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Single-particle resonant states, also called Gamow states, as well as bound and scattering states of complex
energy form a complete set, the Berggren completeness relation. It is the building block of the recently introduced
Gamow shell model, where weakly bound and resonant nuclear wave functions are expanded with a many-body
basis of Slater determinants generated by this set of single-particle states. However, Gamow states have never
been studied in the context of Hartree-Fock-Bogoliubov theory, except in the Bardeen-Cooper-Schriefer (BCS)
approximation, where both the upper and lower components of a quasiparticle wave function are assumed to
possess the same radial dependence with that of a Gamow state associated with the Hartree-Fock potential.
Hence, an extension of the notion of Gamow state has to be effected in the domain of quasiparticles. It is
shown theoretically and numerically that bound, resonant and scattering quasiparticles are well defined and form
a complete set, by which bound Hartree-Fock-Bogoliubov ground states can be constructed. It is also shown
that the Gamow-Hartree-Fock single-particle basis can be used to solve the Gamow-Hartree-Fock-Bogoliubov
problem. As an illustration, the proposed method is applied to neutron-rich nickel isotopes close to the neutron
drip-line.
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I. INTRODUCTION

One of the current challenges of nuclear theory is the
quantitative description of nuclei situated near and beyond
drip-lines. Powerful facilities are being built in several coun-
tries in order to create these very short-lived states. For a
long time, microscopic theories of nuclear structure have been
developed for describing ground states of nuclei close to the
valley of stability. For describing stable nuclei which are well
localized, the harmonic oscillator (HO) bases are useful for
both shell model [1] and Hartree-Fock Bogoliubov (HFB)
calculations [2–6]; the HO bases converge quickly therein.
However, it possesses poor convergence properties for weakly
bound nuclei bearing large spatial extensions, which lie very
close to neutron drip lines.

A promising approach to this problem has been proposed
in Refs. [7–9] within a shell model framework; namely, the
Gamow shell model (GSM). The fundamental idea is to replace
the HO basis by the Berggren basis consisting of bound states,
resonance states and continuum scattering states of complex
energy, generated by a single-particle potential. It has been
shown numerically that this basis has the ability to expand
both halo nuclei and many-body resonant states precisely.
The latter indeed belongs to a rigged Hilbert space [10,11],
which is an extension of the notion of Hilbert space to
non-square integrable wave functions. However, the dimension
of the Berggren Slater determinants represented by the GSM

basis increase very quickly with increasing number of valence
particles; it increases much faster than in standard shell model
due to the presence of occupied scattering states. Hence,
the GSM is a tool mainly dedicated to the study of light
nuclei. For medium and heavy nuclei, a method of choice
is the HFB, which can be followed by quasiparticle random
phase approximation (QRPA). As pairing correlations are
absorbed in the HFB ground state, one-body nature of the HFB
framework enables fast evaluations of ground states of medium
and heavy nuclei, and it is in fact the only method suitable
for systematic calculations; see Ref. [12] for an evaluation
of even-even nuclei in the whole nuclear chart with the HFB
formalism. In order to properly treat drip-line nuclei within
the HFB framework, the real-space coordinate-mesh method
has been applied using box boundary conditions [13,14].
Extension of this approach to deformed nuclei is difficult and
has been carried out only recently [15,16]. As an alternative
more convenient approach, one can adopt basis expansion
methods, where direct integration procedure is replaced by
matrix diagonalization. A first amelioration of the HO basis
had been proposed with the transformed harmonic oscillator
(THO) basis [12,17]. Applying unitary transformations to the
HO basis, one obtains the THO basis, in which Gaussian
fall-off of the HO wave functions is replaced by physical
exponential decrease of the THO basis wave functions.
However, the THO basis always dictates exponential decrease
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in expanding quasiparticle wave functions, for both upper
and lower components, even when they are part of scattering
states, so that unsatisfactory basis dependence remains. In
order to solve this problem, a new basis has been introduced
very recently, which consists in using bound and continuum
basis states generated by the analytic Pöschl-Teller-Ginocchio
(PTG) potential [18]. The PTG basis introduced in this paper
[19] possesses a peculiarity to bear no narrow resonance
states; those are replaced by bound PTG states. Thus, PTG
continuum set of basis states can be discretized very effectively
with Gauss-Legendre quadrature, as they contain no resonant
structure. It has been shown that they can provide a good
description of spatially extended nuclear ground states of both
spherical and axially deformed nuclei [19]. On the other hand,
the PTG basis formed by bound and real scattering states is
not a Berggren complete set of states, so that it would be more
convenient to use a Berggren quasiparticle basis set, when we
are interested in describing particle-decaying excited states.
Up to now, however, resonant quasiparticle states have been
studied in the context of Berggren completeness relation only
within the BCS approximation [20,21]. The last approach is
indeed not satisfactory due to the well-known gas problem
arising from the occupation of the continuum: In fact, densities
are not localized in the BCS approach, because the lower
components of scattering quasiparticle states are of scattering
type as well. Contrary to what is stated in Ref. [20], it cannot
be regularized using complex scaling because it does not have
pure outgoing asymptotic. Use of continuum level density
in Ref. [21] is also problematic, even though it suppresses
the gas problem. Indeed, it is not part of continuum HFB
theory [19], so that its introduction in HFB equations strongly
modifies quasiparticle coupling to the continuum. In particular,
it suppresses a large part of nonresonant continuum, and
thus important physical properties of drip-line nuclei as well.
Hence, with this approach, weakly bound systems cannot be
studied properly. Only a full application of the HFB framework
can unambiguously solve this problem, where densities are
localized by construction for bound HFB ground states.

