larger than the ∆I = 2 rotational energy ∆Erot(I) =
Erot(I+1, n)−Erot(I−1, n) = (2I+1)/Jx, both the ∆I =
±1 transitions are possible. The ∆I = −1 transition is
much stronger than the ∆I = +1 one for the positive
γ shape, and vice versa for the negative γ shape, which
also supports that the TSD bands in the Lu region have
positive γ shape.

FIG. 1: Schematic figure depicting the rotational spectra of
a triaxial rotor Hamiltonian. The horizontal rotational bands
are connected by solid lines, while the vertical phonon bands
by dotted lines.

Now, let us consider the axially symmetric limit [22].
From symmetry argument, without specifying the γ-
dependence of three inertia, if the system is axially sym-
metric about one of the principal axes, then two inertia
about other two axes should coincide. Since the main
rotation takes place about the x-axis, there are two qual-
itatively different cases; axially symmetric about the x-
axis or about the other y, z-axes. In the latter case, the
main rotation is about the axis perpendicular to the sym-
metry axis like in the case of the ground state rotational
band, and then, apparently, the wobbling frequency (3)
vanishes; i.e., no wobbling motion takes place. In con-
trast, if the system is axially symmetric about the main
rotation axis x, Jy = Jz ≡ J⊥, then the wobbling fre-
quency (3) reads

ωwob(I) =
I

J⊥

− ωrot(I). (8)

Since the vertical transition energy is ≈ ωwob +ωrot, this
result means that the slope of the vertical sequence is
given by I/J⊥, while the slope of the horizontal one by
ωrot = I/Jx.

In reality, because the rotor model describes the col-
lective rotation restoring the broken symmetry, Jx → 0
(no collective rotation) if the x-axis is a symmetry axis.
Thus, each horizontal band shrinks to one state, leaving
one vertical band, whose transition energy is I/J⊥. The

spin of the starting state I0 = K is composed of single-
particle alignments, i.e., the band head state is a high-K
isomeric state. The precession band is this remaining ver-
tical phonon band, which is actually based on a collective
rotation about the perpendicular axis, with large angular
momentum K along the symmetry axis. The rotational
energy of the band is

Ehigh−K(I) =
1

2J⊥

[I(I + 1) − K2], (9)

which can be rewritten, by putting I = K + n, as

Ehigh−K(I) = ωprec

(
n +

1

2
+

n(n + 1)

K

)
, (10)

with

ωprec ≡ K

J⊥

, (11)

leading to a harmonic phonon band structure with a
one-phonon energy ωprec, when K is sufficiently large.
This precession phonon energy coincides with the ver-
tical transition energy given in Eq. (8) at the band
head I = K. The spectra in this limit is drawn in
Fig. 2. The harmonic picture holds not only for the
energy spectra but also for the B(E2) values; for ex-
ample, by using B(E2) ∝ 〈IfK20|IiK〉2, one finds, in
the leading order, B(E2; n → n − 1) ∝ 3(n/K) and
B(E2; n → n−2) ∝ (3/2)(n(n−1)/K2), where n = I−K
is the number of the precession phonon quanta, so that
the two-phonon transition is prohibited when K is large.

FIG. 2: Schematic figure depicting the precession bands
excited on high-K isomeric states. Note that the whole
∆I = ±2 horizontal sequences shown in Fig. 1 shrink to one
such band in the axially symmetric limit.

III. AXIALLY SYMMETRIC LIMIT OF RPA
WOBBLING FORMALISM

A. Minimal coupling and RPA wobbling equation

Microscopic RPA theories for nuclear wobbling motion
have been developed in Refs. [14, 15, 17]. The most im-
portant among them is that of Marshalek [14], where the
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transformation to the principal axis frame (body-fixed
frame) is performed and the theory is formulated in that
frame. Moreover, it is shown that the RPA equation for
the wobbling mode can be cast into the same form as
Eq. (3) if three moments of inertia are replaced with
those appropriately defined in the microscopic frame-
work; we call this equation the wobbling form equation.
The adopted microscopic Hamiltonian in Ref. [14] is com-
posed of the spherical mean-field and the quadrupole-
quadrupole interaction (with the monopole pairing if nec-
essary). In Ref. [17], however, it was pointed out that the
RPA equation could not be reduced to the wobbling form
equation, if a most general residual interaction is used. A
closer look into the argument in Ref. [17] shows, however,
that the following “minimal coupling”, being used as a
residual interaction, leads to the wobbling form equation
as the RPA dispersion equation.

In Marshalek’s theory the rotational Nambu-Goldstone
(NG) modes (or spurious modes as conventionally called),
Jy and Jz , play a crucial role. The RPA guarantees
the decoupling of these modes if the selfconsistency of
the mean-field is satisfied in the Hartree-Fock sense. In
many cases, however, non-selfconsistent mean-fields are
necessary; for example, the deformation is more prop-
erly determined by the Strutinsky procedure than by
the Hartree-Fock calculations with simple interactions, or
one wants to study the system by hypothetically chang-
ing the mean-field parameters, as has been done in our
previous calculations [12] for the nuclear wobbling mo-
tions. Thus, we consider that the mean-field, h, rather
than the interaction is given, and look for the residual

interaction, H
(m)
res , which fulfills the decoupling condition

of the NG modes within the RPA [34]. The same idea has
been formulated in the context of the particle-vibration
coupling theory [30], where the rotational invariance is re-
stored by considering the coupling resulting from a small
rotation about either the x, y or z-axis. Thus the mini-
mum requirement is what we call the “minimal coupling”
given by

H(m)
res = −1

2

∑
k,l=x,y,z

χklFkFl. (12)

Here, the Hermitian operator Fk and the 3×3 symmetric
force-strength matrix χkl are defined as

Fk = i[h, Jk], (13)

(χ−1)kl = −〈Φ|[[h, Jk], Jl]|Φ〉. (14)

with the mean-field vacuum state |Φ〉 (Slater determinant
if no pairing is included), on which RPA eigen-modes
are created. If the mean-field is given by the unisotropic
harmonic oscillator potential, the minimal coupling leads
to the doubly-stretched Q′′Q′′ interaction combined with
the Landau prescription [21, 35, 36, 37, 38, 39, 40, 41].
One has to include the monopole pairing interaction in
realistic calculations. It should be stressed that the min-
imal coupling can be used for any type of mean-fields,
e.g. the Woods-Saxon potential.

