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An adiabatic approximation to the selfconsistent collective coordinate method is formu-
lated in order to describe large amplitude collective motions in nuclei with pairing correlations
on the basis of the time-dependent Hartree-Fock-Bogoliubov equations of motion. The basic
equations are presented in a local harmonic form which can be solved in a manner simi-
lar to that of the quasiparticle RPA equations. The formalism guarantees the conservation
of nucleon number expectation values. An extension to the multi-dimensional case is also
discussed.

§1. Introduction

Large amplitude collective motion (LACM), such as fission, shape transitions,
anharmonic vibrations and low energy heavy ion reactions, are often encountered
in studies of nuclear structure and dynamics. To go beyond the phenomenological
models assuming some macroscopic or collective degrees of freedom motivated by
the experimental facts and intuition, many attempts have been made to construct
theories that are able to describe the LACM on the microscopic basis of the nu-
clear many-body Hamiltonian. In particular, theories based on the time-dependent
Hartree-Fock (TDHF) approximation have been investigated extensively. 1) - 16) The
TDHF is a general framework for describing low-energy nuclear dynamics accompa-
nying evolution of the nuclear selfconsistent mean field. 17), 18) A LACM corresponds
to a specific solution of the TDHF equation of motion. Since such a solution forms
only a subset of the all TDHF states (Slater determinants), it is often called a col-
lective path, a collective subspace, or a collective submanifold. The collective coor-
dinates are then a set of a small number of variables that parameterize the collective
subspace, and the collective Hamiltonian is a function governing the time evolution
of the collective coordinates. One of the main purposes of the LACM theories is
to provide a scheme to determine the collective subspace and the collective Hamil-
tonian on the basis of the microscopic many-body Hamiltonian. Although studies
of LACM theories form a vast field of research with many recent developments in
different directions, realistic applications to nuclear structure problems are rather
limited. In this paper, we would like to propose a new practical method to calculate
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the collective subspace.
The adiabatic approximation has been often utilized for formulating the theory of

the collective subspace. Indeed, some class of LACM, such as nuclear fission, can be
regarded as slow motion, thus justifying the adiabatic approximation. The adiabatic
TDHF (ATDHF) theory 1) - 3) is one of the best known adiabatic theories and has
been applied in some cases to realistic descriptions of heavy ion reactions. 3) The
ATDHF theory, however, had the problem of the non-uniqueness of the solution. 4), 5)

Efforts to settle the non-uniqueness problem were made from different viewpoints.
Reference 6) emphasizes the importance of the canonical variable condition and the
analyticity as a function of a collective coordinate for finding a unique solution. The
proposed procedure relying on the Taylor expansion method has not been applied to
realistic calculations. Another work 7) points out that the collective subspace can be
uniquely determined by using the next order equation of the ATDHF theory. It has
been found also that the adiabatic collective path of LACM becomes the valley line
of the potential function in the multi-dimensional space associated with the TDHF
states. 7) - 9) Further, the adiabatic collective path can be defined by equations for a
local harmonic mode at each point of the collective path. These developments are
summarized in a consistent way in the formalism of Ref. 8). Note, however, that
the adiabatic theory of Ref. 8) relys on a multi-dimensional classical phase space
representation of the TDHF determinantal states. 17), 18) A realistic application of
this theory has not been made, except in the case of a light nucleus. 19) Furthermore,
a problem of particle number conservation arises when applied to superconducting
nuclei (i.e. nuclei with pairing correlations). 10)

Theories without the adiabatic approximation have also been developed within
the TDHF framework. The early works in this direction are called local harmonic
approximations. 12), 13) Later, a set of general equations that can determine the col-
lective subspace and the collective Hamiltonian were found and formulated in a
consistent form known as the selfconsistent collective coordinate method (SCC or
SCCM). 14) The theory is purely based on the TDHF with no further approximation.
The method also provides a concrete and practical scheme to solve the basic equa-
tions using a power series expansion with respect to the boson-like variables defined
as a linear combination of the collective coordinates and momenta. The pairing
correlation in superconducting nuclei is easily incorporated within the SCCM by
adopting the time-dependent Hartree-Fock-Bogoliubov (TDHFB) equation in place
of the TDHF, and the conservation law for the particle number is consistently intro-
duced in the basic framework of the SCCM. 15) Thanks to these features, the SCCM
has been applied to many realistic descriptions of anharmonic vibrations in medium
and heavy nuclei. 16) However, the expansion method may not be suitable for large
amplitude motion of an adiabatic nature, for which change of the nuclear mean-field
is so large that the power series expansion of the collective coordinates may not be
justified.

In the present paper, we attempt to combine the merits of the two approaches
mentioned above, the SCCM and the adiabatic theory, in order to formulate a theory
that provides a consistent and practical method easily applicable to realistic descrip-
tions of the adiabatic LACM in superconducting nuclei. We achieve this aim by
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introducing an adiabatic approximation into the general framework of the SCCM.
Here we treat superconducting nuclei since the pairing correlations play essential roles
in many cases, like spontaneous fission, tunneling between superdeformed and nor-
mally deformed configurations, and coupling between coexisting states with different
nuclear shapes (shape coexistence phenomena). Although the use of the supercon-
ducting mean field requires us to respect particle number conservation, the SCCM
allows a simple and consistent treatment of the conservation law. We also avoid the
non-uniqueness problem by utilizing principles similar to those of Refs. 7)–9). Fur-
thermore, we show that the equations of the adiabatic SCCM thus formulated can be
transformed into another set of equations that have a similar structure as the local
harmonic approach in the adiabatic theories. 8) Therefore, the present formalism also
inherits some aspects of the recent adiabatic theories such as Ref. 8).

In addition to the general formulation (§2), we present a practical scheme to
solve the basic equations given in the local harmonic form for general classes of the
many-body nuclear Hamiltonian (§3 and the Appendix). These equations are given
in terms of the matrix elements of the many-body Hamiltonian written in terms
of the quasiparticle operators, thus enabling us to develop a straightforward coding
of a numerical program to solve the equations. In this way, we provide a concrete
procedure to extract the collective subspace and the collective Hamiltonian. We also
discuss a possible prescription to extend the formalism to cases of multi-dimensional
collective motion (§4). Conclusions are outlined in §5.

§2. Basic equations

2.1. The SCC method for superconducting nuclei

In this subsection, we recapitulate the basic equations of the SCC method 14) in
a manner suitable for treating superconducting nuclei.