The major purpose of this paper is to develop a new method
of solving the continuum HFB equations utilizing the Berggren
basis, called Gamow-HFB method, by which bound, resonant
and continuum quasiparticle states are provided. It allows
expansion of QRPA excited states having escaping widths
in terms of the Berggren quasiparticle basis associated with
the bound HFB ground state. This is very important because,
in weakly bound unstable nuclei, low-lying collective excited
states may acquire particle-decay widths.

This paper is organized as follows. Firstly, the standard
HFB formalism is briefly summarized. As we use the Skyrme
interactions [22], it is effected in the context of density
functional theory (DFT). Secondly, we define quasiparticle
S-matrix poles and scattering states of complex energy; these
are direct extensions of their single-particle counterparts.
We then present the quasiparticle Berggren completeness
relation generated by those states. Numerical methods to
calculate Gamow and complex scattering quasiparticle states
are described; they differ significantly from the scattering
quasiparticle states discretized by box boundary conditions.
We also present another method of solving the continuum HFB

equations in which the HFB quasiparticle wave functions are
expanded in terms of the Gamow-Hartree-Fock (GHF) basis;
this approach may be regarded as an extension of the standard
two-basis method [23–25] to complex energy plane. Feasibility
of the proposed methods is illustrated for neutron-rich nickel
isotopes close to the drip line. Perspectives for unbound
HFB theory and QRPA calculations using the Gamow-HFB
quasiparticle basis will then be discussed.

II. GENERAL HFB FORMALISM WITH DFT

The HFB equations are expressed in supermatrix form
constituted by particle-hole field Hamiltonian h, particle-
particle pairing Hamiltonian h̃ and chemical potential λ

guaranteeing conservation of particle number in average:

(
h − λ h̃

h̃ λ − h

) (
u

v

)
= E

(
u

v

)
. (1)

Using Skyrme and density-dependent contact interactions for
the particle-hole and pairing channels, respectively, h and h̃

are expressed in terms of local normal density ρ(r) and pairing
density ρ̃(r). Formulas providing ρ, ρ̃, h, and h̃ can be found
in [14,26]. As h and h̃ depend on ρ and ρ̃, determined from
quasiparticles eigenvectors of Eq. (1), the HFB equations must
be solved in a self-consistent manner [27].

Let us consider the HFB equations with the Skyrme energy
density functionals and density-dependent contact pairing
interactions assuming spherical symmetry. Fixing orbital and
total angular momentum � and j , as well as proton or neutron
nature of the wave functions, Eq. (1) becomes a system of
radial differential equations [14]:

(
d

dr

h̄2

2m∗(r)

d

dr

)
u(k, r)

=
[
h̄2�(� + 1)

2m∗(r)r2
+ V (r) − (λ + E)

]
u(k, r) + W (r)v(k, r),

(
d

dr

h̄2

2m∗(r)

d

dr

)
v(k, r)

=
[
h̄2�(� + 1)

2m∗(r)r2
+ V (r) − (λ − E)

]
v(k, r) − W (r)u(k, r),

(2)

where

(i) u(k, r) and v(k, r) are respectively the upper and lower
components of quasiparticle wave function with energy
E, and k = √

2mE/h̄ with the nucleon mass m,
(ii) m∗(r), V (r) and W (r) are respectively the effective

mass, the particle-hole (field) and particle-particle
(pairing) potentials of the HFB Hamiltonian.

Because nuclear interactions are finite range, only Coulomb
and centrifugal parts remain for r → +∞, so that Eq. (2)
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becomes asymptotically:

d2u

dr2
(k, r) =

(
�(� + 1)

r2
+ 2ηuku

r
− k2

u

)
u(k, r),

(3)
d2v

dr2
(k, r) =

(
�(� + 1)

r2
+ 2ηvkv

r
− k2

v

)
v(k, r),

where the generalized momenta ku, kv and their associated
Sommerfeld parameters ηu, ηv are defined by

ku =
√

2m

h̄2 (λ + E), kv =
√

2m

h̄2 (λ − E), (4)

ηu(v) = mZCc

h̄2ku(v)
(proton), ηu(v) = 0 (neutron) (5)

with the number of protons Z and the Coulomb constant
Cc. Hence, u(k, r) and v(k, r) are linear combinations of
the Hankel or Coulomb wave functions H±

�ηu(v)
(ku(v)r) for

r → +∞. Note that kv is always imaginary provided the HFB
ground state is bound (λ < 0), while ku is real (imaginary) for
E > −λ (E < −λ).

The chemical potentials λ for neutrons and protons are
determined from the requirement of conservation of their
number in average:

〈N̂〉 =
∑

i

Ni = N, Ni =
∫ +∞

0
v2

i (r) dr, (6)

(and similar equations for protons). Here the sum runs over all
quasiparticle states, N is the number of neutrons and 〈N̂〉 is the
expectation value in the HFB ground state. For a given particle-
hole field Hamiltonian h, the chemical potential λ could be
calculated in principle exactly at each iteration, recalculating
all quasiparticle wave functions from Eq. (1) and updating λ

until Eq. (6) is verified. However, in practice, it is much faster
to use instead an approximate chemical potential issued from
the BCS formulas, which will converge self-consistently to the
exact chemical potential along with the HFB Hamiltonian [14].
For that, one defines auxiliary single-particle energies ēi and
auxiliary pairing gaps �̄ by

ēi = λ + Ei(1 − 2Ni), �̄i = 2Ei

√
Ni(1 − Ni), (7)

which are defined by applying the BCS type formula to the
HFB quasiparticle energies Ei , the average particle number Ni

defined in Eq. (6) and the chemical potential λ issued from the
previous iteration. While ēi and �̄i correspond to the single-
particle energy and the pairing gap in the BCS approximation,
they are used here as auxiliary variables to solve the HFB
equations. The approximate chemical potential λ is obtained
by solving its associated BCS equation:

∑
i


1 − ēi − λ√

(ēi − λ)2 + �̄2
i


 = 2N. (8)

III. S-MATRIX POLES AND SCATTERING
QUASIPARTICLE STATES

A. Boundary conditions

The upper and lower components, u(k, r) and v(k, r), of
the quasiparticle wave function satisfy the following boundary
conditions:

u(k, r) ∼ C0
ur

�+1, v(k, r) ∼ C0
v r

�+1, r → 0, (9)

u(k, r) ∼ C+
u H+

�ηu
(kur) + C−

u H−
�ηu

(kur), r → +∞, (10)

v(k, r) ∼ C+
v H+

�ηu
(kvr), r → +∞. (11)

Equation (9) is required by regularity of wave functions at
r = 0. Equations (10) and (11) determine the nature of
quasiparticle state, which can be a bound, resonant (C−

u =
0) or scattering (C−

u �= 0) state, and are generalizations of
the boundary conditions defining single-particle states using
the Berggren completeness relation. Equation (11) demands
outgoing wave function behavior of v(r) for all quasiparticle
states. If its energy E is real and positive, as in the standard
HFB approach, Eq. (11) is equivalent to the asymptotic con-
dition v(k, r) → 0 for r → +∞; the condition arising from
integrability of nuclear density over all space [14]. Extension
to complex energies follows from analyticity of the v(k, r)
function in the complex k-plane. Equation (10) with C−

u = 0
then defines quasiparticle S-matrix poles, as it is equivalent
to u(k, r) → 0 for r → +∞ for bound quasiparticle states
with E < |λ|, and provides resonant quasiparticle states if E

is complex. Equation (10) with C−
u �= 0 represents standard

scattering quasiparticle states for real and positive E, but they
are extended to complex energies by analyticity arguments.

B. Normalization of quasiparticle states

Bound HFB quasiparticle states with energy En are nor-
malized by

∫ +∞

0
[u(kn, r)2 + v(kn, r)2] dr = 1, (12)

where kn = √
2mEn/h̄. For resonant quasiparticle states,

the integral in the above equation diverges, so that this
normalization condition cannot be used. The complex scaling
method has been known as a practical means to normalize
single-particle resonance states [28]. Convergence of integrals
is obtained therein integrating up to a finite radius R situated
in the asymptotic region, after which the interval [R : +∞]
is replaced by a complex contour defined by a rotation angle
θ > 0, allowing exponential decrease of the integrand. Owing
to Eqs. (10) and (11), the same method can be used to normalize
resonant quasiparticle states, so that Eq. (12) becomes

∫ R

0
[u(kn, r)2 + v(kn, r)2] dr

+
∫ +∞

0

[
C+

u H+
�ηu

(ku(R + xeiθu ))
]2

eiθudx

+
∫ +∞

0

[
C+

v H+
�ηv

(kv(R + xeiθv ))
]2

eiθv dx = 1, (13)
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where θu > 0 and θv > 0 are chosen such that improper
integrals converge. Hence, as in the single-particle case,
normalization of quasiparticle S-matrix poles presents no other
difficulty. As in Ref. [8], complex-scaled integrals will be
denoted Reg[

∫ +∞
0 f (r) dr], i.e., the regularized value of the

diverging integral.
Scattering quasiparticle states must be orthonormalized

with the Dirac delta distribution:

∫ +∞

0
[u(ka, r)u(kb, r) dr + v(ka, r)v(kb, r)] dr

= δ(ka − kb), (14)

for those with momenta ka and kb. From Eqs. (10) and (11),
assuming that Eq. (3) is obtained for r ≥ R, Eq. (14) becomes

∫ R

0
[u(ka, r)u(kb, r) + v(ka, r)v(kb, r)] dr

+C+
ua

C+
ub

Reg

[∫ +∞

R

H+
�ηua

(
kua

r
)
H+

�ηub

(
kub

r
)
dr

]

+C−
ua

C−
ub

Reg

[∫ +∞

R

H−
�ηua

(
kua

r
)
H−

�ηub

(
kub

r
)
dr

]

+C+
va

C+
vb

Reg

[∫ +∞

R

H+
�ηva

(kva
r)H+

�ηvb

(
kvb

r
)
dr

]

+C−
ua

C+
ub

∫ +∞

R

H−
�ηua

(
kua

r
)
H+

�ηub

(
kub

r
)
dr

+C+
ua

C−
ub

∫ +∞

R

H+
�ηua

(
kua

r
)
H−

�ηub

(
kub

r
)
dr

= δ(ka − kb). (15)

The divergence of the Dirac delta function at ka = kb occurs
by way of the two last integrals of Eq. (15), as no complex
scaling can make them converge if ka = kb [8]. The Dirac
delta normalization of the Coulomb wave functions implies,
as in the single-particle case:

C−
ua

C+
ub

∫ +∞

R

H−
�ηua

(
kua

r
)
H+

�ηub

(
kub

r
)
dr

+C+
ua

C−
ub

∫ +∞

R

H+
�ηua

(
kua

r
)
H−

�ηub

(
kub

r
)
dr

= 2πC+
ua

C−
ua

δ
(
kua

− kub

) + f
(
kua

, kub

)
, (16)

where f (kua
, kub

) is finite for all (kua
, kub

). The relation
between δ(ka − kb) and δ(kua

− kub
) is easily obtained from

Eq. (4):

δ
(
kua

− kub

) =
[
∂kua

∂ka

(ka)

]−1

δ(ka − kb) = kua

ka

δ(ka − kb).

(17)

This a direct application of the standard Dirac delta distribution
property stating that δ(f (k)) = f ′(k0)−1δ(k − k0) for a given
function f (k) bearing a unique simple zero at k = k0 [29].
Note that kb is fixed while ka is varied to obtain Eq. (17).

