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Introduction
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§1. Main motive

In the past decade the studies on nuclear structure have found the concept
of phonon as an elementary mode of excitation in the nuclear system in-
creasingly significant. On the other hand, the studies have suggested that
the simple phonon model (based on the harmonic approximation) cannot give
a satisfactory description of rather complicated anharmonicity effects, i.e.,
deviations from the simple phonon model are quite essential in a finite many-
body quantal system such as the nucleus. Furthermore, the recent rapid
accumulation of experimental data suggests the existence of certain ‘“hidden
regularities’” in the complicated anharmonicity effects. Thus, one of the
important subjects in current nuclear study is the sublation (aufheben) of the
very concept of elementary modes of excitation in connection with the
structure of the anharmonicity. Concerning such a subject, several annual
research projects have been organized in Japan by the Research Institute for
Fundamental Physics since 1969. Some important problems to be attacked
at the first stage of the study were set up in the beginning of the research
projects. One of them was to investigate the possibility of proposing an
algebraic method of pair operators, which starts with the special nucleon-pair
operators as the basis operators instead of the “phonon’ as an ideal boson.?
Along this line, the algebraic method is being extensively investigated by
Yamamura et al.?) Another problem was to construct a microscopic theory
by which the structure of the complicated anharmonicity effects can be in-
vestigated in a simple systematic way. The essential part of our investigation
concerning the present paper has been performed as a part of the research
along this line.

In order to explain the situation at that time, we start with a brief survey
of the results of analyses of the anharmonicity effects in even-even nuclei by
Yamamura, Tokunaga and Marumori3 in 1967 in terms of the boson expansion
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method.® They first classified the anharmonicity effects into two charac-
teristic types; i) Ainematical effects, i.e., effects due to the Pauli principle
among the quasi-particles belonging to different (bound) quasi-particle pairs
which are regarded as ideal bosons (i.e., “‘phonons’) under the quasi-particle-
random-phase approximation (RPA), and ii) dynamical effects, i.e., effects
due to the residual interaction which has been omitted in the RPA. After
calculating the kinematical and the dynamical effects (in the pairing-plus-
quadrupole-force model) with the use of a perturbation theory based on the
boson expansion method, they arrived at the following conclusion®: The
simple ‘‘two-phonon’ concept (as a possibility of repeating the excitation of
an ideal boson twice) is actually broken in the following sense. i) Both the
kinematical and the dynamical effects become unexpectedly large in the absolute
values when the ‘“phonon” energy under the RPA comes close to the actual
experimental value. ii) When the energy of the ‘“two-phonon’ state under
the RPA is close to those of the non-collective two-quasi-particle states, the
coupling between the ‘“‘two-phonon’ state and the non-collective two-quasi-
particle states due to the dynamical effects becomes too significant to be treated
by the perturbation theory. In this case, which occurs most often in actual
nuclei, we are forced to make a diagonalization of the coupling, which leads
to a strong mixing of the two states and breaks the simple ‘“‘two phonon”
concept.

From this conclusion, one may naturally expect that the (quasi-particle-)
higher-random-phase approximation (HRPA)% is promising in taking these
significant anharmonicity effects into account, because it does not use the
picture of repeating the ‘phonon” excitation twice. It is known that in the
HRPA (the second RPA) the kinematical effects on the so-called ‘“two-phonon”
states due to the Pauli principle among the four quasi-particles are fully taken
into account. Furthermore, the dynamical effects, i.e., the coupling between
the two-quasi-particle excitation modes and the “two-phonon” modes are
properly considered.*) Unfortunately, such a merit of the HRPA is merely
one of formal logic. Actually we encounter the well-known formal difficulty
which is inherently connected with the non-symmetrical form of the secular
matrix coming from the linearized equation of motion for the eigenmode
operator of the HRPA. The other rather serious formal difficulty in the
HRPA is also known to arise from the spurious-state problem, which originates
from the nucleon-number-non-conservation in the quasi-particle basis. As
is well-known, it is one of the important advantages of the RPA that both the

*) Since both two-quasi-particle and four-quasi-particle amplitudes (in the sense of the new-Tamm-
Dancoff (NTD) approximation with the ground-state correlation) are taken into account in the
eigenmode operator of the HRPA, the excitation energies of both the first and the second excited
states (which roughly correspond to the “one-phonon’ and the ‘‘two-phonon” states of the RPA,
respectively) are simultaneously obtained through the (linearized) equation of motion for the
eigenmode operator in the NTD approximation.
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“phonon” states and the (correlated) ground state are orthogonal to the
spurious states within the framework of the approximation. However, the
HRPA never leads us to either the “physical” excited states or the “physical”’
ground states which are orthogonal to the spurious states. Thus, we may
conclude that, without overcoming these difficulties in essence and not in
superficies, we cannot enjoy the above-mentioned essential merit of the HRPA
in treating the anharmonicity effects. Nevertheless, any theories or methods
overcoming the difficulties had not yet been achieved at that time. This was
the reason why the authors’ first task in collaboration with Kanesaki, Sakata
and Takada®"~9 was to construct a new systematic microscopic theory which
overcomes the difficulties in the HRPA and to treat both the kinematical
and the dynamical anharmonicity effects in a simple systematic way.

§2. Outline of theory

In contrast with the HRPA, the underlying philosophy of our theory
is not to intend a dérect, formal diagonalization of the Hamiltonian within
a subspace characterized by the eigenmode operator of the HRPA, but rather
to start with an extraction of the basic physical elements from the subspace.

Our first task is to develop a method which enables us to uniquely separate
the spurious components from the quasi-particle states and to precisely keep
the one-to-one correspondence between the seniority number and the quasi-
particle number. This problem is studied in Chap. 1 of Part II. According
to the method developed in Chap. 1, we can regard the space of states described
by the quasi-particles as a product space composed of “‘intrinsic” and ““col-
lective” spaces. The ‘‘intrinsic”’ space consists of the states which never
involve /=0-coupled quasi-particle pairs, while the “collective” space consists
of the states which include only /=0-coupled quasi-particle pairs and are
always orthogonal to the ““intrinsic’ states. Needless to say, all of the spurious
components belong to the “collective’ space, and a special one of “collective’
vibrations (under the RPA) with zero energy in this subspace is known to be
due to the nucleon-number non-conservation.

Secondly, in the “‘intrinsic”’ space, we construct the correlated z-quasi-
particle excitation modes (with »=2, 4, 6, --- for even-even nuclei and with
n=1, 3, 5, :-+ for odd-mass nuclei) within the framework of the new Tamm-
Dancoff (NTD) method with the ground-state correlation. The creation
operators of these excitation modes consist of #-quasi-particle (creation and
annihilation) operators accompanied by the correlation amplitudes involving
the ground-state correlation in the NTD sense. The excitation modes are
hereafter called the “dressed” #-quasi-particle (#QP) modes, and their detailed
formal structure is studied in Chap. 2 for odd-mass nuclei. In order to
specify the dressed QP modes precisely in the “intrinsic” space, as is shown
in Chap. 2, it is decisive to use the concept of spherical tensors in the quasi-
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spin space which has been introduced through the quasi-spin formalism (for
the pairing correlations).1® The dressed 2QP mode (with the lowest energy
eigenvalue), which is the simplest one among the dressed QP modes, is nothing
but the “phonon’ under the RPA. In this sense, we may say that our theory
can be regarded as a natural extension of the RPA. The dressed 4QP states
(with the lowest energy eigenvalues) correspond to the ‘“‘two-phonon’ states
of the RPA, but the kinematical effects due to the Pauli principle among the
four quasi-particles are fully taken into account in these states.

With the aid of the dressed QP modes, we can introduce a set of ortho-
gonal basis vectors consisting of the (correlated) ground state and the dressed
nQP states. We call the space spanned by the orthogonal set the quasi-
particle NTD space. Within the framework of the NTD approximation,
this space is, by definition, orthogonal to the ‘“collective’” space which involves
all of the spurious components. The basic physical idea underlying the intro-
duction of the quasi-particle NTD space is as follows. Let us recall that the
use of the quasi-particle basis can be regarded as an attempt to classify both
the ground state and the excited states in terms of the seniority number v,
keeping one-to-one correspondence between the seniority number and the
quasi-particle number z. Then, the orthogonal basis vectors characterizing
the quasi-particle basis are the BCS ground state (with »=0) and the z-quasi-
particle states w7tk the condition n=v. These orthogonal basis vectors with
the definite quasi-particle numbers z=» span the ‘“‘quasi-particle Tamm-
Dancoff (TD) space”, which is merely the “intrinsic’’ space mentioned above.
Now it is well known that, in a many-body quantal system such as the nucleus,
the ground-state correlation is particularly important as a collective pre-
disposition which allows the correlated excited states to occur from the ground
state. 'We must therefore take account of the importance of both the seniority
classification and the ground-state correlation simultaneously, in a way that
the essential physical concept obtained in the quasi-particle TD space would
still persist in a certain form. The guiding principle to introduce the quasi-
particle NTD space lies in the fact that, in the NTD method, the quasi-particle
correlations which are asymmetrically attributed to only the excited states in
the TD calculations are symmetrically incorporated in the ground state through
the ground-state correlation. In contrast with the BCS ground state in the
quasi-particle TD space, the ground state in the quasi-particle NTD space is
not with a definite seniority number because of the ground-state correlation.
In spite of such a breaking of the seniority classification, in the quasi-particle
NTD method we can still characterize the excitation modes, i.e., the dressed
7nQP modes by the amount of seniority dv=7 which they transfer to the
correlated ground state.

Our third task is to find a method of transcription of the physical operators
in the quasi-particle TD space into the quasi-particle NTD space. The
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transcription should satisfy some self-consistency conditions within the frame-
work of the (employed) NTD approximation under which the quasi-particle
NTD space has been introduced. Details of the method of transcription is
also discussed in Chap. 2. It is shown that, after the transcription into the
quasi-particle NTD space, the residual interaction which has been omitted
in constructing the dressed QP modes manifests itself as a coupling between
the different excitation modes. In our theory, the dynamical effects are then
obtained by diagonalizing the coupling. The eigenmode creation operator,
which is obtained by diagonalizing the coupling within the quasi-particle
NTD subspace (composed of the dressed 2QP and dressed 4QP states), is
formally of the same form as that of the HRPA, when written explicitly in
terms of the quasi-particle operators. Nevertheless, in our theory, the
difficulties inherent to the HRPA never appear because of our proper choice
of the quasi-particle NTD space. From this point of view, the microscopic
structure of the so-called “‘two-phonon’ states is being investigated by
Iwasaki, Kanesaki, Marumori, Sakata and Takada.ll)

§3. Dressed 3QP mode as a new type of elementary
mode of collective excitation

According to our theory, the simplest of the collective excitation modes
in even-even nuclei is the dressed 2QP mode (with the lowest energy eigenvalue)
as a “bound” state of two quasi-particles, which is nothing but the ‘“phonon”
under the RPA. In the case of odd-mass nuclei, the simplest of the collective
excitation modes is the dressed 3QP mode (with the lowest energy eigenvalue).
Thus, in the same manner as the RPA for even-mass nuclei leads us to the
concept of ‘“‘phonon’ as a boson, the theory may necessarily lead us to the
concept of a new kind of fermion-type collective excitation mode, i.e., #4e
dressed 3QP mode as a “bound’ state of three quasi-particles. So far, the
collective excited states in odd-mass nuclei have conventionally been described
in terms of the quasi-particle-phonon-coupling (QPC) theory of Kisslinger
and Sorensen.!? From this point of view, it is quite interesting to investigate
whether or not this new kind of collective mode systematically exists in many
spherical odd-mass nuclei, playing an important role in their low-lying collec-
tive states.

There was already a positive reason to expect the presence of the new
kind of collective mode. In 1967, Bohr and Mottelson!® emphasized a
signifiecant effect of quasi-particle-phonon coupling, which had been com-
pletely omitted in the conventional QPC theory of Kisslinger and Sorensen.
They have shown the extreme importance of this new effect in terms of the
perturbation theory based on the self-consistent particle-vibration-coupling
approach® (i.e., the ‘“nuclear field theory’’), and have suggested that ‘‘the
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conventional description of collective excited states of almost all spherical
odd-mass nuclei is significantly affected by the inclusion of the effect”. It
has also been demonstrated that the new effect essentially originates from the
Pauli principle between the quasi-particles composing the phonon and the
odd quasi-particle (i.e., the kinematical effect among the three quasi-particles),
and brings about a significant three-quasi-particle correlation. Now, ac-
cording to the nuclear field theory,!4 the strength of the particle-vibration
coupling, £, is obtained by dividing a standard coupling matrix element by the
phonon energy 7Zw. In situations where f&1 (, the weak coupling case),
we can safely treat the coupling by the perturbation theory.l® For f>»1
(, the strong coupling case), the particle produces a static shape deformation, and
the coupled system must be treated by a separation between rotational and
intrinsic degrees of freedom. The nuclear field theory has clarified that, in
contrast with the case of octupole mode where the values of f;—3 are typically
about 0.1 to 0.3, the coupling strength for the quadrupole mode, f;—2, may
become larger than unity. This implies that, for the quadrupole mode, the
new effect bringing about the significant three-quasi-particle correlation should
be taken into account not by the perturbation approximation but by diagona-
lizing the Hamiltonian in a suitable subspace. The dressed 3QP mode just
satisfies this requirement, because it fully takes into account the kinematical
effect among the three quasi-particles within the NTD approximation which
is not the perturbation approximation. From this point of view, our theory
includes the possibility of such an intermediate coupling case where the internal
structure of the phonon itself is affected to form the dressed 3QP mode as a
bound state. (See Fig. 1.)

Along this line of thought, investigations of microscopic structures of
low-lying collective states in spherical odd-mass nuclei have been made.
We have then obtained the conclusion that the appearance of the low-lying
anomalous coupling (AC) states with spin /=j7—1 can be regarded as a typical
phenomena in which the new kind of collective mode (i.e., the dressed 3QP
mode as a ‘“bound” state of three quasi-particles) manifests itself as a relatively
pure eigenmode.18) It has also been shown that the physical condition of the
enhancement of the three-quasi-particle correlation (characterizing this new
collective mode) is not specific to the AC states but more general in odd-mass
nuclei.’® Thus, we have suggested that the new collective mode exists in

dresseﬂ
odd quasi-particle 3QP mode

Fig. 1.
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many spherical odd-mass nuclei and plays an important role in their low-
lying collective states. It seems that recent experiments are revealing the
systematic presence of this new kind of collective mode from among compli-
cated spectra of the low-energy excitations in spherical odd-mass nuclei. The
detailed review of these investigations!®~19) js the main subject in Chaps. 3
and 4 in Part III.

The framework of our theory includes the QPC theory as a special weak
coupling case in which the characteristic three-quasi-particle correlation is
seriously reduced by some physical conditions in shell structure. Therefore,
our theory enables us to investigate the microscopic structure of the breaking
and persistency of the conventional ‘“‘phonon-plus-odd-quasi-particle picture’.
This investigation is the subject of Chap. 5.

The investigations of collective excitations in spherical odd-mass nuclei
in Chaps. 3, 4 and 5 have been made with the use of the pairing-plus-quadru-
pole (P+QQ) force.20) Since we have widely employed the characteristic
properties of the quadrupole force, it is indispensable to examine whether the
conclusions obtained from Chap. 3 to Chap. 5 are specific to the P4+ QQ
force or not. This is the problem which is studied in Chap. 6.

§4. Coupling between pairing mode and dressed nQP mode

According to the method developed in Chap. 1, we can regard the space
of states in terms of quasi-particles as a product space consisting of the
“intrinsic”” and ‘‘collective” spaces. In this representation, the original
quasi-particle interaction is classified into three types: The first represents
an interaction causing mixing among the “intrinsic’’ states, the second among
the ““collective’ states and the last between ‘‘collective’’ and “‘intrinsic’ states.
The first-type interaction in the “intrinsic’’ space can furthermore be divided
into two parts: One of them is the so-called constructive force which is responsi-
ble for constructing the dressed #QP modes, and the other the so-called
interactive force which manifests itself as the coupling among the different
#nQP modes after the transcription into the quasi-particle NTD space. What
we have investigated in Part III as the dynamical effect is nothing but the
effect originating from this interactive force.

The other new type of dynamical effect may arise from a third-type inter-
action which causes the mixing between ‘‘collective’”’ and “intrinsic” states.
Since the ‘“‘collective” space involves all of the quantum fluctuations of the
pairing field, i.e., the excitation modes of /=0-coupled quasi-particle pairs,
the third-type interaction can be expressed as the coupling between the pairing
modes and the dressed QP modes. The formal structure and the physical
implication of the coupling are discussed in Chap. 7, although the detailed
analysis of its effect in comparison with experiment is in the course of investi-
gation as a next subject.
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§1. Introduction

It is well known that the use of the quasi-particle basis in the BCS theory
can be regarded as an attempt to characterize both the ground state and the
excited states in terms of the seniority number »=314v,* in such a way
that the number of quasi-particles #=3,7, is equivalent to the seniority v.
This is one of the most important motives for introducing the quasi-particle
basis.

In this approach, there is however a serious difficulty arising from the
spurious-state problem due to the nucleon-number non-conservation. Owing
to the fact that any quasi-particle basis vectors |¢> are not eigenstates of
the nucleon-number operator J7, the use of the quasi-particle basis inevitably
introduces the spurious states arising from the nucleon-number fluctuations
such as (J1—J1)|¢p, and only the states orthogonal to the spurious states
correspond to those of a physical nucleus.

Thus, in the use of the quasi-particle representation, it is decisive to
develop a method which can uniquely separate the spurious components
from the quasi-particle states |¢», keeping the one-to-one correspondence
between the seniority number v and the quasi-particle number #. This is the
problem which is studied in this chapter. -

*) In this paper we adopt the spherical j-/ coupling shell model. The single-particle states are then
characterized by the set of quantum numbers a= {the charge ¢, #, /, 7/, m}. In association with
the Greek letter a, we use the Roman letter a to denote the same set except the magnetic quantum
number 7. We also use the notation a, which is obtained from a by changing the sign of the
magnetic quantum number. We furthermore use the notation f(&)=(—)/z""af(a) where f(a)
is an arbitrary function of a.
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§2. Preliminaries

It is well known that the quasi-particle can be regarded as substantiation
of the concept of seniority. This is easily seen with the use of the quasi-spin
formalism.?)  Since this formalism plays an important role in our theory,
we start the discussion with its brief recapitulation.

2-1 Quasi-spin space

Let us define the quasi-spin operators of the single-particle orbit a as*
Sum— /% - .
(@)= 5 2ima,ma,(JajaaMay| 00)ch ch,,
S (a)= @72 af 00 2:1
Y=Y o ma,m%(]a]ammmazi NeasCars (2-1)

& 1 .1

So(¢)= 7(Zma€L€a_Qa), -Qa=]a.+ 7 )
where ¢}, and ¢, are the creation and annihilation operators of a nucleon in
the single-particle state a. These operators then satisfy the same commutation
relations as those of the angular-momentum operators:

[S(@), S-(@]=280a), [Su(a), Su(@)]=£Sx(a). (22)

The state vectors are specified by the quantum numbers S(@) and So(a),
which are the eigenvalues of the quasi-spin $(2)2=S(2)S-(2)+ So(2)2—So(a)
and its projection So(@), respectively. They span the quasi-spin subspace of
the orbit a:**)

{15@a), So(@)); S(a), So(@)=—S(a), —S(@)+1, -+, S@}. (2-3)

The physical meaning of the quantum numbers S(z) and So(e) is known
to be related simply to the seniority number and the nucleon number, re-
spectively, through the relations

S(a)=%(9a—uu) and So(a)—-:%(ﬂza—-!)u), 2-4)

where v, and Jlg stand for the seniority number and the nucleon number in
the orbit a, respectively.
With the quasi-spin operators (2-1) we can define irreducible tensor

*) The subscripts 7=1, 2, 3, -+ of a are used when the specification of the single-particle states with
different magnetic quantum numbers in the same orbit is necessary.
*¥) The quasi-spin space for the general many j-shell case is simply expressed as the direct product
composed of the quasi-spin subspace of each orbit. Therefore, for simplicity, we discuss the
case of a single orbit in this section.
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operators in the quasi-spin subspace of the orbit &, as usual, by the commutation
relations

[So(a), Tre(@)]=xTr(a),

5 (2:5)
[S2(2), The(@)]=V(£F k)bt x+1) T, s2a(a),

where Y (a) is the x-component of an irreducible tensor of rank 4, and
the indicies £ and « are analogous to the quantum numbers S(z) and So(2)
for the corresponding wavefunction multiplet. The index « takes on 2441
values from —#£ to 2. The single-particle operators ¢}, and ¢, are then re-
garded as spinors in the quasi-spin subspace:

Tigp(@)=c and . 1/2,—1/2(@) =€, =(— Yo Mac, (2:6)

The irreducible tensors can be obtained from the products of the spinors
by the standard vector-coupling procedures. For example, we have

EI‘1, 1((11(1.2) = £L1c«flz )
1
T1,0(a109)= ﬁ(d’:&' antcally), (2-7a)

gl,——l(alaz) =Cg,Ca,
and

T3/9,3/2(a10905)=cl cl.cl,,

1
g3/2,1/2(a1a20'3) = J? (crlxcttzcia + CLlcdcha + L‘EXCLECL,),

(2-7b)

1
EZ‘3/2,—1/2(“1“'2(7'3) = ‘/j (5215&25&: + 6&162’,,(&3 + C&xcﬁzc:rla)’

8/2,—8/2\%10203 )= C5,6 5,05 -
g, (010008)=¢5,C4,C

Here it should be noted that there is no interference between the coupling
of the quasi-spin and that of the ordinary angular momentum, since Si(a)
and So(¢) commute with the angular-momentum operators /i and Jb.

2-2  Rotation in quasi-spin space?

The quasi-spin operators S1(2) and So(a) are associated with the trans-
formation of state vectors under the rotation of the coordinate system in the
quasi-spin subspace of orbit a. Let us take up a new coordinate system K’
obtained from the original one X (on which the argument has so far been)
by a rotation specified in terms of the Euler angle ws=(fa, ba, ¥a). The
transformed state vectors are then given by
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[S(@), So(@))=R(wa)| S(a), So(a))
=X 54ay(S(@), So(@)' | R(wa)| S(a), So(@) X 15(a), Se(2)),
28

where R(w,) is the unitary rotation operator in the quasi-spin subspace of
orbit a.

R(wq)=exp[— Z.qs.agz(“)] exp[— ieagﬂ(“)] exp[— i‘ﬁa‘gz(“)] )

T @9)
SLD)=S0(@), SeA)= 5 (S+(@)—S5(a)),

and the state vector |--+) designates one in the original system X while |:--)>
denotes a state vector in the new coordinate system X’. It must be remembered
that the quantum numbers S(a) and So(@) in the state |S(a), So(a)) are the
eigenvalues of 8(2)? = R(w,)S(@)2R(w) "W (=8(2)?) and So(a) = R(wg)Sy(2)
R(w,)™1, respectively. Thus the state vectors defined by (2-8) also span the
quasi-spin space:

{15(@), So(@)>; S(@), | So(@ | <S(@)}- (2-10)

The matrix element of R(w,) defines the conventional D-function®) in the
quasi-spin subspace:

Dy suax(wa)=(S(@), So(@)’| R(wq)| S(a), So(a))*

={5(2), $o(@)' | R(wa)| S(@), So(@)>*. (21D
With the relation (2-11), the relation (2-8) becomes
15(), So(@)> = X suay D3ila> soaxwa)| S(@), So(@)). 212)
Since R(w,) is unitary, this can be rewritten as
|S(a), So(@)= X suay D3ldrsoar(@a)| S(@), So(a)"). 213)

By definition, the irreducible tensors in the new coordinate system XK', 7Ty(a),
are related to those in the original system through

Tl @)= R(wa) L @) R(wa) ™t = X 0 D wa) L yo(a),
gkx(“) = EK/-DIICCK/<wa) Tkx’(a)' (2.14')

Now let us take up a new coordinate system K, specified by the Euler
angle wo=(¢,=0, —0,, ¢,=0). According to Eq. (2-14), we have the
quasi-spin spinors 77, (a) in the K, -system

# We use a definition of the D-function which is adopted by Bohr and Mottelson. Therefore the
D-function adopted here is the complex conjugate of that of Rose and differs from that employed
by Edmonds by the factor (—)Se@)-Se@’,
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[ Ty, 15(a) } _ [cos(@a/ 2) —sin(8,/2) ][ T2, 12(0) } @215)
T2, -12() sin(0,/2) cos(0,/2) 1L 179, -172(®) .
With the definition
Ty, 12(@)=al, and Tys9, -19(@)=ayg, (2-16)
Eq. (2:15) can be rewritten as
& =ugct —v4c5, Ba=Ugla—Vgtl,
g =c08(0,/2), v, =sin(8,/2). 2-17)

This is nothing but the Bogoliubov transformation. We can therefore say
that the Bogoliubov transformation merely corresponds to a special rotation
wo of the coordinate system in the quasi-spin space.

In this new coordinate system K, i.e., in the quasi-particle representation,
the quasi-spin operators are given as

S (@)= R(we)S+(@) R(wp)~!

=/ 58 8 e e eses 00Vl
0=/ 88 SmeimeGaaeses 00aes (218)

So(a) = -;— (2 Maa:rzaa "“Qa>-

Since S(a 2= R(w0)S(a)2R(wo)~1=8(a)2, the quasi-spin quantum number S(z)
of the state [S(@), So(a)) in the quasi-particle representation X, has the
same physical meaning as that in the original system:

S@)= % (2 —va). (2:19)

On the other hand, from relation (2-18) the physical meaning of the quantum
number S¢(2) is now related to the number of quasi-particles #, in the orbit
a:

1
So(@)= 5 (ra—£20). (2:20)
Needless to say, the BCS ground state |{¢o) (in the orbit ) is given by
1oy =15(a)=£4/2, So(@)=—S(a)). (2-21)

2-3 Definition of collective and intrinsic states

By the definition of the state | S(a), So(a)= —S(@)) of the orbit 2, we obtain
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S{@)5(a), So(@)=—S(a)>=0, (2-22)

which means that there is no /=0-coupled quasi-particle pair in this state.
In this case, with the aid of Egs. (2:19) and (2:20), the following relation is
obtained:

-%_(na—ga)=—_;—<9a—ua), ie., ng=v,. (2:23)

Thus, for a class of states |¢intry Which consists of the direct product of the
states satisfying Eq. (2-22), we have

S_(@)|dintry =0 (2-24)

for all S_(), so that the following well-known statement is satisfied: The use
of the quasi-particle basis can be regarded as an attempt to characterize both
the ground state and the excited states in terms of the seniority number
v=2],v, in such a way that the number of quasi-particles »=3],7, is equiva-
lent to the seniority v.

The condition (2:24) means that the states |dintrp never contain any
J=0-coupled quasi-particle pair. In this sense, we call |¢try “intrinsic
states’”’. On the other hand, the states characterized by v,=0 and 2,50
include only /=0-coupled quasi-particle pairs and are always orthogonal to
the intrinsic states |¢intry. Hence we call such a class of states “collective
states” |¢eor). Needless to say, all spurious components due to the nucleon-
number non-conservation belong to the “collective states”, and a special one
of “collective” vibrations (under the RPA) with zero energy in this ‘“collective
subspace’ is known as due to the nucleon-number non-conservation.

§3. The Hamiltonian

The Hamiltonian under consideration is that of a spherically symmetric
J-7 coupling shell model with a general two-body interaction which is invariant
under rotation, reflection and time reversal:

H= Za(eu_Aw)CL"a'}' Zaﬁyac(/aﬁyscrlcjécscw (3']->

where ¢, and A, represent the single-particle energy and the chemical potential,
respectively. The matrix elements of the interaction satisfy the relations®)
Cvapvs = _CV,savs = _CVaﬁsv=CVpasv=CVysap
=V, 5 3-2)

# Itis possible to treat all matrix elements of the Hamiltonian as real quantities if the phase convention
is suitably chosen, In this paper we always assume this to be the case,
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After the Bogoliubov transformation (2-17) and with the use of
notations*):3)

4 a=—2 Eyucvccvaﬁ'yi»
.‘“a:: —.4'270% CVa‘Ya‘)’) (3‘3)
")azfa_Aa'_l"m

the Hamiltonian is expressed in terms of the quasi-particle operators as

follows:

H=Uy+Hy+ H,+ Hi, (3-4)
Uy (na 5 1a) 4 — 5 wavada,
Hy=3 [na(t3 — v3)+2u4v,4,]dk 2.,
Hy= B mitave— 5 G — o)A, (@l + aca),

Hit=Hy+ Hy+ Hy,
Hx=3 5 V x(aByd)atahasa,,
Hy=73 8,V (apys) (alafsa*;a% +azasapa,),
Hy=3 8y Vv (aByd) (aﬁa}}a%a., +alasapa,),
where the abbreviations
VaByS)= VP (aByB)+ VP (aBy®)— VP (Bad)
= (gt o+ Va6V V@)Y s+ (UaVstt Vo + vattyV )V a3y

— (wpvattvat vstava)V gsa,

Vi (aBy8)=uaurvva“V s,

Vi (aBy8)=2(ugmyncva—vavsveta)"V apys

have been used.
The parameters #, v and the chemical potentials A are determined as usual

by the set of equations
zuaﬂazAa/Ea; uf—v} ="7a/Em
Ey=vn3 +43, 35)
Np=23,0405= Zaga(l —na/EQ),

where /V, is the neutron (proton) number and the summation a runs over the
neutron (proton) orbits.

*) We assume that, among the single-particle orbits e, &, -:-, a given set of the quantum numbers
{charge ¢, parity and j-value} occurs at once.
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Then Ay takes the form
Hy= Y4 Ezdla, (3-6)

where £, denotes the quasi-particle energy.

The main part of the pairing correlations is taken into account as the
(self-consistent) quasi-particle field. The eigenstates of A are given by those
of the quasi-spin §(2)? and its projection So(z), with additional quantum
numbers. The term At represents the residual interaction among quasi-
particles. The role of residual interaction can be classified into three types:
The first is the role of mixing among the states in the intrinsic subspace
{|éintr)}, the second among the states in the collective subspace; and the
last between collective and intrinsic states. These roles may be expressed
as follows:

H=Hecor+ Hinir+ Heoup1, 37

where Heot, Hintr and Heoupr stand for the collective-, intrinsic-, and coupling-
Hamiltonians, respectively.

We show, in the remaining part of this chapter, that the original Hamil-
tonian (3-4) can be transformed unambiguously into the form (3-7).

§4. Collective variables associated with pairing correlations

4-1 Extension of gquasi-spin space and introduction of collective variables

The procedure of adding pairs of fermion must eventually end if the
number of states available is finite, whereas there is nothing to prevent operating
again and again on a state with a boson creation operator. In order to define
the canonical-conjugate collective variables describing the pairing excitations
in terms of boson operators, it is thus necessary to extend the quasi-spin space
in such a way that the multiplet in the quasi-spin space (2-10) becomes infinite
with allowed values of So(4) going to steps of unity from S(a)+1 to +oo:

115(@), So(@)>; S@), —S(@=Se(@)<+oo}. (4-1)

With the aid of the extended quasi-spin space we introduce boson operators
&% and &,, which satisfy the commutation relations

(84, 6]=84, [8as be]=1[0h, 65]=0 4-2)
and characterize the state vectors in the extended quasi-spin space by
1
| 5(@), So(@)=—S(@)+ Nap>= 7777 (4a)"*1 S(a), So(@)=—S(a),
2!
balS(@), So(@)=—S(2)>=0. (4-3)
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Then we have
&4 1S(a), So(a)=—S(@)+ Ny
=VN,+115(a), So(@)=—S(@)+N,+1),
641 S(@), So(@)=—S(a)+ N> (4-4)
=VN,|5(a), So(@)=—S(a)+N,—1).

Explicitly, such an introduction of the boson operators is made in terms of the
Holstein-Primakoff transformation®

Sua)=828(a) — N (@),
$_(a)=V28(a)— N (2)8,, 45)
So(@)=N(2)—$(a),

where the boson number operator AV(a) of the orbit 2 and the operator f(a)
are defined respectively by

N (a)="8},2,, (4-6)

$@){$(a)+1} =8(ap* )
The operators .So'i(a), So‘o(a) and Sa'(a)2 denote the extensions of the quasi-spin
operators Si(2), So(@) and 8(2)? into the extended quasi-spin space: In
a “‘physical subspace’” which coincides with the quasi-spin space, these extend-
ed quasi-spin operators are identical with the original quasi-spin operators.
In a “unphysical subspace” which corresponds to the extended part (in the
extended quasi-spin space), the operators .Sc‘,,(a) = {§+(a)+§_(a)} /2 and
$ (@)= {§+(a)—.§_(a)} /27 become anti-hermitian. We may write the extended
quasi-spin operators as

Si@)=iTya), Sya)=iTy(a), Su@)=Tua),
Ti@)=T o) +iTya) =84 N (a)— 25(0), 48)
T ()=To@)—iTo@)=V V() —28(a) 4,

so that we have

8(a)2 =S ()2 + Sy(@)2+ So(a)?
=To(@)2— T (@) — Ty(a)?. 49

The algebra of 7,(a), 7y(@) and To(a),

[Tx(a), Tv(ﬂ)]= —Z'To(d), [Tz/(‘l), To(ﬂ)]=2'71z(a)’
[70(@), To(@)]=iTa), 410
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characterizes transformation of the noncompact group with allowed values
of So(a) from {S(a)+1} to +oo: By definitions (4-8) and (4-5) we obtain
in the unphysical subspace
T(a)1S(@), So(@)>=VSo(@){Se(a)£1} — S(2){S(@)+1}5(a), Se(a)£1),
(4-11)
which is consistent with the property So(2)2=S(2){S(e)+1} derived from
Eq. (4-9). Then the condition

T(a)5(@), So(@min>=0 (4-12)

leads to the relation
So@min{So@min—1} =S@){S(@+1}, (4-13)

which means So(@)min=S5(2)+1.
The last relation in Eq. (4+5) in the physical space is written as

N(@)=846,=S5)+S), (4-14)

which has the eigenvalues
Ny=S(@)+So(@)= 5 (ra—va). (#15)

This means that the boson number &V, of the orbit @ is merely the number of
‘=0’ coupled quasi-particle pairs in the orbit @. Therefore, the intrinsic
states |@intr), which consist of |S(z), So(@)=—S(a)) and are defined by
Eq. (2-24) always satisfy

N (@)l $intr>=0, (4-16)

which is consistent with Eq. (4-3). We may thus say that the intrinsic states
are not affected at all by the extension of the quasi-spin space and always
belong to the physical subspace. This is in marked contrast with the collective
states |deory in which the boson operators play an essential role.

4-2 Canonical coordinates and canonical conjugate momenta

With the aid of the boson operators 4} and &,, we can define collective
coordinates §, and their canonical conjugate momenta p, describing the
pairing excitations by

o i [
Ja= T3 Cu—8), D=y Gt dl). @17
Of course, these operators satisfy the canonical commutation relations

[gom Pob] = Z.Sa,b’ [qom qob] = [ﬁa» }gb] =0. (4"18)
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§5. Canonical transformation into collective representation

5-1 Introduction of auxiliary variables and supplementary condition

We now apply the canonical transformation method with auxiliary
variables%):6) to the system under consideration.

First, we introduce redundant canonical variables (i.e., auxiliary variables)
q, and p,, which satisfy the canonical commutation relations

(94, P5] =184p [9a; @o]=[Pa, P5]=0, (5']-)

and are independent of the quasi-particle operators (a4, @,) and the boson
operators (6%, 6,):

(94 al] =[q4 2.]=qa; ét,] =[qq, 6,]=0,

(2
[Pw a:r:] = [Pm aa.] = [Pas bL] = [Pa’ 5a] =0.
With the redundant variables we may define redundant bosons as
1 . 1 .
bl,= ﬁ“(?a’l‘ q,), b,= ﬁ(Pa—zqa)' (-3)

In order to compensate for the over-completeness in the degrees of freedom
due to the introduction of the auxiliary variables, we impose on the state vectors
a supplementary condition

N(a)| ¥>=0, (5+4)
N(a)=b},b,, (5:5)

which physically implies that we are only considering the subspace with no
auxiliary bosons. Since the original Hamiltonian /A is independent of the
auxiliary variables introduced, i.e.,

the Schroédinger equation

with the supplementary condition (5-4) is exactly equivalent to the starting
Schrodinger equation without the auxiliary variables.

5-2  Canonical transformation

Now, let us define the following canonical transformation:
Uea= Uy Uy Uy,

0 5:8)
Uy=exp[iZ 42490l Up=exp[—iZafaPals
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where the collective variables §, and p, are given by Eq. (4-17). The
following relations are then easily derived:

UcadaUcdi =40, Ucal ﬁa Ui =DPas

(59
Ucarq, Uc_o11= —Ga Uco1 Pq Uc_oll = —;ﬁa
and thus we have
UeaN (@) Usdh =bhta. (5-10)

This implies that, in the representation after the canonical transformation
which we call “collective representation”, the collective variables §, and
pa are completely replaced by the redundant variables g, and p,, re-
spectively.

The Schrédinger equation in the collective representation is obtained
from Eq. (5-7) with the condition (5-4), by regarding both the Hamiltonian
H and the state vectors |¥') (defined on the physical subspace) as their ex-
tensions /A and I‘Io’> into the extended quasi-spin space:¥) It becomes

H¥)=E|¥) (5:11)
with the supplementary condition
N@|P)=0, N(@)=684bs=S5(@)+So(a), (512)
where
H=UBUsd, |¥Y=Ucal ¥>. (5-13)

5-3 Collective representation

Since the original Hamiltonian # is independent of the auxiliary variables,
we have

[#, 4a)=[H, Ps]=0, (5-14)
which is transformed into the collective representation as
[H, ,]=[H, ﬁa]zo- (6:15)

This implies that, in the collective representation, the collective variables
(das Pa) involved implicitly in the original Hamiltonian A are completely
replaced by the auxiliary variables (q,, Ps), and the collective modes of the
system are visualized by the explicit appearance of the auxiliary variables in
the Hamiltonian H. By comparing the supplementary condition (5-12) with

*) Knowledge of the explicit properties of A in the unphysical subspace is actually not necessary
at all in our discussions, provided that the commutation properties of H with the collective variables
42 and 7, in the unphysical subspace are the same as those in the physical space.
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Eq. (4-16), we can furthermore see that in this representation, the degrees of
freedom associated with the quasi-particle operators merely describe the
intrinsic motion of the system. Thus, the Hilbert space in this representation
may be characterized as the direct product of a boson space (which is associated
with the auxiliary bosons b}, and b,) and the intrinsic space composed of
the intrinsic states |ty (Which are defined by Eq. (2-24) and always belong
to the physical subspace): The basis vectors (of the orbit &) can be represented
as

15(2), Nah=|Na)cor|S(a), So(a)=—S(a), (5:16)

where | NV >co1 denotes the collective state vector associated with the boson
operators bl, and b,:

1
| Vadeor= 5= (G103, 517

where |0} 5 is the vacuum of the boson, i.e., b;|0>5=0, and the states |.S(«),
So(@)=—S(a)> compose the intrinsic states |@intry. It should be noted that,
in the collective representation, all unphysical effects as a result of the extension
of the quasi-spin space arise only in the collective boson space (associated with
b, and b,) and the intrinsic states remain unchanged in the physical subspace.

§6. Collective representation of the Hamiltonian

6-1 Perturbative expansion of the Hamiltonian in terms of collective variables

The collective representation of the Hamiltonian cannot be expected to
take a simple and compact form. We here adopt a perturbative expansion
in terms of the collective variables. In this expansion, we choose the col-
lective variables X! and X, as the basis of the expansion, which are the
eigenmode creation and annihilation operators of the pairing vibration under

the RPA:
XFI =34 {‘/‘u(“) bIl + ¢p(a) ba} ’
Xu =2l {‘pu(a)ba + ¢u(a)b3} .

It is well known that such pairing vibrations include a special zero-energy
solution, which implies that the RPA includes enough of the residual (pairing)
interaction to restore the breaking of the nucleon-number conservation by
the BCS approximation. Their definitions and the details of the zero-energy
solution are given in Appendix 1B.

Thus the auxiliary variables g, and p, in the canonical transformation
(58) are regarded as the functions of these basis operators X} and X,:

CRY)
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Qo= 7 (ba—B) =5 T (@) + (@)} (X— XD,
©2)

1 1
Da= Ja (by+bh)= Jo Zu{pu(@) — du(@)} (X + X,).
By the use of the orthonormality relation

Zalth(@)— 4.2} {Yu(@)+ bu(@)} =8, (6-3)

the canonical transformation (5-8) is rewritten as

U,=exp[i Eaﬁaqa] =exp[i X, ﬁnou]’

(6-4)
Up=exp[—i TodaPal =exp[—i £, 0. P,
where
:l__ — Xt 2 =L_
éu J 2 (Xu XIL)’ Pu J 2 (X#+XII); (65)

XiI=Za @b+ du(@)ba},  X=To{pu(@)ls+du(a)0s}.

Then, with the aid of the well-known formula
exp(t7T) O-exp(—iT)=T+14[7, 0]—%[7‘, [7, O]+ -+, (6°6)

we obtain a perturbative expansion of the Hamiltonian in the collective re-
presentation in terms of the pairing-vibration modes (X}, X,):
H = UcolHor Ué_oll
= oo+ Zu{XAIZIO(IJ’)_l_ Xuilm(."')}
5 DA XL X o) + X, Xoa) + 2 XA X o ()} + -+, (6T)

which is written in a form of the normal ordered product with respect to the
creation and annihilation operators (XJ, X,). The operators %; in Eq.
(6:7) are given explicitly as

hoo=H— LW {X[X,, H|+[H, X[ X,}

+ s XXX, (X, AN+I4, X1, XXX,

2
+2X [ X, BT, XX} A+,
Feyo() =101 ()"
=X, H—DAXIX,, [X,, H+[[X,, H], XX} +-, (68)
};20(.”'”) = }202(‘“_;)1’
=[X,, [X.,, H]]+ -,
Sy () =[[ X, B, X+
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Here we write down explicitly only the terms in 4, which include single and
double commutators of 4.

Since [H, 6%]=[H, 4,]=0 (from Eq. (5-15)), we obtain
[his, 85]=[Aaz, 8a] =0, (6:9)

which means that the operators %; only involve the intrinsic degrees of
freedom represented in terms of the quasi-particle basis. Thus, %go may be
regarded as the intrinsic Hamiltonian, and its eigenstates are always made
to satisfy the supplementary condition:

bo|pintey =0, i.e., S_(2)|bmiry=0. (6-10)

6-2 Effective Hamiltonian

Now, let us recall the well-known relation for the pairing-vibration
modes:

[, X{|=w,X}+Z,, (6:11)

where Z means ‘“‘interaction’’ which is neglected under the RPA. With the
aid of Eq. (6:11), %;; in Eq. (6:8) may be rewritten as

ZB%’EL S AXIXIX,, ZN+[Z. XX, X, A2X1 20 XX+,

A5 (w=2},
ERw=—D XX, ZL]+[2Z], XX} 4+,
Foyy () = AR (o) + 23 (o),

EQ(p)y=wd,, AR@w)=[Z}, X+
i‘zo(}w) (2)(#”) [X, n]+"'

At this stage, we recall that the space in which all the intrinsic operators
/4 act must be the intrinsic space, which obeys the supplementary condition
(6-10) and consists of the state vectors |S(a), So(@¢)=—S(a)). Therefore,
provided that the supplementary condition (6-10) is always kept to be satisfied
properly, we may drop all terms in /;; which explicitly have either the operator
&' on the leftmost side or the operator 4 on the rightmost side. For instance,
we may make such reductions of 4§ and 4§y, respectively, as
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A —> H+ const,
const=—<¢po| L, XX, )= — T opu(a)’w,, (6-12)
e = — L u[ Do {hu(@)bh + $u(@)ba} ZA Z, 0 {th(@)Ba+ $u(@)Bl} ]
= — Zu{Z a4 @bhZl+ Z o bu(@ba, ZL)+ L adu(@)ZLbs} +h.c.]
= - Zu{Zabu @ @[ X,, ZL]— Zadu(@)d (@) X}, ZL]} +h.c]. (6:13)

Thus, the Hamiltonian (6:7) may be effectively written as
H=const + Heal + Hintr+ H. coupl, (614&)

const=— 3, $u(@)?w,,

Hep=%,0,X!X,,
Hie=H = S $ (@) [ X,y 2= 5 Syl WX Z+ (20 X1,

Hcoup1= Z#(X[IZL+ Xy.Zp.)+ —;‘ Zuv {2XIIXv[Xm Zv]
+ X XI[X,, ZI|+ X, X,[Z,, X]]}, (614b)

where the terms involving commutators higher than double are neglected.
The constant term represents the energy of ground-state correlation due to the
collective pairing vibration; the terms Hintr and Heq are the intrinsic- and
collective-Hamiltonians, respectively, and Heoupt represents the coupling
between the collective and intrinsic degrees of freedom.

Now it is clear that we have achieved the aim of unambiguously writing
the Hamiltonian in the form (3-7) where the roles of residual interaction
are explicitly expressed.

