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We propose a new method to solve the Hartree-Fock-Bogoliubov equations for weakly bound nuclei, which
works for both spherical and axially deformed cases. In this approach, the quasiparticle wave functions are
expanded in a complete set of analytical Pöschl-Teller-Ginocchio and Bessel/Coulomb wave functions. Correct
asymptotic properties of the quasiparticle wave functions are endowed in the proposed algorithm. Good agreement
is obtained with the results of the Hartree-Fock-Bogoliubov calculation using box boundary condition for a set
of benchmark spherical and deformed nuclei.
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I. INTRODUCTION

The study of nuclei far from stability is an increasingly
important part of contemporary nuclear physics. This topic is
related to newly created radioactive beams facilities, allowing
more experiments on nuclei beyond the stability line. The
new experimental opportunities on nuclei with extreme isospin
ratio and weak binding bring new phenomena which inevitably
require a universal theoretical description of nuclear properties
for all nuclei. The current approach to the problem is the
nuclear density functional theory which implicitly rely on
Hartree-Fock-Bogoliubov (HFB) theory, unique in its ability
to span the whole nuclear chart.

The HFB equations can be solved in coordinate space using
box boundary condition [1,2]. This approach (abbreviated
HFB/Box in this paper) has been used as a standard tool
in the description of spherical nuclei [3]. Its implementation
to systems with deformed equilibrium shapes is much more
difficult, however. Different approaches have been developed
to deal with this problem, such as the two-basis method
[4–6], the canonical-basis framework [7–9], and basis-spline
techniques in coordinate-space calculations developed for
axially symmetric nuclei [10,11]. These algorithms are precise,
but time consuming.

Configuration-space HFB diagonalization is a useful al-
ternative to coordinate-space calculations whereby the HFB
solution is expanded in a complete set of single-particle states.
In this context, the harmonic oscillator (HO) basis turned out
to be particularly useful. Over the years, many configuration-
space HFB codes using the HO basis (abbreviated HFB/HO)
have been developed, employing either the Skyrme or the
Gogny effective interactions [12–17], or using a relativistic
Lagrangian [18] in the context of the relativistic Hartree-
Bogoliubov theory. In the absence of fast coordinate-space
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methods to obtain deformed HFB solutions, the configuration-
space approach has proved to be a very fast and efficient
alternative allowing large-scale calculations [17,19].

Close to drip lines, however, the continuum states start play-
ing an increasingly important role and it becomes necessary to
treat the interplay of both continuum and deformation effects
in an appropriate manner. Unfortunately, none of the existing
configuration-space HFB techniques manage to incorporate
continuum effects.

The goal of the present work is to find an efficient numerical
scheme to solve HFB equations for spherical and axially
deformed nuclei, which properly takes the continuum effects
into account. We will denote this problem as continuum HFB
(CHFB). Aiming at treating spherical and deformed nuclei
on the same footing, we rely on the configuration-space HFB
approach.

The HO basis has important numerical advantages; for
example, the use of the Gauss-Hermite quadrature allows
for a fast evaluation of matrix elements. On the other hand,
its Gaussian asymptotics prevents from expanding systems
with large spatial extension, such as halo nuclear states. This
problem can be successfully fixed by using the transformed
HO basis (THO) [20]. The latter transforms the unphysical
Gaussian fall-off of HO states into a more physical exponential
decay. Neither HO nor THO bases, however, are able to
provide proper discretization of the quasiparticle continuum.
This has repercussions already at the HFB level, for which
the HO and THO bases cannot reproduce simultaneously all
asymptotic properties of nuclear densities (see Sec. V). While
this shortcoming is obvious for the HO basis, it also arises for
the THO basis because the latter can provide only one type of
asymptotic form, i.e., the one inserted in the scaling function
defining the THO wave functions [17]. Hence, the THO basis
fails to reproduce asymptotic properties, as asymptotic be-
havior is different for respective channels: proton and neutron,
normal and pairing densities, different angles for the deformed
case. In fact, differences between calculations using the THO
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and the coordinate-space bases have been noticed in pairing
properties of nuclei (see Sec. V and Ref. [21]). This indicates
that THO calculations may not always be fully accurate
even in the nuclear region and necessitate a careful check
of obtained results. For the aim of carrying out quasiparticle
random phase approximation (QRPA) calculations with the
HFB quasiparticle representation, the HO and THO bases
are very likely to be insufficient as they cannot provide accurate
quasiparticle wave functions in the continuum region.

Obviously, a more practical basis is needed. The Gamow
Hartree-Fock (GHF) basis [22] would be appropriate, as it has
been demonstrated that it can provide the correct asymptotic
of loosely bound nuclear states. However, it implies the use
of complex symmetric matrices. Moreover, the presence of
basis states which increase exponentially in modulus leads to
numerical divergences, unless the costly two-basis method is
employed [23].

As we plan to consider bound HFB ground states only,
it is more advantageous numerically to employ Hermitian
completeness relations, whose radial wave functions are real.
They are either bound, thus integrable, or oscillate with almost
constant amplitude, so that we are free from the numerical
cancellation problems associated with the Gamow states. It
should be stressed that we can generate a Gamow quasiparticle
basis using the HFB potentials thus obtained. We can then
describe resonant excited states by means of the quasiparticle
random phase approximation representing the QRPA matrix
elements in terms of the Gamow quasiparticle basis. This
serves as an interesting subject for future investigation.

