
RAPID COMMUNICATIONS

PHYSICAL REVIEW C 84, 061302(R) (2011)

Shape fluctuations in the ground and excited 0+ states of 30,32,34Mg
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Large-amplitude collective dynamics of shape phase transition in the low-lying states of 30−36Mg is investigated
by solving the five-dimensional (5D) quadrupole collective Schrödinger equation. The collective masses and
potentials of the 5D collective Hamiltonian are microscopically derived with use of the constrained Hartree-
Fock-Bogoliubov plus local quasiparticle random phase approximation method. Good agreement with the recent
experimental data is obtained for the excited 0+ states as well as the ground bands. For 30Mg, the shape coexistence
picture that the deformed excited 0+ state coexists with the spherical ground state approximately holds. On the
other hand, large-amplitude quadrupole-shaped fluctuations dominate in both the ground and the excited 0+ states
in 32Mg, providing a picture that is different from the interpretation of the “coexisting spherical excited 0+ state”
based on the naive inversion picture of the spherical and deformed configurations.
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Nuclei exhibit a variety of shapes in their ground and
excited states. A feature of the quantum phase transition of
a finite system is that the order parameters (shape deformation
parameters) always fluctuate and vary with the particle number.
Especially, the large-amplitude shape fluctuations play a
crucial role in transitional (critical) regions. Spectroscopic
studies of low-lying excited states in transitional nuclei are
of great interest to observe such unique features of the finite
quantum systems.

Low-lying states of neutron-rich nuclei at approximately
N = 20 attract great interest, as the spherical configura-
tions associated with the magic number disappear in the
ground states. In neutron-rich Mg isotopes, the increase of
the excitation energy ratio E(41

+)/E(21
+) [1–3] and the

enhancement of B(E2; 21
+ → 01

+) from 30Mg to 34Mg [4–6]
indicate a kind of quantum phase transition from spherical to
deformed shapes taking place around 32Mg. These experiments
stimulate microscopic investigations on quadrupole collective
dynamics unique to this region of the nuclear chart with
various theoretical approaches: the shell model [7–10], the
Hartree-Fock-Bogoliubov (HFB) method [11,12], the parity-
projected Hartree-Fock (HF) [13], the quasiparticle random
phase approximation (QRPA) [14,15], the angular-momentum
projected generator coordinate method (GCM) with [16] and
without [17,18] restriction to the axial symmetry, and the
antisymmetrized molecular dynamics [19].

Quite recently, excited 0+ states were found in 30Mg
and 32Mg at 1.789 MeV and 1.058 MeV, respectively, and
their characters are presently under hot discussion [20–23].
For 30Mg, the excited 02

+ state is interpreted as a prolately
deformed state which coexists with the spherical ground state.
For 32Mg, from the observed population of the excited 02

+
state in the (t,p) reaction on 30Mg, it is suggested [22] that
the 02

+ state is a spherical state coexisting with the deformed
ground state and that their relative energies are inverted at
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N = 20. However, available shell-model and GCM calcula-
tions considerably overestimate its excitation energy (1.4–3.1
MeV) [9,10,16,21]. It is therefore a challenge for modern
microscopic theories of nuclear structure to clarify the nature
of the excited 02

+ states. For understanding shape dynamics
in low-lying collective excited states of Mg isotopes near
N = 20, it is certainly desirable to develop a theory capable
of describing various situations in a unified manner, including,
at least, (1) an ideal shape coexistence limit where the wave
function of an individual quantum state is well localized in the
deformation space and (2) a transitional situation where the
large-amplitude shape fluctuations dominate.

In this Rapid Communication, we microscopically derive
the five-dimensional (5D) quadrupole collective Hamiltonian
using the constrained Hartree-Fock-Bogoliubov (CHFB) plus
local QRPA (LQRPA) method [24]. The 5D collective Hamil-
tonian takes into account all the five quadrupole degrees of
freedom: the axial and triaxial quadrupole deformations (β, γ )
and the three Euler angles. This approach is suitable for our
purpose of describing a variety of quadrupole collective phe-
nomena in a unified way. Another advantage is that the time-
odd mean-field contributions are taken into account in evalu-
ating the vibrational and rotational inertial functions. In spite
of their importance for correctly describing collective excited
states, the time-odd contributions are ignored in the widely
used Inglis-Belyaev cranking formula for inertial functions.
The CHFB + LQRPA method has been successfully applied
to various large-amplitude collective dynamics, including the
oblate-prolate shaped coexistence phenomena in Se and Kr
isotopes [24,25], the γ -soft dynamics in sd-shell nuclei [26],
and the shape phase transition in neutron-rich Cr isotopes [27].
A preliminary version of this work was reported in Ref. [28].