§7. Concluding remarks

With the explicit use of the quasi-spin formalism, we have defined the
collective subspace {|deoy}, which is associated with the pairing correlations
and includes all the spurious components due to the nucleon-number non-
conservation in the quasi-particle representation, and the intrinsic subspace
{l$intry} which does not include any spurious components. The intrinsic
states are characterized by the one-to-one correspondence between the seniority
number v, and the quasi-particle number 7,. Furthermore, we have shown
that, by an introduction of canonical transformation with auxiliary variables,
the collective and intrinsic degrees of freedom are represented with the auxiliary
bosons and the quasi-particle operators, respectively. It has been shown
that the original Hamiltonian A can be transformed into the effective
Hamiltonian which is described in terms of both (collective) boson and fermion
degrees of freedom,
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In the next chapter we investigate the intrinsic excitation modes in
further detail. In Chap. 7 we show that the coupling Hamiltonian Hcoupt
can be uniquely rewritten in terms of the collective modes of pairing vibration
and the elementary modes of intrinsic excitation, within the NTD approxi-
mation.

Appendix 1A. Matrix elements of two-body interaction

According to Eq. (3-1), the general effective two-body interaction which
is invariant under rotation, reflection and time reversal is given by

Hint=12 s CVaﬂva"'LfEca"v (A1)

with Eq. (3-2). The invariance properties of Hint under rotations and
reflections are explicitly shown when it is rewritten in an invariant tensor
product form with respect to the nucleon-pair operators coupled to angular
momentum /M. Thus, according to Baranger’s notations,® we are led to
write the matrix elements CU/ g, in the form

Vepro=— 5 Z 124 Glabed; ]) Gaimama JH) Gejamms TM)

T % Z st (acdb; J) (=Y Jajemany| J M)
X (=Y "8(jajymsmgl J M), (1A-2)

upon which the parity and the charge conservations impose the conditions
(—)letbh=(—)letls and ¢, g,=¢.+ 94, respectively. When we further impose
the isobaric invariance upon Hiut, Eq. (1A-2) is written, with the use of
the isospin formalism, as

CVapys = % Z]MTMTG(aéCd s JT) Jagymamgl JM )(%%"JM TM. T)
.. 11
X (Fejarmyms| [ M) 77‘&”8! TMy
(1A-3)
—— 5 B rursrFacdb; [ Tsajomam JID) 55 vir, T
Coe 11 .
% sg(Jasvmsmgl J M) (’Q“—Z"TsTﬁl TMT) )

where s,=(—)f"™7(—)12="7 and 7 denotes the z-component of the nucleon
isospin. From the hermiticity of Aint and its time reversal invariance, G
and 7 must be real, From Eq. (3-2), we also have the following properties
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G(abed; JT)=G(cdab; JT)
= —0(ab] TG (bacd; JT)=—0(cd] T)G(abdc; JT),

Facdb; JT)=F(dbac; JT)
=0(ab/T)0(cd]T)F (cabd; JT),

(1A-4)

where 0(ab/T)=(—)etl—/(—)1-7. The F and G type matrix elements are
related with each other through the relation

Flacdb; JT)

i I 1/2 172 77
-5 //Tr(2]’+1)(2T’+1){j.‘; ;”f }{lg 1;3 i }G(abdc; J'T"). (1A-5)

In the text we do not explicitly use the isospin formalism, but use the
so-called #-scheme in the isospin. By specifying the proton and neutron
explicitly by the letters 7 and v respectively, the matrix elements in the -
scheme of isospin are given in terms of the above # and G type matrix elements
as

Gla,beidy; ) =Glabd,; J)=Glabed; JT=1),
Gla b, V= Glabytdy; ])= - [Glabed; JT=1)+Glabed; JT=0),

F(ae,db,; ])=F(a,cd.b,;])
_ 1 ’ ]a] ]l T — [ Ady i
—— 5@+ D270 I (GGabde [ T=1)+ Glasde; ] T=0),
Flac,d,by; J)=F(a.cd,6.;])
—_ 1 ’ ]a] ./I P 4 Ry p T - s T T O
=—5XZ 727 +1){]_d j': 7 }[G(abdc, J' T=1)—G(abdc; J' T=0)],

Flac,db,; J)=F(acdb,; ])=0. (1A-6)

Appendix 1B. Pairing vibrational modes

In the text we use the pairing vibrational modes as the basis of the per-
turbative expansion of the Hamiltonian in collective representation. We here
give their definitions, and discuss some related problems to the pairing
vibrational modes.

1B-1 The pairing Hamiltonian

We start with the simplest case, i.e., with the pairing Hamiltonian
H®P=3 (eg—Ncle,— % G-, clel-Zpcacs, (1B-1)

where ¢f=(—)/«"™ac} and G is the strength of the pairing force. After the
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Bogoliubov transformation (2-17), this is written in terms of the quasi-particle
operators as

HD — U&”’+H6”)+H§”>+H§%)t, (]_]3-2)

UP=3%,20, {( ot -%— Gvﬁ)v% — %uavad} ,
HP =3 {a(0e — 03) +2uqv,4} 24,
HP =30 {24040 — (uy—v5)4} {S+<a)+s (@)},

H®=HP+HP+HP+H®D,, (1B-3)

HP =G (u2ul+1202)S 1(2)S_(0),
% G S a2+ 1312) S (@S 4() +5-(OS(a)},
HP =G 30t — %)t AS 1)1+ 7.5 (2},

H g’:’z)ch =—G X ge UaVUalh VoA PaPte—NgOgc}

P
HV -

where

"7u=€w"A_G'U%, -Qa=ja+1/2; A=G 34 Q24%5,,

=Y maala,, and Si(a) are defined in Eq. (2:18). As usual, the parameters »
and v are determined so as to eliminate the ‘‘dangerous term” A{?. The
quasi-particle energy term AP is then reduced to

ng)': o Eottas
E,=n3+42. (1B-4)
Applying the canonical transformation (5-8) after the extension H‘®’—

A® (ie., $Si(a), So(@)—S(a), So(@)), we obtain the pairing Hamiltonian
in the collective representation:

HP=Ue HP-Ugh=UP+HP+ HE,, (1B-5)
HP =% ,E.{#a+2N(@)},
H®,=HP +HP+HP+HD,,, (1B-6)

HP = — G 2y uud+v302)bhV u— ha—N(a) V 2,— 5,— N(2) b,,
1 56 Sadudod + o3 [bLV 21— N@) bl @4, ~N() +h.c],

»’-“»..

17
HP =G 4,(u% —v3)uw,[bh ‘/‘Q “”a”‘N(a) {”c+2N(5>} +h.c],
gxch— — G 2o tgUgteVe| {”a‘{'zN(‘z)} {nc+2N(‘)} - {na+2N(a)}8ac]

m

Needless to say, in this collective representation, the boson operators (b}, b,)
and the quasi-particle operators (al, ,) describe the collective and intrinsic
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degrees of freedom respectively, and therefore their mutual interweaving is
clearly visualized.

1B-2 Pairing vibrational modes under RPA

Now let us make the expansion

‘/W:J!Ta-[ {”a‘lz'g(d)} 5 {”a‘gg(“)} ], (1B-7)

a a

and then take up the following lowest order terms including only the collective
variables from the Hamiltonian (1B-5)

Heq =23, E,N(2)— G 20eV2,2, (2 13+ v202)bhb,
—I— G 3oV 2.02, (1302 +v3ul) (b, b+ bb,), (1B-8)

where we have, as usual, neglected the terms originating from the exchange
term H{:,. This is nothing but the pairing vibrational Hamiltonian within
the RPA and can be diagonalized with the pairing vibrational modes:

[Hcol, X;z]=wnX1;t, wn>0’

(1B-9)
=234 {pn(@)bly + u(@)b,}
which satisfy the commutation relations
(X0, X0)=08nm, [Xn, Xu]=[X}, X},]=0. (1B-10)

The eigenvalue equation of the amplitudes takes the form

D® _A®T ¢
o, Ol _ 1, (1B-11)
Bn A® _D® || g,
where the matrix elements of D® and A™® are given by
=2E 84— GVRaQ2, (w3 +v503),
S (1B-12)
=GV, 2, (udv:+v3u3).

The pairing vibrational modes for the general Hamiltonian given by
Eq. (3+4) are also given in a similar way. In this case the matrix elements of
D® and A® in Eq. (1B-11) are given as

1
D =2E80c+ X mam, o0 V x(adyy),
. e (1B-13)

A (apc) =—-23 Mmamy O O { VV (a&ﬁ) + VV(77G&> —4 VV (aya’y)} ’
V2,0,
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where the definitions of Vx(aBy8) and V,(afyd) are given after Eq. (3:4) in
the text.

1B-3 Mode associated with breaking of nucleon-number conservation

The eigenvalue equation (1B-11) is known to possess a special zero-energy
solution which implies that RPA includes enough of the residual interaction
to restore the nucleon-number conservation broken by the BCS solutions:
The nucleon-number operator in the RPA is obtained by applying the expansion
(1B-7) to the nucleon-number operator in the collective representation and
by taking up the lowest order terms:

Tlrpa=132422,0%+ TN,

- (1B-14)
TNO =23 ,VQ, uzv,(b},+b,).
This operator satisfies
[Heot, Nrpa]=[Heo1, 9] =0 (1B-15)

which means that the nucleon-number operator in the RPA itself is a special
solution of the RPA equation (1B-9). It is then convenient to define an
operator as

PO =—i 3, P(a) (bl —ba), (1B-16)

which satisfies the equation
[0©, AP)=4,  [Heot, D)= — Z-_jl_ gy (1B-17)
0

Equation (1B-17) with Eq. (1B-15) is sufficient to determine @ and the
(¢e-number) inertia parameter /o. The canonical variables (J1(9, @) are
commutable with pairing vibrational modes (X}, X,) with non-zero eigen-
values, and therefore, with the set of operators X}, X,, J1(® and @O, the
boson operators (bY,, b,) may be expanded as

bl =3 n{[ X, DR1 X+ [bh, X)X} +4[bh, OCITNO+ [T, bl 10
= 0 {n(@) X}, — (@) Xy} + D) TNO+25VQ,, 1,0,D9. (1B-18)

The correlated ground state of Heoi, denoted by |0p)), is defined in part
by the conventional requirement that it be the vacuum of the non-zero modes:

X,10,))=0. (1B-19)

In addition to this, the zero-energy mode must also be taken into account to
complete the definition of [03)). In order for the ground state to have a
definite nucleon number, it is necessary to take on the condition
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J1©|0,,))=O0. (1B-20)

However, this requirement is known to be too stringent to be compatible with
the basic assumptions of the RPA.? Therefore, we adopt the following
limiting procedure: In so far as the zero-energy mode is concerned, the
correlated ground state is assumed to be specified by

[TAD — gy 130©]10,)) =0, (1B-21)

where eo is a real positive parameter. We can then define annihilation and
creation operators

X,= Jz—l [_—(O) —ieol, OQ(O)} = o {Po(@)bys+po(a)bl},
50 ]0
(1B-22)

Xj— L_[ﬂ s, ¢<o>]=z Wo(@bl+o(a)b)
0 1/250 10 070 atre ¢ 0 o

which satisfy [Xo, X}]=1. As eo tends toward zero, Xo and X} separately
tend toward infinity as 1/veo, while the behaviour of the corresponding term
of Heo in this limit becomes

olo X5 Xo —> 5 (IO, (1B-23)

which is finite and is just the one expected from Eq. (1B-17).
With the aid of the operators (Xo, X}), Eq. (1B-18) is now rewritten as

bfz = Zu{‘/‘u(a)XL—‘l’u(“) Xy}’ bw= Zu{‘pu(‘z) Xu_ﬁb#(“) XL} . (1B24‘)

With the use of these modes of pairing vibration we also define the canonical
coordinates and canonical conjugate momenta as follows:

. .
P= 5 (X4 X)), Q=5 (X.— X)) (1B-25)

which satisfy the canonical commutation relations

[Qu P]=38,., [Q., Q.]=[P., P,]=0. (1B-26)
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§1. Introduction

In this chapter® we develop a theory to treat elementary modes of
“intrinsic’’ excitation in odd-mass nuclei, which should be approximate
eigenmodes of the intrinsic Hamiltonian Hintr given by the definition (1-6-14)**)
in the preceding chapter. We must therefore treat these eigenmodes within
the “intrinsic” subspace {|¢imtry} which obeys the condition S_(a)|@itry=0.
These eigenmodes are constructed within the framework of the NTD ap-
proximation (with the ground-state correlation) and provide the basis vectors
for the intrinsic subspace within the NTD approximation. The dressed
three-quasi-particle (3QP) mode, on which emphasis is put in this paper, is
regarded as one of the simplest modes of intrinsic excitation.

In formulating the theory, for simplicity, we take up only the first term,
H, of Hintr in (1:6-14) as the intrinsic Hamiltonian. The inclusion of the
other terms does not alter the essential ingredients of the discussion in this
chapter. Hereafter (with the exception of the last chapter) we concentrate
on the study of the intrinsic excitations and drop the symbols expressing
“intrinsic” quantities. Furthermore we use the term ‘‘collective’” in the
conventional sense, i.e., for such quantities related to the modes with the
ground-state correlation.

§2. Quasi-particle new-Tamm-Dancoff space

The essence of our theory of the intrinsic modes of excitation is to make
an explicit use of the concept of the quasi-particle new-Tamm-Dancoff (NTD)

*) The content of this chapter was already published by the present authors in Prog. Theor. Phys. 52
(1974), 1819.
**¥) We cite the equations in different chapters by adding the chapter number to the first place of the
equation number.
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space. To obtain a first understanding of the concept of the quasi-particle
NTD space and of the physical operators defined in it, let us start with the
conventional quasi-particle Tamm-Dancoff (TD) space characterized by the
seniority number.

2-1  Quasi-particle Tamm-Dancoff space

As shown in §1-Chap. 1, the use of the quasi-particle representation
based on the BCS theory can be regarded as an attempt to characterize the
intrinsic states in terms of the seniority number »=3],v,, the value of which
corresponds to the number of quasi-particles, =3 ,%,. Thus the intrinsic-
energy spectrum of A in odd-mass nuclei has a quite characteristic structure
as shown in Fig. 1 and the corresponding states with a fixed odd number of
quasi-particles, z=v(=3l4,), span the z-quasi-particle TD space. The
quasi-particle TD space for odd-mass nuclei is therefore characterized by the
orthonormal state vectors with an odd number of quasi-particles:

lv=1; ad>=al|do),

lv=3; afy)= %ala,%a*yl%%
' @21)

[v=5; afysey= "z alaalalal o>,

coe
)

where |¢o) is the BCS ground state defined in §§1 and 2 of Chap. 1.

In order to explicitly express the requirement that any state in the quasi-
particle TD space must satisfy the supplementary condition (1-6-10), it is
convenient to precisely define the quasi-particle TD space by adopting the
concept of the quasi-spin tensor, which has been defined in §1-Chap. 1. The
quasi-spin tensor operators (in the quasi-particle representation) 7.(e) are
defined by the relation (1-:2-14), i.e.,

Tyla)=X% ,‘:D,’f,",‘((wo)g (@)

} Aol op apafaf 18,75

e } A Ox 05 ay 12>, v=3

}oazlg>, v=|

Fig. 1. Schematic energy spectra of Hp in odd-mass nuclei.
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They are constructed from the quasi-spin spinors; for example,
T3s5,3/2(a10903) =al,al.al,,

1
7. 3/2, 12(a 09ag)= ﬁ (d:rzﬂ;z” ast aTuﬂa 2a1t;a+ 7] 1“12‘4!3)’
(2-2)

1
T3/9, -1/2(a10a903) = 73 (@l ,@a,2ay+ 22,800, + 25,32,4L,),
7 3/2, —3/2(0‘1‘12“3) =Q5,%5,%a3

Now the quasi-particle TD space for odd-mass nuclei characterized by
(2-1) is precisely defined in terms of the set of state vectors

lo=2s; ajag:--ags, BiBs - *Basy *+>
= O4[a109° g5, Ka=S5a; B1Ba**Bass ko="55; ***11d0), (2-32)

where
Ol[a105°*+0g4,, ka; B1Bar+*Bass, kp; *+*]
1 o
= IET @ Ty (@102 00) T oyes(BiBo-++Basy) -+ (2:3b)
w . .
with 2s=2(s;+sp++*-)=v in odd numbers. In Eq. (2-3b), we have used the
definition

j‘kk(alaz"'azk)EZa{a;m‘a;kP(ala‘z'"a2k|a,laé"'aék)
X Tin(0102°* 028), (2-4)

where the operator P (the matrix elements of which are P(ajay:--ag;lajag: -
api)) is a projection operator by which the quasi-spin operators Si(z) and
So(a) are removed from the quasi-spin tensor 7.(ajas+-+as;) completely.
Therefore the eigenvectors of the projection operator P are closely related
to the coefficients of fractional parantage (cfp) with the seniority v,=2% for
(Ja)?*-configurations, and its explicit form for £=3/2 is given in Appendix
2A. By the definition of the operator O} in the relation (2:3), we obtain

S‘_(a)lv=2s; Q10" Qygyy :31/32"'132“, e >=0. (2'5)

Thus the quasi-particle TD space defined in the above manner satisfies the
supplementary condition (1-6-10).

Since the quasi-particle TD space is characterized by the seniority number
v(=n) as shown in Fig. 1, a better approximation may be obtained by di-
agonalizing the quasi-particle interaction Hint in the Hamiltonian (1-3-4)
in the subspace with a fixed number of quasi-particles. This is well known
as the quasi-particle TD approximation. Among the matrix elements of
Hint in the subspace with a definite number of quasi-particles, the non-zero
ones come from only the part Ay which conserves the quasi-particle number.
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Therefore the eigenmode-creation operators Y}, in the TD approximation
are given by the eigenvalue equation

[(Hot+Hy, Yin]l=wonY{s (0on>0) (2+6)
with
YBs)‘:a.%_: "'WOSA[ala2"'a2sm Ka="5a; B1B2***Bass kp="p; **°]
(8;):’;0)
X Ot[ajaz:++094,, kKg=54; B1B2**Basy ko ="5p; ***]. @7

Here A denotes a set of additional quantum numbers to specify the eigen-
modes.

The eigenmodes Y}, satisfy the anti-commutation relation in the
following sense:

{Yosn Vs at+1bo> =850 b0,
{YI)S)«: YB&'A'}+={Y08/\: YOs’,\’}+=Oy

where the subscript > (or<<) of s. (or s%) denotes the relation s>s’. Thus,
the set of states Y}, |$o> with 2s=# in odd numbers provides a complete set
of orthonormal bases of the quasi-particle TD space:

$ol{Yosn Yhsoar}+1Po) =858 . 29

Now it is clear that the quasi-particle TD space for odd-mass nuclei may
be characterized with the operators defined by

Yha=Yialdo><dol, You=I60><{bo! Y5 with 25 in odd numbers. (2-10)

(2-8)

By definition, the operators Y}, satisfy the equations

[Ho+Hx, Y l=woaYbsr  (won>0) 2-11)
and

{Yosrs Yhaak+1bo> =058 |0,

{¥Ybsr, Yhorrt+={Yoa, Yorx}+=0.

The unit operator 1 in the quasi-particle TD space for odd-mass nuclei is
given by

(2-12)

1=26Y ) Yo, (2:13)

where X5, denotes the summation with respect to 2s in odd numbers. With
the use of the operators Y},,, the Hamiltonian Ho+Hy in (1-3-4) is now
written as

Hyt+Hy — 1(Hy+H)l=Z 50 Y hs1 Yos- (2-14)
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Thus, using the elementary excitation operators Y}, instead of the quasi-
particle operators 4}, we obtain another representation of any operator # in
the quasi-particle TD space for odd-mass nuclei:

F=1Fl =2f51\ Z;/,\/ <OSAIFIOSIA,> YBSAYOS,A, (2’15)
with the definition |0sA>= Y}, |d¢>.

2-2  Quasi-particle NTD space

Now it is well known that in a finite quantal system such as nucleus, the
ground-state correlation is particularly important as a collective predisposition
which permits the correlated excited states to occur from the ground state.
Actually, we must. simultaneously take special account of both the seniority
classification and the ground-state correlation, in a way that the essential
physical notion obtained in the quasi-particle TD space still persists in a
certain form. The guiding principle to introduce the quasi-particle NTD
space lies in the fact that, in the new-Tamm-Dancoff (NTD) method, the
quasi-particle correlations attributed asymmetrically to only the excited states
in the TD calculations are symmetrically incorporated in the ground state
through the ground-state correlation. The quasi-particle NTD space for
odd-mass nuclei is thus defined with a set of basis vectors,

Y];). | ‘po> (2'16)

with 2s in odd numbers, where Y%, are creation operators of “‘dressed”’ »
(=2s)-quasi-particle modes constructed within the framework of the NTD
method with the ground-state correlation, and |®D¢> is the corresponding
ground state. Contrary to the BCS ground state |¢¢), the state |@Po) does
not have a definite seniority number because of the ground-state correlation.
In spite of the breakdown of the seniority number, we can still characterize
the excitation modes in the quasi-particle NTD space by the amount of
seniority Av(=2s==#) which they transfer to the ground state |®¢).

In exactly the same way as the conventional spherical tensor operator is
characterized by the amount of angular momentum it transfers to the state
on which it acts, the quasi-spin-tensor operator 7, is characterized by the
amount of the transferred seniority dv=2s to the state on which it operates.
Therefore, we can define the dressed #(=2s)-quasi-particle modes Vi, in terms
of the direct product of the quasi-spin-tensor operators defined in each orbit
with the total transferred seniority dv=2s=33,2s,:

YL,\: 2 Zxa,xb,---g,sA[alaz‘"azsa» Kg) BIBZ.”BZSIH Ky ++]

ajs B
(s=Z $a)
a

X Offayag-++ags, ka5 B1BaBass kb; *+1, @217)
where Olfay, k4; By, kp; --+] is defined by (2-3b). Within the framework of
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the NTD approximation, the eigenvalue equation which the amplitude
Yolas, ka3 Bsy kp; +++] must satisfy is as usual given by

[Ho+Hx+Hy, Yil=waY1,, (0u>0) (2:18)

where the part A, of the quasi-particle interaction Hint in (1-3-4) introduces
the ground-state correlation.

The part A together with A5 is known to be essential in constructing
the collective excitation modes within the framework of the NTD method.
Hence we call the parts Ay and H) the constructive force (of the collective
modes). The part Ay in (1-3-4) changes the number of quasi-particles, and
has no contribution in the TD calculation with the definite number of quasi-
particles. In so far as the NTD method is adopted (in describing the dressed
n-quasi-particle mode) as an improvement of the TD method (for #-quasi-
particles) the part A does not play any important role. The part A} plays
a decisive role as an essential coupling between the various dressed #z-quasi-
particle modes. Hence we call it the énteractive force.*)

The dressed n-quasi-particle modes Y%, (with 2s=#) must satisfy the
fermion-type anti-commutation relation in the quasi-particle NTD space,

{Yssrs Y;’<A’}+|@o>:3m’8,\,\'|¢o>; (2-19)

just as the z-quasi-particle modes Y}, (with 2s=#) in the quasi-particle
TD space satisfy (2-8). This requirement is necessary, together with the
eigenvalue equation (2:18), for prescribing the elementary excitation modes
in terms of the concept of transferred seniority. When (2-19) is satisfied
within the framework of the NTD approximation, the set of states ¥Y'%,| Do)
with 2s=# in odd numbers becomes a complete set of orthonormal bases in
the quasi-particle NTD space for odd-mass nuclei:

<¢0 |{ ys‘/\’ YT?'/\’} + ] @O>=888'8)u\" (2'20)

and, in the same way as (2-13), the unit operator in the quasi-particle NTD
space for odd-mass nuclei is given by

1=35,Y},Y,, (2-21)
where

YiL=YhL|Pp<DPol, Ya=I[Pe»<{Po|Ys. (2-22)

In terms of the elementary excitation operators Y%,, any physical operator
[ is easily transcribed into the quasi-particle NTD sapce:

F —> F=1ﬁl=2;/\ ZISIA/<¢0I YSI\FYL/,\/]¢0>'Y§)‘Y3')‘/. (2'23)

*) It should be also noted that the matrix elements of Ay contain the reduction (%, »)-factors which
can be quite small in the middle of the shell, while the matrix elements of Zx and Ay involve the
enhancement (%, )-factors which are close to unity for low-lying states in the middle of the shell.
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Thus, the actual problem is how to estimate the matrix elements (@] ¥,
X EY,,1DPop. As shown in §5, however, a simple rule will be found when
the anti-commutation relation (2-19) is satisfied.

In the following sections we concretely study the quasi-particle NTD
subspace which consists of the dressed quasi-particle modes with the transferred
seniority dv(=2s)=1 and 3, because we are considering the low-lying collective
excited states in odd-mass nuclei.

§3. Structure of dressed three-quasi-particle modes

According to the definition (2-17), the eigenmode operators of the dressed
three-quasi-particle modes (which satisfy Eq. (2-18) with 2s=3 within the
NTD approximation) are written in the explicit form:

Cl= 7ot Deamth(aby) P @By)alall

1 <]
J3| a1a2a3¢(hl)(ala2a3) 7 3/2,—1/2(‘11“2‘13)

1 ]
+ 71 Zesey #1100 N 10(0100)a;
+2 @By (1 + Sab)-llzqss\:i)(aﬁ ; -y) P(aﬁ)df,a&aé . (3_1)

(a,b#c)

Here the symbol 3.y, denotes the summation over the orbit-pair (@), 7
mg and y, and

P(oBy)alahay =" upr Plofy|a'By)alalyaly,
P(“ﬁ)“&aﬁz M arg’ P(aﬁ | a'ﬁ')aa/aﬁ, ,

(3-2)

where the operators P stand for the projection operators by which any quasi-
spin operator is removed from the products of quasi-particles (a}, @,). Their
explicit forms are given in Appendix 2A. A direct calculation of Eq. (2:18)
with (3-1) leads to the following eigenvalue equation which the correlation
amplitudes should satisfy:

i 3D —AY ¢
w,\{ = y (3'3)
P AT —d] ¢,
where ¢, and @, are the vector notations symbolizing the sets of amplitudes
di(oBy) and {${P(arazas), $P(aras; y), $P(af; y)}, respectively, and the
explicit forms of matrices D, d and A are given in Appendix 2B. The pro-

jection operators P involved in these matrices guarantee that the correlation
amplitudes automatically satisfy the relations
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$i(aBy)=Zawy P (afy|a'By)(a'BY),
PiP(a1a205) = X olafe; P (a10505 | a1a5a3)p{P(alag03),
PP (a102; ¥) = Daju; (@10 a1a5)$ (01025 ¥),
$iP(aB; y)=Zorg P(afla’B)$P('B'; )

which mean that the correlation amplitudes never contain any component

due to the nucleon-number fluctuations (i.e., due to the quasi-spin operators).
Equation (3-3) tells us that with the use of the definition of the metric

matrix
1 0
= 3:5
|y s ) (3:5)

G4

the correlation amplitudes satisfy the orthonormality relation in the sense

)

A

@7, ¢f')r[ ]=e@w, (36)

where ¢, is the sign function with |¢,| =1 and ¥ denotes the transposed vector
of ¢). Due to the introduction of the backward-going components, the
eigenvalue equation (3-3) has “‘extra’ unphysical solutions which have the large
amplitudes @,, and the small amplitudes ¢,,.*) As long as the eigenvalues
w, are real, the physical solutions have the large amplitudes ¢, and the small
amplitudes @,. Thus the positive ¢, corresponds to the physical solutions,
and we can classify the eigenmode operators € in (3-1) as follows:

Y{ for g=1,
Cl= { 37
A o for &= " 1.
The physical dressed 3-quasi-particle states are given as
1= Y119y, 3-8

where |®Do) is the correlated ground state (within the framework of the NTD
approximation). The existence of the extra eigenmodes A4}, which have no
physical meaning, imposes an important condition upon the state vectors in
the quasi-particle NTD space: Any state vector |®> which actually has
physical meaning must satisfy the supplementary condition

A,,|®>=0. (3-9)

§4. Structure of ground-state correlation

It is now quite important to examine the compatibility of Egs. (3-3) and

*) Hereafter the unphysical solutions are specified by the subscript Aq.
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(2-19). In this section, we show that the requirement (2-19) is satisfied within
the NTD approximation when we properly take into account the characteristics
of the introduced ground-state correlation.

4-1  Prescription of structure of ground-state correlation

First of all, let us investigate the characteristics of the ground-state
correlation (due to the dressed 3-quasi-particle modes). The structure of the
ground-state correlation should be determined é7 principle through the proper-
ties of the fundamental eigenvalue equation (3-3). As is seen from Eq. (2-18),
the fundamental equation contains only the matrix elements of the constructive
force, Hy and H),. The diagrams considered in the correlated ground state
|Do) are therefore closed diagrams composed by combining only the matrix
elements of A5 and A, so that |®Po) may be written as a superposition of
0-, 4-, 8-quasi-particle states:

|Po>=Coldo>+ Zasys C1(aByd)atabalal | do)

St ColaBydebalabalabalalalal o>+, (4D)
where () is the constant related to the normalization of |@o). The coefficients
C in (4-1) should be determined by the conditions ¥,|®@¢>=0 and 4,,|Pe)=0,
within the framework of the NTD approximation (which is used to obtain the
fundamental equation (3-3)). This procedure suggests that, with the basic

approximation in the NTD method (i.e., O(70/22)~0),*) the correlated
ground state |@p) may be written in a symbolized form

1
10y =Coexp| 774 DX oBr)alahalal | by=Co xpl W 1igd, (42)

where the constant 4 and y,_,(aByS) are defined through the relations

1
JaT X 7—o(aByd)=C1(aByd)/Cy,
Z aBys Xj:o(aﬁ'ys)z = 1 .

Needless to say, x,;_o(aByd) never contain any component of the /=0-coupled
quasi-particle pair, so that it should satisfy

X7=0(aBy8) = Ty P(ay8|a’By'8 )x ;y(a'B'y'S"). (4-4)

The ground-state correlation written in the symbolized form (4-2) should be
interpreted as to be characterized by the following prescriptions:
(1) For an arbitrary operator O, we have

(4-3)

*) Here 7o and 20 are defined through (®o|alas|Po)=8ap-70/2R2, so that zo denotes the average
number of quasi-particles in the ground state and 22 the total number of single-particle states
under consideration,
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O1®@p>=Cy0 exp[W]lop
—Co explWHO+IO, W1+ 5[0, W], W]++}do)
>Co exp[W1{0+[0, W1}|¢o>. (the NTD approximation)
(4-5)

(2) Since the basis operators characterizing the ground-state correlation are
O3 jo[as, k435 Biy kb3 vis k6] (Eq. (2:3b) with s=3/2) which construct the dressed
3-quasi-particle modes and since tke operators Ofslay, kg Bi, kp; Vi K| are
antisymmetric with respect to the indices belonging to the same single-particle
orbit, all quantities which appear in the last expression of Eq. (4-5) must main-
tain the same property.

According to prescription (1), the supplementary condition (3:9) with
(4-2) leads to the relation

&r—#Cg,,=0 (4-6)

with

Capraiasai=3V2 P(afy)x ;—o(0Ba1a5)8ye; P (aiaz03),

Coprafay =0P(afy)x ;—o(aBasY")3ye; P (a103),

Casr,o'g'v =6 P(aBy)x ;o (0Ba'B")8,y (1+4-80y) 2 PT(a'B").

(¢ y=o(0Ba’BYy=(— Yo' e (=)' ~"8"y ,_ (aPa'B"))
For simplicity, the following abbreviations are used:
P(aBy) f(aBy, 'B'y)P(a'B'Y’)
=om Doy P(afylop) f(opy, o'w'v ) Pla'w'v' | a'BY),

P(aBy) f(aBy, a'B'y")P(a'B")
=3 om Dwy P(aPy o) f(opv, p'v'y" ) P(u'v' |a'B"),

4-7)

where f(aBy, o’B'y") is an arbitrary function with respect to (aBy, a'B'y").
Combining Egs. (4-6) and (3-6) and using the symmetry property of x ;_,(aBy3d)
with respect to the permutation of (afy8), we obtain an equation to determine
X =o(aBy8) in terms of the physical amplitudes:

P—£CT P, =0. (4-8)

4-2  Orthonormality relations of intrinsic modes of excitation

The particular importance of prescription (2) manifests itself when we
evaluate the following expression:
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(o a1 41005={'L Sy 8, @By Vamar

1
+ J2 2y iravs Srr P (Y 1v2ys)ab.al,

+ 271720. 8771¢S\2)(}/1y2 > a’)a.‘iat‘h

(a#c)

+ By (L4+-30) VPG E Y aal }|¢O> 49)

(@, bp#c)

In this case we must evaluate the first term. With the aid of prescription (1),
we first obtain

Za'ﬂl}"sw"/l)\(a, ' ')dﬂ'“ 1Dy
=6 .2, 87 2 a8 OvyX ]=o(aﬂa’/§’)l,b,\(a'ﬁ"y')a;a% Do .
Prescription (2) then leads the right-hand side to
64 2o gy TapSywX yolaBa’ B Wn(a' By akal| Do)
> V6 £ 27172738778P (71'}’273) 2 [: 4% 8y van—o('yl'}'Za 13 )‘pz\(a’ﬁl'yl)af “T |(p0>
+2/6 % Zz'&sgaé)arwp (v1ve) 228 8yyiX j=o('}’2°~a B )‘I‘A(a B")’?“%‘é Do)

P(aﬁ) ~I D! e r
—|—2~/ 6 4 25;9g¢0)7m Za’ﬁ’v’svv'){j:o(aﬁa /3 )t//,\(a B Y )az*i'a%' | ¢0>

1
- \_/__——3— Zivivavs 8vv;¢$\1)(717273)a£14]}'8 | ¢°>

\/ 6 271‘)’2a 77195/\ )<')’1‘)’2r a)awdr |¢0>

$@BY)
+~/62(‘;, Ve Tty WU P02

where Eq. (4-8) is used in the last expression. Thus, we finally obtain

Z a’B'Y’ 877’¢/\(alﬁly,)a3,aa’ | ¢0>

1
= ﬁ 2vwwa8773953\1)(717’273)4}4‘11“'2 l ¢0>

+ 7= «/ 6 Z‘Vﬂ'za W1¢‘A )(71')’2, a)ana | Doy

(a#c)

3
76 J R ¢J1<i§ ,,,:/ s vy | Doy, (4-10)

so that Eq. (4-9) simply becomes
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{Y), al} +|Dy>=0. (4-11)

We are now in a position to show that requirement (2-19) is satisfied.
A direct calculation with the aid of Eq. (4-10) leads us to the relation

{Yy, Y119
[ oty 9(aPy )y (@Py)+ 5 S Sy a(@BY)alal B g Sy (o B Varay

«/ 3
L2 S By )olah] Soen S b iy slabiat,

+‘/ 2 p AP 8‘/71‘#5\%)(7172; a')a‘;/at
(a’*c)

o B Y) 4 T}
+1/2 Z((;f’b),;;w/)syv \/1+8a/bl aéa

J __
+ —3 ZY{vawa Wa¢/\ )(717273)‘1%“%"1_"/ 2 Zz&1:3>8wl¢&2)(7172 ) a)ai'z“&

o @
+ J 2 Zgzﬁ)bz;cr)aw’ ¢«/1(—({l—i‘ . ) ﬁ} 2a’g'y’aw’l/',\'(a’Bl'}”)ap’“a']1 ¢O>

=(plPr — PP | Po> =38 1Do>, (4-12)
where all the terms with O(r0/22)~0(£2/282)~0 have been dropped ac-
cording to the basic approximation in the NTD method, and Eq. (3-6) has been
used in the last relation.

4-3 Orthogonality to collective degrees of freedom

The ground-state correlation function x,_o(afy8) should satisfy Eq.

(4-4). Hence, with the aid of (4-5), we obtain
S_(a)| D> =0, (4-13)

where S_(2) is defined in Eq. (1-2-18). Equation (4-13) shows that the cor-
related ground state has no zero-coupled quasi-particle pairs. With the aid
of Eq. (4-13), we have

S—(a) V319> =[S~(a), ¥{]|Do>. (4-14)

Since the inner product of the state vectors on the right-hand side of Eq.
(4-14) is of the order O(70/282)=~0, we can also see that the dressed 3-quasi-
particle states have no zero-coupled pairs under the basic approximation

O(n0/22)~0, i.e.,
S_(2) V]| ®y>=0. 4-15)

Furthermore, we can see that the ‘‘one-quasi-particle” states Yi_;,5,q/Pp>
=aq}| D> (with dv=1) also have no zero-coupled pairs, i.e.,
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S_(@)al|®y>=0, (4-16)
because we have
S—(@)a | Po)>=[S—(a), ah]| Do>=8aa;| Do,

the inner product of which is of the order O(7%0/282)~0 by the definition
(Dylatag| Doy ==8.57y/282. Therefore, our quasi-particle NTD subspace,
consisting of the modes with the transferred seniority 4v(=2s)=1 and 3,
does not include any zero-coupled quasi-particle pairs within the basic ap-
proximation O(7¢/282)==0. Thus, the subspace is orthogonal to any pairing-
vibrational ‘“‘collective’ state.

§5. Transcription of Hamiltonian and electromagnetic multipole
operators into quasi-particle NTD subspace

5-1  Quasi-particle NTD subspace

The basis vectors of the quasi-particle NTD subspace under considera-
tion are

(Vi1 Pop=al| D>, Vi gl Pp=Y]{IDPy>}, 1)

the orthonormality of which is satisfied (under the basic approximation
O(no/282)~0) because of Egs. (4-11) and (4-12). The unit operator in this
subspace is defined by

1=3 ala,+3,Y]Y),, (5:2)
where

al.=al|Po> <Dy, Y= Y]1P> <Pyl (5:3)

The elementary excitation operators (al, Y}) in the quasi-particle NTD
subspace satisfy the relations

a,|Pp)=Y,|Py>=0, &4
and
{Y Y311 @) =38 Dy,
{a,, afs}+|¢)o>=8uﬁ|(po>; (5-5)
{Y, al}  1Dy>=0.
The non-repeatability of excitations is a trivial result and is expressed as

YY) D) =ala}|Py>=alY]|Py>=0. (5:6)

5-2  Transcription rule into quasi-particle NTD subspace

Now let us consider the transcription of a physical operator # (such
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as the Hamiltonian and the electromagnetic multipole operators) into the
NTD subspace. According to Eq. (2-23), it is necessary to evaluate the
matrix elements {@o| V7V, |Po> within the framework of the NTD
approximation. For this purpose we must make full use of the properties of
the eigenmode operators, such as relations (4-11) and (4-12). Hence, we re-
write the matrix element in the following two forms:
(Dl Y, s>/\F Y Ts'<).’]@0>
_ {<@0|{[Ys>,\, F], YE"<,\’}+|<D0>+<(D0|F{ Ys>/\’ Y§’<A’}+|¢'o>, (5-7a)
D, I{ Ys>,\,[F; Y§'<,\’]}’+|¢o>+<¢o|{ys y;;A'}+FI¢O>' (5:7b)

>/\’

The evaluation of the first terms, which include a double commutator, is
easily made. For the second terms, it is convenient to use the form (5-7a),
because in general we obtain

{Ys<,\, YL;,\'}+]¢0>%O for s=4s',
i.e.,

(Bol{ Y5 p Yix}s#40 for s,

which is in contrast with the simple relation (2-19), i.e., relation (4-11). There-
fore, we adopt the form (5-7a) and easily obtain

{Dy| Ys>,\FY§’<,\’|¢o>:<¢ol{[ys>m £, Y vt Doy
+ 858 <Dy | £ D> (5-8)

This means the following transcription rule for evaluating the matrix elements
(D, Y s)\F Vi Doy: First, we calculate the commutation relation between
the physical operator F and the eigenmode operator of the higher transferred
seniority number, and afterwards take the anti-commutation rvelation with
the eigenmode operator of the lower transferred semiority number.

5-3 Transcribed operators
Using the transcription rule, we obtain
<(p0[ YA’HYR|¢0>= {w/\+<¢0|HI¢O>}8M"
<<150laaHaE]@o>= {Eq+<KDy| H| D)} 8,8

(59)

and
{Do| Y\ Hal | Doy (=L DPo| Y Hyar| Do)
=—V6 Tapy Vy(a'Bay W(@'By")
+V'2 Dojafe { Vi(aiagaga) —2 Vy(ajazads)}t $5(alagas)
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—2% ey’ {Vy(a¥'ajap)+ Viazaary”)+ Vi(ay'asa)} ¢52(aras; v")

(a’xc’)

2 AV (@B TR +2V(aary B PP YD (510)
S VY vlaay A+8,y
According to Eq. (2:23), we can obtain the explicit form of the transcribed
Hamiltonian in the quasi-particle NTD subspace:

H=1H1=U-1+4+H©® 4 4o
_ U l+ Z EaaTa + Z,\w,\YT Y,\+ Zm\th(a, A) (Y a +aT YA) (5'].1)

where Vint(a, )=<(D,| V,Hal|D,), and U is a constant related to the cor-
relation energy of the ground state due to the dressed 3-quasi-particle modes.
As seen from the matrix elements Vint(a, A) given in Eq. (5-10), the effective
interaction HUnY between the different types of modes results from only the
interactive force A, of the original interaction.

The electromagnetic multipole operators are the one-body operators
written in general as

9 :t) =Zua(a| O(d:) IB)CLCB
=3 .s{0%(ap) (alah +aa:)+ 075 (aB)atas)

+3.(a] 0% a)u2- Hz:l, (512)
where the double symbol (4-) is related to the conventional transformation
property®) of the multipole operators with respect to the time reversal, and
0% and O%) are defined respectively by

B (af)=— = (a | O3 | B) (sqvp =t vates),
0% (aB)=(al 0&) |B) (g2 F vavy).

By definition, O%)(aB) satisfies the relation O%)(aB) = — 0%, (Ba),

Fy(aB) the relatlon O%y(oB)=+0%(Ba). With the aid of the transcription
rule (5-8), we now obtain the transcribed electromagnetic multipole operators
in the quasi-particle NTD subspace:

(5:13)

O‘(Lji)! — 0%,=10 (j:) 21
(:I:) 14+ ZaBO(:t) (aﬁ)aT aB+ Z,\).’ 0(:t) (MI) YR Y,\r
+ Za{0%(aX)alY,+ 055 (Aa) Yia,} . (>-14)

% The time reversal property of the electromagnetic multipole operator Oy is characterized by
70Tt =-r(—)MO i1, where 7=41. The operators Oﬁ]}% and O(L_Il)l denote those with 7= +1
and 7= —1, respectively.
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Full expressions of the coefficients €53, 0% (aB), OF(AX) and OF)(ad) are
given in Appendix 2D.

Any physical operator can be transcribed in the same way into the quasi-
particle NTD subspace.

§6. Concluding remarks

On the basis of the quasi-particle NTD method, we have developed a
systematic microscopic theory describing the collective excitations in spheri-
cal odd-mass nuclei. The theory has led us to a concept of a new kind of
fermion-type collective excitation modes, in exactly the same manner as the
RPA for even-even nuclei leads us to the concept of “phonon’ as a boson.
Needless to say, the framework of our theory includes that of the quasi-par-
ticle-phonon-coupling theory as a specially approximated version. The
dressed 3-quasi-particle mode involves the phonon-like collective correlation
and the three-quasi-particle correlation in a unified manner.

In Part III we apply this theory to describe the low-lying collective ex-
cited states in spherical odd-mass nuclei, and show that this unified picture
plays an important role in clarifying the structure of low-lying states.

Appendix 2A. Projection operators

In Eq. (3-2) we have used the projection operators, P(afy) and P(af),
defined by

P(afy)f (aBy)=Z gy PlaPyla'By) f(@'BY),
P(op)g(oaB)=Z2v g P(aBla’F)g(a’),

by which arbitrary functions f(afy) and ¢g(af) are antisymmetrized with re-
spect to (a, B,y) and (a, B) respectively, and any angular-momentum-zero-
coupled-pair component is removed from the antisymmetrized functions
f4(aBy) and ¢4(aB). Here we give their explicit definitions.

