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Periodic-orbit bifurcations and superdeformed shell structure
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We have derived a semiclassical trace formula for the level density of the three-dimensional spheroidal
cavity. To overcome the divergences occurring at bifurcations and in the spherical limit, the trace integrals over
the action-angle variables were performed using an improved stationary phase method. The resulting semi-
classical level density oscillations and shell-correction energies are in good agreement with quantum-
mechanical results. We find that the bifurcations of some dominant short periodic orbits lead to an enhance-
ment of the shell structure for ‘‘superdeformed’’ shapes related to those known from atomic nuclei.
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I. INTRODUCTION

The periodic-orbit theory~POT! @1–7# is a nice tool for
studying the correspondence between classical and qua
mechanics and, in particular, the interplay of determinis
chaos and quantum-mechanical behavior. But also for
tems with integrable or mixed classical dynamics, the P
leads to a deeper understanding of the origin of shell st
ture in finite fermion systems from such different areas
nuclear @5,8–10#, metallic cluster@11,12#, or mesoscopic
semiconductor physics@13,14#. Bifurcations of periodic or-
bits may have significant effects, e.g., in connection with
so-called ‘‘superdeformations’’ of atomic nuclei@5,6,9,15#,
and were recently shown to affect the quantum oscillati
observed in the magneto-conductance of a mesoscopic
vice @14#.

In the semiclassical trace formulas that connect
quantum-mechanical density of states with a sum over
periodic orbits of the classical system@1–3#, divergences
arise at critical points where bifurcations of periodic orb
occur or where symmetry breaking~or restoring! transitions
take place. At these points the stationary-phase approx
tion, used in the semiclassical evaluation of the trace in
grals, breaks down. Various ways of avoiding these div
gences have been studied@2,4,16#, some of them employing
uniform approximations@17–20#. Here we employ an im-
proved stationary-phase method~ISPM! for the evaluation of
the trace integrals in the phase-space representation, b
on the studies in Refs.@4,18# which we have derived for the
elliptic billiard @21#. It yields a semiclassical level densit
that is regular at all bifurcation points of the short diame
orbit ~and its repetitions! and in the circular~disk! limit.
Away from the critical points, our result reduces to the e
tended Gutzwiller trace formula@3,5–7# and is identical to
that of Berry and Tabor@4# for the leading-order families o
periodic orbits.

The main purpose of the present Rapid Communicatio
to report on the extension of our semiclassical approac
the three-dimensional~3D! spheroidal cavity@22#, which
may be taken as a simple model for a large deformed nuc
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@5,8# or a ~highly idealized! deformed metal cluster@11,12#,
and to specify the role of orbit bifurcations in the shell stru
ture responsible for the superdeformation. Although
spheroidal cavity is integrable~see, e.g., Ref.@23#!, it exhib-
its all the difficulties mentioned above~i.e., bifurcations and
symmetry breaking! and therefore gives rise to an exempla
case study of a nontrivial 3D system. We apply the ISPM
the bifurcating orbits and succeed in reproducing the sup
deformed shell structure by the POT, hereby observin
considerable enhancement of the shell-structure amplit
near the bifurcation points.

II. THEORY

The level densityg(E) is obtained from the semiclassica
Green function@1# by taking the imaginary part of its trace i
(I ,Q) action-angle variables@6,21#,

g~E!5(
i

d~E2« i !.Re(
a

E dI 8dQ9

~2p\!3 d~E2H !

3expH i

\
@Sa~ I 8,I 9,ta!1~ I 92I 8!•Q9#2 i

p

2
maJ .

~1!

Here $« i% is the single-particle energy spectrum andH
5H(I ) is the classical Hamiltonian. The sum is taken ov
all classical trajectoriesa specified by the initial actionsI 8

and final anglesQ9. Sa(I 8,I 9,ta)52* I8
I9I•dQ is the action

integral andta the time for the motion along the trajectorya,
and ma is the Maslov index related to the caustic and t
turning points@21,22#. In the spheroidal variables$u,v,w%,
the actionI has the components

I u5
pc

p E
2uc

uc
duAs12sin2 u2s2 /cos2 u,

~2!