We introduce the TDHFB approximation to describe LACM in superconducting
many-fermion systems. Here the time-dependent many-body state vector |φ(t)〉 is
constrained to a generalized Slater determinant, which is chosen as a variational wave
function. The time evolution of |φ(t)〉 is then determined by the time-dependent
variational principle

δ 〈φ(t)| i ∂
∂t

− Ĥ |φ(t)〉 = 0, (2.1)

where the variation is given by δ |φ(t)〉 = a†αa
†
β |φ(t)〉 in terms of the quasiparticle

operators {a†α, aα}, which satisfy the vacuum condition aα |φ(t)〉 = 0.
We assume that the LACM can be described in terms of the collective variables,

i.e. the collective coordinate and momentum {q, p} that are variables parameterizing
the TDHFB state vector.∗) The whole space of the TDHFB state vectors can be
parameterized by M × (M − 1) variables (M being the number of the single particle
states), as shown by the generalized Thouless theorem. 17), 18) The set of the TDHFB
state vectors |φ(q, p)〉 forms the collective subspace in which the LACM can be

∗) We focus our discussion on the case of a single collective coordinate. A multi-dimensional

case is discussed in §4.
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properly described. One of the main problems with which we are concerned is
how to determine the collective subspace on the basis of the TDHFB equations of
motion. At the same time, we need to determine the collective Hamiltonian H(q, p)
that governs the equation of motion for the collective variables {q, p}. This is the
general purpose of theories of LACM.

When we apply the LACM theories to nuclei in the superconducting phase,
special attention has to be paid to particle number conservation. Since the TDHFB
state vector is not an eigenstate of the particle number operator N̂ , one would like
to formulate the LACM theory so that the particle number expectation value is
conserved during the course of collective motion. This is a problem which is specific
to the TDHFB, and does not exist for the TDHF for which the state vector is a
number eigenstate.

It is well known 17) that the expectation value of a conserved observable remains
constant during the time-evolution of |φ(t)〉 governed by the TDHF(B) equations of
motion. In the case of the pairing problem, the TDHFB state vector spontaneously
violates the symmetry with respect to the gauge rotation e−iϕN̂ , but rotational mo-
tion related to the gauge rotation (often called the “pairing rotation”) emerges auto-
matically to restore the gauge symmetry. Therefore, the LACM of superconducting
nuclei, described by the TDHFB theory, necessarily accompany the pairing rotation,
and we have to introduce 15) the collective coordinate, ϕ, the gauge angle, and the
conjugate collective momenta, N , which represents the particle number. Thus, we
are obliged to consider a collective subspace that is parameterized by the set of four
collective variables {q, p, ϕ,N}.∗)

Let us now present the basic equations of the SCCM that determine the collective
subspace |φ(q, p, ϕ,N)〉 and the collective Hamiltonian H(q, p, ϕ,N). As discussed
above, the variable ϕ is introduced to represent the gauge angle. This requirement
is easily satisfied 15) if one uses the parameterization

|φ(q, p, ϕ,N)〉 = e−iϕN̂ |φ(q, p,N)〉 , (2.2)

where N̂ is the number operator of particles. Here |φ(q, p,N)〉 represents an intrinsic
state that rotates in the gauge space.

The basic equations of the SCCM consist of a canonical variable condition and an
invariance principle of the time-dependent Schrödinger equation (TDHFB equation
in our case). The canonical variable condition is, in general, given by

〈φ(q, p, ϕ,N)| i ∂
∂q

|φ(q, p, ϕ,N)〉 = p+ ∂S
∂q
, (2.3a)

〈φ(q, p, ϕ,N)| ∂
i∂p

|φ(q, p, ϕ,N)〉 = −∂S
∂p
, (2.3b)

〈φ(q, p, ϕ,N)| i ∂
∂ϕ

|φ(q, p, ϕ,N)〉 = N +
∂S

∂ϕ
, (2.3c)

〈φ(q, p, ϕ,N)| ∂

i∂N
|φ(q, p, ϕ,N)〉 = − ∂S

∂N
, (2.3d)

∗) For simplicity, here we assume a single kind of particles. Extension to systems with many

kinds (e.g., protons and neutrons in nuclei) is straightforward.
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for the collective subspace parameterized by two sets of coordinates (q, ϕ) and mo-
menta (p,N). Although S is an arbitrary function of {q, p, ϕ,N}, we choose S = 0,
which is appropriate for the adiabatic approximation. 6) Then the canonical variable
condition can be rewritten as equations for the state |φ(q, p,N)〉:

〈φ(q, p,N)| i ∂
∂q

|φ(q, p,N)〉 = p, (2.4a)

〈φ(q, p,N)| ∂
i∂p

|φ(q, p,N)〉 = 0, (2.4b)

〈φ(q, p,N)| N̂ |φ(q, p,N)〉 = N, (2.4c)

〈φ(q, p,N)| ∂

i∂N
|φ(q, p,N)〉 = 0. (2.4d)

The third equation requires that the collective variable N be identical to the expecta-
tion value of the number operator. In other words, the particle number expectation
value does not depend on the collective variables (q, p) for the LACM under consid-
eration. This is nothing but the condition of particle number conservation.

The collective Hamiltonian is defined as the value of the total energy in the
collective subspace, given by

H= 〈φ(q, p, ϕ,N)| Ĥ |φ(q, p, ϕ,N)〉 (2.5a)
= 〈φ(q, p,N)| Ĥ |φ(q, p,N)〉 . (2.5b)

Since the Hamiltonian Ĥ commutes with the number operator N̂ , the collective
Hamiltonian does not depend on the gauge angle ϕ. Therefore, ϕ becomes cyclic, as
we expect.

The invariance principle of the TDHFB equation plays a central role in de-
termining the collective subspace, which requires that the TDHFB state vector
|φ(q(t), p(t), ϕ(t), N(t))〉 evolving in time within the collective subspace obey the
full TDHFB equation, Eq. (2.1). This is equivalent to the condition that the collec-
tive subspace is an invariant subspace of the TDHFB equations of motion. Inserting
Eq. (2.2) into the time-dependent variational principle, Eq. (2.1), we obtain

δ 〈φ(q, p,N)| Ĥ − dq

dt

◦
P +

dp

dt

◦
Q+

dN

dt

◦
Θ − dϕ

dt
N̂ |φ(q, p,N)〉 = 0, (2.6)

where the infinitesimal generators defined by

◦
P |φ(q, p,N)〉 = i

∂

∂q
|φ(q, p,N)〉 , (2.7a)

◦
Q |φ(q, p,N)〉 = 1

i

∂

∂p
|φ(q, p,N)〉 , (2.7b)

◦
Θ |φ(q, p,N)〉 = 1

i

∂

∂N
|φ(q, p,N)〉 (2.7c)

have been used. These operators are one-body operators which can be written as
linear combinations of bilinear products {a†αa

†
β, aβaα, a

†
αaβ} of the quasiparticle op-
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erators defined with respect to |φ(q, p,N)〉. Because of the canonical variable condi-
tions, these infinitesimal generators satisfy the commutation relations

〈φ(q, p,N)| [
◦
Q,

◦
P ] |φ(q, p,N)〉 = i, (2.8a)