The antisymmetrization operator of three-body system is given by

(A1)

. r 1
P4(aByla'B'y)= 37 Lowsv B2 L.udgedy) 2A-2)

where 3@(g,, denotes the summation over all the permutation with re-
spect to (a’, B, y’) and 8¢ takes the value +1 for even permutations and the
value —1 for odd permutations. As is easily seen, this operator satisfies
the relation of projection operator:

Z a,,ﬁ,,‘y,'PA(aBy I aIIBIlyII)PA(aIIBlIyII | alﬂlyl) — PA(aﬁy I alﬂ'yl). <2A.3>
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In the coupled-angular-momentum representation, the antisymmetrization
operator (2A-2) is represented by

Pi(ab([)ela't'(J")e")= Zmampmyz Ma’mB’my'ZMM'<jajbmamB |/M)
X (JjeMmy| IK ) (Gar jomamg| ] M) ([ jor M my | IK )P4 (aBy|o’B'y")

1 .
=21+ L) [8w'8bb18w/an

7 Je Jv J' 2

D@D 7 At G Busbdar |, 28
a

where the operation of & on any function f is defined by

Pavsf f(ab)= —(—Yet~/f 1(ba). A-5)

With the aid of Eq. (2A-4), the projection operator P,(ab([)c|a'6'([")c"),
which removes any angular-momentum-zero-coupled-pair component (from
the functions on which it operates), is easily obtained as follows:

Py(ab([)c|a'' (")) =Pi(ab([)cla''(J")c")

{+0 for az=bs~ca,
| —PAab())e| b (] ) )B 1o for a=bke,
|
_ P{(ab0)c| a8 (J))P(ab([)c| 2’8 (0)") b
| PA(ab(0)c]a'5'(0)c) for a=6=c,
%i (= YatieH (2] + 1)1/2{];’ j_b 'g} Pi(ac(0)b|a’d’'(J")c") for a=c6,

\ +(=)yH2] + 1)“{];’ i g}P;’(bc(O)ala’b'( ]’y for atb=c.
(2A6)

\

The projection operators P, thus defined satisfy the following properties:

i) 3 Pab([)ela"8"(J")e" )P (a8 ()" 1a'8'(J)e)

T B yab(ela (e, (2A-Ta)
i) Pyab())ela’b () =P @b () \ab(TYo), (2A-Tb)
i) Pyab(O)c|a'b'(]")e") =P (ab(])c|a'8'(0)c")=0. (2A-7¢)

With the expression (2A-6), the projection operator P(afy|a’B’y’) in (2A-1)
(in the m-scheme) is given through the relation

Pl(ab(j)c | a’bl(j')[')_—: Zmamﬁmyz ma,mlg,my;ZMM’(jarjbmamﬁI.IM)
X (JjeMmy| IK ) (Ja' jormome ] M) (] o M 'my | IK )P(aBy|a'By"). (2A-8)
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The projection operator P(af|a’8") of two-body system is defined in a
similar way and its explicit form in the coupled-angular-momentum repre-
sentation is trivially given by

P(@81 6= 5 Guaboy —(—VehTaybpa) 1 —870).  (2A9)

Appendix 2B. Matrix elements of the secular equation
for the dressed 3-quasi-particle modes

Here, we give the explicit forms for the matrix elements of D, d and
A in the eigenvalue equation (3-3).
With the definitions

Ve =2[VE)epa'B)+ V E¥aBa’B)— V E)(Baa’B)], (2B-1)
32323/—2[171/1(‘1/3‘1 /g )+ Vya'Baf)— VVi(“B’Ba’)'_ VVi(Ba,aBI)
+ Viri(BB'aa")+ Viyi(aa'Bp), (2B-2)

we first introduce the matrices 3D?, d? and A?, the elements of which are
given as follows:

3Dlgy,wpry=PaPy)[(El+ Eb+ E§S,y8p88yy +3V a8, 1PT(a'BY"),

(2B-3a)

dimzas,a;a;‘lg = P<a1 a2a3> [Egsﬂx“xaazagsﬂsaa + nglzia azsaaas] PT<a1a’2a,3>’
dzlaz'y,a;a;‘yl = P(ala’2) [Egs‘lx‘lis“zags d +2 Viff')az‘ys‘llax] PT(aiaI2>’

P(ap) P7'B)
Lirawy =T rg IE bt B — B3B8y +2V Dbyl =5 T By

B (2B-3b)
dgluzas,a;a;'r’ =\/ 2 P(a1a2a3> Vz(zi:f:)ala Sa;ﬂsPT(a.{la,Z>

- PTa'B)

i rar, s == ]:Q
dﬂxazas,a B’y \/ 2 P(a1a2a3) Vs 8 a‘uzsy % \/1 + 3a’b'
P7(’

d(‘ilagy,u'ﬁ"y’ =2P(a1a2> Vt(lj’cé;azys’y ay 1/1_{<_ 85 b)'
Alpy,olduy=v 3 PlaBy) Ve, 8ys P7(ajasay),
AaB‘Y,a;a;‘}" =J6 P (aﬁ‘y) Vigi)y 8”a'P T(""lalz)’ (2B'3C)

s PT'B)
Agﬂy’alﬁl,yl :‘\/ 6 P((lﬁ‘y) V.(zg;f;ﬁlsw ‘\/1+ aa,b’

where we have used the abbreviations for the projection operators in (3-2),
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for simplicity. The matrix elements of 3D, d and A are then given by the
following replacements in (2B-3):

V§i(aByd) = VE(aByd),  VENaByd) = VE(aByd),
ViyiaByd) > Vy(aBys),  EL > E, (2B-4)

where V' (aBys), V¥ (afyd) and V,(aBfyd) are given after Eq. (3-4) in
Chap. 1.

It is obvious that the suffix 7 of V' and £ is completely superfluous in
the above equations. The suffix 7 has been used here merely from formal
point of view and its usefulness will become clear in Appendix 7A.

Appendix 2C. Interaction between the dressed 3-quasi-particle
mode and the single-quasi-particle mode

Here, we give the explicit form of the matrix element Vint(a, A) in Eq.
(5:11) in a formally convenient way.
Let us first evaluate the matrix element of the following operators:

Ky=73apys {Viyi(aByd)alatala, + Vys(aByd)alasaga.} . 2C1)
With the aid of the transcription rule given in §5-2, we obtain

<¢olyaKydll¢o>=<‘poH[Y,\, KY]; aL}+I<po>

=(¢{, 1) B(a), 2C-2)
where
B(a"
B(a")= ( ) 2C-3)
B2(a")

the elements of which are defined by

Blg(a")=—P(afy)V'6 Vyi(afa'y),
B2 ou(0’) = — P(aja503)V 24 Vye(@182038") —2Vyp(a’d10509)},
B2, (0)=—P(a1a5)2{Vy9(as¥2:8")— Vis(a'dgary)+ Vys(a'Vasa5)},

Bia(a)=— 2V ri@hyd)— Viaa'arf)+ VsaBpad). 2C4)

The matrix element of the interaction, Vint(a, A) in Eq. (5-11), is then com-
pactly given by

Vint(a, ) =(¢7, ¢{)-B(e) 2C5)

with the following replacements in (2C-4):
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Vy1(aByd)=Vy3(aByd) = Vy(apys), 2C-6)

where V. (afyd) is given after Eq. (3-4) in Chap. 1.
The operator K has been used here merely from formal point of view
and its usefulness will become clear in Appendix 7A.

Appendix 2D. Matrix elements of electromagnetic
multipole operators

Here, we give the explicit forms of the coefficients in Eq. (5:14).
Let us first evaluate the matrix elements of the following operators:

By =3 opd F Pu(oB)ata+ F§2u(aB)agas}, @D-1)
F§=3 uF ) aB)atas. @2D-2)

With the aid of the transcription rule given in §5-2, we obtain

(Py| Vil | 90> = 6 Zaah(aBy)P(aBy)S,w F§a(of)
4V 2 DiaraiP(010205) P(a10909)8 0,0 F 5P (a10)
+2 ngc)‘lsf\z)(%az; y)P (alaz)aala'ﬁ §2u(azy)
F23lapy (B PP FEueB N TF o0 ), (2D30)
(Dol ag FE V| Po>= £V 6 S uph(aBy) P(aBy)dye £ 520 (aB)
V2 D arasan PSP (010205) P(@10508)8 oo F 521 (81 8)
+2 E&agc )955\2)(‘11“2 5 V) P(a109)80, F(57)

+2 Zepy 9)538)@/3; V)P(aB)Syw F'2y(@f)/V1+8,  (2D-3b)
axc,bxc

and

F O /
@ vFEYYoy=@LeD ) ] %] @D

where the matrix elements of F and f are respectively defined by
Fogy,gty =3P(aBy)F Gii(yy")8uuBag PT(a'B'y"), (2D-5a)
/e aja5a4,01a303 P(aya503) {2F &%(6;363)—'; Fir(agag)} sa,afsagaép T(ajag0y),
Suagapalaly’ = P(a10505)V 2 F G5 5)80,0/80, PT(2105),
fal"-zy:"’;az";= P<a1a2) ‘/YF(L:S:‘)[ &577)8‘11“{8“2“;PT(aia,Zals)!
falu,na,alﬁ")" = P(a'la2a3) ‘/7F(Lill?l(a:i‘yl)sala'susﬁ'PT(a,ﬁl)/\/l + sa'b' ’

Framatatni=— ) 13 P ra)8 e P(chaaL),
yQyaoag Jl +8ab 1 2
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Susosr,dioiy =P (a1a2) [{F Fi(a18,) — F $ila101)} 8auBvv’
CUT 7B usaiBare; T F E5(a101)8e0"8ra] PT(a103),
f"l"z”:a'ﬁlf’ = P(ala2)2 {F b7 (‘i &2>8¢17'8r‘8’
(:t) (al')’ )802¢'87’P'} PT(“ B )/\/l + Sa, 'y y

P
Sy ooy’ = 71 _(:L}? = 2{F ${(058)8y/8py — F F)(ya1)SealOsy'} PT(a}ap),

P
fuBY,aIB”Y’ = ‘\/1 _(:'/83) 2 {ZF 7 (B B)Saa'a‘yv

F & (ry")8awdpery PT(a'B)/ 14847y - (2D-5b)

The explicit forms of the coefficients in Eq. (5-14) are then given by

s el Ot 2L
O%5(aB)=(Dy| 2,0%5a}| D) — C 88 =0 F(ah),

OF(Aa)=(Po| ¥,0%5al | op={Dy| Y,\ Fual| Pod,
O aX)=(Py| 2,085, Y} D> =< Py 2.7 53, Y} | D,
OFU M )=(Dy| Yr0%5; Y}/ |Po)>—C Gy =< Py | VFE Y111 Bo>  (2D-6)

with the following replacements in (2D-3) and (2D-4):

o

FR(aB)=F52u(0B) > OFi(ap),
F & af) > OF(ap),
where 0%(aB) and O%) u(af) are defined by (5:13).

The operators, F and F, have been used here merely from formal point
of view and its usefulness w111 become clear in Appendix 7B.

@D-7)
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§1. Introduction

1-1 Outline

According to the j-j coupling shell model, a high-; orbit having parity
opposite to that of the other orbits appears systematically in each major shell.
(See Fig. 1.) When this unique-parity orbit, such as 1f7,, and lggs, is
filled with nucleons in odd numbers, a competition between a spin j- and a
spin (F—1)-state for the ground state occurs quite regularly. Such extra low-
lying states with spin /=(7—1) and with unique parity have been called the

anomalous coupling (AC) states.

The AC states are well known as the typical phenomena which cannot

be interpreted within the framework
of the conventional quasi-particle-

phonon-coupling (QPC) theory of e 70 ;_'_h_'_l_a__‘_:_:_

Kisslinger and Sorensen.! 33'{;}+
The main purpose of this chap- _50_-'?‘3"{22

ter*) is to introduce a new micro- AET—

scopic model of the AC states in the ""40""“:"EEE:_]—:'_"'

light of recent experimental develop- g ['®

ments illuminating the structure of 1ty <—

the AC states. In the microscopic TR ]2_3—%_}: —————

model proposed here, the AC states —8—{19%

are regarded as typical manifesta-
tions of the dressed three-quasi-
particle (3QP) modes which have

Fig. 1. Schematic representation of shell struc-

ture.

The arrow

denotes the high-spin,

unique-parity orbit in each major shell.

*) The content of this chapter was already published by the present authors in Prog. Theor. Phys. 47

(1972), 498; 51 (1974), 779.
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been introduced in Chap. 2. It is shown that, under the special condition
of shell structure for the appearance of the AC states, the dressed 3QP modes
manifest themselves as relatively pure eigenmodes without coupling to the
single-quasi-particle (1QP) modes. Then, in the same manner as the 2+
phonon modes (the dressed two-quasi-particle modes) are regarded as elemen-
tary excitations in spherical even-even nuclei, the AC states are regarded as
typical phenomena which exhibit the elementary modes of low-energy collective
excitations in spherical odd-mass nuclei. From this point of view, the
mechanism of appearance of the collective 3QP correlation, which is responsible
for the particular favouring of the spin (j—1) states, and the process of its
growth are clarified.

After a short summary of the recent experimental evidences showing
collective character of the AC states, the motive for introducing the new
microscopic model is discussed in §2 in connection with the picture of phonon-
quasi-particle coupling. In §3, starting- with the j-/ coupling shell model
with the pairing-plus-quadrupole (P+QQ) force,3 we formulate the micro-
scopic model of the AC states in a concrete form by using the general theory
developed in Chap. 2. It is shown that the model introduced involves
two essential characteristics of the AC states in a unified manner: One
characteristic aspect represented by Kisslinger’s 3QP “‘intruder state”4 and
the other characteristic aspect of strong collectiveness underlying the quasi-
particle-phonon-coupling state.1:2  Furthermore, by investigating the
stability of the spherical BCS vacuum against the collective 3QP correlation,
we point out an interesting relation between our new viewpoint and the Bohr-
Mottelson’s old suggestion® concerning the possible connection between
the appearance of the spin (j—1) state as the ground state and the onset of
quadrupole deformation. In the course of these, the relations between
our microscopic model and the recent works based on the semi-microscopic
models®:? (which start from the particle-vibration coupling Hamiltonian®)
are also discussed by putting special emphasis on their underlying picture for
the AC states.

It is shown in §4 that the model introduced can give us an intuitive and
perspective understanding of the characteristics of electromagnetic properties
of the AC states. The theoretical predictions given there are examined
in §5 by comparing results of numerical calculations with available experi-
mental data. Here, special attention is paid to the systematical agreement
with the common properties of the AC states observed in the experiments
over a wide range of spherical odd-mass nuclei rather than numerical agree-
ment with the experimental value at a specific nucleus. In the theoretical
calculation, the coupling effect coming from the 1QP mode in the next upper

¥ Throughout Part III, we take up the first term, Z, of Hmir (1:6-14) as the intrinsic Hamiltonian,
in the same way as in Chap. 2.
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major shell, such as lgf,; and lkg,, on the dressed 3QP mode with 7
=(7—1) is also taken into account, and, therewith, the smallness of its mixing
effect on the properties of the AC states is examined. The results clearly
show how we can understand the various properties of the AC states in a
unified manner within the framework of the microscopic model proposed on
the basis of the theory developed in Chap. 2. Thus we conclude in §6 that,
in the first order approximation, the AC states with /=(j—1) can very well
be recognized as the typical manifestations of the dressed 3QP modes.

1-2  Finding of collective nature of AC states

Since the special lowering of the spin (j—1) state is in clear contrast
to the simple pairing-coupling scheme which favours the spin ; state char-
acterized by the seniority »=1, the phenomena showing the competition be-
tween the spin j and (f—1) states have been discussed with special interest
from the viewpoint of the nuclear coupling scheme. It has been known
from the very beginning of the proposal of the j-/ coupling shell model, that
one of the possibilities of reproducing the extremely low-lying (7j—1) state
is to introduce a sufficiently long-range effective force in multi-nucleon con-
figurations j%.9-19 It was shown that, within the ;3 configurations, the
spin (j—1) state characterized by the seniority »=3 is especially lowered
in energy as the range of the effective force becomes larger.19-15) Kisslinger’s
interpretation of the (7—1) state as the 3QP “intruder” state¥ may be re-
garded as a model in terms of the P+QQ force, elaborated along this line of
development.

Another possibility of explaining the AC states is to introduce a pos-
sibility of quadrupole deformations in nuclei: In view of the fact that the
lowest state of 73 configurations in the oblately deformed potential has the
spin /=K=7—1 (the aligned coupling scheme), Bohr and Mottelson sug-
gested® a possible connection between the appearance of the (j—1) state
as the ground state and the onset of the quadrupole deformation. From
this point of view, the competition between the 7 and (j—1) states is considered
as a phenomenon reflecting directly the growth of quadrupole instability.

Now let us first make a systematics of the excitation energies of the
(/—1) states on the basis of recent accumulation of experimental data. In
Fig. 2 are presented the excitation energies of the 7/2+ states measured from
those of the 1QP 9/2+ states, as a function of the neutron number V. These
7/2% states in the odd-proton Tc, Rh and Ag isotopes are the most well-
known examples of the AC states with spin /=(;j—1). We can then notice
a striking similarity between the behaviour of the excitation energies of the
2+ phonon states in the sequence of even-even nuclei and that of the (j—1)
states in the sequence of odd-mass nuclei: As a function of &, the excitation
energies of the 7/2+ states change in quite a parallel way to those of the 2+
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Fig. 2. Comparison between the excitation-energy systematics of the 7/2+
states and those of 2+ phonon states. The phonon-energies presented
are the average values between the adjacent even-even nuclei, ie.,
@+ (N, Z) =1/2{was+(V, Z—1)+wa+(N, Z+1)}. The energies of the
7/2+ states are those measured from the 1QP 9/2+ states.

phonon states, aside from the fact that they are shifted down about 0.5 MeV
compared to those of 2+ phonons. This similarity indicates a collective
character of the 7/2* states which is difficult to understand with either of
the two interpretations mentioned above.

In addition to the well-known 7/2% states in nuclei belonging to the
1g§/-region, recent experimental works have revealed a number of new
examples of the AC states with spin 9/2— in odd-neutron Cd, Te and Xe
isotopes belonging to the l47;,-region. The excitation energies of the
9/2- states measured from the 1QP 11/2- states show also the trend similar
to that of the 2* phonon states in the neighbouring even-even nuclei.

Furthermore, recent measurements on various electromagnetic prop-
erties of the AC states have been providing us important information,
directly showing their collective character. One of the most important
findings is that the E2 transitions from the (7—1) states to the 1QP states
with spin j are strongly enhanced while the corresponding M1 transitions
are moderately hindered. The amount of enhancement of the £Z2 transitions
is comparable (or somewhat larger) to that of the E2 transitions from the
2+ phonon states to the ground states in the adjacent even-even nuclei. Thus,
the strongly collective nature of the AC states has been clearly exhibited.



Structure of the Anomalous Coupling States with Spin I=(j—1) 57

A possible origin of the striking Z2 enhancements from the (j—1) states
may be ascribable to the quasi-particle-phonon-coupling nature based on the
theory of Kisslinger and Sorensen.)? However, the special energy-lowering
of the AC states with spin /=(7—1) has not at all been accounted for within
the framework of the conventional QPC theory of Kisslinger and Sorensen.
Considering the striking £2 enhancement as an essential characteristic of
the AC states, Sano and Ikegamil®»1?) carried out the calculation based on
the conventional QPC theory by enlarging the shell model space to several
major shells. An extension of the conventional QPC theory to another
direction has also been attempted by different authors.18)-20) However,
it turnd out later,21):22) that it is difficult to ensure the conditions for eli-
minating the spurious states and for satisfying the Pauli principle between
the quasi-particles composing the phonon and the odd quasi-particle, within
a mere formal extension of the framework of the conventional QPC theory.

The three different kinds of approaches mentioned above have suc-
ceeded in explaining partial aspects of the (j—1) state. That is, for the
special favouring of the /=(;j—1) coupling in 3 configuration, the spherical
shell model with a long-range effective force, for the possible appearance
of the (/—1) state as the ground state, the aligned coupling scheme in the
deformed model, and for the strong collectiveness exhibited by the enhance-
ment of B(E2; j—1-—j), the quasi-particle-phonon-coupling model. How-
ever, their mutual relationships have not yet been clarified and, therewith,
the essential understanding of the structure of the AC states has not been
achieved.

In the following, we first investigate the missing effect of the conventional
QPC theory of Kisslinger and Sorensen, which is the main cause for the
special favouring of the (j—1) state.

§2. A new type of quasi-particle-phonon-coupling giving
rise to collective 3QP correlations

An important effect of the quasi-particle-phonon coupling, which has
been neglected for a long time, was emphasized by Bohr and Mottelson23)
in 1967: “In the phenomenological phonon-quasi-particle coupling model,
the lowest-order-perturbation effects which contribute to all the energies
of the different states of the multiplet composed of the odd quasi-particle
and the one-phonon, are shown in Figs. 3A and 3B. The diagrams of the
type A are nothing but the conventional ones which have so far been treated
as ‘phonon-quasi-particle coupling’ in the QPC theory of Kisslinger and
Sorensen, while the diagrams of the type B never appear in this QPC theory.
The physical effect underlying the diagrams B is that zke phonon disassociates
into a pair of quasi-particles, ome of whick reassociates with the odd quasi-
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Fig. 3A. Contribution of lowest order. The salid and broken lines represent
the quasi-particle and the phonon, respectively. This type of particle-
vibration coupling is accompanied by the reduction factor (wix2—wv1vs).

Fig. 3B. Contribution of lowest order. This type of particle-vibration coupl-
ing is accompanied by the enhancement factor (#1v24z1%2). Both (A)
and (B) are taken from reference 23).

particle while the remaining quasi-particle is now the odd quasi-particle.
This effect is essentially based on the Pauli principle between the quasi-par-
ticle composing the phonon and the odd quasi-particle. The extreme im-
portance of the diagrams of type B can be recognized as follows. The dia-
grams of type A consist of the factor (#au2—v1v2) which can be quite small,
while the diagrams of type B involve the coupling with the factor (#1v:
+w1%3) which is close to unity for low-lying states in the middle of the shell.
Thus it is likely that the description of collective excited states of almost all
spherical odd-mass nuclei is significantly effected by the inclusion of the
effect.”

In the conventional QPC theory, the phonon is regarded as the ideal
boson described by the random-phase approximation (RPA) and is com-
mutable with the odd quasi-particle. Therefore, the effect which underlies
the diagrams of type B and is based on the Pauli principle between odd quasi-
particle and quasi-particles composing the phonon is % principle not taken
into account within the framework of the theory. From the viewpoint of
boson expansion methods in odd-mass nuclei, such effect is called “kinema-
tical anharmonicity effect’” based on a new type of quasi-particle-phonon
coupling which is derived from two types of the original interaction, Hx
and Ay in Eq. (1-3-4), represented in Fig. 7in §3. The new type of coupling
is in clear contrast to the coupling in the conventional QPC theory, which
is derived from the original interaction, Ay in Eq. (1-3-4), represented in
Fig. 7 and causes ‘‘dynamical anharmonicity effect.” The significance of
the new type of coupling has also been emphasized in the course of inves-
tigating the ‘“anharmonicity effects”” in terms of the boson expansion method.

Of course, as the kinematical anharmonicity effect becomes more
significant, the higher order diagrams of the type B must be taken into account.
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Therefore, in such a situation, it is required to take the essential effect into
account not by the perturbation approximation but by diagonalizing the
Hamiltonian in a ‘“‘certain subspace,” in such a way that we adopt the new
Tamm-Dancoff approximation (i.e., the RPA) when constructing the phonon
modes in -even-even nuclei.

It is now easy to recognize that the dominant cause which brings about,
the special favouring of the spin (f—1) state is nothing but the effect of type
B: Let us operate the effect on the degenerate multiplet composed of the
odd quasi-particle and the one-phonon. Then, as is shown in §3, the (j—1)
state in the multiplet is affected most strongly and its excitation energy is
extremely lowered as the effect becomes stronger. The AC states with /=
(7—1) are regarded as the phenomena in which the effect grows extremely. In
fact we see the experimental data clearly exhibiting this process, for example,
in the cases of Nb-Tc-Rh isotopes in §5. :

In order to investigate the effect of type B on the basis of the microscopic
theory, let us replace the phonon line in the diagrams B in Fig. 3 with the
conventional correlated-two-quasi-particle line shown in Fig. 5, by taking
account of the composite structure of the phonon. Then the diagréms B
can be decomposed into the corresponding microscopic diagrams in Fig. 6.

—

(ji-=1

Eig. 4. Fig. 5.
Fig. 4. Schematic illustration showing the relation between the process of
growth of the 3QP correlation and the increase of the splitting of the

multiplet composed of phonon plus odd quasi-particle.
Fig. 5. Representation of the phonon as a correlated two quasi-particles.

Fig. 6. Microscopic structure of diagram 3B.
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The structure of the diagrams in Fig. 6 shows that they are composed of
only two types of the quasi-particle interaction, Hx and Hp, which are
also well known to be responsible for the phonon mode in even-even nuclei.
The situation never changes even when we take account of any higher order
diagram of type B, and the excited state corresponding to any such diagram
is always represented as a superposition of the particle states with 3, 7, 11,
15, ... quasi-particles. These considerations lead us to the conclusion that
if we succeed in constructing the correlated three-quasi-particle mode, in-
cluding the corresponding ground-state correlation in the framework of the
new-Tamm-Dancoff (NTD) approximation (by using the two types of the
quasi-particle interaction Ay and Ay), the above mentioned requirement
that the effect of type B should be taken into account not by the perturbation
but by diagonalizing the Hamiltonian in a ‘“‘certain subspace’ is satisfied
in a very suitable way. Thus we are now at a position to introduce a new
microscopic model of.the AC states with spin /=(7—1) as typical manifesta-
tions of the dressed 3QP modes formulated in Chap. 2.

§3. Microscopic model of AC states as dressed 3QP modes

3-1 The Hamiltonian

Let us start with the spherically symmetric j-j coupling shell-model
Hamiltonian with the pairing-plus-quadrupole (P+QQ) force in the quasi-
particle representation:

H=Hy+:Hgg
= % Eqala,— %X % : Qb uQam, GRY)

where x is the strength of the quadrupole force, and E, is the quasi-particle
energy, determined as usual together with the parameters %4 and v, of the
Bogoliubov transformation. The symbol : : denotes the normal product
with respect to the quasi-particle operators 4!, and a,, and the quantity Qu
is the mass-quadrupole-moment operator in terms of quasi-particles,

Qau— 5 33 ¢(ab)[£ad){ Al ad) + Agi(ab)
(@) {Bhaab)+ Bisab)}, (32)

where
sab)=T5 (@l ¥, 5) 33)

and
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§(ab)=(uavo+vaus),
(3-4)
1(ab)=(sarts— vavy).
The operators AY,(ab), A73(ab), BY(ab) and Bjy/(ab) are the conventional
pair operators defined by
Ayu(ab)y=_3 (jajvmamg|JM)ayal,
Mam‘B

By y(ab)y=— 2 (Jajomamp| JM)ahag,
amg

(3-5)
A 7i(ab)y=(—)/"" 4 ;,z(ab),
B ry(ab)y=(—)"~"B,z(ab),
where
ag=spag=(—)le—™8az. (3-6)

The quadrupole force :Hgpg: acting among quasi-particles can be divided
into following parts according to the roles they play in constructing the ele-
mentary excitation modes:

HQQ =H(O) +HY+HEX,

(37
HQy=Hx+Hy,
where
Hy=— % 3 3 Qab)Q(cd)Ab(ab) Agyled), (3-7a)
M abed
Hy= %‘E P2 (@) Q(cd) { AL p(ad) Ay(cd)+h.c},  (3-Tb)
Hy=—% § = Q(ab)R(cd){ A} 1(ab) Byy(cd)+h.c.}, (3:7¢)
Hiex=— % > 2 R(ab)R(cd): Bhy(ab)Byy(cd):
M abed
v o 2
=512 2 R " L dyutad)d pudet) 370
with
Q(ab)=q(ab)é(abd), (3-8
R(ab)=g(ab)n(ab). 39

According to the inherent assumption underlying the P+QQ force
model,3-24 we hereafter neglect the exchange term Hzy in the quadrupole
force Hop. Then each matrix element of Hgg is represented by one of
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J=2

Hx Hv
~
J=2
J=2
Fig. 7. Graphic representation of the matrix
elements of the quadrupole force.
Hy

the diagrams in Fig. 7. The part A x represents a scattering of the pair of
quasi-particles coupled to /7=2+. The part Ay represents a pair-creation
(or a pair-annihilation) of the quasi-particle pair coupled to /*=2%, so that
it introduces the ground-state correlation. The part Ay denotes a creation
(or an annihilation) of the pair of quasi-particles coupled to /7=2*, accom-
panied by the scattering of a single quasi-particle. As was discussed in
Part II, the parts, Hx and Hy, play an essential role in constructing the
dressed 3QP modes as elementary excitations, while the part Ay gives rise
to couplings between the different types of elementary excitation modes, for
instance, a coupling between the 1QP mode and the dressed 3QP mode.

3-2 Formulation of model

Let us now consider the systems of odd-mass nuclei in the truncated
shell-model space which consists of one major harmonic-oscillator shell (for
both protons and neutrons) and a high-; orbit with unique-parity entering
into the major shell, and suppose the unique-parity orbit being filled with
protons (or neutrons) in odd numbers. To explicitly specify the unique-
parity orbit 7, we use the Roman letter p=(»//)*) and the corresponding
Greek letters m1=(p,m1), ma=(p,m3), ... are used to specify the single-particle

*) We will often omit the suffix p of jp hereafter.
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states in the unique-parity orbit. The Roman letters 4,,4,... and the cor-
responding Greek letters B=(6,mp), y=(c,m,;),... are used for the single-
particle orbits with the exception of the umique-parity oréit and for the cor-
responding single-particle states, respectively.

In this special situation of shell structure for the appearance of the AC
states, the dressed 3QP mode with parity opposite to that of major shell takes
on an especially simple form due to the parity-selection property of the quadru-
pole force: The eigenmode operators for the dressed 3QP modes defined by
(2:3-1) are simply reduced to

Chrig= \/é, S P x(mimagmg) P(mymams) Tz 5/9(mymams)

my MMy
+ oh s x(mymams) P(mrymoms) Ty o —1/2(mymams)}
1
+ 752 3B {fhx(By; mP(By)aialal
\/ 2 be mmﬁmr
+ ¢ x(By; mP (/3’}’)“;:“5%} ) (3-10)

where 7/ and K are the angular momentum and its projection and 7 denotes a
set of additional quantum numbers to specify the eigenmode. The prime in
the second term is used to emphasize that summation with respect to 4 and ¢
should be taken by excluding the unique-parity orbit p. The operator
Tgs9s(m1mams) in the first term is the quasi-spin tensor of rank s=3/2 and its
projection so at the unique-parity orbit p, the explicit form of which is given by
(2:2-2); for example,

T 3/2,3/2(’7‘1”72’” 3)= al, al,.al,,

1
T3/2 —1/2(77177'2773) = J {d,,ld,,.zd,,,—l— ama‘ﬂzan’s —I— 1% ﬂ'a} .

The projection operators P in (3-10), the full definitions of which are given in
Appendix 2A, guarantee the three-body-correlation amplitudes, ¢ and ¢, to
simultaneously satisfy the anti-symmetry relation and the condition requiring
that the eigenmode operator must not include any /=0-coupled quasi-particle
pair:

anti-symmetry velations

P ‘%11{(771‘” o73) =8Py ; g (mrymams), P 90311((77177 27rg) = 89’?’%1{(771772773)»
‘/’%IK(VB jm)=— ‘/quk'(ﬂ'}’ ; ), SD%IK(V/? jm)=— Prrx(By; m) (3-11)

with & being the permutation operator with respect to (m1,ms,73) and 8 being
defined by

1 for even permutations,
Sp= (3-12)

—1 for odd permutations.
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conditions eliminating zervo-coupled pairs

% Y x(mrymofty)= E s g(mimefra) =0,

. . (3-13)
= bnrx(Bps m)= 2 0k (BB m)=0.
8 B

The expression (3-10) for the eigenmode operators satisfying the conditions
(3-11) and (3-13) implies that the dressed 3QP modes are not accompanied by
the pairing “collective’’ components and are characterized by the amount of
transferred seniority 4v=3 to the state on which they operate.

The eigenvalue equation for the three-body-correlation amplitudes ¢ and
¢ should be obtained so that C'}; x becomes an eigenmode in good approximation
satisfying

[(Hy+HE ) Chixl=0niChix—Znix, (3-14)

where “interaction’’ Z,;x is generally composed of the normal product of quasi-
spin tensors with s=1/2, i.e. 4v=1, and of the higher fifth-order normal
products. This is neglected in the first step which determines the dressed 3QP
eigenmodes Cl,;x (with 4v=3).

The ‘“‘physical” eigenmode operators creating the dressed 3QP states,
Y15 in (2:3-7), are the ones which have large amplitudes ¢ and small amplitudes
¢, and the other ones (with ¢ larger than ¥), 44,4 in (2:3:7), are the “special”
operators which have no physical meanings. In Chap. 2, it has been shown
that the correlated ground state |@Do) satisfies the supplementary conditions
under the basic approximation of the NTD method:

Yn1K|¢0>=0y Anorx! D,>=0. (3'15)

It has also been shown that, within the same approximation, the dressed 3QP
modes satisfy the fermion-like commutation relation,

{Yn’l'K'; Y;ZIK}|¢0>=81ML'811/8KKI|¢0>, (3'16)

by the use of the orthonormality relation

@ nrrxrc¥nx)
Eml%ims{lpg'['K’(ﬂ 17T )& (M) — O p1aer (T T g )l (g}
+X 'm"%m T{Sl'fvﬂkf(ﬁy sk By ;™) — O k(B s M) By s m}
=endnndrrdxx’. (3-17)

Let us introduce the coupled angular-momentum representation through
the relations
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rx (mrymams) =j=§en‘/’n1(PP(f)P)(./prm3 LK) (fpjpmims| JM),
Pnrx(By;m)= %1 Pni(bc())p) JjpMmz| IK ) (fojemgmy| JM), (3-18)

and define the basic amplitudes (the meaning of which is precisely given in
Appendix 4A) by

Ini( =/ S N 0@,

- (3:19)
Yni1(be: p)=N 2 N (bc)pnr(6c(2)p),
with
N(be)={1+ 8ve} 12, (3-20)
N1(Z’3>E{CI/2} 12, (3-21)
20

Then, the eigenvalue equation for the correlation amplitudes is simply ex-
pressed in terms of enly the basic amplitudes (with the intermediate angular
momentum /=2) as follows:

L2Ep—wn}n (%) =x0(0)N(p*){A4ns+ Bus}, (3-23a)
2Byt i) pni0)= 5 xQPON P Anr+ Bur),  (3:23b)
{(Bot Eo)—wh a6 )= XQBON (B {Ans+ Bugh,  (3230)
(Bt )+ whrhous(be; )= x QAN B {Ans+ Buh,  (3-23)

where
Anr= Z‘ Q(6e)N (be){pns(be; 1’)+ pnr(be; P}, }
(3-24)
Bur= QNS {ni 2+ i oui (9]
and
wn/=wn;—Ep. (3-25)

Here the symbol 3(,¢, denotes the summation over the orbit-pair (6¢) excluding
the unique-parity orbit . In deriving Eq. (3-23), we have dropped the terms
which come from the recoupling of the quadrupole force in order to keep con-
sistency to the inherent assumption of the P+4+QQ force model. Formal
structure of Eq. (3:23) is as simple as that of the RPA-eigenvalue equation for
the phonon modes in even-even nuclei. Therefore, we can easily obtain the
eigenvalues of Eq. (3:23) by using the simple dispersion equation (which is
presented as Eq. (3-37)).

The normalization of the basic amplitudes (3-19) for the physical solutions
becomes
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bns B+ w60 D= pui P — T pmibeipP=1.  (3:26)

Combining Eqgs. (3-23) and (3-26), we obtain the explicit expressions for the
basic amplitudes:

bni 9% = Mo QDN I/ 2By —ains},
oni(p)= 1 5 MOV P/ QB+ wins},
l/'nl(b’:)P):MwQ(bc)N(66>/{<Eb+ Ec)—‘w’n]} ,
oni(be; py= Mo Q)N (80)/{(Ev+ Ec)+wns} .
Here the normalization factor M, is given by
MwEX' {Ansr+ Bur}
P —1/2
= {a—w (Sp+ S c)}

|1 (2Ep)*+8Epwn;+(wn)?
5 Qe BB LSS

' ’ Q(ﬁc)z(Eb_[— E,) —1/2 .
42w, %} {(Eb—I-Ec)Z—(w’,,I)Z}z] (3-28)

(3-27)

with
— 1 O(pp)PCr{4Ep+wns} :
Sp= 3 (ZEp)z—(a::)'n])z = 329
Se=yy Qb (Evt B (3-30)

be (Eb+Ec)2—“(wIn[)2 )

3-3  Mechanism of growth of 3QP correlation and relations to other approaches

In order to see the microscopic structure of the dressed 3QP mode formulat-
ed in the preceding subsection and to discuss the relations to other approaches$):?
by paying attention to their underlying pictures for the AC states, let us decom-
pose the eigenvalue equation (3-23) in the following way. Combining Egs.
(3-23a) and (3-23b), and also combining Egs. (3:23c) and (3:23d), we obtain

xpSp—1} Bur+xpeSpAn=0,
(3-3D)
{XcSc_l}An1+chScBn1=0»

with yp=xc.=xXpe=x- Since this equation is linear and homogeneous with
respect to A,; and B,,;, we find that the eigenvalues w,; are the solutions of

pSp—D) XeSe— 1) —x5eSpS.=0. 3-32)

The physical meaning of this equation is easily understood as follows.



Structure of the Anomalous Coupling States with Spin I=(j—1) 67

If xpe Were zero, we would have solutions when either x¥pSp=1 or x,S.=1.
The former is merely the dispersion equation for the dressed 3QP mode in the
case of restricting our shell-model space within the unique-parity orbit p.
The eigenvalue of xpSp=xSp=1 is

]_ 2
w=Erty/ @EpR—{s 1o xi00sy] (333)
with
E=E,— £ x10(2P)" (3:34)
XI=xC:. (335)

As was pointed out by Kisslinger,? there exists an interesting property of
67-symbols, that is,

{ 772 }>0 for I=j—1,

7 I 2
(3-36)
{ JjJ 2 } .
. <0 for [7=2¢j;—1.
7 72

Hence, recalling the definition of C;, (3-22), we can easily see that x7>x only
when /=j,—1 and xj<y for 72¢jp—1. Thus the (jp—1) state is especially
lowered in energy by the quadrupole force in contrast to the other states with
I2cj7p—1. It is now clear that the dressed 3QP state with spin (7—1) in the
unique-parity orbit p is reduced to Kisslinger’s 3QP “intruder’’ state) when we
neglect the ground-state correlation. On the other hand, the latter equation
xeSe=1 is exactly the same form as the well-known dispersion equation for
phonon modes. Notice, however, that the ““phonon’ mode in this case implies
the ‘‘core-excitation” which is composed of the neutron and proton quasi-
particles in the truncated major shells witk the exclusion of the valence orbit p,
i.e., the unique-parity orbit. Thus we have fwo low-energy collective states
(composed of the quasi-particles in the orbit p and in the core, respectively),
if the “coupling” yyp, is zero.

Now let us consider the effect on these states due to the change of yp, from
zero.) In this case, the product (xpSp—1)(xeSe—1) has to be positive so
that the lower level of the two yp,=0 states must be lowered in order to make
each factor of the product negative while the higher level is raised making each
factor positive. For sufficiently large yp,, as is the actual case of yp,=xp=
Xe=YX, there is essentially only one extremely lowered w,; left in the energy
region satisfying

wn=(wy;—E) < the minimum value of (£,+£,).

In this actual case of xp=x,=xpe=x> Eq. (3-:32) is simply reduced to
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X_1=Sp+sc
1 QUpPC Bt b L < QUNEAE)
3 QE— (a3 Bt Byt (a3

The above consideration tells us that, in the special situation in shell
structure for the appearance of the AC states, the dressed 3QP mode may be
decomposed into the ‘““valence-shell cluster’’® and the ‘“phonon’’ modes of the
core. The ““valence-shell cluster’” now means the correlated three-quasi-parti-
cles in the unique-parity orbit p and reduces to Kisslinger’s (3QP) “‘intruder
state’’ in the Tamm-Dancoff limit. In this respect, our underlying picture for
the AC states is similar with that of the semi-microscopic model of Alaga,8:?
which explicitly introduces the freedom of the valence-shell cluster coupled
to the quadrupole vibration of the core. According to our picture for the AC
states, however, the coupling between the valence-shell cluster and the phonon
of the core is so strong (because of yp,=xp=x.=x) that they form a new
type of collective mode, i.e., the dressed 3QP mode as a bound state.

It is now clear that the introduced model of the AC states unifies the
characteristics of both the “intruder states’’ and the conventional QPC theory,
which have been considered as distinctly different from each other in the history
of investigating the AC states.

Let us look further into the lowering effect (on the excitation energies of
the AC states) due to the core, by adopting the adiabatic approximation:

wn;=(wn;— Ep)& the minimum value of (£,+E,). (3-38)
Many of the AC states satisfy this condition and in this case we may write

Sp=Ap+ Bp(wn;— Ep)+Cp(wn;— Ep)?,

(3-39)
Se= At Colwn— Ep)?,
where
=2 0(pp)*C. =1 0(p)*C;
h=370sy 0 P gy
—2 0(gp)C. .
G=3"05y " (&-40)
L5 QU o oy QGOR
A= > 5,1 E, >0, Ce= % Byt B >0.
As a result we have from Eq. (3:37)
_ - By B3 L x = (AptAe) .
(n—Ep)=— -2 o +/ et I e R ORI

Comparing this to the adiabatic solution of ySp=1, which is obtained by
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setting A,=C,=0, we can easily see the lowering effects due to the phonon
excitations of the “core.” Since both A, and C, contain the factors £(4c)
=(uyv,+vyn,) through the quantity Q(é¢), the larger the £(bc) of the core, the
smaller the w,; becomes. Thus the problem of whether the dressed 3QP
modes appear extremely low in energy will be determined by two important
factors:

i) The enhancement factor £( pp)=2u,v, in the unique-parity orbit p,

ii) the enhancement factor £(é¢) in the core.

34 Stability of spherical BCS vacuum against 3QP correlation

As is well known in the case of even-even nuclei, when the enhancement
factors £(ab) become large and the excitation energy of the 2+ phonon (the
dressed 2QP mode) becomes zero, the instability of the spherical BCS vacuum
occurs toward quadrupole deformation. In an analogous way, we expect in
odd-mass nuclei that, when the enhancement factors £(pp) and £(6c) become
large and the characteristic 3QP correlation grows so that the excitation energy
of the dressed 3QP mode with /=(j7—1) is extremely lowered, a new type of
instability may occur toward deformation.

Figure 8 represents schematically the dispersion equation (3:37) from which
the excitation energies w,; of the dressed 3QP modes are determined. Its
gross structure resembles that of the RPA with the P+QQ force in even-even
nuclei. It should be noted, however, that the characteristics of the solution of
collective type in the vicinity of w,;~ £, differ considerably from those obtained
by simply replacing w,+ in the conventional dispersion equation of the RPA
(in even-even nuclei) with wyp;=(wn;—Ep). This difference obviously comes

S(w)

Hl-

/‘Q/-f

—unphysical regnon———»’ physical region

Fig. 8. Schematic representation of the dispersion equation (3:37) from
which the eigenvalues of the dressed 3QP modes are determined.
The arrow denotes the critical point and the right-hand side of
which implies the physical region.
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Fig. 9. Behaviour of the solutions of the dressed 3QP modes in 193Rh a
functions of the quadrupole-force parameter yo=x5445/3. The horizontal
line denotes the energy of the 1QP 9/2+ state. For the sake of comparison,
the energies of the 1QP-plus-one-phonon states are also written by broken
curves, where phonon energies are calculated by the RPA.

from the characteristic structure of the first term on the right-hand side of Eq.
(3-37), Sp, which directly reflects the 3QP correlation at the unique-parity
orbit . Figure 9 shows the behaviour of the excitation energy w,; in the
vicinity of w,;~ZFE, in relation to that of (wa++ £;) (wa+ being the energy of
2t+-phonon given by the RPA). The critical energy wey;=w¢ri—Ep may be
defined at the point from which there appear a complex eigenvalue of the
dressed 3QP mode with /=(j—1) and is given as the solution of

2 (Sp+S2=0. (3-42)

Apparently the three-body correlation amplitudes given by (3-27) diverge at
the critical point.

If we neglect the part Sp in Eq. (3-42) which reflects the 3QP correlation,
we have w{@;=ZF,. This is merely the critical energy expected from the
conventional QPC theory. On the other hand, if we neglect the core con-
tribution S,, we have w{®,=(2V3 —3)Ep<ZEp. In the actual situation, in
which neither S, nor S, is zero, wer; takes on the value between those of w{%;
and w}. The value of w¢r; depends on the details of shell structure and on the
relative magnitude of the enhancement factors i) and ii) mentioned in the
preceding subsection. It is thus interesting to see that the stability of the
spherical BCS vacuum is still maintained in the region Ep>wy,>wer, in
which the crossing of the spin (7—1)- and the spin j-state has already occurred.
As shown in § 5, the excitation energies of the AC. states in many odd-mass
nuclei fall within this region. This implies that these nuclei are lying in the
“transition region,” i.e., they are just before the “phase transition’ from the
spherical to the deformed, possessing a strong tendency toward quadrupole
deformation.
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Concerning the situation occuring after the ‘“‘phase transition,” it is inter-
esting to recall that the aligned coupling model also gives the (j—1) state as
the lowest state among 73 configurations in the oblately deformed potential.?
However, the interrelation between the new type of instability and the onset of
quadrupole deformation in odd-mass nuclei remains unclarified. Although
there is no systematic evidence for the stable (quadrupole) deformation in the
odd-mass nuclei with the spin (f—1) ground state, it should be noted that the
adjacent even-even nuclei exhibit the quasi-rotational spectra.26)

3-5 Mixing effects of 1QP modes on AC states

Now let us consider the mixing effect of the 1QP mode, which lies in the
next major shell, on the AC states. Following the general theory developed
in Chap. 2, the effective Hamiltonian describing the system composed of the
dressed 3QP modes and the 1QP modes, that is, the transcribed Hamiltonian
in the quasi-particle NTD subspace

{|od>=al|Do>, |DH>=Y1,xIDo)}, (343)
is derived from the original P4+ QQ Hamiltonian as follows:

H=H® { Hnt),

HO = %: E.ala,+ ,331{ @n Y hrxYnrg (3-44)
HY = 55 yini(a, nl){Y} 502+ 6, Yysi}.
nIK,Q
(K=ma)

Here the operators al, and Y},,5 are defined by

al,=al,|Dy> {Dy|, (3-45)
Yo=Y}, Po><{Dy| (3-46)

and satisfy the condition
S_(a)al,=S_(a)Y},;x=0 (3+47)

for all S_(a), where S_(a) denotes the quasi-spin operator of orbit & defined by
(1-2-18). The condition (3-47) implies that a@f, and Y1, are the operators of
the “intrinsic space” defined in §2-Chap. 1. The part HUn in (3-44) comes
from the original A ,-type interaction (3-7c) and represents the effective coupling
Hamiltonian which is of interest. In the special situation of shell structure
under consideration, the effective coupling strength yint( ', #./) takes especially
simple form:
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2y 4
xint(p', n) = —x8;3, ’(%_i—lllp—) (uptey — vpvypr)

x| QPN s 57+ g o 47
+ (%; QBN (b¢) {ipns(bc; p)+ ns(be ;],)}]

= =8/ 5 R8$HMo, (348)

where p’ denotes a single-particle orbit in the next major shell, and #, and
R(pp") are defined by (3:28) and (3-9), respectively. When we take account of
the mixing effect of the 1QP mode on the AC states, the state vector of interest
changes to*)

1DFD=V1x|Do> —> |¥EO=V1-0F Vix|Do>+Lral Dy, (3-49)

where 7'=(p', my)=(nply jy, m,) denotes a single-particle state with j,y=17
and {, denotes the mixing amplitude. The magnitude of the mixing amplitude
{; with 7=(j,—1) is expected to be extremely small since the single-particle
orbit p’ (which has the same parity with the unique-parity orbit p and has
Jo=1I=jp—1) lies in the next upper major shell, and also since the effective
coupling strength xint involves, in this case, the spin-flip type matrix element
(pl172Y2]| p") which is small when compared with the spin-non-flip ones. Thus
the special physical condition of the appearance of the AC states is just the
same condition as that in which the dressed 3QP modes with /=(jp—1)
manifest themselves as relatively pure eigenmodes with negligible mixings of
the 1QP modes. We show quantitatively in §5 that the mixing amplitude
{; is indeed small.