Inserting Eqs. (16) and (17) into Eq. (15), one obtains∫ +∞

0
[u(ka, r)u(kb, r) dr + v(ka, r)v(kb, r)] dr

= δ(ka − kb) ⇔ 2πkua

ka

C+
ua

C−
ua

δ(ka − kb)

= δ(ka − kb) + g(ka, kb), (18)

where g(ka, kb) bears the same properties as f (kua
, kub

).
As quasiparticle scattering states are orthogonal for ka �=
kb, g(ka, kb) = 0 therein, so that δ(ka − kb) + g(ka, kb) =
δ(ka − kb) in all cases.

Dirac delta distribution normalization for scattering states
|k〉 and |k′〉 immediately follows:

〈k|k′〉 = δ(k − k′) ⇔ C+
u C−

u = k

2πku

. (19)

Hence, besides the additional factor k/ku, the normalization
condition for quasiparticle scattering states is the same as that
for single-particle scattering states [8].

C. Completeness of quasiparticle states of real
and complex energy

The HFB supermatrix defined in Eq. (1) is Hermitian, so
that it possesses a spectral decomposition [30]:∑

n∈b

[u(kn, r)u(kn, r
′) + v(kn, r)v(kn, r

′)]

+
∫ +∞

kλ

[u(k, r)u(k, r ′) + v(k, r)v(k, r ′)] dk

= δ(r − r ′), (20)

where kn = √
2mEn/h̄ for a bound quasiparticle state with

energy En, k is a linear momentum for a continuum quasi-
particle state, u(κ, r), v(κ, r) (κ = kn or k) are respectively
the upper and lower components of a quasiparticle wave
function with quantum numbers � and j (here implicit), and
kλ = √−2mλ/h̄. All quasiparticle states must be normalized
to one (bound) or to a Dirac delta (scattering) (see Sec. III B).
Equation (20) can also be demonstrated extending the method
of Ref. [31] to quasiparticle states.

In order to obtain Berggren completeness of quasiparticle
states, one can proceed as in Ref. [32], deforming the real
energy contour in the complex plane. Resonant quasiparticle
states appear therein, due to the Cauchy theorem, as S-
matrix poles [32]. Hence, Eq. (20) becomes after contour
deformation:∑

n∈(b,d)

[u(kn, r)u(kn, r
′) + v(kn, r)v(kn, r

′)]

+
∫ +∞

L+
[u(k, r)u(k, r ′) + v(k, r)v(k, r ′)] dk

= δ(r − r ′), (21)

where kn refers now to a bound (b) or resonant (d) (decaying)
quasiparticle state and k is complex as it follows the deformed
contour in the complex plane, denoted as L+. Resonant
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quasiparticle states are normalized with complex scaling (see
Sec. III B).

IV. NUMERICAL DETERMINATION OF QUASIPARTICLE
ENERGIES AND WAVE FUNCTIONS WITH DIRECT

INTEGRATION

A. Quasiparticle Jost functions

In Eqs. (9), (10), and (11), constants and momenta of
S-matrix poles are determined by the requirement of continuity
of both the u(k, r) and v(k, r) functions and associated
derivatives. These conditions can be expressed in a form of
quasiparticle Jost functions, defined as a generalization of
the Jost function for single-particle problems, whose zeroes
correspond to S-matrix poles [33]. They read

Ju

(
k,

C0
v

C0
u

,
C+

v

C+
u

)
= u′(k, R+

0 )

u(k, R+
0 )

− u′(k, R−
0 )

u(k, R−
0 )

,

Jv

(
k,

C0
v

C0
u

,
C+

v

C+
u

)
= v′(k, R+

0 )

v(k, R+
0 )

− v′(k, R−
0 )

v(k, R−
0 )

, (22)

Jm

(
k,

C0
v

C0
u

,
C+

v

C+
u

)
= u(k, R+

0 )

u(k, R−
0 )

− v(k, R+
0 )

v(k, R−
0 )

,

where R0 is a radius typically chosen around the nuclear
surface and one can demand arbitrarily that C0

u = C+
u = 1 in

Eqs. (9) and (10). The functions, u(k, R+
0 ), v(k, R+

0 ) and their
derivatives, are obtained by forward integration of Eq. (2)
using Eq. (9) as initial conditions, while u(k, R−

0 ), v(k, R−
0 )

and their derivatives are calculated by backward integration
of Eq. (2) from the initial conditions provided by Eqs. (10)
and (11). In Eq. (22), one can clearly see that u(k, r) and
v(k, r) will have continuous logarithmic derivatives if Ju = 0
and Jv = 0, respectively. However, these two equalities are
not sufficient to uniquely determine the quasiparticle state.
Indeed, they imply that one can choose a set of constants so
that either u(k, r), u′(k, r), or v(k, r), v′(k, r) are continuous,
but not necessarily both of them. The condition Jm = 0 is thus
enforced in Eq. (22). The set of three equations, Ju = 0, Jv = 0
and Jm = 0, uniquely determine quasiparticle S-matrix poles.