One could expect that the employment of the spherical
Hartree-Fock (HF) potential to generate the real continuum HF
(CHF) complete basis would solve the problem. Unfortunately,
the CHF basis is not numerically stable due to the presence
of resonances in the vicinity of the real continuum. The
continuum states lying close to a narrow resonance are rapidly
changing, so that a very dense continuum discretization around
this resonance is necessary to accurately represent this energy
region. Important numerical cancellations would occur as
continuum wave functions become very large in amplitude
close to narrow resonances.

To overcome this difficulty, we adopt a technique based on
the exactly solvable Pöschl-Teller-Ginocchio (PTG) potential
[24]. The spherical HF potential, seemingly the best candidate
to generate a rapidly converging basis expansion, but providing
numerically costly GHF bases or unstable CHF bases, is
replaced by a PTG potential fitted to the HF potential if the
latter give rise to resonant structure. It will be shown that
the narrow resonant states of the GHF basis will become
bound in the PTG basis, so that its scattering states will
have no rapid phase shift change, a necessary condition for
numerically stable continuum discretization. As a result, we
obtain a very good basis for HFB calculations. We call this
approach HFB/PTG.

To test the feasibility of this new method, we have per-
formed numerical calculations for spherical Ni isotopes near
the drip line, 84Ni–90Ni, for a strongly deformed nucleus 110Zr,
and two HFB solutions for 40Mg with different, prolate and
oblate, deformations. Good agreement with THO calculations
is obtained.

The paper is organized as it follows. The HFB/PTG algo-
rithm is described in Sec. II, while the method used to generate
the PTG basis is formulated in Sec. III. Asymptotic properties
of the HFB quasiparticle wave functions are discussed in
Sec. IV. Results of numerical calculation are presented in
Sec. V. Brief summary and conclusions are given in Sec. VI.
Some technical details related to the PTG basis and calculation
of matrix elements are collected in the Appendices.

II. THE HFB/PTG APPROACH

Our aim is to develop an efficient method of solving the
CHFB equation

∫
dr′ ∑

σ ′

(
h(rσ, r′σ ′) − λ h̃(rσ, r′σ ′)

h̃(rσ, r′σ ′) −h(rσ, r′σ ′) + λ

)

×
(

U (E, r′σ ′)

V (E, r′σ ′)

)
= E

(
U (E, rσ )

V (E, rσ )

)
(1)

for weakly bound nuclei, which equally works both for spher-
ical and axially deformed nuclei. In the above equation, r and
σ are the coordinate of the particle in normal and spin space,
h(rσ, r′σ ′) and h̃(rσ, r′σ ′) denote the particle-hole and the
particle-particle (hole-hole) components of the single-particle
Hamiltonian, respectively, U (rσ ) and V (rσ ) the upper and the
lower components of the single-quasiparticle wave function,
and λ is the chemical potential [3]. For simplicity of notation,
the isospin index q is omitted in Eq. (1), but, of course, we
solve the CHFB equation for coupled systems of protons and
neutrons. In this section, we outline the calculational scheme
and details will be presented in the succeeding sections.

The proposed method to solve the CHFB equations,
abbreviated HFB/PTG, consists of the following steps:

(i) One starts with spherical or deformed HFB calculations
in the HO basis (HFB/HO). This provides a good
approximate solution for the HF potential and the
effective mass.

(ii) One considers a HF potential and an effective mass
for each �j subspace, and fits the associated shifted
PTG potential to them when the HF potential possesses
bound or narrow resonant states in this �j subspace
(see Sec. III A). If no such states appear in the HF �j

spectrum, a set of Bessel/Coulomb wave functions [25]
is selected for the �j partial wave basis.

(iii) One diagonalizes the HFB eigenvalue equations in the
basis composed of the PTG and Bessel/Coulomb wave
functions. This step continues until self-consistency is
achieved.

The use of the Bessel/Coulomb wave functions in step (2)
occurs for partial waves of high angular momentum, for
which the centrifugal part becomes dominant. As no resonant
structure can appear therein in the real HF continuum,
Bessel/Coulomb wave functions provide a numerically stable
set of states for this partial wave. For the generation of
Coulomb wave functions, one can use the recently published
C++ code [26] or its FORTRAN alternative [27]. A complete
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set of wave functions is thus formed, which will be used as a
basis to expand the HFB quasiparticle wave functions.

The necessary truncation of the basis in step (3) implies that
spurious effects may eventually appear at very large distances,
where both the particle density ρ and the pairing density ρ̃ are
very small. Consequently, quasiparticle wave functions have
to be matched to their exact asymptotics at moderate distances
as it is explained further in Sec. IV. In addition, special care
must be taken to calculate matrix elements due to the presence
of nonintegrable scattering states (see Appendix B).

When the HF mean-field resulting from the HFB/HO
calculation in step (1) is deformed, there are several ways
to extract the HF potential for each �j subspace to be used
in step (2). Because it is used just as a generator for the
complete PTG basis, its choice will have little effect on the
final HFB solution, however. In the present calculation, we
therefore adopt a simple procedure; the particle-hole part of
the HFB/HO potential and the HFB/HO effective mass are used
in step (2) after averaging their angular and spin degrees of
freedom. The resulting HF potential is spherical and the same
for all �j subspaces. In such a case, the effect of the spin-orbit
splitting is not taken into account in the stage of constructing
the PTG basis but it is of course taken into account in step (3).
This implies to consider a basis generated by a spherical
potential, which might seem inefficient in the case of large
deformation, for which deformed bases are more appropriate,
as is done with the HO and THO bases. The deformed nuclei
considered in this paper are nevertheless fairly reproduced
within this framework (see Sec. V). If necessary, it is possible
to generate a deformed basis by diagonalizing the deformed
HF potential within the PTG basis, which can then serve as a
particle basis for the HFB problem.