The 5D quadrupole collective Hamiltonian is written as

Hcoll = Tvib + Trot + V (β, γ ), (1)

Tvib = 1

2
Dββ(β, γ )β̇2 + Dβγ (β, γ )β̇γ̇ + 1

2
Dγγ (β, γ )γ̇ 2,

(2)
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Trot = 1

2

3∑
k=1

Jk(β, γ )ω2
k, (3)

where Tvib and Trot are the vibrational and rotational kinetic
energies, respectively, and V is the collective potential. The
vibrational collective masses Dββ , Dβγ , and Dγγ are the
inertial functions for the (β, γ ) coordinates. The rotational
moments of inertia Jk associated with the three components
of the rotational angular velocities ωk are defined with respect
to the principal axes. In the CHFB + LQRPA method, the
collective potential is calculated with the CHFB equation
with four constraints on the two quadrupole operators and
the proton and neutron numbers. The inertial functions in
the collective Hamiltonian are determined from the LQRPA
normal modes locally defined for each CHFB state in the
(β, γ ) plane. The equations to find the local normal modes are
similar to the well-known QRPA equations, but the equations
are solved on top of the nonequilibrium CHFB states. Two
LQRPA solutions representing quadrupole shaped motion are
selected for the calculation of the vibrational inertial functions.
After quantizing the collective Hamiltonian (1), we solve the
5D collective Schrödinger equation and obtain collective wave
functions

�αIM (β, γ,�) =
∑

K=even

�αIK (β, γ )〈�|IMK〉, (4)

where �αIK (β, γ ) are the vibrational wave functions and
〈�|IMK〉 are the rotational wave functions defined in terms of
D functions DI

MK (�). We then evaluate E2 matrix elements.
More details of this approach are given in Ref. [24].

We solve the CHFB + LQRPA equations employing, as a
microscopic Hamiltonian, the pairing-plus-quadrupole (P +
Q) model including the quadrupole-pairing interaction. As
an active model space, the two major harmonic oscillator
shells (sd and pf shells) are taken into account for both
neutrons and protons. To determine the parameters in the
P + Q Hamiltonian, we first perform Skyrme-HFB calcu-
lations with the SkM* functional and the surface pairing
functional using the HFBTHO code [29]. The pairing strength
(V0 = −374 MeV fm−3, with a cutoff quasiparticle energy of
60 MeV) is fixed so as to reproduce the experimental neutron
gap of 30Ne (1.26 MeV). We then determine the parameters for
each nucleus in the following way. The single-particle energies
are determined by means of the constrained Skyrme-HFB
calculation at the spherical shape. The resulting single-particle

energies (in the canonical basis) are then scaled with the
effective mass of the SkM* functional m∗/m = 0.79, since the
P + Q model is designed to be used for single-particle states
whose effective mass is equal to the bare nucleon mass. In
32Mg, the N = 20 shell gap between d3/2 and f7/2 is 3.7 MeV
for the SkM* functional, and it becomes 2.9 MeV after the
effective mass scaling. This value is appreciably smaller than
the standard modified oscillator value 4.5 MeV [30]. This
spacing almost stays constant for 30−36Mg. The strengths
of the monopole-pairing interaction are determined to repro-
duce the pairing gaps obtained in the Skyrme-HFB calculations
at the spherical shape. The strength of the quadrupole particle-
hole interaction is determined to reproduce the magnitude
of the axial quadrupole deformation β of the Skyrme-HFB
minimum. The strengths of the quadrupole-pairing interaction
are determined so as to fulfill the self-consistency condition
[31]. We use the quadrupole polarization charge δepol = 0.5
for both neutrons and protons when evaluating E2 matrix
elements. We solve the CHFB + LQRPA equations at 3600 β-
γ mesh points in the region 0 < β < βmax and 0◦ < γ < 60◦,
with βmax = 0.5 for 30Mg and 0.6 for 32,34,36Mg.

Our theoretical framework is quite general and it can be
used in conjunction with various Skyrme forces or modern
density functionals going beyond the P + Q model. Then
the effects of weakly bound neutrons and coupling to the
continuum on the properties of the low-lying collective exci-
tations, discussed in Refs. [14,15], can be taken into account,
for example, by solving the CHFB + LQRPA equations in
the three-dimensional (3D) coordinate mesh representation.
However, it requires a large-scale calculation with modern
parallel processors and it remains a challenging future subject.
A step toward this goal has recently been carried out for axially
symmetric cases [27].

