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Periodic-orbit bifurcations and superdeformed shell structure
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We have derived a semiclassical trace formula for the level density of the three-dimensional spheroidal
cavity. To overcome the divergences occurring at bifurcations and in the spherical limit, the trace integrals over
the action-angle variables were performed using an improved stationary phase method. The resulting semi-
classical level density oscillations and shell-correction energies are in good agreement with quantum-
mechanical results. We find that the bifurcations of some dominant short periodic orbits lead to an enhance-
ment of the shell structure for “superdeformed” shapes related to those known from atomic nuclei.
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I. INTRODUCTION [5,8] or a(highly idealized deformed metal clustdil1,12,
and to specify the role of orbit bifurcations in the shell struc-

The periodic-orbit theorfPOT) [1-7] is a nice tool for ture responsible for the superdeformation. Although the
studying the correspondence between classical and quantusgheroidal cavity is integrableee, e.g., Ref23)), it exhib-
mechanics and, in particular, the interplay of deterministidts all the difficulties mentioned abovee., bifurcations and
chaos and quantum-mechanical behavior. But also for syssymmetry breakingand therefore gives rise to an exemplary
tems with integrable or mixed classical dynamics, the POTcase study of a nontrivial 3D system. We apply the ISPM for
leads to a deeper understanding of the origin of shell structhe bifurcating orbits and succeed in reproducing the super-
ture in finite fermion systems from such different areas agleformed shell structure by the POT, hereby observing a
nuclear [5,8—10, metallic cluster[11,12, or mesoscopic consideraple enhancer_nent of the shell-structure amplitude
semiconductor physicgl3,14. Bifurcations of periodic or- Nnear the bifurcation points.
bits may have significant effects, e.g., in connection with the
so-called “superdeformations” of atomic nuclgs,6,9,15, Il. THEORY
and were recently shown to affect the quantum oscillations
\cl)i?:see[rr‘%c.i in the magneto-conductance of a mesoscopic dga_reen fur)ctior[l] by ta!<ing the imaginary part of its trace in

In the semiclassical trace formulas that connect théI .0) action-angle variablegs, 21
guantum-mechanical density of states with a sum over the dl’ de”
periodic orbits of the classical systefti—3|, divergences g(E)=E 6(E—si)zReZ f(zﬁ—ﬁ)g,é(E—H)
arise at critical points where bifurcations of periodic orbits : “«
occur or where symmetry breakirigr restoring transitions i -
take place. At these points the stationary-phase approxima- xexp{ %[SH(I’,I”,tQ)wL(I”— [')-@"]—i 5 Ha
tion, used in the semiclassical evaluation of the trace inte-
grals, breaks down. Various ways of avoiding these diver- )
gences have been studigtl4,16, some of them employing ) _ _
uniform approximation§17—20. Here we employ an im- Here {e;} is the single-particle energy spectrum ahfl
proved stationary-phase methd8PM) for the evaluation of ~=H(l) is the classical Hamiltonian. The sum is taken over
the trace integrals in the phase-space representation, bas@lfi classical trajectories specified by the initial actiont’
on the studies in Ref$4,18] which we have derived for the and final angle®”. S,(1',1",t,) = _f:'/'| .d® is the action
e||lptIC billiard [21] |ty|e|dS a Semic|aSSica| level d.ensity integral anda the time for the motion a|ong the trajectow
that is regular at all bifurcation points of the short diameterang 4, is the Maslov index related to the caustic and the

orbit (and its repetitionsand in the circular(disk) limit. turning points[21,22. In the spheroidal variablefu,v, ¢},
Away from the critical points, our result reduces to the eX-the actionl has the components

tended Gutzwiller trace formulg8,5—-7 and is identical to

that of Berry and Tabof4] for the leading-order families of pc (uc .

periodic orbits. qu?J duyoy—sin u—o,/cos u,
The main purpose of the present Rapid Communication is e

to report on the extension of our semiclassical approach to pe (o

the three-dimensional3D) spheroidal cavity[22], which |U:_f dvcosl v — o, — o, /sini? u,

may be taken as a simple model for a large deformed nucleus T Jog

The level densityg(E) is obtained from the semiclassical

@

1063-651X/2001/6@)/0652014)/$20.00 63 065201-1 ©2001 The American Physical Society



MAGNER, FEDOTKIN, ARITA, MATSUYANAGI, AND BRACK
l,=pcyos.

Hereby p=(2mE)*? is the particle’s momentum and

= (b%—a®) Y2 half the distance between the fobianda are
the semiaxegwith b>a) of the spheroid with its volume
fixed by a’b=R? and the axis ratioy=b/a as deformation
parameter; and-u, (or v;) andv, are the caustic and turn-
ing points, respectively. In Eq2) we use the dimensionless
“action” variables o, o, [21] in which the torus of the
classical motion is given by

)

=
7°-1

0L =00, —oy(np—1)=o0,.