Next, let us consider the effect of the coupling Hamiltonian on the 1QP
state with spin 7. The state vector of the 1QP state changes, due to the
mixing of the dressed 3QP mode with /=, to

|OPd>=al| Dy —> |¥ED=V1—-83aL | D>+ LY him, | Do) (3-50)

The mixing amplitude {; is, as is shown in §5, rather small. This is partly
because of the smallness of the effective coupling strength yint with p'=p and
I=jp, and partly because of the relatively high excitation energy, wy;, of the
dressed 3QP mode with 7=j,; both of which are due to the extreme smallness
of the 3QP correlation factor C,, defined by (3-22), with /=;,. In this way
the mixing effect on the 1QP state with spin j, is considerably reduced when

*) Hereafter we only consider the lowest energy solution of the dressed 3QP mode, which is of a
collective type, and omit the suffix ». Needless to say, the solutions of non-collective types do
not play any significant role in the following discussions.
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compared to that which is given by the conventional QPC theory. The
characteristic dependence of {; on the (#} —23) factor is, however, the same as
that of conventional QPC theory.

We investigate the mixing effects, both on the AC states with /=(;—1)
and on the 1QP state with spin j,, paying special attention to the #/1-transition
property of the AC state which is very sensitive to these mixings in subsequent
sections.

§4. Electromagnetic properties of the AC states with I=(j—1)

In this section, we present the qualitative predictions of the introduced
model for the electromagnetic properties of the AC states with /=(7—1).
Experimental data revealing various aspects on the structure of the AC states
have now been accumulated. The main characteristics which they exhibit
are as follows.

1) Strongly enhanced £2 transition from the (j—1) state to the 1QP state
with spin 7. The magnitude of the enhancement is comparable (or somewhat
larger) to that from the 2+ phonon states to the ground states in the adjacent
even-even nuclei.

2) Moderately hindered M1 transition between (j—1) state and s state.

3) The g factor of the (—1) state is approximately equal to that of the ; state.

Formulae on these quantities can be obtained unambiguously by using
the method developed in Chap. 2. The electromagnetic multipole operators

0% defined by (2-5:12) are transcribed into the quasi-particle NTD subspace
under consideration as

0% — O%= £<0P| 0% 0P>alay
B
+ 5 (ORIOGHIOFe > YixY g

X (ORI 0RO,V pthe) (L0 @)

with the transcription coefficients
(PP | Oy | B> =Dy {aa, [OF, al]-}+I Do, (4-2)
PERIO (i) DF%r>=<{DPo{ Y1, [O(I:,tﬂ)l’ Y]} +1Po, 4-3)
(PP | O | PED =< Po|{@a, [0, Vik]-}+1Do>. (4-4)

Thus we obtain the reduced matrix elements of interest as follows:
CPPNOPITP)=V1—TGV1-[{DP| 0F | DF)
+LVT=TLPPOP PP + L1 — L DE, | OF || B
+ 5L KPBL; 1| OF | DG, (4-5)
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IPNOPNPPY=1—H) PP 0 | PP
+2L V1= <PP || OP || OF> + [DF I OF | DF, - (4-6)
with the definitions

_ (JLKM|jpymy)
2+l

WO [ PBL (]LK:Mijm,,)
<¢7T IOLMI¢1K> ‘\/2]1’_}_1

(PD|10%, | PR CPPIOP | P, (A7)

(PP OP | D, ete.

Needless to say, since the mixing amplitudes, {; and {;, are expected to be
small, the first terms in Egs. (4-5) and (4-6) should yield the main contribution
to these reduced matrix elements unless they are strongly hindered (or forbid-
den). Now let us show how the experimental characteristics mentioned above
can be recognized in a unified manner.

4-1 E2 transitions between AC states and 1QP states

As has been stressed, the collective nature of the AC state with /=(;j—1)
has been recognized through the recent observation of strongly enhanced £2
transition from the AC state to the 1QP state with spin /. In the microscopic
model under consideration, the reduced transition probabilities are given by

B(E2; I~ j)= 51 [CEPIOPI¥P)1, “8)

where O§" denotes the electric quadrupole operator in the quasi-particle NTD
subspace. Since the mixing effect is expected to be negligibly small, we
obtain

B(E2; I —jp)~ DL O5H | BB | 2

1
T ER RN
= e QPN 5 + ) § 050

+ X 0 QAN (b) thilbc; £)-+pr(be; p)}’z, 49)

Inserting the explicit expressions of the three-body correlation amplitudes-
(3-27) into (4+9), we finally obtain

B(E2; I— jp)~M?2%|e,Sp+e—1,5S(proton)+ey,55(neutron) |2, (4-10)
where M,, Sp and S, are defined by (3-28), (3-29) and (3-30), respectively.
Here the contributions from proton-quasi-particles and from neutron-quasi-

particles are written distinctively. The effective charges ¢, for neutrons
(r=1/2) and protons (r==—1/2) are
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81/2=88 and 3—1/2=e+83. (4'11)

For simplicity, we have adopted the same polarization charge 8e for protons and
neutrons. It is noteworthy that Eq. (4-9) has a structure formally similar to
the corresponding expression given by the RPA in even-even nuclei, in spite of
the difference due to the incorporation of the 3QP correlation. For the E2
transition between the AC state and the 1QP state, we can, therefore, expect
the well-known enhancement associated with the structure of Eq. (4-9). In
particular, we have the usual relation; the lower the excitation energy of the AC
state, the larger the B(E2) value becomes. Such an enhancement is a direct
and natural consequence of the present model in which the motions of quasi-
particles at the unique-parity orbit p and of quasi-particles excited from the
‘“‘core’ (the orbits 4, ¢,..., etc.) are strongly coupled with each other to form a
new type of collective excited state, i.e., the dressed 3QP state. It must also
be emphasized that the cooperation of these two motions are strengthened further
by the collective ground-state correlation which is enlarged as the excitation
energy of the dressed 3QP mode, w,,, is lowered. Of course, the model of
the AC state as the 3QP “intruder’” state (given in the TD approximation
within the unique-parity orbit p) cannot yield such a mechanism of striking
E2 enhancement.

4-2 Magnetic dipole moments of AC states

The magnetic dipole moment of the AC state is given by
A ) ; -
p= <‘I’ CIVYE=¢,/ with K=I, (4-12)
where Oy denotes the magnetic dipole operator in the quasi-particle NTD

subspace. The ¢ factor of the AC state, g, is expressed in our model as
follows:

91___9%»_*_ I+ +jo(jp+1)—6 9(p1)+ /(/+1)+6 Jp(]p+1)

27(7+1) 2/(I+1)
(4-13)
where
92 =gl ($®)— (%)}, (4-14)
9P =03 Wilbe; 17— pilbei 1) (@15)
and

__‘/ 5 X MGON (ed )y N ()™ { ’2° ]i’}

X [ led; p)bi(db; p)—p.(cd; p)p,(db; 2)] .- (4-16)

Here ¢, denotes the single-particle ¢ factor of the unique-parity orbit p and
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M(bo)y= % (61 pell ©)-(otwrt o+ vp00e) (4-17)

with g=g;l+¢,s. Inobtaining (4:13), we omitted the mixing effect of the 1QP
mode with spin (f—1), which lies in the next upper major shell, since the effect
on the g factor of the AC state with /=(7—1)is negligibly small. The physical
meaning of each term in Eq. (4-13) is clear. The first term, ¢°, comes from
the “‘cluster” of quasi-particles at the ‘“‘valence shell” orbit p. If we restrict
our shell-model space to only the unique-parity orbit p, which is being filled,
then ¢ becomes equal to ¢, (because in this case $,(p3)2—p,(p3)2=1).
The second and third terms are of the same form as the Lande formula: The
second term comes from the odd quasi-particle at the orbit p, i.e., p in ¢,;(é¢; p)
and ¢,(éc; p), while the third term comes from the quasi-particles excited from
the “core,” i.e., & and ¢ in ,(b¢c; p) and @,(bc; p).

It is interesting to note that the geometrical factors involved in the second
and third terms in (4-13) possess characteristic dependences on the value of
spin 7; in the case of /=(jp—1) with high-7,,

LU+ D +7p(pt D=6 7, 0(i)

27(J+1) 7l w18
Lot o (1)
2/(7+1) - 7o)’

If we neglect the quantity of order O(1/7;), and making use of the normaliza-
tion condition (3-26), we have

4~93+ 95" =g». (4-19)

In this way, although the g factor of the “phonon’ (composed of the quasi-
particles in the orbits 4, ¢,...), i.e., ¢, may be of the order Z/4 (in unit of
nuclear magneton e%/2Mc), its contribution to the ¢ factor of the (j—1)state is
especially reduced. The experimental fact that g,—;-;=~=gp has been often
interpreted as an evidence of the simple (7%); configuration1®~15 for the
structure of the AC states with /=(;j—1). However, as we have seen, the
mechanism of obtaining the value of ¢, nearly equal to ¢, is distinctly different
from this interpretation; in other words, in the shell model of j”-configurations,
we have g, =g =g, for arbitrary values of 7, while in the microscopic model
under consideration, we have g,=¢¥’+¢}’=¢, as a good approximation
for the special case of /=(j—1). It is shown in §5 that the magnitudes of
¢ and ¢ are approximately in the ratio of one to one.

4-3 M1 transitions between AC states and 1QP states

In contrast to the properties of £2 transition and of /1 moment described
above, the M1-transition property of the AC state is very sensitive to the
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mixing effect resulting from the coupling term HUn) in the transcribed Ham-
iltonian (3-44), as shown below. As usual, the reduced M1-transition prob-
abilities from the AC state with /=(7—1) to the 1QP state with spin ;7 is given
by

BMY; I—jp)= [KCEPNOD | PP |2 (4-20)

2[+1

with /=7,—1.  Since the creation operator of the dressed 3QP mode under
consideration, (3-10), does not involve any components of quasi-particle pair
with spin and parity 1+, we have

<¢(1) ” 0(—) ” @(3)> 0. (4.21)

Namely, in the first-order approximation in which the AC state with /=(;7—1)
is regarded as a pure dressed 3QP mode, the M1 transition between the (j—1)
state and the j state is forbidden. In fact the attenuation of the M1 transition
has been observed in experiments. Then the retarded /1 transition must take
place only through the mixing effects as follows.

B(M1; I —jp)= 7|0/ 1=05 <OP 1 O | 9

21+1
+IV1=GLKOP 071198 2, (4-22)

where

@PI OO =/ 21 119"t + vo0m) = o M (1) (423)
and

<(p(3) I 0( ] @(3)
3/m““+_1xm[mm{ 2 ot it

217
—¢1'(5€;P)¢1(5£;P)}+5{ o 1}2 M(be)N (bl N (cd )"

9 ;i
{7y 1| e Db =i o | w2
with /=(jp—1)=7p and I'=jp.

The first term in Eq. (4-22) represents the contribution from the mixing of
the 1QP state with spin j»=7p—1, lying in the next upper major shell, in the
AC state with /=j,—1. The second term comes from the mixing of the
dressed 3QP state (with 7'=jp) in the 1QP state (with spin jp). Since the
second term involves the (#%—v%) factor through the mixing amplitude {;,
the value depends sensitively on the nucleon-occupation probability of the
unique-parity orbit p and changes its sign on both sides of the half-shell, while
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the first term in Eq. (4-22) preserves its sign through the whole range. As a
consequence of the interference effect between the two, the magnitude of the
M1 transition becomes greatly sensitive to details of these mixing effects. The
magnitude itself should of course be small compared with that of a single-
particle transition (because {; and {; are both small), unless one moves away
from the particular physical situation for the appearance of the AC states.

4-4  Additional remarks

1) The mixing of the 1QP state from the next upper major shell in the AC
state may be directly checked with the spectroscopic factor of the single-
nucleon-transfer reaction. For example, in the case of (4, p) reaction leading
to the AC state, the direct transfer of single-neutron can only take place through
the mixing effect. Therefore, the spectroscopic factor, which is given by
S;=(8;up)2~{% in the NTD approximation, must be very small as long as the
AC state can be regarded as a relatively pure dressed 3QP state. In fact, the
spectroscopic factor of the (7 —1) state has been known to be extremely small,
being consistent with the theoretical prediction.

2) In a similar way as has been discussed so far, we can evaluate the other
properties of the AC states on the basis of the method developed in Chap. 2.
In the case of evaluating the quadrupole moment, however, we should carefully
examine whether we should extend our quasi-particle NTD subspace to include
the dressed 5QP modes or not, because even a small mixing of such higher
collective states may yield a large effect on such a quantity.

§5. Comparison of calculated results with experimental data

In this section, let us make a comparison between the calculated results
and available experimental data, in order to examine quantitatively the
theoretical predictions stated above.

o5-1 Procedure of numerical calculations

The parameters entering into the solutions of Eq. (3:23) are the quadrupole-
force strength y and the quantities related to the pairing correlations (i.e., the
parameters %, and z, of the Bogoliubov transformation and the single-quasi-
particle energies £,), which are determined from the single-particle energies
€, and the pairing-force strength G.

In order to see the essential effects of the 3QP correlation originated from
the quadrupole force and to fix the parameters as much as possible, we use the
same values for the pairing-force strength G and for the single-particle energies
€q as those adopted in the work of Kisslinger and Sorensen,? and also make
the same truncation of shell-model space as they have made. On the other
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hand, the quadrupole-force strength x is regarded as a free parameter which
should be determined phenomenologically except for its usual mass-number
dependence;3)

X=x00"2A~%3 MeV - fm4,

where 62 is the harmonic-oscillator range parameter. As is usual in the P4+QQ
force model, the reduced matrix element of the single-particle quadrupole
moment ¢(ab) is calculated with the harmonic-oscillator-shell-model wave
functions. Then, since ¢(@é) is proportional to 42, the factor 6—% does not
explicitly appear in the reduced matrix element of the quadrupole force,
1/2-xg(ab)g(cd), and only xo is regarded as a parameter.

Numerical calculations have been performed for the three shell regions,
i.e.,, 147y,5-odd-neutron region, 1gg,-odd-proton region and 1gg,-odd-
neutron region. To see change of the relative excitation-energies of the dressed
3QP modes, w;=w,— Eyp, over a wide sequence of sphérical odd-mass nuclei,
we have first used a constant value of yo in each shell region. Secondly, in the
evaluations of the mixing effects and of various electromagnetic quantities,
we have chosen the value of yo in each nucleus, so that the calculated value
of w} just reproduces the experimental excitation energy of the (j—1) state
measured from the 1QP state with spin 7. In this step, the mixing effects have
been calculated by taking the same value of the single-particle energy of the
orbit »’ (in the next upper major shell) as that adopted in the work of Uher
and Sorensen2¥ and also by putting 7,=0. The electromagnetic quantities
have been calculated by using the polarization charge 6¢=0.5 ¢ (for both proton
and neutron) and the effective spin ¢ factor ¢§'*=0.55 ¢, since we have
adopted the P+ QQ force model in the truncated shell-model space consisting
of one major shell (for both protons and neutrons).

Thus it is evident that our choice of the parameters is merely the conven-
tional one without any modifications.

5-2 Region of kiys-odd-neutron nuclei

This is the region in which the unique-parity orbit 4735 is being filled with
neutrons. In Cd, Te and Xe isotopes, the 9/2~ states have been found in recent
experiments at a few hundred keV in energy above the 1QP 11/2- states.

In Fig. 11 are shown the calculated energy levels w} for the sequences of
odd-mass Cd, Sn, Te, Xe and Ba isotopes. The adopted value of yo is the
same as has been derived by Baranger and Kumar24 within a few percent
and also as is expected from conventional arguments in the P+QQ force
model.® It is predicted from the result of the theoretical calculations that
the excitation energies, w;=w;— Ep, of the 9/2~ states are decreasing as one
moves from the single-closed shell Sn isotopes to the heavier Te, Xe and Ba
isotopes, and in each sequence of the isotopes, they are decreasing as the
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Fig. 10. Experimental trend of energy levels of the 9/2- states in the 47 /-
The level energies are those measured from the

odd-neutron region.
1QP 11/2- states.
125Te; Ref. 35), 127Te; Ref. 29), 129Te; Ref. 30), 131Te; Ref. 31),

125,127Xe; Ref. 34), 131Xe; Ref. 32), 133Xe; Ref. 33).

This calculated

neutrons fill the unique-parity orbit 1433,, toward its middle.
trend is naturally understood when we recall the enhancement factors of the 3QP

correlation discussed at the end of §3-3: The decrease of the 9/2~ energy from
Sn to Ba isotopes can be well understood as due to the increase of the factor
&(b¢) of the core, and in each sequence of the isotopes the decrease is due to the

increase of the factor £(pp) at the unique-parity orbit 147;,s.
So far, none of the low-lying 9/2~ states is experimentally observed in Sn

isotopes.36):78  The reason can be explained when we consider the 9/2- states
as the dressed 3QP states, because in such single-closed-shell nuclei the en-
hancement factors £(b¢) of the core become so small that, in the theoretical

calculations, the 9/2~ states are forced to lie at about 1 MeV above the 1QP
In Te and Cd isotopes (in which two protons and two proton-

11/2- states.

holes are added to the proton-closed shell Sn isotopes, respectively), the 9/2~

states found in the experiments are well reproduced by theoretical calculations

with the reasonable value of yo. When we regard the 9/2- states as the 3QP

“intruder states” of Kisslinger composed of the neutrons in (1473,)"-con-

figuration, it is hard to understand the (above mentioned) different experimen-
Furthermore,

tal situations between Sn isotopes and Te and Cd isotopes.
according to the discussion made in §3-3, the fact that there are no near-lying

9/2- states other than the first 9/2— states under consideration also indicates
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Fig. 11. Calculated excitation-energy systematics of the dressed 3QP states
in the 4i;,-odd-neutron region. The level energies are those measured
from the 1QP 11/2- states. The quadrupole-force parameter o is fixed
in each region of isotopes. The asterisk denotes the occurence of insta-
bility for this choice of the parameter yo.
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Fig. 12. Comparison between the experimental energy levels and the
theoretical calculations for both cases, i.e., without the coupling
effects (cal. 1) and taking account of the coupling effects (cal. 2).
The energies are those measured from the 1QP 11/2- states. Only
the lowest-lying collective states in each spin are written in the
figure. Experimental data are taken from; 115Cd, Ref. 28), 125Te,

Ref. 35).
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Fig. 13. Energy shifts due to the coupling effects of the dressed 3QP 9/2-
modes with the 1QP %), modes. The energies of the 9/2 states in the
absence of the coupling effects are connected by broken lines, while those
in the presence of the coupling effects are connected by solid lines, All
energies are those measured from the 1QP 11/2- states.
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the strong coupling between the 3QP *‘intruder” state and the ‘‘phenon”
excited from the core.

In contrast to Te isotopes, the experimental energy change of the 9/2~
states in the sequence of Xe isotopes is rapid, and at the neutron deficient
127X e the 9/2~ state becomes lower than the 11/2~ state. According to our
point of view, this fact indicates the growth of instability toward quadrupole
deformation as one moves toward 127Xe. These experimental facts are indeed
those which are expected from the theoretical calculations, and the situation
remains unchanged for a rather wide range of parameter yo. From the
theoretical calculations, similar experimental aspects can also be expected in
Ba isotopes. So far there is no systematic experimental evidence that the
neutron-deficient odd-mass Xe isotopes, in which the 9/2~ states are lower than
the 1QP 11/2— states, have stable deformations. It is interesting to note,
however, that the adjacent even-even nuclei clearly display the quasi-rotational
spectra.

The magnetic moment and electromagnetic transition rates of the 9/2—
state have been measured in 125Te and 127Te. The collective structure of the
9/2- states exhibited in the excitation-energy systematics mentioned above is
directly demonstrated in the striking enhancement of the B(£2) value between
the 9/2— state and the 11/2~ state. The esssential role of the 3QP correlation
(in characterizing the 9/2~ state) at the unique-parity orbit 147, is directly
reflected in its ¢ factor which is approximately equal to that of the 1QP 11/2-
state. Here, in contrast to the case of the B(E2) values, the quasi-particles

Table I. The correlation amplitudes of the dressed 3QP 9/2~ mode in 125Te.
The adopted value of xo is 260 (MeV) and the calculated excitation energy,
o'=w—Ey, is 0.08 MeV. The values of forward amplitudes ¥(éc; p)
are written in the second column, while the values of backward
amplitudes ¢(bc; p) are written in the third column. In this state, the
unique-parity orbit p is specified by the set of quantum numnibers (neutron;
’%1/3), and therefore only the orbital pairs, (éc)’s, are written in the first
column. For convenience, the notations (gp; p) and ¢(pp; p) are used
here to denote (%) and ¢(p3) defined by (3:19), respectively. These
amplitudes are normalized to one according to Eq. (3:26) in the text.

neutron

be (hr1s2)2  (g7,2)2  (dss2)?  (dss2)?  gusadsse gujedsse dspedsss dspasise dspesise

$(éc;4) 097 015  0.07 0.35 —0.03 0.27 011 0.11 —0.25
obc; ) 0.48  0.13  0.07 0.30 —0.03 0.24 010 0.10 —0.22

proton

be (P11s2)2  (g2/,2)2  (dss2)®  (dsye)?®  gasedsse giyedsye dspadsys dspasiss dsgasipe

(be; p) 0.07 0.64 0.21 0.02 —-0.11  0.11 0.03 0.06 —-0.02
o(bc; p) 0.07 0.51 0.18 0.02 —0.09 0.10 0.03 0.05 —0.01
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excited from the core give rise to only slight difference between their ¢ factors.
The essential part of the values of the B(£2) and ¢ factor can be determined
without introducing the mixing effects. On the other hand, the mixing effects
coming from the coupling between the dressed 3QP mode and the 1QP mode
are sensitively reflected in the occurence of the retarded M1 transition from the

Table II. B(Z£2;9/2-—11/2") values in the A /,-odd-neutron region. The
values are written in unit of ¢2-10-50 cm4, The excitation energies of
the 9/2- states measured from the 11/2- states are listed in the second
column (in unit of MeV). The B(Z£2) values calculated by neglecting
the coupling effects are listed in the third column, while those calculated
by taking account of the coupling effects in the fourth column. They
are compared with experimental data B(Z£2)exP listed in the fifth column.
The harmonic-oscillator-range parameter $2=1.041/3 and the polariza-
tion charge 8¢=0.5¢ are used.

nucleus wy_y B(E2)Y B(E2)? B(E2)exp
usCq 0.34 9.8 8.3
usCd 0.33 9.4 8.7
125T¢ 0.18 10.7 10.6 11.5+0.52
127Te 0.25 8.3 8.1 9.2+1.3b
129T¢ 0.36 6.2 5.8
131Te 0.85 2.8 2.6
131X e 0.18 15.8 14.6
138X e 0.51 7.5 6.6

a) Ref. 37), b) Ref. 38).

Table III. Gyromagnetic ratio for the 9/2~ states in the %;;/,-odd-neutron
region in unit of nuclear magneton (¢%/2Mc¢). The values calculated by
neglecting the coupling effects are listed in the second column, while the
values calculated by taking account of the coupling effects are listed in
the third column. The experimental data for the 9/2— states are listed
in the fourth column, while those for the 11/2- states in the fifth column.
The effective spin g factor g¢/f=0.55¢, is used. The g factor of the 1QP

11/2~ state is, therefore, assumed to be —0.19.

nucleus 73 PHN #7 75
usCd —~0.26 —0.25 —0.209
115Cd —0.25 —0.25

125Te —0.21 —0.21 —0.204+0.007®  —0.169+0.009%
127Te —0.22 —0.22 —0.214+0.014»  —0.1650.009¢
120Te —0.23 —0.22 —0.209-0. 0099
181Te —~0.25 —0.25

131Xe —0.22 ~0.22

189 e —0.25 —0.25

a) Ref. 39), b) Ref.38), c) Ref.59), d) Ref.41), e) Ref. 42).
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Table IV. B(M1;9/2-—11/27) values in the 47 ,-odd-neutron region. The

values are written in unit of (e%#/2M/c)2. The mixing amplitudes {;, and
{1=j-1, defined by (3-50) and (3-49), are listed in the second and third
columns, respectively. The contributions from the first and second terms
in (4-22) are shown separately in the fourth and fifth columns, respectively.
The calculated values B(4/1)cal are listed in the sixth column and are
compared with the experimental data B(A#/1)exP listed in the seventh

column. In this calculation, the effective spin ¢ factor g¢ff=0.55 g, is used.

85

nucleus 1 L1 My Mss B(M1)eal B(M1)exp
113Cqd —0.39 —0.09 —0.36 —2.17 1.5x101

115Cqd —0.28 —0.09 —0.35 —-1.51 8.2x10-2

125Te 0.03 —0.08 —0.25 0.11 4.8x104 (6.5+0.3) x10-3=a
127Te 0.13 —0.07 —0.19 0.45 1.6x10-3 (1.6+0.6) x10-3b)
129Te 0.24 —0.06 —0.13 0.84 1.2x10-2

131Te 0.25 —0.03 —0.06 1.05 2.3x10"2

131Xe 0.27 —0.06 —0.15 1.13 2.3x10-2

133Xe 0.36 —0.04 —0.08 1.53 5.0x10-2

a) Ref. 37), b) Ref. 38).

Table V. Electromagnetic properties of the dressed 3QP states with negative

parity in 125Te. The calculated values for two alternative approximations,
i.e., without taking account of the coupling effects (cal. 1) and taking
account of the coupling effects (cal. 2), are listed in the third and fourth
columns, respectively. The experimental data are listed in the fifth column.
The units are ¢2-10~50 cm* for B(£2), e%/2Mc for g factors and (e%/2Mc)?
for B(M1). The polarization charge 8¢=0.5¢ and g¢f'=0.55 g, are used.
The procedure of the calculation is the same as in Tables II~IV, except that
the value of g, is directly taken from the experimental value of the 1QP
11/2- state (gp= —0.17). The spectroscopic factors for (2, p) reaction are
calculated by the approximation S;=({;)2.

observable spin cal. 1 cal. 2 exp
7/2-—11/2- 4.5 4.6
9/2- —11/2- 10.7 10.6 11.5+0.52
B(E2) 11/2- —-11/2- 2.5 2.5
13/2- —»11/2- 3.5 3.5
15/2- —-11/2- 4.6 4.6
7/2- —0.38 —0.38
9/2- —0.19 —0.19 —0.204+0.007b
I'd 11/2"- —0.11 —0.11
13/2- —0.06 —0.06
15/2- —0.05 —0.05
B(M1) 9/2-—11/2- 0.0 4.8x10~%¢  (6.5+0.3)x 1032
S 7/2- 0.0 0.026
9/2- 0.0 0.006
a) Ref. 37), b) Ref. 39).
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9/2- state to the 11/2— state.

The actual value of B(M1) is determined
by the interference between the first and the second term in Eq. (4-23).

As shown in Table V, these characteristic properties of the 9/2- states have
been reproduced very well in the theoretical calculations without making
any arbitrary alternation of the values of conventional parameters in the P4+QQ
force model.

Thus the introduced model of the 9/2- state as a typical mani-
festation of the dressed 3QP mode has been verified by the numerical results.

Of course, similar characteristics are also expected in other nuclei and, there-
fore, systematic measurements of these electromagnetic quantities are expected
to reveal further details of the structure of the 9/2~ states; in particular, it is
interesting to focus our attention on the changes of their properties, from the
nuclei with positive wj toward the nuclei with negative w}.

5-3 Region of ¢3,, -odd-proton nuclei

In this region, the unique-parity orbit 1¢§,, is being filled with protons.
In the experiments, the rapid drop in energy of the 7/2+ state is observed as one
moves from Nb to Ag. And, as is well known, the 7/2+ states appear below the
9/2+* states in Rh isotopes heavier than 103Rh and in all Ag isotopes, 193Ag~
113Ag. In the theoretical calculations with a constant value of o, the energies

of 7/2+ states, from 93Nb to 197Ag and also for each isotope, go down as func-
tions of nucleon numbers Z and N, and are in good agreement with the ex-
perimental trend. (See Figs. 14 and 15.) Here, the decrease of w, with 7=7/2
can be understood as a result of the fact that two enhancement factors, ¢(pp)

and §(éc), act coherently as one moves from Nb to the heavier odd-proton nuclei
in this region.
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95'.’\‘ +
Y 72" states
3
05r
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i
97 .
99 “n._99 Fig. 14. Experimental trend of energy levels of
. the 7/2+ states in the #3,-odd-proton re-
0.0 oL oL Z gion. The level energies are those measured
) \‘\m == 107
S from the 1QP 9/2+ states.
105 l 93Nb; Ref. 50), 9Tc; Ref. 52),
97Tc; Ref. 44), 99Tc; Ref. 45),
101Tc; Ref. 56), 99:101Rh; Ref. 46),
aNb aTc asRh a7 103Rh; Ref. 47), 195Rh; Ref. 48),
Ag 109,111A o Ref. 49).
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The process of the rapid enhancement of the 3QP correlation can be
explicitly seen when we compare the spectrum of 98Nb with that of %5Tc. In
98Nb we see a quintet with spins from 5/2% to 13/2+, which is interpreted as
consisting of one phonon and the odd quasi-particle. The energy splitting of
the multiplet may be treated as a result of relatively small perturbations due to
the 3QP correlation and the mixing effects (coming from the A -type interac-
tion). However, in 95Tc¢ in which only two protons are added to 93Nb, we see
striking enhancement of the 3QP correlation. There, the energy splitting
of the quintet amounts to the unperturbed energy of the 2+ phonon itself and,
therefore, the splitting is beyond the limit of perturbational treatment. This
enhancement is obviously caused by the increment of the factor £(p) in #5Tc
when compared with that of 3Nb. As is shown in Fig. 16 and Table X, the
theoretical calculation reproduces these changes very well, not only in the
excitation energies but also in the electromagnetic properties. The appearance
of different nature among the members of the quintet essentially comes from
the spin dependence of the 3QP correlation, except for the 5/2% state where
the coupling of the 1QP mode from the next upper major shell affects its level
position non-negligibly.
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Fig, 15. Calculated excitation energy systematics of the dressed 3QP
states in the g;’}z-odd—proton region. Notations are the same as in
Fig. 11.
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Let us further increase the enhancement factors, £(pp) by adding protons
and also £(é¢) of the core by adding neutrons. Then we arrive at such a quite
different situation that only the 7/2% states are extremely lowered in energy.
For nuclei in which the anomalous coupling 7/2* states appear below the
1QP 9/2+ states, we expect the growth of instability of the spherical BCS
vacuum toward quadrupole deformation. Although, in the vicinity of the
critical point wer;, we cannot expect the quantitative validity of the NTD
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Fig. 16(b).
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Fig. 16. Comparison between the experimental energy levels and the theoret-
ical calculations in the g;}z-odd-proton region. Notations are the same
as in Fig. 12. For the experimental data, refer to the caption of Fig. 14.
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Fig. 17. Energy shifts due to the coupling effects
of the dressed 3QP 7/2* modes with the
1QP g7/, modes in the g3/,-odd-proton region.
Notations are the same as in Fig. 13.
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approximation to be satisfactory, it is surprising that the experimental be-
haviours including the critical region, Ep>w,;>wer;, have been well re-
produced in the theoretical calculations, with the value of yo=242 (MeV) which
is just the conventional value derived from the classical method.®) For
instance, the calculated values of B(E2; 7/2+—9/2%) with polarization charge
8¢=0.5 ¢ are in good agreement with available experimental data even for
Ag isotopes where the 7/2+ states appear below the 9/2+ states. (See Table VII.)

5-4 Region of g§,-odd-neutron nuclei

In this region the unique-parity orbit 1¢§,, is being filled with neutrons.

Table VI. The correlation amplitudes of the dressed 3QP 7/2+ mode in 99Tc.
The adopted value of yo is 248(MeV) and the calculated excitation energy,
w'=w—ZFyp, is 0.14 MeV. Notations are the same as in Table I. The
unique-parity orbit  denotes (proton; 1¢4,,).

proton
be (g0/2)* (for2)? (p3r2)? fsrzpsye  feppprre paspise
W(ée; 2) 0.97 0.05 0.06 —0.03 0.08 0.10
©(be; p) 0.45 0.04 0.05 —0.02 0.07 0.09
neutron
be (A11,2)2  (ges2)2  (dos2)®  (dsse)® guisadssn gusadsse dssadsss dspesips dspesije

$lbe;) 011 013  0.68 0.04 —0.10 0.07 0.11  0.36 —0.07
plée;) 011  0.11  0.53  0.03 —0.09 0.06 0.10 0.30 —0.06

Table VII. B(£2;7/2t—9/2%) values in the gj,-odd-proton region.
Notations and parameters are the same as in Table II.

nucleus wj_y B(E2)V B(E2)D B(E2)exp
9Nb 0.74 2.4 2.3 2.25+0.16®
85Nb 0.72 3.5 3.3
95T¢ 0.34 5.2 5.2
7 Tc 0.22 8.1 8.0
»Tc 0.14 1.4 11.2 13.5:+1.5b
101T¢ 0.01 18.7 18.1 ~309
99Rh 0.14 9.3 9.2
101Rh 0.02 14.4 14.2
103Rh —0.05 21.0 20.6 9.59
105Rh —0.15 39.2 37.7 >319
107Ag —0.03 20.1 19.1
109Ag —0.04 23.6 22.3 27.49
11Ag —0.07 29.2 27.5 20.19

a) Ref. 51), b) Ref.54), €) Ref.57), d) Ref. 56).
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Experimental data on the N=47 isotones show that the excitation energies
of the 7/2+ states measured from those of the 1QP 9/2+ states become small
with decreasing proton number, i.e., from §§Sr to §4Se. The same behaviour
is also found in the N=45 isotones, i.e., from §3Sr to IGe. (See Fig. 18.)
These behaviours are in correspondence with those of the 2+ phonon states in
the sequences of neighbouring even-even nuclei. Then the appearance of the
7/2+ states below the 1QP 9/2+ states in many nuclei belonging to this region

Table VIII. Gyromagnetic ratio for the 7/2+ states in the g4,,-odd-proton
region. Notations and parameters are the same as in Table III.

exp p ;,xp

nucleus g §i g7
93Nb 1.32 1.31 1.37%
95Nb 1.31 1.30
9Tc 1.27 1.26
”Tc 127 1.25
"Tc 1.25 1.23 0.75+0.269 1.269
101 1.23 1.21
%Rh 1.25 1.24
101Rh 1.23 1.22
105Rh 1.22 1.20
105Rh 1.18 1.16
107Ag 1.22 1.21
109Ag 1.22 1.21 1.22:0.037b
u1Ag 1.21 1.20

a) Ref. 59), b) Ref. 58).

Table IX. B(M1; 7/2+ — 9/2+) values in the g3/ ,-odd-proton region.
Notations and parameters are the same as in Table IV.

nucleus 14} {ia M Mss B(M1)eal B(M 1)exp
®Nb  —0.20 —0.18  0.68 1.86  1.9x10-1 ~1.6x10-1 &
®Nb  —0.20  —0.17  0.66 176 1.8x10
®Te  —0.12  —0.19  0.66 0.62  4.9x10
w“Te  —0.13 —0.19  0.65 0.69  5.3x10-2
wTe  —0.12  —0.19  0.67 0.5  4.4xi0e [{T-SE0OXICIN
wTe  —0.11  —0.21  0.72 0.43  3.9x10-2 ~1x10-1 ©
%Rh 0.03 —0.18 0.5  —0.15  4.7x10-3
101Rh 0.08 —0.19 057  —0.13  5.7x10
103R], 0.03 —0.20 0.5  —0.10 7.1x10-®  (9.320.06)x10-2b
105Rh 0.4 —0.23  0.67  —0.13  8.8x103 <3.1x102 b
wAg 0.19 —0.18  0.40  —0.64  1.8x10-®  (4.19+0.4)x10-2b
109Ag 0.20 —0.17 038  —0.70  3.0x10- 3.8x10-2 b
11Ag 0.20 —0.17  0.38  —0.82  5.6x10-3 6.9x10-2 b

a) Ref. 55), b) Ref.57), c) Ref.56), d) Ref. 50).



92 A. Kuriyama, T. Marumori and K. Matsuyanagi

Table X(a). Electromagnetic properties of the ‘“core excited” states with
positive parity in #3Nb. Notations and parameters are the same as in
Table V. The value of gy is taken from the experimental value of the
1QP 9/2+ state (g5=1.37).

observable spin cal. 1 cal. 2 exp
5/2+—9/2+ 1.1 1.6 2.8+0.22
7/2+ —9/2+ 2.4 2.3 2.25+0.16®
B(£2) 9/2+ —9/2+ 0.4 0.1 0.219+0.0262
11/2+ —9/2+ 0.7 0.6 1.06+0.092
13/2+ —9/2+ 1.1 1.1 1.76+0.122
5/2+ 2.16 2.11
7/2+ 1.47 1.45
g 9/2+ 1.17 1.18
11/2+ 1.01 1.01
13/2+ 0.95 0.95
B(M1) 7/2+—>9/2+ 0.0 1.93x10! ~1.6x101 b
S 5/2+ 0.0 0.10
7/2+ 0.0 0.03

a) Ref. 51), b) Ref. 50).

Table X(b). Electromagnetic properties of the dressed 3QP states with
positive parity in 99Tc. Notations and parameters are the same as
in Table V. The value of g5 is taken from the experimental value
of the 1QP 9/2+ state (g5=1.26).

observable spin cal. 1 cal. 2 exp
5/2+ —9/2+ 3.2 4.0 4.5+0.52
7/2+—9/2+ 11.4 11.2 13.5+1.52
B(E2) 9/2'+ —=9/2+ 1.0 0.9
11/2+ —9/2+ 2.1 2.1
13/2+ —9/2+ 3.5 3.5
5/2+ 1.67 1.65 1.44+0.12b
7/2+ 1.28 1.27 0.75+0.26®
g 9/2'+ 1.10 1.10
11/2+ 1.05 1.05
13/2+ 1.05 1.05
B(M1) 7/2t—9/2+ 0.0 4.4x10~2  (7.6+0.9)x10-2 ©
S 5/2+ 0.0 0.10
7/2+ 0.0 0.04

a) Ref. 54), b) Ref.59), c) Ref. 55).
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Fig. 18. Experimental trend of energy levels of the 7/2+ states in the g,-
odd-neutron region. The level energies are those measured from the
1QP 9/2+ states.

78Ge; Ref. 60), 7577Ge; Ref. 79), 7%:79Se; Ref. 61), 83Sr; Ref. 63),
85Sr; Ref. 62), 837Zr; Ref. 64).

Fig. 19. Calculated excitation-energy systematics of the dressed 3QP states

in the gg,-odd-neutron region. Notations are the same as in Fig. 11.

clearly has a close relationship with the fact that the neighbouring even-even
nuclei possess a strong tendency of displaying the quasi-rotational spectra.
In the case where the neutron number is in the vicinity of /=40 (the beginning
of the gg,-orbit), in contrast to the cases of isotones with /=46 and 48, the
neighbouring even-even nuclei seem to become increasingly unstable toward
quadrupole deformation as the proton number increases toward Z=38 or 40.69
Therefore, it is interesting to observe experimentarily, whether the corres-
pondence between the behaviour of the excitation energies of the 7/2% states
and that of the 2+ states also holds in this cdse. Another marked phenomenon
in this region, which is possibly in an intimate relation to the formation of the
(static) quadrupole deformed field, is the appearance of the 5/2t states with
decreasing energy toward the nuclei with /=41 (which are shown in Fig. 23
and briefly discussed below).

5-5 On AC states with spin I=(5—2)

So far we have restricted our discussions on the AC states with spin /=
(j—1). Now let us briefly discuss the AC states with /=(;7—2).

In the experiments, special lowering of the anomalous spin (f—2) states
has been observed in some cases among the nuclei displaying the low-lying
(7—1) states. We can cite as examples the 5/2+ states in Tc isotopes (Z==43)
with /=56 and the 5/2+ states in odd-neutron nuclei in the vicinity of N=41.
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From the theoretical point of view based on the P+QQ force model, it is clear
from the characteristic of the 3QP-correlation factor C; defined by (3-22) that,
in contrast to the case of /=(j—1), the excitation energy of the dressed 3QP
mode having /=(j7—2) cannot be lowered by the action of the 3QP correlation.
Therefore, as long as we stand on the P+QQ force model, the observed (j—2)
states cannot be regarded as the appearances of the dressed 3QP modes with
I=(j—2) in their pure forms. Hence, from our point of view, the energy-
lowering of the (j—2) states should be attributed to the effects of couplings
among the modes with different transferred seniority quantum numbers.

MeV

00

~-05+¢

Fig. 21. Energy shifts due to the coupling effects of the dressed 3QP 7/2+
modes with the 1QP ¢7,, modes in the g3/,-odd-neutron region. Nota-
tions are the same as in Fig. 13.

Table XI, The correlation amplitudes of the dressed 3QP 7/2+ mode in 85Sr,
The adopted value of xo is 295 (MeV) and the calculated excitation energy,
o'=w—Ey, is 0.23 MeV. Notations are the same as in Table I. The
unique-parity orbit p denotes (neutron; 1gg,,).
neutron

be (g9,2)2  (frs9)2  (for2)®  (P3,2)% Jfassfosre frrsdsrs fopepsse fopeprse papepise

W(bc; p) 1.05 0.01 0.02 0.02 0.01 0.02 —0.01 0.04 0.05
o(be; p) 0.48 0.01 0.02 0 02 0.01 0.01 —0.01  0.04 0.04

proton

be (g9,2)2  (frr2)2  (for2)2  (83,2)% frsefors frrsdsse fopadsse forprye pssepise

$(bc; )  0.24  0.02  0.20 0.18  0.02  0.07 —0.09 0.29 0.31
obc;) 021 002 017 016 002  0.06 —0.08 0.25 0.26
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Table XII. B(Z£2;7/2+—9/2+) values in the g3,,-odd-neutron region.
Notations and parameters are the same as in Table II.

nucleus w;_l B(E2)V B(E2)» B(E2)exp
73Ge 0.07 19.8 17.4 9.1+£0.92
75Ge —0.07 19.0 18.3
7Ge —0.22 31.6 30.3
77Se —0.02 18.6 18.0
79Se —-0.13 23.1 22.5
81Se —0.19 37.1 34.3
b,
8Ky 0.01 13.5 12.8 Ga=rds
83Sr —0.02 11.1 10.9
85Sr 0.23 6.0 5.9
87Zr 0.20 5.2 5.1
a) Ref. 65), b) Ref. 66), c) Ref. 68).
Table XIII. Gyromagnetic ratio for the 7/2+ states in the g3/,,-odd-neutron
region. Notations and parameters are the same as in Table III.
nucleus y}ll g?.)_l Py [ ind
73Ge —0.25 —0.22 —0.209
75Ge —-0.22 —0.20
77Ge —0.17 —0.15
7Se —0.23 —0.21
79Se —0.21 —0.19
81Se —0.16 —0.14
—0.268+0.0012
83Kr —0.24 —0.23 —0.27140. 016D —0.2152
83Sr —0.23 —0.22
85Sr —0.25 —0.24
87Zr —0.24 —0.24
a) Ref. 67), b) Ref. 68), c) Ref. 59).
Table XIV. B(M1; 7/2+—9/2*) values in the g7/,-odd-neutron
region. Notations and parameters are the same as in Table IV.
nucleus 14} Ci-1 M1 M 3 B(M1)eal B(M 1)exp
73Ge —0.30 —0.22 —0.84 —1.64 1.8x101
75Ge —0.11 —0.20 —0.70 —0.51 4.3x10-2
77Ge 0.04 —0.22 —0.66 0.22 5.8x10-3
77Se —0.11 —0.19 —0.65 —0.51 4.0x10°2
79Se 0.04 —0.19 —0.55 0.19 4.0x10-3
81Se 0.21 —0.20 —0.46 1.20 1.6x10°2
83Kr 0.19 —0.14 —-0.32 0.71 4.5%x10-3 (2.04+0.5)x10-2=
83Sr 0.03 —0.15 —0.46 0.08 4.2x10-8
85Sr 0.15 —0.12 —0.27 0.37 2.8x104
87Zr 0.10 —0.12 —-0.27 0.36 2.2x10¢

a) Ref. 68).
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Now it is noteworthy that the excitation-energy systematics of the (j—2)
states and of the (j—1) states are distinctly different from each other. In the
examples of 1¢§,-odd-neutron nuclei, the energy of the 5/2+ state decreases
as the neutron number approaches to /=41 (the beginning of the g§,,-orbit),
while the energy of the 7/2+ state decreases as the neutrons fill the g§,-orbit

Table XV. Electromagnetic properties of the dressed 3QP states with
positive parity in 83Kr. Notations and parameters are the same as
in Table V. The value of g, is taken from the experimental value
of the 1QP 9/2+ state (gp= —0.22).

observable spin cal. 1 cal. 2 exp
5/2+—9/2+ 3.7 3.2 )
.8+1.32
7/2+ - 9/2+ 13.5 12.8 Gaxtin
B(E2) 9/2+ —9/2+ 2.6 2.1
11/2+—9/2+ 3.0 2.9
13/2+ —9/2+ 3.9 3.7
5/2+ —0.46 —0.44
7/2+ —0.22 —0.22 —0.268+0.0019
¢ 9/2+ —0.14 —0.14
11/2+ —0.10 —0.10
13/2+ —0.09 —0.09
B(M1) 7/2t —9/2+ 0.0 4.5x10-3 (2.04+0.5)x10-2 b
s 5/2+ 0.0 0.20
7/2+ 0.0 0.02

a) Ref. 66), b) Ref. 68), c) Ref. 67).
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Fig. 22. Values of parameter yo chosen to bring the energies of the AC state
with spin (f—1)into agreement with the experimental data. The parameter
xo is related to the quadrupole-force strength y through x=xob—44-5/3,
where 42 is the harmonic-oscillator-range parameter and is taken to be
1.041/8, The broken line shows the value expected by the classical
arguments.
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Fig. 23(a). Experimental trend of energy levels of the 5/2+ states in the region
of 9;';2-odd-proton nuclei. The level energies are those measured from the
1QP 9/2+ states. For the experimental data, refer to the caption of Fig. 14.

