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Abstract

Low-frequency quadrupole vibrational modes in deformed 36,38,40Mg close to the
neutron drip line are studied by means of the quasiparticle-random-phase approxi-
mation based on the coordinate-space Hartree-Fock-Bogoliubov formalism. Strongly
collective Kπ = 0+ and 2+ excitation modes carrying 10 − 20 Weisskopf units in
the intrinsic isoscalar quadrupole transition strengths are obtained at about 3 MeV.
There are two reasons for the enhancement of the transition strengths. First, the
quasiparticle wave functions generating these modes possess spatially very extended
structure. The asymptotic selection rules characterizing the β and γ vibrations in
stable deformed nuclei are thus strongly violated. Second, the dynamic pairing ef-
fects act strongly to enhance the collectivity of these modes. It is suggested that the
lowest Kπ = 0+ collective mode is a particularly sensitive indicator of the nature
of pairing correlations in deformed nuclei close to the neutron drip line.
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1 Introduction

The physics of drip-line nuclei is one of the current frontiers in nuclear struc-
ture physics [1–3]. The number of unstable nuclei experimentally accessible
will remarkably increase when the next generation of radioactive ion beam
facilities start running. We shall be able to study the properties not only of
the ground states but also of low-lying excited states of drip-line nuclei in
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the medium-mass region. Collective excitation in neutron-rich nuclei is one of
the most interesting issues in this field. Because properties of low-frequency
collective vibrational modes are quite sensitive to surface effects and details of
shell structure, we expect that new kinds of collective excitations emerge under
such new situations of nuclear structure. In order to quest for collective modes
of excitation unique to unstable nuclei associated with new features such as
neutron skins, many attempts have been made using the self-consistent RPA
based on the Skyrme-Hartree-Fock (SHF) method [4–6] and the Quasiparticle-
RPA (QRPA) including the pairing correlations [7–12]. A number of similar
approaches using different mean fields have also been carried out [14–22]. (See
Refs. [12,19,23] for extensive lists of references concerning the self-consistent
RPA and mean-field calculations.) Most of these calculations, however, are
restricted to spherical nuclei.

Quite recently, low-frequency RPA modes in deformed nuclei close to the neu-
tron drip line have been investigated by several authors. The time-dependent
Hartree-Fock method formulated in the three-dimensional coordinate space
with a complex absorbing boundary condition was applied to low-frequency
isovector dipole modes [24]. Possible appearance of low-frequency octupole
vibrations built on superdeformed states in neutron drip-line nuclei was dis-
cussed in Ref. [25] on the basis of the SHF plus mixed representation RPA [26–
28] calculations. In Ref. [29], we investigated properties of octupole excitations
built on superdeformed states in neutron-rich sulfur isotopes by means of the
RPA based on the deformed Woods-Saxon (WS) potential in the coordinate-
space mesh-representation. We found that low-lying states created by excita-
tion of a single neutron from a loosely bound low-Ω state to a high-Ω resonance
state (Ω being the z-component of the angular momentum) acquire extremely
strong octupole transition strengths due to very extended spatial structure of
particle-hole wave functions. All of these calculations, however, did not take
into account the pairing correlation. In Refs. [30,31], low-lying Gamow-Teller
β-decay strengths were investigated by means of the proton-neutron RPA us-
ing the SHF + BCS approximation. Gamma vibrations in 38Mg were studied
using the QRPA with the BCS approximation [32] on the basis of the response
function formalism. It should be noted that these calculations relied on the
BCS approximation, which is inappropriate, because of the unphysical nucleon
gas problem [34], for describing continuum coupling effects in drip line nuclei.

The nature of pairing correlations in neutron drip-line nuclei is one of the most
important subjects in the physics of unstable nuclei. One of the unique features
of drip-line nuclei is that the pairing correlation takes place not only among
bound levels but also including continuum states. To describe this unique char-
acter of pairing, the coordinate-space Hartree-Fock-Bogoliubov (HFB) formal-
ism is suitable [33,34] and has been widely used for the study of single-particle
motion and shell structure near the continuum [35–38]. Due to the pairing and
continuum effects, spatial structure of quasiparticle wave functions near the
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chemical potential changes significantly, which affects the properties of low-
frequency excitation modes [39]. In order to study the effects of pairing on the
low-frequency excitation modes in deformed nuclei near the neutron drip-line,
we have extended the previous work to self-consistently include pairing corre-
lations, and constructed a new computer code that carries out the deformed
QRPA calculation on the basis of the coordinate-space HFB formalism.

The aim of this paper is to carry out the deformed QRPA calculation for
neutron drip-line nuclei and investigate the low-frequency quadrupole vibra-
tional modes with Kπ = 0+ and 2+ in 36,38,40Mg close to the neutron drip line.
According to the Skyrme-HFB calculations [40,41] and Gogny-HFB calcula-
tion [42], these isotopes are well deformed. The shell-model calculation [43]
also suggests that the ground state of 40Mg is dominated by the neutron
two-particle-two-hole components, which is consistent with the breaking of
the N = 28 shell closure discussed in [44]. We investigate properties of low-
frequency modes of excitation in these Mg isotopes simultaneously taking into
account the deformed mean-field effects, the pairing correlations, and excita-
tions into the continuum.