For quasiparticle scattering states, the linear momentum k

is fixed, but constants have to be calculated with a matching
procedure. One starts with imposing the condition C0

u = 1,
as for S-matrix poles. As the u(k, r) component is of
scattering type, the condition Ju = 0 can always be fulfilled
with appropriately chosen C+

u and C−
u constants. Thus, it is

sufficient to deal only with Jv and Jm:

Jv

(
C0

v

C0
u

, C+
v

)
= v′(k, R+

0 )

v(k, R+
0 )

− v′(k, R−
0 )

v(k, R−
0 )

,

(23)

Jm

(
C0

v

C0
u

, C+
v

)
= u(k, R+

0 )

u(k, R−
0 )

− v(k, R+
0 )

v(k, R−
0 )

,

the difference with Eq. (22) being that Jv and Jm now
depend on two parameters instead of three. As in the S-matrix
pole equations, u(k, R+

0 ), v(k, R+
0 ) and their derivatives are

generated by forward integration of Eq. (2). Concerning the
implementation of u(k, R−

0 ), v(k, R−
0 ) and their derivatives,

however, one first continues integrating forward in order to

obtain u(k, R), u′(k, R), R being in the asymptotic region.
At this point R, u(k, R), u′(k, R) provide an initial condition
for backward integration, while Eq. (11) is used to initialize
v(k, R), v′(k, R). In this way, we obtain u(k, R−

0 ), v(k, R−
0 )

and their derivatives. Thus, the equations Jv = 0 and Jm = 0
provide the matching constants rendering v(k, r), v′(k, r)
continuous.

The conditions, Ju = 0 (for S-matrix poles), Jv = 0 and
Jm = 0, form a system of non-linear equations of two or
three dimensions. Consequently, it has to be solved with
multi-dimensional Newton method. The only problem therein
is to find a good starting point from where one can attain fast
convergence to the exact solution in a stable way.

B. Determination of quasiparticle energy and
integration constants

Following Ref. [26], it is convenient to introduce linearly
independent solutions of Eq. (2) in order to determine the
constants defined in Eqs. (9), (10), and (11):(

u

v

)
= C0

u

(
fu0

gu0

)
+ C0

v

(
fv0

gv0

)
, (24)

(
u

v

)
= C+

u

(
fu+

gu+

)
+ C−

u

(
fu−

gu−

)
+ C+

v

(
fv+

gv+

)
, (25)

where the introduced basis functions verify

fu0 (r) ∼ r�+1, gv0 (r) ∼ r�+1, fv0 (r) ∼ D0r
�+3,

gu0 (r) ∼ −D0r
�+3, r → 0, fu±(r) ∼ H±

�ηu
(kur),

gv+(r) ∼ H+
�ηv

(kvr), fv+ (r) → 0, gu±(r) → 0,

r → +∞, (26)

with

D0 = m∗(0)W (0)

(2� + 3)h̄2 . (27)

Equation (27) is obtained inserting u(r) = r�+1 and v(r) =
−D0r

�+3 in the second equality of Eq. (2) and solving the
equation keeping only dominant terms.

As the basis functions of Eqs. (24) and (25) depend
only on k of the quasiparticle state, they can be calculated
with direct integration, in a forward direction for Eq. (24)
and in a backward direction for Eq. (25). Used methods to
determine quasiparticle wave function differ according to their
characters; S-matrix poles or scattering states, as discussed
below.

C. Bound and resonant quasiparticle states

To find S-matrix poles, it is first necessary to start with a
good approximation of k, denoted kapp. For that, a no-pairing
approximation is firstly performed. Neglecting h̃ in Eq. (1),
the Gamow-HFB equations reduce to the GHF equations:

h|φi〉 = ei |φi〉, (28)

where ei are complex (real) for resonant (bound) states. Equa-
tion (28) provides bound and narrow resonant single-particle
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states of interest, which will be in finite number. As pairing
potential h̃ is weak compared to h, there will always be unique
correspondence between the GHF single-particle S-matrix
poles and the HFB quasiparticle S-matrix poles. Unless the
quasiparticle S-matrix poles lie close to the Fermi energy, their
lower (upper) components will be very close to φi(r) if |φi〉
are (un)occupied at the HF level, so that the auxiliary energies
ēi , defined in Eq. (7), will be very close to the real parts of
ei . Secondly, the HFB matrix in Eq. (1) is diagonalized. It has
been found that the use of a Pöschl-Teller-Ginocchio (PTG)
basis provides sufficiently precise results [19]. Therefore, for
Ei in Eq. (7) we use the quasiparticle energies obtained by
diagonalizing the HFB matrix in the PTG basis. For a given
GHF state of energy ei , the starting quasiparticle energy Eapp

(from which kapp is immediately deduced), is then the HFB
quasiparticle energy whose ēi is closest to the real part of ei .
If the HFB quasiparticle S-matrix pole is far from the Fermi
energy, Eapp is very close to the exact energy. Otherwise, it
will still provide a good starting point, as, in practice, one can
have only one quasiparticle state close to the Fermi energy for
a given (�, j )-partial wave.

Furthermore, one demands C−
u = 0, which translates into a

linear eigenvalue problem of dimension equal to four, deduced
from Eqs. (24) and (25), which one matches at r = R0:



fu0 fv0 −fu+ −fv+

gu0 gv0 −gu+ −gv+

f ′
u0

f ′
v0

−f ′
u+ −f ′

v+

g′
u0

g′
v0

−g′
u+ −g′

v+







C0
u

C0
v

C+
u

C+
v


 = 0, (29)

where all matrix functions have been evaluated at r = R0 by
way of backward or forward integration. As the integration
constants are not simultaneously equal to zero, they have to
form an eigenvector of the matching matrix of Eq. (29), which
we denote M hereafter, of eigenvalue equal to zero. However,
the determinant of the 4 × 4 matrix M is zero uniquely for the
exact value of k. Thus, the set of approximate constants to use
as a starting point for Newton method is chosen as the eigen-
vector of tMM whose associated eigenvalue is the smallest in
modulus (tMM is used instead of M because it is symmetric).
The constant ratios C0

v/C0
u and C+

v /C+
u used in Eq. (22)

follow, as they are independent of the norm of the considered
eigenvector. Exact determination of k, C0

v/C0
u and C+

v /C+
u can

then be worked out via three-dimensional Newton method.