Fig. 23(b). Experimental trend of energy levels of the 5/2+ states in the region
of g;’;z-odd-neutron nuclei. The level energies are those measured from

the 1QP 9/2* states. For the experimental data, refer to the caption of
Fig. 18.

0.0 00

toward its middle. (Compare Fig. 18 with Fig. 23.) The nuclei having ex-
tremely low-lying (j—2) states seem to possess such a common feature that
their Fermi surfaces (the chemical potentials) lie below the unique-parity level
p and, at the same time, the nuclei have relatively large enhancement factors
of the “core,” £(bc). The former situation is just the one in which the effect
of the Hy-interaction becomes strong, because of its well-known dependence
on the 7(ab) factor. (See Eqgs. (3:7¢c) and (3-9).) The latter corresponds to the
situation which is responsible for the lowering of the 2+ phonon states in the
adjacent even-even nuclei. They are merely the conditions in which the effect
of the coupling Hamiltonian H@nY can become strong. Thus the special
situation for the appearance of the extremely low-lying (7 —2) states seems to
just correspond to the situations in which we can expect relatively strong
couplings among the modes having different transferred seniority quantum
numbers.

In Fig. 24 is shown the effect of coupling of the 1QP 243}, mode (which
lies in the next upper major shell) on the dressed 3QP mode with 5/2+. The
calculated energy shift due to this type of coupling is rather large; in particular,
remarkable energy-lowering of the (j—2) states has been obtained in the
numerical calculations for the nuclei in the vicinity of V=41. The magnitude
of the energy shift is still insufficient to yield full explanation of the extreme
lowering of (7—2) states as observed in the experiments. This is a matter of
course since we have neglected the other types of coupling, for example, that of
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Fig. 24(a). Energy shifts due to the coupling effects of the dressed 3QP 5/2+
modes with the 1QP 4 ‘:,*;2 modes in the g{,*}z-odd-proton region. Notations
are the same as in Fig, 13.
Fig. 24(b). Energy shifts due to the coupling effects of the dressed 3QP 5/2+
modes with the 1QP d-;‘}z modes in the g;bz-odd-neutron region. Notations
are the same as in Fig. 13.

the dressed 5QP mode. Nevertheless, it is interesting to note that the energy
shifts considered here bring the theoretical trend in the excitation-energy
systematics of the 5/2%+ states toward agreement with the experimental one
(in which the energy of the 5/2* state decreases toward the nuclei with N=41).
Furthermore, the following data seem to be consistent with the theoretical
prediction on the (j—2) states mentioned above: In low-energy excitations
through the (4, p) reactions on nuclei in Ge-Se region, several states with
anomalous spin 5/2+ have been observed in each nucleus, with spectroscopic
factors being fragmented over these states.?071)

We can easily find one of the reasons for the difference between the coupling
effects for the (j—1) states and for the (j—2) states asfollows: Let us note the
matrix element (p'[#2¥2]lp) comprized in the effective coupling strength
xmt(p’, 7). In the case of /=(jp—1), i.e., jpr=7p—1, the matrix element
should be of spin-flip type, while in the case of /=(jp—2), i.e., jpr=7p—2,
it is of spin-non-flip type. Since the latter is considerably larger than the
former, the effective coupling strength yint(p’, /) for the mode with /=(;—2)
is larger than that for the mode with /=(;—1).

In the semi-phenomenological models in which the stable quadrupole de-
formation is assumed, it has been known that the (;—2) states as well as the
(7—1) states can be lowered in energy if the Coriolis interaction is suitably taken
into account.’"74  However, it seems difficult, to reproduce correctly the
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(above mentioned) different trends in the systematics between the 5/2+ and 7/2t
states (as a function of V) without any ambijguity in fixing the sign of deforma-
tion parameter B9.”? Nevertheless, since almost all nuclei under consideration
are regarded as lying just before the critical point of phase transition (from
spherical to deformed), it may be very interesting to investigate a possible
“unknown effect’” which presumably corresponds to the Coriolis force and
persists through the transition region. Thus the characteristic difference
between the nature of the (f—1) and (—2) states must be of great significance
in further clarifying the mechanism of growth of the quadrupole instability.
In this connection, the following experimental fact may be noteworthy: The
extremely low-lying (j—2) states appear in odd-mass nuclei, with NV or Z being
about 40 or 42, whose even-even neighbours exhibit the striking dip in energy
of the first excited O+ states.75)~77

§6. Concluding remarks

Starting from the new type of quasi-particle-phonon coupling (producing
the 3QP correlation), we have investigated the mechanism of forming a new
type of collective excitation mode (the dressed 3QP mode) in the special
condition of shell structure for the appearance of the AC states with spin /=(j
—1). As was emphasized by Bohr and Mottelson, the new type of quasi-
particle-phonon coupling originates from the composite nature of the phonon
mode and plays an increasingly important role as the phonon energy decreases.
Therefore, in the situation of odd-mass nuclei in which the new type of coupling
is highly developed, the phonon mode can no longer be regarded as an
elementary mode. Namely, the phonon mode is strongly coupled with the
3QP “intruder” state to form the dressed 3QP mode as a new kind of
elementary excitation mode in spherical odd-mass nuclei. We can then point
out the existence of an intimate relationship between the process of extreme
energy-lowering of the dressed 3QP mode with spin (;—1) and that of develop-
ing the quasi-rotational spectra in the neighbouring even-even nuclei, in
connection with the growth of instability of the spherical BCS vacuum toward
quadrupole deformation.

The microscopic model of the AC states with spin (—1) as the dressed
3QP modes has been shown to yield a consistent explanation of their various
characteristics; i.e., the excitation-energy systematics, the £2- and M1-transition
properties, the ¢ factor, the S factor in (4, p) reaction, etc. On the basis of the
P+QQ force model, the predictions of the theory have also been examined
with the numerical calculations. Thus we have arrived at the conclusion
that the AC states with spin (/—1) are nothing but the typical phenomena in
which the dressed 3QP modes manifest themselves in their relatively pure and
simple forms. In the succeeding chapters, the implication of this conclusion
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is investigated under general situations of shell structure, by putting special
attention to the physical condition of shell structure for the striking enhance-
ment of the 3QP correlation.
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§ 1. Introduction

From among the complicated spectra of the low-lying excitations in
odd-mass nuclei with mass numbers around 4=100, recent experiments
reveal noticeable collective behaviour of the first 3/2+ states in odd-neutron
nuclei and that of the second 5/2+ states in odd-proton nuclei, which are difficult
to understand within the framework of the conventional quasi-particle-phonon-
coupling (QPC) theory of Kisslinger and Sorensen:!) In odd-neutron Mo
and Ru isotopes with /=53, 55 and 57, there systematically appear collective
3/2% states with the enhanced £2- and hindered M1-transitions to the single-
quasi-particle (1QP) 5/2+ states. (See Fig. 1.) In odd-proton I, Cs and La
isotopes, the second 5/2% states display the enhanced £2- and retarded
M1-transitions to the 1QP 7/2+ states, characteristically indicating their strong
collective nature. The excitation energies of the second 5/2+ states measured
from the 1QP 7/2+ states decrease as the neutron number goes from the magic
number V=82 to N=72. (See Fig. 2.) Furthermore, the first and the second
5/2+ states lie close to each other, proposing the interesting problem of clarifying
the difference of their microscopic structures.

The main purpose of this chapter®) is to propose an interpretation which
identifies the first 3/2+ states (in odd-neutron Mo and Ru isotopes) and the
second 5/2+ states (in odd-proton I, Cs and La isotopes) as evidences for the
fact that the appearance of the dressed 3QP mode is not specific to the
anomalous coupling (AC) states but more general in odd-mass nuclei. The
first motive for this identification is directly obtained when we notice a
similarity between the above-mentioned electromagnetic properties of the 3/2+

*) A preliminary version of this chapter was published by the present authors in Prog. Theor. Phys.
53 (1975), 489.
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Fig. 1. Experimental trend of the excitation energies of the 3/2{ states in odd-mass
Mo and Ru isotopes.
95Mo; Ref. 2), 9"Mo; Ref. 2), °*Mo; Ref. 5), 97Ru; Ref. 6), ?9Ru; Ref. 12),
101Ru; Ref. 12).
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Fig. 2. Experimental trends of the excitation energies of the 5/27 states and of the 3/2{ states
in odd-mass I, Cs and La isotopes.
127]; Ref. 13), 129]; Ref. 19), 131I; Ref. 14), 1331; Ref. 15), 129Cs; Ref. 22), 131Cs; Ref. 23),
183Cs; Ref. 27), 133 La; Ref. 24), 135La; Ref. 28).

and 5/2% states and those of the AC states with spin /=(j—1). Aswas
mentioned in the preceding chapter, the main characteristics of the electro-
magnetic properties of the AC states are 1) strikingly enhanced £2 transitions
to the 1QP states with spin 7, which are comparable in magnitude with those
of 2+-phonon transitions in neighboring even-even nuclei and 2) hindered
corresponding M1 transitions. Of course, there is an important difference in
shell structure between the collective 3/2+ and 5/2+ states under consideration
and the AC states: In the case of the AC state the special situation of shell
structure is the existence of a high-spin, unique-parity orbit which is being filled
with several nucleons, while in the case of the collective 3/2+ and 5/2% states
many shell orbits with the same even parity are lying close to one another.
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Fig. 3. Comparison between the experimental excitation-energy systematics of the 2+
phonon states in even-even nuclei and of the 5/2} and 3/2} states measured from
the 1QP 7/2} and 5/2{ states, respectively. The excitation energies of the 2+
phonons are those averaged over the adjacent even-even nuclei, i.e., &az.,,(Z, N)
=1/2 {wa+(Z—1; N) +wz+(z+1: N)} .

Since these orbits with the same even parity are expected to actively participate
in the 3QP correlation, it is quite interesting to investigate to what extent the
similarity between the AC states and the collective 3/2* and 5/2% states can
persist. In this chapter, therefore, the mechanism of the formation of AC
state-like structure in the collective excitations of Mo, Ru, I, Cs and La isotopes
will be clarified, by paying special attention to its relation with the conditions
of shell structure.

In § 2, the formulation of the dressed 3QP mode as the new type of col-
lective mode in these nuclei is presented by the use of the conventional
pairing-plus-quadrupole (P+QQ) force model. In § 3 a criterion to investigate
the similarity and difference between the 3QP correlations characterizing these
states and those characterizing the AC states is given. With the aid of this
criterion, the microscopic structure of the collective 3/2+ and 5/2% states is
discussed on the basis of calculated results. Here, the change of microscopic
structure of these states depending on the mass number is also investigated in
relation to the shell structure. In §4, the coupling effects between the 1QP
modes and the dressed 3QP modes are examined. In contrast to the case
of the AC states, the dressed 3QP mode investigated in this chapter lies close,
in energy, to the-1QP mode with the same spin and parity. For instance, the
first 5/2+ states and the collective second 5/2% states in I, Cs and La isotopes
lie especially close to each other. At first sight, therefore, these two 5/2+
states seem to couple strongly with each other. However, it will be clarified
that there exists an interesting mechanism to make the coupling effects weak.
Taking into account the coupling effects, an analysis of the various properties
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is made for the second 5/2+ states of I, Cs and La isotopes in § 5-a) and for the
first 3/2% states of Mo and Ru isotopes in § 5-b). The concluding remark is
given in § 6.

§ 2. Preliminaries

In order to explicitly specify the freedom of protons and neutrons, we use
Greek letters (a, B, ¥) and (p, 0): For the odd-proton (neutron) nuclei, a, 8
and y are respectively used to denote a set of quantum numbers of the single-
particle states for protons (neutrons) and p and o are respectively used for
neutrons (protons). Then, according to the general theory developed in Chap.
2, the creation operator of the dressed 3QP mode in the P+ QQ force model is
given in terms of the quasi-particle operators as follows:

1
Yire= 757 I dui(ePy)Plapy)alabal
+ Z (148 " %ns(po; y)Plpo)abalal

1
+ ﬁangﬁ O5iN(ay05a3) Plajagag) Tg/e,—1/9(ai00a3)

1 2-1)
+ V2 GEV gii(arag; ) Plajas) Tio(as0z)a;
(ase)
+ % {1480} 7200 (aB; v) P(aBalasap
(ag:c,)géec)

+ (Ey {148,520 (pa; v) P(pa)alasa,.

Here, the subscript i(=1,2,3) of a is used when the specification of the single-
particle states with different magnetic quantum numbers in the same orbit &
is necessary. The symbol 34, represents the summation with respect to the
orbital pair (ab), m,, ms and y, and the operators P’s denote the projection
operators by which any angular-momentum-zero-coupled-pair component is
removed from (ala}al) and (a,25). The projection operators P, the explicit
form of which are given in Appendix 2A, guarantee the dressed 3QP modes
to be orthogonal to both the spurious states (due to the nucleon-number non-
conservation) and the pairing vibrational modes.

The collective mode given by Eq. (2-1) is characterized by the amount of
seniority 4dv=3 which it transfers to the correlated ground state. The first
two terms on the right-hand side of Eq. (2-1) represent the forward-going
components and the others are the backward-going components which originate
from the ground-state correlation. It is evident that the ground-state correla-
tion is essential to bring about the collectivity of excitation modes in the doubly-
open-proton-neutron system such as the nuclei under consideration. As was
shown in §3 of Chap. 2, within the framework of the new-Tamm-Dancoff
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approximation we obtain the eigenvalue equation which the correlation am-
plitudes should satisfy:

[il; :: } [:j:“’[jj 22)

where ¢,; and @,; denote the matrix notations symbolizing the sets of the
forward amplitudes {9[1,,1(0.,3)/) and ¢y, ,(po, y)} and the sets of the backward
amplitudes {p§}(aja503), P (aiaz; y), ¥ (af; v) and ¢ (pa; y)}, respectively.
The explicit forms of matrices 3D, d and A (and its transpose A7) are given
in Appendices 2B and 6A. When compared with the eigenvalue equation for
the AC state given by (3:23) of the preceding chapter, the main complexity of
Eq. (2:2) comes from the amplitudes of the type ¢,;(afy): In the case of the
AC states, because of the parity selection property of the quadrupole force the
amplitudes i, (aBy) are reduced to particularly simple forms, while in the case
of the dressed 3QP mode under consideration (which has the same parity as
that of the major shell) such a parity selection rule does not work for the main
amplitudes. Of course the corresponding backward amplitudes also become
relatively complicated. Therefore it is evident that we cannot expect, from the
outset, the formation of such simple structure as the AC states, in the dressed
3QP mode given by (2-1).

As usual, the reduced E2-transition probability from the dressed 3QP
state | O x>=Y},x|Py> with spin 7 to the 1QP state |P§P>=a}|P,> with
spin 7, is defined by

B(E2;I—jg)= KOPIOSIPB12. (2-3)

1
27+1
Following the general method developed in § 5 of Chap. 2, the reduced matrix
element of the electric quadrupole operator O§P in Eq. (2-3) is given as follows:

<PPI0SV NP>
=3 2 0P @D () YarlaB (]
a/g/bgc/j/ (2'4')
+ Z erQ(“‘ )0ea {14-8,5} _I/Z‘I’nl [7s(2)c]

+75 J 7 = . Qaa)8aaP(aa(2)alaa())a)pit]aa(/)a]

B e Q@balS@HD 7 7 ) L oilaalr)
(ake, 70

+ (Zb) ,Q(ab)8eq {14845}~ 203 ab(2)c]

(@xc,bxc)

+ 2 e Q(r-Y)acd{l+8rs}-1/250(3)[rs(2>£]
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where
Q(czb)z%(allr2 Yoll&)-(navp+ vaup) 2-5)

and P’s are the projection operators defined in Appendix 2A. In Eq. (2-4),
¢ and ¢ are the coupled-angular-momentum representation of the forward
amplitudes and backward amplitudes, respectively, which are straightforwardly
obtained through the conventional procedure of angular-momentum coupling
and defined in Appendix 6A; for instance,

ur(aBy)= = (Jagomompl JM ) JjeMmy| 1K Ypur[ab(])e)- (2-6)

Needless to say, the parts in (2-4) involving the backward amplitudes ¢ re-
present the effect of collective enhancement originating from the ground-state
correlation. The characteristic property of the £2-transition matrix element
given by (2-4) will be discussed in § 3 as a measure of clarifying the microscopic
structure of the collective 5/23 and 3/2{ states of interest.

A computer program named BARYON-1 was constructed to solve Eq.
(2-2) and to calculate various electromagnetic properties of the dressed 3QP
modes. Since our aim is not to obtain a detailed quantitative fitting with
experimental data but to get an essential understanding of structures of
collective 3/2{ and 5/2} states which are difficult to understand within the
framework of the conventional QPC theory, we have used exactly the same
values for the single-particle energies and for the pairing-force strength G in
the numerical calculations as those adopted in the calculations of Kisslinger
and Sorensen.) We have also made the same truncation of shell-model space
as Kisslinger and Sorensen have made: The shell-model subspace for I, Cs
and La isotopes consists of the orbits

{m; 142, 2d5, 1A11/0, 2d5s, 3512},
{v; 2d5%s, 1945, 35179, Lh11/0, 2d3s},

and the subspace for Mo and Ru isotopes is composed of the orbits

{m; 152, 20379, 26172, 1982}
{v; 2d5s, 1942, 35172, 111/2, 2d370} .

The quadrupole-force strengths x have been fixed at the values which reproduce
the average energies of the 2+ phonon states in the adjacent even-even
nuclei, e.g., @y+(Z, N)=1/2{wy+(Z—1, N)+wy+(Z+1, N)} for odd-Z nuclei.
(For the sake of comparison, the excitation spectra calculated with a constant
value of y,=x6%45/3 for each isotopes are presented in Figs. 4(a) and 6(a).)
Thus no adjustment of parameters has been attempted in the course of the
calculations.

As is described in Appendix 4A, the method of solving Eq. (2-2) consists
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of the following steps. First, the components of the 3QP correlation ampli-
tudes ¢ and ¢ (in the coupled-angular-momentum representation) are orthonor-
malized by diagonalizing the projection operators P’s entering into the
eigenvalue equation (2:2). By this diagonalization, the submatrices 3D,
d and A in Eq. (2-2) are transformed into new submatrices 3D, d and A
(the elements of which are defined between the orthonormalized components).
The calculation of thus obtained eigenvalue equation (4A-5) mdy be further
performed in two steps: In the first step, the submatrices 3D and d are
diagonalized respectively. Needless to say, the eigenvalues of 3D represent
the excitation energies of ‘“bare” 3QP states in the quasi-particle Tamm-
Dancoff approximation. Then, in the second step, the resulting total matrix
given by (4A-8) is diagonalized to obtain the excitation energies and correlation
amplitudes of the dressed 3QP modes. In the calculation of this chapter, we
have adopted the following approximation: In the second step, the diagonal
matrices, @/ and @? (which are obtained from 3D and —d respectively in
the first step) have been truncated within 10 and 40 dimensions, respectively,
with the former being of increasing order and the latter being of decreasing
order in energy. Accuracy of this approximation has been checked by com-
paring some results with the corresponding results of full calculations, and has
been satisfactory except for the special case where the excitation energy of the
dressed 3QP mode lies extremely close to the critical point for the instability
of the spherical BCS vacuum.

§ 3. Microscopic structure of collective excitations
in odd-mass Mo, Ru, I, Cs and La isotopes

3-1 Collective 5/2+ states in I, Cs and La

In Figs. 4(a) and 4(b) are shown the calculated results for the excitation
energies of the collective 5/2§ states as the dressed 3QP modes. In these
figures, the first 7/2+ and 5/2+ states correspond to the 1QP states related to the
orbits 1¢4,, and 24, respectively. All the energies are measured from
those of the 1QP 7/2+ states. The systematic appearance of the low-lying
collective 5/2§ states in I, Cs and La isotopes is reproduced very well. The
experimental trend that the excitation energies of the collective 5/23 states
(measured from those of the 1QP 7/2% states) decrease as the neutron number
goes away from the magic number is also well reproduced. This trend is seen
in a rather magnified way in Fig. 4(a) in which a constant value of the
quadrupole-force parameter y, is used for each isotopes. Such magnification
is the same as that well known in the conventional RPA with the P4+ QQ force
in even-even nuclei, i.e., the 2+ phonon energies calculated with the constant
value of y, decrease more rapidly than the experimental trend as the nucleon
numbers go away from the magic number.?
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Fig. 4. Calculated excitation energies of the dressed 3QP states with /#=5/2+ and with /#=3/2+
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in odd-mass I, Cs and La isotopes.

(a) The constant values of the quadrupole-force-strength parameter x (defined by x, =x5445/3,
42 being the harmonic-oscillator-range parameter) are used for each isotopes.
(b) The values of x, are chosen to reproduce the average energies of the 2+ phonons in the

adjacent even-even nuclei, i.e., @4 (Z, V)=1/2 {wy+(Z—1, N)+wy+(Z+1, NV)}.
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Before discussing the calculated B(Z£2) values in Table I, it may be im-
portant to set up a criterion for investigating the similarity and difference
between the 3QP correlations characterizing the new dressed 3QP modes and
those characterizing the AC states. As was shown in the preceding chapter,
in the case of the AC states, the triggering effect of the 3QP correlations which
strongly violates the concept of phonon in odd-mass nuclei is restricted among
quasi-particles in a specific unique-parity orbit, because of the parity-selection
property of the quadrupole force. On the contrary, in the case of the dressed
3QP mode under consideration (which has the same parity as that of the major
shell), many shell orbits having the same even parity (such as g§5, 573, @s%,
and s7,) lie close and are expected to be equally active for the 3QP correlations.
A criterion useful for discussing the new 3QP correlations occuring under such
a condition of shell structure is given as follows: If the 3QP correlations mainly
come from a specific orbit, for instance, the 1¢5,, orbit when we consider the
collective 5/2F states, we may say that the structure of the 5/23 states is similar
to that of the AC states. As was shown in the preceding chapter, an important
characteristic in this case is that the value of B(£2; 5/2§—7/2}) belonging to
the class of B(E2; /=;7—1-—»j) is greatly enhanced compared to the ones of
E2 transitions to the other 1QP states, for instance, B(E2; 5/2§—5/21)
belonging to the class of B(E2; I=j—1—j'>¢j). In this case, a picture of
the low-energy excitation structure may be given as illustrated in Fig. 5. On
the other hand, if the 3QP correlations among quasi-particles in different orbits
are of importance, the £2 transitions to the other 1QP states, for instance,
the B(E2; 5/2§—5/27) must also be strongly enhanced. Therefore, in this
case, we may say that the structure of 5/2§ states differs considerably from
that of the AC states. Needless to say, the form of the eigenmode operator
given by (2:1) allows us to treat these two cases on an equal footing, so that
with the aid of this criterion we can achieve an essential understanding of
the microscopic structure of the new collective excited states.

(other states)

34 2?2

(j-1)
J %,

%,

-7/1"
(97,) 2

Fig. 5. Graphic explanation of the £2-transition properties,
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Table I. Calculated B(£2) values from the dressed 3QP 5/27 states in odd-mass I, Cs
and La isotopes (in unit of ¢2:10~50cm4). The results of exact calculation are given
in the second and fourth columns denoted ‘‘exact”, while those calculated by
adopting the ACS approximation are listed in the third and fifth columns denoted
“ACS”. The harmonic-oscillator-range parameter 62=1.0.41/3 fm? and the effective
charges, Z%ff=l.5€ and ¢Sff=05¢, are used. The adopted values of x, are the

same as in Fig. 4(b) and are listed in the fifth column.

5/25—>7/2% 5/2s—5/2¢
exact ACS exact Xo
127] 14.3 13.5 0.3 234.2
1291 6.9 9.6 0.1 251.5
1311 5.2 6.8 0.1 280.6
133] 3.8 4.7 0.0 315.0
131Cs 10.7 20.0 0.4 235.0
133Cs 8.8 12.9 0.3 264.7
185Cs 6.9 8.4 0.1 307.0
133La 17.0 48.1 0.7 230.2
135] 3 9.7 19.7 0.4 259.0
1371a 7.0 11.3 0.2 300.0

Now, the calculated B(£2) values in Table I demonstrate that the B(E2;
5/25—7/2%)’s are stronger by about one order in magnitude than the other
B(E2; 5/2§—5/21)’s. Thus we can conclude that the structure of the 5/2§
states is similar to that of the AC states with spin /=;7—1. (In the present
case, 7 corresponds to the orbit 1gy,,.) In fact, microscopic structure of the
calculated amplitudes of the 5/2% states (as the dressed 3QP modes) is very
similar to that of the AC states which was investigated in Chap. 3: The
forward-going amplitudes of (www)-type with the largest {(7¢;,5)%} component
and of (vvmr)-type are strongly coupled with each other. The backward-going
amplitudes of (vvm)-type become larger as the neutron number decreases.
Some examples of the main amplitudes in I, Cs and La are shown in Table II.
The amplitudes in this Table are those which are orthonormalized by
diagonalizing the projection operators, P’s, entering into the eigenvalue
equation (2-2) in the coupled-angular-momentum representation. (See Appen-
dices 4A and 6A.)

It is rather a wonder that the overall similarity between the 5/2F states
and the AC states persists in spite of their different situation in shell structures.
To investigate the reason for this, let us look into the characteristics of the
calculated amplitudes in more detail. In I isotopes, the chemical potential
for protons lies close to the 1¢,, orbit and the energy difference between the
1QP 1g,,; and the 1QP 245, states is relatively large (i.e. 4E~400 keV),
so that the component {(7g;,5)%} in the forward amplitudes $y,,.5, reaches
the maximum. As the proton number increases, the chemical potential shifts
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up and the energy difference between the 1QP lg,,- and 1QP 2dj,-states
decreases till about 4E£as100keV in La isotopes. In La isotopes, therefore,
we may expect that the components {(w¢y/)?nds,5} and {(7ds.5)2mgq,5} grow
up appreciably to break the AC state-like structure of the dressed 3QP mode.
However, this trend is actually not as appreciable as has been expected. As
is seen from Table II-(c), in particular, the component {(7¢,,5)?wd5/5} which is
directly connected with the largest component {(m¢,,)3} through the 3QP
correlation among different orbits, 1¢,,, and 24,5, does not become extremely
large. On the other hand, although the component {(#d)?mgy5)} increases
non-negligibly, it does not bring about the breaking of the similarity with the
AC states. Here it should be pointed out that, while the component {(7g;,,)?
mdy,;s} contributes directly to the B(E2; 5/2§—5/27), the component {(mdy,5)?
mgysy can contribute only through angular-momentum recoupling. (Such a
classification of the amplitudes is obtained by interpreting them in connection
with the concept of phonon-band, as will be described in the succeeding
chapter.) Associated with these characteristics in the (wmw)-type, it is also
seen that the components containing the g,,-proton-quasi-particle play a
dominant role among those of (vuw)-type. In this way, contrary to the B(E2;
5/25—7/27), the B(E2; 5/2§—5/2f) cannot be enhanced. Now, the origins
of these characteristics in the microscopic structure of the collective 5/27 state
(as the dressed 3QP mode) may be found in the following facts:

1) The 3QP correlation among quasi-particles in different orbits, 1¢,, and
2ds,5, involves the spin-flip matrix element (2d5,|#2Y;|l1¢,,) which is
considerably small, compared to the spin-non-flip one (1¢,li72Y;|l1¢,,)
contributing the 3QP correlation at the specific orbit 1¢y/,.

2) The component {(mgy,2)3} is increasing due to the special favouring of the
I=(j—1)-coupling, while the corresponding component {(nd5,,)3} is forbidden
for spin /=5/2.

It is interesting to note that the above-mentioned condition of shell
structure (for the realization of AC state-like structure) is common to almost
all major shells. Thus we can expect the picture (for low-lying excited states)
illustrated in Fig. 5 to hold over several regions of spherical odd-mass nuclei.
To examine the theoretical prediction, the experimental data on the electro-
magnetic transition rates, especially the ones between excited states, are highly
desired. For the nuclei under consideration, more systematic measurement
on the values of B(E2; 5/2§—5/27) should confirm more definitely the con-
clusion given here.

3-2 Collective 3/2% states in I, Cs and La

Here it is interesting to note that, in addition to the collective 5/2§ states
discussed above, experimental data reveal the systematic presence of the 3/2F
states in I, Cs and La isotopes. With the same trend as in the case of collective
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Table III. Calculated B(£2) values from the dressed 3QP 3/2{ states in odd-mass I,
Cs and La isotopes (in unit of £2:10~50cm4). The notations and parameters
adopted are the same as in Table I.

3/2f—>5/2¢ 3/2t—>7/2¢

exact ACS exact
127 3.1 10.4 2.6
129] 2.0 7.8 2.4
131 0.1 5.6 1.0
133] 0.2 3.6 1.4
131Cs 9.8 16.0 1.7
133Cg 10.4 11.1 2.4
135Cs 4,2 7.2 1.7
133] 3 13.2 67.7 0.9
135] 9.3 20.5 0.7
137]a 6.5 11.4 0.6

5/2§ states, the excitation energies of the 3/2f states measured from the 1QP
5/2f states decrease as the neutron number changes from N=82 to N="T4.
(See Figs. 2 and 3.)

Regarding the 3/2f states to be the dressed 3QP states, we have also cal-
culated their excitation energies and B(E2) values. The results are shown in
Fig. 4 and Table III. In Fig. 4, we see that the above-mentioned experimental
characteristics of the 3/27 states are well reproduced in the calculation. The
main components of the 3/27 states are therefore identified as the dressed 3QP
states. It is noted, however, that the relative level positions between the 3/2;
and 5/2§ states are not well reproduced in the calculation, especially for I
isotopes and lighter Cs and La isotopes. This may indicate the necessity of
modifying the adopted single-particle energies (of Kisslinger and Sorensen)
and of taking the coupling effect of the 1QP 245, mode into account. How-
ever, since this disagreement does not essentially affect the discussion below, we
do not attempt such improvements of the calculation here.

According to the criterion given in the preceding subsection (on the
structure of the dressed 3QP modes), the calculated B(£2) values in Table I11
suggest that the 3QP correlations among quasi-particles in different orbits are
rather strong in the 3/2{ states compared to the collective 5/2§ states: The
values of B(E2; 3/2{—5/2}) and of B(E2;3/2{—7/2{) are both enhanced,
with ratios changing from I isotopes to La isotopes. Main amplitudes of the
3/27 states in I isotopes as the dressed 3QP modes are shown in Table IV-(a),
from which we can easily see why the competition between the two £2 transi-
tions (to the 1QP 5/2+ and 1QP 7/2* states) is remarkable in I isotopes.
Namely, among the components of both (7mw)- and (vwm)-types, the two sets of
components containing the g¢,,- and djy,,-proton-quasi-particle, respectively,
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play equally important roles in I isotopes. As the proton number increases,
the chemical potential for protons shifts up toward the 24, orbit (from the
1g,, orbit), so that in La isotopes the component {(m¢q,)%} in the forward
amplitudes ¢y, 3,5 is diminished and the component {(nd5,)%} is enlarged.
(See Table IV-(c).) The increase in B(E2; 3/2{—5/2}) in La isotopes is clearly
due to the growth of the 3QP correlation in the 24/, orbit. Although the
component {(nd5,5)3} is still not the largest one, the components containing the
single dy,,-proton-quasi-particle become the dominant ones among the other
components of both (wwm)- and (vvm)-types. Associated with this, the value
of B(E2; 3/2{—7/2]) becomes smaller in clear contrast to the increasing
B(E2; 3/2{—5/27). In this sense, we may say that the 3/27 states in La

MeV
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0.51 \\_ e 21 G
\\‘
\
\\
\__'~\
- % 1
0,0 5/21 551
N= 53 55 67 53 5 57
Mo Ru
(a)
MeV
05 —3
— / —_— +
— N\ Y
\__/
ool 5 7
N= 53 55 57 53 55 57

Mo Ru
(b)
Fig. 6. Calculated excitation energies of the dressed 3QP 3/2} states in odd-mass
Mo and Ru isotopes. They are measured from those of the lowest 1QP states.
(2) The constant values of y, are used for each isotopes.
(b) The values of y, are chosen to reproduce the average energies of the 2+
phonons in the adjacent even-even nuclei.
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isotopes have a structure similar to that of the AC states with /=7—1 (where
7 corresponds to the 1QP 5/2+ state). Since quantitative prediction depends
rather sensitively on the single-particle energies adopted, the numerical values
presented in Table III should not be taken too strictly. Nevertheless, we can
expect such a structure change of the 3/27 states (from I isotopes to La isotopes)
in a qualitative sense.

3-3 Collective 3/2% states in Mo and Ru

The calculated results of the collective 3/27 states (in odd-neutron Mo and
Ru isotopes) as the dressed 3QP modes are shown in Fig. 6 and Table V. The
systematic appearance of the low-lying collective 3/2] states in the isotopes
with V=53, 55 and 57 are reproduced very well, together with the values of
B(E2; 3/2f—5/2%). Thus, the 5/2f and 3/2{ states are identified as the 1QP
and dressed 3QP states, respectively. Furthermore, the special enhancement of
B(E2; 3/2{—5/2F) shown in Table V (when compared to the other B(£2)’s)
suggests that the structure of the 3/27 states is similar to that of the AC states
with /=7—1. (In this case, j corresponds to the 1QP 5/2+ states.) From Table
V1, we can easily see the similarity of the 3/2] states to the AC states, although
the fine structure is appreciably different as a result of the 3QP correlations
among quasi-particles in different orbits with the same parity (dy/5, $1/5, ¢7/2,
and dy/5). The gradual change of the microscopic structure of the 3/2f states
with increasing neutron number will be further discussed in § 5.

§4. New reduction effect of couplings between
dressed 3QP and 1QP modes

In contrast to the case of the AC states, the dressed 3QP states, especially
the collective 5/2% states in I, Cs and La isotopes, lie close, in energy, to the
1QP states with the same spin and parity. Itis, therefore, necessary to examine

Table V. Calculated B(Z2) values from the dressed 3QP 3/27 states in odd-mass Mo
and Ru isotopes (in unit of ¢2:10-5% cm4). The adopted values of yo are the same
as in Fig. 6(b) and are listed in the sixth column. The notations and the other
parameters are the same as in Table I.

3/2t—>5/2¢f 3/2f—>7/2} | 3/21—>1/2f
X
exact I ACS exact exact ’
95Mo 3.1 5.2 0.3 0.3 263.0
97Mo 10.1 8.0 0.6 0.8 244.3
99Mo 10.3 8.6 0.1 0.5 237.2
97Ru 5.6 5.7 0.2 0.8 245.0
99Ru 8.6 15.4 1.9 2.9 236.0
101Ru 12.8 20.3 0.7 0.8 231.0
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their coupling effects. According to the general formulation given in § 5-
Chap. 2, the original Hamiltonian is transcribed unambiguously into the
quasi-particle new-Tamm-Dancoff subspace, the basis vectors of which are
{1D>=al|Dy>, 1P x>=Y};xIDPe>}. The transcribed Hamiltonian is of
the form

H= Z Egala;+ Z @nr Y e Ynrx

@1)
"I‘ 2 Vlnt(d %[){Y;,IKGS—}—(I* YﬂIK}!
(K=m;)
where
al=a} | Do) {Dyl, Yhx=Yhx!Po)> (Dol (4-2)

The third term of the transcribed Hamiltonian (4-1) represents the interaction
between the dressed 3QP and 1QP modes, and comes from the A -type original
interaction (shown in Fig. 7 of Chap. 3) which has not played any role
in constructing the dressed 3QP modes. The effective coupling strength
Vin(d, n1) is thus composed of the matrix elements of A} accompanied by
the amplitudes of the dressed 3QP mode V},;x. In the P+QQ force model,
the explicit form is given as follows:

Vindd, n1)=—xd135)/ 2_[%

X|V/3 5 C@HREPABRAY ) barla'¥ (]

a,lblcl]/

+ 2 Qo) Red) {1431} 1% Yns[rs(2)c]
+75 J2 > Q(aa)R(ad) P (aa(2)daa(/)a) ¢iitlaa(/)a) (4-3)

+ T QGRS Tt 7] eilaa/

ac,/=even
(ac,/*0)

T B Qah)Red){1+8u 7 ¢ilab(2)e]

@Seltber
+ (Z): Q(rs)R(cd) {148, 712 o [rs(2)c]]
r8)c )
where
R(ed) = (el 2 Yyl d) Gt —0i2) @

and Q(ab) is defined by (2-5). The formal structure of (4-3) is very similar
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to that of the reduced matrix element for £2 transition given by (2:4). In fact,
Eq. (4-3) can be obtained from (2-4) by the following replacement:

. Qab)sua=> — sy gy Qab)R(cd)

Such a formal similarity is a characteristic of the P+QQ force model adopted.
The result of calculations of the coupling effects due to the interaction

Table VII. Calculated results for the coupling effects. The mixing amplitude of the
1QP modes are given in the third column, while those of the lowest dressed 3QP
modes and of the next higher ones are given in the fourth and fifth columns, re-
spectively. In the sixth column are listed the values of the energy shifts due to the
coupling effects in unit of MeV.

(a) The 5/2f and 5/2; states in odd-mass I, Cs and La isotopes.

@ (b) The 3/2f states in odd-mass Mo and Ru isotopes.
a

nucleus state {)(d) (& (n=1,7) (®(n=2,7) dw
127] 5/2¢ 0.87 —0.28 0.39 —0.35
5/2% 0.24 0.96 0.15 0.02
129] 5/2¢ 0.90 —0.18 0.39 —0.23
5/2% 0.15 0.98 0.10 0.01
131] 5/2¢ 0.92 —0.20 —0.34 —0.16
5/2% 0.18 0.98 —0.10 0.01
133] 5/2¢ 0.96 —0.15 0.24 —0.08
5/2 0.14 0.99 0.06 0.01
131Cs 5/2¢f 0.93 —0.01 —0.35 —0.15
5/23 0.01 1.00 —0.01 0.00
183Cg 5/2¢ 0.95 —0.03 0.33 —0.13
5/23 0.02 1.00 0.01 0.00
135Cs 5/2¢ 0.97 0.00 —0.23 —0.06
5/2% 0.00 1.00 0.00 0.00
133] . 5/2¢ 0.95 0.16 —0.26 —0.15
5/2% —0.15 0.99 0.06 0.01
135La 5/2¢ 0.96 0.07 —0.27 —0.08
5/23 —0.07 1.00 0.03 0.00
187].a 5/2f 1.00 0.02 —0.10 —0.01
5/2% —0.02 1.00 0.00 0.00
(b)
nucleus state {W(2) (O(n=1,7) (@ n=2,7) dw
%Mo 3/2¢ 0.05 1.00 0.00 —0.01
9”Mo 3/2¢ 0.16 0.98 0.03 —0.01
99Mo 3/2¢ —0.51 0.77 —0.30 —0.17
97Ru 3/2¢ —0.09 1.00 —0.00 —0.02
99Ru 3/2¢ —0.25 0.96 —0.10 —0.10

101Ry 3/2¢ 0.44 0.83 0.30 —0.19
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term in (4-1) are shown in Table VII. It is noticeable that the coupling effects
are very small even in situation where the two 5/2+ states are close to each other
in energy (i.e., 4w=~0.01 MeV). The mechanism to make the coupling
effects (between the dressed 3QP and 1QP modes) so small must be found
in the microscopic structure of the effective coupling strength Vint(d, »/).
From the microscopic structure of the effective coupling strength between the
dressed 3QP 5/2% and 1QP 5/2] modes in the case of the P4 QQ force model,
we can find the following origins to weaken the coupling:

1) The important matrix elements of A (of the quadrupole force) in the
effective coupling strength, which are accompanied by large components of the
amplitudes of the dressed 3QP 5/2} mode, always contain the spin-flip matrix
element (2dy,5||72Y,ll1¢,,), which is considerably smaller compared to the
diagonal matrix element (1¢,,||72Y,||1¢,/5). In this connection, it is interest-
ing to recall that the considerable smallness of the ratio of (25, |72Y,|l1¢4/2)
to (1¢7/21172Y3111¢4,5) is also one of the important origins to bring about the
AC state-like structure for the collective 5/2§ state.

2) The pairs of matrix elements of A (such as Figs. 7(a) and 7(b)), which are
in the relation of exchange diagrams with each other, must always be involved
in the effective coupling strength, because the antisymmetrization among the
three quasi-particles composing the dressed 3QP 5/2+ mode is properly taken
into account. (See the projection operator P, entering into Vin(d, #[).)
Actual calculations tell us that the effects of such exchange parts on the effective
coupling strength between the 5/2F and 5/2F states are not constructive but
rather destructive to each other.

3) The effective coupling strength is determined by the contributions of many
components of the amplitudes. For example, the components {(7ds5)?7g7/0}
and {(m¢y5)?ndy;} represented by Figs. 8(a) and 8(b) both contribute to
Vint(d,n]). (Notice that the summation in the first term of Eq. (4-3) should be
taken with respect to the orbital triad (g, &, ¢).) The calculated result shows
that such different components of the amplitudes generally contribute in
random phase, namely, they cancel one another. For the collective 5/2§ states
under consideration, this effect is extremely strong since the contributions from
Figs. 8(a) and 8(b) are of approximately equal magnitudes with different signs.

@) dss  (b) dss
Hy Hy

27/_% ; A N

dy, dg, Ir 9y, dy,ds,

Fig. 7. Example of exchange diagrams both of which contribute
to the effective coupling strength with /#=5/2+,
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a

(@) dss (b) ds, (c) ds,
Ry Hy _ 2

vl Vi 7

dy, ds, 97, 9y, 9y 9 % 97,

Fig. 8. Graphic representation of two kinds of diagrams both of which contribute to
the effective coupling strength with /#=5/2+. The two kinds of diagrams, (a)
and (b), contribute destructively to the effective coupling strengths of the lowest
dressed 3QP 5/2; states in I, Cs and La isotopes. It should be noted that, in
the case of calculating the £2 transition (c), such a destructive effect never appear
because one of them (a) is forbidden.

It should be pointed out, here, that Fig. 8(a) involves the small matrix element
R(gz/2 ds/5) accompanied with the large component {(nds/;)? mg,,}, while
Fig. 8(b) involves the large matrix element R(d5,, d5/5) accompanied with the
small component {(wgy,,)? mds;}. We should also note that, in the case of
calculating the £2 transitions, such a destructive effect never appear because
the matrix element corresponding to Fig. 8(a) is forbidden. (See the §.4-factor
in Eq. (24).)

4) In addition to these effects, it should also be pointed out that the effective
coupling strength depends characteristically on the reduction factors (s.4—
v,0g) entering into the R(¢d) in Viny(d, #). The reduction factor of the orbital
pair, ¢,/ and &, becomes particularly small in La isotopes.

All of these effects cooperate in weakening the effective coupling strength
between the 1QP 5/27 state and the Jowes# dressed 3QP 5/2§ state. As a result,
the 1QP 5/2{ mode couples rather with the nex# higher dressed 3QP 5/2§ mode,
as shown in Table VII.

It is worthy to emphasize that the reduction effects 2) and 3) of the effective
coupling strength never appear in the conventional QPC theory, because the
antisymmetrization between the odd quasi-particle and the quasi-particle-pair
composing the phonon is not at all taken into account in the QPC theory. The
physical significance of these new reduction effects will be further discussed in
Chap. 5 (where the necessity of alteration of the conventional picture on the
low-energy excitations in odd-mass nuclei will be discussed en 6/oc).

