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Abstract

The adiabatic self–consistent collective coordinate (ASCC) method is applied to
the pairing-plus-quadrupole (P + Q) model Hamiltonian including the quadrupole
pairing, and the oblate–prolate shape coexistence phenomena in proton-rich nuclei,
68Se and 72Kr, are investigated. It is shown that the collective path connecting
the oblate and prolate local minima runs along a triaxial valley in the (β, γ) plane.
Quantum collective Hamiltonian is constructed and low-lying energy spectra and
E2 transition probabilities are calculated for the first time using the ASCC method.
Basic properties of the shape coexistence/mixing are well reproduced. We also
clarify the effects of the time-odd pair field on the collective mass (inertial function)
for the large–amplitude vibration and on the rotational moments of inertia about
three principal axes.

1 Introduction

In proton rich nuclei around 68Se and 72Kr, oblate–prolate shape coexistence phenomena
are observed [1–4]. From the mean-field point of view, the oblate and prolate shapes
are mixed by the many-body tunneling through the potential barrier between the two
local minima in the potential energy landscape. To describe the shape mixing dynamics,
we have to determine the collective degrees of freedom in which direction the large–
amplitude shape dynamics takes place. The adiabatic self–consistent collective coordi-
nate (ASCC) method [5] has been proposed as a microscopic theory of large–amplitude
collective motion such as the shape coexistence phenomena. This theory is based on the
time-dependent Hartree–Fock–Bogoliubov (TDHFB) theory and enables us to extract
the collective degrees of freedom in a self–consistent way. In the previous work [6], we
have solved the pairing-plus-quadrupole (P + Q) Hamiltonian by means of the ASCC
method for 68Se and 72Kr nuclei, and successfully extracted the one-dimensional collec-
tive path connecting the oblate and prolate local minima. Since the two local minima
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are mainly connected by the triaxial degrees of freedom, we have suggested that the
triaxial deformation plays an essential role in the shape coexistence dynamics of these
nuclei.

In this presentation, we report results of the first calculation of low-lying energy
spectra and E2 transition probabilities by means of the ASCC method. We derive
the quantum collective Hamiltonian that describes the coupled collective motion of the
large–amplitude vibration responsible for the oblate–prolate shape mixing and the three-
dimensional rotation of the triaxial shape. The calculation yields the excited prolate
rotational band as well as the oblate ground-state band. It also indicates that the shape
mixing decreases as the angular momentum increases.

We also clarify the effect of the time-odd mean-field on the collective mass. This effect
is ignored in the cranking mass [7], but is included in the ASCC mass. The time-odd
mean-field effect generated by the particle-hole residual interaction was investigated in a
few decades ago [8], but those generated by the pairing interaction has not been discussed
so far. Quite recently we have shown, using the schematic model Hamiltonian [9], that
the time-odd component associated with the quadrupole-type pair field significantly
increases the collective mass. In the present calculation, we thus include the quadrupole
pairing interaction to the P + Q Hamiltonian to clarify the effect of the time-odd pair
field on the collective mass and rotational moments of inertia.

2 The ASCC method

We first recapitulate the basic equations of the ASCC method. The moving-frame TD-

HFB state |φ(q, p)〉 = eipQ̂(q) |φ(q)〉 is written in terms of the collective coordinate q,
and collective momentum p. The TDHFB state is expanded in terms of the collective
momentum p under the adiabatic assumption. The collective Hamiltonian is expanded
up to the lowest order in p as

H(q, p, ~I) = V (q) +
1

2
B(q)p2 +

3
∑

i=1

I2
i

2Ji(q)
, (1)

where the V (q) and B(q) represents the collective potential and the inverse collective
mass. We add the rotational energy term with three moments of inertia Ji(q) to the
collective Hamiltonian in order to take into account the rotational motion.

The basic equations of the ASCC method are derived from the adiabatic expansion
of the time-dependent variational principle, and are summarized as

δ 〈φ(q)| ĤM (q) |φ(q)〉 = 0, (2)

δ 〈φ(q)| [ĤM(q), Q̂(q)] −
1

i
B(q)P̂ (q) |φ(q)〉 = 0, (3)
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δ 〈φ(q)| [ĤM(q),
1

i
P̂ (q)] − C(q)Q̂(q)

−
1

2B(q)
[[ĤM (q),

dV

dq
(q)Q̂(q)], Q̂(q)] −

∑

τ

∂λ(τ)

∂q
(q)N̂ (τ) |φ(q)〉 = 0. (4)

Equation (2) is called the moving-frame HFB equation, while Eqs. (3) and (4) are
called the moving-frame QRPA equations. where Q̂(q) and P̂ (q) denote the infinitesimal
generators of the collective path,