For the wobbling modes in the yrast region, the mean-
field vacuum state |Φ(ωrot)〉 is obtained as the lowest
eigen-state of the cranked mean-field Hamiltonian,

h′ = h − ωrotJx, (15)

as a function of the rotational frequency ωrot. Assum-
ing the signature symmetry (with respect to a π-rotation
about the x-axis) of the mean-field and the conventional
phase convention that the matrix elements of the single-
particle operators iJy and Jz are real in the mean-field
basis, it can be shown that the force-strength matrix χkl

is diagonal. The excitation of the wobbling phonon cor-
responds to the vertical ∆I = ±1 transitions in Sec. II,
therefore only the part of the RPA equations which trans-
fer the signature quantum number by α = 1 is relevant;

i.e., only k, l = y, z parts of H
(m)
res in Eq. (12) contribute.

It is now straightforward to follow the same procedure as
has been done in Ref. [14], but with modification that the
quadrupole field of the interaction is replaced with Fk in
Eq. (12): Then one finds that the same RPA dispersion
equation can be derived:

(ω2 − ω2
rot)

∣∣∣∣ Ay(ω) Bz(ω)
By(ω) Az(ω)

∣∣∣∣ = 0, (16)

where

Ay(ω) = I − ωrotJy(ω) + ωJyz(ω),

Az(ω) = I − ωrotJz(ω) + ωJyz(ω),

By(ω) = ωJy(ω) − ωrotJyz(ω),

Bz(ω) = ωJz(ω) − ωrotJyz(ω), (17)

with the following definitions;

I = 〈Φ(ωrot)|Jx|Φ(ωrot)〉
=

∑
µ<ν

2Jy(µν)Jz(µν),

Jy(ω) =
∑
µ<ν

2EµνJy(µν)2

E2
µν − (ω)2

,

Jz(ω) =
∑
µ<ν

2EµνJz(µν)2

E2
µν − (ω)2

,

Jyz(ω) =
∑
µ<ν

2ωJy(µν)Jz(µν)

E2
µν − (ω)2

. (18)

In these expressions, ω is the phonon excitation energy,
while Eµν = Eµ +Eν are two-quasiparticle energies with
α = 1, and Jy(µν) = 〈µν|iJy|Φ〉 (Jz(µν) = 〈µν|Jz |Φ〉)
are two-quasiparticle matrix elements of the operator
iJy (Jz), which are associated with the vacuum state
|Φ(ωrot)〉 and determined by the mean-field Hamiltonian
h′ in the rotating frame. It is now clear that once the
mean-field Hamiltonian is given and the vacuum state
|Φ(ωrot)〉 is obtained, the RPA eigen-modes can be cal-
culated without any ambiguity: This is precisely the con-
sequence of the minimal coupling given by Eq. (12).
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The rotational NG mode appears as a decoupled ω =
ωrot solution in the RPA dispersion equation (16);

Γ † =
1√
2I

(iJy + Jz)RPA =
1√
2I

(iJ−)RPA, (19)

J± ≡ Jy ± iJz, (x-axis quantization), (20)

where the subscript RPA means the two-quasiparticle
transfer part (the particle-hole part if no pairing is in-
cluded) of the operator. Note that it is normalizable,
[Γ, Γ †]RPA = 1, because 〈Φ|[Jz , iJy]|Φ〉 = 〈Φ|Jx|Φ〉 = I 	=
0. The cranked mean-field (15) describes the rotating
state, which has an angular momentum vector aligned
with the x-axis, and this NG mode plays a role to tilt
the whole system by changing the x component of the
angular momentum by −1 unit. The reason why the
NG mode has a finite excitation energy is that there is a
cranking term in the hamiltonian (15) (the Higgs mech-
anism).

Finally, it has been shown by Marshalek [14] that the
non-NG part of the RPA dispersion equation (16) is re-
duced to the wobbling form,

(ω)2 = (ωrot)
2 (Jx − J (eff)

y (ω))(Jx − J (eff)
z (ω))

J (eff)
y (ω)J (eff)

z (ω)
, (21)

if three moments of inertia are replaced with microscop-
ically defined ones in the following way;

Jx =
I

ωrot
=

〈Φ(ωrot)|Jx|Φ(ωrot)〉
ωrot

,

J (eff)
y (ω) = Jy(ω) − Jyz(ω)

Ay(ω)

Bz(ω)
,

J (eff)
z (ω) = Jz(ω) − Jyz(ω)

Az(ω)

By(ω)
. (22)

Since the y- and z-effective inertia are ω-dependent, the
equation is non-linear and they are determined only after
solving it.

As for the electromagnetic transition probabilities,
Marshalek proposed a 1/I-expansion technique by utiliz-
ing the perturbative boson expansion method [13]. The
∆I = ∓1 E2 and M1 vertical transitions from the one-
phonon wobbling band to the yrast band, discussed in
Sec. II, can be calculated within the RPA, which is the
lowest order in 1/I, as

B(E2; I ± 1 → I) ≈ |〈Φ|[Q2∓1, X
†
wob]|Φ〉|2, (23)

B(M1; I ± 1 → I) ≈ |〈Φ|[µ1∓1, X
†
wob]|Φ〉|2, (24)

where X†
wob is the wobbling phonon creation operator,

and the E2 and M1 operators quantized with respect to
the x-axis,

Q2±1 =
i√
2
(Q

(−)
21 ± Q

(−)
22 ), (25)

µ1±1 = ± i√
2
(iµy ∓ µz), (26)

are introduced (see also Ref. [19][55]). Here Q
(±)
2K (K =

0, 1, 2) are electric quadrupole operators (z-axis quanti-
zation) with a good signature,

Q
(−)
21 = −

√
15

4π
e

Z∑
a=1

(xz)(π)
a ,

Q
(−)
22 = i

√
15

4π
e

Z∑
a=1

(xy)(π)
a , (27)

and µk (k = x, y, z) are magnetic dipole operators,

µk =

√
3

4π
µN

A∑
a=1

(g
(τ)
l lk + g(τ)

s sk)a, (τ = π, ν). (28)

B. Axially symmetric limit and RPA precession
equation

If the deformation is axially symmetric about the x-
axis, the angular momentum is generated not by the col-
lective rotation, but by the alignment of the angular mo-
menta of quasiparticles along the symmetry axis. The
mean-field vacuum state |Φ〉, a high-K state, is a multi-
ple quasiparticle excited state, and its spin value is the
sum of the projections, Ωµ, of their angular momenta on

the symmetry axis; I = K =
∑(occ)

µ Ωµ, i.e., the time re-

versal invariance is spontaneously broken in |Φ〉. In this
case, the cranking term in Eq. (15) does not change the
vacuum state |Φ〉, so that the rotational frequency ωrot is
a redundant variable: All observables should not depend
on ωrot. It is reflected in the fact that the quasiparticle
energies linearly depend on the rotational frequency:

Eµ(ωrot) = E0
µ − ωrotΩµ, (29)

where E0
µ are quasiparticle energies for the non-cranked

mean-field Hamiltonian h. Since the eigen-value of Jx,
Ω, is a good quantum number, it is convenient to rewrite
the RPA dispersion equation (16) in terms of the matrix
elements of J± rather than iJy and Jz: After a little
algebra, the equation decouples into two equations,

(ω ± ωrot)S±1(ω ± ωrot) = 0, (30)

where the functions Sρ(ω) with ρ = ±1 determine the
∆Ω = ±1 solutions, respectively, and are given by

S±1(ω) =
1

2

∑
µ<ν

{
(Eµν ± ωrot)|J±(µν)|2

Eµν ± ωrot − ω

− (Eµν ∓ ωrot)|J∓(µν)|2
Eµν ∓ ωrot + ω

}
. (31)

The precession is a ∆Ω = +1 mode, as is clear from
the rotor model in Sec. II, and then only the ∆I = −1
E2 and M1 transitions are allowed; i.e., their ∆I = +1
probabilities vanish in Eqs. (23) and (24) because the
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two RPA transition amplitudes, 〈Φ|[Q(−)
21 , X†

wob]|Φ〉 and

〈Φ|[Q(−)
22 , X†

wob]|Φ〉, are the same in their absolute value
with the opposite sign; a corresponding relation holds for
the M1 amplitudes.

On the other hand, the y- and z-inertia are the same
due to the axial-symmetry about the x-axis, and then,
just like Eq. (8), Eq. (21) reduces to

ω = ± K

J (eff)
⊥ (ω)

∓ ωrot (∆Ω = ±1), (32)

where I=〈Φ|Jx|Φ〉 is denoted by K, and the perpendic-

ular inertia J (eff)
⊥ (ω) ≡ J (eff)

y (ω) = J (eff)
z (ω) is simply

written as

J (eff)
⊥ (ω) = J⊥(ω) ∓ Jyz(ω) (∆Ω = ±1), (33)

with J⊥(ω) ≡ Jy(ω) = Jz(ω).
The vibrational treatment of the rotational band built

on the high-K isomeric state in terms of the RPA has
been done for a harmonic oscillator model in Refs. [21,
22], and for realistic nuclei by employing the Nilsson
potential in Ref. [23], followed by calculations with the
Woods-Saxon potential in Ref. [24]. The residual interac-
tion adopted in Refs. [23, 24] is derived by applying the
vibrating potential model of Bohr-Mottelson [30] to an
infinitesimal rotation about the perpendicular axis, and
equivalent to the minimal coupling (12): In the axially
symmetric case,

Hint = −1

4
κ(F †

+F+ + F †
−F−), (34)

with F± being defined by using J± in Eq. (20),

F± =
i

κ
[h, J±], κ = −1

2
〈Φ|[[h, J−], J+]|Φ〉. (35)

Note that the mean-field state |Φ〉 is now a multi-
quasiparticle excited state for the non-cranked mean-field
Hamiltonian h, and so ωrot does not appear, although
it can be used as the “sloping Fermi surface” to obtain
optimal states [42]: The cranking procedure is totally
unnecessary in this approach.

The resultant RPA dispersion equations are given for
the parts associated with the fields F± separately;

ω S±1(ω) = 0, (36)

where the functions S±1(ω) are defined by

S±1(ω) =
1

2

∑
µ<ν

{
E0

µν |J±(µν)|2
E0

µν − ω
− E0

µν |J∓(µν)|2
E0

µν + ω

}
,

(37)
which turn out to be the same functions as Eq. (31) be-
cause of the property (29) of quasiparticle energies in
the non-collective rotation scheme. It is worth mention-
ing S+1(ω) = −S−1(−ω), so that ∆Ω = −1 modes are
obtained as negative energy solutions of the ∆Ω = +1

dispersion equation and vice versa. For the physical
∆Ω = +1 modes, the eigen-energies of the wobbling dis-
persion equation (30) and the precession one (36) are
related as

ωwob = ωprec − ωrot. (38)

By comparing it with Eq. (32), we obtain

ωprec =
K

J (eff)
⊥

, (39)

with J (eff)
⊥ being written as

J (eff)
⊥ =

1

2

∑
µ<ν

{ |J+(µν)|2
E0

µν − ωprec
+

|J−(µν)|2
E0

µν + ωprec

}
, (40)

which is the microscopic RPA version of Eq. (11) in

Sec. II. This J (eff)
⊥ does not depend on ωrot, while both

J⊥ = Jy = Jz and Jyz in Eq. (33) do. This result can
also be obtained directly from the precession dispersion
Eq. (36). Note that the perpendicular inertia (40) re-
duces to the Inglis cranking inertia (or that of Belyaev if
pairing is included) in the adiabatic limit ωprec → 0.

The reason why the ωrot-dependent wobbling eigen-
energy and the ωrot-independent precession eigen-energy
is related in a simple way (38) is that the RPA treatment
in Refs. [21, 22, 23, 24] is formulated in the laboratory
frame, while Marshalek’s wobbling theory in the princi-
pal axis frame (body-fixed frame). The energies in the
laboratory frame, E(L), and in the uniformly rotating
frame described by the cranked mean-field, E(UR), are
related by E(UR) = E(L) −Ωωrot for the state which has
a projection, Ω, of angular momentum on the rotation
axis. Moreover, the energies in the principal axis and the
uniformly rotating frames are the same under the small
amplitude approximation in the RPA. Thus the differ-
ence of phonon energies in (38) comes from the difference
of coordinate frames where the two approaches are for-
mulated. The rotational NG mode Γ † (19), appears at
zero energy in the precession dispersion Eq. (36) by the
same reason. The transformation between the laboratory
and the principal axis frames have been discussed more
thoroughly in Refs. [14] and [22].

As for the electromagnetic transition probabilities in
the precession formalism [23, 24], the RPA vacuum state
|RPA〉 is considered to be a stretched eigen-state of
the angular momentum, |I = K, M = K〉, because
Γ |RPA〉 = 0 for the NG mode (19) (Γ ∝ (J+)RPA). In
the same way, the ∆Ω = +1 one-phonon precession state
X†

prec|RPA〉 corresponds to |I = K + 1, M = K + 1〉, be-

cause ΓX†
prec|RPA〉 = [Γ, X†

prec]|RPA〉 = 0. Then, by
using the Wigner-Eckart theorem, we obtain, for exam-
ple,

〈I = K||M(E2)||I = K + 1〉 =
√

2K + 1

× 〈RPA|Q2−1X
†
prec|RPA〉

〈K + 1 K + 1 2 − 1|K K〉 . (41)
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Thus, by inserting explicit expressions of the Clebsch-
Gordan coefficients, one finds

B(E2; K + 1 → K) =
K + 2

K
|〈Φ|[Q2−1, X

†
prec]|Φ〉|2,

(42)

B(M1; K + 1 → K) = |〈Φ|[µ1−1, X
†
prec]|Φ〉|2, (43)

which coincide, within the lowest order in 1/K, with
Eqs. (23) and (24) in the wobbling formalism.