III. GENERATION OF BASIS

A. PTG potentials fitting procedure

The PTG potential has four parameters �, s, ν, and a, which
have to be determined in each �j subspace (see Appendix A).
For this purpose, we use the spherical HF potential and
effective mass in a given �j subspace.

The PTG mass parameter a is obtained from the re-
quirement that the PTG and the HF effective masses are
the same at the origin. One first adds the centrifugal term
V�(�+1) ∝ �(� + 1)/r2 to the nuclear plus Coulomb potential,
VN + VC , and determines the height Eb of the centrifugal (plus
Coulomb) barrier. Then, one adds Eb to the PTG potential; the
resulting potential may be called the shifted PTG potential.
The parameters � and ν are fitted in such a way that the
χ2 difference between the shifted PTG potential and the HF
potential is minimal. Note that s is directly obtained from
� and ν values during the fit, as it is determined by way
of the property that the PTG potential of parameters �, s, ν,
and a for r → 0 is equivalent to s2 times the PTG potential
of parameters �, s = 1, ν, and a. The reason why we use the
barrier height Eb in our fitting procedure will become apparent
by an illustrative example presented below.

To test the fitting procedure and the quality of the resulting
PTG basis we performed GHF calculations in the coordinate
space for the spherical nucleus 84Ni. Let us examine the quality
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FIG. 1. (Color online) The shifted PTG potential, the HF potential
calculated with the SLy4-force, and the unshifted PTG potential
for neutrons in 84Ni. HF and shifted PTG potentials to which the
centrifugal part is added are provided as well, and the energies of 0g7/2

levels for each potential are indicated. All data respectively associated
to HF, shifted and unshifted PTG potentials are respectively shown
in solid, dashed, and dotted lines.

of single-particle energies and wave functions resulting from
the shifted PTG potential by comparing them with the GHF
energies and wave functions for bound and resonance states.

Figure 1 illustrates the PTG fitting procedure and compare
the results with the GHF ones taking the neutron 0g7/2 level as
an example. It is seen that the energy of the bound 0g7/2 state
in the original (unshifted) PTG potential (horizontal dotted
line) become positive after being shifted with Eb (horizontal
dashed line) and its position agrees in a good approximation
with the resonance energy obtained by the GHF calculation
(horizontal solid line). This is due to a special feature of the
PTG potential, for which the centrifugal potential decreases
exponentially and not as r−2 for r → +∞ (see Appendix A).
This implies that the centrifugal + shifted PTG potential goes
very quickly to the constant value, Eb, for r → +∞.

In this way, the PTG treatment replaces the GHF resonance
with a weakly bound PTG state whose wave function will be
very similar in the nuclear region. Approximating resonant
states by weakly bound states in our framework resembles the
standard two-potential method described in Ref. [28]. Thus,
one can expect that the fitted PTG potential provides a rapidly
converging basis for solving the HFB equations.

In fact, it is not necessary to find the PTG potential that
exactly minimize the χ2 difference with the HF potential.
As the PTG potential is used as a basis generator, slight
differences with the exact minimum lead only to slightly
different bases states to expand the HFB quasiparticle wave
functions, preserving its rapidly converging properties. Thus,
one can take rather large steps for the �, ν variations and few
radii for the χ2 evaluation to save computer time, keeping the
quality of the basis essentially the same.

B. Single-particle energies

Single-particle energies and widths for neutrons in 84Ni
obtained by the GHF calculations are compared with the PTG
energies in Table I. One can clearly see the following facts.

Firstly, the overall agreement between the GHF and the
shifted PTG energies is good, which means that the PTG
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TABLE I. Neutron GHF levels in 84Ni calculated with the
SLy4 Skyrme-force and the surface-type delta pairing interaction
(see Sec. V for the parameters used), which are compared with
the PTG estimates. All energies are given in MeV while the width
� is given in keV.

States GHF PTG

� e e + Eb e

0s1/2 0 −52.38 −51.89 −51.89
1s1/2 0 −24.37 −25.55 −25.55
2s1/2 0 −0.72 −0.97 −0.97
0p3/2 0 −41.25 −40.67 −41.09
1p3/2 0 −12.52 −12.95 −13.36
0p1/2 0 −39.44 −38.79 −39.22
1p1/2 0 −10.67 −10.73 −11.16
0d5/2 0 −29.38 −29.50 −31.02
1d5/2 0 −1.90 −1.94 −3.46
0d3/2 0 −25.20 −25.53 −27.11
1d3/2 10.03 0.18 0.24 −1.34
0f7/2 0 −17.56 −17.45 −20.88
0f5/2 0 −10.87 −12.40 −16.01
0g9/2 0 −6.11 −5.52 −11.74
0g7/2 31.62 2.09 1.05 −5.58
0h11/2 92.93 4.53 6.18 −3.79

potential is flexible enough to reproduce the main features
of the HF potential.

Secondly, all narrow GHF resonances are represented
as weakly bound PTG states with upward shifted PTG
energies. This is very important because the HFB upper
(lower) components of quasiparticle states are likely to have
large overlaps with unoccupied (occupied) weakly bound and
narrow resonance states.

We note that the GHF states whose width is larger than
1 MeV, as a rule, are not converted to bound PTG states. This
is not important, however, because scattering states do not
exhibit rapid changes in the energy region of broad resonances.
The broad resonance region can indeed be well represented in
terms of the continuum basis states.

C. PTG wave functions

As illustrated in Fig. 2 narrow GHF resonant states bear
large overlaps with their associated PTG bound states. Hence,
the GHF resonant structure present in the HFB quasiparticle
wave functions will be sustained by the PTG bound states, thus
reducing the coupling to the PTG scattering continuum.

