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Nobuo Hinohara,1 Koichi Sato,1,2 Takashi Nakatsukasa,1 Masayuki Matsuo,3 and Kenichi Matsuyanagi1,4

1Theoretical Nuclear Physics Laboratory, RIKEN Nishina Center, Wako 351-0198, Japan
2Department of Physics, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan

3Department of Physics, Faculty of Science, Niigata University, Niigata 950-2181, Japan
4Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

(Received 30 April 2010; revised manuscript received 19 August 2010; published 23 December 2010)

On the basis of the adiabatic self-consistent collective coordinate method, we develop an efficient microscopic
method of deriving the five-dimensional quadrupole collective Hamiltonian and illustrate its usefulness
by applying it to the oblate-prolate shape coexistence/mixing phenomena in proton-rich 68,70,72Se. In this
method, the vibrational and rotational collective masses (inertial functions) are determined by local normal
modes built on constrained Hartree-Fock-Bogoliubov states. Numerical calculations are carried out using the
pairing-plus-quadrupole Hamiltonian including the quadrupole-pairing interaction within the two major-shell
active model spaces both for neutrons and protons. It is shown that the time-odd components of the moving
mean-field significantly increase the vibrational and rotational collective masses in comparison with the
Inglis-Belyaev cranking masses. Solving the collective Schrödinger equation, we evaluate excitation spectra,
quadrupole transitions, and moments. The results of the numerical calculation are in excellent agreement
with recent experimental data and indicate that the low-lying states of these nuclei are characterized as an
intermediate situation between the oblate-prolate shape coexistence and the so-called γ unstable situation where
large-amplitude triaxial-shape fluctuations play a dominant role.
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I. INTRODUCTION

The major purpose of this article is to develop an efficient
microscopic method of deriving the five-dimensional (5D)
quadrupole collective Hamiltonian [1–4] and illustrate its
usefulness by applying it to the oblate-prolate shape coex-
istence/mixing phenomena in proton-rich Se isotopes [5–8].
As is well known, the quadrupole collective Hamiltonian,
also called the general Bohr-Mottelson Hamiltonian, contains
six collective inertia masses (three vibrational masses and
three rotational moments of inertia) as well as the collec-
tive potential. These seven quantities are functions of the
quadrupole deformation variables β and γ , which represent
the magnitude and triaxiality of the quadrupole deformation,
respectively. Therefore, we also call the collective inertial
masses “inertial functions.” They are usually calculated by
means of the adiabatic perturbation treatment of the moving
mean field [9], and the version taking into account nuclear
superfluidity [10] is called the Inglis-Belyaev (IB) cranking
mass or the IB inertial function. Its insufficiency has been
repeatedly emphasized, however (see, e.g., Refs. [11–14]).
The most serious shortcoming is that the time-odd terms
induced by the moving mean field are ignored, which breaks
the self-consistency of the theory [15,16]. In fact, one of the
most important motives of constructing microscopic theory
of large-amplitude collective motion was to overcome such a
shortcoming of the IB cranking mass [15].

As fruits of long-term efforts, advanced microscopic theo-
ries of inertial functions are now available (see Refs. [15–26]
for original articles and Refs. [27,28] for reviews). These
theories of large-amplitude collective motion have been tested

for schematic solvable models and applied to heavy-ion
collisions and giant resonances [18,26]. For nuclei with pairing
correlations, Dobaczewski and Skalski studied the quadrupole
vibrational mass with use of the adiabatic time-dependent
Hartree-Fock-Bogoliubov (ATDHFB) theory and concluded
that the contributions from the time-odd components of
the moving mean-field significantly increase the vibrational
mass compared to the IB cranking mass [16]. Somewhat
surprisingly, however, to the best of our knowledge, the
ATDHFB vibrational masses have never been used in realistic
calculations for low-lying quadrupole spectra of nuclei with
superfluidity. For instance, in recent microscopic studies
[29–34] by means of the 5D quadrupole Hamiltonian, the IB
cranking formula are still used in actual numerical calculation
for vibrational masses. This situation concerning the treatment
of the collective kinetic energies is in marked contrast with
the remarkable progress in microscopic calculation of the
collective potential using modern effective interactions or
energy density functionals (see Ref. [35] for a review).

In this article, on the basis of the adiabatic self-consistent
collective coordinate (ASCC) method [36], we formulate a
practical method of deriving the 5D quadrupole collective
Hamiltonian. The central concept of this approach is local
normal modes built on constrained Hartree-Fock-Bogoliubov
(CHFB) states [37] defined at every point of the (β,γ ) defor-
mation space. These local normal modes are determined by the
local QRPA (LQRPA) equation that is an extension of the well-
known quasiparticle random-phase approximation (QRPA)
to nonequilibrium HFB states determined by the CHFB
equations. We therefore use an abbreviation “CHFB + LQRPA
method” for this approach. This method may be used in
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conjunction with any effective interaction or energy density
functional. In this article, however, we use, for simplicity, the
pairing-plus-quadrupole (P + Q) force [38,39] including the
quadrupole-pairing force. Inclusion of the quadrupole-pairing
force is essential because it produces the time-odd component
of the moving field [40].

To examine the feasibility of the CHFB + LQRPA method,
we apply it to the oblate-prolate shape coexistence/mixing
phenomena in proton-rich 68,70,72Se [5–8,41,42]. These phe-
nomena are taken up because we obviously need to go beyond
the traditional framework of describing small-amplitude vi-
brations around a single HFB equilibrium point to describe
them; that is, they are very suitable targets for our purpose.
We shall show in this article that this approach successfully
describes large-amplitude collective vibrations extending from
the oblate to the prolate HFB equilibrium points (and vice
versa). In particular, it will be demonstrated that we can
describe very well the transitional region between the oblate-
prolate shape coexistence and the γ unstable situation where
large-amplitude triaxial-shape fluctuations play a dominant
role.

This article is organized as follows. In Sec. II, we formulate
the CHFB + LQRPA as an approximation of the ASCC
method and derive the 5D quadrupole collective Hamiltonian.
In Sec. III, we calculate the vibrational and rotational masses
by solving the LQRPA equations, and discuss their properties
in comparison with those calculated by using the IB cranking
formula. In Sec. IV, we calculate excitation spectra, B(E2),
and spectroscopic quadrupole moments of low-lying states in
68,70,72Se and discuss properties of the oblate-prolate shape
coexistence/mixing in these nuclei. Conclusions are given in
Sec. V.