ĤM(q) = Ĥ −
∑

τ

λ(τ)(q)N̂ (τ) −
dV

dq
(q)Q̂(q), (5)

is the Hamiltonian in the moving-frame, and C(q) = ∂2V
∂q2 + 1

2B(q)
∂B
∂q

∂V
∂q

is the local

stiffness parameter. The operators Ĥ, N̂ (τ) and the quantity λ(τ)(q) represents the
microscopic Hamiltonian, the particle number operators, and the chemical potential,
respectively. The QRPA eigenmodes about the HFB equilibrium points, as well as static
solutions of the HFB equation, are always special solutions of the ASCC equations.
Therefore, the collective path can be constructed by means of the local progression
procedure starting from a static HFB state. The collective path at q + δq is calculated
using the constraint 〈φ(q + δq)| Q̂(q) |φ(q + δq)〉 = δq derived from the canonical variable
conditions, if the collective path at q is already known. Repeating this procedure, we
can find the collective path and obtain all quantities appearing in the ASCC equations
and collective Hamiltonian except the rotational moments of inertia. Three rotational
moments of inertia are evaluated by extending the QRPA equations for rotation at the
HFB minima to the general HFB states |φ(q)〉 on the collective path,

δ 〈φ(q)| [ĤM (q), iΨ̂i(q)] − J−1
i (q)Ĵi |φ(q)〉 = 0, (6)

where Ψ̂i(q) and Ĵi are the angle and angular momentum operators in the principal
frame.

In the present calculation, we use the P + Q + quadrupole pairing Hamiltonian as
a microscopic Hamiltonian Ĥ. We adopt the same single-particle energies and the P +
Q interaction strengths as in Ref. 6 and the self–consistent quadrupole-pairing strength
Gself

2 proposed by Sakamoto and Kishimoto [10].

3 Collective Path

For both 68Se and 72Kr, we have found that the lowest HFB state possesses the oblate
shape, while second lowest HFB state the prolate shape. We start from the oblate state
(q = 0) and determine the collective path connecting the two local minima. Figure 1
shows the collective path projected onto the (β, γ) potential energy surfaces. The path
connects the two local minima via the triaxially deformed region. Figure 2 shows various
quantities appearing in the collective Hamiltonian and the basic equations of the ASCC
method. We define the scale of collective coordinate q by setting B(q)−1 = 1. The
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collective mass with respect to the conventional (β, γ)- coordinates is then given by

M(q) =
√

(dβ/dq)2 + β2(dγ/dq)2
−1

. We have found that the collective mass M(q)
and three rotational moments of inertia Ji(q) are enhanced by the time-odd pair field
generated by the quadrupole pairing.

4 Energy Spectrum and Transition Probabilities

We requantize the collective Hamiltonian (1) and solve the collective Schrödinger equa-
tion

(

−
1

2

∂2

∂q2
+

1

2

3
∑

i=1

J−1
i (q)Î2

i + V (q)

)

ΨIM,k(q,Ω) = EI,kΨIM,k(q,Ω), (7)

to obtain the excitation energies and collective wavefunctions. The collective wave func-
tions ΨIM,k(q,Ω) takes the following form:

ΨIM,k(q,Ω) =
I
∑

K=0

ΦIK,k(q) < Ω|IMK >, (8)

where ΦIK,k(q) and < Ω|IMK > denote the vibrational wavefunctions and the rotation
matrices, respectively. The conventional boundary conditions and symmetry require-
ments for solving the Bohr collective Hamiltonian [11] are adopted.

Figures 3 display the energy spectrum and B(E2) values for 68Se and 72Kr. The
calculation yields the excited prolate rotational band as well as the oblate ground-state
band. It is seen that the inter-band E2 transitions are weaker than the intra-band
E2 transitions, indicating that the oblate–prolate shape coexistence picture holds. The
result of calculation also indicates that the oblate–prolate shape mixing decreases as
the angular momentum increases. Thus, the basic patterns of oblate–prolate shape
coexistence are successfully reproduced in the calculation. The calculation suggest the
existence of excited 0+ state in 68Se, which is not yet found in experiment. By comparing
two calculations, (G2 = 0) and (G2 = Gself

2 ), we found that the energy of the 0+
2

state is much lowered by including the quadrupole pairing interaction. This is due
to the enhancement of the collective mass. The energies of the other members of the
rotational bands are also lowered, because the quadrupole pairing also enhances the
rotational moments of inertia. Experimental data for B(E2) are not available except
B(E2; 2+

1 → 0+
1 )=1000 e2 fm4 in 72Kr [4]. Theoretical B(E2) values are calculated

using a polarization charge epol = 0.881 that reproduces this data, so that only relative
magnitudes should be regarded as theoretical estimates.

In order to estimate the oblate–prolate shape mixing in quantum eigenstates, we
define the oblate and prolate probabilities as follows:

Pob(I, k) =

∫ q0

qmin

dq
I
∑

K=0

|ΦIK,k(q)|
2, Ppro(I, k) =

∫ qmax

q0

dq
I
∑

K=0

|ΦIK,k(q)|
2, (9)
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where we assume that qmin ≤ qob < q0 < qpro ≤ qmax. The “boundary” between the
oblate and the prolate regions is set to the top of the potential barrier or at γ = 30◦.
Figure 4 shows these probabilities for 68Se and 72Kr. It is clearly seen that the shape
mixing rapidly decreases as the angular momentum increases.