I v5
pc

p E
vc

v t
dvAcosh2 v2s12s2 /sinh2 u,
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I w5pcAs2.

Hereby p5(2mE)1/2 is the particle’s momentum andc
5(b22a2)1/2 half the distance between the foci;b anda are
the semiaxes~with b.a) of the spheroid with its volume
fixed by a2b5R3 and the axis ratioh5b/a as deformation
parameter; and6uc ~or vc) andv t are the caustic and turn
ing points, respectively. In Eq.~2! we use the dimensionles
‘‘action’’ variables s1 , s2 @21# in which the torus of the
classical motion is given by

s2
250<s2<

1

h221
5s2

1 ,

~3!

s1
25s2<s1<

h2

h221
2s2~h221!5s1

1 .

In the ISPM, we expand the actionSa in Eq. ~1! up to
second-order terms around its stationary points and keep
preexponential factor at zero order, taking the integrati
over the torus within thefinite limits given by Eq.~3!. For
the oscillating~‘‘shell-correction’’! part of the level density
dg(E)5g(E)2g̃(E), whereg̃(E) is its smooth part@7,24#,
we obtain

dg~E!.
1

E0
Re(

b
Ab~E!expS ikLb2 i

p

2
mbDwb

g , ~4!

where k5p/\ is the wave number andE05\2/2mR2 our
energy unit. The amplitudesAb will be specified below. The
sum overb includes all two-parameter families of thre
dimensional~3D! periodic orbits and elliptic and hyperboli
2D orbits lying in a plane containing the symmetry axis~all
with degeneracy parameterK52), the one-parameter fam
lies of ~2D! equatorial orbits lying in the central plane pe
pendicular to the symmetry axis~with K51), and the~1D!
isolated long diameter~with K50). In Eq. ~4!, Lb is the
length of the orbitb at the stationary point (s1* ,s2* ) which
for the 3D orbits lies inside the physical region of the tor
~3!, and is analytically continued outside this region. T
s250 boundary of Eq.~3! is occupied by the 2D orbits with
K52. The stationary points are determined by the roots
the periodicity conditions vu /vv5nu /nv and vu /vw

5nu /nw ; herebyvk5]H/]I k are the frequencies andnk
are coprime integers which specify the periodic orbitsb
5M (nv ,nw ,nu), whereM is the repetition number. The fac
tor wb

g5exp(2g2Lb
2 /4R2) in Eq. ~4! is the result of a convo-

lution of the level density with a Gaussian function over
rangeg in the variablekR. This ensures the convergence
the POT sum~4! by suppressing the longer orbits which a
not relevant for the coarse-grained gross-shell structure@6,7#.

For Strutinsky’s shell-correction energydU @3,7,24#, we
obtain ~with time reversal symmetry and a spin factor 2!
06520
he
s

f

dU52(
i 51

N/2

« i22E
0

ẼF
Eg̃~E!dE

.8R2EF Re(
b

Ab~EF!

Lb
2 expS ikFLb2 i

p

2
mbD . ~5!

The Fermi energiesEF ~and with it kF) and ẼF are deter-
mined by the particle number conservationN

52*0
EFg(E)dE52*0

ẼFg̃(E)dE. Due to the factorLb
22 , the

PO sum in Eq.~5! may converge faster for the shortest orb
than the level density~4! for small g. Any enhancement of
the amplitudesAb of the most degenerate short periodic o
bits ~e.g., due to bifurcations or to symmetry restoring,
discussed below! therefore leads to an enhancement of t
shell structure and hence to an increased stability of the
tem.

We present here only the amplitudes of the leading c
tributions to Eqs.~4! and ~5!. For further details~including,
e.g., explicit expressions for the Maslov indicesma), we
refer to a forthcoming, more extensive publication@22#.

For the amplitudesAb of the most degenerate (K52)
families of periodic 3D and 2D orbits, we obtain

Ab
(K52)5

icLb@]I u /]s1#s
n*

p~4MRnv!2AKbs2*
)
n51

2

erf~xn
2 ,xn

1!. ~6!