II. MICROSCOPIC DERIVATION OF THE 5D
QUADRUPOLE COLLECTIVE HAMILTONIAN

A. 5D quadrupole collective Hamiltonian

Our aim in this section is to formulate a practical method
of microscopically deriving the 5D quadrupole collective
Hamiltonian [1–4]

Hcoll = Tvib + Trot + V (β,γ ), (1)

Tvib = 1

2
Dββ(β,γ )β̇2 + Dβγ (β,γ )β̇γ̇ + 1

2
Dγγ (β,γ )γ̇ 2,

(2)

Trot = 1

2

3∑
k=1

Jk(β,γ )ω2
k, (3)

starting from an effective Hamiltonian for finite many-nucleon
systems. Here, Tvib and Trot denote the kinetic energies of
vibrational and rotational motions, while V (β,γ ) represents
the collective potential. The velocities of the vibrational
motion are described in terms of the time derivatives (β̇, γ̇ ) of
the quadrupole deformation variables (β, γ ) representing the
magnitude and the triaxiality of the quadrupole deformation,
respectively. The three components ωk of the rotational angular
velocity are defined with respect to the intrinsic axes associated

with the rotating nucleus. The inertial functions for vibrational
motions (vibrational masses), Dββ , Dβγ , and Dγγ , and the
rotational moments of inertia Jk are functions of β and γ .

As seen in the recent review by Próchniak and Rohoziński
[4], there are numerous articles on microscopic approaches to
the 5D quadrupole collective Hamiltonian; among them, we
should quote at least early articles by Belyaev [2], Baranger-
Kumar [43,44], Pomorski et al. [12,13], and recent articles by
Girod et al. [33], Nikšić et al. [29,30], and Li et al. [31,32].
In all these works, the IB cranking formula is used for the
vibrational inertial functions. In the following, we outline the
procedure of deriving the vibrational and rotational inertial
functions on the basis of the ASCC method.

B. Basic equations of the ASCC method

To derive the 5D quadrupole collective Hamiltonian Hcoll

starting from a microscopic Hamiltonian Ĥ , we use the
ASCC method [36,45]. This method enables us to determine
a collective submanifold embedded in the large-dimensional
TDHFB configuration space. We can use this method in
conjunction with any effective interaction or energy density
functional to microscopically derive the collective masses
taking into account time-odd mean-field effects. For our
present purpose, we here recapitulate a two-dimensional (2D)
version of the ASCC method. We suppose the existence
of a set of two collective coordinates (q1, q2) that has a
one-to-one correspondence to the quadrupole deformation
variable set (β,γ ) and try to determine a 2D collective
hypersurface associated with the large-amplitude quadrupole
shape vibrations. We thus assume that the TDHFB states can
be written on the hypersurface in the following form:

|φ(q, p,ϕ, n)〉 = e−i
∑

τ ϕ(τ )Ñ (τ ) |φ(q, p, n)〉
= e−i

∑
τ ϕ(τ )Ñ (τ )

eiĜ(q, p,n) |φ(q)〉 , (4)

with

Ĝ(q, p, n) =
∑
i=1,2

piQ̂
i(q) +

∑
τ=n,p

n(τ )�̂(τ )(q), (5)

Q̂i(q) = Q̂A(q) + Q̂B(q)

=
∑
αβ

[
QA

αβ(q)a†
αa

†
β + QA∗

αβ (q)aβaα

+QB
αβ(q)a†

αaβ

]
, (6)

�̂(τ )(q) =
∑
αβ

[
�

(τ )A
αβ (q)a†

αa
†
β + �

(τ )A∗
αβ (q)aβaα

]
. (7)

For a gauge-invariant description of nuclei with superfluidity,
we need to parametrize the TDHFB state vectors, as previously,
not only by the collective coordinates q = (q1, q2) and conju-
gate momenta p = (p1, p2), but also by the gauge angles ϕ =
(ϕ(n), ϕ(p)) conjugate to the number variables n = (n(n), n(p))
representing the pairing-rotational degrees of freedom (for
both neutrons and protons). In the above equations, Q̂i(q)
and �̂(τ )(q) are infinitesimal generators that are written in
terms of the quasiparticle creation and annihilation operators
(a†

α, aα) locally defined with respect to the moving-frame HFB
states |φ(q)〉. Note that the number operators are defined as
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Ñ (τ ) ≡ N̂ (τ ) − N
(τ )
0 subtracting the expectation values

(N (n)
0 , N

(p)
0 ) of the neutron and proton numbers at |φ(q)〉. In

this article, we use units with h̄ = 1.
The moving-frame HFB states |φ(q)〉 and the infinitesimal

generators Q̂i(q) are determined as solutions of the moving-
frame HFB equation

δ 〈φ(q)| ĤM (q) |φ(q)〉 = 0, (8)

and the moving-frame QRPA equations

δ〈φ(q)|[ĤM (q), Q̂i(q)] − 1

i

∑
k

Bik(q)P̂k(q)

+ 1

2

[∑
k

∂V

∂qk
Q̂k(q), Q̂i(q)

]
|φ(q)〉 = 0, (9)

δ〈φ(q)|
[
ĤM (q),

1

i
P̂i(q)

]
−

∑
j

Cij (q)Q̂j (q)

− 1

2

[ [
ĤM (q),

∑
k

∂V

∂qk
Q̂k(q)

]
,
∑

j

Bij (q)Q̂j (q)

]

−
∑

τ

∂λ(τ )

∂qi
Ñ (τ ) |φ(q)〉 = 0, (10)

which are derived from the time-dependent variational
principle. Here, ĤM (q) is the moving-frame Hamiltonian
given by

ĤM (q) = Ĥ −
∑

τ

λ(τ )(q)Ñ (τ ) −
∑

i

∂V

∂qi
Q̂i(q), (11)

and

Cij (q) = ∂2V

∂qi∂qj
−

∑
k

�k
ij

∂V

∂qk
, (12)

with

�k
ij (q) = 1

2

∑
l

Bkl

(
∂Bli

∂qj
+ ∂Blj

∂qi
− ∂Bij

∂ql

)
. (13)

The infinitesimal generators P̂i(q) are defined by

P̂i(q) |φ(q)〉 = i
∂

∂qi
|φ(q)〉 , (14)

with

P̂i(q) = i
∑
αβ

[Piαβ(q)a†
αa

†
β − P ∗

iαβ(q)aβaα], (15)

and determined as solutions of the moving-frame QRPA
equations.

The collective Hamiltonian is given as the expectation value
of the microscopic Hamiltonian with respect to the TDHFB
state

H(q, p, n) = 〈φ(q, p, n)| Ĥ |φ(q, p, n)〉
= V (q) +

∑
ij

1

2
Bij (q)pipj +

∑
τ

λ(τ )(q)n(τ ),

(16)

where

V (q) = H(q, p, n)| p=0,n=0, (17)

Bij (q) = ∂2H
∂pi∂pj

∣∣∣∣
p=0,n=0

, (18)

λ(τ )(q) = ∂H
∂n(τ )

∣∣∣∣
p=0,n=0

, (19)

represent the collective potential, inverse of the collective
mass, and the chemical potential, respectively. Note that the
last term in Eq. (10) can be set to zero adopting the QRPA
gauge-fixing condition dλ(τ )/dqi = 0 [45].