This paper is organized as follows: In the next section, the framework of the
mean-field and QRPA calculations is briefly described. In Section 3, results
of the RPA calculation for low-frequency quadrupole vibrations with Kπ =
0+ and 2+ in 36,38,40Mg are presented and discussed focusing our attention
to the microscopic mechanism of emergence of collective modes in deformed
superfluid nuclei close to the neutron drip line. Concluding remarks are given
in §4.

A preliminary version of this work was previously reported in Ref. [45].

2 Method

2.1 Mean-field calculation

In order to discuss simultaneously effects of nuclear deformation and pairing
correlations including the continuum, we solve the HFB equation [33,34,46]

⎛
⎜⎝hτ (rσ) − λτ h̃τ (rσ)

h̃τ (rσ) −(hτ (rσ) − λτ )

⎞
⎟⎠
⎛
⎜⎝ϕτ

1,α(rσ)

ϕτ
2,α(rσ)

⎞
⎟⎠ = Eα

⎛
⎜⎝ϕτ

1,α(rσ)

ϕτ
2,α(rσ)

⎞
⎟⎠ (1)

directly in the cylindrical coordinate space assuming axial and reflection sym-
metry. In comparison to the conventional method of using a deformed har-
monic oscillator basis, this method is more effective in the treatment of spa-
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tially extended wave functions, like loosely bound states, resonant states and
continuum states. As is well known, when the quasiparticle energy E is greater
than the absolute magnitude |λ| of the chemical potential, the upper compo-
nent ϕ1(rσ) obeys the scattering-wave boundary condition, while the lower
component ϕ2(rσ) is always exponentially decaying at infinity.

For the mean-field Hamiltonian h, we employ the deformed Woods-Saxon po-
tential with the parameters used in [29], except the isovector potential strength
for which a slightly smaller value, 30 MeV in stead of 33 MeV, is adopted in
order to describe 40Mg as a drip-line nucleus in accordance with the Skyrme-
HFB [40,41] and Gogny-HFB calculations [42]. The pairing field is treated
self-consistently by using the density-dependent contact interaction [47,48],

vpp(r, r
′) = V0

1 − Pσ

2

[
1 − η

(
�IS(r)

�0

)]
δ(r − r′), (2)

with V0 = −450 MeV·fm3 and �0 = 0.16 fm−3, where �IS(r) denotes the
isoscalar density and Pσ is the spin exchange operator. The pairing force
strength V0 is chosen such that the average pairing gap roughly agrees with
the systematics (see Table 1). For the parameter η, which represents density
dependence, we use η = 1.0(surface type). Sensitivity of calculated results to
the parameter η will be examined in subsection 3.4. The pairing Hamiltonian
is then given by

h̃τ (r) =
V0

2

[
1 − η

(
�IS(r)

�0

)]
�̃τ (r). (3)

The normal and abnormal (pairing) densities are given by

�τ (ρ, z) =
∑
α

∑
σ=±1/2

|ϕτ
2,α(ρ, z, σ)|2, (4)

�̃τ (ρ, z) = −∑
α

∑
σ=±1/2

ϕτ
1,α(ρ, z, σ)ϕτ

2,α(ρ, z, σ) (5)

and the mean-square radii of protons and neutrons are calculated as

〈r2〉τ =

∫
ρdρdzr2�τ (ρ, z)∫
ρdρdz�τ (ρ, z)

, (6)

where r = (ρ, z), r =
√
ρ2 + z2 and τ=π or ν; �π(ρ, z) and �ν(ρ, z) being the

proton and neutron densities. The average gaps are defined by [49–52]

〈Δτ 〉 = −
∫

dr�̃τ (r)h̃τ (r)/
∫

dr�̃τ (r). (7)

We construct the discretized Hamiltonian matrix by use of the finite differ-
ence method for derivatives and then diagonalize the matrix to obtain the
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quasiparticle wave functions on the two-dimensional lattice consisting of the
cylindrical coordinates ρ and z. The kinetic energy term and the spin-orbit
potential are evaluated using the 9-point formula. Because the time-reversal
symmetry and the reflection symmetry with respect to the x − y plane are
assumed, we have only to solve for positive Ω and positive z. We use the
lattice mesh size Δρ = Δz = 0.8 fm and the box boundary condition at
ρmax = 10.0 fm and zmax = 12.8 fm. The quasiparticle energy is cut off at 50
MeV and the quasiparticle states up to Ωπ = 13/2± are included. This model
space is larger than that used in Ref. [45]. It is certainly desirable to use a
larger box for a better evaluation of matrix elements involving spatially very
extended quasiparticle wave functions. This improvement remains as a future
task, however.

We impose the condition on the convergence of the pairing energy as |(E(i)
pair −

E
(i−1)
pair )/E

(i)
pair| < 10−5, where i denotes the iteration number and the pairing

energy is defined by [37]

Epair =
1

2

∑
τ=π,ν

∫
dr�̃τ (r)h̃τ (r). (8)

We use the same deformation parameter β2 = 0.28 in the Woods-Saxon poten-
tial for both neutrons and protons. This parameter is chosen to approximately
reproduce the Q−moments calculated in Ref.[40]. We checked that properties
of the QRPA modes do not change significantly when the deformation param-
eter is varied around β2 ∼ 0.3.