The quantityKb5Kb
(1)Kb

(2) is related to the main curvature
Kb

(n) of the energy surfaceE5H(s1 ,s2) in the ‘‘action’’
plane (s1 ,s2), given by

Kb
(n)5F]2I v

]sn
2 1

vu

vv

]2I u

]sn
2 1

vw

vv

]2I w

]sn
2 G

s
n*
, ~n51,2!. ~7!

In Eq. ~6!, the arguments of the two-dimensional error fun
tion erf(x,y)52*x

ydze2z2
/Ap are given by the turning

points in the action plane

xn
65A2 ipMnvKb

(n)/\~sn
62sn* ! ~n51,2!; ~8!

see Eq.~3! for the boundariessn
6 . All quantities in Eq.~6!

can be expressed analytically in terms of elliptic integra
For the 3D orbits, our result~6! is in agreement with tha
obtained by exact Poisson summation over the EBK sp
trum ~cf. Refs.@4,7#!.

For the contribution of theK51 families of equatorial
orbits to Eq.~4!, we obtain the amplitudes

Ab
(K51)5A i sin3 fb

pMnvkRhFb
)
n51

3

erf~xn
2 ,xn

1!, ~9!

wherefb5pnw /nv , Fb is their stability factor@1,2,6#, s1*
5s2* 5cos2 fb /(h221), and

x3
15kcA 2 ip\Fb

64Mnv~s2* 11!Kb
(1), x3

250. ~10!
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The contribution of the isolated long diameter orb
which may be expressed in terms of incomplete Airy in
grals @21,22#, is not important for deformations of the orde
h;1.222.

III. DISCUSSION OF RESULTS

In Fig. 1 we showuAbu versus deformationh ~at kR
540) for a pair of orbits involved in a typical bifurcatio
scenario. At the critical pointh51.618 . . . the equatorial
‘‘star’’ orbit ~5,2! undergoes a bifurcation at which the 3
orbit ~5,2,1! is born; the latter does not exist belowh
51.618 . . . .

In the standard stationary-phase approach~SSPM; dash-
dotted lines!, the amplitude of the~5,2! orbit diverges ath
51.618 . . . , whereas that of the bifurcated orbit~5,2,1! is
finite but discontinuous. As seen in Fig. 1, the ISPM~solid
lines! leads to a finite amplitudeA(5,2)

(K51) for the ~5,2! orbit.
This is because the factorFb in the denominator of Eq.~9!,
which goes to zero at the bifurcation, is cancelled by
same factor in the numerator ofx3

1 ~10! via the third error
function in Eq.~9!. A similar result was found for the shor
diameter orbit 2~2,1! in the elliptic billiard @21#. Further-
more, the ISPM softens the discontinuity for the~5,2,1! orbit,
leading to a maximum amplitude slightly above the critic
deformation.

The relative enhancement of these amplitudesAb near the
bifurcation point can also be understood qualitatively fro
the following argument. At the bifurcation of the equator
~5,2! orbit, its degeneracy parameterK51 locally increases
to 2, because it is there degenerate with the orbit fam
~5,2,1! that hasK52 at all deformationsh>1.618 . . . . This
is similar to a symmetry restoring transition. An increase
the symmetry parameterK by one unit leads to one mor
exact integration compared to the SSPM, and thus the
plitudes ~6! and ~9! acquire an enhancement factorAkLb

}ApR/\ ~cf. Refs.@3,7#!.