D. Scattering quasiparticle state

If one considers a scattering state, it is convenient to define
a+, a−, b+, b− so that C±

u = a±C0
u + b±C0

v . Moreover, as all
constants are calculated up to a normalization factor, one can
impose C0

u = 1. Upper components of Eqs. (24) and (25)
matched at r = R and Eq. (26) provide linear equations for
a± and b±:

a+fu+ (R) + a−fu−(R) = fu0 (R), b+fu+(R) + b−fu− (R)

= fv0 (R),

a+f ′
u+ (R) + a−f ′

u−(R) = f ′
u0

(R), b+f ′
u+(R) + b−f ′

u− (R)

= f ′
v0

(R). (30)

From the knowledge of a± and b±, matching lower compo-
nents in Eqs. (24) and (25) at r = R0 determines C0

v and C+
v

via linear equations as well:

C0
v [gv0 (R0) − b+gu+(R0) − b−gu−(R0)] − C+

v gv+ (R0)

= a+gu+(R0) + a−gu−(R0) − gu0 (R0),
(31)

C0
v [g′

v0
(R0) − b+g′

u+(R0) − b−g′
u−(R0)] − C+

v g′
v+ (R0)

= a+g′
u+(R0) + a−g′

u−(R0) − g′
u0

(R0).

As C±
u = a± + b±C0

v , all constants are determined with sim-
ple two-dimensional linear systems. Newton method applied
to Eq. (23) converges very quickly using the obtained set of
constants as a starting point. Note that the use of H±

�ηu
(kur)

functions in Eqs. (25) and (26) can be sometimes unstable,
especially for the proton case, where, for low scattering
energies, they can be very large and cancel almost exactly
in Eq. (10). In this case, it is better to use regular and irregular
Coulomb wave functions, F�ηu

(kur) and G�ηu
(kur), as basis

functions.

V. NORMAL AND PAIRING DENSITIES

As quasiparticle states of complex energy form a complete
set [see Eq. (21)], one can directly express densities with upper
and lower components of quasiparticle states:

ρ�j (r) =
∑

n∈(b,d)

v2(kn, r) +
∫

L+
v2(k, r) dk,

ρ(r) =
∑
�j

ρ�j (r),

(32)
ρ̃�j (r) = −

∑
n∈(b,d)

u(kn, r)v(kn, r) −
∫

L+
u(k, r)v(k, r) dk,

ρ̃(r) =
∑
�j

ρ̃�j (r),

where ρ�j (r) and ρ̃�j (r) are, respectively, partial normal and
pairing densities related to a given partial wave with quantum
numbers � and j , and ρ(r), ρ̃(r) are respectively the normal
and pairing densities of the HFB ground state. However, due
to the zero-range character of Skyrme forces, it is necessary to
introduce an energy cut in contour integrals, so that L+ contour
has to stop at finite energy Ecut (see Fig. 1). Note that, due to
this requirement, it is necessary for L+ complex contours to
come back to the real axis. Even though quasiparticle wave
functions are complex in Eq. (32), ρ�j (r) and ρ̃�j (r) are real
because one is considering a HFB bound ground state, so
that, due to Cauchy theorem, complex integration in Eq. (32)
is equivalent to real integration in the standard case. As a
consequence, the DFT can be applied also to the Gamow
HFB formalism, i.e., potentials V (r) and W (r) in Eq. (2) are
evaluated using the standard formulas of Ref. [14]. As shown
in Fig. 1, the bound HF single-particle states can become
resonant states when pairing correlations are added [37].
Thus, physical interpretation of a resonant quasiparticle is
somewhat different from that of single-particle resonances:
widths of the quasiparticle states associated with the HF
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L
+
 contour

bound quasi-particle

resonant quasi-particle

(scattering states)

(HF bound or resonant)

Im(k)

Re(k)
α |λ|1/2 E

cut

FIG. 1. (Color online) Location of quasiparticle S-matrix poles
and deformed complex contour L+ of scattering quasiparticle states
used in the Berggren completeness relation. Here, α = √

2m/h̄.

bound single-particle states originates from pairing-induced
couplings between the bound and scattering states [34].

In the same way as in the Gamow shell model [7–9], the
scattering L+ contours in Eq. (32) have to be discretized,
providing a finite set of linear momenta and weights (ki, wi).
In practice, the Gauss-Legendre quadrature has been found
to be most efficient. Scattering quasiparticle states are also
renormalized, multiplying them by

√
wi [32], so that the

discretized expressions of Eq. (32) are formally identical to
the discrete case:

ρ�j (r) 
∑

n∈(b,d)

v2(kn, r) +
∑

i

v2
wi

(ki, r),

(33)
ρ̃�j (r)  −

∑
n∈(b,d)

u(kn, r)v(kn, r) −
∑

i

uwi
(ki, r)vwi

(ki, r),

where uwi
(ki, r) = √

wiu(ki, r) and vwi
(ki, r) = √

wiv(ki, r).

VI. ANOTHER METHOD: EXPANSION OF
QUASIPARTICLE STATES WITH THE GHF BASIS

Another possibility to solve the HFB equations in complex
energy plane is to use the Gamow single-particle states as
a basis. The optimal Berggren basis to expand the HFB
quasiparticle states is obviously the GHF basis generated by
the potential V (r) and the effective mass m∗(r) of Eq. (2).
Note that it is not equivalent to the GHF basis issued from
the pure HF variational principle in that pairing correlations
always give extra contributions to the particle-hole part of
the HFB Hamiltonian. Indeed, we noticed in our numerical
calculation that other Berggren bases make the HFB self-
consistent procedure unstable due to the appearance of very
large matrix elements in the HFB Hamiltonian matrix. The use
of the optimized Berggren basis mentioned above removes this
problem. This approach may be regarded as a generalization
of the two-basis method [23–25].