The basic equations of the ASCC method are invariant
against point transformations of the collective coordinates
(q1, q2). The Bij (q) and Cij (q) can be diagonalized simulta-
neously by a linear coordinate transformation at each point of
q = (q1, q2). We assume that we can introduce the collective
coordinate system in which the diagonal form is kept globally.
Then, we can choose, without losing generality and for
simplicity, the scale of the collective coordinates q = (q1, q2)
such that the vibrational masses become unity. Consequently,
the vibrational kinetic energy in the collective Hamiltonian
(16) is written as

Tvib = 1

2

∑
i=1,2

(pi)
2 = 1

2

∑
i=1,2

(q̇i)2. (20)

C. CHFB + LQRPA equations

The basic equations of the ASCC method can be solved
with an iterative procedure. This task was successfully
carried out for extracting a one-dimensional (1D) collective
path embedded in the TDHFB configuration space [46,47].
To determine a 2D hypersurface, however, the numerical
calculation becomes too demanding at the present time.
We therefore introduce practical approximations as follows:
First, we ignore the curvature terms [the third terms in
Eqs. (9) and (10)], which vanish at the HFB equilibrium
points where dV/dqi = 0, assuming that their effects are
numerically small. Second, we replace the moving-frame
HFB Hamiltonian ĤM (q) and the moving-frame HFB state
|φ(q1, q2)〉 with a CHFB Hamiltonian ĤCHFB(β,γ ) and a
CHFB state |φ(β,γ )〉, respectively, on the assumption that the
latter two terms are good approximations to the former two
terms.

The CHFB equations are given by

δ〈φ(β,γ )|ĤCHFB(β,γ )|φ(β,γ )〉 = 0, (21)

ĤCHFB(β,γ ) = Ĥ −
∑

τ

λ(τ )(β,γ )Ñ (τ )

−
∑

m=0,2

µm(β,γ )D̂(+)
2m , (22)

with four constraints

〈φ(β,γ )|N̂ (τ )|φ(β,γ )〉 = N
(τ )
0 , (τ = n, p), (23)

〈φ(β,γ )|D̂(+)
2m |φ(β,γ )〉 = D

(+)
2m , (m = 0, 2), (24)
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where D̂
(+)
2m denotes the Hermitian quadrupole operators D̂20

and (D̂22 + D̂2−2)/2 for m = 0 and 2, respectively (see
Ref. [46] for their explicit expressions). We define the
quadrupole deformation variables (β, γ ) in terms of the
expectation values of the quadrupole operators

β cos γ = ηD
(+)
20 = η 〈φ(β,γ )| D̂(+)

20 |φ(β,γ )〉 , (25)

1√
2
β sin γ = ηD

(+)
22 = η 〈φ(β,γ )| D̂(+)

22 |φ(β,γ )〉 , (26)

where η is a scaling factor (to be discussed in Sec. III A).
The moving-frame QRPA Eqs. (9) and (10) then reduce to

δ 〈φ(β,γ )| [ĤCHFB(β,γ ), Q̂i(β,γ )]

− 1

i
P̂i(β,γ ) |φ(β,γ )〉 = 0, (i = 1, 2), (27)

and

δ 〈φ(β,γ )|
[
ĤCHFB(β,γ ),

1

i
P̂i(β,γ )

]
−Ci(β,γ )Q̂i(β,γ )|φ(β,γ )〉 = 0. (i = 1, 2) (28)

Here the infinitesimal generators, Q̂i(β,γ ) and P̂i(β,γ ), are
local operators defined at (β,γ ) with respect to the CHFB state
|φ(β,γ )〉. These equations are solved at each point of (β,γ ) to
determine Q̂i(β,γ ), P̂i(β,γ ), and Ci(β,γ ) = ω2

i (β,γ ). Note
that these equations are valid also for regions with negative
curvature [Ci(β,γ ) < 0] where the QRPA frequency ωi(β,γ )
takes an imaginary value. We call the above equations “local
QRPA (LQRPA) equations.” There exist more than two
solutions of LQRPA Eqs. (27) and (28) and we need to
select relevant solutions. A useful criterion for selecting two
collective modes among many LQRPA modes will be given in
Sec. III C with numerical examples. Concerning the accuracy
of the CHFB + LQRPA approximation, some arguments will
be given in Sec. III F.

D. Derivation of the vibrational masses

Once the infinitesimal generators Q̂i(β,γ ) and P̂i(β,γ ) are
obtained, we can derive the vibrational masses appearing in
the 5D quadrupole collective Hamiltonian (1). We rewrite
the vibrational kinetic energy Tvib given by Eq. (20) in
terms of the time derivatives β̇ and γ̇ of the quadrupole
deformation variables in the following way. We first note
that an infinitesimal displacement of the collective coordinates
(q1, q2) brings about a corresponding change

dD
(+)
2m =

∑
i=1,2

∂D
(+)
2m

∂qi
dqi, (m = 0, 2), (29)

in the expectation values of the quadrupole operators. The
partial derivatives can be easily evaluated as

∂D
(+)
20

∂qi
= ∂

∂qi
〈φ(β,γ )|D̂(+)

20 |φ(β,γ )〉

= 〈φ(β,γ )|
[
D̂

(+)
20 ,

1

i
P̂i(β,γ )

]
|φ(β,γ )〉, (30)

∂D
(+)
22

∂qi
= ∂

∂qi
〈φ(β,γ )|D̂(+)

22 |φ(β,γ )〉

= 〈φ(β,γ )|
[
D̂

(+)
22 ,

1

i
P̂i(β,γ )

]
|φ(β,γ )〉 , (31)

without the need of numerical derivatives. Accordingly, the
vibrational kinetic energy can be written

Tvib = 1
2M00[Ḋ(+)

20 ]2 + M02Ḋ
(+)
20 Ḋ

(+)
22 + 1

2M22[Ḋ(+)
22 ]2, (32)

with

Mmm′(β,γ ) =
∑
i=1,2

∂qi

∂D
(+)
2m

∂qi

∂D
(+)
2m′

. (33)

Taking the time derivative of the definitional equations of
(β,γ ), Eqs. (25) and (26), we can straightforwardly transform
expression (32) to the form in terms of (β̇, γ̇ ). The vibrational
masses (Dββ , Dβγ , Dγγ ) are then obtained from (M00, M02,
M22) through the following relations:

Dββ = η−2

(
M00 cos2 γ +

√
2M02 sin γ cos γ

+ 1

2
M22 sin2 γ

)
, (34)