Figure 1 shows the collective potentials V (β, γ ) for
30−36Mg. It is clearly seen that prolate deformation grows with
an increase in the neutron number. The collective potential
for 30Mg is very soft with respect to β. It has a minimum
at β = 0.11 and a local minimum at β = 0.33. The barrier
height between the two minima is only 0.24 MeV (measured
from the lower minimum). In 32Mg, in addition to the prolate
minimum at β = 0.33, a spherical local minimum (associated
with the N = 20 spherical shell gap) appears. The barrier
height between the two minima is 1.0 MeV (measured from
the lower minimum). The spherical local minimum disappears
in 34Mg and 36Mg, and the prolate minima become soft in

FIG. 1. (Color online) Collective potentials for 30−36Mg. The HFB equilibrium points are indicated by red circles.
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FIG. 2. (Color online) Comparison of calculated excitation ener-
gies of the 21

+ and 41
+ states (upper panel) and B(E2; 21

+ → 01
+)

values (lower panel) in 30−36Mg with experimental data [1–6].

the direction of triaxial deformation γ . In 34Mg, the potential
minimum is located at γ = 10◦.

In Fig. 2, calculated excitation energies and E2 transition
strengths are compared with the experimental data. The
lowering of the excitation energies of the 21

+ and 41
+

states and the increase of B(E2; 21
+ → 01

+) from 30Mg to
34Mg are well described in this calculation. The calculated
ratio of the excitation energies E(41

+)/E(21
+) increases as

2.37, 2.82, 3.26, and 3.26, while the ratio of the transition
strengths B(E2; 41

+ → 21
+)/B(E2; 21

+ → 01
+) decreases

as 2.03, 1.76, 1.43, and 1.47, in going from 30Mg to 36Mg.
Thus, the properties of the 21

+ and 41
+states gradually change

from vibrational to rotational with increasing neutron number.
Let us next discuss the properties of the 02

+ states and
the 2+ and 4+ states connected to the 02

+ states with
strong E2 transitions. The result of calculation is presented
in Fig. 3, together with the recent experimental data. The
calculated excitation energies of the 02

+ states are 1.353
and 0.986 MeV for 30Mg and 32Mg, respectively, in fair
agreement with the experimental data [21,22]. In particular,
the very low excitation energy of the 02

+ state in 32Mg is
well reproduced. In our calculation, more than 90% (80%)
of the collective wave functions for the yrast (excited) band
members are composed of the K = 0 component. Therefore,
we denote the ground band by “the K = 01 band,” and the
excited band by “the K = 02 band.” The 2+ and 4+ states
belonging to the K = 02 band appear as the second 2+ and
4+ states in 30,32Mg, while they appear as the third 2+ and
4+ states in 34,36Mg. Accordingly, we use 22,3

+ and 42,3
+ to

collectively indicate the second or the third 2+ and 4+ states.
The calculated ratios of the excitation energies relative to the
excited 02

+ state [E(42,3
+) − E(02

+)]/[E(22,3
+) − E(02

+)]
are 3.18, 2.87, 3.25, and 3.00, for 30Mg, 32Mg, 34Mg, and 36Mg,
respectively. In the upper panel of Fig. 3 we also plot the rotor-
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FIG. 3. (Color online) Excitation energies of the excited 02
+,

22,3
+, and 42,3

+ states (upper panel) and the ratio B(E2; 02
+ →

21
+)/B(E2; 01

+ → 22,3
+) of the interband E2 transition strengths

between the K = 02 and K = 01 bands (lower panel). Experimental
data are taken from Refs. [21,22]. See text for details.

model prediction for the excitation energies of the 4+ states
estimated from the 0+–2+ spacings in the K = 02 bands. The
deviation from the rotor-model prediction is largest in 32Mg,
indicating importance of shape-fluctuation effects. Although
the calculated excitation spectrum of the K = 02 band in
30Mg looks rotational, we find a significant deviation from
the rotor-model prediction in the E2 transition properties. The
calculated ratios of the E2 transition strengths B(E2; 42,3

+ →
22,3

+)/B(E2; 22,3
+ → 02

+) are 1.05, 1.54, 1.47, and 1.51 for
30−36Mg, respectively. The deviation from the rotor-model
value (1.43) is largest in 30Mg. The significant deviation from
the simple rotor-model pattern of the K = 02 bands in 30Mg
and 32Mg, noticed above, can be seen more drastically in the
interband E2 transition properties. In the lower panel of Fig. 3,
we plot the ratio B(E2; 02