§ 5. Analysis of electromagnetic properties of
AC state-like collective excited states

In this section, we investigate the electromagnetic properties of the AC
state-like collective excited states (the collective 5/27 states in I, Cs and La
isotopes and the collective 3/2} states in Mo and Ru isotopes) taking the
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coupling effect between the dressed 3QP and 1QP modes into account. We
first evaluate the extent to which the B(E2) values presented in § 3 are affected
by the coupling effect. Since the couplings between the dressed 3QP 5/2%
states and the 1QP 5/27 states are very weak, it is expected that the coupling
effect does not cause a large deviation from the E2-transition property of the
5/2% states in the absence of the coupling effect. Secondly, we examine whether
the similarity between the collective 5/2§ and 3/27 states and the AC states
holds also in their magnetic properties. If the structures of the collective 5/2§
and 3/27 states are similar to the AC states, we expect, according to the discus-
sion in §4 of Chap. 3, that 1) the values of B(M1;5/2§—7/2}) and B(M1;
3/2f—5/27) are nearly zero and 2) ¢(5/25)~¢(7/2}) and ¢(3/21)~¢(5/2}).
In the case of applying these criteria for the magnetic properties to the collective
states under consideration, we should be careful in that the properties of /1-
transitions and -moments are quite sensitive to the coupling effects. On the
other hand, the magnitude of the coupling effect may be examined more careful-
ly by comparing the calculated B(M1) and ¢ factors with the experimental
data.

When the transcribed Hamiltonian (4+1) containing the coupling term
H(n is diagonalized, any eigenstate in the quasi-particle NTD subspace under
consideration takes the following form as a superposition of the dressed 3QP
and 1QP states:

(K v =L(d)8 138 xmyab | Py + T LX) Vi | Dop GRY

with the normalization
{EP(@)y 24+ LB () 2=1. (52)

Here the index v is used to label the eigenstates having the same values of
angular momentum 7 and its projection K. The summation with respect to
n, in Egs. (5-1) and (5-2), should be taken, in principle, over all (physical)
eigensolutions of the dressed 3QP modes with definite 7 and K (, several of
which have collective nature while the others are of non-collective nature).
In practice, of course, the mixing amplitudes (¥ (/) with >1 are negligibly
small in the low-lying collective 3/2f and 5/2% states under consideration.

The matrix elements of any electromagnetic multipole operators between
the eigenstates (5-1) are given as follows:

KOG K5 "y
= {D(D)P (D)8 11,8 113DV OGE | D
+E @) T (P L) (PLIOE | BFy 0> 53)

+ PPy T P (T) DY AOLPP)
n
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+ 2 LD 1) < PRk 0G| PF 107,

where 6%3’1 denotes the transcribed electromagnetic operator in the quasi-
particle NTD subspace defined by Eq. (5:14) of Chap. 2, and its matrix
elements appearing in (5-3) are given in Appendix 2D. We use the symbolical
notations, such as Ey;, E3, E3; and Egg, for the first, second, third, and
fourth terms on the right-hand side of (5-3), respectively. Using Eq. (5-3),
we obtain for example,

1 -
B(B2; 1~>1) =51 IKE v 0521117501

1 (5-4)
Em|Eu+E13+E31+E33|2,
1 N
BOM L L Iy=5 T KL s O 25 /) 2
1 (55)
EWIM11+M13+M31+M33|2»
W)= 9(1)1_1/—41[{ VIORIIK; vy (with K=1)
(56)

=(¢11+2¢15+933)" 1,

where O§) and Of;) are the electric quadrupole and magnetic dipole
operators, respectively, and their reduced matrix elements are defined by

_ (I'LK'M|IK)
T V2I+1

Following these general formulae, the calculations of the B(£2), B(M1)
and magnetic ¢ factors of the collective 5/2§ and 3/2{ states have been per-
formed. In this numerical work, any modification of the Kisslinger and
Sorensen’s parameters which were adopted in §3 has not been attempted. We

UK |0 I'K" ;v vl OP 150", 57

(@]
— +

l§o> + YI | $oy

AN /n
\

) 30‘,':'3(3\) Eaa(Mas)

Ed(MIN \, :

E2(M1)

m
_____? S

N

S AN Vi

Fig. 9. Graphic explanation of the contributions from each term in Egs. (5-4) and (5-5)
to the reduced matrix element of electromagnetic operator,
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have also adopted a simple choice of the effective charges and the effective spin
g factors:

ep=e+8¢, e,=08¢=0.5¢,

eff_:{0.55 gs, (for 1, Cs, La)
s 0.50 ¢;. (for Mo, Ru)

5-a) The region of I, Cs and La isotopes

The results of calculations in which the coupling effects are taken into
account are tabulated from Table VIII to XI. Table VIII shows that the
E2-transition properties discussed in §3 (of the collective 5/2% states) are well
conserved even when the coupling effects are taken into account. The reason is
understood as follows: Since the mixing amplitude, {2, (5/2%+) defined by (5-1),
in the collective 5/2§ state is small, the main contributions to the B(£2;5/2§—
7/27) are expected to come from the third and the fourth terms on the right-
hand side of Eq. (5-3). Furthermore, since the value of <@, |05 | DDy x>
is not large, the contribution of the £33 part is also small. Then the coupling
effect is expected to enter mainly through the factor {12,(7/2%) in the Eg;
part. (Here, it should be noted that the {{2y(% 5/2%) factors approximately
take the values {&y(% 5/2¥)=8,;) The change in the value of (J2,(7/2%)
from unity, in turn, comes from the admixtures of the dressed 3QP modes with
7=7T/2%* in the 1QP 7/2{ state. Since such coupling effects on the 1QP 7/2}
state are also reduced when compared to the estimation of the QPC theory, no
essential change in the enhancement property of the B(£2;5/25—7/27) occurs.
Following similar arguments, we can see that the hindrance property of the

Table VIII. B(£2) values of the 5/2F states in odd-mass I, Cs and La isotopes,
calculated by taking account of the coupling effects. The unit is ¢2 10-50 cm4. The
adopted parameters are the same as those in Table L.

5/2;—7/2f 5/2;—>5/2f

B(E2)cal B(E2)exp B(£2)cal B(E2)exp
127] 7.6 0.6 0.7+0.12
120] 6.6 2.1+0.4b» 0.1
131] 5.1 0.2
133] 3.8 0.1
131Cs 10.2 23.6+2.59 0.4 0.959
133Cs 8.0 10.4+1.2b 0.2 3.5d
135Cs 6.7 0.1
133].a 13.4 0.2
135La 9.6 22¢) 0.2 1.79
187] 5 7.0 0.2

# Ref, 18), D Ref.19), © Ref. 25), 9 Ref. 27), © Ref. 28).
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Table IX. Calculated g factors of the 5/2 states in odd-mass I, Cs and La isotopes.
The calculated values of g(5/2}) listed in the second column are compared to the
experimental values given in the third column. In the fourth column are listed the
values calculated by adopting the ACS approximation. The calculated and experi-
mental g factors of the 1QP 7/2{ states are given in the fifth and sixth columns,
respectively, for the sake of comparison. In these calculations, effective spin g
factor g8 =055 g, is used. The unit is nuclear magneton eA/2Me.

#(5/25)cal 9(5/2§)exp ¢(5/2%) acs §(7/2])cal 9(7/2;')931)

1] 0.80 0.78 0.77 0.73
125 0.80 0.78 0.77 0.747b
o] 0.81 0.78 0.77 0.7519
sas] 0.80 0.78 0.77

191Cs 0.8 | {37000 0.78 0.77

183Cs 0.74 0.78 0.77

185Cs 0.86 0.78 0.73

105 0.83 0.77 0.74

195 0.78 0.77 0.77

1W7La 0.78 0.78 0.77

® Ref. 20), D Ref. 29), © Ref. 30), 9 Ref. 25), © Ref. 26).

B(E2;5/2§—5/27) is also conserved. Of course, their magnitudes change
appreciably in a quantitative sense, since the Eg; part itself is a small quantity
in this transition.

The AC state-like structure of the collective 5/2§ states is clearly exhibited
in the calculated g factors in Table IX which shows the property ¢(5/2%)
~¢(7/2f). In these calculated values for ¢(5/2}), the coupling effect is
negligibly small and they are determined essentially from the fourth term in
Eq. (5-3). Namely, the ¢ factors in Table IX represent those of the 5/2F
states as the pure dressed 3QP states. Now, the experimental value of the
¢(5/2%) in 81Cs is, in fact, nearly equal to those of the g(7/2{) available in
neighbouring nuclei. This fact is in excellent agreement with the theoretical
prediction and, therefore, is regarded as a further evidence for the AC state-
like structure of the collective 5/2§ states.

In Table IX, for the sake of comparison, are also presented the ¢ factors
calculated by completely neglecting the 3QP correlations among different
orbits. In this approximation (called the ACS approximation hereafter) in
which the 3QP correlation is taken into account only within the specific orbit
2, the formula for the ¢ factor is simply reduced to Eq. (4:13) of Chap. 3. Of
course, for the collective 5/27 states, the specific orbit p denotes the 1¢,/, orbit.
By comparing the results of the ACS approximation to those of the exact
calculation, we see that the former give qualitatively the same characteristics
for the values of ¢(5/23) as the latter. This fact implies that the 3QP cor-
relation in the specific orbit 1¢,,, plays a decisive role in the collective 5/2§
states, compared to the 3QP correlations among different orbits.
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Table X. B(M1) values of the 5/2} states in odd-mass I, Cs and La isotopes, calculated
by taking account of the coupling effect. The unit is (¢%/2Mc)2. The calculated
results for transitions to the 1QP 7/2f and 5/27 states are listed in the second and
sixth columns, respectively. The corresponding experimental values are given in
the third and seventh columns. The contributions from the #1; and Ms3 parts in
Eq. (5'5) are explicitly shown in the fourth and fifth columns, respectively, since
both parts frequently become the same order of magnitudes. In these calculations,
¢811=0.554, is used.

5/2t—>7/2F 5/2f——>5/2f
B(MVeal | B(MVexp | M i Maw | B(Ml)al B(M1)exp
127] 1.4x10-2 3.0x10-2a | —0.28 ;: 0.04 9.5x10-3 1.4x101 @
129] 1.0x10-2 —0.23 : 0.003 8.6x10-3
131] 4.9x10-3 —0.83 ;: 0.41 2.9x 102
133] 9.9%x 104 —0.68; 0.35 1.9x10°2
131Cg 1.7x10-3 4.28x10-3b —0.17 ; 0.07 1.7x10-8 6.08x 104 b
133Cs 1.0x10-3 5.28%x10-3 9| —0.12 ! 0.04 1.1x10-8 3.52x107t o
185Cs 9.5x 104 0.01: 0.02 1.3x104
133].a 5.3x 104 —0.63: 0.39 1.0x10-2
1353 2.1x10-3 1.4%x103d | —0.31 0.19 2.6x10-3 1.77x10-3
13713 8.1x10-5 —0.11}{ 0.07 2.4x10-3

2) Ref. 17), b Ref. 25), © Ref. 27), 9 Ref. 28).

Table X shows the calculated values of B(M1). As for the M1 transitions
between the 5/2% and 1QP 7/2{ states, the first term in (5-3) vanishes since it
is the /-forbidden quasi-particle-transition matrix element. Furthermore, the
matrix element (@), | 03| DL is very small since the dressed 3QP mode
in the P4-QQ force model does not contain the ‘“‘/"=1%" quasi-particle pairs
except for their appearance through angular-momentum recoupling (due to
the Pauli principle among constituting three quasi-paritcles). Therefore, the
values of B(M1; 5/2§—7/2f) are mainly determined by the fourth term in
(6:3), i.e., the Mg3 part. By comparing these to the available experimental
data for 131:133Cs and 135L.a, we see that the calculated results reproduce the
retarded M1 transition very well. On the other hand, the values of B(M1;
5/2§—>5/27) are determined by the competition between the M;; and Mg,
parts, both of which are small quantities. The hindrance of this transition
observed in some experiments may also be considered as an additional evidence
for the AC state-like structure of the 5/2% states. Although complete agree-
ment between theoretical and experimental values should not be expected
for such small quantities, we may thus assert that the #/1-transition probabilities
are of significance in examining the magnitude of the mixing amplitudes under
investigation.

As we have seen, almost all characteristics of the collective 5/2F states can
be reproduced by the calculations based on the proposed theory. However,
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Table XI. B(£2) values of the 3/2{ states in odd-mass I, Cs and La isotopes, calculated
by taking account of the coupling effects. The unit is ¢2 10~50cm4.  The adopted
parameters are the same as in Table III.

3/2i—>5/2¢ 3/2r—17/2;

B(E2)eal B(E2)exp B(E2)eal B(E2)exp
127] 0.04 6.5+0.8 2 1.12 11.2+0.2 5
120] 0.05 0.65 7.0+0.8 2
18] 0.60 0.25
183] 0.10 1.91
131Cs 2.06 0.04
133Cs 0.90 1.05 7.2+0.8 2
135Cs 3.44 1.29
193La 11.27 0.17
1351 8.40 >4.80 0.32 >0.19
137La 6.46 0.43

) Ref. 19), b Ref. 16), © Ref. 28).

it should also be pointed out that the following experimental facts still need
investigation: 1) In the (®He, &) reactions performed by Auble et al.,2) the
spectroscopic factors of the collective 5/2% states in I isotopes were found to
vary from 0.12 in 127] to 0.47 in 1811, which are both significantly larger than
the calculated values. 2) The observed values of B(£2; 5/2{—7/2{) are very
large in 1271 and 2116019 [n our calculation, since this Z2 transition is
largely of 1QP transition, such a strong enhancement has not been obtained.

S5=6) The region of Mo and Ru isotopes

In contrast to the case of collective 5/2§ states discussed above, the coupling
effect of the 1QP mode is not negligible for the collective 3/2{ states in Mo and
Ru isotopes. (See Table VII.) One of the reasons is that the new reduction
effect coming from the exchange effects originated from the Pauli principle
(discussed in §4) is not so drastic in the case of collective 3/27 states. Another
reason is that, since the 1QP 43, mode which couples to the low-lying dressed
3QP 3/2{ mode lies Aigher in energy, the reduction (umq—wv.v;) factors
appearing in the main matrix elements in Vini(d, #/) are not as small as in the
case of collective 5/23 states in I, Cs and La isotopes (in which the 1QP 23,
mode lies Jower in energy). The calculated trend that the mixing amplitude
of the 1QP 3, mode in the collective 3/2{ state becomes larger as /V increases
seems to be in good agreement with the experimental trend that the spectro-
scopic factor of the (&, p) reaction leading to the 3/27 state changes from 0.019
in %Mo (V=53) to 0.11 in %Mo (N ==57).9

The result of calculations for the collective 3/2f states are tabulated in
Tables XII, XIIT and XIV. By comparing the calculated B(£2; 3/2{—
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Table XII. B(£2; 3/2{—5/2%) values in odd-mass Mo and Ru isotopes, calculated by
taking account of the coupling effects. The unit is ¢2 10-5° cm4. The adopted
parameters are the same as in Table V.

3/2{—>5/2¢
B(E2)cal B(E2)exp

95Mo 2.9 5.70+0.36 2
97Mo 4.5 3.07£0.17 2
99Mo 2.5
97Ru 5.5 7tz
9%Ru 7.5 13.05 9

101Ru 8.8 5.79

2) Ref. 2), D) Ref. 6), © Ref. 7).

5/27) values (in Table XII) to those in Table V, we see the extent to which
the coupling effects (between the dressed 3QP and 1QP modes) reduce their
enhancements. Corresponding to the increasing coupling effect with &V, the
reduction of the B(E2) values from those in the absence of the coupling effect
also becomes appreciable in ®®Mo and 1°'Ru with N=57. Here, of course,
the coupling effect is not so strong as to break the zeroth-order picture of
the collective 3/2{ states as the dressed 3QP states.

The magnetic dipole moments of the 3/27 states have been known in %Mo,
%Ru and 191Ru. The observed values of ¢(3/2]) show a small deviation from
the property ¢(3/21)=¢(5/27). Concerning the origins of this deviation, we can
point out the following: 1) The deviation of about 109, (from the property
g/-1=¢;) should be expected even if the collective 3/2{ states under con-
sideration have exactly the same structure as the AC states. (See the geometrical
factors in Eq. (4-13) of Chap. 3.) 2) The mixing of the 1QP dj,, state in the
collective 3/27 state brings about a destructive effect on the ¢ factor, since the
values of g(dy,,) and ¢(ds) are of opposite signs. 3) The growth of the 3QP
correlations among different orbits bring about the deviation from the property
¢/-1=¢;. In the calculated ¢ factors shown in Table XIII, the 3s,,, quasi-
particle participating in the dressed 3QP 3/2f mode plays an important role
in bringing about the deviation.

The magnitude of the difference between the values of ¢(3/2)and ¢(5/27)
observed in experiments seems to be consistently accounted for by the effects
1)and 2). However, as shown in Table XIII, the calculated results show that
the values of ¢(3/27) are considerably affected by the effect 3). Due to the
fact that the effect 3) depends quite sensitively on the single-particle energies
adopted in the calculation, the calculated results are not in good agreement with
the experimental data. A more accurate evaluation on the contribution of the
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Table XIII. Calculated ¢ factors of the 3/2{ states in odd-mass Mo and Ru isotopes.
The calculated values of ¢(3/27) listed in the fourth column are compared to the
experimental values given in the fifth column. In the sixth column are listed the
values calculated by adopting the ACS approximation. The calculated and experi-
mental g factors of the 1QP 5/27 states are given in the seventh and eighth columns,
respectively, for the sake of comparison. The contributions from the g11 and gss
parts in Eq. (5-6) are explicity given in the second and third columns, respectively,
with the aim of showing the coupling effects on the calculated g(3/2{) values listed
in the fourth column. In these calculations, ]gf £-0.50 ¢s is adopted. The unit

is eAf2Mc.

g | ogu | g32Nl | 9B/ | §3/2)acs | 96/2Dcal | §(5/2]exp
®Mo | 0.001| —0.62| -0.62 ((TO-28E0-20 | 035 | -037 | —0.3659
“Mo | 0.01 | —0.26 —0.25 —0.33 —0.37 | —0.373
%Mo | 0.10 | —0.10| —0.01 —0.28 —0.36
“Ru | 0.003{—0.60 | —0.60 —0.32 | —0.37

i - d

wRu | 0.02 | —0.31| —0.20 ((TQ-19L00M 034 | 036 | —0.250
iR | 0.08 | —0.59| —0.48 |—0.207+£0.017® —0.20 | —0.35 | —0.289

D Ref. 3), D Ref. 4), © Ref.31), & Ref.9), © Ref.8), D Ref. 11), ® Ref. 10).

3s1/5 quasi-particle seems necessary.

As for the systematics of B(M1; 3/2{—5/27), a curious trend in the
sequence of odd-mass Ru isotopes has been observed: The value decreases from
97Ru (V=>53) to *Ru (V=55) and then increases from %?Ru to 191Ru (N =57).
(See Table XIV.) The origin of such a curious trend may be understood as
follows: Since the transition matrix element of the type <@ |03 D x>
is extremely small, the My; and M3 parts in (5-3) are negligibly small.

Then, the M1 transition of interest can take place mainly through the A7y,

Table XIV. B(M1;3/2{—5/2]) values in odd-mass Mo and Ru isotopes, calculated by
taking ‘account of the coupling effect. The unit is (e%4/2M¢)2%. The contributions
from the Af11 and M3s parts in Eq. (5'5) are explicitly given in the second and third
columns, with the aim of showing that the B(4/1) values depend sensitively on the
relative signs of them. In these calculations, ggf £=050 ¢s is used.

3/2t—>5/2¢
M Mss B(M1)eal B(M1)exp
95Mo —0.06 —0.05 3.0x10-2 (4.21+0.02) x 10-3 @
97Mo -0.17 |  0.23 7.3x10-4 (2.2+0.4) x10-2 @
99Mo —0.47 0.32 4.2x10-2
97Ru —0.11 | 0.01 2.4x10-3 2.20x10-2 B
PRy —0.26 |  0.43 6.9%x10-8 3.33x10-4 9
101Ry 0.42 | 0.70 2.8x10-1 2.78x101 ©

) Ref. 2), D Ref.6), © Ref. 7).
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Fig. 10. The contributions from the /11 and Mas parts to the B(M1; 3/2{—5/27)
in Ru isotopes. (See also Table XIV.)

and Mgy parts. The M,, part, which comes from the mixing effect of the
1QP 3/2+ state in the dressed 3QP 3/27 state, represents the 1QP transition
between the spin-flip single-particle orbits, 2d3, and 2d;,. The M35 part,
which comes from the mixing effect of the dressed 3QP 5/2+ states in the 1QP
5/2% state, represents the transition between the dressed 3QP 3/2+ and 5/2+
states. The sign of the mixing amplitude {{;(3/2%) involved in the My, part
depends essentially on the sign of the effective coupling strength Vini(a, 7J/)
with a=(2dy,), =1 and /=3/2, while the sign of the mixing amplitude
£$3,(5/2%) involved in the Mgy part depends on that of Vinge, #) with
a=(2ds;), n=1 and /=5/2. Now, from the microscopic structure of the
Vint(a, »I) given by Eq. (4-3) we can observe the following: The value of
Vint(dsse, 3/21) changes sign as one moves from %’Ru to 19'Ru, while the value
of Vint(dsse, 5/2%) conserves sign. The sign change in the former comes
from the increase of the component {(vdy;)%vsy,} in the dressed 3QP 3/2f
mode, which has a sign opposite to the sign of the main component {(vd5,)3}.
Thus, as is seen from Table XIV and Fig. 10, the phase relation between the
M, and Mgy parts changes from destructive to constructive as one moves
from ?'Ru to Y91Ru. Here the increase of the absolute magnitudes of the
M,; and Myq parts represents the increasingly important role of the coupling
effects as the neutron number goes from N=>53 to N==57. In conclusion, we
can say that the curious trend in B(M1;3/2{—5/27) comes from the change
in the coherent property between the M11 and M3 parts, which is essentially
determined by the structure change of the dressed 3QP 3/2f mode. Since the
values of the M3 and M33 parts depend rather sensitively on the adopted single-
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particle energies, a better agreement between theoretical and experimental
B(M1) values is obtainable within the framework of the introduced model if
the adopted parameters are changed slightly.

For 95Mo with V=353, it has been known that the shell-model calculation
with the subspace consisting of the orbit 1¢g,, for protons and the orbit 2d5,
for neutrons yields the low-lying 3/2{ state.32:33) Of course, the collective
nature of the 3/2f state cannot be fully accounted for in the Tamm-Dancoff
approximation with restricted shell-model subspace. Recently, the collective
structure of the 3/27 state in Mo has been investigated in terms of the semi-
microscopic model in which the three-neutron valence-shell cluster is interacting
with the quadrupole vibration of the ‘‘core”.38):39) Similar investigations
have also been done for odd-proton I isotopes with Z=53.39~37" The results
of these investigations indicate the remarkable improvements over the con-
ventional particle-vibration-coupling model; namely, the appearance of the
low-lying 3/2{ state (in 95Mo) and 5/2§ states (in I isotopes) is well reproduced
in these calculations, together with their enhanced Z2-transition properties.
This fact implies the importance of explicitly taking into account the three-
particle correlations in the valence-shell orbits. As was discussed in § 3-3
of Chap. 3, the dressed 3QP modes under consideration are capable of de-
composing into the form in which the direct relation with this semi-microscopic
model is visualized. However, it should be emphasized that the essential role
of the 3QP correlations (characterizing the collective excitations in spherical
odd-mass nuclei) is not by any means specific to the single-closed-shell plus
three-nucleon system such as %Mo and I isotopes. In fact, as we have seen,
the collective 3/2f and 5/2§ states appear quite regularly in nuclei with V or
Z being 53, 55 and 57.  The following fact should also be noted: In our model,
for example, the collective £2 enhancements of the 3/27 states (in odd-neutron
Mo and Ru isotopes) are caused not only by the forward-going amplitudes of
(wmy)-type but also by the backward-going amplitudes of (mmv)-type which
represent the ground-state correlation. (See Table VI.) In particular, the
ground-state correlation originating from the quadrupole force acting between
proton- and neutron-quasi-particle-pairs plays an important role in enlarging
the backward-going amplitudes of (wmv)-type. This implies that the internal
structure of the quadrupole vibration (phonon) of the core is considerably
affected by the interaction between the quasi-particles in the valence-shell orbits
and the quasi-particles excited from the core. It seems difficult to take such an
effect into account within the semi-microscopic model mentioned above.

§ 6. Concluding remarks

We have shown that the collective 5/2F states in odd-proton I, Cs and La
isotopes and the collective 3/2] states in odd-neutron Mo and Ru isotopes are
identified as the new elementary mode of collective excitation, i.e., the dressed
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3QP mode. We have also shown that the physical condition for the appearance
of the dressed 3QP modes is not specific to the AC states but quite general in
spherical odd-mass nuclei. The presence of a high-spin orbit having parity
opposite to that of the major shell, such as in the case of the AC states, is not a
necessary condition for the realization of the dressed 3QP modes. Rather,
the important condition is found in the shell structure of the orbits lying in the
neighbourhood of the chemical potential. Even if many orbits having the
same parity lie close to one another and the energy spacings between the orbit
of interest and the others (with the same parity) are not so large as in the case
of the AC states, one cannot expect a less dominant role of the 3QP correlation
at the specific orbit lying in the vicinity of the chemical potential. Further-
more, the physical condition (in shell structure) weakening the effective coupling
strength between the 1QP mode and the collective dressed 3QP mode (with
the same spin and parity) is common to the condition for the realization of the
AC state-like dressed 3QP mode. Thus, the dressed 3QP modes similar to the
AC states can exist as relatively pure elementary excitation modes over a wide
region of spherical odd-mass nuclei.

The essential roles of the 3QP correlation will not be restricted to
characterize the AC state-like collective excitation modes having spin (F—1)
which have been investigated thus far. Rather, we should expect various
roles of the 3QP correlation of which we know little at present. For example,
the role of the 3QP correlation among quasi-particles in different orbits should
be investigated further. In this chapter, the importance of such effects has
only been briefly mentioned for the case of the 3/27 states. In the succeeding
chapter, standing on the new point of view acquired here, we will investigate
microscopic structure of breaking and persistency of the conventional “‘phonon-
plus-odd-quasi-particle picture.” Our discussion will be extended to all low-
lying collective excited states, including those having spins other than (j—1).
The present status of our picture of the low-energy excitations in spherical
odd-mass nuclei will then be summarized.

Appendix 4A. Procedure of numerical calculation

Here, we describe a calculational method in solving the eigenvalue
equation of the dressed 3QP mode, (3-3) of Chap. 2, full expression of which
is given in Appendix 6A.

4A-1  Orthonormal basis vectors

In solving Eq. (3:3) of Chap. 2, we should first prepare the orthonormal
basis vectors in the coupled-angular-momentum representation defined in
Appendix 6A. Such a requirement is easily achieved by diagonalizing the
projection operator P;, the matrix elements of which are P;(ab([)cla’d’(J")c")
explicitly defined by (2A-6). From the property of the projection operator,
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PZ=P,, it is clear that the eigenvalues take only the value +1 or 0:

10
U,P,U;1 =[0 0]’ (4A'1)

where U, denotes the unitary transformation which diagonalize P,. The
eigenvectors belonging to the eigenvalue 1 just coincide with the coefficients of
fractional parentage (cfp) for (j,/p/.)-configurations with seniority »=3 and
total angular momentum /. The orthonormalized basis vectors are then
obtained as

islabe]= U,(@)¢p,labe], (4A-2)
where the vector ¢,[abc] is constructed from the elements
{ilab([)el; ], Plabe)}, (4A-3)

with P(abc) denoting all the permutation with respect to (abc). In (4A-2),
U,(7) denotes a row vector of the matrix U, and the letter 7 labels the inde-
pendent basis vectors. Needless to say, the projection operator P; and the
matrix U, are both diagonal with respect to different sets of the orbital triad

(abc).
4A-2 Eigenvalue equation in terms of orthonormal vectors

When the projection operator P, is diagonalized, the matrix elements
of the eigenvalue equation are reduced to the following form:
D, [abcla’d'c']
=U,[abc]-D;[abcla’t'c']-U,[a'd' "1 (4A-4)
[lo]U bcl-M,[abcla’t'c'] - U,[a’d ]1[’ I]
= abc) abcla'b'c’ U, [a’'d' ']~
00/ 7t 2k ! 00
where D,[abcla’é’c’] denotes the matrix composed of the elements D,[ab(/))
cla’d'(J")e'] and M,[abcla’d’c"] the corresponding matrix excluding the projec-
tion operator P,. In (4A-4), the matrix U, which corresponds to a particular
set of orbital triad (abc) is explicitly denoted as U;[aéc]. Thus, the vectors
belonging to the zero-eigenvalue of the projection operator do not couple
to the physical vectors having eigenvalue 1. We can also obtain the matrices
A, and d, from A, and d; by the same procedure as above. In this way
we obtain the eigenvalue equation written in terms of the orthonormal basis
vectors as follows:

wnl[ Pur ]:[ 3D, ~z§z] [%1 ] a5
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AA-3 Two-step diagonalization of secular matrix

We now diagonalize the secular matrix (4A-5) by the following two-step
procedure. First we independently diagonalize the forward and backward
matrices, D; and d,:

w{, 0
e I = a6
0 T
wl;
Vo (—d,)- V}b)"=< wy; )Ea)}. (4A-T)
0 e
The new secular matrix thus obtained, i.e.,
o VDA pw
[ ~ 7 I Irrr ] <4_|A,'8)
VI(b)A;‘ V,(f)"l @’ )

is then diagonalized as the second step. The two-step-diagonalization
procedure is, of course, equivalent to the direct diagonalization. This method,
however, possesses the following merits:

(1) The diagonal matrix @} obtained in the first step gives us the solutions
of the corresponding Tamm-Dancoff approximation, i.e., the solutions of the
“bare” 3-quasi-particle states.

(2) In the second step, the secular matrix (4A-8) can be truncated in such a
way that some restricted eigenvectors of D; and d, are sufficient to yield a
good approximation for the full calculation. It should be noted here that the
normalization of the correlation amplitudes given by (3-6) of Chap. 2 does not
change at all by this truncation.

4A-4  Another method for providing orthomormal basis vectors

We can adopt an alternative method for providing the orthonormal basis

vectors by rewriting the forward-going components of the eigenmode operator
(3:1) of Chap. 2 as follows:

1 .. .
C;U:?ﬁ_ aZ:j ‘ﬁnl[“a(f)‘l]m 2 (]a]amﬂumaz |]M)(]]aMm¢la ' [K>az1al’lzazs

a1agfag

1 .. .
+51 2 Yasaalf)e] X (Jajaetna JM) JjeMm,| K )al al.a)
\/2 acl Ma Ma,MyM

(ase) artey
+ D arab(f)e] T (Jajymans M) jeMm,| IK )diakal,  (4A-9)
(u,a<b§<fc) MaMm gy M

l/"ILI[’"‘(])K] ) : t 1 1
(r§cf «/1—{—3,-3 m,,m?myM(]r]smpm" ]/M)(]]Gva 1 [K)apaaay

+ {backward components being similar to the above definitions}.
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In this method, the matrix of the secular equation becomes more complicated
than that in the preceding subsections, hence we do not give its explict form.
In the calculations of Chaps. 4, 5 and 6, we have independently adopted both
methods for providing the basis vectors. They have been used to check the
numerical calculations done there.
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§1. Introduction

In the preceding chapter, we have obtained a conclusion that, in almost
all spherical odd-mass nuclei, the dressed three-quasi-particle (3QP) states
with spin /=(j—1) are expected to appear in the neighbourhood of the 1QP
states with spin 7=5/2. Furthermore, we have emphasized that the roles of
the 3QP correlations should be regarded not only as to bring about the general
presence of the (f—1) states but also as to play an essential role in characterizing
the low-energy excitation structure in almost all spherical odd-mass nuclei.

This conclusion leads us inevitably to change the customarily used
‘“‘phonon-plus-odd-quasi-particle picture’” in which elementary modes of
excitation (characterizing low-lying states in spherical odd-mass nuclei) are
assumed to be odd-quasi-particle modes and phonon modes.1»? In the
conventional quasi-particle-phonon-coupling (QPC) theory,1:? as is well
known, the phonons are described by random-phase approximation (RPA)
assuming them to be ideal bosons (and hence are commutable with the odd
quasi-particles). Boson expansion methods for odd-mass nuclei®~% can
also be regarded as perturbational approaches to describe the system starting
from these (independent) elementary excitation modes.

In contrast to these approaches, the theory developed in Chap. 2 (which
may be called the “method of new-Tamm-Dancoff (NTD) space”) is free from
introducing the concept of phonon to odd-mass nuclei and, furthermore,
includes the QPC theory as a specially approximated version (in which the
kinematical effects due to the Pauli principle among quasi-particles more than
two are all neglected). The proposed theory enables us to classify both the
complicated ‘“‘anharmonicity effects’” and the roles of residual interactions in
a systematic way. Furthermore, by using the theory, we are able to investigate
the mutual relationships between various aspects of ‘“‘anharmonicity effects.”
Thus it now becomes possible to investigate the microscopic structure of break-
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ing and persistency of the conventional ‘‘phonon-plus-odd-quasi-particle
picture,” from the new point of view obtained in the previous chapters. In
this chapter, special emphasis will be put on extracting (from the complicated
“anharmonicity effects’’) the essential correlations which necessarily lead us to
adopt a new picture for the low-lying collective excited states in spherical
odd-mass nuclei.

In §2, starting from the basic picture of the QPC theory, some criteria for
investigating the breaking and persistency of the conventional phonon picture
in spherical odd-mass nuclei are set up. In §3, characteristics of the collective
3QP correlations in many j-shell model are discussed exemplifying the results
calculated for odd-proton 133Cs and 135La nuclei. Here, with the aid of the
criteria set up in §2, various aspects of the 3QP correlations are investigated
by paying attention to their relation with shell structure. It will be shown
that, although simple phonon picture is drastically changed due to the action
of collective 3QP correlations, one element of the phonon picture which is
characterized by the concept of “phonon-band” can persist under a certain
condition of shell structure. In §4, we briefly discuss the roles of correlations
between proton- and neutron-quasi-particles (in characterizing the dressed
3QP modes) by showing the results calculated for Mo and 195Pd nuclei. The
results calculated for 117Sn and 115Cd nuclei are also presented in §5 in order
to supplement the statement given in §4 and to show the possibility of complete
breakdown of the phonon-band character under another situation in shell
structure.

In §6, after the investigations on the microscopic structure of the
eigenmodes themselves, we turn to estimate the effect of the interactive force
Hy. In the conventional QPC theory, as is well known, the coupling between
the odd quasi-particle and the phonon comes entirely from the interactive force
Hp and plays a role changing the number of phonons by one. However, in
this section, an important difference between the evaluation of the A effect in
the ““ideal-boson-fermion space” (implicitly assumed in the QPC theory) and
that in the “quasi-particle NTD space” (characterizing the proposed theory)
will be shown.

In order to keep a close contact with the conventional QPC theory, all
discussions in this chapter will be made by adopting the pairing-plus-quadru-
pole (P4 QQ) force model.®

§2. Criteria for breaking and persistency of phonon-bands

In this section, in order to investigate the microscopic structure of breaking
and persistency of ‘‘phonon-plus-odd-quasi-particle picture,” we first re-
capitulate the characteristics of the excitation spectrum and of E2-transition
properties given by the unperturbed Hamiltonian ((® of the QPC theory.1)2



140 A. Kuriyama, T. Marumori, K. Matsuyanagi, R. Okamoto and T. Suzuki
The P+ QQ Hamiltonian can be divided into the following parts in the
quasi-particle representation:
H=Hy+:Hpp:, }
1Hog: =Hx+ Hy+Hy,

@1

where Ao denotes the free quasi-particle Hamiltonian and each part of : Hpp:
is schematically represented in Fig. 1. In the conventional QPC theory, two-
quasi-particle (2QP) correlation diagrams originated from the A x- and A, -type
interactions are summed up to all orders in the sense of NTD approximation.
Then the part, Ho+H x+ H,, is transformed into the free Hamiltonian
which describes a system composed of (non-interacting) odd quasi-particle
plus phonons. On the other hand, the part Zy is considered to give rise to the
coupling between the odd quasi-particle and phonon in the ‘‘ideal-boson-
fermion space.” Thus the model Hamiltonian of the conventional QPC theory
takes the following form:

=IO J( ),
HO =X Eyildat 3 (BatEp)AGulad) A ilab)
= TM(T*2)
+ 2 § o, Iy (T 520(v),
I = 5 5 XepO) {5570+ L)} iy

(2:2)

Hx Hv

Fig. 1. Graphic representation of the matrix
elements of the quadrupole force. Part
Hx represents a scattering of the pair of
quasi-particles coupled to /7=2+, while
part Ay represents a pair-creation and a
pair-annihilation of quasi-particles coupl-
> ed to /*=2+, Parts Hx and Hy are
=2 called the comstructive force. Part Hy
represents a creation and an annihilation
of the quasi-particles coupled to J==2+,
accompanying a scattering of a quasi-par-
ticle. Part Ay is called the interactive
Sorce.

Hy
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where al, A'(ab) and Ty (v)= 34 h,(ab) Ab1(ab)— p,(ab) A53/(ab)} represent
the creation operators of ideal-odd-quasi-particle, ideal boson corresponding to
quasi-particle pair and ideal-phonon, respectively. In Eq. (2-2), the Greek
letter v distinguishes various eigensolutions of phonon modes and, as an
additional approximation,1-2 non-collective phonons have often been neglected
together with the second term of K. In the same way the mass-quadrupole
operator is expressed as

Qowr= 2 QuW{T () + T ()} + % gu(af)didg, 23)

where Q,(v) and ¢,(af) represent the collective and single-quasi-particle
matrix elements, respectively. A theoretical foundation for deriving the
model operators in the QPC theory has been known as boson expansion methods
in odd-mass nuclei,®"% in which the unperturbed Hamiltonian 4((® and the
expression (2:3) are considered as a zeroth-order approximation for boson
expansion.

Now, one of the characteristics of the basis states given by H(® is that
they are classified into definite sets of states each of which can be called @
phonon-band. The phonon-bands are distinguished with one another by the
quantum numbers of the single-particle orbit a=(#n//), to which the odd
quasi-particle belongs. As illustrated in Fig. 2, each phonon-band consists of
a series of degenerate multiplets in which the odd quasi-particle is coupled
with some number of phonons. The excitation spectrum and the £2-transition
properties obey the well known pattern of the harmonic oscillators. It should
be emphasized here that the £2 transitions between different phonon-bands
(inter-band transitions) are forbidden if we neglect the second term in (2-3).
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Fig. 2. Schematic representation of the concept of phonon-bands.
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In particular, the inter £2 transitions from the multiplet (composed of the odd
quasi-particle ¢» the orbit a coupled with one phonon) to the band-head (the
odd quasi-particle state in z4e orbit b) which belongs to the other phonon-bands
are strictly forbidden.

Starting from this zeroth-order picture of the QPC theory, let us switch on
the 3QP correlations and follow up the process of breaking of the picture.
Then we can consider two cases for the way of the breaking;

A) the case where the 3QP correlation among quasi-particles in the same

single-particle orbit plays a predominant role (Fig. 3-A),

B) the case where the 3QP correlation among quasi-particles in different

single-particle orbits plays a predominant role (Fig. 3-B).

A typical example of case A is the AC states. As was shown in Chap. 3,
in the case of the AC states the triggering effect of the 3QP correlations (which
strongly violate the concept of phonon in odd-mass nuclei) is restricted among
quasi-particles in a specific high-spin and unique-parity orbit, because of the
parity-selection property of the quadrupole force. Hence, in this case, we can
look into the breaking of the simple phonon picture within a “(isolated) single
phonon-band.” (See Fig. 16(a) in Chap. 3, which shows the splitting of the
““quintet” composed of the gq,5 0dd quasi-particle coupled with the 2+ phonon.)

As was discussed in Chap. 4, we can also expect the other situation which
belongs to case A, that is, in spite of the fact that many orbits with the same
parity lie close and equally active for the 3QP correlations, effect B is highly
reduced compared to effect A. An important characteristic in this case is that,
although the energy splittings of the multiplets are very large (due to effect A),
the £2 transitions between different phonon-bands (the inter-band transitions)
are hindered compared to the intra-band transitions. (See Fig. 4.) In this
sense, we can say that the concept of phonon-band is preserved in case A.

case A case B

Fig. 3. Illustrations for two types of the 3QP correlations.
case A: 3QP correlation among quasi-particles in the same orbit.
case B: 3QP correlation among quasi-particles in different
orbits (axb=c¢, axb=c, a=b=c or bxc=a).
The subscript 7 (=1, 2,..., 5) of a is used to specify the single-particle
states with different magnetic quantum numbers in the same orbit a.
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The situation belonging to case A seems to resemble to that given by the
phenomenological core-excitation model,” in the point that the inter-band
transitions are forbidden approximately. However, there exist important
differences, which are; 1) the center of gravity theorem is violated, 2) the
B(E2) values for the transitions from the multiplet to their band-head (one-
quasi-particle) state are different from one another and 3) they are also not
equal to the phonon transition B(£2; 2+—0%) in the even-even core. This is
because of the fact that, from our viewpoint, the microscopic structure of the
core excitation (phonon) itself is changed in a way which depends on the spin
7 of the multiplet, due to the 3QP correlation at a specific orbit.

On the other hand, in case B, the members with the same spin which
belong to different phonon-bands couple with one another strongly (due to the
3QP correlation among different orbits), as is evident from Fig.3-B. Then the
(approximate) selection rule for the £2 transitions mentioned above is violated
and, therefore, in this case we cannot identify the phonon-bands. It should
be emphasized that such an effect of “band-mixing’’ never occur in the con-
ventional QPC theory. Namely the “band-mixing’’ due to the 3QP correlation
is a ‘“‘direct mixing’’ originated from the A, and A interactions, whereas in
the QPC theory the ““band-mixing” can occur only through “indirect mixing”’
mediated by the coupling to the 1QP states (originated from the /4 interaction).

The way and the extent of the breaking of the “phonon-plus-odd-quasi-
particle picture’” will depend on various conditions. For instance, depending
on shell structure and on the spins of collective states, there may exist a phonon-
band which couples easily (or hardly) to the other bands. Therefore, we will
investigate, in the following sections, the microscopic structure of breaking
and persistency of the ‘“‘phonon-plus-odd-quasi-particle picture’” with the aid
of the criteria given here.

§3. Persistency of phonon-band character and breaking
of simple phonon picture

In the theory of the intrinsic excitations in spherical odd-mass nuclei,
which is formulated in Chap. 2, the original 2+ QQ Hamiltonian is transcribed
into the ‘“quasi-particle NTD space” as follows:

H=H®O | Hnt)
HO=1-(Hy+ Hx+ Hy)1= Zs: E ,a}a, +75_:‘me YirkYurx, ¢ 1)
H(int):].'Hy'].: E Vint(d, n])'{Y;z[Kaa—{‘ag Y’n[K},
811K
where @} and Y}, denote the creation operators of the 1QP and dressed 3QP

modes in the space, respectively. Here we have adopted the projection operator
onto the “‘quasi-particle NTD subspace,” 1, by which the modes with trans-
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ferred seniority higher than three are neglected.

In the same way as in the conventional QPC theory, we have a free
Hamiltonian H(© for the new type of elementary excitation modes if the
(original) interactive force Ay is neglected. However, since the collective
3QP correlations have already been taken into account in constructing the
dressed 3QP modes, the spectra given by H® now acquire abundant
structures. The dressed 3QP mode can of course be decomposed into a phonon
coupled with an odd quasi-particle in the limit where various 3QP correlation
diagrams are all neglected. Hence, by comparing the characteristics of the
low-energy excitation structures given by H( with those of # (0, we can see
the breaking and persistency of the phonon-band in the QPC picture due to
the collective 3QP correlations.
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Fig. 4(a). Result of the calculations for the dressed 3QP states in 138Cs. They are
presented to show the breaking and persistency of the quintet structures based on
the 1QP states with orbits 147,2 and 2ds,a. The presented level energies are
those measured from the correlated ground state. The numbers appearing on the
transition arrows give the B(£2) values in unit of £210~-5° cm4, which are calculated
with polarization charge 8¢=0.5¢ and with harmonic-oscillator-range parameter
52=1.041/3, The adopted value of y, is related with the quadrupole-force
strength y through y,=x4445/3 (MeV). For simplicity, the £2 transitions smaller
than 0.1 and the other higher-lying states are both omitted from the figure.
The parameters of the shell-model space used in this calculation are the same as
those adopted by Kisslinger and Sorensen.?
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With this aim, the calculated excitation spectra for odd-proton 133Cs and
185La are presented in Fig. 4. In this figure, the calculated B(£E2) values are
also written on the transition arrows. Method of calculations and the adopted
parameters are the same as are described in §2-Chap. 4. The quadrupole-
force strengths are fixed so as to reproduce, by means of the RPA, the average
energies of the 2+ phonon states in the adjacent even-even nuclei. It should
be noted here that the numerical examples are presented for 133Cs and 135La
whose even-even neighbours are considered as exhibiting vibrational spectra.

The format of Fig. 4 is made so that the relationship to the spectrum
characterized by the concept of phonon-band is visible. In odd-proton 133Cs
and 135La, the 1¢,,, and 245, orbits lie near the chemical potential of protons.
In this figure we are able to identify two families of states which belong to the
phonon-band based on the 1g¢,,- and the 2d;,-1QP states, respectively.
Needless to say, the two ‘“‘quintets” (composed of the 2+ phonon coupled with
the g¢,,5- and Jjy;p-odd-quasi-particle, respectively) should be degenerated in
energy in the hatched regions, if we neglect the collective 3QP correlations
completely.

From Fig. 4, we can see the following characteristics:

(1) The energy-splittings of the quintets are very large, i.e., the level structure
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Fig. 4(b). Result of calculation for the dressed 3QP states in 135La. Notations and
parameters used are the same as in Fig. 4(a).
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shows a drastic change from that of the simple phonon picture. The magni-
tudes of the splittings are comparable to (or even larger than) the excitation
energies of phonons themselves. Clearly we are in a situation far from the
zeroth-order picture of the QPC theory. Of course, from the viewpoint of the
boson expansion methods, this fact implies that the couplings between the
ideal-odd-quasi-particles and the ideal-phonons are too strong to be treated
within a perturbational method.