2.2 Quasiparticle-RPA calculation

Using the quasiparticle basis obtained in the previous subsection, we solve the
QRPA equation in the standard matrix formulation [53]

∑
γδ

⎛
⎜⎝Aαβγδ Bαβγδ

Bαβγδ Aαβγδ

⎞
⎟⎠
⎛
⎜⎝fλ

γδ

gλ
γδ

⎞
⎟⎠ = �ωλ

⎛
⎜⎝1 0

0 −1

⎞
⎟⎠
⎛
⎜⎝fλ

αβ

gλ
αβ

⎞
⎟⎠ . (9)

This method is convenient to analyze microscopic structures of the QRPA
eigenmodes in comparison with other RPA formalisms based on the Greens
function method. Namely, individual two-quasiparticle components, (αβ), (γδ),
etc., constituting the QRPA mode λ are directly represented by the amplitudes
fλ

γδ and gλ
γδ, whereas an additional procedure is needed to obtain them in the

latter method [54].

The residual interactions in the particle-particle channel appearing in the
QRPA matricesA andB are self-consistently treated using the density-dependent
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contact interaction (2). On the other hand, for residual interactions in the
particle-hole channel, we use the Skyrme-type interaction [55]

vph(r, r
′) =

[
t0(1 + x0Pσ) +

t3
6

(1 + x3Pσ)�
IS(r)

]
δ(r − r′), (10)

with t0 = −1100 MeV·fm3, t3 = 16000 MeV·fm6, x0 = 0.5, and x3 = 1.0.
Because the deformed Wood-Saxon potential is used for the mean-field, we
renormalize the residual interaction in the particle-hole channel by multiplying
a factor fph to get the spurious Kπ = 1+ mode (representing the rotational
mode) at zero energy (vph → fph · vph). This factor is found to be 0.380,
0.376 and 0.374 for 36Mg, 38Mg, and 40Mg, respectively. It is desirable to
carry out the QRPA calculation by using a model space which is consistent
with that adopted in the HFB calculation. It requires, however, excessively
demanding computer memory, so that we cut the model space by Eα+Eβ ≤ 30
MeV. Accordingly, we need another self-consistency factor fpp for the particle-
particle channel. We determine this factor such that the spurious Kπ = 0+

mode associated with the number fluctuation appears at zero energy (vpp →
fpp · vpp). This factor is found to be 1.536 for 36−40Mg. The dimension of
the QRPA matrix is about 3700 for the Kπ = 0+ modes in 40Mg. We checked
accuracy of the numerical calculation by applying our procedure to quadrupole
excitations of the spherical nucleus 24O and comparing the result with that
of the continuum QRPA calculation by Matsuo[7] which exactly fulfils the
energy-weighted sum-rule. It turned out that, although the overall structure
of the strength distribution was well reproduced, the energy-weighted sum-
rule value was underestimated by 14% due to the truncation of the model
space. This shortcoming should be overcome in future by enlarging the QRPA
model space.

In terms of the nucleon annihilation and creation operators in the coordinate
representation, ψ̂(rσ) and ψ̂†(rσ), the quadrupole operator is represented as
Q̂2K =

∑
σ

∫
drr2Y2K(r̂)ψ̂†(rσ)ψ̂(rσ). The intrinsic matrix elements 〈λ|Q̂2K |0〉

of the quadrupole operator between the excited state |λ〉 and the ground state
|0〉 are given by

〈λ|Q̂2K|0〉 =
∑
αβ

Q
(uv)
2K,αβ(fλ

αβ + gλ
αβ) =

∑
αβ

M
(uv)
2K,αβ, (11)

where

Q
(uv)
2K,αβ ≡ 2πδK,Ωα+Ωβ

∫
dρdzQ

(uv)
2K,αβ(ρ, z), (12)

with

Q
(uv)
2K,αβ(ρ, z) = ρ{ϕ1,α(ρ, z, ↓)ϕ2,β(ρ, z, ↑) − ϕ1,α(ρ, z, ↑)ϕ2,β(ρ, z, ↓)

− ϕ1,β(ρ, z, ↓)ϕ2,α(ρ, z, ↑) + ϕ1,β(ρ, z, ↑)ϕ2,α(ρ, z, ↓)}Q2K(ρ, z). (13)
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Here Q2K(ρ, z) = Q2K(r)e−iKϕ = r2Y2K(θ, ϕ)e−iKϕ.

We calculate the transition strength functions

SIS(ω) =
∑
λ

|〈λ|Q̂IS
2K|0〉|2δ(�ω − �ωλ) (14)

for isoscalar quadrupole operators Q̂IS
2K = Q̂π

2K + Q̂ν
2K , and use notations

B(Qτ2) = |〈λ|Q̂τ
2K|0〉|2 for transition strengths and Mτ = 〈λ|Q̂τ

2K|0〉 for tran-
sition matrix elements (τ = π, ν, IS). Note that these quantities are defined
in the intrinsic coordinate frame associated with the deformed mean field, so
that appropriate Clebsh-Gordan coefficients should be multiplied to obtain
transition probabilities in the laboratory frame [56]. For instance, a factor 1/5
should be multiplied for obtaining the transition strength B(E2; 2+

1 → 0+
β )

from the 2+
1 state to the 0+

β state, while the factor is unity for obtaining the
transition strength B(E2; 0+

gs → 2+
β ) from the ground state to the 2+

β state
built on the excited Kπ = 0+ state. Here, 2+

1 denotes the 2+ member of the
ground-state rotational band, while 0+

β and 2+
β indicate the rotational band

members associated with the Kπ = 0+ intrinsic excitations.