Dβγ = βη−2

[
−M00 sin γ cos γ + 1√

2
M02(cos2 γ − sin2 γ )

+ 1

2
M22 sin γ cos γ

]
, (35)

Dγγ = β2η−2

(
M00 sin2 γ −

√
2M02 sin γ cos γ

+ 1

2
M22 cos2 γ

)
. (36)

E. Calculation of the rotational moments of inertia

We calculate the rotational moments of inertia Jk(β,γ )
using the LQRPA equation for the collective rotation [46] at
each CHFB state

δ 〈φ(β,γ )| [ĤCHFB, �̂k] − 1

i
(Jk)−1Îk |φ(β,γ )〉 = 0, (37)

〈φ(β,γ )| [�̂k(β,γ ), Îk′ ] |φ(β,γ )〉 = iδkk′, (38)

where �̂k(β,γ ) and Îk represent the rotational angle and the
angular momentum operators with respect to the principal axes
associated with the CHFB state |φ(β,γ )〉. This is an extension
of the Thouless-Valatin equation [48] for the HFB equilibrium
state to nonequilibrium CHFB states. The three moments of
inertia can be written as

Jk(β,γ ) = 4β2Dk(β,γ ) sin2 γk (k = 1, 2, 3), (39)

with γk = γ − (2πk/3). If the inertial functions Dk(β,γ )
above are replaced with a constant, thenJk(β,γ ) reduces to the
well-known irrotational moments of inertia. In fact, however,
we shall see that their (β,γ ) dependence is very important. We
call Jk(β,γ ) and Dk(β,γ ) determined by the above equation
“LQRPA moments of inertia” and “LQRPA rotational masses,”
respectively.
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F. Collective Schrödinger equation

Quantizing the collective Hamiltonian (1) with the Pauli
prescription, we obtain the collective Schrödinger equation [2]

{T̂vib + T̂rot + V }�αIM (β,γ,�) = EαI�αIM (β,γ,�), (40)

where

T̂vib = − 1

2
√

WR

{
1

β4

[(
∂ββ2

√
R

W
Dγγ ∂β

)
− ∂β

(
β2

√
R

W
Dβγ ∂γ

)]
+ 1

β2 sin 3γ

[
−∂γ

(√
R

W
sin 3γDβγ ∂β

)
+ ∂γ

(√
R

W
sin 3γDββ∂γ

)]}
, (41)

T̂rot =
3∑

k=1

Î 2
k

2Jk

, (42)

with

R(β,γ ) = D1(β,γ )D2(β,γ )D3(β,γ ), (43)

W (β,γ ) = {Dββ(β,γ )Dγγ (β,γ ) − [Dβγ (β,γ )]2}β−2.

(44)

The collective wave function in the laboratory frame
�αIM (β,γ,�) is a function of β, γ , and a set of three Euler
angles �. It is specified by the total angular momentum I , its
projection onto the z axis in the laboratory frame M , and α

that distinguishes the eigenstates possessing the same values
of I and M . With the rotational wave function DI

MK (�), it is
written as

�αIM (β,γ,�) =
∑

K=even

�αIK (β,γ )〈�|IMK〉, (45)

where

〈�|IMK〉 =
√

2I + 1

16π2(1 + δk0)

[
DI

MK (�) + (−)IDI
M−K (�)

]
.

(46)

The vibrational wave functions in the body-fixed frame
�αIK (β,γ ) are normalized as∫

dβdγ |�αI (β,γ )|2|G(β,γ )| 1
2 = 1, (47)

where

|�αI (β,γ )|2 ≡
∑

K=even

|�αIK (β,γ )|2, (48)

and the volume element |G(β,γ )| 1
2 dβdγ is given by

|G(β,γ )| 1
2 dβdγ = 2β4

√
W (β,γ )R(β,γ ) sin 3γ dβdγ. (49)

Thorough discussions of their symmetries and the boundary
conditions for solving the collective Schrödinger equation are
given in Refs. [1–3].

III. CALCULATION OF THE COLLECTIVE POTENTIAL
AND THE COLLECTIVE MASSES

A. Details of numerical calculation

The CHFB + LQRPA method outlined in the preceding
section may be used in conjunction with any effective
interaction (e.g., density-dependent effective interactions like
Skyrme forces or modern nuclear density functionals). In this
article, as a first step toward such calculations, we use a version
of the P + Q force model [38,39] that includes the quadrupole-
pairing interaction in addition to the monopole-pairing interac-
tion. Inclusion of the quadrupole-pairing is essential because
neither the monopole-pairing nor the quadrupole particle-hole
interaction contributes to the time-odd mean-field effects on
the collective masses [16]; that is, only the quadrupole-pairing
interaction induces the time-odd contribution in the present
model. Note that the quadrupole-pairing effects were not
considered in Ref. [16]. In the numerical calculation for
68,70,72Se presented in the following, we use the same notations
and parameters as in our previous work [47]. The shell
model space consists of two major shells (Nsh = 3, 4) for
neutrons and protons and the spherical single-particle energies
are calculated using the modified oscillator potential [49,50].
The monopole-pairing interaction strengths (for neutrons and
protons) G

(τ )
0 and the quadrupole-particle-hole interaction

strength χ are determined such that the magnitudes of the
quadrupole deformation β and the monopole-pairing gaps
(for neutrons and protons) at the oblate and prolate local
minima in 68Se approximately reproduce those obtained in
the Skyrme-HFB calculations [51]. The interaction strengths
for 70Se and 72Se are then determined assuming simple
mass-number dependence [39]; G

(τ )
0 ∼ A−1 and χ ′ ≡ χb4 ∼

A− 5
3 (b denotes the oscillator-length parameter). For the

quadrupole-pairing interaction strengths (for neutrons and
protons), we use the Sakamoto-Kishimoto prescription [52] to
derive the self-consistent values. Following the conventional
treatment of the P + Q model [53], we ignore the Fock term so
that we use the abbreviation HB (Hartree-Bogoliubov) in place
of HFB in the following. In the case of the conventional P + Q
model, the HB equation reduces to a simple Nilsson + BCS
equation (see, e.g., Ref. [37]). The presence of the quadrupole-
pairing interaction in our case does not allow such a reduction,
however, and we directly solve the HB equation. In the
P + Q model, the scaling factor η in Eqs. (25) and (26) is
given by η = χ ′/h̄ω0b

2, where ω0 denotes the frequency of
the harmonic-oscillator potential. Effective charges (en, ep) =
(0.4, 1.4) are used in the calculation of quadrupole transitions
and moments.