An example indicating the quality of the bound single-
particle wave functions resulting from the fitting PTG proce-
dure is shown in Fig. 3 for the bound 0s1/2, 1s1/2, and 2s1/2

neutron states. In this case, nuclear potential has no centrifugal
barrier, so that the PTG and the HF potentials possess the same
asymptotic behavior. Very good agreement between the PTG
(dashed lines) and the GHF (solid lines) wave functions is thus
not surprising. The upper panel in Fig. 3 shows the asymptotic
region in logarithmic scale where HO wave functions (dotted
lines) are also given as a reference. Their Gaussian asymptotics
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FIG. 2. (Color online) The PTG (dashed lines) and GHF (solid
lines) wave functions for various resonance states.

cannot reproduce even approximately the exponential decrease
of the PTG and GHF wave functions.

Neutron continuum s-states are illustrated in Fig. 4, which
are properly reproduced as well by the scattering states for
the PTG potential. In the cases when a centrifugal (and/or
Coulomb) barrier exists, as illustrated in Fig. 5 for d3/2 states,
different phase shifts develop in the PTG and GHF continuum
states, as the PTG potential bears no barrier at large distance.

IV. QUASIPARTICLE WAVE FUNCTIONS IN THE
ASYMPTOTIC REGION

The necessary truncation of the basis implies that spurious
effects will eventually appear at very large radius, where both
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FIG. 3. (Color online) The PTG (dashed lines), GHF (solid lines),
and HO (dotted lines) wave functions including the asymptotic region
for the bound 0s1/2, 1s1/2, and 2s1/2 neutron states both in normal scale
(lower panel) and logarithmic scale (upper panel).
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FIG. 4. (Color online) The PTG (dashed lines) and GHF (solid
lines) wave functions of the neutron continuum s-states calculated
with energies of 0.118 MeV, 9.996 MeV, and 66.119 MeV.

the particle density ρ and the pairing density ρ̃ are very small.
Consequently, quasiparticle wave functions have to be matched
with their exact asymptotics at moderate distance, where the
asymptotic region has been attained and densities are still large
enough for basis expansion to be precise. Below we explain
how the matching procedure is done for axially deformed
nuclei.

In order to deal with the asymptotics of quasiparticle wave
functions, we make partial wave decomposition of them:

Ukm(rσ ) =
∑

α

Uα
km
α(r) =

∑
�j

U
(�j )
km (r) Y�j

km(�),

(2)
Vkm(rσ ) =

∑
α

V α
km
α(r) =

∑
�j

V
(�j )
km (r) Y�j

km(�),

where the subscript k specifies the quasiparticle eigenstates
together with the magnetic quantum number m which is always
conserved for both spherical and axially symmetric nuclei;

α(r) are the PTG or Bessel/Coulomb wave functions; Uα

km

and V α
km are the HFB expansion coefficients; U

(�j )
km (r) and

V
(�j )
km (r) are the radial amplitudes with r = |r| for the (�j )

partial wave; Y�j
m (�) denotes a product wave function where

the spherical harmonics with the angular variables � and the
orbital angular momentum � is coupled with spin to the total
angular momentum j .
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FIG. 5. (Color online) The PTG (dashed lines) and the GHF (solid
lines) wave functions for the neutron continuum d3/2-states calculated
at the same energies as in Fig. 4

The partial wave amplitudes, U
(�j )
km (r) and V

(�j )
km (r), defined

above involve a summation over all quantum numbers except
the angular momenta � and j . In the spherical case, the
sums reduce to a single element as � and j are good
quantum numbers. In the asymptotic region, only Coulomb
and centrifugal parts remain from the HFB potentials, so that
one can continue the quasiparticle wave functions via their
partial wave decompositions and decay constants ku and kv:

U
(�j )
km (r) = C

(�j )+
km H+

�,ηu
(kur) + C

(�j )−
km H−

�,ηu
(kur),

V
(�j )
km (r) = D

(�j )+
km H+

�,ηv
(kvr),

(3)

kv =
√

2m

h̄2 (λ − E), ku =
√

2m

h̄2 (λ + E),

where E denotes the quasiparticle energy, λ the chemical
potential, H±

�,η the Hankel (or Coulomb) functions, η being

the Sommerfeld parameter, and C
(�j )+
km , C

(�j )−
km , and D

(�j )+
km are

constants to be determined. Matching is performed using
Eq. (2) at a radius R0 in the asymptotic region where the
basis expansion is precise, so that C

(�j )+
km , C

(�j )−
km , and D

(�j )+
km

come forward by continuity. The value of R0 is typically of
the order of 10 fm.

V. NUMERICAL EXAMPLES

We have made a feasibility test of the HFB/PTG method
for spherical Ni isotopes close to the neutron drip line
and for deformed neutron-rich nuclei 110Zr and 40Mg. All
calculations were done using the SLy4 density functional
[29]. For the pairing interaction, we use the surface-type
delta pairing with the strength t

′
0 = −519.9 MeV fm3 for the

density-independent part and t
′
3 = −37.5t

′
0 MeV fm6 for the

density-dependent part with a sharp energy cutoff at 60 MeV in
the quasiparticle space. They have been fitted to reproduce the
neutron pairing gap of 120Sn. These values are consistent with
those given in Ref. [30]; the slight difference is due to different
cut-off procedures, sharp cutoff in our case and smooth cutoff
in Ref. [30]. Below we discuss the major features of the result
of calculation. We also make a detailed comparison between
the HFB/PTG and HFB/Box calculations in the spherical case.
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FIG. 6. (Color online) Dependence on kmax of the neutron density
ρn and the neutron pairing density ρ̃n calculated for 84Ni by the
HFB/PTG method.
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TABLE II. Results of the HFB/PTG calculation for ground state characteristics of Ni isotopes close to the neutron
drip line, which are compared with results of the HFB/Box calculation. The SLy4 functional and the surface-type
delta pairing [20] are used. The rms radii are in fm and all other quantities are in MeV. Proton chemical potential λp

is not provided as pairing correlations vanish in the proton space.