FIG. 1. Moduli of amplitudesuAbu vs h for the equatorial
‘‘star’’ orbit ~5,2! (K51) and the 3D orbit~5,2,1! (K52) bifur-
cating from it ath51.618 . . . . Solid lines: using the ISPM accord
ing to Eqs.~9! and ~6!, respectively; dash-dotted lines: using th
standard stationary-phase approach.
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A similar enhancement of the double triangle 2~3,1! and
the 3D orbit ~6,2,1! is found near their bifurcation pointh
5A351.732 . . . . However, the curvatureKb

(1) ~7! for orbits
like M (3t,t,1) (t52,3, . . .! is identically zero and hence th
SSPM is divergent for all deformationsh>1, in contrast to
the situation with orbits like~5,2,1! with finite Kb

(1) . Here we
have to take into account the next nonzero third-order te
in the expansion ofSa , although the (3t,t,1) ISPM ampli-
tude ~6! is finite and continuous everywhere. The amplitu
can then be expressed in terms of incomplete Airy and G
integrals with finite limits @22#. For the equatorial orbits
t(3,1), like for the double triangles 2~3,1!, one has a zero
curvatureKb

(1) only at the bifurcation pointh5A3. Here
Fb /Kb

(1)→0, and a similar mechanism of cancellation of si
gularities for other orbits takes place through Eqs.~8!–~10!.
But the relative enhancement of the ISPM amplitudes~6,9!
of such orbits at the bifurcations is of orderkLb because of a
change of the degeneracy parameterK by two units ~see Ref.
@22# for details!. In this sense we avoid here a double sing
larity related to a double restoring of symmetry.

In Figs. 2 and 3, we present semiclassical level densi
dg(E) ~4! versuskR and shell-correction energiesdU ~5!
versusN1/3 for various critical deformations~thick dotted
lines!, and compare them to the corresponding quantu
mechanical results~thin solid lines!. We observe a very good
agreement of the gross-shell structure at all deformatio
The most significant contributions to these results near
critical deformations are coming from bifurcating orbits wi
lengths smaller than about 10R, in line with the convergence
arguments for the POT sums~4! and ~5! mentioned above.
For the bifurcation ath51.618 . . . , the orbits ~5,2,1! and
~5,2! give contributions comparable with other 2D orbits. F
h5A3, the bifurcating orbits~6,2,1! and ~6,2! are also im-
portant.

FIG. 2. Level densitydg(E) ~4! ~unit E0
21) vs kR for different

critical deformationsh. The Gaussian averaging parameter isg
50.3. Thin solid lines: quantum-mechanical results; thick dot
lines: semiclassical results using the ISPM.
1-3
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The role of the bifurcating orbits increases for larger d
formations and is dominating at the superdeformationh52.
For this deformation, the most important orbits in the pres
spheroidal cavity model are the 3D orbits~5,2,1!, ~6,2,1!,
~7,2,1!, and~8,2,1!.

FIG. 3. Shell-correction energydU ~5! ~unit E0) vs cube root of
particle numberN1/3 ~same notation and same deformations as
Fig. 2!.
-

T

.

.
le

B

in

06520
-

t

These results are in agreement with both heights and
sitions of the peaks in the length spectra obtained in R
@15# from the Fourier transforms of the quantum level de
sitiesg(kR) at the same deformations.

IV. SUMMARY AND CONCLUSIONS

We have obtained an analytical trace formula for the
spheroidal cavity model, which is continuous through
critical deformations where bifurcations of periodic orb
occur. We find an enhancement of the amplitudesuAbu at
deformationsh;1.622.0 due to bifurcations of 3D orbits
from the shortest 2D orbits. We believe that this is an imp
tant mechanism which contributes to the stability of sup
deformed systems. Our semiclassical analysis may there
lead to a deeper understanding of shell structure effect
superdeformed fermionic systems, not only in nuclei
metal clusters but also, e.g., in deformed semicondu
quantum dots whose conductance and magnetic suscept
ties are significantly modified by shell effects.

ACKNOWLEDGMENTS

A.G.M. gratefully acknowledges the financial suppo
provided by the Ministry of Education, Science, Sports a
Culture of Japan~Monbu-sho!, giving him the opportunity to
work at the RCNP, and thanks Professor H. Toki for h
warm hospitality and fruitful discussions. Two of us~A.G.M.
and S.N.F.! acknowledge financial support by the Regen
burger Universita¨tsstiftung Hans Vielberth.

n

.
ys.

Z.

s.

.