5 Summary

For the first time, we have reported the result of calculation of low-lying energy spectra
and E2 transition probabilities in 68Se and 72Kr by means of the ASCC method. We have
derived the quantum collective Hamiltonian that describes the coupled collective motion
of the large–amplitude vibration responsible for the oblate–prolate shape mixing and
the three-dimensional rotation of the triaxial shape. The calculation yields the excited
prolate rotational band as well as the oblate ground–state band. It also indicates that
the oblate–prolate shape mixing decreases as the angular momentum increases.

It is surprising that basic pattern of the shape coexistence/mixing phenomena is well
reproduced using the one-dimensional collective path running on the two-dimensional
(β, γ) plane. Speaking more exactly, this collective path is self–consistently extracted
from the huge dimensional TDHB manifold. Namely, the result of calculation indicates
that the TDHB collective dynamics of the shape coexistence phenomena in these nuclei
is essentially controlled by the single collective variable microscopically derived by means
of the ASCC method.

We have also shown that the time-odd pair field enhances the collective mass of the
large–amplitude vibrational motion and the rotational moments of inertia. This finding
is important in understanding the shape coexistence dynamics, because, together with
the collective potential energy, these inertial functions associated with the collective
kinetic energies determine the degree of localization of the collective wave function in
the (β, γ) plane.

Acknowledgement

This work is supported by the Grant-in-Aid for the 21st Century COE “Center for
Diversity and Universality in Physics” from the Ministry of Education, Culture, Sports,
Science and Technology (MEXT) of Japan.

References

[1] S. M. Fishcer, et al., Phys. Rev. Lett. 84 (2000), 4064.

[2] S. M. Fischer, et al., Phys. Rev. C 67 (2003), 064318.

[3] E. Bouchez, et al., Phys. Rev. Lett. 90 (2003), 082502.

[4] A. Gade, et al., Phys. Rev. Lett. 95 (2005), 022502; Phys. Rev. Lett. 96 (2006),
189901.

5



[5] M. Matsuo, T. Nakatsukasa and K. Matsuyanagi, Prog. Theor. Phys. 103 (2000),
959.

[6] M. Kobayasi, T. Nakatsukasa, M. Matsuo and K. Matsuyanagi, Prog. Theor. Phys.

113 (2005), 129.

[7] P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, 1980).

[8] J. Dobaczewski and J. Skalski, Nucl. Phys. A 369 (1981), 123.

[9] N. Hinohara, T. Nakatsukasa, M. Matsuo and K. Matsuyanagi, Prog. Theor. Phys.

115 (2006), 567.

[10] H. Sakamoto and T. Kishimoto, Phys. Lett. B 245 (1990), 321.

[11] K. Kumar and M. Baranger, Nucl. Phys. A 92 (1967), 608.

6



 0  0.1  0.2  0.3  0.4

β

 0  0.1  0.2  0.3  0.4  0.5

β

Figure 1: Collective paths for 68Se (upper) and 72Kr (lower) calculated using the P +
Q Hamiltonian including the quadrupole pairing interaction. The paths are projected
onto the (β, γ) potential energy surface. The dots in the figures indicate the HB local
minima. The equipotential contour lines are drawn every 100 keV.
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Figure 2: The monopole pairing gaps, ∆
(τ)
0 (q), the quadrupole pairing gaps, ∆

(τ)
20 (q)

and ∆
(τ)
22 (q), the collective potential V (q), the collective mass M(q), the rotational

moments of inertia Ji(q), the lowest two moving-frame QRPA frequencies squared,
ω2(q) = B(q)C(q), and the quadrupole deformations, β(q) and γ(q), are plotted as
functions of γ(q) for 68Se (upper) and q for 72Kr (lower). Results of two calculations
using the P + Q Hamiltonian with (G2 = Gself

2 ) and without (G2 = 0) the quadrupole
pairing interaction are compared.
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Figure 3: Excitation energies and B(E2) values for low-lying states of 68Se and 72Kr
calculated by the ASCC method. In the left (middle) panel, the quadrupole pairing is
ignored (included). Experimental data [1–4] are displayed in the right panel. The B(E2)
values are given in parentheses beside the arrows in unit of e2 fm4.

9



 0

 0.2

 0.4

 0.6

 0.8

 1

P
(I

,k
)

 0

 0.2

 0.4

 0.6

 0.8

 1

P
(I

,k
)

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6

P
(I

,k
)

I(g.s.)

0 2 4 6

 0

 0.2

 0.4

 0.6

 0.8

 1

P
(I

,k
)

I(1st)

 0

 0.2

 0.4

 0.6

 0.8

 1

P
(I

,k
)

 0

 0.2

 0.4

 0.6

 0.8

 1

P
(I

,k
)

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6

P
(I

,k
)

I(g.s.)

0 2 4 6

 0

 0.2

 0.4

 0.6

 0.8

 1

P
(I

,k
)

I(1st)

Figure 4: The oblate and prolate probabilities evaluated for individual eigenstates in
68Se (left) and 72Kr (right). For each nucleus, the left (right) panel shows values for
the lowest (the second lowest) state of each angular momentum. The open (closed)
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