84Ni 86Ni 88Ni 90Ni

HFB/Box HFB/PTG HFB/Box HFB/PTG HFB/Box HFB/PTG HFB/Box HFB/PTG

λn −1.453 −1.429 −1.037 −1.029 −0.671 −0.661 −0.342 −0.329
rn 4.451 4.450 4.528 4.526 4.603 4.602 4.677 4.674
rp 3.980 3.981 4.001 4.001 4.021 4.021 4.043 4.043
n 1.481 1.532 1.667 1.658 1.790 1.780 1.899 1.892
Epair

n −30.70 −30.60 −36.52 −35.92 −41.98 −41.187 −47.158 −46.233
Tn 1084.53 1085.95 1118.65 1118.63 1150.71 1150.64 1182.52 1182.66
Tp 430.47 430.240 425.99 426.01 421.71 421.72 417.38 417.37

Eso
n −63.379 −63.177 −61.679 −61.707 −59.558 −59.681 −56.898 −57.889

ECoul
dir 132.94 132.90 132.26 132.246 131.571 131.578 130.947 130.886

ECoul
exc −10.138 −10.136 −10.084 −10.085 −10.033 −10.033 −9.980 −9.980

Etot −654.89 −654.914 −656.933 −656.877 −658.167 −658.084 −658.665 −658.608

A. Spherical nuclei

Let us first examine how the result of calculation depends on
the truncation of the basis. Indeed, the basis has to be truncated
at a maximal linear momentum kmax, and discretized with N�j

continuum states per partial wave in the interval [0 : kmax].
Figure 6 shows that the use of values larger than kmax =
3 fm−1 does not change the results. Accordingly, in calcula-
tions for spherical nuclei, we use kmax = 5 fm−1 and discretize
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FIG. 7. (Color online) The neutron densities ρn and proton
densities ρp both in normal (left-hand side) and logarithmic (right-
hand side) scales. Results of the HFB/Box calculation are displayed
by solid lines, while those of the HFB/PTG calculations by open
circles and dashed lines. The HFB/HO densities are also indicated by
dotted lines in the right panels for comparison.

the continuum with N�j = 60 scattering states per partial wave
(see Ref. [22] for its justification).

Results of the HFB/PTG calculation for a set of benchmark
Ni isotopes close to the neutron drip line are presented in
Table II, Figs. 7 and 8, where results of the HFB/Box
calculation are also shown for comparison. The Ni isotopes
are spherical with pairing in the neutron channel only. We
see immediately a remarkable agreement between the results
of the HFB/PTG and HFB/Box calculations. The difference in
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pairing correlations in the proton channel. Results of the HFB/Box
and HFB/PTG calculations are displayed both by solid lines, as they
are almost indistinguishable, while HFB/THO pairing densities are
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FIG. 9. (Color online) The neutron and proton
densities of the prolately deformed nucleus 110Zr
(β = 0.40), respectively calculated by the HFB/PTG
(solid and dashed lines, respectively) and HFB/THO
(circles) methods in normal (top left) and logarithmic
(top right) scale. They are given along the long and
short axes of deformation, easily identified from the
figure. The neutron and proton densities of 40Mg
calculated by the HFB/PTG method for two states
with different deformations (oblate β = −0.09 and
prolate β = 0.26) in normal (middle and bottom left)
and logarithmic (middle and bottom right) scale are
also provided with the same line convention.

total energies is less than 85 keV and the proton rms radii agree
almost perfectly, while the neutron ones are slightly different
by less than 0.003 fm. Similarly good agreement is obtained
for all other energy counterparts. The good agreement in the
ground state characteristics evaluated by the two different
approaches is not surprising if one compares the density
distributions shown in Figs. 7 and 8. In these figures, the
neutron and proton densities, ρn and ρp, and the neutron
pairing density ρ̃n are plotted both in normal (left column) and
logarithmic (right column) scales. The agreement is almost
perfect in the whole range of r except at the box boundary
where the HFB/Box densities vanish due to the boundary
conditions (however not seen in Fig. 8). This agreement is
striking considering the significant impact of the continuum
for these nuclei and the fact that the HFB/PTG calculations
are nevertheless performed using the basis expansion method.

Special attention has to be paid to the agreement for the
pairing quantities. Interestingly, the pairing gap n increases
as one approaches the drip line, indicating the important role
of the pairing correlations in the continuum. This result is
somehow different from that of Ref. [31] obtained by an
alternative HFB calculation in the coordinate space for the
same set of nuclei but it is in agreement with the estimates
from Ref. [32]. In Fig. 8, the scaling function of the THO basis
is calculated with the method described in Ref. [20], for which
the quasi-exact density provided by the HFB/PTG calculations
is used, and 16 THO shells are taken into account for each
partial wave. This implies virtually optimal results, and it has
been checked that densities obtained from the HFB/Box and
HFB/THO methods are almost identical up to 20 fm. On the
other hand, pairing densities given by the THO calculations are
not exactly the same with those of the HFB/PTG and HFB/Box
calculations, as can be seen from Fig. 8. While pairing densities
calculated with both methods for 84Ni and 90Ni are very close,

those for 86Ni and 88Ni exhibit visible differences, especially
for 86Ni, for which pairing energies differ by about 4 MeV.
Asymptotic properties of pairing densities calculated with
the THO basis are also not well behaved after 15–20 fm,
where they saturate instead of decreasing exponentially. This
indicates that THO basis calculations are not always devoid of
inaccuracies, even at the spherical HFB level.