〈φ(q, p,N)| [
◦
Θ, N̂ ] |φ(q, p,N)〉 = i, (2.8b)

and commutators of other combinations of
◦
Q,

◦
P ,

◦
Θ and N̂ give zero expectation

value. By taking the variation as δ |φ(q, p,N)〉 = {
◦
P ,

◦
Q,

◦
Θ, N̂} |φ(q, p,N)〉, Eq. (2.6)

produces the canonical equations of motion for the collective variables:

dq

dt
=
∂H
∂p

= i 〈φ(q, p,N)| [Ĥ,
◦
Q] |φ(q, p,N)〉 , (2.9a)

dp

dt
= −∂H

∂q
= i 〈φ(q, p,N)| [Ĥ,

◦
P ] |φ(q, p,N)〉 , (2.9b)

dϕ

dt
=
∂H
∂N

= i 〈φ(q, p,N)| [Ĥ,
◦
Θ] |φ(q, p,N)〉 , (2.9c)

dN

dt
= −∂H

∂ϕ
= 0. (2.9d)

Using Eq. (2.9), Eq. (2.6) reduces to an equation of collective subspace:

δ 〈φ(q, p,N)| Ĥ − ∂H
∂p

◦
P − ∂H

∂q

◦
Q− ∂H

∂N
N̂ |φ(q, p,N)〉 = 0. (2.10)

If we take a variation δ⊥ that is orthogonal to the infinitesimal generators
{
◦
P ,

◦
Q,

◦
Θ, N̂}, we can immediately show δ⊥ 〈φ(q, p,N)| Ĥ |φ(q, p,N)〉 = 0, which im-

plies that the energy expectation value is stationary in the collective subspace with
respect to all the variations, except for those along directions tangent to the col-
lective subspace. In other words, the collective mode is decoupled from the other
modes of excitation.

We remark here that the above basic equations of the SCCM are invariant under
point transformations of the collective coordinate

q → q′ = q′(q), (2.11a)

p→ p′ = p×
(
dq′/dq

)−1
. (2.11b)

The basic principles, i.e. the canonical variable condition, Eq. (2.3), and the invari-
ance principle of the TDHFB equation, Eq. (2.6), are not affected by the general
canonical transformations of collective variables {q, p, ϕ,N} → {q′, p′, ϕ′, N ′}. By
taking the parameterization, Eq. (2.2), and the specific choice of S = 0 in Eq. (2.3),
the allowed canonical transformations are restricted to the point transformations. 6)

2.2. Adiabatic approximation

Assuming that the LACM described by the collective variables {q, p} is slow
motion, we here introduce the adiabatic approximation to the SCCM. Namely, we
expand the basic equations with respect to the collective momentum p, which is



Adiabatic Selfconsistent Collective Coordinate Method 965

appropriate for small values of momentum. Since the particle number variable N is
a momentum variable in the present formulation, we also expand the basic equations
with respect to n = N −N0 when we consider a system with particle number N0.

Let us first consider the expansion of the TDHFB state vector |φ(q, p,N)〉
in the collective subspace. The origin of the expansion is the state |φ(q)〉
≡ |φ(q, p,N)〉 |p=0,N=N0 . We can assume that this is a time-even state, i.e., T |φ(q)〉
= |φ(q)〉 under the time-reversal operation T . (Here we consider system of an even
number of particles.) Thanks to the generalized Thouless theorem, the state vector
|φ(q, p,N)〉 can be expressed as

|φ(q, p,N)〉 = eiĜ(q,p,n) |φ(q)〉 (2.12)

by using the unitary transformation eiĜ(q,p,n). Here the Hermitian operator Ĝ is
given by

Ĝ(q, p, n) =
∑
α>β

(
Gαβ(q, p, n)a†αa

†
β +G

∗
αβ(q, p, n)aβaα

)
= Ĝ(q, p, n)†. (2.13)

Here and hereafter, the quasiparticle operators {a†α, aα} are always defined locally at
each value of q and satisfy the condition aα |φ(q)〉 = 0. We now expand the operator
Ĝ(q, p, n) in powers of p and n and keep only the lowest order term. We have

Ĝ(q, p, n) = pQ̂(q) + nΘ̂(q), (2.14a)

Q̂(q) =
∑
α>β

(
Qαβ(q)a†αa

†
β +Q

∗
αβ(q)aβaα

)
= Q̂(q)†, (2.14b)

Θ̂(q) =
∑
α>β

(
Θαβ(q)a†αa

†
β +Θ

∗
αβ(q)aβaα

)
= Θ̂(q)†. (2.14c)

If we require that time-reversal of |φ(q, p,N)〉 causes sign inversion of the collective
momentum p, i.e. T |φ(q, p,N)〉 = |φ(q,−p,N)〉, the operators Q̂(q) and Θ̂(q) must
be time-even (T Q̂(q)T −1 = Q̂(q)) and time-odd (T Θ̂(q)T −1 = −Θ̂(q)), respectively.
If we set n = 0 (i.e. N = N0), the parameterization Eq. (2.12) together with
Eq. (2.14) reduces to |φ(q, p)〉 = eipQ̂(q) |φ(q)〉, which has the same form as that
introduced by Villars and is often used in the ATDHF theories. 1), 3), 7)

The collective Hamiltonian is expanded as

H(q, p,N) = V (q) +
1
2
B(q)p2 + λ(q)n, (2.15a)

V (q) = H(q, p,N)|p=0,N=N0 = 〈φ(q)| Ĥ |φ(q)〉 , (2.15b)

B(q) =
1
2
∂2H(q, p,N)

∂p2

∣∣∣∣
p=0,N=N0

= −〈φ(q)| [[Ĥ, Q̂(q)], Q̂(q)] |φ(q)〉 , (2.15c)

λ(q) =
∂H(q, p,N)

∂N

∣∣∣∣
p=0,N=N0

= 〈φ(q)| [Ĥ, iΘ̂(q)] |φ(q)〉 , (2.15d)
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where we have kept terms up to second order in the collective momentum p, and
up to the first order in n. The collective Hamiltonian for the system with N = N0

particles ( n = 0 ) is given by

H(q, p,N0) = V (q) +
1
2
B(q)p2 (2.16)

as the sum of the collective potential V (q) and the collective kinetic energy (the
second term).