3 Results and Discussion

3.1 Some features of calculated results

The single-particle shell structure around the Fermi surface for neutrons in
36,38,40Mg exhibits an interesting feature. Figure 1 shows the single-particle
energy diagram for the WS potential as functions of deformation parame-
ter β2. As β2 increases, a level crossing between the up-sloping [303]7/2 level
and the down-sloping [310]1/2 level takes place, and a deformed shell gap is
formed at N = 28 around β2 = 0.3. This deformed closed shell approximately
corresponds to the (f7/2)

−2(p3/2)
2 configuration in the spherical shell model

representation. The highest occupied level in this deformed closed shell is sit-
uated very near to the continuum threshold, so that there is no bound level
above it. However, neutron particle-hole excitations may take place into res-
onance levels like [303]7/2, [301]1/2 [312]3/2 lying just above the continuum
threshold. In fact, as we shall discuss below, these resonance levels partic-
ipate in the pairing correlations and play an important role in generating
low-frequency collective modes of excitation in 36,38,40Mg. Thus, 40Mg and its
neighboring isotopes provide an interesting situation to investigate collective
modes unique in unstable nuclei near the neutron drip line. The resonance
character of these levels just above the continuum threshold is confirmed by
means of the eigenphase-sum method (see Appendix).
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Fig. 1. Single-particle energies in the deformed WS potential for neutrons in 40Mg,
plotted as functions of the quadrupole deformation parameter β2. Solid and dotted
lines denote positive- and negative-parity levels, respectively. Single-particle levels
are labeled with the asymptotic quantum numbers [Nn3Λ]Ω.

Table 1
Ground state properties of 36,38,40Mg obtained by the deformed WS-HFB calculation
with β2 = 0.28. Chemical potentials, average pairing gaps, and root-mean-square
radii for protons and neutrons are listed.

λπ Δπ

√〈r2〉π λν Δν

√〈r2〉ν
nucleus (MeV) (MeV) (fm) (MeV) (MeV) (fm)

36Mg −20.0 0.0 3.06 −2.09 1.93 3.74
38Mg −23.0 0.0 3.08 −1.15 2.05 3.86
40Mg −25.1 0.0 3.10 −0.41 2.15 3.99

Results of the deformed WS plus HFB calculation for the ground state proper-
ties of 36,38,40Mg are listed in Table 1. Calculated values of the average pairing
gap for neutrons are rather close to the value estimated in terms of the con-
ventional systematics [57] Δsyst � 12/

√
A � 1.9MeV. On the other hand, the

average pairing gaps for protons vanish. As shown in this table, the neutron
root-mean-square radius increases as approaching the neutron drip line, while
the proton root-mean-square radius remains almost constant. This means that
the neutron skin structure emerges in these nuclei; the difference between the
neutron and proton radii in 40Mg is about 0.9 fm.

Results of the QRPA calculation for quadrupole transition strengths are dis-
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Fig. 2. Isoscalar quadrupole transition strengths B(QIS2) for the K = 0+ excita-
tions (upper panel) and the K = 2+ excitations (lower panel) built on the prolately
deformed ground states of 36,38,40Mg. The arrows beside the abscissa axes indicate
the neutron threshold energies, Eth = 4.06 MeV (one-quasiparticle (1qp) contin-
uum; |λ| + min Eα), 4.12 MeV (two quasiparticle (2qp) continuum; 2|λ|) for 36Mg,
2.31 MeV (2qp continuum) for 38Mg and 0.82 MeV (2qp continuum) for 40Mg.
The QRPA calculations are made by using the surface-type pairing interaction and
β2 = 0.28 for both protons and neutrons.

played in Fig. 2. We see prominent peaks at about 3 MeV for both theKπ = 0+

and 2+ excitations. Their strengths are much larger than the single-particle
strengths indicating collective character of these excitations. The strength of
the lowest Kπ = 2+ excitation gradually increases as approaching the neutron
drip line, while the lowest Kπ = 0+ excitations in 36Mg and 40Mg seem to be
split into two peaks in the case of 38Mg. In the following, we make an extensive
analysis on microscopic structure of these low-frequency collective excitations.