In the ISPM, we expand the actids), in Eq. (1) up to

second-order terms around its stationary points and keep tl}s
preexponential factor at zero order, taking the integrations

over the torus within thdinite limits given by Eq.(3). For
the oscillating(“shell-correction”) part of the level density
59(E)=g(E)—g(E), whereg(E) is its smooth parf7,24),
we obtain

1 , T
5g(E):E—ORe§ﬁ: Aﬁ(E)exy{mLﬁ—lE,uﬁ)wg, 4

wherek=p/# is the wave number anB,=#2/2mR our
energy unit. The amplitudes; will be specified below. The
sum over B includes all two-parameter families of three-
dimensional(3D) periodic orbits and elliptic and hyperbolic
2D orbits lying in a plane containing the symmetry ata#
with degeneracy paramet&r=2), the one-parameter fami-
lies of (2D) equatorial orbits lying in the central plane per-
pendicular to the symmetry axisvith =1), and the(1D)
isolated long diametetwith £=0). In Eq. (4), Lg is the
length of the orbitg at the stationary pointd} ,o3) which
for the 3D orbits lies inside the physical region of the torus
(3), and is analytically continued outside this region. The
o,=0 boundary of Eq(3) is occupied by the 2D orbits with
K=2. The stationary points are determined by the roots o
the periodicity conditions w,/w,=n,/n, and o,/w,
=n,/n,; herebyw,=dH/Jl, are the frequencies ama,
are coprime integers which specify the periodic orlits
=M(n,,n,,n,), whereM is the repetition number. The fac-
tor w}=exp(—¥’L5/4R?) in Eq. (4) is the result of a convo-
lution of the level density with a Gaussian function over a
rangevy in the variablekR. This ensures the convergence of
the POT sum4) by suppressing the longer orbits which are
not relevant for the coarse-grained gross-shell stru¢yi@.

For Strutinsky’s shell-correction energd) [3,7,24, we
obtain (with time reversal symmetry and a spin factgr 2
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N/2 ~

su=23 si—szFEa(E)dE
i=1 0

As(Er)
2
Ls

. . W

The Fermi energie€r (and with itkg) and Eg are deter-
mined by the particle number conservatiorN
=2[7g(E)dE=2/;Fg(E)dE. Due to the factoi ;2, the

PO sum in Eq(5) may converge faster for the shortest orbits
than the level density4) for small y. Any enhancement of
the amplitudesA; of the most degenerate short periodic or-
bits (e.g., due to bifurcations or to symmetry restoring, as
discussed belowtherefore leads to an enhancement of the
shell structure and hence to an increased stability of the sys-
tem.

We present here only the amplitudes of the leading con-
tributions to Eqs(4) and (5). For further detailgincluding,
e.g., explicit expressions for the Maslov indicgs), we
refer to a forthcoming, more extensive publicat{@z2)].

For the amplitudesA; of the most degeneratelC(=2)
milies of periodic 3D and 2D orbits, we obtain

2

IT erfix, .x).

n=1

icLg[dly/doy]

7(4AMRn,)*VK go3

The quantityK ;=K§ K is related to the main curvatures
K(B”) of the energy surfac&E=H(o,05,) in the “action”
plane (,0,), given by

AL=2)_

6

Fa

)
2

W, Jog| 4

Un

w, 3y

w, (90'§

a1,

= 2
do,

()
B

, )

(n=1,2).

In Eg. (6), the arguments of the two-dimensional error func-
tion erf(x,y)=2f§dze‘22/\/; are given by the turning
points in the action plane

Xy =\—i7mM anﬁ(”jlh(aﬁ—o’;) (n=1,2);

see Eq.(3) for the boundariesrrf . All quantities in Eq.(6)

can be expressed analytically in terms of elliptic integrals.
For the 3D orbits, our resulf6) is in agreement with that
obtained by exact Poisson summation over the EBK spec-
trum (cf. Refs.[4,7]).

f For the contribution of théC=1 families of equatorial
orbits to Eq.(4), we obtain the amplitudes

®

3

H erf(x, ,X

n=1

i si® ¢
7Mn,kR7nF 4

+
n

(kK=1)_
AB =

), 9

where ¢g=mn,/n,, Fgis their stability factof1,2,6], o7
o} =cos ¢pl(7*—1), and

x;=|«;\/

64Mn, (o5 + 1)KG"

x;=0. (10
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FIG. 1. Moduli of amplitudes|A,z| vs # for the equatorial

“star” orbit (5,2 (K=1) and the 3D orbi{5,2,) (K=2) bifur-

cating from it aty=1.618... . Solid lines: using the ISPM accord-

ing to Eqs.(9) and (6), respectively; dash-dotted lines: using the  FIG. 2. Level densitysg(E) (4) (unit E;*) vs kR for different

standard stationary-phase approach. critical deformationsz. The Gaussian averaging parameteryis
=0.3. Thin solid lines: quantum-mechanical results; thick dotted