We next expand the infinitesimal generators. It is convenient for this purpose
to define the unitary transformations

◦
P ′ = e−iĜ

◦
PeiĜ,

◦
Q′ = e−iĜ

◦
QeiĜ and

◦
Θ′ =

e−iĜ
◦
ΘeiĜ of the infinitesimal generators

◦
P,

◦
Q and

◦
Θ. They are expanded as

◦
P ′ = P̂ (q) + e−iĜi

∂

∂q
eiĜ = P̂ (q)− p∂Q̂

∂q
− n∂Θ̂

∂q
+ · · · , (2.17)

◦
Q′ = e−iĜ ∂

i∂p
eiĜ = Q̂(q) +

i

2
[Q̂, pQ̂+ nΘ̂] + · · · , (2.18)

◦
Θ′ = e−iĜ ∂

i∂N
eiĜ = Θ̂(q) +

i

2
[Θ̂, pQ̂+ nΘ̂] + · · · , (2.19)

with use of the general expansion formula

e−iĜ∂eiĜ = i∂Ĝ+
1
2!
[i∂Ĝ, iĜ] +

1
3!
[[i∂Ĝ, iĜ], iĜ] + · · · . (2.20)

The operator P̂ (q) is the infinitesimal generator with respect to |φ(q)〉 defined by

P̂ (q) |φ(q)〉 = i ∂
∂q

|φ(q)〉 . (2.21)

Similarly, we introduce the unitary transformation of the number operator and ex-
pand it as ◦

N ′ ≡ e−iĜN̂eiĜ = N̂ + i[N̂ , pQ̂+ nΘ̂] + · · · . (2.22)

Substituting these operators into the canonical variable condition, Eq. (2.4), we have

〈φ(q)|
◦
P ′(q, p,N) |φ(q)〉 = p, (2.23a)

〈φ(q)|
◦
Q′(q, p,N) |φ(q)〉 = 0, (2.23b)

〈φ(q)|
◦
Θ′(q, p,N) |φ(q)〉 = 0, (2.23c)

〈φ(q)|
◦
N ′(q, p,N) |φ(q)〉 = N. (2.23d)

Now we expand these equations with respect to the momenta p and n, and obtain
the following equations.

The zeroth order canonical variable conditions:

〈φ(q)| P̂ (q) |φ(q)〉 = 〈φ(q)| i ∂
∂q

|φ(q)〉 = 0, (2.24)

〈φ(q)| Q̂(q) |φ(q)〉 = 0, (2.25)
〈φ(q)| Θ̂(q) |φ(q)〉 = 0, (2.26)
〈φ(q)| N̂ |φ(q)〉 = N0. (2.27)
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Equations (2.25) and (2.26) are automatically fulfilled by the definition Eq. (2.14)
of the operators Q̂(q) and Θ̂(q). Equation (2.24) can be satisfied if the q-dependent
phase of |φ(q)〉 is properly chosen. Equation (2.27) is the constraint on |φ(q)〉 for the
conservation of the average particle number.

The first order canonical variable conditions:

〈φ(q)| ∂Q̂(q)
∂q

|φ(q)〉 = −1, (2.28)

〈φ(q)| [Q̂(q), Θ̂(q)] |φ(q)〉 = 0, (2.29)
〈φ(q)| [Q̂(q), N̂ ] |φ(q)〉 = 0. (2.30)

One finds
〈φ(q)| [Q̂(q), P̂ (q)] |φ(q)〉 = i, (2.31)

which can be derived by differentiating Eq. (2.25) with respect to q and using
Eq. (2.28). One can also derive from Eq. (2.27)

〈φ(q)| [P̂ (q), N̂ ] |φ(q)〉 = 0. (2.32)

These equations give constraints on the infinitesimal generators Q̂(q) and P̂ (q) con-
cerning the normalization, Eq. (2.31), and the orthogonality to the particle number
operator, Eq. (2.32).

Next we expand the equation of collective subspace, Eq. (2.10), to obtain a
complete set of the basic equations for the adiabatic approximation. After rewriting
Eq. (2.10) as

δ 〈φ(q)| e−iĜĤeiĜ − ∂H
∂p

◦
P ′ − ∂H

∂q

◦
Q′ − ∂H

∂N

◦
N ′ |φ(q)〉 = 0, (2.33)

we can expand each term with respect to p and n with use of the equations listed
above.

The zeroth order equation of collective subspace:

δ 〈φ(q)| Ĥ − λ(q)N̂ − ∂V

∂q
Q̂(q) |φ(q)〉 = 0. (2.34)

The first order equation of collective subspace:

δ 〈φ(q)| [Ĥ − λ(q)N̂ , Q̂(q)]− 1
i
B(q)P̂ (q) |φ(q)〉 = 0. (2.35)

These equations are similar to the equations of path in Villars’ ATDHF the-
ory, 1) except that the present paper deals with the superconducting Hartree-Fock-
Bogoliubov (HFB) state and that the Hamiltonian accompanies the q-dependent
chemical potential term −λ(q)N̂ . As mentioned in §1, the ATDHF theory has
the problem that the solution satisfying these two equations is not uniquely de-
termined. 4), 5) Although an additional validity condition was introduced to further
constrain the solutions, 3), 4) the procedure of Ref. 3) does not fully solve the problem
since the method does not work around the HF minima.
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The non-uniqueness problem has been investigated in recent studies of the adia-
batic theories, and in our opinion they can be classified into two different approaches.
The first one represented by Ref. 6) asserts that the solution is uniquely determined
if an RPA boundary condition is specified at the HF minimum and if the analyticity
of the collective path as a function of q is imposed together with the canonical vari-
able condition. The solution, however, needs to be constructed in an analytic way
or by means of a Taylor expansion method with respect to the collective coordinate
q. We do not adopt this approach since we wish to construct a method applicable to
systems exhibiting large excursions from the HFB minimum. We rather follow the
other approach, represented by Refs. 7)–9). These theories require the additional
condition that the equation of collective subspace (corresponding to the decoupling
condition in Ref. 8)) should be satisfied up to the next order of the adiabatic ex-
pansion. In the present formulation, this second order condition is expressed as
follows.

The second order equation of collective subspace:

δ 〈φ(q)| 1
2
[[Ĥ − λ(q)N̂ , Q̂(q)], Q̂(q)]−B(q)∆Q̂(q) |φ(q)〉 = 0, (2.36)

where

∆Q̂(q) =
∂Q̂

∂q
+ Γ (q)Q̂(q), (2.37)

Γ (q) = − 1
2B(q)

∂B

∂q
. (2.38)

This equation is equivalent in its mathematical form to the one given in Ref. 7)
if the chemical potential term −λ(q)N̂ is neglected. The last term −B(q)∆Q̂(q),
often called a curvature term, was simply neglected in the original version of the
local harmonic approximation. 12), 13) In the next subsection, instead of neglecting
this curvature term, we rewrite ∆Q̂(q) and change Eq. (2.36) into a workable form.

It is worth noting here the invariance of the adiabatic equations with respect
to the coordinate transformation. The collective momentum p undergoes a linear
homogeneous transformation under the point transformation, Eq. (2.11). Therefore,
different orders of the expansion with respect to the power of p are not mixed under
the point transformation. The invariance property of the basic equations of SCCM is
thus inherited by each equation of the adiabatic approximation listed above. One can
also confirm this property by seeing that the quantities appearing in the equations
transform as

Q̂(q) → Q̂′(q′) = Q̂(q(q′))
(
dq′

dq

)
, (2.39a)

P̂ (q) → P̂ ′(q′) = P̂ (q(q′))
(
dq′

dq

)−1

, (2.39b)

∂V

∂q
→ ∂V ′

∂q′
=
∂V

∂q

(
dq′

dq

)−1

, (2.39c)
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B → B′(q′) = B(q(q′))
(
dq′

dq

)2

, (2.39d)

∆Q̂(q) → ∆Q̂′(q′) = ∆Q̂(q). (2.39e)

§3. Local harmonic approximation to collective subspace

3.1. Local harmonic equations

In this section we present a concrete procedure to construct an approximate
solution of the adiabatic SCC method. To this end, we first derive, from the adiabatic
equations, another set of equations of collective subspace which can be solved in a
manner similar to that for the RPA equation.