To solve the CHB + LQRPA equations on the (β,γ ) plane,
we employ a 2D mesh consisting of 3600 points in the region
0 < β < 0.6 and 0◦ < γ < 60◦. Each mesh point (βi, γj ) is
represented as

βi = (i − 0.5) × 0.01, (i = 1, . . . , 60), (50)

γj = (j − 0.5) × 1◦, (j = 1, . . . , 60). (51)

One of the advantages of the present approach is that we
can solve the CHB + LQRPA equations independently at each
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mesh point on the (β,γ ) plane, so that it is suited to parallel
computation.

Finally, we summarize the most important differences be-
tween the present approach and the Baranger-Kumar approach
[43]. First, as repeatedly emphasized, we introduce the LQRPA
collective massess in place of the cranking masses. Second, we
take into account the quadrupole-pairing force (in addition to
the monopole-pairing force), which brings about the time-odd
effects on the collective masses. Third, we exactly solve the
CHB self-consistent problem, Eq. (21), at every point on the
(β, γ ) plane using the gradient method, while in the Baranger-
Kumar works the CHB Hamiltonian is replaced with a Nilsson-
like single-particle model Hamiltonian. Fourth, we do not
introduce the so-called core contributions to the collective
masses, although we use the effective charges to renormalize
the core polarization effects (outside of the model space
consisting of two major shells) into the quadrupole operators,
We shall see that we can well reproduce the major character-
istics of the experimental data without introducing such core
contributions to the collective masses. Fifth, most importantly,
the theoretical framework developed in this article is quite
general, that is, it can be used in conjunction with modern
density functionals going far beyond the P + Q force model.

B. Collective potentials and pairing gaps

We show in Fig. 1 the collective potentials V (β,γ )
calculated for 68,70,72Se. It is seen that two local minima always
appear both at the oblate (γ = 60◦) and prolate (γ = 0◦)
shapes and, in all these nuclei, the oblate minimum is lower
than the prolate minimum. The energy difference between
them is, however, only several hundred keV and the potential
barrier is low in the direction of the triaxial shape (with respect
to γ ) indicating the γ -soft character of these nuclei. In Fig. 1
we also show the collective paths (connecting the oblate and
prolate minima) determined by using the 1D version of the
ASCC method [47]. It is seen that they always run through the
triaxial valley and never go through the spherical shape.

In Fig. 2, the monopole-pairing and quadrupole-pairing
gaps calculated for 68Se are displayed. They show a sig-
nificant (β,γ ) dependence. Broadly speaking, the monopole
pairing decreases while the quadrupole pairing increases as β

increases.

C. Properties of the LQRPA modes

In Fig. 3 the frequencies squared ω2
i (β,γ ) of various

LQRPA modes calculated for 68Se are plotted as functions
of β and γ . In the region of the (β,γ ) plane where the
collective potential energy is less than about 5 MeV, we can
easily identify two collective modes among many LQRPA
modes, whose ω2

i (β,γ ) are much lower than those of other
modes. Therefore we adopt the two lowest-frequency modes
to derive the collective Hamiltonian. This result of the
numerical calculation supports our assumption that there exists
a 2D hypersurface associated with large-amplitude quadrupole
shape vibrations, which is approximately decoupled from other
degrees of freedom. The situation changes when the collective
potential energy exceeds about 5 MeV and/or the monopole-
pairing gap becomes small. A typical example is presented in

FIG. 1. (Color online) Collective potential V (β,γ ) for 68,70,72Se.
The regions higher than 3 MeV (measured from the oblate HB
minima) are drawn by the rose-brown color. 1D collective paths
connecting the oblate and prolate local minima are determined by
using the ASCC method and depicted with bold red lines.

the bottom panel of Fig. 3. It becomes hard to identify two
collective modes that are well separated from other modes
when β > 0.4, where the collective potential energy is high
(see Fig. 1) and the monopole-pairing gap becomes small
(see Fig. 2). In this example, the second-lowest LQRPA
mode in the 0.4 < β < 0.5 region has pairing-vibrational
character, but becomes noncollective for β > 0.5. In fact,
many noncollective two-quasiparticle modes appear in its
neighborhood. This region in the (β,γ ) plane is not important,
however, because only tails of the collective wave function
enter into this region.
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FIG. 2. (Color online) Monopole-pairing and quadrupole-pairing
gaps for neutrons of 68Se are plotted in the (β,γ ) deformation plane.
(upper left) Monopole pairing gap �

(n)
0 . (lower left) Quadrupole

pairing gap �
(n)
20 . (lower right) Quadrupole pairing gap �

(n)
22 . See

Ref. [46] for definitions of �
(n)
0 ,�

(n)
20 , and �

(n)
22 .

It may be useful to set up a prescription that works even in
a difficult situation where it is not apparent how to choose
two collective LQRPA modes. We find that the following
prescription always works well for selecting two collective
modes among many LQRPA modes. This may be called a
minimal metric criterion. At each point on the (β,γ ) plane,
we evaluate the vibrational part of the metric W (β,γ ) given
by Eq. (44) for all combinations of two LQRPA modes, and
find the pair that gives the minimum value. We show in
Fig. 4 how this prescription actually works. In this figure,
the W (β,γ ) values are plotted as functions of β and γ for
many pairs of the LQRPA modes. In the situations where
the two lowest-frequency LQRPA modes are well separated
from other modes, this prescription gives the same results
as choosing the two lowest-frequency modes (see the top and
middle panels). However, a pair of the LQRPA modes different
from the lowest two modes is chosen by this prescription in the
region mentioned previously (the bottom panel). This choice
may be better than that using the lowest-frequency criterion
because we often find that a normal mode of pairing vibrational
character becomes the second-lowest LQRPA mode when the
monopole-pairing gap significantly decreases in the region of
large β. The small values of the vibrational metric implies that
the direction of the infinitesimal displacement associated with
the pair of the LQRPA modes has a large projection onto the
(β,γ ) plane. Therefore, this prescription may be well suited
to our purpose of deriving the collective Hamiltonian for the
(β,γ ) variables. It remains as an interesting open question for
the future to examine whether or not the explicit inclusion of
the pairing vibrational degree of freedom as another collective
variable will give us a better description in such situations.

D. Vibrational masses

In Fig. 5 the vibrational masses calculated for 68Se are
displayed. We see that their values exhibit a significant
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FIG. 3. Frequencies squared ω2 of the LQRPA modes calculated
for 68Se are plotted as functions of β or γ . The LQRPA modes
adopted for calculation of the vibrational masses are connected with
solid lines. (top) Dependence on γ at β = 0.3. (middle) Dependence
on β along the γ = 0.5◦ line. (bottom) Dependence on β along the
γ = 30.5◦ line.

variation in the (β,γ ) plane. In particular, the increase in the
large β region is remarkable.