IV. RESULT AND DISCUSSION

A. Calculation of precession bands in 178W

In the previous papers [11, 12], we have studied the
wobbling motions in the triaxial superdeformed bands in
Hf and Lu isotopes. As it is demonstrated in the previ-
ous section, the precession mode can be described as an
axially symmetric limit of the wobbling formalism. Thus
we have performed calculations of the precession bands
in 178W, for which richest experimental information is
available [43, 44, 45]. Exactly the same wobbling formal-
ism is used, but taking the prolate non-collective limit
suitable for high-K isomers, i.e., the triaxiality parame-
ter γ = −120◦ in the Lund convention. The first result
for this nucleus, concentrating on the magnetic property,
was reported already in Ref. [29].

The procedure of the calculation is the same as in
Refs. [11, 12, 29]: The standard Nilsson potential [46]
is employed as a mean-field with the monopole pairing
being included;

h = hNils(ε2, γ)−
∑

τ=ν,π

∆τ (P †
τ + Pτ )−

∑
τ=ν,π

λτNτ . (44)

Here the ε4 deformation is neglected and all the mean-
field parameters are fixed for simplicity. There are a few
refinements of calculation, however: 1) the difference of
the oscillator frequencies for neutrons and protons in the
Nilsson potential is taken into account, and the correct
electric quadrupole operator is used, while Z/A times
the mass quadrupole operator was used previously, 2) the
model space is fully enlarged; Nosc=3−8 for neutrons and
2−7 for protons, which guarantees the NG mode decou-
pling with sufficient accuracy in numerical calculations.
As for the point 1), usually, Q(π) ≈ (Z/A)(Q(ν) + Q(π))
holds for static and RPA transitional quadrupole mo-
ments in stable nuclei, and therefore, the simplification
in the previous paper was a good approximation. It is,
however, found that Q(π) is appreciably smaller, by about
4−8%, than (Z/A)(Q(ν) + Q(π)) in 178W. Thus, in this
paper, we make a more precise calculation using the elec-
tric (proton) part of the quadrupole operator.

The calculation is performed for the high-K isomeric
configurations listed in Table I; they cover almost all
the multi-quasiparticle states higher than or equal to
four (more than or equal to two quasineutrons and two

quasiprotons), on which rotational bands are observed.
The quadrupole deformation is chosen to be ε2 = 0.240,
which reproduces in a rough average the value Q0 = 7.0
b for the configurations in Table I assumed in the experi-
mental analyses [44, 45]. The pairing gap parameters are
taken, for simplicity, to be 0.5 MeV for two-quasiparticle
configurations, and 0.01 MeV for those with more than
or equal to four-quasiparticles, both for neutrons and
protons. Chemical potentials λτ (τ = ν, π) are always
adjusted so as to give correct neutron and proton num-
bers. These mean that the choice of parameters in this
work is semi-quantitative. As is explained in detail in
Sec. III, the final results do not depend on the cranking
frequency ωrot at all for the non-collective rotation about
the x-axis. We have confirmed this fact numerically and
used ωrot = 0.001 MeV in actual calculations (Note that
the wobbling RPA formalism requires a finite rotational
frequency in numerical calculations). No effective charge

is used for the E2 transitions, and g
(eff)
s = 0.7g

(free)
s is

used for the M1 transitions as usual.

FIG. 3: Dependence of numerical results on the pairing gap
parameter ∆ = ∆π = ∆ν . In the upper panel, the excitation
energies are shown, while in the lower panel are shown the

RPA transition amplitudes for the electric Q
(−)
22 operator (27).

The solid curves show the results for the precession modes
excited on the 25+ and 30+ high-K states in 178W, and the
dotted, dashed and dot-dashed curves represent those for the
γ-vibrations in 166Er, 168Yb and 178Hf, respectively.

We have checked the dependences of the results on the
variations of the deformation parameter ε2 and pairing
gaps. Those on the pairing gaps are shown in Fig. 3.
In this figure, the excitation energy ω and the RPA

transition amplitude for the electric Q
(−)
22 operator (27),
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TABLE I: Configurations assigned for high-K isomers in 178W [43, 44, 45], which are used in the RPA calculations for
the precession bands excited on them. The experimental values of the precession one-phonon energy, ωexp

prec = EK(I = K +
1) − EK(I = K), are also tabulated in the last column. The neutron states are 1/2−[521], 5/2−[512], 7/2−[514], 7/2+[633],
9/2+[624], and 7/2−a[503]. The proton states are 1/2−[541], 5/2+[402], 7/2+[404], 9/2−[514], and 11/2−[505]. The bold
letters indicate the h9/2 proton and the i13/2 neutron quasiparticles.

Kπ Neutron configuration Proton configuration ωexp
prec(keV)

13− 7/2+, 7/2− 5/2+, 7/2+ 164

14+ 7/2+, 7/2− 5/2+, 9/2− 150

15+ 7/2+, 7/2− 7/2+, 9/2− 207

18− 7/2+, 7/2− 1/2−, 5/2+, 7/2+, 9/2− 184

21− 5/2−, 7/2+, 7/2−, 9/2+ 5/2+, 9/2− 362

22− 5/2−, 7/2+, 7/2−, 9/2+ 7/2+, 9/2− 373

25+ 5/2−, 7/2+, 7/2−, 9/2+ 1/2−, 5/2+, 7/2+, 9/2− 288

28− 5/2−, 7/2+, 7/2−, 9/2+ 1/2−, 7/2+, 9/2−, 11/2− 328

29+ 5/2−, 7/2+, 7/2−, 9/2+, 1/2−, 7/2−a 1/2−, 5/2+, 7/2+, 9/2− 437

30+ 5/2−, 7/2+, 7/2−, 9/2+ 5/2+, 7/2+, 9/2−, 11/2− 559

34+ 5/2−, 7/2+, 7/2−, 9/2+, 1/2−, 7/2−a 5/2+, 7/2+, 9/2−, 11/2− 621

TABLE II: Mean-field parameters used in the calculation
for the γ-vibrations on the ground states (γ = 0◦), and ob-
served excitation energies of γ-vibrations [47]. The ε2 values
are taken from Ref. [48], where they are deduced from the
measured B(E2 : 0+

g → 2+
g ) values. The even-odd mass dif-

ferences are calculated by the third order difference formula
with using the binding energy data in Ref. [49].