We first take the derivative of the zeroth order equation, Eq. (2.34), with respect
to q. This leads to

δ 〈φ(q)|
[
Ĥ − λ(q)N̂ , 1

i
P̂ (q)

]
− C(q)Q̂(q)

−∂V
∂q
∆Q̂(q)− ∂λ

∂q
N̂ |φ(q)〉 = 0, (3.1)

C(q) =
∂2V

∂q2
− Γ (q)∂V

∂q
, (3.2)

where ∆Q̂(q) and Γ (q) are given by Eqs. (2.37) and (2.38), respectively. Using
Eq. (2.36), we eliminate ∆Q̂(q) and rewrite Eq. (3.1) as

δ 〈φ(q)|
[
Ĥ − λ(q)N̂ , 1

i
P̂ (q)

]
− C(q)Q̂(q)

− 1
2B(q)

[[
Ĥ − λ(q)N̂ , ∂V

∂q
Q̂(q)

]
, Q̂(q)

]
− ∂λ

∂q
N̂ |φ(q)〉 = 0. (3.3)

Furthermore, due to Eq. (2.34), we find

∂V

∂q
Q̂ = (Ĥ − λN̂)A, (3.4)

where (Ĥ−λN̂)A represents the a†a† and aa part of the operator Ĥ−λN̂ containing
two-quasiparticle creation and annihilation in the normal-ordered expression.

We thus replace Eqs. (2.34)–(2.36) by the equivalent set

δ 〈φ(q)| ĤM (q) |φ(q)〉 = 0, (3.5)

δ 〈φ(q)| [ĤM (q), Q̂(q)]− 1
i
B(q)P̂ (q) |φ(q)〉 = 0, (3.6)

δ 〈φ(q)|
[
ĤM (q),

1
i
P̂ (q)

]
− C(q)Q̂(q)

− 1
2B(q)

[[ĤM (q), (Ĥ − λ(q)N̂)A], Q̂(q)]−
∂λ

∂q
N̂ |φ(q)〉 = 0. (3.7)
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In Eqs. (3.6) and (3.7), Ĥ − λN̂ has been replaced by

ĤM (q) = Ĥ − λ(q)N̂ − ∂V

∂q
Q̂(q), (3.8)

since the last term has no influence. The operator ĤM (q) may be regarded as
the Hamiltonian in the moving frame. The second and third terms can be identified
with generalized cranking terms associated with the pairing rotation and the LACM,
respectively.

Equations (3.6) and (3.7) are linear equations with respect to the one-body
operators Q̂(q) and P̂ (q). They have essentially the same structure as the standard
RPA equations, except for the last two terms in Eq. (3.7). The quantity C(q)
is the local stiffness parameter defined as the second (covariant) derivative of the
collective potential V (q). The infinitesimal generators Q̂(q) and P̂ (q) are thus closely
related to the harmonic normal modes locally defined for |φ(q)〉 and the moving frame
Hamiltonian ĤM (q). These equations may be called local harmonic equations.

It was shown in Ref. 7) that the zeroth, first and second order equations of AT-
DHF give a valley line of a potential energy surface in a multi-dimensional configura-
tion space associated with the TDHF states. Similarly, the local harmonic equations
we have obtained, Eqs. (3.5)–(3.7), define the valley of the multi-dimensional poten-
tial energy surface. The solution of these equations will be uniquely determined if a
suitable boundary condition is specified. These features are similar to the formula-
tion of Ref. 8) where the valley equation of the potential energy surface is derived
from the decoupling condition.

We remark again that the local harmonic equations in the present paper differ
from those of Rowe-Bassermann 12) and Marumori 13) with respect to the third and
fourth terms of Eq. (3.7), which arise from the curvature term (derivative of the
generator) and the particle number constraint, respectively. It is important to keep
the curvature term in order to maintain the relation between the collective subspace
and the valley of the potential surface. We also note that the present formalism is
invariant with respect to the point transformation of the collective coordinate, as is
the formulation of Ref. 8).

3.2. Matrix formulation of local harmonic equations

Let us now give a procedure to find the operators Q̂(q) and P̂ (q) that satisfy
the local harmonic equations, (3.6) and (3.7) , for a given state |φ(q)〉. Since these
are linear equations with respect to these operators, this can be done in a manner
analogous to that for the standard RPA. To show this, we first express the operator
P̂ (q) and N̂ in terms of the quasiparticle operators:

P̂ (q) = i
∑
α>β

(
Pαβ(q)a†αa

†
β − P ∗

αβ(q)aβaα

)
= P̂ (q)†, (3.9)

N̂ =
∑
α>β

(
Nαβ(q)a†αa

†
β +N

∗
αβ(q)aβaα

)
. (3.10)

Note that the a†a and c-number parts are neglected here since they do not change the
state vector |φ(q)〉, except for the phase. The Hamiltonian Ĥ can also be expressed
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in terms of the same quasiparticle operators. Assuming that the matrix elements
Qαβ and Pαβ are real, the local harmonic equations can be written as the following
matrix equations:

(A − B)Q −B(q)P = 0, (3.11a)

(A+ B)P − C(q)Q − 1
B(q)

DQ − λ′N = 0, (3.11b)

P T N = 0, (3.11c)
2QT P = 1, (3.11d)

λ′ =
∂λ

∂q
. (3.11e)

Here all quantities are functions of q while Q = (· · · , Qαβ , · · ·)T , P = (· · · , Pαβ, · · ·)T

and N = (· · · , Nαβ , · · ·)T form the vector representation of the matrix elements with
α > β. A and B are the matrices whose elements are given by

(A)αβ,γδ = δαγδβδ(eα + eβ) + v22
αβ,γδ, (3.12a)

(B)αβ,γδ = v40
αβγδ, (3.12b)

in terms of the matrix elements of the moving frame Hamiltonian,

ĤM (q) =
∑
α

eαa
†
αaα (3.13a)

+
1
4

∑
αβγδ

v22
αβ,γδa

†
αa

†
βaδaγ (3.13b)

+
1
4!

∑
αβγδ

(
v40
αβγδa

†
αa

†
βa

†
γa

†
δ + v

04
αβγδaδaγaβaα

)
(3.13c)

+
1
3!