+ → 21
+)/B(E2; 01

+ → 22,3
+) of

the interband transition strengths between the K = 01 and
K = 02 bands. If the K = 01 and K = 02 bands are composed
of only the K = 0 component and the intrinsic structures in the
(β, γ ) plane are the same within the band members, this ratio
should be one. These ratios for 34Mg and 36Mg are close to one,
indicating that the change of the intrinsic structure between the
0+ and 2+ states is small. In contrast, the ratios for 30Mg and
32Mg are larger than 10, indicating a remarkable change in
the shape-fluctuation properties between the 0+ and 2+ states
belonging to the K = 01 and K = 02 bands. The enhancement
of the ratios is mainly due to the large B(E2; 02

+ → 21
+)

values whose origin is discussed below.
Figure 4 shows the vibrational wave functions squared∑
K |�αIK (β, γ )|2. Let us first examine the character change

of the ground state from 30Mg to 34Mg. In 30Mg, the vibrational
wave function of the ground 01

+ state is distributed around
the spherical shape. In 32Mg, it is extended to the prolately
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FIG. 4. (Color online) Vibrational wave functions squared∑
K |�αIK (β, γ )|2 of the 01

+, 21
+, 02

+, and 22,3
+ states in 30−34Mg.

Contour lines are drawn at every eighth part of the maximum value.

deformed region. In 34Mg, it is distributed around the prolate
shape. From the behavior of the vibrational wave functions,
one can conclude that shape fluctuation in the ground 01

+ state
is largest in 32Mg. To understand the microscopic mechanism
of this change from 30Mg to 34Mg, it is necessary to take into
account not only the properties of the collective potential in
the β direction but also its curvature in the γ direction and the
collective kinetic energy (collective masses). This point will be
discussed in our forthcoming full-length paper. As suggested
from the behavior of the interband B(E2) ratio, the vibrational
wave functions of the 21

+ state are noticeably different from
those of the 01

+ state in 30Mg and 32Mg, while they are similar
in the case of 34Mg. Next, let us examine the vibrational
wave functions of the 02

+ and 22,3
+ states in 30−34Mg. It is

immediately seen that they exhibit one node in the β direction.
This is their common feature. In 30Mg and 32Mg, one bump
is seen in the spherical to weakly deformed region, while
the other bump is located in the prolately deformed region
around β = 0.3–0.4. The bump at the deformed region of
the 02

+ states and the extended structure of the 21
+ states

to the deformed region, which lead to an appreciable overlap
of their vibrational wave functions, are responsible for the
large interband B(E2; 02

+ → 21
+) values. In 34Mg, the node

is located near the peak of the vibrational wave function of the
01

+ state, suggesting that they have β-vibrational properties.
To further reveal the nature of the ground and excited 0+

states, it is important to examine not only their vibrational wave
functions but also their probability density distributions. Since
the 5D collective space is a curved space, the normalization
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FIG. 5. (Color online) (a) Vibrational wave functions squared
|�α,I=0,K=0(β, γ = 0.5◦)|2 of the 01

+ states in 30−34Mg. Their
values along the γ = 0.5◦ line are plotted as functions
of β. (b) Probability densities integrated over γ , P (β) ≡∫

dγ |�α,I=0,K=0(β, γ )|2|G(β, γ )|1/2, of the 01
+ states in 30−34Mg,

plotted as functions of β. (c) Same as (a) but for the 02
+ states.

(d) Same as (b) but for the 02
+ states.

condition for the vibrational wave functions is given by∫ ∑
K

|�αIK (β, γ )|2|G(β, γ )|1/2dβ dγ = 1, (5)

with the volume element

|G(β, γ )|1/2dβ dγ = 2β4
√

W (β, γ )R(β, γ ) sin 3γ dβ dγ,

(6)

W (β, γ ) = {Dββ(β, γ )Dγγ (β, γ )

− [Dβγ (β, γ )]2}β−2, (7)

R(β, γ ) = D1(β, γ )D2(β, γ )D3(β, γ ), (8)

where Dk=1,2,3 are the rotational masses defined through
Jk = 4β2Dk sin2(γ − 2πk/3). Thus, the probability density
of taking a shape with specific values of (β, γ ) is given by∑

K |�αIK (β, γ )|2|G(β, γ )|1/2. Due to the β4 factor in the
volume element, the spherical peak of the vibrational wave
function disappears in the probability density distribution.
Accordingly, it will give us a picture that is quite different
from that of the wave function. Needless to say, it is important
to examine both aspects to understand the nature of individual
quantum states.