The contribution of the isolated long diameter orbit, lines: semiclassical results using the ISPM.
which may be expressed in terms of incomplete Airy inte-
grals[21,22, is not important for deformations of the order

n~1.2-2 A similar enhancement of the double triangleg4) and

the 3D orbit(6,2,]) is found near their bifurcation poing
=\3=1.72... . However, the curvaturi}’ (7) for orbits
like M(3t,t,1) (t=2,3,..) is identically zero and hence the
In Fig. 1 we show|Ag| versus deformationy (at kR SSPM is divergent for all deformationg=1, in contrast to
=40) for a pair of orbits involved in a typical bifurcation the situation with orbits liké5,2,9) with finite K. Here we
scenario. At the critical pointy=1.618... the equatorial have to take into account the next nonzero third-order terms
“star” orbit (5,2) undergoes a bifurcation at which the 3D in the expansion 08, , although the (8t,1) ISPM ampli-
orbit (5,2,1 is born; the latter does not exist below  tude(6) is finite and continuous everywhere. The amplitude
=1.618.... can then be expressed in terms of incomplete Airy and Gairy
In the standard stationary-phase appro&@88PM; dash- integrals with finite limits[22]. For the equatorial orbits
dotted lineg, the amplitude of the€5,2) orbit diverges aty  t(3,1), like for the double triangles(2,1), one has a zero
=1.618..., whereas that of the bifurcated orl{#,2,1) is curvatureK(Bl) only at the bifurcation pointy=+/3. Here
finite but discontinuous. As seen in Fig. 1, the ISR86lid  f /k(D_.0, and a similar mechanism of cancellation of sin-
lines) leads to a finite amplitud&(52)" for the (5,2 orbit.  gularities for other orbits takes place through E@—(10).
This is because the factét, in the denominator of Eq9),  But the relative enhancement of the ISPM amplitud&s)
which goes to zero at the bifurcation, is cancelled by theof such orbits at the bifurcations is of ordel ; because of a
same factor in the numerator & (10) via the third error  change of the degeneracy paramétesy two units (see Ref.
function in Eq.(9). A similar result was found for the short [22] for detailg. In this sense we avoid here a double singu-
diameter orbit 22,1) in the elliptic billiard [21]. Further- Ilarity related to a double restoring of symmetry.

Ill. DISCUSSION OF RESULTS

more, the ISPM softens the discontinuity for 2,1 orbit, In Figs. 2 and 3, we present semiclassical level densities
leading to a maximum amplitude slightly above the critical 5g(E) (4) versuskR and shell-correction energia3U (5)
deformation. versusNY3 for various critical deformationgthick dotted

The relative enhancement of these amplitudlgsiear the  lines), and compare them to the corresponding quantum-
bifurcation point can also be understood qualitatively frommechanical result&hin solid lines. We observe a very good
the following argument. At the bifurcation of the equatorial agreement of the gross-shell structure at all deformations.
(5,2 orbit, its degeneracy parametEr=1 locally increases The most significant contributions to these results near the
to 2, because it is there degenerate with the orbit familyritical deformations are coming from bifurcating orbits with
(5,2,1) that haslC=2 at all deformations;=1.618... . This  |engths smaller than about RQin line with the convergence
is similar to a symmetry restoring transition. An increase ofarguments for the POT suntd) and (5) mentioned above.
the symmetry parameteéC by one unit leads to one more For the bifurcation aty=1.618..., theorbits (5,2,1) and
exact integration compared to the SSPM, and thus the ang5,2) give contributions comparable with other 2D orbits. For
plitudes (6) and (9) acquire an enhancement factgkL; 5= 1/3, the bifurcating orbit¢6,2,1) and (6,2) are also im-
«pR/A (cf. Refs.[3,7]). portant.

065201-3



RAPID COMMUNICATIONS

MAGNER, FEDOTKIN, ARITA, MATSUYANAGI, AND BRACK PHYSICAL REVIEW E 63 065201R)

200.0 ; - ; These results are in agreement with both heights and po-
1000 - 1 sitions of the peaks in the length spectra obtained in Ref.
0.0 [15] from the Fourier transforms of the quantum level den-

-100.0 sitiesg(kR) at the same deformations.
-200.0 . :

100.0 IV. SUMMARY AND CONCLUSIONS
0.0
~100.0 |

-200.0

We have obtained an analytical trace formula for the 3D
spheroidal cavity model, which is continuous through all
critical deformations where bifurcations of periodic orbits
occur. We find an enhancement of the amplitugieg| at

0.0 deformationsy~1.6—2.0 due to bifurcations of 3D orbits
-100.0 from the shortest 2D orbits. We believe that this is an impor-
-200.0 ; - : tant mechanism which contributes to the stability of super-

' deformed systems. Our semiclassical analysis may therefore

lead to a deeper understanding of shell structure effects in

superdeformed fermionic systems, not only in nuclei or

, metal clusters but also, e.g., in deformed semiconductor

Neo 120 150 quantum dots whose conductance and magnetic susceptibili-
ties are significantly modified by shell effects.

FIG. 3. Shell-correction energ§U (5) (unit Ey) vs cube root of
particle numbeiN? (same notation and same deformations as in ACKNOWLEDGMENTS
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