∑
αβγδ

(
v31
αβγ,δa

†
αa

†
βa

†
γaδ + v13

δ,αβγa
†
δaγaβaα

)
. (3.13d)

Here, due to Eq. (2.34), the a†a† and aa parts of ĤM (q) vanish, and the a†a
part of ĤM (q) is diagonalized. The matrix elements of the residual interactions in
Eqs. (3.13b)–(3.13d) are antisymmetrized with respect to the quasiparticle indices.
The matrices A and B have the same structures as those defined in the quasiparticle
RPA formalism. 17) The matrix D is defined by

(D)αβ,γδ =
1
2
〈φ(q)| [[[ĤM (q), (Ĥ − λ(q)N̂)A], a†αa

†
β + aβaα], aγaδ] |φ(q)〉 . (3.14)

These matrix elements can be expressed also in terms of the Hamiltonian matrix
elements as

(D)αβ,γδ= (d22
αβ,γδ − d40

αβγδ + d
11
αγδβδ − d11

βγδαδ − d11
αδδβγ + d11

βδδαγ)/2, (3.15a)

d22
αβ,γδ=

∑
ε

(v31
αβε,γhδε − v31

αβε,δhγε − v13
α,εγδhβε + v13

β,εγδhαε), (3.15b)
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d40
αβγδ=

∑
ε

(v31
αβγ,εhεδ − v31

βγδ,εhεα + v31
γδα,εhεβ − v31

δαβ,εhεγ), (3.15c)

d11
αβ=

∑
γ>δ

(v13
α,βγδhγδ − v31

γδα,βhγδ), (3.15d)

where hαβ represents the matrix elements of (Ĥ − λN̂)A defined by

(Ĥ − λN̂)A =
∑
α>β

hαβ(a†αa
†
β + aβaα). (3.16)

Note that D contains the matrix elements of the types v13 and v31. These terms of
the Hamiltonian do not contribute to the standard RPA equations.

The solution of the matrix equations is obtained as follows. From Eq. (3.11), we
obtain

Q = λ′B(q) ((A + B)(A − B)− D −Ω)−1 N , (3.17a)
P = λ′(A − B) ((A + B)(A − B)− D −Ω)−1 N , (3.17b)

with
Ω = B(q)C(q). (3.18)

The condition that the collective mode is orthogonal to the number operator,
Eq. (3.11c), gives the following equation:

S(Ω) ≡ NT (A − B) ((A + B)(A − B)− D −Ω)−1 N = 0. (3.19)

The quantity Ω = B(q)C(q) represents the square of the frequency ω =
√
BC of

the local harmonic mode, which is not necessarily positive. This equation can be
regarded as a dispersion equation to determine Ω = ω2 as a zero point of S(Ω). The
normalization condition, Eq. (3.11d), then gives a constraint on the value of λ′2B(q).
The value of the mass parameter B(q) is arbitrary, being related to the invariance
under the point transformation Eq. (2.11). The choice of the coordinate q specifies
the value of the mass parameter, B(q). In practice, the coordinate is often scaled so
as to make the mass parameter unity.

When the residual interactions are separable forces, such as the monopole pair-
ing and the quadruple-quadrupole forces, the local harmonic equations reduce to a
simpler form. The dispersion equation for the separable interaction does not require
a matrix inversion as in Eq. (3.19). The details of these points are discussed in the
Appendix.

Reference 10) discusses a problem of spurious (Nambu-Goldstone) modes for
local harmonic approaches, and it is stated there that the RPA equation at non-
equilibrium points must be extended in order to guarantee separation of the spurious
modes. However, no practical way of solving the equation was given because the
equation has parameters for which we do not have a method to calculate. In our
present formulation, the RPA equation is indeed extended to assure the number
conservation.
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3.3. Construction of collective subspace

Let us finally give algorithms to construct the collective subspace |φ(q)〉 as a
function of the collective coordinate q. Note that the local harmonic equations,
Eqs. (3.5)–(3.7), are regarded as local equations in the sense that the equations can
be solved independently for different values of q. At the HFB ground state, |φ0〉,
defined by the HFB equation

δ 〈φ0| Ĥ − λ0N̂ |φ0〉 = 0, (3.20)

we find ∂V/∂q = 0. Therefore, |φ0〉 is always a state in the collective subspace
because Eq. (3.5) is automatically satisfied. Equations (3.6) and (3.7) reduce to the
standard RPA equations at |φ0〉 since the last two terms in Eq. (3.7) vanish. The
operators Q̂ and P̂ are then determined as one of the normal modes of the RPA
equation.

For non-equilibrium states, in general, Eq. (3.5) and the other two equations,
(3.6) and (3.7), are coupled. We may solve the coupled equations in an iterative
way. As discussed in §3.2, we can find the operators Q̂(q)(n) and P̂ (q)(n) by solv-
ing Eqs. (3.6) and (3.7) for a given trial state |φ(q)〉(n) (n denoting the iteration
step). This defines the moving frame Hamiltonian ĤM (q)(n+1) = Ĥ − λ(q)(n+1)N̂ −(

∂V
∂q

)(n)
Q̂(q)(n), which can be used to construct a trial state |φ(q)〉(n+1) for the next

iteration. If the iteration converges, we obtain a state |φ(q)〉 for which Eqs. (3.5)–
(3.7) are simultaneously satisfied. Repeating the same procedure for different values
of q, one finally obtains the collective subspace |φ(q)〉 and the collective Hamiltonian
as a function of q.

We remark here that the operator P̂ (q) thus determined does not guarantee
Eq. (2.21), although the other equations are satisfied. In this sense, the local har-
monic solution is an approximate solution. The exact solution satisfying all the
basic equations in §2.2 may not exist in realistic situations. Only when the system
is “exactly decoupled” 8) does the above procedure give the exact solution.

It is possible to choose another algorithm which satisfies Eq. (2.21), at the ex-
pense of introducing errors into Eq. (3.5). Let |φ(q0)〉 be a solution that satisfies the
basic equations at q = q0. The infinitesimal generators Q̂(q0) and P̂ (q0) are deter-
mined by solving Eqs. (3.6) and (3.7). Then we can generate the state |φ(q0 + δq)〉
for an infinitesimal shift of the collective coordinate as

|φ(q0 + δq)〉 = e−iδqP̂ (q0) |φ(q0)〉 . (3.21)

Repeating this procedure, we can construct a collective subspace. This solution
should coincide with that solved by the previous method if the system is exactly
decoupled.

The two methods described above give different solutions in situations where
the exact decoupling is not satisfied. In such cases, one can evaluate the quality of
decoupling for the collective subspace or the validity of the local harmonic approx-
imation by comparing the two solutions. We note also that the second method can
be used to provide an initial guess, |φ(q)〉(0), for the iteration of the first method.
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§4. Extension to multi-dimensional collective subspace

In this section we extend the adiabatic SCC method to the case of a multi-
dimensional collective subspace described by D collective coordinates and conjugate
momenta, {qi, pi; i = 1, · · · , D}.