(2) The splitting of the quintet which belongs to the ground band is larger
than that of the excited band. The magnitude of the splitting decreases as
the excitation energy of the band-head 1QP state becomes higher.

(3) Corresponding to the changes in level structure, the £2-transition prob-
abilities (from the quintet to their band-head) also become different among the
members of the quintet. As a gross property, the lower the excitation energy
of the level, the larger the B(£2) value.

(4) 1In each quintet with band-head spin 7, the sum of B(£2), 33,B(E2; I—),
becomes smaller than 5X B(E2; 2+—07%) of the phonon transition calculated
by means of the RPA. (In the phenomenological core-excitation model, we
have ¥ ,B(E2; I—j)=5X B(E£2; 2+—01).)

In spite of these drastic changes of the excitation structure which evidently

show the breaking of the simple phonon picture, we can still find the following
characteristic:
(5) The property (characterizing the concept of phonon-band) that the inter
E2 transitions are hindered compared to the intra Z2 transitions is seen to
persist rather well (aside from the 3/2% states of 133Cs in which the inter-transi-
tions compete with the intra-transitions).

In the region of Cs and La isotopes, the low-energy-excitation structure is
determined mainly by the competitions among the three effects; effect A (shown
in Fig. 3-A) in the orbit ¢, effect A in the orbit &y,; and effect B (shown in
Fig. 3-B) involving the orbits ¢,,, and dy,,. Therefore, characteristic (5) sug-
gests that, according to the criterion given in §2, effects A are dominant to
effect B.

We can find the origin of this trend as follows: In the 3QP correlations
among quasi-particles in different orbits (the effects B), the one which couples
the ¢g,,,-band to the d5,,-band contains, as a major part, the spin-flip matrix
element (d5/21172Y3(l¢7/) which is considerably smaller than the diagonal
matrix elements, (¢;2172Y;11¢72) and (ds;ll72Y,lld5ss), contributing to
effects A. Therefore, in spite of the drastic breaking of the simple phonon
picture mentioned as characteristics (1)~(4), the concept of phonon-band is
expected to persist in such a situation for shell structure. It is also interesting
to recall that this condition of shell structure is common to that for the
appearance of the dressed 3QP modes having ACS-like structure, e.g., the
5/2§ states in Cs and La isotopes.
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Figure 5 has been made to show the dominant role of effect A. Here the
result of the exact calculation for the dressed 3QP modes is compared with that
of the approximated one in which effects B are completely neglected. When
effects B are neglected, the eigenvalue equation for the dressed 3QP modes is
reduced to Eq. (3-23) of Chap. 3 with the orbit » now denoting the orbit of each
band-head 1QP mode. We call such an approximation as ‘single-band
approximation’ or “ACS approximation.” From Fig. 5, we can see that the
excitation structure is determined in a major way by effects A, that is, the
characteristics coming from effects A persist clearly even when effects B are
included.

Then, as shown in §3-Chap. 3, the splitting of the multiplet depends on
three factors; (i) the enhancement factor #;z; in the orbit ;7 of the band-head
1QP mode, (ii) the enhancement factors (#v,+vy2%,) in the core and (iii) the
value of spin ; of the band-head 1QP mode which is involved in the 3QP-correla-
tion factor defined by Eq. (3-22) of Chap. 3.

Among these, an important consequence of the effect (i) is seen as the
characteristic property (2) mentioned above. Remembering the fact that the
more the orbit 7 of the odd quasi-particle becomes close to the chemical potential
A the larger the #v; factor becomes, we can easily understand the origin of
this property. Thus the role of the 3QP correlations, especially the one among
quasi-particles in the same orbit lying near the chemical potential, is essential
to determine the low-energy-excitation structure and becomes less important
for high-energy excitations.

In concluding this section, however, it should also be stressed that the
competition between effects A and B depends rather sensitively on the spin
of the dressed 3QP mode™® and the quasi-particle-energy difference between

*) For instance, notice that effect A in the orbit &5 2 is forbidden for the modes with spins 1/2, 5/2 and
7/2.
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the shell-model orbits of interest.

For instance, the breaking of the band
structure for the specific states with spin 3/2+ in Cs isotopes can be understood
to be a result of the balance of these effects.

In fact, by comparing Fig. 4(a)
with Fig. 4(b), we can see that the band character for the 3/2+ states is enhanced

in La isotopes where effect A in the orbit &5,2 becomes dominant for the first
3/2+ state (i.e., the ACS-like structure of the 3/27 state is realized).

§4. Roles of correlation between proton- and neutron-quasi-particles

In this section, we investigate the microscopic structure of the dressed
3QP modes from the viewpoint of correlation between proton- and neutron-
quasi-particles. At first, it should be mentioned that a strong correlation
between proton- and neutron-quasi-particles is implicitly assumed in setting up
the criterion given in §2. When we consider the difference in the effective
charges of protons and neutrons, it is easy to understand that, without this
strong correlation, the criterion given in conjunction with Z2-transition prop-
erty cannot be applied irrespective of odd-proton or odd-neutron nuclei.

The reason is based on the fact that the motions of proton-quasi-particle-pairs

and of neutron-quasi-particle-pairs are coupled strongly with each other due
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Fig. 6(a). Result of calculation for the dressed 3QP states in 9"Mo.

Notations and
parameters used are the same as in Fig. 4(a).
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to the QQ force and the ground-state correlations play a role to enhance the
cooperative effect between the motions of proton- and neutron-quasi-particle-
pairs. This situation is just the same as in the case of the 2+ phonon modes
(in the doubly open even-even nuclei) described by means of the RPA with the
P4-QQ force. Hence, as long as the shell structures in the vicinity of the
chemical potential (for odd-number nucleons) are the same, we expect similar
E2-transition property irrespective of odd-proton or odd-neutron nuclei.
Figure 6 shows the calculated results for odd-neutron 9"Mo and 105Pd
nuclei. The orbits participating most actively in the 3QP correlations in 9"Mo
and 105Pd are the 2dj,, and lg,,, orbits which are the same as in 133Cs and
185La nuclei discussed in §3. By comparing the excitation structure shown
in Fig. 6 with that of the odd-proton 1338Cs and 135La nuclei shown in Fig. 4,
we can see that the characteristics similar to those described as (1)~(5) in §3
hold also in the case of odd-neutron %7Mo and 195Pd nuclei. For 195Pd nucleus,
the picture of core-excitation model? has sometimes been used in interpreting
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Fig. 6(b). Result of calculation for the dressed 3QP states in 105Pd. Notations and
parameters used are the same as in Fig. 4(a) except the following:
neutron single-particle energies;
€(ds/2)=0.0, e(g7/,2)=1.6, e(s1,2)=1.9,
E(}L11/2)=2.0 and E(d3/2)=2.5.
pairing-force strengths;
Gp=29/4 and Gn=21/4. (all in MeV)



150 A. Kuriyama, T. Marumori, K. Matsuyanagi, R. Okamoto and T. Suzuki

the experimental data.®:9 From the present point of view, however, it is
clear that such experimental facts can be considered to reflect the persistency
of phonon-band character in 195Pd and never to imply a realization of the
weak coupling picture underlying the core-excitation model.

Now let us consider in more detail the role of proton-quasi-particles in the
dressed 3QP modes in odd-neutron nuclei. (The same consideration can also
be made for the role of neutron-quasi-particles in odd-proton nuclei.) As was
already emphasized, the 3QP correlations can be regarded, in the lahguage
of quasi-particle-phonon-coupling picture, as arising from Pauli principle
between the neutron-odd-quasi-particle and the quasi-particles constructing
the phonon. Consequently, because of the absence of Pauli principle between
proton- and neutron-quasi-particles, the triggering effects of the 3QP correla-
tions (which violate the concept of phonon in odd-mass nuclei) are restricted
within the neutron-quasi-particles. The following fact should be noted
however. In the dressed 3QP mode, the component i, ,(po; a) and ¢, (pc; a),*
composed of proton-quasi-particle-pair (po) plus a neutron-quasi-particle a 7
the orbit a, can couple with the component of the same type, ¢y,,(po; B) and
¢ns(po; B), having the neutron-quasi-particle B iz the orbit 4 different from the
orbit a(6a).**) This kind of “coupling” is mediated by the 3QP correlations
among neutron-quasi-particles. (See Fig. 7.) Since the motion of proton-
quasi-particles couples strongly with that of neutron-quasi-particles (through
the QQ force), the magnitude of the mixing among the components, ,,(po; @)
and ¢y,(po; o) with various @, depends quite obediently on the magnitude of
effects B in the 3QP correlations among neutrons. In this way, the fact that
there exists a strong correlation between proton- and neutron-quasi-particles
makes it possible to say as follows: “If effects B in the 3QP correlations are
sufficiently strong among neutron-quasi-particles, then we can observe the
breaking of the phonon-band structure in terms of the £2-transition properties.”’
We can confirm this point from the comparison between Fig. 6(b) and Fig.
8(b). As will be discussed in §5, effect B in odd-neutron 115Cd nucleus is
considerably stronger than that in odd-neutron 105Pd nucleus. As a con-

B
B
Fig. 7. Illustration of the 3QP correlation discussed
in the text. Here, a, B, y, .... denote the
quantum numbers of the single-particle states
£ for neutrons and p, o, .... those for protons.

*) For definition of the amplitudes of the dressed 3QP mode, see Eq. (2.1) in Chap. 4.
*¥) Within the limit of neglecting the 3QP correlations, these two sets of components belong to dif-
ferent multiplets in the QPC theory, (41.I'};)1x|0) and (@hT14)1x|0), characterized by the quan-
tum numbers @ and &, respectively.
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sequence, we can see that the inter-band transitions in 118Cd are larger than
those in 105Pd.

Now, recalling the enhancement factor (ii) mentioned in §3 (which is
applicable for both cases A and B, of the 3QP correlations), we can say as
follows: The major role of the proton-quasi-particles in the odd-neutron
dressed 3QP mode is to enhance the collectivity of the mode, accompanying
a rapid growth of the ground-state correlation. The growth of the collectivity
due to such an effect is clearly seen by comparing the spectrum of single-closed-
shell nucleus 117Sn (Fig. 8(a)) with that of 115Cd (Fig. 8(b)) in which two
proton-holes are added to 117Sn. Thus, although the proton-quasi-particles
do not produce any 3QP correlations by themselves, they play an indispensable
role to form the concept of dressed 3QP mode (in odd-neutron nuclei) as a
collective mode of excitation.

§5. Case of low-spin orbits

Let us consider the calculated result for 115Cd shown in Fig. 8(b). In
this nucleus, the chemical potential for neutrons lies in the vicinity of the orbits
3s1,2 and 2d3,e. Since effects A are strictly forbidden in the orbit with spin
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Fig. 8(a). Result of calculation for the dressed 3QP states in 117Sn. Notations and
parameters used are the same as in Fig. 4(a) except the following:
neutron single-particle energies;
e(d52)=0.0, e(g7,2)=1.27, e(s1,2)=2.55,
€(h11,2)=3.25, e€(ds,2)=3.24. (all in MeV)
‘These values are taken from Ref. 10). The unit of B(£2) values is £2-10~51 cm4,
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7<5/2, effects B are expected to manifest themselves, in a relatively pure form,
in the dressed 3QP modes which largely involve the low-spin orbits such as
3515 and 2d3,. In fact, Fig. 8(b) shows that we cannot definitely classify
these dressed 3QP modes in terms of the criterion given in §2, since the many
inter-band transitions are of the same order in magnitude with the intra-band
transitions.*) This implies that, for the collective excitations standing on the
1QP states with low-spin (j<<5/2) and with normal parity, the concept of
phonon-band is broken down completely due to effect B.

It is noticeable in Fig. 8(b) that the ‘““doublet’ with spins 3/2* and 5/2t,
belonging to the s1,2 phonon-band, is considerably shifted up in energy. The
reason is understood as follows: In nuclei in which the 51,2 orbit lies close to
the chemical potential, the 2+ phonon is largely composed of the quasi-particle-
pair involving the s1,2 quasi-particle. When the odd quasi-particle is lying
just at the s1/2 orbit, however, the excitations of such quasi-particle-pairs are
strictly forbidden. This is easily understood when we recall the fact that the
3QP configurations with seniority v=3 are forbidden due to the Pauli principle
if there exist zwo quasi-particles at the s1,2 orbit. Thus, the excitation of the
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Fig. 8(b). Result of calculation for the dressed 3QP states in 115Cd. Notations and
parameters are the same as in Fig. 4(a).

*) Since the phonon-bands are difficult to identify in this case, the dressed 3QP states are classified
in a rather arbitrary way in Fig. 8.
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2% phonon of the core is highly hindered when there already exists the s12
odd quasi-particle. Furthermore, in this case, we can expect the following
trend: The microscopic structure of the 2+ phonon itself should be changed
drastically, since the main components of the 2+ phonon are forbidden. As a
consequence, the 3QP correlation among quasi-particles in different orbits
tends to play an increasingly important role.

We have seen two typical examples in which either effect A or effect B is
playing an essential role to govern the low-energy-excitation spectrum: In
nuclei in which the orbits with spin 7=5/2, such as &5/, and ¢, lie in the vicinity
of the chemical potential, the 3QP correlation in the same orbit plays a dominant
role (case A). On the other hand, in nuclei in which the orbits with spin 7<5/2,
such as sy, and &, lie in the vicinity of the chemical potential, the 3QP
correlation among different orbits plays a dominant role (case B). The degree
of the breaking of the phonon-band character is determined by the competition
between effects A and B. Although present accumulation of the experimental
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Fig. 9(a). Energy shifts due to the coupling effects between the dressed 3QP- and
1QP-modes in 138Cs. The energy levels denoted by H(® show the result calculated
by neglecting the coupling effects, while those denoted by H(®+ H(nt) show the
result calculated by taking the coupling effects into account. The experimental
energy levels denoted by EXP are taken from Ref. 11). The parameters of the
calculations are the same as in Fig. 4(a) except that the adopted quadrupole-force
parameter Y, is a little stronger.
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data on the E2 transitions between excited states is not sufficient to allow
us a systematic comparison with the theoretical calculations, the current rapid
progress in the measurement of these transitions is expected to elucidate further
many interesting structures of the 3QP correlations.

§6. Couplings between dressed 3QP- and 1QP-modes

So far, we have neglected the effects originating from the interactive force
Hy. The essential role of this type of interactions is to produce couplings
between different kinds of elementary excitation modes. In the QPC theory,
the effects are represented by nt) in Eq. (2-2), which change the number of
phonons by one accompanying a scattering of odd quasi-particle. On the
other hand, in the theory developed in Chap. 2, the effects manifest themselves
as couplings between the dressed 3QP modes and the 1QP modes, HGnt in
Eq. (3-1), in the quasi-particle NTD subspace. Since in the QPC theory, the
change of excitation spectrum from that given by 4 (9 is attributed entirely to
this special type of couplings H (2t and also since the low-lying spectrum given
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Fig. 9(b). Energy shifts due to the coupling effects between the dressed 3QP- and
1QP-modes in 135La. Notations are the same as in Fig. 9(a). The experimental
energy levels are taken from Ref. 12). The parameters of the calculation are the
same as in Fig. 4(b) except that the adopted quadrupole-force parameter y, is a
little stronger.
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by H®+ H@n) corresponds to that given by (O + K0 if we neglect the
3QP correlations completely, the problem of how the effects of A} are changed
(from those evaluated in the QPC theory) by the inclusion of the 3QP correla-
tions will be of great significance.

Figure 9 and Tables I and II show the calculated results for 133Cs and
135L.a. From the comparison between the spectrum of H( and that of
H©O - Hint) we can see that H(@mY) does not change the low-energy-excita-
tion spectrum given by H( so drastically, except for some states with low-
spins 1/2+ and 3/2+. This is because of the newly arised reduction effect which
is absent in the QPC theory and makes the effects of A interaction to be less
important for low-lying states.

The mechanism of this reduction effect can be understood as follows: Let
us consider two sets of diagrams (with @2¢4) shown in Fig. 10. In the QPC
theory, each sum of the diagrams, Figs. 10(a) and 10(b), contributes
separately to the effective coupling strength, Xs;(v) or Xs;(v), in S Unb),
However, when we take the 3QP correlations into account, these two sets of
diagrams éot/ contribute to the single effective coupling strength Vin(d; #7)
in HinY,  As is seen from the expression of Vinyd; 7#/) given by (4-3) in

Table I. Calculated B(Z2) values for 133Cs. The states in the first column are
labeled according to the level ordering given in Fig. 9(a). The parameters used
are the same as in Fig. 9(a). The B(£2) values calculated by neglecting the
coupling effects are listed in the second column, while those calculated by taking
account of the coupling effects are listed in the third column. They are compared
to the experimental values listed in the fourth column. The unit is ¢2-10~50 cm4.
The polarization charge 8¢=0.5¢ and the harmonic-oscillater-range parameter
52=1.041/3 are used in the calculation. Experimental data are taken from

Ref. 11).
transitions B(£2)V B(E2)» B(E2)exp
5/25 —7/2¢ 11.69 11.62 10.4x+1.2
11/2f - 7/2¢ 4.25 4.21 10.0+1.1
3/2;5 = 7/2¢ 2.41 3.83 1.4+0.2
9/2% —7/2¢ 3.09 3.06 7.4+0.8
7/25 —7/2¢ 1.94 1.90 1.42+0.17
3/2f = 5/2¢ 9.48 9.52
9/2f —5/2¢ 5.94 5.10
1/2f —5/2} 5.89 7.27
7/2% —5/2¢ 5.24 4.46
5/23 —5/2f 4.28 1.42
3/2% —5/2¢ 1.27 0.11
3/2f = 7/2f 1.33 0.31 7.2+0.8
5/2; —5/2¢ 0.46 0.35

5/21 — 7/2% 0.02 0.27
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Table II. Calculated B(Z£2) values for 188La. Notations and the parameters used
are the same as in Table I and Fig. 9(b), respectively. Experimental data are
taken from Ref. 12).

transitions B(E2)D B(E2)» B(E2)=xp

5/25 — 7/2¢ 18.86 18.13 22.6

11/2} — 7/2% 5.45 5.21

3/25 - 7/2F 5.47 7.47

9/23 = 7/2¢ 4.55 4.35

7/28 —7/2¢ 4.16 1.37
3/2t —5/2¢ 15.41 14.09 =4.9

9/2¢ —5/2¢ 6.46 5.79

7/23 = 5/2¢ 5.78 5.18
1/27 —5/2¢ 6.07 7.68 =20.2

5/2% —5/2¢ 4.71 2.85

3/2y —»5/2¢ 0.62 0.32
3/2t - 7/2¢ 1.15 0.002 =0.1
5/2; = 5/2f 0.92 0.25 1.7
5/2t — 7/2% 0.003 0.31 1.8

7 b4
L g LA
phd Y
s/ 2y |& uf2*\v |g
{a) (b)

Fig. 10. Two sets of the matrix elements of interactive force Zy. The sets (a) and
(b) are distinguished with each other by the difference in one of the shell-model
orbits, i.e., a#4. The quantum numbers written in this figure, a=(a, ma)=
(nalaja, ma), B, 7y,... can be interpreted as; for instance, @, 8 and y denote
the quantum numbers of the single-particle states for neutrons and p and v those
for protons. The diagrams in the sets (a) and (b) contribute separately to the
effective coupling strength %,, and ¥,4, respectively, in the QPC theory. On the
other hand, they both contribute simultaneously to the effective coupling strength
Vint (¢; »/7) in the proposed theory.

Chap. 4, the phase relations between the matrix elements belonging to different
sets of diagrams (each of which is represented in Fig. 10(a) or Fig. 10(b))
are governed by the relative phases of the amplitudes, e.g., ¢y, /[7s(2)2] and
$as[7s(2)8], and also by the quadrupole matrix elements, R(ad)=5"12 (g2
Yolld)-(suguy—v4vg) and R(6d). Consequently, even when all the diagrams
belonging to a single set (with definite &) contribute in phase, we have no
guarantee of the coherent property among different sets of diagrams (with
various @). In fact, the calculated results show that they contribute generally
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in random phase, namely, they cancell one another. This is the case especially
for the lowest-lying mode with a given spin />1/2.

Additional reasons to weaken the effective coupling strength Vin(d; #./)
were already stated in §4-Chap. 4.

Now let us recall the characteristic dependence of the A interaction on
the reduction factor, (#zugs—v4v4). This factor is small for the quasi-particles
lying near the chemical potential. In the special cases where a pair of orbits
a and d are occupied just so as to make the factor nearly zero, e.g., each just
half full, the effect of A} vanishes. Within the framework of the QPC theory,
a consequence of such a property has indeed been confirmed experimentarily
in the E2-transition properties between the low-lying states which are both
mainly composed of the IQP states.® Since this property of A is endowed
to the effective coupling strengths, both in the QPC theory and in the present
theory, it is evident that the latter conserves the major success of the former.
Furthermore, in the proposed theory, we have the (afore-mentioned) new
reduction effect originated from the 3QP correlations which depend on the
enhancement factor (#,v4-+v4%4) becoming large in the neighbourhood of
the chemical potential. Obviously, this fact magnifies the above-mentioned
property of reducing the A effect.

Thus we can say that the couplings of the dressed 3QP modes to the 1QP
modes are significantly hindered if they are both in low-lying states near the
ground state. This fact is in accord with the general principle: “If eigen-
modes were properly chosen, couplings to different eigenmodes should be
weak.”

On the other hand, for the higher excitations, the (above-mentioned)
mechanism becomes less effective. Thereby, if the 1QP modes lie in higher
excited states, their couplings to the dressed 3QP modes (lying below them)
become relatively significant. This is the case for the 1/2+ and 3/2* states in
133Cs and 185La nuclei shown in Fig. 9.

A tentative comparison between the calculated results and the experi-
mental data (Fig. 9) shows that the proposed theory can reproduce qualitative
characteristics of the low-energy excitations quite well. Here it should be
stressed that we have adopted no systematical fitting-procedures by adjusting
parameters. Therefore, in view of the rapid accumulation of experimental
data, more detailed analysis based on the proposed theory should be very
promising.

We conclude this section by observing the following point which is ex-
ceptional to this promising results of calculations: Although level structures
are nicely reproduced, the calculated excitation energies of the dressed 3QP
states are, in average, higher than the corresponding experimental ones, if we
choose the strength of the QQ force so as to fit the average energy of 2+ phonons
in the adjacent even-even nuclei, @y+(V, 2)=1/2{wy+(N, Z —1)+wy+(N, Z+1)}.
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This rather general tendency may be due to the present limited truncation
of the quasi-particle NTD space, that is, the neglect of modes with transferred
seniority higher than three. In addition to this, the following fact should also
be emphasized: What we have discussed up to now is the intrinsic excitation
modes in the quasi-spin space, and the couplings between intrinsic- and (pair-
ing-) collective-modes have been completely neglected.

§7. Concluding remarks

Microscopic structure of breaking and persistency of the conventional
“phonon-plus-odd-quasi-particle picture’” has been investigated by putting
special emphasis on the deviations of E2-transition properties from those
expected by the concept of phonon-band. It has been demonstrated that the
simple phonon picture for spherical odd-mass nuclei is seriously broken due to
the collective 3QP correlations among quasi-particles lying near the chemical
potential. In particular, the breaking and persistency of the phonon-band
character have been shown to be essentially dependent on the characteristics of
the 3QP correlation. The effect of A interaction has also been shown to be
significantly affected by the inclusion of this correlation. The microscopic
structure of the 3QP correlation depends, in turn, on details of the shell structure
in the vicinity of the chemical potential. Accordingly, results of the calculation
have been exemplified for two classes of nuclei in which either high-spin or
low-spin orbits lie near the chemical potential. From these investigations, it
is now clear that the 3QP correlation should be regarded as an elementary
correlation in low-energy excitations. In fact, a large body of experimental
data illuminating rich aspects of the many-quasi-particle correlations is now
accumulating. (See, for instance, the progress report by Meyer.13))

The effects of the 3QP correlation (based on the Pauli principle between the
odd quasi-particle and the quasi-particles composing the phonon) have so far
been neglected by the argument that a phonon contains only a small amplitude
for the presence of any particular quasi-particle.®) However, this argument
is not correct. The 3QP correlation is essentially different from the “static”
effects such as the blocking effect. Rather, it is a ‘“‘dynamical” correlation
induced by the presence of the odd quasi-particle: In such low-energy-ex-
citation mode as the 2+ phonon, as is well known, the quasi-particles lying near
the chemical potential play an essential role in constructing the mode. When
the ‘““odd quasi-particle” is also added near the chemical potential, the
quadrupole force (A x and H ) acts upon both the quasi-particles constructing
the 2+ phonon and the ‘““odd quasi-particle” without discrimination. There-
fore, the collective 3QP correlation also tends to grow significantly, as the
collective 2QP correlation becomes stronger (,i.e., as the excitation energy of
the 2% phonon becomes smaller). What we have investigated from Chap. 3
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to this chapter can be regarded as clarifying the actual physical situation for
this process. The conclusions obtained here are, therefore, closely connected
with the dynamics of the P4 QQ force model.®) Accordingly, the problem
whether they are specific to the P+ QQ force model or more general will be
examined in the succeeding chapter.

Of course, these conclusions do not exclude a possibility of a decomposition
among many-quasi-particles if, e.g., some of them lie far from the chemical
potential: In some cases of physical situations in shell structure, there may be
frequent occurrence of a possibility that the dressed z-quasi-particle mode with
n>3 can be approximately decomposed into the correlated cluster in the valence
shell and the phonons of the “core.” Recall here that such a possibility was
already pointed out in Chaps. 3 and 4 in relating the picture of the dressed 3QP
mode to that of the Alaga model.19-15)
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§ 1. Introduction

From Chap. 3 to Chap. 5, microscopic structure of collective excitations
in spherical odd-mass nuclei has been discussed with the use of the pairing-
plus-quadrupole (P4 QQ) force. Since we have widely employed charac-
teristic properties of the quadrupole force, it is indispensable to examine
whether or not the conclusions obtained from Chap. 3 to Chap. 5 are specific
to the P+ QQ force. The aim of this chapter is to examine the effects of the
other components of residual interaction which are neglected in the P+ QQ
force model. With this aim, we make a comparison between the results calcu-
lated by using the quadrupole force and those calculated by using the central
force with Gaussian radial dependence. In §§2 and 3, comparisons between
the results of the P4+ QQ force and those of the Gaussian force are made for
the case of collective excited states with positive parity in Se isotopes. These
states provide a good example in which we can see the effects of the other
components of residual interaction in a relatively simple way. In §4, as an
alternative example, we present the results for single closed shell Sn isotopes
in which quadrupole collectivity of the excited states is not so strong as in the
case of Se isotopes. Hence, we can learn from these examples the relative
importance of the neglected components of residual interaction in relation to
the quadrupole collectivity of the states of interest. Needless to say, the
theory developed in Chap. 2 is applicable for any residual interaction. How-
ever, we do not extend our present purpose to looking into the details of residual
interactions themselves. In §5, we add a few remarks concerning further
refinements of the analysis.

§ 2. Dressed three-quasi-particle 7/2+ states in Se isotopes

We solve the eigenvalue equation for the dressed three-quasi-particle (3QP)
mode given by Eq. (3-3) of Chap. 2 with the use of conventional Gaussian
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force. The full expression of the matrix elements entering into the eigenvalue
equation is given in Appendix 6A. The Gaussian force adopted here is the
one without any exchange mixture, i.e.,

V(r)=—"V,yexp(—7%/73) 21

with »=|ri—r3l. As usual, the matrix elements of the Gaussian force are
calculated by using harmonic oscillator wave functions with Zw=414"1/
MeV. Then the matrix elements depend only on the ratio of the force-range
7o to the range-parameter of the harmonic oscillator potential é=(%/Mw)’2.
We adopt the method of Horie and Sasakil in calculating these matrix
elements.

Figure 1 shows the result of calculations for the ‘“‘anomalous coupling”
7/2% states in Se isotopes as the dressed 3QP states. The shell-model space
adopted here is composed of the orbits {lfy/e, 2p3/5, 2p1/5, 19,5} for both
protons and neutrons. The single-particle energies used are the same as those
of Kisslinger and Sorensen.?) In the conventional treatment, where we use
the Gaussian force as an effective interaction, the BCS equation determining
the quasi-particle energies £, and the coefficients of the Bogoliubov trans-
formation (#,, v,) is also solved by using the Gaussian force. However,
in this calculation, we have used the constant pairing force in the BCS equation,
since our aim is to compare the results of the Gaussian-force case with those
of the P+ QQ force case. This implies that the Gaussian force is regarded

MeV
----- TDA
05} ----
\\ —— NTDA
_---\\\‘\ ~§"“~~_____
-\ Vo= 22 MeV
00 \ — V°= 23 MeV
_ .
N= 41 43 45

Fig. 1. Excitation energies of the dressed 3QP 7/2+ states in Se isotopes calculated
with the use of the Gaussian force. The energies are measured from the 1QP
9/2+ states. The range parameter of the Gaussian force defined by (2-1) is fixed
at 2.0 fm, while the calculated results for two choices of the force-strength 7o,
ie., Vo=22MeV and 23MeV, are shown. The solid lines represent the results
in the new-Tamm-Dancoff approximation, while the broken lines in the Tamm-
Dancoff approximation. The symbol X denotes the occurrence of complex
eigenenergy.
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here as a residual interaction among quasi-particles. This is in accord with
our present aim of looking into the difference between the Gaussian and
quadrupole forces in characterizing the microscopic structure of the dressed
3QP mode.

From Fig. 1, we can see that the 7/2% states become the lowest-lying
dressed 3QP states for a reasonable choice of the force-range parameter 7q.
The reason for this particular favouring of the 7/2+ state is very similar to that
in the P+ QQ force model (discussed in detail in Chap. 3): Since the square
cfp of the type [72(2), 7; 1} 73; 7 v=3]? takes the maximum value when /=
J—1, the 7/2% state involves the component {¢3,5(/=2)¢g/s} ;=72 as the
maximum one among the components of the type <{¢3,5(/)¢on},* Ac-
cordingly, the 7/2+ state has a large energy gain due to the relatively large
matrix elements of the force, G((vgq/2)? (v¢9/2)2; 2) and F(rs(vgys)?; 2).**)
The matrix element G( (vg9,5)2 (vggs5)?; 2) mainly contributes to increase the
diagonal matrix element in the eigenvalue equation (3-3) of Chap. 2, while
the matrix elements F(rs(vgy,5)%; 2) mainly contributes to increase the com-
ponents of the type {7s(2t)vgy,}.

One of the important characteristics of the quadrupole force is the special
parity-selection property, i.e.,

(all72Y,]16)=0 when (—)letl=—1. (2-2)

This property of the quadrupole force plays an efficient role in the discussion
of the 7/2+ state in terms of the P+ QQ force, owing to the special situation
of shell structure in which the high-spin, unique-parity orbit is being filled
with odd-number nucleons. In fact, the parity-selection property greatly
simplified the discussions in Chap. 3. In the case of the Gaussian force, we
have no such property. Accordingly, the dressed 3QP 7/2* mode under
consideration contains various kinds of components, for example, the compo-
nents corresponding to the p;,, quasi-particle coupled with the 3~ phonon.
In spite of the inclusion of such kinds of components into the eigenvalue
equation, we can see that the predominant role of the quadrupole correlation
in characterizing the microscopic structure of the 7/2+ state does not change
in any significant way. Namely, these components neglected in the P+ QQ
force model contribute only as a small perturbation to the low-lying 7/2+
state.

Now, in order to see the effect of the backward-going diagrams (originated
from the ground-state correlation) on the excitation energy of the 7/2+ state,
let us consider the quantity

*) The components of the amplitudes of the dressed 3QP modes are defined in Appendix 6A; see
also Appendix 4A for the method of providing the orthonormal basis vectors in the coupled-angu-
lar-momentum representation.

**¥) The matrix elements of the force, G and 7, are defined in Appendix 1A.



Comparison between Results 163

SB— Wrp—WNTD

3E—wpp 2:3)

where £ denotes the energy of the g¢4,, neutron quasi-particle and wzp(wy7p)
the energy of the (dressed) 3QP mode in the (new) Tamm-Dancoff approxi-
mation. For the parameters Vo=23 MeV and 79=2 fm, the ratio of 8B
(Gaussian) to 68 (quadrupole) takes the following value:

8B(Gaussian)  0.21
8B(quadrupole)” 0.94

=0.22 (2:4)

for the 7/2+ state in 79Se. Thus, in the case of the Gaussian force, the effect
of the backward-going diagrams becomes smaller compared to the case of
the quadrupole force. However, it should be emphasized that they sensitively
affect both the excitation energy and the amplitudes (of the dressed 3QP
mode), since the 7/2% states lie very near to the critical point for the instability
of the spherical BCS vacuum.

Figure 2 shows the main amplitudes of the dressed 3QP 7/2+ mode under
consideration. In this figure, the corresponding amplitudes calculated by using
the quadrupole force are also written for the sake of comparison. We can see
that the correspondence between the amplitudes given by the Gaussian force
and those given by the quadrupole force is remarkable in both their relative
phases and magnitudes.®) For instance, the main components are, for both
cases, of the types {(¢9/2)3}, {a6(2*)g9s} and {rs(2*)gg,s}. Furthermore,
their relative magnitudes show the similar trend for both cases.

As for the difference between the two cases, we can see in Fig. 2 that, in
the 79Se nucleus, the backward-going amplitudes in the case of the quad-
rupole force are larger than those in the case of the Gaussian force.
Correspondingly, the forward-going amplitudes in this case are amplified as
a whole. In Fig. 2, we can also see that the backward-going amplitude of
the type {(¢49,2)%} becomes notably smaller in the case of the Gaussian force.
The reason for this may be found in the fact that, in the Gaussian-force case,
the G-type and F-type matrix elements cancel each other® in the submatrix
A in the eigenvalue equation (3-3) of Chap. 2. Therefore, the phase relation
among different components connecting neutron-quasi-particle pairs in the
submatrix A becomes quite random in comparison with that among corre-
sponding components in the submatrix D for the forward-going amplitudes.
This trend is similar to that in the RPA with the use of the Gaussian force
(for the single-closed shell nuclei). However, we should be careful in the fact
that the relative magnitude of the G-type and F-type matrix elements depends
sensitively on the range parameter 7. On the other hand, such a destructive

*) In the comparison, we should be careful in treating the phase convention of the single-particle
wave-functions.
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Fig. 2. Main amplitudes of the dressed 3QP 7/2* modes in Se isotopes. The results

calculated with the Gaussian force are connected by solid lines, while those with
the quadrupole force are connected by broken lines.

The range parameter and
force strength of the Gaussian force are fixed at 70=2.0 fm and Vp=23MeV,
respectively.

(These values are always adopted in the discussion in §§2 and 3.)
The P+ QQ force-parameters are; G=24/A4 MeV for both protons and neutrons,

x0=230 MeV. The definition of the amplitudes is given in Appendices 6A and
4A. In this figure, the following abbreviation is used to specify the shell-model
orbit:

1=@2p1s2), 2=(@pss3), 3=(1fss2), 5=(1gss2).

effect between the G-type and F-type matrix elements is absent in the matrix
elements connecting proton and neutron quasi-particle pairs.3

Consequently,
the backward-going amplitudes of the type {rs(2%)gq,} become significantly

large in the Gaussian-force case as well as in the quadrupole-force case.
Although we can find such a few differences in fine structure which are

dependent on details of the force, the correspondence of the main amplitudes
between the two cases is remarkable.

Thus, we can conclude that the micro-
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scopic structure of the collective 7/2+ state in the Gaussian-force case is very
similar to that in the quadrupole-force case.

§ 3. Other collective states with positive
parity in Se isotopes

Next, let us consider other collective states with positive parity in Se
isotopes. These states are the ones corresponding to the quintet composed
of one-quasi-particle and one-phonon in the quasi-particle-phonon-coupling
theory. Considering these states also as the dressed 3QP states, we have
carried out the calculation with the use of the Gaussian force. The parameters
used are the same as in the preceding section.

Figure 3 shows the result of the calculation. In this figure, the result
obtained by using the quadrupole force is also shown for the sake of com-
parison. We can clearly see that the calculated level sequence is the same as
that in the case of the quadrupole force. This fact indicates that the micro-
scopic structure of these states obtained by using the Gaussian force is very
similar to that obtained by using the quadrupole force. The main amplitudes
of the dressed 3QP modes are shown in Figs. 4 and 5. In Fig. 4 are shown
the main amplitudes of the 5/2+ mode. From the comparison between the
Gaussian-force case (solid line) and the quadrupole-force case (broken line),
we can say that the correspondence between the two cases holds fairly well not
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Fig. 3. [Excitation energies of the dressed 3QP states with positive parity in Se
isotopes. Results calculated by using the Gaussian force are compared with
those by the quadrupole force. Parameters used are the same as in Fig. 2.
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Fig. 4. Main amplitudes of the dressed 3QP 5/2+ modes in Se isotopes. Notations
and parameters used are the same as in Fig. 2.

only for the forward-going amplitudes but also for the backward-going
amplitudes. The main amplitudes of the modes with spins from 5/2% to 13/2+
are compared in Figs. 5 () and 5 (b). Figure 5 (a) shows the result calculated
by using the quadrupole force, while Fig. 5 (b) shows the result calculated
by using the Gaussian force. In these figures, the magnitudes of the ampli-
tudes of the modes with spins from 5/2% to 13/2* are collectively shown on
each position representing a specific component of the amplitudes. From
these figures, we can see that, in each component, the relative magnitudes
among the amplitudes of the modes with spins from 5/2* to 13/2+ are similar
between the Gaussian-force and quadrupole-force cases. This fact shows the
reason why we have obtained the same level sequence irrespective of the forces
adopted.

It has been expected that the neutron-proton short-range interaction,
which has been neglected in the P+ QQ force model (except for its field
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producing parts),becomes important in the region 28<CZ< 50 and 28<C N <50.2
The effect of this kind is automatically taken into account in this calculation
with the Gaussian force. The result of this calculation shows, however,
that the effect does not bring about appreciable differences from the result
of the P+ QQ force case, at least for low-lying collective states with positive
parity in Se isotopes.

As for the difference between the two cases, we can point out that the
energy-splitting of the ‘“quintet” in the Gaussian-force case is somewhat
smaller than that in the quadrupole-force case. The main reason for this
is that the effect of the backward-going diagrams is especially strong for the
7/2% state in the quadrupole-force case. (See the values in (2-4) which show
the difference between the two cases in lowering the energy of the 7/2+ state.)
Another different point is that the mass-number dependence of the excitation
energies becomes smooth in the Gaussian-force case, compared to that in the
quadrupole-force case. This is the trend similar to that well known in the
RPA for even-even nuclei. Therefore, its origin may be attributed to the
fact that, in the Gaussian-force case, not only the force-element of the type
F(abed; 2%) but also of the type G(abed;]) are effective. (The F and G type
force-elements are defined in Appendix 1A.) The more detailed differences
between the two cases can be seen when we look into the fine structure of the
amplitudes. For example, in the Gaussian-force case, the backward-going
component ¢[(¢q/2)3] in the 5/2+ mode becomes very small (in 75Se) and has
even the phase opposite to that in the quadrupole-force case (in 79Se). (See
Fig. 4.) Besides this, in the 9/2} state in 79Se which lies in the relatively
higher energy region, the forward-going component {(mpg/smfs/2)a+vgess} in
the Gaussian-force case becomes non-negligible, i.e., $[23(4)5]=0.109.

Although we can find some differences between the two cases as mentioned
above, it should be emphasized that the correspondence of the main amplitudes
between the two cases does hold fairly well. Thus we can say that the nature
of the dressed 3QP modes discussed in terms of the P+ QQ force model is
also maintained in the Gaussian-force model, as long as they are low-lying
in energy.

§4. Collective excited states in Sn isotopes

In the preceding sections, we have seen that the characteristics of the
dressed 3QP mode derived from theoretical calculations are essentially the
same between the quadrupole-force case and the Gaussian-force case. This
conclusion implies that, for such collective states as the low-lying excited states
in Se isotopes, the quadrupole collectivity is so dominant that the other cor-
relations do not play significant roles. Accordingly, the other components
of residual interaction which are neglected in the P+ QQ force model are
expected to play appreciable roles when we consider the nuclei in which the
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(a) The quadrupole-force case.

Fig. 5. Main amplitudes of the dressed 3QP modes with positive parity in 79Se.
The magnitudes of the amplitudes of the modes with spins from 5/2+ to 13/2+
are collectively shown on each position representing a specific component of
the amplitudes. The set of states with spins from 5/2* to 13/2+* corresponds to
the “quintet” composed of the 1QP 9/2+ mode coupled with the 2t phonon in
the quasi-particle-phonon-coupling theory. For the sake of comparison, the
corresponding amplitudes of the 2+ phonon calculated by the RPA in 78Se are

quadrupole collectivity is not strong. In this section, in order to show this
possibility, we present the results for single-closed shell 117Sn and 119Sn
calculated by using the Gaussian force. As was pointed out in § 5-Chap. 5,
the Sn isotopes belong to the situation where the chemical potential lies near
the low-spin orbits so that the phonon-band character is expected to be broken



Comparison between Results

1.0}
f Gaussian force, 79Se
!
0.5+ |
| N
| uyoou Soz3
YT NP
Vo g
‘l \".\;‘!,’,‘ /k/ ’/ q\
| \Egr/ fﬂ’ | ﬁ]
Vo \ \ -
] \
|l| ” \ 0 \1\1]“’ //ﬁfn J: \‘
ST U0
] \ v o !
/ | NN /
+ oy
8 ”2 \‘on:‘ \N(E
o f bkb_‘ A
~ Y
\q\
\\
-05+
P e\ T O BN S B O S L S & IS N 0 )
ge N Uy N U g YN W g G
S22 DY DR MMM NMDND
Vlab(y)5] Virs(J)5] @ [ab(J)5] ¢ [rs(y)5]
Fig.5(b)

(b) The Gaussian-force case.

shown by the symbol o connected with broken lines. The strengths of the
quadrupole force and of the Gaussian force are chosen to approximately
reproduce the experimental excitation energies of the 7/2+ and 2+ states, i.e.,
the energy difference between the collective 7/2+ and 1QP 9/2+ states in 79Se
and the excitation energy of the 2+ state in 78Se. They are; xo=230 (MeV)

for "9Se, Xo=220 (MeV) for 8Se, V=23 MeV and 70=2.0 fm for 7®Se, Vo
=21 MeV and 79=2.0 fm for "8Se.

remarkably. If this is the case, then we can also expect that the relative

magnitude between the inter and intra phonon-band £2 transitions is sensi-
tively dependent on details of many conditions, for example, such as relative
occupation probabilities among shell-model orbits. Because of this situation
and also because of the relative weakness of the quadrupole collectivity, we
can expect that the properties of the collective excited states in Sn isotopes

169
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are very sensitive to details of the wave functions.

Figures 6 and 7 show the calculated results for 117Sn and 119Sn. These
figures are made in a form in which the breaking and persistency of the phonon-
band character is easy to see. By comparing the results of the Gaussian-force
case to those of the quadrupole-force case, we see that the level sequence within
a ‘“‘phonon-band” is almost the same between the two cases. Although the
gross structure of the excitation spectra displays some similarity, the energy
shift due to the ground-state correlation differs in magnitude between the two
cases. For example, the energy shift for the 3/2§ state in 119Sn is about
300 keV in the quadrupole-force case, while the corresponding energy shift
is reduced to about 40 keV in the Gaussian-force case. This reduction of
energy shift in the Gaussian-force case is rather special for the single-closed
shell nuclei such as Sn isotopes under consideration, since, as we have seen in
§ 3, the ground-state correlation in the Gaussian-force case is mainly caused
by the F-type matrix elements between proton and neutron quasi-particle pairs.

A more interesting difference between the two cases is found when we

— ipt
MeV 5 — 52t
+
30 s
5|5
a3
5/2+
10
20t L 3t
5 (g7/2)
3wt
1.O}F
(s ')

Fig. 6(a) Case of the P4 QQ force with parameters;
G=0.205, Xo=Xx5°45/3=321.0 (MeV)

Fig. 6. Results of calculation for the dressed 3QP states with spin 7 < 5/2+ in 117Sn. They are
presented to show the breaking and persistency of the multiplet structures standing over the
1QP states with orbits 3s1,2, 2ds,2 and lgr,s. The presented level energies are those
measured from the correlated ground state. The numbers appearing on the transition arrows
give the B(Z£2) values in unit of ¢210-51 cm¢4, which are calculated with polarization charge
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compare the magnitudes of the inter-band transitions. These figures show
that many inter-band transitions compete with intra-band transitions. This
trend is clearly seen for both 117Sn and 119Sn in the quadrupole-force case
(Figs. 6(a) and 7(a) ). Similar trend is seen for 119Sn also in the Gaussian-
force case (Fig. 7(b)). On the other hand, the inter-band transitions are
relatively smaller for 117Sn in this case (Fig. 6(b) ). In this way, the nucleon-
number dependence of the inter-band transitions seems to be very sensitive
to the residual interaction adopted. (Similar property is seen in the relative
magnitudes among some inter-band transitions.) Such a situation is exactly
the expected one: Since the magnitude of the inter-band transition depends
sensitively on the relative magnitudes among many components of the ampli-
tudes of the dressed 3QP mode, the magnitude of the inter-band transition
tends to change significantly from one isotope to another isotope. The fine
structure of the relative magnitude among many components, in turn, depends
on the details of the residual interaction. (Note that the (%, v) dependence
is more complex in the Gaussian-force case than in the quadrupole-force case,
since, in the former case, G-type and F-type matrix elements enter into the

—_— T
MeV st

30

wt
(d%)
20}~ 772+
11 7sn
(b)
10—

Fig. 6(b) Case of the Gaussian force with parameters;
Vo=35 MeV, #0=1.720 fm.