B. Axially deformed nuclei

In the case of axially deformed nuclei, few HFB/Box
calculations are available to check the HFB/PTG results.
We consider the well-deformed nucleus 110Zr (deformation
β ≈ 0.4), already studied in Ref. [21] and two states with
different deformations for the drip line nucleus 40Mg. We use
therein kmax = 4 fm−1 and N�j = 30 for all partial waves.

Table III compares the three approaches with respect to
ground state properties of 110Zr. In general they yield similar
values. The differences seen in Table III are partially due

TABLE III. Comparison of ground state proper-
ties of 110Zr calculated with the HFB/Box, HFB/PTG,
and HFB/THO approaches. The rms radii are in fm,
quadrupole moments are in barn, and all other quantities
are in MeV.

HFB/Box HFB/PTG HFB/THO

Qtot 12.088 12.53 12.303
n 0.480 0.626 0.562
Epair

n −1.53 −3.015 −2.05
rn 4.82 4.836 4.831
rp 4.55 4.560 4.556
Etot −893.93 −893.952 −893.711
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FIG. 10. (Color online) Same as in Fig. 9
but for pairing densities and without HFB/THO
results. Proton pairing density is not represented
for 110Zr as it is negligible therein.

to different structure of the model spaces adopted and the
associated fitting of the pairing strength.

Proton and neutron densities for nuclei 110Zr and 40Mg are
displayed in Fig. 9, with comparison with THO results (circles)
for 110Zr, in normal scale (left column panels) and logarithmic
scale (right column panels). Associated pairing densities are
shown in Fig. 10.

While agreement between the PTG and THO densities for
110Zr is good in normal scale, we can notice discrepancies
in asymptotic properties, which are visible from the figure in
logarithmic scale (see Fig. 9). It is obvious that all densities
calculated with the THO basis eventually follow the common
asymptote dictated by the scaling function, while they are well
reproduced with use of the PTG basis. This comparison also
confirms the presence of deformation effects even in the far
asymptotic region.

The middle and bottom panels in Figs. 9 and 10 illustrate
the HFB/PTG normal and pairing densities for two states with
different deformations in the drip line nucleus 40Mg. These
states possess pairing correlations in both neutron and proton
channels. The prolate and oblate states lead to asymptotic
neutron densities which are very close, as seen from the middle
and bottom right panels in Fig. 9.

VI. CONCLUSIONS

We have proposed a new method of the CHFB calculation
for spherical and axially deformed nuclei, which properly
takes the continuum into account. The method combines
configuration-space diagonalization of the HFB Hamiltonian
in the complete set of analytical PTG and Bessel/Coulomb
wave functions with a matching procedure in the coordinate
space which restores the correct asymptotic properties of the

HFB wave functions. The PTG potential is chosen to fit the
nuclear HF potential and effective mass. The resulting PTG
wave functions are close to the bound and continuum states
of the related HF potential while the resonance states are
substituted by the bound PTG states with shifted single-particle
energies. Partial waves of high angular momentum are very
well represented by Bessel/Coulomb wave functions.

The main results of the present work are twofold:
First, we have obtained a new scheme (HFB/PTG) to

solve the CHFB equations as a promising tool for large scale
calculation; its performance is comparable, sometimes even
better, to that of the HFB/THO code, for example. It properly
takes the nuclear continuum into account and therefore could
be used for precise density functional calculations for nuclei
close to the drip lines. This HFB/PTG method can also be used
to provide accurate quasiparticle wave functions for micro-
scopic calculations of dynamics beyond the nuclear mean-field
approximation, as for example, the QRPA calculations for
deformed nuclei.

Second, the fact that the HFB/PTG calculation reproduces
the results of the coordinate-space HFB calculation with the
box boundary condition (HFB/Box) even for nuclei up to the
neutron drip lines is important. This result indicates the validity
of the HFB/Box calculation which is widely used, although its
validity is sometimes questioned when it is applied to the
drip-line phenomena where continuum effects are crucially
important [31].

The inclusion of the resonant structure in the basis is crucial
for the success of the HFB/PTG approach. Our test calculations
indicate significant disagreement with the HFB/Box result if
the PTG bound states representing the resonant GHF states
are removed from the basis: in their absence, the pairing
densities are overestimated in the surface region, while particle
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densities are slightly underestimated in the inner region. This
means that the resonance states significantly contribute to the
total energy through both the particle-hole and particle-particle
channels. Their contributions to the pairing correlation energy
are evaluated to be about 2–3 MeV for the case of Ni isotopes
close to the neutron drip line.

A more complete investigation of the importance of the
HFB resonance states could be made by a detailed comparison
with the result of the exact Gamow-HFB calculation. Such an
analysis is in progress for spherical nuclei and will be reported
in the near future [23].
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APPENDIX A: PTG BASIS

A. PTG potential

The one-body Hamiltonian for the exactly solvable PTG
model reads

HPTG = h̄2

2m0

(
− d

dr

1

µ(r)

d

dr
+ �(� + 1)

r2µ(r)

)
+VPTG(r) (A1)

with m0 the particle free mass, r is the radial coordinate
(in fm), µ(r) its dimensionless effective mass [the full effective
mass is m0 µ(r)], � its orbital angular momentum, and VPTG

is the PTG potential. The potential VPTG(r) and the effective
mass µ(r) are written

µ(r) = 1 − a(1 − y2), (A2)