In Fig. 5, we display the probability density integrated over
γ , P (β) ≡ ∫

dγ |�α,I=0,K=0(β, γ )|2|G(β, γ )|1/2, of finding a
shape with a specific value of β, together with the vibrational
wave functions squared |�α,I=0,K=0(β, γ )|2 for the ground
and excited 0+ states (α = 1 and 2). Let us first look at the
upper panels for the ground states. We note that, as expected,
the spherical peak of the vibrational wave function for 30Mg in
Fig. 5(a) corresponds to the peak at β � 0.15 of the probability
density in Fig. 5(b). In Fig. 5(b), the peak position moves
toward a larger value of β in going from 30Mg to 34Mg. The
distribution for 32Mg is much broader than those for 30Mg and
34Mg.

Next, let us look at the lower panels in Fig. 5 for the
excited states. In Fig. 5(c), the vibrational wave functions for
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30Mg and 32Mg exhibit the maximum peak at the spherical
shape. However, these peaks become small and are shifted
to the region with β � 0.1 and β � 0.2 in 30Mg and 32Mg,
respectively, in Fig. 5(d). On the other hand, the second peaks
at β � 0.3 and β ≈ 0.4 in 30Mg and 32Mg, respectively, seen
in Fig. 5(c), become the prominent peaks in Fig. 5(d). In 30Mg,
the bump at β � 0.1 is much smaller than the major bump at
β � 0.3. In this sense, we can regard the 02

+ state of 30Mg as
a prolately deformed state. In the case of 32Mg, the probability
density exhibits a very broad distribution extending from the
spherical to deformed regions up to β = 0.5 with a prominent
peak at β � 0.4 and a node at β � 0.3. The position of the node
coincides with the peak of the probability density distribution
of the 01

+ state, as expected from the orthogonality condition.
The range of the shape fluctuation of the 02

+ state in the β

direction is almost the same as that of the 01
+ state. Thus, the

result of our calculation yields a physical picture for the 02
+

state in 32Mg that is quite different from the “spherical excited
0+ state” interpretation based on the inversion picture of the
spherical and deformed configurations. A detailed analysis
of this point, including the relations with the shell model
descriptions [8,9], will be presented in a forthcoming paper. In
34Mg, the peak is shifted to the region with a larger value of β

and the tail toward the spherical shape almost disappears.

In summary, we have investigated the large-amplitude
collective dynamics in the low-lying states of 30−36Mg by
solving the 5D quadrupole collective Schrödinger equation.
The collective masses and potentials of the 5D collective
Hamiltonian are microscopically derived with use of the
CHFB + LQRPA method. Good agreement with the recent
experimental data is obtained for the excited 0+ states as
well as the ground bands. For 30Mg, the shape coexistence
picture that the deformed excited 0+ state coexists with the
spherical ground state approximately holds. On the other hand,
large-amplitude quadrupole-shaped fluctuations dominate in
both the ground and the excited 0+ states in 32Mg, in contrast
to the interpretation of “deformed ground and spherical
excited 0+ states” based on the simple inversion picture
of the spherical and deformed configurations. To test these
theoretical predictions, an experimental search for the distorted
rotational bands built on the excited 02

+ states in 30Mg and
32Mg is strongly desired.
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(Nos. 21340073, 20105003, 23540234, and 23740223).

[1] A. N. Deacon et al., Phys. Rev. C 82, 034305 (2010).
[2] S. Takeuchi et al., Phys. Rev. C 79, 054319 (2009).
[3] K. Yoneda et al., Phys. Lett. B 499, 233 (2001).
[4] O. Niedermaier et al., Phys. Rev. Lett. 94, 172501 (2005).
[5] T. Motobayashi et al., Phys. Lett. B 346, 9 (1995).
[6] H. Iwasaki et al., Phys. Lett. B 522, 227 (2001).
[7] E. K. Warburton, J. A. Becker, and B. A. Brown, Phys. Rev. C

41, 1147 (1990).
[8] Y. Utsuno, T. Otsuka, T. Mizusaki, and M. Honma, Phys. Rev.

C 60, 054315 (1999).
[9] E. Caurier et al., Nucl. Phys. A 693, 374 (2001).