Nucleus ε2 ∆ν(MeV) ∆π(MeV) ωexp
γ (MeV)

166Er 0.272 0.966 0.877 0.786
168Yb 0.258 1.039 0.983 0.984
178Hf 0.227 0.694 0.824 1.175

Q ≡ |〈[Q(−)
22 , X†

prec]〉|, which is a measure of the E2 collec-

tivity, for the precession modes excited on the K = 25+

and K = 30+ configurations, are shown as functions
of the pairing gap, ∆ = ∆π = ∆ν (the common value
for protons and neutrons). For reference sake, are also
included the results for the γ-vibrations on the ground
states, i.e., the ∆K = ±2 vibrational mode excited on
the γ = 0◦ prolate mean-field (without cranking), for
166Er, 168Yb and 178Hf nuclei. Note that the meaning of

the operator Q
(−)
22 is different for γ = −120◦ and γ = 0◦

shapes, so that the comparison of the magnitude of the
amplitude Q is not meaningful between the precession
mode and the γ-vibrational mode. As it is stressed in
Sec. III A, the precession mode is calculated without any
ambiguity once the mean-field is fixed; we have just used
the same parameters explained above with an exception
that the pairing gaps are varied. The situation for the
γ-vibration is different; one has to include components
other than the minimal coupling, (12) or (34). We have
used the K = 2 part of the doubly-stretched Q′′Q′′ force,
and the force strength is determined in such a way that
the calculations with adopting the even-odd mass differ-

ences as pairing gap parameters reproduce the experi-
mental energies of the γ-vibration; see Table II for the
parameters and data used. Then, with the use of the
force strength thus fixed, calculations are performed with
varying the pairing gaps.

As is clearly seen in Fig. 3, the reduction of pair-
ing gaps makes the excitation energies of γ-vibration
change in various ways depending on the shell struc-
ture near the Fermi surface; i.e., the distribution of
the ∆Ω = ±2 quasiparticle excitations, which have
large quadrupole matrix elements. The energy becomes
smaller and smaller in the case of 166Er, and finally
leads to an instability (ωγ → 0); accordingly the tran-
sition amplitude Q diverges. No instability takes place
in the case of 168Yb and the excitation energy decreases
with decreasing ∆, while it is almost constant for the γ-
vibration in 178Hf. However, the transition amplitudes Q
reduce by about 40−60% with decreasing ∆ except for
166Er. These are well-known features for the low-lying
collective vibrations; namely, the collectivities of the vi-
brational mode are sensitive to the pairing correlations;
especially enhanced by them. In contrast, for the case
of the precession modes, the excitation energies are sta-
ble and transition amplitudes are surprisingly constant
against the change of the pairing gap. This is a feature
common to the wobbling mode excited on the triaxial su-
perdeformed band [12]. Although both the precession (or
the wobbling) and the γ-vibration are treated as vibra-
tional modes in the RPA, the structures of their vacua
are quite different; the time reversal invariance is kept
in the ground state while it is spontaneously broken in
the high-spin intrinsic states. Since the precession or
the wobbling is a part of rotational degrees of freedom,
this symmetry-breaking may be an important factor to
generate these modes. It should be mentioned that the
transition amplitude Q for 166Er leads to about a factor
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of two larger B(E2 : 2+
γ → 0+

g ) value than the observed
one in the present calculation, in which the model space
employed is large enough. The RPA calculation overesti-
mates the B(E2) transition probability for the low-lying
γ-vibration if are used the Nilsson potential as a mean-
field and the simple pairing plus Q′′Q′′ force as a residual
interaction [50].

There are many RPA solutions in general, and it is
not always guaranteed that the collective solution ex-
ists. In some cases collective solutions split into two or
more, whose energies are close, and the collectivity is
fragmented (the Landau damping), or the character of
the collective solution is exchanged. Moreover, in the
case of precession-like solutions, the Ω = ±1 modes in-
teract with each other, as it was shown in Ref. [23]. In
fact, when the deformation is changed, it is found that
the precession mode on the Kπ = 15+ configuration dis-
appears for ε2 > 0.250, and that on the Kπ = 14− splits
into two for ε2 > 0.245. Similar situations also occur
when changing the pairing gap parameters in a few cases.
Apart from these changes, the results are rather stable
against the change of the mean-field parameters. The
fact that we have been able to obtain collective solutions
for all the cases listed in Table I indicates that our choice
of mean-field parameters are reasonable if not the best.

FIG. 4: Excitation energies of the one-phonon precession
modes excited on high-K configurations. Calculated ones are
denoted by filled circles connected by solid lines, and experi-
mental ones by crosses. Data are taken from Refs. [44, 45].

Figure 4 presents the calculated and observed relative
excitation energies of the first rotational band member,
EI=K+1 − EI=K , i.e., the one-phonon precession ener-
gies. Corresponding perpendicular moments of inertia,
Eq. (39), are shown in Fig. 5, where the contributions
to the inertia from protons and neutrons are also dis-
played. Our RPA calculation reproduces the observed
trend rather well in a wide range of isomeric configura-
tions, from four- to ten-quasiparticle excitations. This is
highly non-trivial because, as was stressed in Sec. III, we
have no adjustable parameter in the RPA for the calcula-
tion of the precession modes once the mean-field vacuum

state is given. With a closer look, however, one finds
deviations especially at Kπ = 18−, 25+, 28−, and 29+:
The precession energies on them are smaller in compar-
ison with others, but the calculated ones are too small.
Low calculated energies correspond to large perpendicu-
lar moments of inertia as is clearly seen in Fig. 5. These
four configurations contain the proton high-j decoupled
orbital (i.e. with Ω = ±1/2) π[541]1/2− originating from
the h9/2, whose decoupling parameter is large. Occupa-
tion of such an orbital makes the Inglis moment of in-
ertia, which is given by Eq. (40) with setting ωprec = 0,
diverge due to the zero-energy excitation from an occu-
pied Ω = +1/2 quasiparticle state to an empty −1/2
state. The reason of too large moment of inertia may be
overestimation of this effect for the proton contribution
in the calculation. The large effect of this πh9/2 orbital
on the moment of inertia has been pointed out also in
Refs. [25, 51].

FIG. 5: The moment of inertia associated with the precession
bands built on high-K configurations. The RPA effective in-
ertia (40) are shown by filled circles connected by solid lines,
the proton part of them by filled squares connected by dot-
ted lines, and the neutron part by filled triangles connected
by dashed lines. The crosses are those extracted from the
experimental spectra according to the simple relation (39).