The GHF basis states φ(r) are defined by the following
equation:(

d

dr

h̄2

2m∗(r)

d

dr

)
φ(r) =

[
h̄2�(� + 1)

2m∗(r)r2
+ V (r) − e

]
φ(r),

(34)

issued directly from Eqs. (2) and (28), where e is the complex
energy of the GHF state. The HFB Hamiltonian matrix
represented with this basis becomes(

h − λ h̃

h̃ λ − h

)

=




e1 − λ 0
. . .

0 eN − λ

h̃

h̃

λ − e1 0
. . .

0 λ − eN




, (35)

where the continuous Berggren basis is discretized with the
Gauss-Legendre quadrature (see Sec. V) so that total number
of basis states is N . Its particle-hole part is evidently diagonal
and matrix elements of h̃ read

〈φa|h̃|φb〉 =
∫ +∞

0
φa(r)W (r)φb(r) dr, (36)

where |φb〉 and |φa〉 are the GHF basis states and W (r) is
the HFB pairing potential defined in Eq. (2). For bound HFB
ground states, W (r) decreases sufficiently quickly so that no
complex scaling is needed to evaluate the integral of Eq. (36).
Hence, after discretization of the contours representing scat-
tering basis states, this method takes a formally identical form
to the standard matrix diagonalization treatment of the HFB
problem.

VII. NUMERICAL APPLICATIONS

The frameworks described above, i.e., the Gamow-HFB
approach in the coordinate or the GHF configurational space,
are applied to nickel isotopes close to the neutron drip-line,
from 84Ni to 90Ni, which possess spherical HFB ground states.
In the numerical calculation, the SLy4 Skyrme force [35]
is used in combination with the surface-type contact pairing
interaction [26] whose pairing strength is fitted to reproduce
the pairing gap of 120Sn. Using the standard notation [26],
the pairing interaction parameters read t

′
0 = −519.9 MeV

fm3 for the density-independent part and t
′
3 = −37.5t

′
0 MeV

fm6 for the density-dependent part. The maximal angular
momentum used is �max = 10 and a sharp cutoff at Ecut =
60 MeV is adopted. Scattering contours of quasiparticle states
are discretized with 60, 100, or 300 Gaussian points. Several
hundred points are indeed necessary when resonant states
lie relatively close to Ecut (see Fig. 1), as is the case for
the HFB quasiparticle resonance associated with the deeply
bound neutron 0s1/2 HF state for example (see Table I).
Scattering contours of single-particle states in the GHF basis
are discretized up to kmax = 4 fm−1 with 100 points, which
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TABLE I. Bound and resonant neutron energies and widths for
90Ni, calculated in the GHF approximation and in the GHFB/Coord.
formalism. Single-particle energies (ei) and quasiparticle energies
(Ei) are given in MeV and widths () in keV. Note that the GHF 2s1/2

state dissolves into continuum quasiparticle states in the Gamow-
HFB description.

States GHF GHFB/Coord.

e  E 

0s1/2 −52.618 0 51.573 1.099 10−3

1s1/2 −24.630 0 24.348 46.006
2s1/2 −1.196 0 – –
0p3/2 −41.655 0 40.796 27.282
1p3/2 −12.986 0 12.658 490.565
0p1/2 −42.881 0 38.870 27.138
1p1/2 −11.189 0 10.816 404.299
0d5/2 −29.921 0 29.141 0.780
1d5/2 −2.592 0 3.181 194.181
0d3/2 −30.657 0 25.095 22.567
1d3/2 −0.349 0 2.173 560.608
0f7/2 −18.177 0 17.654 397.374
0f5/2 −11.331 0 11.065 645.638
0g9/2 −6.770 0 6.570 0.807
0g7/2 1.350 6.410 3.120 63.6131
0h11/2 3.852 52.851 5.269 131.776

in this case assures convergence of numerical calculation.
This concerns only for the neutron channel, as the pairing
gap vanishes in the proton channel.

The result of calculation for normal and pairing densities
are presented in Figs. 2 and 3. It is interesting to compare the
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FIG. 2. (Color online) Neutron densities ρn both in normal
(left-hand side) and logarithmic (right-hand side) scales. Results of
the HFB/Box, GHFB/Coord., and GHFB/Config. calculations are
displayed by solid, dashed, and dotted lines, respectively.
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FIG. 3. (Color online) Same as Fig. 2 but for neutron pairing
densities.

densities obtained by solving the Gamow-HFB equations in
the coordinate or the GHF configurational space to those cal-
culated by the standard coordinate space framework where the
continuum is discretized with box boundary conditions. They
are denoted GHFB/Coord., GHFB/Config., and HFB/Box.,
respectively. All results coincide in both normal and loga-
rithmic scales for r < 30 fm. It was also checked that spurious
imaginary parts of densities, caused by the discretization of
the continuum of complex energy, were negligible, of the
order of 10−6 [fm−3] for GHFB/Coord. and 10−12 [fm−3]
for GHFB/Config., as the largest error values. In Table I, the
bound and resonant single-particle states obtained by the GHF
calculation are compared with the corresponding quasiparticle
states calculated by the GHFB/Coord. method. It is obvious
that bound HF states can give rise to unbound quasiparticle
states carrying a sizable width when pairing correlations are
switched on.