3.2 Kπ = 0+ modes

We first discuss the Kπ = 0+ excitation modes in 40Mg. The QRPA transi-
tion strengths are compared with unperturbed two-quasiparticle strengths in
Fig. 3 . A prominent peak is seen at about 3.2 MeV in the QRPA strength
distribution; it possesses an enhanced strength of about 22 Weisskopf unit (1
W.u. � 8.1 fm4 for 40Mg). From the QRPA amplitudes listed in Table 2, it is
clear that this collective mode is generated by coherent superposition of neu-
tron excitations of both particle-hole and particle-particle types. In Fig. 3, the
QRPA strengths are also compared with the strengths without the dynamical
pairing effects, i.e., the result of QRPA calculation ignoring the residual pair-

9



0
40
80

120
160
200 isoscalar

40
Mg

Kπ=0+

0
40
80

120
160
200 no dynamical pairing

0
10
20
30
40
50

0 1 2 3 4 5

S
tr

en
gt

h 
(f

m
4 )

�ω (MeV)

unperturbed

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

En
er

gy
 (M

eV
)

neutron
 [321]3/2

 [310]1/2

 [303]7/2
 [312]3/2
 [301]1/2

λ

Fig. 3. Left: Isoscalar quadrupole transition strengths B(QIS2) for the Kπ = 0+

excitations in 40Mg. Results of the QRPA calculation with and without including
the dynamical pairing effects are plotted in the upper and middle panels, respec-
tively, while unperturbed two-quasiparticle strengths are shown in the lower panel.
Notice that different scale is used for the unperturbed strengths. The arrow beside
the abscissa axis indicates the neutron threshold energy 2|λ| = 0.82 MeV. Right:
Two-quasiparticle excitations generating the lowest Kπ = 0+ mode at 3.2 MeV. The
single-particle levels for the deformed WS potential are labeled with the asymptotic
quantum numbers [Nn3Λ]Ω. The chemical potential λ is indicated by the dashed
line.

Table 2
QRPA amplitudes of the Kπ = 0+ mode at 3.2 MeV in 40Mg. This mode has
B(E2) = 3.4 e2fm4, B(Qν2)=136 fm4, and B(QIS2) = 182 fm4. The single-particle
levels are labeled with the asymptotic quantum numbers [Nn3Λ]Ω of the dominant
components of the wave functions. Only components with |fαβ|2 −|gαβ |2 > 0.01 are
listed.

α β Eα + Eβ |fαβ|2 − |gαβ |2 Q
(uv)
20,αβ M

(uv)
20,αβ

(MeV) (fm2) (fm2)

(a) ν[310]1/2 ν[310]1/2 3.54 0.438 6.36 4.27

(b) ν[301]1/2 ν[310]1/2 3.93 0.067 −2.57 0.925

(c) ν[312]3/2 ν[312]3/2 3.99 0.280 −2.03 1.08

(d) ν[301]1/2 ν[301]1/2 4.32 0.027 0.992 −0.176

(e) ν[303]7/2 ν[303]7/2 5.76 0.077 −3.39 0.966

(f) ν[321]3/2 ν[321]3/2 7.15 0.011 3.23 0.396
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ing interactions. One immediately notice that the transition strength to the
lowest excited state is drastically reduced when the dynamical pairing effects
are ignored.

Let us discuss the reason why the lowest Kπ = 0+ mode acquires eminently
large transition strength. There are two points to understand this mechanism:
1) existence of unperturbed two-quasiparticle configurations possessing large
transition strengths, and 2) effect of residual interactions producing coherence
among various two-quasiparticle configurations.

To examine the first point, we plot in Fig. 4 spatial distributions of the
quadrupole transition amplitudes for major two-quasiparticle configurations
generating the lowest Kπ = 0+ mode. We see that they are notably extended
beyond the half-density radius. This is a situation similar to that encountered
in Ref. [29], where a neutron excitation from a loosely bound state to a reso-
nance state brings about very large transition strength. We also note that the
transition strength associated with the ν[301]1/2 ⊗ ν[310]1/2 configuration is
much enhanced although it should be hindered if the selection rule ΔN = 2 for
the asymptotic quantum numbers [56] is applied. This selection rule is broken
for matrix elements associated with loosely bound states, because their radial
wave functions are spatially extended and quite different from those of the the
harmonic oscillator potential.

Concerning the second point, we have found that the dynamical pairing plays
an especially important role. This point is easily seen by comparing the QRPA
calculations with and without the dynamical pairing effects, which are shown
in Fig. 3. It is apparent that the prominent lowest peak disappears when the
dynamical paring effects are ignored. We can say that the coherent super-
positions among the particle-hole, particle-particle and hole-hole excitations
are indispensable for the emergence of this mode. The importance of the cou-
pling between the (particle-hole type) β vibration and the (particle-particle
and hole-hole type) pairing vibration has been well known in stable deformed
nuclei [56]. A new feature of the Kπ = 0+ mode in neutron drip-line nuclei
under discussion is that this coupling takes place among two-quasiparticle
configurations that are loosely bound or resonances, so that their transition
strengths are strikingly enhanced. In addition, as seen in Fig. 4, their spatial
structures (peak positions and distribution) are rather similar with each other.
This is a favorable situation to generates coherence among them [39]. The im-
portance of dynamical pairing effects in generating soft dipole excitations has
been demonstrated by Matsuo et al. [13] for spherical unstable nuclei near the
neutron drip line.

Next we discuss the Kπ = 0+ excitations in 38Mg and 36Mg. The quadrupole
transition strengths calculated for 38Mg are presented in Fig. 5, which exhibits
two peaks below 4 MeV. The major two-quasiparticle excitations generating
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(uv)
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tions generating the lowest Kπ = 0+ mode in 40Mg. The contour lines are plotted at
intervals of 0.002. The solid and dashed lines represent positive and negative quan-
tities, respectively. The thick solid line indicates the neutron half-density radius;
�ν(0)/2 ∼ 0.045fm−3.