One can easily derive the basic equations of the adiabatic SCC method in parallel
to the derivation given in §2 by noting first that Eqs. (2.12) and (2.14) are now
extended to

|φ(q, p,N)〉 = eiĜ(q,p,n) |φ(q)〉 , (4.1)
Ĝ = piQ̂

i(q) + nΘ̂(q), (4.2)

where the operator Q̂i(q) now has D components with the coordinate label i. It
is implied here and hereafter that any coordinate index (i in the above expression)
appearing both as the superscript and subscript is summed over. The infinitesimal
generator P̂i(q) also has D components, each of which is related to the derivative
i ∂
∂qi |φ(q)〉. In the following, the coordinate dependence is often omitted. For in-

stance, Bij(q) and Q̂i(q) will be simply denoted by Bij and Q̂i.
The adiabatic collective Hamiltonian is expressed as

H(q, p,N) = V (q) +
1
2
Bij(q)pipj + λ(q)n. (4.3)

The zeroth and the first order equations of the collective subspace are derived as

δ 〈φ(q)| Ĥ − λ(q)N̂ − ∂V

∂qi
Q̂i |φ(q)〉 = 0, (4.4)

δ 〈φ(q)| [Ĥ − λ(q)N̂ , Q̂i]− 1
i
BijP̂j |φ(q)〉 = 0, (4.5)

while the second order equation becomes

δ 〈φ(q)| 1
2
[Ĥ − λ(q)N̂ , Q̂i, Q̂j ] +

1
6

[
∂V

∂qk
Q̂k, Q̂i, Q̂j

]

−1
2
(BikQ̂j

;k +B
jkQ̂i

;k) |φ(q)〉 = 0 (4.6)

with

Q̂i
;j =

∂Q̂i

∂qj
+ Γ i

kjQ̂
k, (4.7)

Γ i
kj =

1
2
Bil

(
∂Blk

∂qj
+
∂Blj

∂qk
− ∂Bkj

∂ql

)
, (4.8)

where Bij is the inverse matrix of Bij , and the bracket including the three operators
is defined by

[A,B,C] =
1
2
([[A,B], C] + [[A,C], B]). (4.9)
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Expanding the canonical variable condition with respect to pi and n, the follow-
ing equations are derived:

〈φ(q)| P̂i |φ(q)〉 = 0, (4.10)
〈φ(q)| N̂ |φ(q)〉 = N0, (4.11)

and

〈φ(q)| [Q̂i, P̂j] |φ(q)〉 = iδij , (4.12)

〈φ(q)| [Q̂i, N̂ ] |φ(q)〉 = 0, (4.13)
〈φ(q)| [P̂i, N̂ ] |φ(q)〉 = 0. (4.14)

These basic equations are invariant under the point transformation of the col-
lective variables:

qi → q′i = q′i(q), (4.15a)

pi → p′i = pj ×
(
∂qj/∂q′i

)
. (4.15b)

We have adopted the vector-tensor notation 20) to make clear the transforma-
tion properties under the point transformation. Quantities with a coordinate index
as the subscript (superscript) have the transformation properties of the covariant
(contravariant) vectors. For example,

Q̂i → Q̂′i = Q̂j ×
(
∂q′i/∂qj

)
, (4.16)

P̂i → P̂ ′
i = P̂j ×

(
∂qj/∂q′i

)
. (4.17)

The mass tensor Bij is the contravariant tensor of second rank. The operator Q̂i
;j

defined by Eq. (4.7) is the covariant derivative of Q̂i, and Γ i
kj is the Christoffel

symbol, where the mass tensor Bij plays the role of metric tensor.
Let us now derive local harmonic equations of the collective subspace. Taking

the q-derivative, the zeroth order equation (4.4) leads to

δ 〈φ(q)|
[
Ĥ − λ(q)N̂ , 1

i
P̂i

]
− Cij(q)Q̂j − ∂V

∂qj
Q̂j

;i −
∂λ

∂qi
N̂ |φ(q)〉 = 0, (4.18)

Cij(q) =
∂2V

∂qi∂qj
− Γ k

ij

∂V

∂qk
. (4.19)

As we have done for the D = 1 case, we would like to eliminate the covariant
derivative Q̂j

;i in Eq. (4.18) in order to give a feasible form of the local harmonic
equation. This was done for the D = 1 case with the help of the second order
equation of the collective subspace. The corresponding equations (4.6) give D(D +
1)/2 constraints, while the number of unknown parameters, Q̂j

;i, is D
2. In fact,

Eq. (4.6) is equivalent to

δ 〈φ(q)| 1
2
[[Ĥ − λ(q)N̂ , Q̂j], Q̂i] +

1
6

[[
∂V

∂qk
Q̂k, Q̂j

]
, Q̂i

]
− (BikQ̂j

;k + R̂
ij) |φ(q)〉 = 0,

(4.20)
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where R̂ij are arbitrary one-body operators which are antisymmetric with respect
to exchange of indices i and j. If we choose R̂ij = 0, we can eliminate the derivative
term ∂V

∂qj Q̂
j
;i. Then, Eq. (4.18) leads to

δ 〈φ(q)|
[
Ĥ − λ(q)N̂ , 1

i
P̂i

]
− CijQ̂

j

−1
2
[[Ĥ − λ(q)N̂ , (Ĥ − λ(q)N̂)A], BijQ̂

j ]− ∂λ

∂qi
N̂ |φ(q)〉 = 0. (4.21)

This equation is an analog of Eq. (3.7) and is linear in the infinitesimal generators
Q̂i and P̂i. We can numerically solve Eqs. (4.4), (4.5) and (4.21) in the same manner
as discussed in §§3.2 and 3.3.

It should be remarked that the local harmonic equation Eq. (4.21) for D > 1
is derived from Eqs. (4.4) and (4.6), but with the additional condition R̂ij = 0 in
Eq. (4.20). This condition is introduced to obtain the local harmonic equations
parallel to the one-dimensional case.

§5. Conclusions

We have formulated the adiabatic approximation of the general framework of
the selfconsistent collective coordinate method in order to describe large amplitude
collective motion in superconducting nuclei. The formalism, based on the TDHFB
equations of motion, guarantees the conservation of particle number in a transparent
way. We have shown that the equations of collective subspace are reduced to local
linear equations for the infinitesimal generators, which can be solved with use of the
quasiparticle representation of the Hamiltonian matrix elements. This provides a
concrete procedure to determine the states eipQ̂(q) |φ(q)〉 in the collective subspace
and the collective HamiltonianH(q, p) = V (q)+ 1

2B(q)p
2 as functions of the collective

coordinate q and momentum p. A possible extension to the case of multi-dimensional
collective coordinates was also discussed.

We emphasize that the equations given in this paper are solvable by means of
the matrix method similar to the standard RPA. We hope that the present adiabatic
theory is useful to solve a number of open questions in realistic studies of large
amplitude collective motion in nuclear systems.