VPTG(r) = h̄2s2

2 m0 µ(r)
(Vµ(r) + V�(r) + Vc(r)), (A3)

where s is the scaling parameter, Vµ the potential part issued
from the effective mass, V� its �-dependent part, and Vc its
main central part, defined by

Vµ(r) = [1 − a + [a(4 − 3�2) − 3(2 − �2)]y2

− (�2 − 1)(5(1 − a) + 2ay2) y4]

× a

µ(r)2
(1 − y2)[1 + (�2 − 1)y2], (A4)

V�(r) = �(� + 1)

[
(1 − y2)(1 + (�2 − 1)y2)

y2
− 1

s2r2

]
,

r > 0, (A5)

Vc(r) = (1 − y2)

[
−�2ν(ν + 1) − �2 − 1

4
(2 − (7 − �2)y2

− 5(�2 − 1)y4)

]
. (A6)

The quantities VPTG(r) and µ(r) depend on an implicit function
y = y(r) defined in the following way:

�2s r = arctanh (y) +
√

�2 − 1 arctan (
√

�2 − 1 y) (A7)

so that 0 � y < 1 for 0 � r < ∞.
The numerical solution of Eq. (A7) by way of Newton/

bisection methods is stable but one should take special care
at large distances when y becomes closely equal to one. For
example, this can be done by rewriting Eq. (A7), introducing
the new variable x = arctanh(y):

�2s r = x +
√

�2 − 1 arctan(
√

�2 − 1 tanh(x)), (A8)

It is solved with respect to x with a fixed-point algorithm.
In this region, 1 − y2 should be calculated in terms of the
expression 1 − y2 = 4e−2x/(1 + e−2x)2 to avoid numerical
cancellations.

One has to mention that, in the calculation of VPTG(r), V�(r)
is finite for all r � 0 but is the difference of two diverging terms
for r → 0. Thus, to be precise in this region, Eq. (A7) must
be rewritten as a power series in y, so that the main diverging
terms of Eq. (A5) cancel analytically.

As seen from the equations above, there are four parameters
in the PTG model: the effective mass parameter a, the scaling
parameter s, the parameter � determining the shape of the
potential and the parameter ν associated with the depth of the
potential. They can take different values for different angular
momenta �. We can use this freedom in order to approximate
the nuclear potential for each �j -subspace, as described in
Sec. II.

B. PTG states

The PTG wave functions and eigenenergies are determined
by the Schrödinger equation for the Hamiltonian (A1)

HPTG�k(r) = E�k(r) (A9)

with energies

E = h̄2k2

2m0
, (A10)

where k stands for the complex linear momentum associated
with E.

For bound states, if they exist, the parameter ν determines
the maximal value nmax of the radial quantum number n =
0, 1, 2, . . . , nmax as the largest integer inferior to{

1

2

(
ν − � − 3

2

)}
, (A11)

and defines the complex momentum

knl = is
−Anl + √

nl

1 − a
, (A12)
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with

Anl = 2n + � + 3
2 , (A13)

nl = �2
(
ν + 1

2

)2
(1 − a) − [(1 − a)�2 − 1]A2

nl . (A14)

For continuum states, k can take any real positive values from
zero to infinity.

C. PTG wave functions

In order to express the PTG wave function �k(r) in a closed
analytical form, let us introduce the following three functions:

fk(r) = F (ν−, ν+, � + 3

2
, x−)(x+)β̄/2, (A15)

f +
k (r) = F (ν−, ν+, β̄ + 1, x+)(x+)β̄/2, (A16)

f −
k (r) = F (µ−, µ+,−β̄ + 1, x+)(x+)−β̄/2, (A17)

and

χk(r) =
√

x− + �2(1 − a)x+
√

x− + �2x+ (x−)
�+ 3

2
2 , (A18)

where

x = 1 − (�2 + 1)y2

1 + (�2 − 1)y2
, x− = 1 − x

2
, x+ = 1 + x

2
,

(A19)

ν+ = � + 3
2 + β̄ + ν̄

2
, ν− = � + 3

2 + β̄ − ν̄

2
, (A20)

µ+ = � + 3
2 − β̄ + ν̄

2
, µ− = � + 3

2 − β̄ − ν̄

2
, (A21)

β̄ = − ik

�2s
, (A22)

ν̄ =
√

(ν + 1/2)2 + β̄2(1 − �2(1 − a)), (A23)

and F (a, b, c, z) is the Gauss hypergeometric function [25].
In the case of bound states, knl determines the momenta

k which are pure imaginary [see Eq. (A12)], while they are
real positive numbers in the case of scattering states. This
defines all other quantities entering the equations above. For
both cases, the PTG wave functions can be written either as

�k(r) = Nχk(r)fk(r) (A24)

or as

�k(r) = Nχk(r)(A+f +
k (r) + A−f −

k (r)). (A25)

Equation (A24) is suitable for numerical work for small
distances since x− → 0 when r → 0 so that one is away
from the pole of the hypergeometric function appearing at
x− = 1. Similarly, Eq. (A25) is applicable for large distances
since x+ → 0 when r → +∞ and the pole x+ = 1 of the
hypergeometric function in Eqs. (A16) and (A17) is avoided.