Figure 6 shows how the ratios of the LQRPA vibrational
masses to the IB vibrational masses vary on the (β,γ ) plane.
It is clearly seen that the LQRPA vibrational masses are
considerably larger than the IB vibrational masses and their
ratios change depending on β and γ . In this calculation, the IB
vibrational masses are evaluated using the well-known formula

D
(IB)
ξi ξj

(β,γ ) = 2
∑
µν̄

〈µν̄| ∂ĤCHB
∂ξi

|0〉 〈0| ∂ĤCHB
∂ξj

|µν̄〉
[Eµ(β,γ ) + Eν̄(β,γ )]3

,

(ξi = β or γ ), (52)

where Eµ(β,γ ), |0〉, and |µν̄〉 denote the quasiparticle energy,
the CHB state |φ(β,γ )〉, and the two-quasiparticle state
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FIG. 4. Dependence on β and γ of the vibrational part of the
metric W (β,γ ) calculated for 68Se. (top) Dependence on γ at
β = 0.3. (middle) Dependence on β along the γ = 0.5◦ line. (bottom)
Dependence on β along the γ = 30.5◦ line. The cross symbols
indicate values of the vibrational metric calculated for various choices
of two LQRPA modes from among the lowest 40 LQRPA modes; the
lowest mode is always chosen and the other is from the remaining
39 modes. The smallest vibrational metric is shown by solid line. For
reference, the vibrational metric calculated using the IB vibrational
mass is indicated by broken lines.

a†
µa

†
ν̄ |φ(β,γ )〉, respectively (see Ref. [46] for the meaning

of the indices µ and ν̄).
The vibrational masses calculated for 70,72Se exhibit behav-

iors similar to those for 68Se.

E. Rotational masses

In Fig. 7, the LQRPA rotational masses Dk(β,γ ) cal-
culated for 68Se are displayed. Similarly to the vibra-
tional masses discussed previously, the LQRPA rotational
masses also exhibit a remarkable variation over the (β,γ )

FIG. 5. (Color online) Vibrational masses Dββ (β,γ ),
Dβγ (β,γ )/β, and Dγγ (β,γ )/β2, in units of MeV−1 calculated
for 68Se.

plane, indicating a significant deviation from the irrotational
property.

Figure 8 shows how the ratios of the LQRPA rotational
masses Dk(β,γ ) to the IB cranking masses D

(IB)
k (β,γ ) vary on

the (β,γ ) plane. The rotational masses calculated for 70,72Se
exhibit behaviors similar to those for 68Se.

As we have seen in Figs. 5 through 8, not only the
vibrational and rotational masses, but also their ratios to
the IB cranking masses exhibit an intricate dependence on
β and γ . For instance, it is clearly seen that the ratios,
Dk(β,γ )/D(IB)

k (β,γ ), gradually increase as β decreases. This
result is consistent with the calculation by Hamamoto and
Nazarewicz [54], where it is shown that the ratio of the Migdal
term to the cranking term in the rotational moment of inertia
(about the first axis) increases as β decreases. Needless to say,
the Migdal term (also called the Thouless-Valation correction)
corresponds to the time-odd mean-field contribution taken into
account in the LQRPA rotational masses so that the result of
Ref. [54] implies that the ratio D1(β,γ )/D(IB)

1 (β,γ ), increases
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FIG. 6. (Color online) Ratios of the LQRPA vibrational masses
to the IB vibrational masses Dββ/D

(IB)
ββ and Dγγ /D(IB)

γ γ , calculated for
68Se.

as β decreases, in agreement with our result. To understand
this behavior, it is important to note that, in the present
calculation, the dynamical effect of the time-odd mean-field
on D1(β,γ ) is associated with the K = 1 component of
the quadrupole-pairing interaction and it always works and
increase the rotational masses, in contrast to the behavior of the
static quantities like the magnitude of the quadrupole-pairing
gaps �20 and �22, which diminish in the spherical shape
limit. Obviously, this qualitative feature holds true irrespective
of the details of our choice of the monopole-pairing and
quadrupole-pairing interaction strengths.

The previous results of the calculation obviously indicate
the need to take into account the time-odd contributions to
the vibrational and rotational masses by going beyond the IB
cranking approximation. In Refs. [29–32], a phenomenologi-
cal prescription is adopted to remedy the shortcoming of the
IB cranking masses; that is, a constant factor in the range 1.40–
1.45 is multiplied to the IB rotational masses. This prescription
is, however, insufficient in the following points. First, the
scaling only of the rotational masses (leaving the vibrational
masses aside) violates the symmetry requirement for the 5D
collective quadrupole Hamiltonian [1–3] (a similar comment
is made in Ref. [4]). Second, the ratios take different values for
different LQRPA collective masses (Dββ,Dβγ ,Dγγ ,D1,D2,
and D3). Third, for every collective mass, the ratio exhibits
an intricate dependence on β and γ . Thus, it may be quite
insufficient to simulate the time-odd mean-field contributions
to the collective masses by scaling the IB cranking masses
with a common multiplicative factor.

FIG. 7. (Color online) Rotational masses Dk(β,γ ) in units of
MeV−1, calculated for 68Se. See Eq. (39) for the relation with the
rotational moments of inertia Jk(β,γ ).

F. Check of self-consistency along the collective path

As discussed in Sec. II, the CHB + LQRPA method is a
practical approximation to the ASCC method. It is certainly
desirable to examine the accuracy of this approximation by
carrying out a fully self-consistent calculation. Although, at
the present time, such a calculation is too demanding to carry
out for a whole region of the (β,γ ) plane, we can check
the accuracy at least along the 1D collective path. This is
because the 1D collective path is determined by carrying out
a fully self-consistent ASCC calculation for a single set of the
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FIG. 8. (Color online) Ratios of the LQRPA rotational masses to
the IB rotational masses, Dk(β,γ )/D(IB)

k (β,γ ), calculated for 68Se.

collective coordinate and momentum. The 1D collective paths
projected onto the (β,γ ) plane are displayed in Fig. 1. Let us
use a notation |φ(q)〉 for the moving-frame HB state obtained
by self-consistently solving the ASCC equations for a single
collective coordinate q [46,47]. To distinguish from it, we write
the CHB state as |φ(β(q), γ (q))〉. This notation means that
the values of β and γ are specified by the collective coordinate
q along the collective path. In other words, |φ(β(q), γ (q))〉
has the same expectation values of the quadrupole operator as
those of |φ(q)〉. It is important to note, however, that they
are different from each other because |φ(β(q), γ (q))〉 is a
solution of the CHB equation, which is an approximation of the
moving-frame HB equation. Let us evaluate various physical
quantities using the two state vectors and compare the results.
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FIG. 9. (Color online) Comparison of physical quantities eval-
uated with the CHB + LQRPA approximation and those with the
ASCC method. Both calculations are carried out along the 1D
collective path for 68Se and the results are plotted as a function
of γ (q). From the top to the bottom: (a) the collective potential,
(b) monopole-pairing gaps, �

(n))
0 and �

(p)
0 , for neutrons and protons,

(c) frequencies squared ω2 of the lowest and the second-lowest
modes obtained by solving the moving-frame QRPA and the LQRPA
equations, and (d) vibrational masses, Dββ , Dβγ /β, and Dγγ /β2,
and (e) rotational masses Dk . In almost all cases, the results of the
two calculations are indistinguishable because they agree within the
widths of the line.