Except for the case of four configurations including
the π[541]1/2− orbital, the values of moment of iner-
tia are about 50−80 �

2/MeV, which are smaller than
the rigid-body value, Jrig=87.8 �

2/MeV, and consid-
erably larger than the ground state value, Jgr=28.3
�

2/MeV. Here Jrig is calculated by assuming the 178W
nucleus as an ellipsoidal body with ε2 = 0.240 and
r0 = 1.2 fm, and Jgr by 3/E2+ . The pairing gaps are
already quenched in the calculation for more than or
equal to eight-quasiparticles (four-quasiprotons and four-
quasineutrons) configurations (K ≥ 25+). The value 0.5
MeV of the pairing gap used for two-quasiparticles con-
figurations is already small enough to make the moment
of inertia quite large. It is also noticed that the mo-
ment of inertia decreases with increasing K, which is op-
posite to the intuition, and clearly indicates the impor-
tance of the shell effect for the moment of inertia [52].
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In Refs. [25, 44], the angular momentum of the preces-
sion band is divided into the collective and aligned ones;
the inertia defined in Eq. (39) includes both of them. It
is shown that the collective inertia, in which the effect
of the aligned angular momentum of the high-j decou-
pled orbital is removed, takes the value 50−60 �

2/MeV
consistent with the other configurations. As is shown
in Fig. 5 the proton contribution to the inertia is about
20−30% (except for the four configurations above), which
is considerably smaller than Z/A, but consistent with the
calculated value for the gR-factor in the ground state ro-
tational band (see below).

As for the electromagnetic transitions in the rotational
bands built on high-K isomers, the strong coupling rota-
tional model [30] is utilized as a good description. The
expressions for B(E2) and B(M1) are well-known:

B(E2 : I = K + 1 → K)rot

=
5

16π
e2Q2

0 〈K + 1 K 20|KK〉2 (45)

≈ 15

16π

1

K
e2Q2

0, (46)

B(M1 : I = K + 1 → K)rot

=
3

4π
µ2

N (gK − gR)
2
K2 〈K + 1 K 10|KK〉2 (47)

≈ 3

4π
µ2

N (gK − gR)
2
K, (48)

where, in the last lines, the Clebsch-Gordan coefficients
are replaced with their lowest order expressions in 1/K.
Q0 and (gK − gR) can be extracted from experiments;
the sign of the mixing ratio is necessary to determine
the relative sign of them. These quantities are calculated
within the mean-field approximation,

Q0 =

√
16π

5

1

e
〈Q20〉 =

〈 Z∑
a=1

(2x2 − y2 − z2)(π)
a

〉
,

(49)

gK =

√
4π

3

〈µx〉
µN 〈Jx〉 , gR =

√
4π

3

〈µx〉gr
µN 〈Jx〉gr , (50)

where 〈 〉 means that the expectation value is taken
with respect to the high-K configuration (γ = −120◦),
e.g. 〈Jx〉 = K, while 〈 〉gr with respect to the ground
state rotational band (γ = 0◦). The latter expectation
value is calculated by the cranking prescription (15), with
the same ε2, and with the even-odd mass differences as
pairing gaps. The value of gR is thus ωrot-dependent,
but its dependence is weak at low frequencies, so that we
take the value gR = 0.227 obtained at ωrot → 0, which is
much smaller than the standard value, Z/A = 0.416.

On the other hand, B(E2) and B(M1) are calculated
by Eqs. (23) and (24), respectively, in the wobbling for-
malism which is in the lowest order in 1/K. By equating
these expressions with those of the rotational model, (46)

and (48), we define the corresponding quantities in the
RPA formalism by (K = 〈Jx〉)

(Q0)RPA =

√
16πK

15

1

e
〈[X†

prec, Q2−1]〉, (51)

(gK − gR)RPA =

√
4π

3K

1

µN
〈[X†

prec, µ1−1]〉. (52)

Only their relative phase is meaningful, and the over-
all phase is chosen in such a way that (Q0)RPA is pos-
itive. We compare calculated values of Q0 in the usual
mean-field approximation (49) and in the RPA formal-
ism (51) in Fig. 6 for all high-K configurations listed
in Table I. These two calculated Q0’s roughly coin-
cide with each other, but appreciable deviations are seen
for the Kπ = 18−, 25+, 28−, and 29+ isomers: The
high-j decoupled orbital π[541]1/2− has a large prolate
quadrupole moment, so that its occupation generally
leads to a larger value of Q0. This is clearly seen in
Fig. 6 even if ε2 is fixed in our calculation. See Ref. [53],
for example, for the polarization effect of this high-j or-
bital on Q0. It is, however, noticed that the effect is even
larger in the RPA calculation just like in the case of the
excitation energy in Fig. 4. For the 34+ isomer we have
found a less collective RPA solution at a lower energy, 560
keV, which has about 80% of the (Q0)RPA value of the
most collective one presented in the figure. The reason
why (Q0)RPA for the 34+ isomer is considerably small is
traced back to this fragmentation of the precession mode
in this particular case. This kind of fragmentation some-
times happens in the RPA calculation.

FIG. 6: Quadrupole moments Q0 for high-K configurations.
Those calculated by the RPA, Eq. (51), are denoted by filled
circles connected by solid lines, while those by the mean-field
approximation, (49), by filled triangles connected by dotted
lines.

In Fig. 7 we compare the effective (gK − gR) factors
extracted from the experimental data and those calcu-
lated in two ways; Eq. (50) and Eq. (52). As for the
observed ones they were determined [44, 45] from the
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FIG. 7: Effective (gK−gR)-factors for high-K configurations.
Those calculated by the RPA, Eq. (52), are denoted by filled
circles connected by solid lines, while those by the mean-field
approximation (49) by filled triangles connected by dotted
lines. Those extracted from the experimental data [44, 45]
are shown by crosses.

branching ratios of available lowest transitions in respec-
tive rotational bands, by using the rotational model ex-
pressions (45) and (47) with Q0 = 7.0 b being assumed.
In this way, absolute value |gK − gR| is obtained, and we
assume that its sign is determined by that of the calcu-
lated E2/M1 mixing ratio in the RPA result. Accord-
ingly, some care is necessary to compare the experimen-
tally extracted g-factors with calculations. The agree-
ment between the observed and calculated ones is semi-
quantitative, but the RPA result follows the observed
trend rather well. Compared to the RPA g-factors, those
calculated by the mean-field approximation are poorer.
Again, the two calculations deviate appreciably for the
Kπ = 18−, 25+, 28−, and 29+ configurations, where the
high-j decoupled orbital π[541]1/2−, which has a large
positive g-factor, is occupied. The difference between
the mean-field (gK − gR) and (gK − gR)RPA is further
discussed in the next subsection by studying the adia-
batic limit of the precession mode in the RPA.