In the case of bound states, the quantum numbers {n�} are
the principal quantum number n and the angular momentum �.
The constants N , A+, A− entering Eqs. (A24) and (A25) are

given by

N =
√

2�2sβ̄
(
� + 3

2 + β̄ + 2n
)

(
� + 3

2 + β̄�2(1 − a) + 2n
)

×
√√√√ �

(
� + 3

2 + β̄ + n
)
�

(
� + 3

2 + n
)

�(n + 1)�(β̄ + n + 1)�
(
� + 3

2

)2 , (A26)

A+ = �
(
� + 3

2

)
�(−β̄)

�(µ+)�(µ−)
, A− = 0,

where �(z) is the Gamma function [25].
In the case of scattering states, the quantum numbers {k�}

include the momentum k and the angular momentum � while
the associated constants N , A+, A− read

N =
√

�(ν+)�(ν−)�(µ+)�(µ−)

2π �(β̄)�(−β̄)�
(
� + 3

2

)2 ,

A+ = �
(
� + 3

2

)
�(−β̄)

�(µ+)�(µ−)
, (A27)

A− = �
(
� + 3

2

)
�(β̄)

�(ν+)�(ν−)
.

The normalization constant N is determined from the
normalization condition∫ ∞

0
�nl(r)�n′l(r)dr = δnn′ (A28)

for bound states and from the Dirac delta function normaliza-
tion for scattering states:∫ ∞

0
�kl(r)�k′l(r)dr = δ(k − k′). (A29)

All bound and scattering wave functions are orthogonal to
each other ∫ ∞

0
�kl(r)�k′l(r)dr = 0, k �= k′ (A30)

and they form a complete basis∑
n

�nl(r)�nl(r
′) +

∫ ∞

0
�kl(r)�kl(r

′)dk = δ(r − r ′).

(A31)

One can check that at large distances

x → −1 + 2e−2�2s(r−r1), r → +∞, (A32)

where

�2s r1 =
√

�2 − 1 arctan
(√

�2 − 1
) − log

(
�

2

)
. (A33)

Substituting this into Eq. (A25) one obtains the asymptotic
form of the PTG wave functions

�k(r) �→ C+eikr + C−e−ikr , (A34)

where C+ = NA+e−ikr1 and C− = NA−eikr1 , (see Eqs.
(A26), (A27), and (A33)).

054301-10



NEW EFFICIENT METHOD FOR PERFORMING HARTREE- . . . PHYSICAL REVIEW C 77, 054301 (2008)

The PTG wave functions are numerically stable and
accurate when using Eq. (A24) up to y � 0.99 then applying
the form (A25). They accurately land onto their asymptotic
representation of Eq. (A34) at large distances.

APPENDIX B: MATRIX ELEMENTS

Let us deal with numerical integration in r and k space.
The integration in the r space is performed in terms of Nr

Gauss-Legendre integration points xi and weights wi within
the interval [0, Rmax],∫ Rmax

0
O(r)�k(r)�k′(r)dr 	

Nr∑
i=1

O(ri)�k(ri)�k′(ri)wi, (B1)

where O(r) is an arbitrary function of r and Rmax is a point
where nuclear potential disappears. Usually a value Rmax =
15 fm is used. In the same way, integration in the k space is
done in terms of Nk Gauss-Legendre integration points ki and
weights wki

within the interval [0, kmax],∫ kmax

0
O(k)�k(r)�k(r ′)dk 	

Nk∑
i=1

O(ki)�ki
(r)�ki

(r ′)wki
,

(B2)

where O(k) is an arbitrary function of k.
Radial integrals must be calculated cautiously due to the

presence of nonintegrable scattering states in the basis. When
the radial operator represents the nuclear potential or explicitly
depends on nuclear densities or currents, one can safely
integrate the matrix elements to some large but finite distance
Rmax. Beyond Rmax, the contribution of the integral becomes
negligible due to the presence of the densities or currents.
However, it is not the case for the kinetic + Coulomb part of
the Hamiltonian. This operator is infinite-ranged and induces
Dirac delta functions in the matrix elements, which have to
be regularized directly. For this, one separates the matrix
element in two integrals, defined on the intervals [0 : Rmax]

and [Rmax : +∞[. The first part is finite and treated with
standard methods. For the second part, if one deals with
Bessel/Coulomb wave functions, one can assume that the
nuclear part is negligible after Rmax so that they are solutions
of the asymptotic HF equations. Hence, one obtains∫ +∞

Rmax

uα(r)h(r)uβ(r)dr

= k2
α

(
δαβ −

∫ Rmax

0
uα(r)uβ(r)dr

)
(bound)

= k2
α

(
δ(kα − kβ) −

∫ Rmax

0
uα(r)uβ(r) dr

)
(scat)

= −k2
α

∫ Rmax

0
uα(r)uβ(r)dr (mixed), (B3)

where h(r) is the HF potential which reduces to the kinetic +
Coulomb Hamiltonian asymptotically. Here, “bound” (“scat”)
means that both α and β states are bound (scattering) and
“mixed” means that α is bound and β scattering or vice versa.
The Dirac delta with a discretized basis becomes δαβ/wkα

with wkα
being the Gauss-Legendre weight associated to the

discretized value kα , so that its implementation is immediate;
since all integrals are finite, they pose no problem. When
the PTG basis states are used instead of the Bessel/Coulomb
wave functions, it turned out that it is numerically precise
to disregard the Coulomb/centrifugal part of the Hamiltonian
after Rmax, so that Eq. (B3) is the same for both the PTG
and Bessel/Coulomb wave functions. Indeed, Eqs. (A32) and
(A34) imply that the PTG wave functions behave asymp-
totically like neutron waves functions of angular momentum
� = 0. The above seemingly crude approximation can, in fact,
be mathematically justified. The HFB matrix evaluated using
such a procedure converges weakly to the exact HFB matrix for
Rmax → +∞ [33]. This means that the HFB matrix elements
depend on Rmax asymptotically, some of them even diverging
with Rmax → +∞, whereas its eigenvalues and eigenvectors
converge to a finite value.
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