In Fig. 9 various physical quantities (the pairing gaps,
the collective potential, the frequencies of the local normal
modes, the rotational masses, and vibrational masses) cal-
culated using the moving-frame HB state |φ(q)〉 and the
CHB state |φ(β(q), γ (q))〉 are presented and compared. These
calculations are carried out along the 1D collective path
for 68Se. Apparently, the results of the two calculations are
indistinguishable in almost all cases because they agree within
the widths of the line. This good agreement implies that the
CHB + LQRPA is an excellent approximation to the ASCC
method along the collective path on the (β,γ ) plane. As
we shall see in the next section, collective wave functions
distribute around the collective path. Therefore, it may be
reasonable to expect that the CHB + LQRPA method is a
good approximation to the ASCC method and suited, at least,
for describing the oblate-prolate shape mixing dynamics in
68,70,72Se.
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FIG. 10. Excitation spectra and B(E2) values calculated for 68Se by means of the CHB + LQRPA method (denoted CHB + LQRPA) and
experimental data [5–7]. For comparison, results calculated using the IB cranking masses (denoted CHB + IB) and those obtained using the
(1 + 3)D version of the ASCC method [denoted (1 + 3)D ASCC] are also shown. Only B(E2)’s larger than 1 Weisskopf unit [in the (1+3)D
ASCC and/or the CHB + LQRPA calculations] are shown in units of e2fm4.

IV. LARGE-AMPLITUDE SHAPE-MIXING
PROPERTIES OF 68,70,72Se

We calculated collective wave functions solving the col-
lective Schrödinger equation (40) and evaluated excitation
spectra, quadrupole transition probabilities, and spectroscopic
quadrupole moments. The results for low-lying states in
68,70,72Se are presented in Figs. 10–15.

In Figs. 10, 12, and 14, excitation spectra and B(E2) values
for 68Se, 70Se, and 72Se, calculated with the CHB + LQRPA
method, are displayed together with the experimental data.
The eigenstates are labeled with Iπ = 0+, 2+, 4+, and 6+. In
these figures, results obtained using the IB cranking masses
are also shown for the sake of comparison. Furthermore, the
results calculated with the (1 + 3)D version of the ASCC
method reported in our previous article [47] are shown also for

FIG. 11. (Color online) Vibrational wave functions squared β4|�Ik(β,γ )|2, calculated for 68Se.
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FIG. 12. Same as Fig. 10 but for 70Se. Experimental data are taken from Refs. [8,41].

comparison with the 5D calculations. We use the abbreviation
(1 + 3)D to indicate that a single collective coordinate along
the collective path describing large-amplitude vibration and
three rotational angles associated with the rotational motion
are taken into account in these calculations. The classification
of the calculated low-lying states into families of two or
three rotational bands is made according to the properties
of their vibrational wave functions. These vibrational wave
functions are displayed in Figs. 11, 13, and 15. In these
figures, only the β4 factor in the volume element (49) are

multiplied to the vibrational wave functions squared leaving
the sin 3γ factor aside. This is because all vibrational wave
functions look triaxial and the probability at the oblate and
prolate shapes vanish if the sin 3γ factor is multiplied by
them.

Let us first summarize the results of the CHB + LQRPA
calculation. The most conspicuous feature of the low-lying
states in these proton-rich Se isotopes is the dominance of
the large-amplitude vibrational motion in the triaxial shape
degree of freedom. In general, the vibrational wave function

FIG. 13. (Color online) Same as Fig. 11 but for 70Se.
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FIG. 14. Same as Fig. 10 but for 72Se. Experimental data are taken from Refs. [8,42].

extends over the triaxial region between the oblate (γ = 60◦)
and the prolate (γ = 0◦) shapes. In particular, this is the case
for the 0+ states causing their peculiar behaviors; for instance,
we obtain two excited 0+ states located slightly below or
above the 2+

2 state. Relative positions between these excited
states are quite sensitive to the interplay of large-amplitude
γ -vibrational modes and the β-vibrational modes. This result
of the calculation is consistent with the available experimental
data where the excited 0+ state has not yet been found, but
more experimental data are needed to examine the validity of

the theoretical prediction. In the following, let us examine the
characteristic features of the theoretical spectra more closely
for individual nuclei.

For 68Se, we obtain the third band in low energy. The
0+

2 and 2+
3 states belonging to this band are also shown in

Fig. 10. Their vibrational wave functions exhibit nodes in the
β direction (see Fig. 11) indicating that a β-vibrational mode
is excited on top of the large-amplitude γ vibrations. As a
matter of course, this kind of state is outside of the scope
of the (1 + 3)D calculation. The vibrational wave functions

FIG. 15. (Color online) Same as Fig. 11 but for 72Se.
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FIG. 16. Spectroscopic quadrupole moments for 68,70,72Se. Values
calculated with the LQRPA collective masses are shown with the
triangles. For comparison, values calculated with the IB collective
masses and those obtained with the (1 + 3)D version of the ASCC
method are also shown with the squares and the circles, respectively.
The filled symbols show the values for the yrast states, while the open
symbols those for the yrare states.

of the yrast 2+
1 and 4+

1 states exhibit localization in a region
around the oblate shape, while the yrare 2+

2 , 4+
2 , and 6+

2 states
localize around the prolate shape. It is apparent, however, that
all the wave functions significantly extend from γ = 0◦ to
60◦ over the triaxial region, indicating the γ -soft character of
these states. In particular, the yrare 4+

2 and 6+
2 wave functions

exhibit a two-peak structure consisting of the prolate and oblate
peaks. The peaks of the vibrational wave function gradually
shift toward a region of larger β as the angular momentum
increases. This is a centrifugal effect decreasing the rotational
energy by increasing the moment of inertia. In the (1 + 3)D
calculation, this effect is absent because the collective path is
fixed at the ground state. Thus, the 5D calculation yields,
for example, a much larger value for B(E2; 6+

1 → 4+
1 ) in

comparison with the (1 + 3)D calculation. Actually, in the
5D CHB + LQRPA calculation, the wave function of the yrast
6+

1 state localizes in the triaxial region (see Fig. 11) where
the moment of inertia takes a maximum value. This leads to
a small value for the spectroscopic quadrupole moment (see
Fig. 16) because of the cancellation between the contributions
from the oblate-like and prolate-like regions. This cancel-
lation mechanism due to the large-amplitude γ fluctuation
is effective also in other states; although the spectroscopic
quadrupole moments of the yrast 2+

1 and 4+
1 (yrare 2+

2 , 4+
2 , and

6+
2 ) states are positive (negative) indicating their oblate-like

(prolate-like) character, their absolute magnitudes are rather
small.