Table 3
QRPA amplitudes of the Kπ = 0+ mode at 3.3 MeV in 38Mg. This mode has
B(E2) = 1.67 e2fm4, B(Qν2)=66.3 fm4, B(QIS2)=89.0 fm4, and

∑ |gαβ |2 = 2.32×
10−2. Only components with |fαβ|2 − |gαβ |2 > 0.01 are listed.

α β Eα + Eβ |fαβ|2 − |gαβ |2 Q
(uv)
20,αβ M

(uv)
20,αβ

(MeV) (fm2) (fm2)

(a) ν[310]1/2 ν[310]1/2 3.37 0.673 6.08 5.25

(b) ν[312]5/2 ν[312]5/2 4.84 0.146 0.821 −0.293

(c) ν[310]1/2 ν[330]1/2 5.35 0.023 −3.59 0.769

(d) ν[303]7/2 ν[303]7/2 6.35 0.066 −2.64 0.614

(e) ν[202]3/2 ν[202]3/2 7.82 0.021 −1.29 0.149

these peaks are illustrated in the middle and right panels of this figure. Their
QRPA amplitudes are listed in Tables 3 and 4. From these Tables, it is seen
that the peak at 3.3 MeV is mainly generated by the particle-particle type
ν[310]1/2⊗ν[310]1/2 and ν[312]5/2⊗ν[312]5/2 excitations, while the peak at
3.9 MeV is mainly associated with the particle-hole type ν[301]1/2⊗ν[310]1/2
and ν[312]3/2 ⊗ ν[321]3/2 excitations.
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tations in 38Mg are plotted in the upper panel, while unperturbed two-quasiparticle
strengths are shown in the lower panel. The arrow beside the abscissa axis indicates
the neutron threshold energy 2|λ| = 2.31 MeV. Right: Two-quasiparticle excitations
generating the low-lying Kπ = 0+ modes at 3.3 MeV and 3.9 MeV.

Table 4
QRPA amplitudes of the Kπ = 0+ mode at 3.9 MeV in 38Mg. This mode has
B(E2) = 4.72 e2fm4, B(Qν2)=68.1 fm4, B(QIS2)=109 fm4, and

∑ |gαβ |2 = 2.71 ×
10−2. Only components with |fαβ|2 − |gαβ |2 > 0.01 are listed.

α β Eα + Eβ |fαβ|2 − |gαβ |2 Q
(uv)
20,αβ M

(uv)
20,αβ

(MeV) (fm2) (fm2)

(a) ν[310]1/2 ν[310]1/2 3.37 0.037 6.08 1.34

(b) ν[301]1/2 ν[310]1/2 4.42 0.258 1.67 −1.20

(c) ν[312]3/2 ν[312]3/2 4.90 0.048 0.716 0.169

(d) ν[312]3/2 ν[321]3/2 5.47 0.250 −3.04 −2.20

(e) ν[301]1/2 ν[301]1/2 5.47 0.018 0.802 0.131

(f) ν[321]3/2 ν[321]3/2 6.04 0.058 1.66 −0.411

(g) ν[303]7/2 ν[303]7/2 6.35 0.084 −2.64 −0.853

(h) ν[330]1/2 ν[330]1/2 7.33 0.099 4.57 −1.48

The quadrupole transition strengths calculated for 36Mg are displayed in
Fig. 6. We notice a prominent peak at about 3.4 MeV below the one-neutron
threshold energy (4.1 MeV), which possesses a strongly enhanced transition
strength of about 24 W.u. (1 W.u. � 7.1 fm4 for 36Mg). This peak exhibits
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mode at 3.4 MeV in 36Mg.

Table 5
QRPA amplitudes of the Kπ = 0+ mode at 3.4 MeV in 36Mg. This mode has
B(E2) = 8.1 e2fm4, B(Qν2)=104 fm4, B(QIS2)=170 fm4, and

∑ |gαβ |2 = 3.91 ×
10−2. Only components with |fαβ|2 − |gαβ |2 > 0.01 are listed.

α β Eα + Eβ |fαβ|2 − |gαβ |2 Q
(uv)
20,αβ M

(uv)
20,αβ

(MeV) (fm2) (fm2)

(a) ν[310]1/2 ν[310]1/2 4.06 0.071 5.80 −1.58

(b) ν[321]3/2 ν[321]3/2 4.48 0.098 4.60 −1.61

(c) ν[312]5/2 ν[312]5/2 4.87 0.227 0.714 0.347

(d) ν[310]1/2 ν[330]1/2 4.91 0.211 −3.08 −2.11

(e) ν[301]1/2 ν[310]1/2 5.69 0.033 2.02 −0.511

(f) ν[330]1/2 ν[330]1/2 5.76 0.116 3.98 −1.50

(g) ν[202]3/2 ν[202]3/2 5.79 0.046 −1.47 −0.271

(h) ν[303]7/2 ν[303]7/2 7.67 0.049 −1.82 −0.411

(i) π[211]1/2 π[220]1/2 6.44 0.054 −0.251 -0.599
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tively, while unperturbed two-quasiparticle strengths are shown in the lower panel.
Notice that different scale is used for the unperturbed strengths. The arrow beside
the abscissa axis indicates the neutron threshold energy 2|λ| = 0.82 MeV. Right:
Two-quasiparticle excitations generating the lowest Kπ = 2+ mode at 2.9 MeV.
Two-quasiparticle excitations satisfying the asymptotic selection rule for the γ vi-
bration (ΔN = 0, Δn3 = 0, ΔΛ = 2) are drawn by thick arrows.