,

.

d

i.
@1# M. Gutzwiller, J. Math. Phys.12, 343 ~1971!, and earlier ref-
erences quoted therein;Chaos in Classical and Quantum Me
chanics~Springer Verlag, New York, 1990!.

@2# R. B. Balian and C. Bloch, Ann. Phys.~N.Y.! 69, 76 ~1972!.
@3# V. M. Strutinsky, Nukleonica20, 679~1975!; V. M. Strutinsky

and A. G. Magner, Sov. Phys. Part. & Nucl.7, 138 ~1977!.
@4# M. V. Berry and M. Tabor, Proc. R. Soc. London, Ser. A349,

101 ~1976!.
@5# V. M. Strutinsky, A. G. Magner, S. R. Ofengenden, and

Do”ssing, Z. Phys. A283, 269 ~1977!.
@6# A. G. Magner, S. N. Fedotkin, F. A. Ivanyuk, P. Meier, M

Brack, S. M. Reimann, and H. Koizumi, Ann. Phys.~Leipzig!
6, 555 ~1997!.

@7# M. Brack and R. K. Bhaduri,Semiclassical Physics, Frontiers
in Physics Vol. 96~Addison-Wesley, Reading, MA, 1997!.

@8# H. Frisk, Nucl. Phys. A511, 309 ~1990!.
@9# K. Arita and K. Matsuyanagi, Nucl. Phys. A592, 9 ~1995!.

@10# M. Brack, S. M. Reimann, and M. Sieber, Phys. Rev. Lett.79,
1817 ~1997!; M. Brack, P. Meier, S. M. Reimann, and M
Sieber, inSimilarities and Differences between Atomic Nuc
and Clusters, edited by Y. Abeet al. ~AIP, New York, 1998!,
p. 17.

@11# H. Nishioka, K. Hansen, and B. R. Mottelson, Phys. Rev.
42, 9377~1990!.

@12# M. Brack, S. Creagh, P. Meier, S. Reimann, and M. Seidl,
.

i

Large Clusters of Atoms and Molecules, edited by T. P. Martin
~Kluwer, Dordrecht, 1996!, p. 1; M. Brack, J. Blaschke, S. C
Creagh, A. G. Magner, P. Meier, and S. M. Reimann, Z. Ph
D: At., Mol. Clusters40, 276 ~1997!.

@13# S. M. Reimann, M. Persson, P. E. Lindelof, and M. Brack,
Phys. B: Condens. Matter101, 377 ~1996!.

@14# J. Blaschke and M. Brack, Europhys. Lett.50, 294 ~2000!.
@15# K. Arita, A. Sugita, and K. Matsuyanagi, Prog. Theor. Phy

100, 1223~1998!.
@16# S. C. Creagh, Ann. Phys.~N.Y.! 248, 60 ~1997!.
@17# S. Tomsovic, M. Grinberg, and D. Ullmo, Phys. Rev. Lett.75,

4346~1995!; D. Ullmo, M. Grinberg, and S. Tomsovic, Phys
Rev. E54, 136 ~1996!.

@18# M. Sieber, J. Phys. A30, 4563~1997!.
@19# M. Sieber, J. Phys. A29, 4715~1996!; H. Schomerus and M.

Sieber,ibid. 30, 4537 ~1997!; M. Sieber and H. Schomerus
ibid. 31, 165 ~1998!.

@20# M. Brack, P. Meier, and K. Tanaka, J. Phys. A32, 331~1999!.
@21# A. G. Magner, S. N. Fedotkin, K. Arita, K. Matsuyanagi, T

Misu, T. Schachner, and M. Brack, Prog. Theor. Phys.102,
551 ~1999!.

@22# A. G. Magner, S. N. Fedotkin, K. Arita, K. Matsuyanagi, an
M. Brack ~unpublished!.

@23# H. Nishioka, M. Ohta, and S. Okai, Mem. Konan Univ., Sc
Ser.38„2…, 1 ~1991!, and unpublished.

@24# V. M. Strutinsky, Nucl. Phys. A122, 1 ~1968!.
1-4