The E2-transition probabilities exhibit a pattern reminis-
cent of the γ -unstable situation; for instance, B(E2; 6+

2 →
6+

1 ), B(E2; 4+
2 → 4+

1 ), and B(E2; 2+
2 → 2+

1 ) are much larger
than B(E2; 6+

2 → 4+
1 ), B(E2; 4+

2 → 2+
1 ), and B(E2; 2+

2 →
0+

1 ); see Fig. 10. Thus, the low-lying states in 68Se may be
characterized as an intermediate situation between the oblate-
prolate shape coexistence and the Wilets-Jean γ -unstable
model [55]. Using the phenomenological Bohr-Mottelson
collective Hamiltonian, we showed in Ref. [56] that it is
possible to describe the oblate-prolate shape coexistence and
the γ -unstable situation in a unified way varying a few
parameters controlling the degree of oblate-prolate asymmetry
in the collective potential and the collective masses. The
two-peak structure seen in the 4+

2 and 6+
2 states may be

considered as one of the characteristics of the intermediate
situation. It thus appears that the excitation spectrum for
68Se (Fig. 10) serves as a typical example of the transitional
phenomena from the γ -unstable to the oblate-prolate shape
coexistence situations.

Let us make a comparison between the spectra in Fig. 10
obtained with the LQRPA collective masses and that with
the IB cranking masses. It is obvious that the excitation
energies are appreciably overestimated in the latter. This result
is as expected from the too low values of the IB cranking
masses. The result of our calculation is in qualitative agree-
ment with the HFB-based configuration-mixing calculation
reported by Ljungvall et al. [8] in that both calculations
indicate the oblate (prolate) dominance for the yrast (yrare)
band in 68Se. Quite recently, the B(E2; 2+

1 → 0+
1 ) value

was measured in the experiment [7]. The calculated value
(492 e2fm4) is in fair agreement with the experimental data
(432 e2fm4).

The result of the calculation for 70Se (Figs. 12 and 13)
is similar to that for 68Se. The vibrational wave functions of
the yrast 2+

1 , 4+
1 , and 6+

1 states localize in a region around
the oblate shape, exhibiting, at the same time, long tails
in the triaxial direction. We note here that, differently from
the 68Se case, the 6+

1 wave function keeps the oblate-like
structure. However, the yrare 2+

2 , 4+
2 , and 6+

2 states localize
around the prolate shape, exhibiting, at the same time, small
secondary bumps around the oblate shape. For the yrare 2+

2
state, we obtain a strong oblate-prolate shape mixing in the
(1 + 3)D calculation [47]. This mixing becomes weaker in
the present 5D calculation, resulting in the reduction of the
B(E2; 4+

1 → 2+
2 ) value. Similarly to 68Se, we obtain two

excited 0+ states in low energy. We see considerable oblate-
prolate shape mixings in their vibrational wave functions,
but, somewhat differently from those in 68Se, the second and
third 0+ states in 70Se exhibit clear peaks at the oblate and
prolate shapes, respectively, Their energy ordering is quite
sensitive to the interplay of the large-amplitude γ vibration
and the β vibrational modes. The calculated spectrum for
70Se is in fair agreement with the recent experimental data
[41], although the B(E2) values between the yrast states are
overestimated.

The result of the calculation for 72Se (Figs. 14 and 15)
presents a feature somewhat different from those for 68Se and
70Se; that is, the yrast 2+

1 , 4+
1 , and 6+

1 states localize around
the prolate shape instead of the oblate shape. The localization
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develops with increasing angular momentum. Nevertheless,
similarly to the 68,70Se cases, the yrare 2+

2 , 4+
2 , and 6+

2 states
exhibit the two-peak structure. The spectroscopic quadrupole
moments of the 2+

1 , 4+
1 , and 6+

1 states are negative, and their
absolute magnitude increases with increasing angular momen-
tum (see Fig. 16) reflecting the developing prolate character in
the yrast band, while those of the yrare states are small because
of the two-peak structure of their vibrational wave functions,
that is, due to the cancellation of the contributions from the
prolate-like and oblate-like regions. Also for 72Se, we obtain
two excited 0+ states in low energy, but they show features
somewhat different from the corresponding excited 0+ states
in 68,70Se. Specifically, the vibrational wave functions of the
second and third 0+ states exhibit peaks at the prolate and
oblate shape, respectively. As seen in Fig. 14, our results of
the calculation for the excitation energies and B(E2) values are
in good agreement with the recent experimental data [8] for the
yrast 2+

1 , 4+
1 , and 6+

1 states in 72Se. Experimental E2-transition
data are awaited for understanding the nature of the observed
excited band.

V. CONCLUSION

On the basis of the ASCC method, we developed a practical
microscopic approach, called CHFB + LQRPA, of deriving
the 5D quadrupole collective Hamiltonian and confirmed
its efficiency by applying it to the oblate-prolate shape
coexistence/mixing phenomena in proton-rich 68,70,72Se. The
results of the numerical calculation for the excitation energies
and B(E2) values are in good agreement with the recent
experimental data [7,8] for the yrast 2+

1 , 4+
1 , and 6+

1 states
in these nuclei. It is shown that the time-odd components of
the moving mean-field significantly increase the vibrational
and rotational collective masses and make the theoretical
spectra in much better agreement with the experimental data
than calculations using the IB cranking masses. Our analysis
clearly indicates that low-lying states in these nuclei possess

a transitional character between the oblate-prolate shape
coexistence and the so-called γ -unstable situation where large-
amplitude triaxial-shape fluctuations play a dominant role.

Finally, we would like to list a few issues for the future
that seem particularly interesting. First, a fully self-consistent
solution of the ASCC equations for determining the 2D
collective hypersurface and examination of the validity of the
approximations adopted in this article in the derivation of the
CHFB + LQRPA scheme. Second, the application to various
kinds of collective spectra associated with large-amplitude
collective motions near the yrast lines (as listed in Ref. [28]).
Third, the possible extension of the quadrupole collective
Hamiltonian by explicitly treating the pairing vibrational
degrees of freedom as additional collective coordinates.
Fourth, the use of the Skyrme energy functionals + density-
dependent contact pairing interaction in place of the
P + Q force and then modern density functionals currently
under active development. Fifth, the application of the
CHFB + LQRPA scheme to fission dynamics. The LQRPA
approach enables us to evaluate, without the need of numerical
derivatives, the collective inertia masses including the time-
odd mean-field effects.
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