a clear character of collective vibration: As seen from Table 5, this collective
mode is created by coherent neutron excitations. Its main components are the
particle-hole type ν[310]1/2⊗ν[330]1/2 and ν[301]1/2⊗ν[310]1/2 excitations
and the particle-particle type ν[312]5/2⊗ν[312]5/2 and ν[321]3/2⊗ν[321]3/2
excitations. These particle-particle type and particle-hole type excitations are
coherently superposed to generate this collective neutron mode.

3.3 Kπ = 2+ modes

Let us now turn to the Kπ = 2+ excitation modes. The quadrupole transition
strengths calculated for 40Mg are displayed in Fig. 7. We notice a prominent
peak at about 2.8 MeV which possesses strongly enhanced transition strength
of about 19 W.u. The QRPA amplitudes of this excitation are listed in Table
6. From this Table, we see that this peak represents a collective excitation
consisting of a coherent superposition of the proton particle-hole excitation
from the [211]3/2 level to the [211]1/2 level and a number of neutron two-
quasiparticle excitations. Similarly to the Kπ = 0+ excitation modes discussed
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Table 6
QRPA amplitudes of the Kπ = 2+ mode at 2.9 MeV in 40Mg. This mode has
B(E2) = 11.7 e2fm4, B(Qν2)=75.7 fm4, B(QIS2)=147 fm4, and

∑ |gαβ |2 = 6.73 ×
10−2. Only components with |fαβ |2 − |gαβ |2 > 0.01 are listed. The label ν1/2−

denotes a discretized non-resonant continuum state.
α β Eα + Eβ |fαβ |2 − |gαβ |2 Q

(uv)
22,αβ M

(uv)
22,αβ

(MeV) (fm2) (fm2)

(a) ν[312]3/2 ν[310]1/2 3.77 0.013 1.22 −0.145

(b) ν[301]1/2 ν[312]3/2 4.16 0.098 −5.37 −1.75

(c) ν[310]1/2 ν[312]5/2 4.51 0.085 −4.37 −1.34

(d) ν[312]3/2 ν[303]7/2 4.88 0.011 −5.03 −0.454

(e) ν[301]1/2 ν[312]5/2 4.90 0.016 −2.07 −0.296

(f) ν[310]1/2 ν[321]3/2 5.34 0.047 −2.67 −0.663

(g) ν1/2− ν[312]5/2 6.96 0.015 1.93 −0.298

(h) ν1/2− ν[321]3/2 7.28 0.018 1.46 −0.265

(i) π[211]1/2 π[211]3/2 4.32 0.596 −2.11 −2.02

in the previous subsection, the asymptotic selection rule (ΔN = 0,Δn3 =
0,ΔΛ = 2) well known for the γ vibrations [56] is violated for the neutron
excitations, because these levels are loosely bound or resonances and their
quasiparticle wave functions are significantly extended outside of the nucleus.
On the other hand, proton particle-hole excitations satisfy the selection rule
because they are deeply bound. We also show in Fig. 7 the result of QRPA
calculation where the residual pairing interaction is turned off. Comparing
with the full QRPA result, we see that the transition strength is reduced
about 30%. Thus, the dynamical pairing effect is important, though its effect
is weaker than for the Kπ = 0+ mode. This is because the Kπ = 2+ mode
consists of both proton and neutron excitations and the pairing is effective
only for neutrons.

For 36,38Mg, we also obtained a prominent peak at about 2.9 MeV which
possesses strongly enhanced transition strength (about 15 W.u. and 12 W.u.
for 38Mg and 36Mg, respectively) as shown in Fig. 2. These modes possess
essentially the same microscopic structure as the collective Kπ = 2+ mode
in 40Mg discussed above. They also correspond to the γ vibrational mode
obtained in the previous QRPA calculation[32] for 38Mg. In our calculation,
however, the collectivity of these modes remains almost the same even if we
use different deformations for protons and neutrons, differently from Ref. [32].
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3.4 Dependence on pairing interaction

In this subsection, we examine sensitivity of the low-frequencyKπ = 0+ and 2+

modes on the density dependence of the pairing interaction. For this purpose,
we repeated the HFB and QRPA calculations using pairing interactions with
density dependence different from the surface type (η = 1.0 in Eq. (2)); i.e.,
the mixed type (η = 0.5) and the volume type (η = 0.0). Since the result for
the mixed-type pairing is intermediate between those for the surface-type and
the volume-type, we show in Fig. 8 only the quadrupole transition strengths
obtained using the volume-type pairing interaction. In this calculation, the
pairing interaction strength V0 = −215.0 MeV·fm3 is chosen to yield approxi-
mately the same average pairing gaps as those for the surface type. Comparing
with the results obtained using the surface-type pairing, shown in Fig. 2, we
see that the transition strengths for the Kπ = 0+ collective modes are appre-
ciably reduced, while those for the Kπ = 2+ collective modes are almost the
same. We have checked that, although the strengths are reduced, the micro-
scopic structure of these collective modes are basically the same as discussed
above on the basis of the results of calculation using the surface-type pairing
interaction. Thus, we can say that the quadrupole transition strengths for the
low-frequency Kπ = 0+ collective modes are especially sensitive to the density
dependence of the pairing interaction. Such a sensitivity has been stressed
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also in Refs. [7,10,13] in their continuum QRPA calculations for E1 and E2
strength functions in neutron rich spherical nuclei.