Physical observables associated with the HFB ground states
are provided in Tables II and III. On the one hand, differences
occur for neutron pairing energies, which are most sensitive
to continuum effects [36]. While those of GHFB/Coord.
compared to HFB/Box remain of the order of 500 keV,
the difference between GHFB/Config. and HFB/Box pairing
energies can be ∼1.5 MeV. On the other hand, the rms radii
and total energies are basically the same, with a discrepancy
of at most ∼300 keV for the latter. These results indicate that
the GHFB/Coord., GHFB/Config., and HFB/Box treatments
are all reliable methods to solve the HFB equations taking
the continuum effects into account. As resonant states are
explicitly treated in the Gamow HFB approach, this implies
that the resonant effects can be well accounted for also by
means of the HFB/Box method. This point is not necessarily
widely accepted [37]. Even though the good agreements
among the results of the GHFB/Coord., GHFB/Config., and
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TABLE II. Gamow-HFB observables for 84Ni and 86Ni calculated with the GHFB/Coord., GHFB/Config., and
HFB/Box methods. The rms radii are given in fm and other quantities in MeV. The proton chemical potential λp is
not presented as there is no proton pairing gap.

84Ni 86Ni

HFB/Box GHFB/Coord. GHFB/Config. HFB/Box GHFB/Coord. GHFB/Config.

λn −1.453 −1.430 −1.440 −1.037 −1.027 −1.029
rn 4.451 4.450 4.450 4.528 4.526 4.526
rp 3.980 3.982 3.982 4.001 4.001 4.001

�n 1.481 1.535 1.564 1.667 1.658 1.669

Epair
n −30.70 −30.72 −31.85 −36.52 −35.85 −36.39

Tn 1084.53 1086.05 1086.46 1118.65 1118.68 1118.78

Tp 430.47 430.23 430.17 425.99 426.01 426.00

Eso
n −63.379 −63.164 −63.01 −61.679 −61.712 −61.631

ECoul
dir 132.94 132.89 132.88 132.26 132.25 132.25

ECoul
exc −10.138 −10.135 −10.135 −10.084 −10.085 −10.085

Etot −654.89 −654.89 −655.05 −656.933 −656.836 −656.971

HFB/Box calculations might be surprising, we see no reason
to suspect that this is an exceptional case valid only for the Ni
isotopes considered here. It will be interesting to examine this
point further.

VIII. PERSPECTIVES FOR DESCRIBING DECAYING
NUCLEI AND BEYOND-MEAN FIELD APPROACHES

The GHFB/Coord. method directly provides quasiparticle
wave functions without using any intermediate basis states.
Hence, it may be used also to describe decaying nuclear
ground states in the HFB approximation. In fact, no HFB
theory capable of describing decaying HFB ground states
exists, even though an approximate scheme was proposed
in Ref. [38]. The main difficulty is that it is not possible
to construct the HFB ground state obeying the outgoing
wave condition if one includes the full set of quasiparticle
states of positive energy [38]. This arises from the fact that
quasiparticles form a degenerate continuum of scattering states

for E < |λ| if λ > 0, whereas they can only generate a discrete
set of bound states in this region if λ < 0. It is impossible to
remove quasiparticle states with E < |λ| with the use of the
GHFB/Config. method, because quasiparticle eigenenergies of
the HFB matrix are complex. In contrast, the direct integration
method (GHFB/Coord.) allows us to select which quasiparticle
states are occupied in the HFB ground state. Hence, it may be
possible to carefully study properties of decaying HFB states
at least for the spherical case.

The GHF configurational approach (GHFB/Config.) may
be more appropriate to study excited states in deformed nuclei
by means of the QRPA. For deformed nuclei, basis expansion
approaches may be easier compared to the calculation of
deformed HFB ground states in coordinate space [16]. For
calculating bound HFB ground states, we can use the PTG
basis, which is more efficient than the GHF basis, considering
the numerical cost of recalculating the GHF basis states
inherent to the two-basis method (see Sec. VI). Once a HFB
ground state is obtained in this way, one can readily calculate
the GHF basis wave functions. The QRPA matrix would then

TABLE III. Same as in Table II but for 88Ni and 90Ni.

88Ni 90Ni

HFB/Box GHFB/Coord. GHFB/Config. HFB/Box GHFB/Coord. GHFB/Config.

λn −0.671 −0.661 −0.665 −0.342 −0.330 −0.342
rn 4.603 4.602 4.601 4.677 4.674 4.675
rp 4.021 4.022 4.022 4.043 4.043 4.043
�n 1.790 1.782 1.800 1.899 1.899 1.935
Epair

n −41.98 −41.26 −42.17 −47.158 −46.509 −48.449
Tn 1150.71 1150.74 1151.02 1182.52 1182.91 1183.79
Tp 421.71 421.71 421.70 417.38 417.35 417.31
Eso

n −59.558 −59.559 −59.470 −56.898 −56.887 −56.822
ECoul

dir 131.571 131.576 131.576 130.947 130.883 130.878
ECoul

exc −10.033 −10.033 −10.033 −9.980 −9.980 −9.980
Etot −658.167 −658.082 −658.272 −658.665 −658.635 −658.936
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be represented afterward with respect to the quasiparticles
wave functions expanded in the GHF basis, thus allowing the
description of unbound QRPA excited states.

IX. CONCLUSION

The Berggren completeness relation, originally developed
in the context of standard Schrödinger equation, has been
extended to quasiparticles in the HFB formalism. It was
shown that, as in the standard single-particle potential problem,
bound, resonant and scattering quasiparticles are well defined
and form a complete set, by which bound HFB ground states
can be constructed. Both situations are very similar and can be
treated by contour deformation of continuous real sets of states,
even though physical interpretation of resonant quasiparticles
is different from that of resonant single-particles. Numerical
applications have been effected with neutron-rich nickel
isotopes close to the drip line, for which continuum coupling
is important. It was shown that the Gamow-HFB approach,
both in coordinate and configurational space representations,
properly describe densities and physical observables. Thus,

it provides us with an efficient tool to study ground states
of medium and heavy nuclei close to the drip line. With
these approaches, QRPA calculation fully taking into account
continuum coupling may be efficiently carried out.
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