Appendix A
Solution for the Separable Interactions

In this appendix, we give solutions of the local harmonic equations of collective
subspace for the case in which the two-body interaction is given by separable forces.
We assume that the Hamiltonian is given by

Ĥ = ĥ0 −
κ

2
F̂ †F̂ , (A.1)
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where ĥ0(= ĥ
†
0) and F̂ are one-body operators. Equivalently, one may write

Ĥ = ĥ0 −
κ

2
F̂ (+)F̂ (+) +

κ

2
F̂ (−)F̂ (−), (A.2)

F̂ (±) ≡ (F̂ ± F̂ †)/2 = ±F̂ (±)†. (A.3)

For separable forces, it is customary to neglect the Fock term of the forces. This
approximation is easily and consistently implemented in the SCCM by assuming that
the equation of motion for the time-dependent mean-field state |φ(t)〉 is now given
by the time-dependent Hartree-Bogoliubov equation without the Fock terms,

δ 〈φ(t)| i ∂
∂t

− ĥ(t) |φ(t)〉 = 0, (A.4)

ĥ(t) = ĥ0 − κF̂ (+) 〈φ(t)| F̂ (+) |φ(t)〉+ κF̂ (−) 〈φ(t)| F̂ (−) |φ(t)〉 . (A.5)

The local harmonic equations (3.5)–(3.7) then become

δ 〈φ(q)| ĥM (q) |φ(q)〉 = 0, (A.6)

δ 〈φ(q)| [ĥM (q), Q̂(q)]− f (−)
Q F̂ (−) − 1

i
B(q)P̂ (q) |φ(q)〉 = 0, (A.7)

δ 〈φ(q)|
[
ĥM (q),

1
i
B(q)P̂ (q)

]
− f (+)

P F̂ (+) −B(q)C(q)Q̂(q)− f (+)
R F̂ (+)

−f (−)
Q [F̂ (−), (ĥ(q)− λ(q)N̂)A]− fN N̂ |φ(q)〉 = 0, (A.8)

where ĥM (q) is the mean-field Hamiltonian in the moving frame defined by

ĥM (q) = ĥ(q)− ∂V

∂q
Q̂(q)− λ(q)N̂ , (A.9)

ĥ(q) = ĥ0 − κF̂ (+) 〈φ(q)| F̂ (+) |φ(q)〉 , (A.10)

and the definitions of the other symbols are

f
(−)
Q = −κ 〈φ(q)| [F̂ (−), Q̂(q)] |φ(q)〉 , (A.11a)

f
(+)
P = κ 〈φ(q)|

[
F̂ (+),

1
i
B(q)P̂ (q)

]
|φ(q)〉 , (A.11b)

f
(+)
R = −κ 〈φ(q)| [[F̂ (+), (ĥ(q)− λ(q)N̂)A], Q̂(q)] |φ(q)〉 /2, (A.11c)

fN = B(q)
∂λ

∂q
. (A.11d)

We express all operators in the above equations in terms of the quasiparticle opera-
tors {a†α, aα} defined for ĥM (q) and |φ(q)〉. For example, we have

ĥM (q) =
∑
α

eαa
†
αaα, (A.12)

F̂ (+) =
∑
α>β

F
(+)
αβ (a†αa

†
β + aβaα) +

∑
αβ

F
(+)
B,αβa

†
αaβ, (A.13)

F̂ (−) =
∑
α>β

F
(−)
αβ (a†αa

†
β − aβaα) +

∑
αβ

F
(−)
B,αβa

†
αaβ. (A.14)
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We have assumed here that all matrix elements are real. Equations (A.7) and (A.8)
can then be reduced to linear equations for the matrix elements Qαβ and Pαβ of the
infinitesimal generators Q̂(q) and P̂ (q). They are easily solved to give the expression

Qαβ =
eα + eβ

(eα + eβ)2 −Ω
F

(−)
αβ f

(−)
Q

+
1

(eα + eβ)2 −Ω
(
F

(+)
αβ f

(+)
PR +R(−)

αβ f
(−)
Q +NαβfN

)
, (A.15)

BPαβ =
eα + eβ

(eα + eβ)2 −Ω
(
F

(+)
αβ f

(+)
PR +R(−)

αβ f
(−)
Q +NαβfN

)

+
Ω

(eα + eβ)2 −Ω
F

(−)
αβ f

(−)
Q , (A.16)

f
(+)
PR = f

(+)
P + f (+)

R , (A.17)

where we have introduced the one-body operator

R̂(q)(±) ≡ [F̂ (±)
B (q), (ĥ(q)− λ(q)N̂)A] =

∑
α>β

R
(±)
αβ (a†αa

†
β ∓ aβaα), (A.18)

with F̂ (±)
B (q) being the last terms of F̂ (±) in Eqs. (A.13) and (A.14).

Inserting this expression for the definition of f (+)
PR and f (−)

Q , we obtain equations

for the unknown quantities f (+)
PR , f

(−)
Q and fN . Similarly, the condition of orthogo-

nality to the number operator Eq. (3.11c) gives another equation for f (+)
PR , f

(−)
Q and

fN . These equations can be written in a 3× 3 matrix form:

 Sxx′(Ω)






f

(+)
PR

f
(−)
Q

fN


 = 0, (A.19)

where

S11 = 2S(1)

F (+)F (+) + S
(2)

R(+)F (+) −
1
κ
, (A.20a)

S12 = 2ΩS(2)

F (+)F (−) + 2S(1)

F (+)R(−) + S
(1)

R(+)F (−) + S
(2)

R(+)R(−) , (A.20b)

S13 = 2S(1)

F (+)N
+ S(2)

R(+)N
, (A.20c)

S21 = 2S(2)

F (−)F (+) , (A.20d)

S22 = 2S(1)

F (−)F (−) + 2S(2)

F (−)R(−) −
1
κ
, (A.20e)

S23 = 2S(2)

F (−)N
, (A.20f)

S31 = S
(1)

NF (+) , (A.20g)

S32 = ΩS
(2)

NF (−) + S
(1)

NR(−) , (A.20h)

S33 = S
(1)
NN . (A.20i)
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The functions S(1)
XY with the symbols X and Y denoting (X, Y ) = (F (+), F (+)),

(F (+), R(−)), (F (+), N), (R(+), F (−)), (F (−), F (−)), (N,N), (N,F (+)), (N,R(−)) are
given by

S
(1)
XY =

∑
α>β

eα + eβ
(eα + eβ)2 −Ω

XαβYαβ, (A.21)

while the functions S(2)
XY with (X, Y ) = (F (+), F (−)), (R(+), F (+)), (R(+), R(−)),

(R(+), N), (F (−), F (+)), (F (−), R(−)), (F (−), N), (N,F (−)) are given by

S
(2)
XY =

∑
α>β

1
(eα + eβ)2 −Ω

XαβYαβ. (A.22)

The value of Ω is determined by finding the zero point of the dispersion equation

det{Sxx′(Ω)} = 0. (A.23)

Normalizations of f (+)
PR , f

(−)
Q and fN are fixed by the condition Eq. (3.11d). It is

straightforward to extend the above procedure to the case in which the two-body
interaction is given by a sum of the separable forces.
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