[10] T. Otsuka, Eur. Phys. J. A 20, 69 (2003).
[11] J. Terasaki et al., Nucl. Phys. A 621, 706 (1997).
[12] P.-G. Reinhard et al., Phys. Rev. C 60, 014316 (1999).
[13] H. Ohta et al., Eur. Phys. J. A 25, 549 (2005).
[14] M. Yamagami and N. VanGiai, Phys. Rev. C 69, 034301

(2004).
[15] K. Yoshida and M. Yamagami, Phys. Rev. C 77, 044312 (2008).
[16] R. Rodrı́guez-Guzmán et al., Nucl. Phys. A 709, 201 (2002).

[17] J. M. Yao et al., Phys. Rev. C 83, 014308 (2011).
[18] J. M. Yao et al., Int. J. Mod. Phys. E 20, 482 (2011).
[19] M. Kimura et al., Prog. Theor. Phys. 107, 33 (2002).
[20] H. Mach et al., Eur. Phys. J. A 25, 105 (2005).
[21] W. Schwerdtfeger et al., Phys. Rev. Lett. 103, 012501 (2009).
[22] K. Wimmer et al., Phys. Rev. Lett. 105, 252501 (2010).
[23] H. T. Fortune, Phys. Rev. C 84, 024327 (2011).
[24] N. Hinohara, K. Sato, T. Nakatsukasa, M. Matsuo, and

K. Matsuyanagi, Phys. Rev. C 82, 064313 (2010).
[25] K. Sato et al., Nucl. Phys. A 849, 53 (2011).
[26] N. Hinohara and Y. Kanada-Enyo, Phys. Rev. C 83, 014321

(2011).
[27] K. Yoshida and N. Hinohara, Phys. Rev. C 83, 061302 (2011).
[28] N. Hinohara et al., in International Symposium on New Faces of

Atomic Nuclei, edited by W. Bentz et al., AIP Conf. Proc. No.
1355 (AIP, Melville, NY, 2011), p. 200.

[29] M. Stoitsov et al., Comput. Phys. Commun. 167, 43 (2005).
[30] T. Bengtsson et al., Nucl. Phys. A 436, 14 (1985).
[31] H. Sakamoto et al., Phys. Lett. B 245, 321 (1990).

061302-5

http://dx.doi.org/10.1103/PhysRevC.82.034305
http://dx.doi.org/10.1103/PhysRevC.79.054319
http://dx.doi.org/10.1016/S0370-2693(01)00025-9
http://dx.doi.org/10.1103/PhysRevLett.94.172501
http://dx.doi.org/10.1016/0370-2693(95)00012-A
http://dx.doi.org/10.1016/S0370-2693(01)01244-8
http://dx.doi.org/10.1103/PhysRevC.41.1147
http://dx.doi.org/10.1103/PhysRevC.41.1147
http://dx.doi.org/10.1103/PhysRevC.60.054315
http://dx.doi.org/10.1103/PhysRevC.60.054315
http://dx.doi.org/10.1016/S0375-9474(00)00579-0
http://dx.doi.org/10.1140/epja/i2003-10201-5
http://dx.doi.org/10.1016/S0375-9474(97)00183-8
http://dx.doi.org/10.1103/PhysRevC.60.014316
http://dx.doi.org/10.1140/epjad/i2005-06-055-7
http://dx.doi.org/10.1103/PhysRevC.69.034301
http://dx.doi.org/10.1103/PhysRevC.69.034301
http://dx.doi.org/10.1103/PhysRevC.77.044312
http://dx.doi.org/10.1016/S0375-9474(02)01019-9
http://dx.doi.org/10.1103/PhysRevC.83.014308
http://dx.doi.org/10.1142/S0218301311017880
http://dx.doi.org/10.1143/PTP.107.33
http://dx.doi.org/10.1140/epjad/i2005-06-159-0
http://dx.doi.org/10.1103/PhysRevLett.103.012501
http://dx.doi.org/10.1103/PhysRevLett.105.252501
http://dx.doi.org/10.1103/PhysRevC.84.024327
http://dx.doi.org/10.1103/PhysRevC.82.064313
http://dx.doi.org/10.1016/j.nuclphysa.2010.11.003
http://dx.doi.org/10.1103/PhysRevC.83.014321
http://dx.doi.org/10.1103/PhysRevC.83.014321
http://dx.doi.org/10.1103/PhysRevC.83.061302
http://dx.doi.org/10.1016/j.cpc.2005.01.001
http://dx.doi.org/10.1016/0375-9474(85)90541-X
http://dx.doi.org/10.1016/0370-2693(90)90651-L