4 Concluding remarks

We have carried out the QRPA calculations on the basis of the deformed
WS plus HFB mean field in the coordinate representation, and obtained the
low-frequency Kπ = 0+ and 2+ collective modes in deformed 36,38,40Mg close
to the neutron drip line. It has been shown that these modes possess very
strong isoscalar quadrupole transition strengths. One of the reasons of this
enhancement is that the quasiparticle wave functions participating in these
collective excitations have spatially extended structure. The other reason is
that the residual pairing interactions, in addition to the particle-hole type
residual interactions, enhance the collectivity of these modes. The result of
the present calculation suggests that the low-frequency Kπ = 0+ collective
mode is a particularly sensitive indicator of the nature of pairing correlations
in nuclei close to the neutron drip line.

This paper should be regarded as an exploratory work toward understand-
ing low-frequency collective modes of excitation in unstable nuclei close to
the neutron drip line. It is certainly desirable to improve the treatment of
the continuum at least in the following points. First, one may try to use a
smaller mesh size and a larger box by implementing an adaptive coordinate
method[24]. Second, one may try to take into account the width of resonance
by employing Gamow states as basis of the QRPA calculation[62]. The result
of the present work indicates that calculations using such an improved frame-
work will be very interesting and worthwhile. We plan to attack this subject
in future.
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and NEC SX-5 supercomputer at Research Center for Nuclear Physics, Osaka
University.

A Eigenphase sum for single-particle resonance states

We examine properties of three single-particle states in the continuum, which
play a key role in generating the low-lying excitations modes in 36,38,40Mg.
The resonance energy and width in a deformed potential can be estimated
using the eigenphase sum Δ(E). It is defined in terms of the eigenvalues of
the scattering matrix (S-matrix) as

(U †SU)aa′ = e2iδa(E)δaa′ , Δ(E) =
∑
a

δa(E). (A.1)

We evaluate the eigenphase sum for three states following the procedure of
Ref. [58]. The resonance energy and width are identified with the peak energy
of 1

π
dΔ(E)/dE and its FWHM, respectively [59,60]. This evaluation is in good

correspondence with another definition of the resonance; the Gamow state in
a deformed potential [61] which represents the pole of the S−matrix in the
complex momentum plane.

The result of this calculation, presented in Fig.A.1, indicates that the [301]1/2
and [312]3/2 states can be regarded as resonances with rather large widths;
their energies are 0.53 − i0.46 (MeV) and 0.42 − i0.33 (MeV), respectively.
On the other hand, the [303]7/2 state is evaluated as a narrow resonance with
energy 0.44 − i0.0005 (MeV). Obviously, the small width is due to its high
centrifugal barrier.

19



References

[1] I. Tanihata (Ed), Nucl. Phys. A 693 (2001) Nos. 1, 2.

[2] H. Horiuchi, T. Otsuka, Y. Suzuki (Eds.), Prog. Theor. Phys. Suppl. No.142
(2001).

[3] K. Hagino, H. Horiuchi, M. Matsuo, I. Tanihata (Eds.), Prog. Theor. Phys.
Suppl. No.146 (2002).

[4] I. Hamamoto, H. Sagawa, X. Z. Zhang, Phys. Rev. C 53 (1996) 765; ibid. 55
(1997) 2361; ibid. 56 (1997) 3121; ibid. 57 (1998) R1064; ibid. 64 (2001) 024313.

[5] I. Hamamoto, H. Sagawa, Phys. Rev. C 60 (1999) 064314; ibid. 62 (2000) 024319;
ibid. 66 (2002) 044315.

[6] S. Shlomo, B. Agrawal, Nucl. Phys. A 722 (2003) 98c.

[7] M. Matsuo, Nucl. Phys. A 696 (2001) 371.

[8] K. Hagino, H. Sagawa, Nucl. Phys. A 695 (2001) 82.

[9] M. Bender, J. Dobaczewski, J. Engel, W. Nazarewicz, Phys. Rev. C 65 (2002)
054322.

[10] E. Khan, N. Sandulescu, M. Grasso, N. Van Giai, Phys. Rev. C 66 (2002)
024309.

[11] M. Yamagami, N. Van Giai, Phys. Rev. C 69 (2004) 034301.

[12] J. Terasaki, J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz, M. Stoitsov,
Phys. Rev. C 71 (2005) 034310.

[13] M. Matsuo, K. Mizuyama, Y. Serizawa, Phys. Rev. C 71 (2005) 064326.

[14] D. Vretenar, N. Paar, P. Ring, G. A. Lalazissis, Nucl. Phys. A 692 (2001) 496

[15] N. Paar, P. Ring, T. Nikšić, D. Vretenar, Phys. Rev. C 67 (2003) 034312.
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