B. Interpretation of the result in the adiabatic
limit

As it is demonstrated in the previous subsection, the
RPA calculation reproduces the precession phonon ener-
gies without any kind of adjustments. The electromag-
netic properties obtained through the RPA wobbling for-
malism are in good agreement with those of the strong
coupling rotational model, where the quadrupole mo-
ments and the effective g-factors are calculated within
the mean-field approximation. Since the rotational band
is described as multi-phonon excitations in the RPA wob-
bling (or precession) model, it is not apparent that two
models lead to similar results for observables. Our re-

sults indicate, however, that the RPA treatment of the
rotational excitations is valid; especially it gives a reliable
microscopic framework for studying the wobbling motion
recently observed.

The reason why the RPA precession mode gives the
B(E2) and B(M1) similar to those calculated according
to the rotational model is inferred by taking the adiabatic
limit (ωprec → 0) of the RPA phonon creation operator.
It has been shown in Ref. [22] that the precession phonon
can be explicitly written up to the first order in ωprec as

X†
prec ≈ 1√

2K
(J+ + ωprecJ cr

⊥ iΘ+)RPA

≈ 1√
2K

(J+ + K iΘ+)RPA. (53)

Here the angle operator Θ+ is defined by

Θ± = Θy ± iΘz,

[h, iΘk] =
1

J cr
⊥

Jk, (k = y, z), (54)

where J cr
⊥ is the Inglis cranking inertia and given from

the effective inertia (40) by setting ωprec = 0. These
angle operators possess desired properties,

〈[Θk, Jl]〉 = iδkl. (55)

For the E2 transitions, the contribution of the Θ+ part
in Eq. (53) is proved to be negligible, if the harmonic
oscillator potential is taken as a mean-field;

〈[X†
prec, Q2−1]〉 ≈ 1√

2K
〈[J+, Q2−1]〉 =

√
3

K
〈Q20〉,

(56)
which precisely means Q0 ≈ (Q0)RPA in the adiabatic
limit.

As for the M1 transitions, however, the Θ+ part also
contributes:

〈[X†
prec, µ1−1]〉 ≈ 1√

2K

(
〈[J+, µ1−1]〉 + K 〈[iΘ+, µ1−1]〉

)

=
1√
K

(
〈µx〉 − K√

2
〈[µ1−1, iΘ+]〉

)
, (57)

which gives (gK − gR) ≈ (gK − gR)RPA if we identify

gR ↔ ĝR ≡
√

2π

3

1

µN
〈[µ1−1, iΘ+]〉. (58)

This identification is reasonable: The magnetic moment
operator µ1−1 possesses a property of angular momen-
tum and is approximately proportional to J−. Then the
expectation value of the right hand side of Eq. (58) is
expected to depend only weakly on the high-K configu-
ration because of Eq. (55). More precisely, if the opera-
tors J−, Θ+ and µ1−1 are divided into the neutron and
proton parts like

J− = J
(π)
− + J

(ν)
− , Θ+ = Θ

(π)
+ + Θ

(ν)
+ ,

µ1−1 ≈
√

3

8π
µN (g(π)J

(π)
− + g(ν)J

(ν)
− ), (59)
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then the following relation is derived,

ĝR ≈ g(π)J cr(π)
⊥ + g(ν)J cr(ν)

⊥

J cr(π)
⊥ + J cr(ν)

⊥

, (60)

because of 〈[J (τ)
− , iΘ

(τ)
+ ]〉 = 2J cr(τ)

⊥ /J cr
⊥ with J cr

⊥ =

J cr(π)
⊥ + J cr(ν)

⊥ (τ = π, ν). With a cruder estimate

〈[J (τ)
− , iΘ

(τ)
+ ]〉 ≈ 2Nτ/A (τ = π, ν), one finds a constant

gR ≈ ∑
τ Nτg(τ)/A, which gives a classical result, Z/A,

by setting g(π) = 1 and g(ν) = 0.

FIG. 8: Comparison of deduced gR from two calculations.
The one from gK − (gK − gR)RPA is denoted by filled circles

connected by solid lines, while the quantity J
(eff,π)
⊥

/(J
(eff,π)
⊥

+

J
(eff,ν)
⊥

) by filled squares connected by dotted lines.

An approximate relation gR = J (π)/(J (π) + J (ν)),
which corresponds to Eq. (60) with g(π) = 1 and
g(ν) = 0, has been used for the ground state rota-
tional band, i.e., the case of collective rotations [54].
It seems, however, difficult to justify a similar relation,
gR = ZJ (π)/(ZJ (ν)+NJ (π)), which is used in Ref. [44].
Thus, the “rotor g-factor” gR is not a common constant,
but it also depends on the high-K configurations as the
intrinsic g-factor gK does. In order to see how the ap-
proximate relation (60) holds, we compare, in Fig. 8,
the two calculated quantities, gK − (gK − gR)RPA and

J (eff,π)
⊥ /(J (eff,π)

⊥ + J (eff,ν)
⊥ ), where the cranking inertia

J cr(τ)
⊥ , which diverges when the π[541]1/2− orbital is oc-

cupied, is replaced with the neutron or proton part of
the effective inertia (40), see also Fig. 5. As is seen in
the figure, these two quantities are in good agreement
with each other, again, except for the Kπ = 18−, 25+,
28−, and 29+ configurations, where the high-j decou-

pled orbital is occupied and J (eff,π)
⊥ /(J (eff,π)

⊥ + J (eff,ν)
⊥ )

is very large. The excitation energies are underesti-
mated for these high-K configurations. Therefore, the
proton moments of inertia are overestimated for them;
in fact the proton contributions are considerably larger
than the neutron ones in these configurations as is shown
in Fig. 5. Apart from these four configurations, the

deduced gR-factors in Fig. 8 are similar to the ground
state value, 0.227, though it is appreciably different from
the standard value, Z/A = 0.416. For reference, the
cranking moment of inertia for the ground state rota-
tional band calculated using the even-odd mass differ-
ences as pairing gaps is J cr

⊥ = 22.7 �
2/MeV (about

80% of the experimental value, see the previous subsec-
tion). The proton contribution to it is 6.1 �

2/MeV and

J (cr)(π)
⊥ /(J (cr)(π)

⊥ + J (cr)(ν)
⊥ ) = 0.269, which is slightly

larger but consistent with the calculated ground state gR

value, 0.227.