S¢=1.0 and harmonic-oscillator-range parameter 42=1.041/3. For simplicity, the £2
transitions smaller than 1.0 (in case (a)) or 0.5 (in case (b)) and other higher-lying states are
omitted from the figure. The single-particle energies are taken from Ref. 5):

8(ds 2)=0.0, &(g7,2)=0.83, &(s1,2)=2.29, e&(k11,2)=3.53, &(ds2)=3.26. (allin MeV)
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Fig. 7(a) Case of the P+ QQ force with parameters;
G=0.227, X0=322.3. (MeV)

Fig. 7. Result of calculation for the dressed 3QP states with spin 7 < 5/2+ in 119Sn, Notations
are the same as in Fig. 6. The single-particle energies are taken from Ref. 5):
&(ds2)=0.0, &(g7,2)=0.75, e(51,2)=2.39, e(h11,2)=3.15, &(da 2)=2.87.
(all in MeV)

eigenvalue equation with different (%, v) dependence.)

Some inter £2 transitions between the s;,, and dg,; phonon-bands have
been measured by Stelson et al.¥ For the inter E2 transition between the
5/2+ state (belonging approximately to the dg, ‘‘phonon-band’) and the
1QP 1/2+ state, the data indicate that its magnitude drastically changes from
117Sn to 119Sn; i.e., the ratio B(E2; 5/2%3,» — 1/20)/B(E2; 5/2{3,/»—
3/27) is smaller than 0.1 in 117Sn, whereas it is about 0.9 in 119Sn.  Concerning
this specific transition, the result calculated by the Gaussian force agrees with
the data better than the result calculated by the quadrupole force. For the
inter £2 transitions from the 3/2% and 5/2* states (belonging approximately
to the sy, “phonon-band”) to the 1QP 3/2+ states, the calculated B(£2)
values, especially in the quadrupole-force case, seem to be larger than the
corresponding experimental data.#® We furthermore see that the splitting
of the “doublet” (3/2+ and 5/2%) is very small in the Gaussian-force case and
seems to agree better with the data. However, it does not necessarily imply
that the ‘“weak-coupling character” holds, since the inter-band transitions
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Fig. 7(b) Case of the Gaussian force with parameters;
Vo=35 MeV, 70=1.725 fm.

to the 1QP 7/2+ and 3/2+ states can become large even in this case. (See
Fig. 7(b).) Even when the inter-band transitions become relatively smaller
as in the case of Fig. 6(b), the structure of the excited states under consideration
differs from that of the odd-quasi-particle plus 2+ phonon; this property is
merely a consequence of the dominance of the component {vs;s(v%;1/9)%}
in this case. Thus, the definite conclusion for the properties of a particular
state should be made only after we carefully examine the parameters to be
adopted in the calculation. Furthermore, the coupling effect of the pairing-
collective excitations and also the coupling effect between the dressed 3QP-
and 1QP-modes should be taken into account, since the effects of such kinds
are expected to be appreciable for the states under consideration.®

§ 5. Further refinements

So far, we have seen that the effects of the other components which are
neglected in the P+ QQ force model are not appreciable, if the states of interest
are of sufficiently (quadrupole-) collective character. However, when we
consider a physical quantity which sensitively reflects such small components,
we must be careful in treating the fine details of such components and their
relations to the dominant components (i.e., here the quadrupole components).
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In this section, we briefly discuss such a situation by exemplifying the cases
of treating allowed Gamow-Teller (GT) beta decay between odd-mass nuclei
and of calculating the M1 moments.

The P4 QQ force model is by itself not capable of accounting for the
retardation of GT transition rates which are regularly observed in medium-
mass nuclei. It has been shown that the proton-neutron residual interaction
of charge-exchange and spin-flip type, i.e., (¢-0)(z-7) type, is responsible
for the hindrance of non-/-forbidden GT transition rates between one-quasi-
particle states.” The (@-0)(z-7) type residual interaction (which is called
the GT force hereafter) brings about the coupling of the “/"=1+" proton-
neutron quasi-particle pairs to the one-quasi-particle state. Although the
mixing of this kind of quasi-particle pairs in the one-quasi-particle state is
small, they contribute so coherently that their effects on the beta-decay rate
become significant.”? Thus, we are forced to simultaneously take account
of both the GT type correlation and the quadrupole correlation, since we are
interested in the GT transition between (non-deformed) odd-mass nuclei
exhibiting the quadrupole collective character.

A simple way of simultaneously treating these two kinds of correlations
may be to introduce the GT force in addition to the P+ QQ force. In the
method of quasi-particle-phonon-coupling theory, the “/"=1+" phonon
composed of proton-neutron quasi-particle pairs is introduced by treating the
GT force with the unlike-particle RPA (describing the odd-odd nuclei).®)
With this method, the effect of the GT force is treated independently to that
of the quadrupole force responsible for the low-lying 2+ phonon. Con-
sequently, a difficulty of this method arises from the non-commutability between
the (higher-lying) 1* phonon and the (low-lying) 2+ phonon. It should be
noted here that the excitation of the “/"=1*" quasi-particle pairs takes place
mostly in the same shell-model space as that for the ‘/"=2%" quasi-particle
pairs. (When the shell-model space is enlarged so as to include the spin-
orbit partners of all single-particle orbits in the filling major shell, the shell-
model space becomes exactly the same for these excitations.) The difficulty
in evaluating the GT matrix element (, for example, between the one-proton-
quasi-particle state and the one-neutron-quasi-particle-plus-one-2+-phonon
state,) is closely connected with the basic approximation of treating the two
correlations independently.® This is seen when we attempt to unambiguously
expand the GT transition operator in terms of the quasi-particle, 2¥ phonon
and 1* phonon operators which are assumed to be mutually commutable.

The difficulty of this kind can be overcome when we adopt the method
developed in Chap. 2. With this method, by introducing the GT force in
addition to the P4 QQ force, we can simply achieve the aim of treating the
GT and quadrupole correlations on an equal footing.!® When calculation
of this kind is performed by this method, the /"=1* proton-neutron quasi-
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particle pairs participate in the dressed 3QP mode as one of the constituents.
Then we have a new dressed 3QP state predominantly exhibiting the GT
correlated character at a higher energy region. On the other hand, the low-
lying dressed 3QP states which predominantly are of quadrupole character
remains essentially the same as in the P+ QQ force model except for a small
perturbative effect due to the GT force. Of course, the one-quasi-particle
state couples with both kinds of the dressed 3QP states. After diagonalizing
the effective Hamiltonian defined by (5-11) of Chap. 2 in the quasi-particle
new-Tamm-Dancoff space, we can evaluate any GT transition matrix element
between the obtained eigenstates by making use of the transcription rule
developed in § 5-Chap. 2. This procedure is exactly the same as in the case
of evaluating the electromagnetic transition matrix elements. As for the
difference of nucleon numbers between the initial and final states, we can take
it into account by using the method described in Appendix 6B. For details
of this kind of application, see Ref. 10).

An analogous situation occurs in the case of evaluating the /1 moments.
In the calculation of M1 moments, we used the effective spin ¢ factor, g¢!f,
in Chaps. 3 and 4. The use of ¢¢! is regarded as representing the effect of
coupling of the /"=1*% quasi-particle pairs to the one-quasi-particle mode
(i.e., the effect of M1 core polarization). As is well known, one of the im-
portant assumptions in using such an “effective quantity’’ is that the excitation
of the /"=1% quasi-particle pairs is approximately independent of the other
kind of excitations. On the other hand, we can explicitly take into account
such a kind of excitations by adopting, for example, a delta-function force
with suitable spin-dependence in the calculation.ll) In this case, the (M1-
type) /"=1% quasi-particle pairs participate in the dressed 3QP mode as one
of the constituents. Consequently, we will have a new dressed 3QP state
predominantly exhibiting the M1-type correlated character at a higher energy
region, and the 1QP state couples with this state. (In this calculation, of
course, the shell-model space should be chosen so as to include the spin-orbit
partners of all single-particle orbits in the filling major shell.) Then there
may be no need to use the “effective quantity”” such as ¢%'!. Hence, the
investigation in which this A/1-type correlation is explicitly taken into account
- together with the quadrupole correlation will enable us to examine the validity
of the use of the effective spin g factor g§*f. Of course, the introduction
of such small components (representing the /"=1+ quasi-particle pairs) will
bring about no essential change in the nature of the low-lying dressed 3QP
states which have been described in terms of the P+ QQ force model. We
can expect this trend from the results in §§2 and 3, since the calculation
with the use of the Gaussian force have already included such small com-
ponents. The detailed investigation into the direction remarked here remains
to be done.
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§6. Concluding remarks

With the use of a central force with Gaussian radial dependence, we
have investigated whether or not the nature of the dressed 3QP modes in the
P+ QQ force model is essentially dependent on the special properties of the
quadrupole force. It has been shown that the microscopic structure of the
dressed 3QP modes obtained by the Gaussian force is very similar to that
obtained by the P+ QQ force, at least for the low-excited states with positive
parity in Se isotopes. Thus we expect that the conclusions obtained in Chaps.
3, 4 and 5 do not always rely on the special properties of the quadrupole force
but possess more general significance. On the other hand, we also expect
that other types of correlation which cannot emerge from the P+ QQ force
model itself becomes appreciable when we consider, for example, the excited
state in which the dominant role of the quadrupole correlation is relatively
relaxed.

It should also be noted that the situations, in which the quadrupole
collectivity is dominant but the simple phonon-band character tends to be
broken, remain to be investigated in more details for both the P+ QQ force
case and the Gaussian-force case. Needless to say, the framework of the
proposed theory is general enough to be used with any residual interaction.
Thus, it is very interesting to investigate the relation between the effective
interaction and the microscopic structure of the dressed 3QP mode by adopting
more complex effective interactions than the P+ QQ force or the Gaussian
force without any exchange mixture.

Appendix 6A. Matrix elements of the secular equation
for the dressed 3QP modes in the coupled-
angular-momentum representation

Here, we give the explicit form of the matrix elements of the secular
equation for the dressed 3QP modes, Eq. (3:3) in Chap. 2, in the coupled-
angular-momentum representation. We can straightforwardly obtain the
explicit form by transforming the matrix elements (in the m-scheme) given
in Appendix 2B into the coupled-angular-momentum representation.

6A-1 The case of general interaction

In this representation, the creation operator of the dressed 3QP mode
given by Eq. (3:1) in Chap. 2 is represented as

1
Chix= :/‘?T ZaverPnr[ab([)ec] 2 mam,gmyM(jaj vmamgl M)

X (JjeMmy| IK )atahal,
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(6A-1)
where the Greek letters a=(a, ,), B, y,-- are used to designate the single-
particle states for neutrons (protons), and p=(r, m,), o=(s, m,),--- for protons
(neutrons). In the text, we have called, for example, the amplitudes
Yurlrs(J)e] and ¢F[rs(/ )] the components of the type {rs(2)vgys} when ¢
denotes the 1gy,, orbit for neutrons and /=2. (In this case, » and s denote

the orbits for protons.) The antisymmetric properties of the three-body
correlation amplitudes are then expressed as follows:

Yaus[ab())e)=Zarwe 1 Pr(ab([)c|a't' (] ) Wons[a'8'(J )],
ilaa(/)al= 2P (aa(])alaa(] Ya)$aa( ] )al,

Baa(); A= T2 IECD s 1y, 4, 6A2)

$it[ab(/]); cl=— (=Yt (1—8,;0)p[ba(/]); €,

¢ rs()); = — (=Yt 18 ;0@ s7(]); €],
where the projection operators P (ab(/)c|a'6’'(/')c") defined in Appendix 2A
are used.

The matrix elements in the coupled-angular-momentum representation
are explicitly given as follows:
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A lab([)ela'a'(J)a' 1 =V3 DaiersPr(ab([)clab(J e )V P (ab,a'a’; ") o
X P/(a'a'(J")a'la'a'(J")a'),
A,[ab(])c!a'a'(/'); CI]= _‘/6Zmbw:/”Pl(ab(])c|axbx(]”)cx)<_)h,+jc,+j”.i'j"

X {]a’ i }V(b)<d1614'5';/ ")Beats

VIr's'rs; J)8778cers

[rengere 8,

freoetens 1%,

Je 7 j "’
Al[ab(/)clalbl(jl); c,]=m~_/_*———’g—,b,zmbmeI(ab(j)claibx<jl>cl) V(b)(axblalb';jl)scw’)
Al[ab(])tlrs(jl); CI]=#% Za:bxmpl(ab(j)claxbx(/l)cl) Vm)(“lbxrs‘;jl)smc':

Ailrs()ela'a’(J)a'l= JT%, V®rsa'a’; J)ew Pr(a'a’(J)a'|a'a'(J')a),

ja’ja’ /'
Je 7 ]
2

Al[rs(])‘:lalbl(jl); CI]=\/(1+8,.3) (1+8a’b’) V(b)<rsa,b';])8//’scc’y

A rs(J)ela’a'(J"); 1=~ 2 (=Yatietl ] VO(rsa'c'; J)ew
V1+8,,

vy r ’ 2 )
A[[?T(])Clr.? (j ); c]=‘/(1+8r8) (1+8r’8') V(b)(rsrs ;])8]]/8001,




180 M. Fuyuki, A. Kuriyama, K. Matsuyanagi and T. Suzuki

Alrs(Nelr'r’(J"); 1= J1+ s Yrtettnr s JJ

X2 A2/ +1) [{J; _'77: ;,,}{];,]],: ;:,} V®(scr'c"; J')8pp
S T e
Ars(Delr e (J; 1=~ ﬁ(—)ﬁﬂﬁf’f’/‘[{ﬁ g j} VO scr'e'; [
+ (—)/{’} j : ; } VO(rer'e /’)8“’}, (6A-3c)

where /=v2/+1. We have used the following notations for the matrix ele-
ments of the interaction:
VI abed; [)=— (ugtttsta+vavyvva)Glabed; )
—(ugvyrtcva+ veuyvug) F(abed; J)
+ (=Yt (vupt,vg+ ugvyvng) F(bacd; [),
V®(abed; )= — (squyvevg+ vavpuoung)Glabed; ])
+ (uavpv 4+ vartyucva) F (abed; J)
— (=Yt (vuyv g+ uqvyttevy) F (bacd; [),

(6A-4)

where the G and F type matrix elements are defined in Appendix 1A. In
the text, we have expressed, for example, F(rsaa; J) as F(rs(vgq,5)?; 2) when
a denotes the 14§, orbit for neutrons and /=2.
6A-2 The case of pairing-plus-quadrupole force

When we adopt the pairing-plus-quadrupole force, the matrix elements

are simply obtained from Eq. (6A-3) by the following replacement:

VI abed; J)=— VP (abed; ])
: (6A-5)
= —o5xQab)Q(cd)3 s,

where

Oab) == all 2 ¥ | B) (- vty
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Appendix 6B. Method of calculating transition matrix elements
between nuclei with different nucleon numbers?)

In the case of evaluating beta-decay matrix elements or nucleon-transfer
matrix elements, we must calculate the matrix elements between nuclei with
different nucleon numbers. Since the quasi-particle representation is intro-
duced by solving the BCS equations, i.e., (3:5) in Chap. 1, with given nucleon
numbers (proton and neutron numbers) corresponding to a specific nucleus
of interest, we must know the method of calculating transition matrix element
between the states expressed by different quasi-particle representations. Here,
within the intrinsic subspace in the quasi-spin space, we give a method suitable
for this purpose.

Since Bogoliubov transformation is nothing but the rotation of the co-
ordinate system around the y-axis in the quasi-spin space (composed of the
direct product of quasi-spin subspace defined in each single-particle orbit),
any quasi-particle representation is characterized by the set of rotation angles
0=(0,, b, ---), 0, being the rotation angle for the subspace in the orbit a.
(See Chap. 1.) The initial and final state vectors are therefore represented
by |I''D, 0% and |, ), respectively. Here, I'® and I'‘"> denote
the sets of quantum numbers characterizing the initial and final states, re-
spectively, and 6 and @ the corresponding sets of rotation angles.
In the intrinsic subspace (in the quasi-spin space), these states satisfy the
condition

S‘S!)(a)ll"‘“, 0(¢)>=S‘(_f)(a)|1"(f>’ 6> =0, (6B-1)

where superscript (¢) or (f) of the quasi-spin operator S_(z) denotes that it is
represented in terms of the quasi-particle representation corresponding to the
initial or final states, respectively. (See Chap. 1.)

Let us first notice that the initial state vector can also be expressed in the
quasi-particle representation corresponding to the final state as

l]"(i), 0(f)>:R<0(f>__0(i))|]"(i)’ 0<i)>’ (6B'2)

where R(@)=exp{iX0,54@)}. (Since Sy(a) is invariant under this trans-
formation, the superscript (7) or (f) is unnecessary for Sy(z).) The condition
(6B-1) for the initial state is then re-expressed as

SW(@) | TP, <75 =0 (6B-3)
for all $(z). Let O be the transition operator which is generally written as

0A=0A([€Ta], [L'E]) "ty [L“Y]y [CS]a "')
={aB | Olyd+-> cheh+-cyey.
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When O is expressed in terms of the quasi-particle operators in the represen-
tation corresponding to the final state, the transition matrix element under
consideration takes the following form:

KD, 900\ ID, o>
=D, 0‘f)|@([u&f)agf’*+v;f)agf)],
(40P +v‘cf)a§;f)7], ORGP — 60| D, 6>,
(6B-4)
where we have used the inverse transformation of (6B-2). In the above
expression, all quasi-particle operators refer to the representation corresponding
to the final state. By making full use of the conditions (6B-1) and (6B-3) with
the aid of the identity
exp[40,{S+(2)—S—(2)} /2]
=exp[S(a)tan(db,/2)]-exp[—2S(@)log cos(46,/2)]
X exp[—S_(a)tan(46,/2)], (6B-5)
we finally obtain the expression suitable for the present purpose:
<I"(f>, 0(f)|0|1"(1:)’ 0(i)>:<1"<f)’ 0|@|I"(t)’ 0>, (6B‘6)
O=O([u D(a)tat+ v as], -+,
[u(cf)dv+ ‘Z/(an@)-laI’]) . )'é
=G-O([uPai+vP D(@)as), -+,
[P D()~tay+v$Pal)], ) (6B-7)
with
G—exp[—2 ZuSo(@log D(a),
where D(a)=cos(40,/2)=uPuf+vPv, 40, being defined by 46,=03
—6.

In the right-hand side of Eq. (6B-6), we have omitted the superscript (f)
for the set of rotation angles @ and the quasi-particle operators; since, as is
easily proved by the same procedure as above, the set of rotation angles to
which we refer in evaluating the transition matrix element can be chosen
arbitrarily. Thus, by replacing O with the “effective transition operator”
O, we can exactly take account of the difference of nucleon numbers between
the initial and final states. In the actual calculations, it may be sufficient to

consider only the first order terms in 46,. Then, the effective operator o
takes much simplified form:
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O~O0([uPat+v{as), -, [u§ ‘a,+vPal], ). (6B-8)
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§ 1. Introduction

In the preceding chapters we have shown that the low-lying collective
excited states in spherical odd-mass nuclei can be successfully described in
terms of the dressed QP modes prescribed by the concept of transferred
seniority. Since the dressed #QP modes are defined in the “intrinsic space,”
which does not involve any /=O0-coupled quasi-particle pair, they are in-
dependent of the “collective” modes of pairing correlation within the NTD
approximation. In this chapter we investigate the coupling between such
independent modes of excitation.

Now, according to the canonical transformation method developed in
Chap. 1, we can regard the space of states in terms of quasi-particles as a
product space consisting of the “‘intrinsic’”’ space and the ‘“collective” (boson)
space. In this representation, the original quasi-particle interaction is classified
into three types: The first represents an interaction causing the mixing among
the “intrinsic’”’ states, the second among the “collective’ states and the last
between ‘‘collective’” and “‘intrinsic” states. As has been shown in §2 of
Chap. 2, the first-type interaction in the intrinsic space can furthermore be
divided into two parts, i.e., the constructive force which is responsible for
constructing the dressed #QP modes, and the interactive force which manifests
itself as the coupling among the different QP modes. What we have in-
vestigated in Part III as the coupling effect is nothing but the effect originating
from this interactive force.

The other new type of coupling effect may arise from the third-type
interaction which causes the mixing between the collective and intrinsic states.
Since the collective space involves all of the quantum fluctuations of the
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pairing field, i.e., the excitation modes of /=0-coupled quasi-particle pairs,
the third-type interaction manifests itself as a coupling between the pairing
vibrational modes and the dressed QP modes. In treating the mutual
interweaving of such composite modes of excitation, there are well-known
difficulties such as the overcompleteness in the degrees of freedom and the
violation of Pauli principle. However, the independency of the “collective”
pairing modes and the dressed #QP modes enables us to overcome these
difficulties.

The main purpose of this chapter is to investigate the formal structure
and physical implication of this coupling, leaving the detailed analysis of its
effect in comparison with experiment as a next subject.

§ 2. The pairing Hamiltonian in collective representation

The original quasi-particle interaction Hint given by Eq. (1:3:4)* may
be divided into two parts:

Hiny=H P+ H®, (2-1)
where the first-kind interaction H{Y, satisfies

[8(2)2, H{L]=0 for each orbit «, (2-2)
and the second-kind interaction is defined by

[S(a)?, H{Z:]#O0. 23)
Here 8(a)? is the quasi-spin operator of orbit «,

8(@2=S1(@)S(@)+So(@)2—S(a),

where S.(a) and So(a) are defined in Eq. (1-2:18). Since the quasi-spin
quantum number S(¢) is known to be related to the seniority number v, of
orbit & through

S@=5 @, (@=juty),

Egs. (2-2) and (2-3) imply that the first-kind interaction A {£; does not violate
the seniority number v, of each orbit, while the second-kind interaction
H®, changes the seniority number vg.

In this section, we investigate the coupling between the “‘collective”
and “intrinsic” degrees of freedom which originates from the first-kind inter-
action H{};. A typical example of the first-kind interaction is known to be
the pairing interaction. Therefore, we adopt the pairing Hamiltonian given

*) We cite the equations in different chapters by adding the chapter number to the first place of the
equation number.
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by Eq. (1B-2) in Appendix 1B as an illustrative example. As a matter of
convenience, we here leave the parameters (%, v,) of Bogoliubov trans-
formation undetermined, although it is custom to determine the parameters
(#qy vg) sO as to eliminate the ‘‘dangerous term” H{P in Eq. (1B-2).

Applying the canonical transformation (1-5-8), we obtain the pairing
Hamiltonian in the collective representation:

H?P=UPD 4+ HP+HP+H®,, 2-4)
UP=3,20, {(’%+ % GU%) vE— ‘%—”avad} )
H =3, {na(ud —v})+2u,v,4} {ﬁa+2ﬁ<a)} )

Hip)= a{z"laua”a—’ (u% - y%)A} {bL\/Qa,’" ﬁa-N(a)‘*‘\/-Qa_ﬁu"'N(a) ba},
H=HP+ HP -+ HP+HZo,

where
Ne=¢€s—A—GvE, Q,=jo+ ; y,  A=G X Rquav,,
N 25)
”a.=2m41aldm N(ﬂ)zbaba,
and

HP = — G o+ o302V Qu—ita— N (@) V o—i1,— N () by},

HP— 7Gzac(u‘zv§+vuuc){b* VQ@y—ha—N(a) b R,—r—N(0) +h.c},
— . (2:6)

HP =G Sa(1 — 3 )eeolbhV Qu—rg—N(a) {1+ 2N () +h.c],

HEZ exeh = =—G Zacua'yaucvc[ {na,+2N<a)} {”0+2N(5)} - {na+2N<“)} 8«w]

In this collective representation, the boson operators (b}, b,) and the quasi-
particle operators (al, a,) describe the collective and intrinsic degrees of
freedom respectively, and therefore their mutual interweaving is clearly
visualized. Needless to say, the quasi-particle number 7, of each orbit ¢ in
this representation must be the same as the seniority number v,, because of
the supplementary condition (1:6-10) for the ‘“‘intrinsic” state. In the case
of the Hamiltonian with the first-kind interaction satisfying (2- 2), therefore,
we always have

[72a, H®]=0, -7

which shows that the “intrinsic”’ state |@intr) must be an eigenstate of the
quasi-particle number 7, of each orbit, i.e.,

| pintr) =1 5(a), So(@)=—S(a); S(8), Se(6)=—S5@); ;') (2:8)

where I' denotes a set of additional quantum numbers to specify the intrinsic
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eigenstate. This implies that the Tamm-Dancoff basis vectors in the “intrinsic”
space discussed in §2-1 of Chap. 2 themselves become the intrinsic eigenstates
of the Hamiltonian with the first-kind interaction, and they are never mixed
with each other through their interweaving with collective pairing modes.

Now, according to the method developed in § 6 of Chap. 1, let us expand
the pairing Hamiltonian (2-4) in terms of the creation and annihilation ope-
rators of the pairing vibrations

X.=3, {lpu(a)btt + d’u(“)ba} ’

29)
X, =2, {‘pu(‘z)ba““ ‘?S#(a)btl} s

the details of which are given in Appendix 1B. Then, the expanded
Hamiltonian takes the form given by Eq. (1-6:7):

H® = e+ HP+HP, (210)
HBe—hp,
HP = S XU W+ XAR W),

HE= 1 5 AXLXUE )+ X XA )+ 2X L XKD ()}

where we have consistently neglected all terms which involve commutators
of H® with X}, (or X,) higher than double. The operators 4% only involve
the intrinsic degrees of freedom represented in terms of the quasi-particles and
are defined by Eq. (1-6-8). According to the same procedure as used in
deriving Eq. (1-6-14b), the pairing Hamiltonian (2:-10) can be effectively
reduced to the form

HP—=H®, +HP+HP, 11

HBu= HP— & s @$ @[ X [P, X))+

— 3 Dab @K, [X, HPNH[ED, X1, XL,
HP =3 AXL[X,, AP+ XA, X1},
HE= J S XL XX, [X, ZPT+ XX[A, X1, X1]
+2XLX,[X,, [HP, XI]}.

In the case of the pairing Hamiltonian, the commutators of A® with
X (or X,) which appear in Eq. (2-11) are easily calculated: Provided that
the supplementary condition (1-6-10) is always kept to be satisfied properly,
we obtain
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[X,, Z7®) =[P, X])]
=2l {‘)bu(a) - ¢u<a)} {2%%% - (u% - vtzl)j’} ‘/‘Qa — g , (2123')

a

. ‘il a1 ¢v
[X., [P, X1]]=(¢E, ¢5)[ . }[ }, (2-12b)
a d ¢

$]

\

’

D

[X., [X,, PN =[[AP, X]], Xl]=—(gF, 5){ ‘J{%} (212¢)
v d) g

where the matrices @’ and d’ are defined by

dap=2(E o — GuBv3)dap— G(uduy+ v3v3W(Qy—715) (Rp— 1)
213)

Gap =2Gu3v380p— G(udv% +v3ud W (R —724) (Rp—72)
with
J’EG > auava(ga - ﬁa):

. . (2-14)
Eo=n,(2 —v2)+2u,0,4".

At this step, let us self-consistently determine the parameters (u,, v,)
of Bogoliubov transformation and the amplitudes ($.(@), $.(@)) of the pairing
vibrational modes in Eq. (2:7). The parameters (#%,, v,) are determined, with
the aid of the intrinsic eigenstate (2-8), by the condition

<¢intl‘ I H&p) ! ¢intr> = O, (2' 15)

2"747'%7}0,"_ G(”% - UE)Zb('Qb—”b)%bvaO: (216)

which is just the gap equation with the blocking effects. The amplitudes
(fu(a), ¢u.(a)) are then determined in order to diagonalize the matrix

<¢intr| H(IZP | ¢intr>, i.e.,

d a g &
R [ T
—a —d ¢lz

(3|

where the ¢c-number matrices @’ and d’ are given by replacing the quasi-particle
number operator 7, in the matrices @’ and d’ with its eigenvalue 7, in the
intrinsic eigenstate (2-8). Equation (2-17) is just the eigenvalue equation
of the pairing vibrational modes with the blocking effects. Here it is worthy
of note that, in spite of the inclusion of the blocking effects, Eq. (2-17) certainly
has the zero-energy solution just as the usual eigenvalue equation (without
the blocking effects) does.

It is now clear that the main effects of the coupling between the ‘“‘collective”’
and “intrinsic’’ degrees of freedom, which originates from the first-kind
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interaction A {¥;, can be renormalized into both the quasi-particle field and
the pairing vibrational modes.

§3. Expressions of the Hamiltonian and electromagnetic
multipole operators in terms of pairing vibrational
modes and dressed nQP modes

In this section we develop a theory in which the mutual interweaving of
the “collective’” and “‘intrinsic’”’ degrees of freedom can be treated in terms
of the “‘collective’”’ pairing vibrational modes and the “intrinsic”’ dressed
7#QP modes. The independency of the pairing vibrational modes and the
dressed #QP modes (within the NTD approximation) enables us to overcome
the well-known difficulties in determining the coupling between composite
modes, such as the overcompleteness in the degrees of freedom and the violation
of Pauli principle.

3-1 Coupling Hamiltonian

Contrary to the first-kind interaction A {;, the second-kind interaction
H§®, changes the seniority number of each orbit. Hence the second-kind
interaction remarkably affects the structure of the “intrinsic’’ space, the basis
vectors of which are characterized by the seniority number v, of each orbit.
In fact, as shown in Part II, this kind of interaction constitutes the main part
of the quasi-particle interaction in the intrinsic Hamiltonian Hjutr given
by Eq. (1:6-14). In Part III we have investigated the various effects on the
structure of the “intrinsic” states, that are caused mainly by the second-kind
interaction, and shown that many properties of the spherical odd-mass nuclei
are characterized by these effects. Also in the coupling between the ‘col-
lective” and “intrinsic” degrees of freedom, we expect that the second-kind
interaction causes more complex effects than those originating from the first-
kind interaction.

When the second-kind interaction becomes effective, the eigenvector of
the quasi-spin operator (2:8) is no longer the eigenvector of the intrinsic space.
In this case, the coupling between the collective and intrinsic degrees of
freedom, which originates from the first-kind interaction, becomes difficult
to be simply renormalized into the quasi-particle field or the pairing vibrational
modes. Therefore, in this section we treat the original quasi-particle inter-
action as a whole, without insisting on such a separation of the interaction
into the first- and second-kind interactions.

We start our discussion with the collective representation of the original
Hamiltonian Z given by Eq. (1-6-14):

H —> const+ Heo1+ Hintr+ Heoupt,
Hcol= ZywuXLXu;
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Hue=H— ; Zonabu @)X, Z]+hc}

L S (X, Z 20 XTI

Heon=Su X120+ X.Z)+ & Tul2XLX[X,, Z)]
L XXX, Z+ X, X,[Z, X1]},

where Z denotes the interaction which is neglected in constructing the pairing
vibrational modes within the RPA, and where all terms which involve the
commutators of Z, (or Z}) with X}, (or X,) higher than single are neglected.
In § 5-2 of Chap. 2, we have given the transcription rule, by which any physical
operator depending only on the intrinsic degrees of freedom can be unambigu-
ously transcribed into the quasi-particle NTD space. With the aid of the
transcription rule, the intrinsic Hamiltonian Hiutr has already been expressed
in terms of the dressed QP modes (see § 5-3 of Chap. 2). Now we express
the coupling Hamiltonian Hcoup1 in terms of the pairing vibrational modes
and the dressed #»QP modes. The parts written by thin letters in the coupling
Hamiltonian Hcoup1 only involve the intrinsic degrees of freedom represented
in terms of the quasi-particle operators. Thus, with the aid of the transcrip-
tion rule, these parts can also be transcribed into the quasi-particle NTD
space as the intrinsic space: With the creation and annihilation operators of
the dressed #QP modes (Y1, V), we have

Heoupt —> ZSAS'A';L<¢0|Y8)\ZM YTs'/\’|(D0>(YTsA YS’A'Xu+h-C->
+ D aswimw{Pol| Yrl Xy Zu] Vg | P> X LY Y X,
1
-l_if 20 a8 N <(Do| YS/\[Z;L':XL] YE’/\’|¢0>(YT9>\ YS’A’Xu’Xu+ h.c.). (3'1>

The matrix elements in the above expression are then easily evaluated using
the transcription rule (2-5-8).

Thus, the original Hamiltonian is expressed in terms of the pairing
vibrational modes and the dressed #QP modes as follows:

H —> const+ Heo1+ Hintr+ Heoupr, (32a)
H(ZOI:Z/J.CUMXLXM,
Hintr: ZU_Eualaa—}‘ ZAU)/\YRY/\“}— Za,\Vint(a, A><Y1)‘\aa+az. Y/\)) (3.2b)

Heoupt = 3 o Eo() (X LA+ Xala,+ 230 Vint(u; A, A) (Y Yy X, +h.c.)
+ X o Vint(p; A, o) (Y@, Xu+hoc)+ 2o Vint(p; a, ) (aLY, X, +h.c.).

In the above expression we have adopted the same quasi-particle NTD sub-
space as employed in § 5 of Chap. 2, which consists of the 1QP and dressed
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3QP modes, and furthermore we have given explicitly the effects of lowest
order of the coupling between the collective and intrinsic degrees of freedom.
The explicit forms of E4(u) and Vint(w; ---) are given in Appendix 7A.

3-2 Effective electromagnetic multipole operators in collective-intrinsic-
coupled system

For the investigation of the system in which the collective and intrinsic
modes are coupled to each other, it is necessary to express physical operators
such as electromagnetic multipole operators in terms of the collective and
intrinsic modes of excitation. This is easily performed in the same way as
was done for the Hamiltonian. Any physical operator £ is first transformed
into the collective representation in terms of the pairing-vibration modes
(X1, X.):

= Ucar’ 13‘ U Eol
= F+ S A XUX,, F1+ X[F XL+ 3-3)

where Ueo is the canonical transformation defined by Eq. (1-5'8) and 2
denotes the operator extended into the extended quasi-spin space discussed
in §4 of Chap. 1. The first term depends only on the intrinsic degrees of
freedom represented in terms of the quasi-particle operators. Therefore, in
the same way as was done in § 5-3 of Chap. 2, the first term can be expressed
in terms of the dressed #QP modes by the use of the transcription rule. The
parts written by thin letters in the second term are composed of the quasi-
particle operators representing the intrinsic degrees of freedom. Consequently,
these parts can also be easily expressed in terms of the dressed #QP modes,
with the aid of the transcription rule (2:5-8). Here, we give the expression
for the case where the operator /' represent the electromagnetic multipole
operator O%: In this case, the term corresponding to the first term of Eq.
(3-3) has already been expressed by Eq. (2:5:14). For the corresponding
second term, we obtain

S XX, OE]+ X [0%), X
— Dol Polaf X, Of1ah| Pod> Xlalas
+<{ Py 2 [OF, X1]ah| DodalasX,}
+ Dl B | Vi[ X, OR) Y1/ o) XYY
+{By| Vi[O, X[V Doy VY X}, (3-42)
S A XX, OB+ X[0%, X 1T}
— Dol Dy| V)[X,, OF]al | Do) X Y {a,
+{By|a[ X, O Y] 1Po> XaL Y}
+ X audlDy| Y3[05, XMal|1Do>Ya X,
+{ By |20, X1 V}|Dopal Y\ X,}. (3-4b)
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The explicit forms of the matrix elements in the above expressions are given
in Appendix 7B.

Thus we have derived all necessary expressions for the Hamiltonian
and the electromagnetic multipole operators, in terms of the “collective”
pairing vibrational modes and the “‘intrinsic” dressed #»QP modes. In this
way, we have obtained a theory, by which we can systematically study the
structure of the coupling between the pairing vibrational modes and the
dressed #QP modes.

§4. Concluding remarks

We have studied some physical implications of the coupling between the
“collective’” and “intrinsic”’ degrees of freedom, according to the method
developed in § 6 of Chap. 1. In this method, all physical operators such as
the Hamiltonian and the electromagnetic multipole operators are expressed
in a form of expansion in terms of the creation and annihilation operators of
the pairing vibrational modes. When the interaction of the original Hamil-
tonian does not violate the seniority number v, of each orbit, the coupling
between the collective and intrinsic degrees of freedom becomes very simple.
We have shown by adopting the pairing Hamiltonian that the coupling can
be renormalized into both the quasi-particle field and the pairing vibrational
modes as the blocking effects. On the other hand, as shown in Part III, the
interaction which does change the seniority number v, of each orbit causes
various significant effects on the structure of the intrinsic states. Such a kind
of interaction causes also the coupling between the collective and intrinsic
degrees of freedom bringing about abundant effects on the structure of the
spherical odd-mass nuclei.

Since the dressed QP modes are defined in the intrinsic space, which does
not involve any /=0-coupled quasi-particle pair, they are independent of the
““collective’” modes of pairing correlation within the NTD approximation.
This independency of the dressed QP modes and the pairing vibrational modes
enables us to overcome the well-known difficulties in treating the mutual
interweaving of the composite modes, such as the overcompleteness in the
degrees of freedom and the violation of Pauli principle. Thus, using this
independency, we have developed a theory, by which the coupling between the
collective and the intrinsic degrees of freedom can be systematically studied
in terms of the interplay between the pairing vibrational modes and the dressed
7nQP modes.

Recent accumulation of various kinds of experimental data is illuminating
the structure of the couplings among composite modes of excitation. In the
light of experimental development, the method of mode-mode coupling becomes
one of hopeful approaches to understand the mechanism of the change in the
structure of nuclei. The ‘“collective’” pairing vibrational modes represent
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just the fluctuation of the ‘‘spherical”’ quasi-particle field. Hence, the
coupling between the ‘““collective’’ pairing vibrational modes and the “intrinsic”
dressed #QP modes is expected to provide a wealth of information on the
mechanism of the change of the ‘“‘spherical” quasi-particle field into, for
example, a ‘““‘deformed’ field. Thus, it is one of the subjects of growing
interest to systematically study the coupling between the pairing vibrational
modes and the dressed »QP modes in comparison with experimental data.

Appendix 7A. Coupling between pairing vibrational
modes and dressed nQP modes

We give the explicit forms of the matrix elements appearing in the
coupling Hamiltonian, Heoup1, defined by Eq. (3-2Db).

TA-1  Coupling originating from part Hy of original interaction

The coupling originating from the part Ay of the original interaction
Hint given by (1-3-4) is obtained by using the commutator of Ay with the
pairing vibrational mode X (or X,):

[(Hy, X1]=24 Ea(w)ite+ H x(0)+ Hyp(w), (7A-1)
H () =3 upys V x(1; afyd)alalasa, ,
Hy(W)y=3 opys{Vr1(s; ap78)alalalal+ V ya(p; afyd)aasasas},

where the following notations are used;

E(m)y=—V 2 T, [{Vy(e12200) + 2V (ae1085)} {thu(ere) —Pu(E1Z2)}], (TA-22)

1
Valp; aBy®)=— 75 e {Vi(r8a21)8g.,— Vi (y8BE1)80ss} Yuleres)

—{ V3 (aBye)8s,— V- (afd8)8ye,} Pu(8182)],  (TA-2b)
Vi (aBy8)=Vy(aByd)+ Vy(8ayB)— Vy(8Bya),

VVI(F‘; 0»13’73)5— J% e Vy(alg51s)8m“ Vy(aBe17)ds..} ‘/’u(slez), (7A'2C>

Vya(p; afyd)=— % Zerea{ Vi(0Ber?)ds,— Vi(aPer8)dye} du(erzs).  (TA-2d)

Here the amplitudes of the pairing vibrational modes, i.(e1e2) and ¢,(e1¢2), are
related to those defined by Eq. (1B-9) in Appendix 1B through

l/"M-($182) = (jejemslmeg | OO)![‘,,,(é) ’

bu(erea)=(Jesememe,100)$.(e),

and the matrix element of the original Hp-type interaction, Vy(aByd), are
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given after Eq. (1-3-4). In Eq. (7A-1), we have adopted the notations similar
to those for the original Hamiltonian, such as £,, Ay and H,, paying at-
tention to their formal similarity. However, it should be noted that, contrary
to the original Hamiltonian, the A y(u) and A, (u) are not hermitian and
hence the order of the indices of the matrix element V y(u; afyd) and the indices
¢ of Vi,i(u; aByd) have important meanings.

In the same way as in the case of the intrinsic Hamiltonian, the tran-
scription of the operator (7A-l) into the quasi-particle NTD space can be
easily performed by the use of the transcription rule (2:5:8). Using the
matrices D?, d? and A? defined in Appendix 2B, the matrix element Vint(u;
A, A) in Eq. (3:2b) is given by

Vint(}b; }\, X)=<¢o| Y,\[HY, XH Y;/](D0>

7 i ke A3
—(‘b"w{(—fw a L} Y

with the following replacements in the matrix elements of Df, d! and A?

(7=1,2):

EL > EJp), Vs > 2Vx(p; aByd), Viyi(ayd) = Vii(w; afys),
Via(aByd) = Vya(u; afyd). (TA-4)

TA-2  Coupling originating from parts Hy and Hy of original interaction

The coupling resulting from the parts Ay and /) of the original
interaction Hint is derived from the commutator of A x+ A, with X} (or X,):

[(Hx+Hy, X1] 2 Zagrs{Vyi(p; afyd)alalala, + Via(p; aByd)alazapa.t,
=Hy(w), (TA5)
where

Vip; aﬁ'yS) =-2/2% cresl Vx(aPyer)dseibu(ees)
—{V(aferd)+ Vi (e8aP)} 8, u(eita)], (TAGa)

VY2(”' > O'-B'}'S)Ez‘/j 2 5152[ VX(a/gyel)8852¢l‘(§1§2)
—{V(aBe1d)+ Vi (e186B)} 8. ipulercs)], (TA:6b)

and the matrix elements of the original Hy- and H,-type interactions,
Vx(aBy8) and V,(aPys), are given after Eq. (1-3-4). Needless to say, the
operator Hp(w) is not hermitian.

Paying attention to the formal similarity of A, (u) to Ay, we can express
the operator (7A-5) in terms of the 1QP and dressed 3QP modes, with the
aid of the transcription rule (2-5-8). Using the vector B(a) defined in
Appendix 2C, the matrix elements Vint(u; A, @) and Vint(u; a, A) in Eq. (3-2b)
are given by
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Vit(; A, 0)=<Py| YV\[H x+ H, X1]al| Do)
=(¢7, 7)-B(a), (TA-Ta)
Vint(}l«; a, }\)=<¢0 laa[HX‘|‘HVy XL] Y];. | Cbo>
=BT(a)-[ # } (7A-7b)
D

with the following replacements in the elements of B(a):

Vy1(aByd) = Vyi(w; afyd), Vya(afyd) > Viya(u; afys), (7TA-8)
for the former relation (7A-7a), and

Vyi(aByd) = Vya(w; afyd), Vya(aByd) > Vii(u; afys), (TA-9)
for the latter relation (7A-7b).

Appendix 7B. Matrix elements of electromagnetic multipole
operators in collective-intrinsic-coupled system

For the study of the system in which the collective and intrinsic modes
of excitation are coupled to each other, it is necessary to express the electro-
magnetic multipole operators in terms of the collective and intrinsic modes
of excitation. Here, we give the explicit forms of the matrix elements involved
in the expressions (3-4a) and (3-4b).

We first take the commutator of the electromagnetic operator O, with
the pairing vibrational mode X} (or X,):

(O, Xi1=C &)+ ZosOLit(s; af)alas, (7B-1a)
(0%, X{1=Das{OFu(u; eBalaht O5Pu(; aP)agas},  (7B-1b)

where 0%, and 0%, denote the first and second terms of 0% defined by
Eq. (1-5-12), respectively, and the following notations are used;

CEU=AT Do OFUere2) Whlere) Fhulerm)t 15T, (7B-2a)
(f“ ’ O'IB) :Fz F Z 16z {O(i) (gllé)suulﬁu(El%) =+ O(i) (gla>8552¢u<5152)} ’

(7B-2b)

Oh(t; 9B)= o Ters OF ae s~ OFU B b, (TB20)

O5ai3 B)=— iy T OFiep0— OEU Beucd ulests).  (TB:20)
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Here we have used notations similar to the original electromagnetic multipole
matrix elements 0%)(af) and O$y(af) defined by Eq. (1:5-13). It should
be noted, however, that the time-reversal property of the quantities defined by
Eq. (7B-2) is different from that of the original matrix elements O%3,(aB)
and O%)(aB).

In the same way as was done in § 5-3 of Chap. 2, the operators (7B-la)
and (7B‘1b) can be easily expressed in terms of the 1QP and dressed 3QP
modes, because they involve only the intrinsic degrees of freedom represented
in terms of the quasi-particle operators. Thus, using the matrix elements
explicitly defined by Eq. (2D-3) in Appendix 2D, the matrix elements in
the expression (3-4) are given by

(DB Vi[OG, X 1]al|@p>=(D,| Vi FEal | Dy, (7B-3a)
(Poa,[OF, X1 VD> =L Py|a.F' Y|Py, (7B-3b)

(By|a[OFr, X 1)ah|Bo>=CENwB.s+ Dol a,FEyal| Do
— CE5()3ua+ OFi(w; o), (7B-3¢)
(Bo| V;[O%, XLV Y| Bod=CGi(wdp+ <Dy Y, EE, Y| Do>  (TB-3d)

with the following replacements in the matrix elements of A and F¢):
F2u(aP) = On(u; of),  Fi(a) > OFu; ab). (7B-4)

The other matrix elements in the expressions (3-4a) and (3:4b) are given in a
similar form.