The above results indicate that the rotor gR should
be considered to depend also on the intrinsic configura-
tions, but the dependence is conspicuous only for those
including the high-j decoupled orbit, which has a large
decoupling parameter as well as a large g-factor. The
reason why the effective (gK − gR)-factors of the RPA
calculation reproduce the experimentally extracted ones
better than those of the mean-field g-factors is inferred as
follows. Since, as is well known, the g-factors of proton
orbitals are much larger than those of neutron orbitals,
the amount of the proton contribution is overwhelming
for the mean-value 〈µx〉 in comparison with that for 〈Jx〉.
Considering this fact together with the overestimation of
the proton moments of inertia mentioned in the previ-
ous paragraph, it is likely that the calculated values of
gK (50) for the Kπ = 18−, 25+, 28−, and 29+ configu-
rations with a proton high-j decoupled orbital are also
overestimated. In the mean-field calculation, the calcu-
lated values of (gK − gR) for those configurations are
thus relatively large, because the common ground state
gR-factor (50) is used. This trend can be seen also in the
similar type of mean-field calculations in Refs. [44, 45]
(Note that different gR-factors are used in [44] and [45]).
In the RPA calculation, however, the rotor g-factor is
given by ĝR, (58) or (60), which is overestimated for these
four configurations (see Fig. 8). Thus, the overestimation
of two g-factors may largely cancel out in the resulting
(gK − gR)RPA values, yielding a reasonable agreement
with the experimental data seen in Fig. 7.

The realistic mean-field is not very different from the
harmonic oscillator potential so that the approximate
equality (56) for the E2 operator is expected to hold in
general cases. However, it is not very clear to what extent
this equality holds: It is a subtle problem whether or not
the adiabatic approximation holds because the precession
phonon energies are 200 to 600 keV, which are not neg-
ligible compared to the quasiparticle excitation energies
(Note that the pairing gap is quenched in high-K con-
figurations). In addition to the deviations caused by the
non-adiabatic effects, it should also be noticed that the
adiabatic approximation itself breaks down if one quasi-
particle in a pair of high-j decoupling orbits (Ωµ = ±1/2)
is occupied, because the Inglis cranking moment of iner-
tia diverges due to the zero-denominator. In such cases,
the present RPA calculation eventually overestimates the
moment of inertia, although it does not diverge. This ef-
fect is also reflected in the calculated transition moments
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(Q0)RPA and the effective g-factors, which are rather dif-
ferent from the values given by the mean-fields. Whether
or not the RPA calculation gives reliable results for such
cases, where the non-adiabatic effect is large, is an im-
portant future issue. The direct measurement of Q0 (i.e.
B(E2)-value) for the precession band is desirable for this
purpose.

V. CONCLUDING REMARKS

We have investigated the precession bands, i.e., the
strongly-coupled rotational bands excited on high-K in-
trinsic configurations by means of the random phase ap-
proximation, the microscopic theory for vibrations. It is
emphasized that this precession mode is related to the
three dimensional motion of the angular momentum vec-
tor in the principal axis frame (body-fixed frame), and
can be considered to be a limiting mode of the wobbling
motion in the triaxially deformed nucleus. It is demon-
strated that the observed trend of the precession phonon
energies in 178W is well reproduced by the RPA calcula-
tion: This is highly non-trivial because we have employed
the minimal coupling interaction, which is determined by
the mean-field and the vacuum state based on it, and so
there is no adjustable force parameters whatsoever.

The electromagnetic properties, the E2 and M1 tran-
sition probabilities, are also important for this kind of
collective excitation modes. We have shown that the
calculated B(E2) and B(M1) in terms of the RPA cor-
respond to those given by the conventional rotational
model expressions, where the intrinsic quadrupole mo-
ment and the effective g-factors are calculated within the
mean-field approximation. The link between the RPA
and the rotational model expressions is given in the adi-
abatic limit, where the precession phonon energy goes to
zero. Then the rotor gR-factor is not a common factor
any more, but depends on the configurations, especially
on the occupation of the high-j decoupled proton orbital.
Since the RPA formalism includes this effect properly, the
calculated B(M1) values reproduces the experimentally
deduced ones rather well. It is, however, noticed that
the adiabatic approximation is not necessarily a good ap-
proximation because the precession energies are not very
small; more crucially, if a high-j decoupled orbital with
Ω = 1/2 is occupied, the approximation breaks down
completely. Therefore, it is an important future task to
examine how the non adiabatic effect plays a role in the
realistic cases. More experimental data, especially B(E2)
and B(M1) values, are necessary for this purpose.

Finally, it is worth mentioning the similar RPA calcu-
lations for the wobbling motion in the Lu and Hf region.
We have presented the result in the recent papers [11, 12].

Although we obtained the RPA solutions, which have ex-
pected properties of the wobbling motion, the calculated
out-of-band over in-band B(E2) ratios were smaller than
the measured ones by about a factor two to three; this
was the most serious problem in our microscopic calcu-
lation. The measured ratio is almost reproduced by the
simple rotor model. Both the out-of-band and in-band
B(E2), which are vertical and horizontal transition dis-
cussed in Sec. II, are expressed in terms of the intrinsic
quadrupole moments, Q20 and Q22 [30] (or e.g. defor-
mation parameters (ε2, γ)), combined with the wobbling
phonon amplitudes. In the RPA wobbling formalism, on
the other hand, the in-band transition is calculated by
the intrinsic moments, while the out-of-band transition
by the RPA phonon transition in Eq. (23). Thus the un-
derestimation of the B(E2) ratio above means that the
RPA phonon transition amplitudes is smaller by about
50−70% than the expected ones.

The adiabatic approximation can also be considered
for the case of the wobbling phonon [14]. Similar corre-
spondence between the intrinsic moments and the RPA
transition amplitudes, like Q0 ≈ (Q0)RPA in the present
paper, is obtained with a non-trivial modification: There

are two amplitudes related to the operators Q
(−)
21 and

Q
(−)
22 in Eq. (27), and the B(E2) is calculated by a linear

combination of them with coefficients involving the three
moments of inertia. Therefore, incorrect coefficients of
amplitudes would make B(E2) values to deviate consid-
erably, even though the adiabatic approximation is ap-
plicable and two amplitudes are obtained in a good ap-
proximation. There is, of course, another possibility that
the adiabatic approximation itself is no longer valid. It
should be noted that the wobbling excitation energies ob-
served in Lu isotopes are about 200−500 keV, which are
not small if translated to the transition phonon energy
in the laboratory frame, ωwob + ωrot; see Eq. (38). In
the light of the present investigation, it may be possible
that the RPA approach yields the correct magnitude of
out-of-band transitions also for the case of the wobbling
mode, because it actually does in the case of the preces-
sion phonon bands. Thus, it is a very important future
issue to examine whether or not the RPA wobbling for-
malism can describe the observed B(E2) ratio in the Lu
and Hf region.
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