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By means of the adiabatic self-consistent collective coordinate method and the pairing-
plus-quadrupole interaction, we have for the first time obtained a self-consistent collective
path connecting the oblate and prolate local minima in 68Se and 72Kr. This self-consistent
collective path is found to run approximately along the valley connecting the oblate and pro-
late local minima in the collective potential energy landscape. The result of this calculation
clearly indicates the importance of triaxial deformation dynamics in oblate-prolate shape
coexistence phenomena.

§1. Introduction

The microscopic description of large amplitude collective motion in nuclei is a
long-standing fundamental subject of nuclear structure physics.1)–5) In spite of the
steady development of various theoretical concepts and mathematical formulations,
the application of microscopic many-body theory to actual nuclear phenomena still
remains a challenging task.6)–33) Shape coexistence phenomena are typical examples
of large amplitude collective motion in nuclei, and both experimental and theoreti-
cal investigations of such phenomena are currently being carried out.34)–57) We are
particularly interested in the recent discovery of two coexisting rotational bands in
68Se and 72Kr, which are associated with oblate and prolate intrinsic shapes.41),42)

Clearly, these data strongly call for further development of a theory that is able to
describe them and revise our understanding of nuclear structure. From the viewpoint
of the microscopic mean-field theory, the coexistence of different shapes implies that
different solutions of the Hartree-Fock-Bogoliubov (HFB) equations (local minima
in the deformation energy surface) appear in the same energy region and that the
nucleus exhibits large amplitude collective motion connecting these different equi-
librium points. The identities and mixings of these different shapes are determined
by the dynamics of such collective motion.

On the basis of the time-dependent Hartree-Fock (TDHF) theory, the self-
consistent collective coordinate (SCC) method was proposed as a microscopic theory
of such large amplitude collective motion.12) This method was extended to the case
of time-dependent HFB (TDHFB) including pairing correlations,23) and it has been
successfully applied to various kinds of anharmonic vibration and high-spin rota-
tional phenomena.58)–69) In order to apply this method to shape coexistence phe-
nomena, however, we need to further develop the theory, because the existing method
of solving the basic equations of the SCC method, called the η-expansion method,12)
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assumes a single local minima, whereas several local minima of the potential energy
surface compete in these systems. Some years ago, we proposed a new method of de-
scribing such large-amplitude collective motion, called the adiabatic self-consistent
collective coordinate (ASCC) method.70) This method provides a practical scheme
for solving the basic equations of the SCC method12) using an expansion in terms of
the collective momentum. It does not assume a single local minimum, and therefore
it is believed to be suitable for the description of shape coexistence phenomena.
The ASCC method inherits the major advantages of the adiabatic TDHF (ATDHF)
methods and, in addition, enables us to include pairing correlations self-consistently.
In this method, the spurious number fluctuation modes are automatically decoupled
from the physical modes within the self-consistent framework of the TDHFB theory.
This will certainly be a great advantage when the method is applied to realistic
nuclear problems. To examine the feasibility of the ASCC method, in Ref. 71), we
applied it to an exactly solvable model called the multi-O(4) model,72)–75) which is a
simplified version of the pairing-plus-quadrupole (P+Q) interaction model.76)–78) It
was shown that this method yields a faithful description of tunneling motion through
a barrier between prolate and oblate local minima in the collective potential.71)

In this paper, we report on our first application of the ASCC method to the P+Q
interaction model. The major task here is to develop a practical procedure for solving
the basic equations of the ASCC method in order to obtain a self-consistent collective
path. We investigate, as typical examples, the oblate-prolate shape coexistence
phenomena in 68Se and 72Kr,41),42) and we find that the self-consistent collective
paths run approximately along the valley connecting the oblate and prolate local
minima in the collective potential energy landscape. To the best of our knowledge,
this is the first time that, starting from the microscopic P+Q Hamiltonian, the
collective paths have been fully self-consistently obtained for realistic situations,
although a similar approach to the study of large amplitude collective motion was
recently employed by Almehed and Walet.79),80)

This paper is organized as follows. In §2, the basic equations of the ASCC
method are summarized. In §3, we present a concrete formulation of the ASCC
method for the case of the P+Q Hamiltonian. In §4, an algorithm to solve the
basic equations of the ASCC method is discussed. In §5, we present the results of
numerical calculations for the oblate-prolate shape coexistence phenomena in 68Se
and 72Kr. Concluding remarks are given in §6.

A preliminary version of this work was reported previously in this journal.81)

§2. Basic equations of the ASCC method

In this section, we summarize the basic equations of the ASCC method.70) The
basic assumption of our approach is that large-amplitude collective motion can be
described by a set of time-dependent HFB state vectors |φ(q, p, ϕ,N)〉 parameterized
by a single collective coordinate q, the collective momentum p conjugate to q, the
particle number N and the gauge angle ϕ conjugate to N . Then, the state vectors
can be written in the following form:

|φ(q, p, ϕ,N)〉 = e−iϕN̂ |φ(q, p,N)〉 = e−iϕN̂eipQ̂(q)|φ(q)〉. (2.1)

Carrying out an expansion with respect to p and requiring that the time-dependent
variational principle be satisfied up to second order in p, we obtain the following set
of equations to determine |φ(q)〉, the infinitesimal generator Q̂(q), and its canonical
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conjugate P̂ (q). First, we have the HFB equation in the moving frame, given by

δ 〈φ(q)| ĤM (q) |φ(q)〉 = 0, (2.2)

where

ĤM (q) = Ĥ − λ(q)N̂ − ∂V

∂q
Q̂(q) (2.3)

represents the Hamiltonian in the moving frame. Then, we have the local harmonic
equations in the moving frame,

δ 〈φ(q)| [ĤM (q), Q̂(q)] − 1
i
B(q)P̂ (q) |φ(q)〉 = 0, (2.4)

δ 〈φ(q)| [ĤM (q),
1
i
P̂ (q)] − C(q)Q̂(q) − 1

2B(q)
[[ĤM (q), (Ĥ − λ(q)N̂ )A], Q̂(q)] − ∂λ

∂q
N̂ |φ(q)〉 = 0,(2.5)

where

B(q) = −〈φ(q)| [[Ĥ, Q̂(q)], Q̂(q)] |φ(q)〉 (2.6)

represents the inverse mass,

C(q) =
∂2V

∂q2
+

1
2B(q)

∂B

∂q

∂V

∂q
(2.7)

the local stiffness, and (Ĥ − λN̂)A denotes the two-quasiparticle creation and anni-
hilation parts of (Ĥ − λN̂).

The infinitesimal generators, Q̂(q) and P̂ (q), satisfy the canonical variable con-
dition:

〈φ(q)| [Q̂(q), P̂ (q)] |φ(q)〉 = i. (2.8)

Once |φ(q)〉 and the infinitesimal generators are determined for every value of q,
we obtain the collective Hamiltonian H(q, p) = 1

2B(q)p2 + V (q) with the collective
potential V (q) = 〈φ(q)| Ĥ |φ(q)〉.

In the above equations, no distinction is made between protons and neutrons
for simplicity in the notation. In the actual calculations described below, however,
we explicitly treat the neutron number N and the proton number Z separately.

§3. Application of the ASCC method to the P+Q model

3.1. The P+Q Hamiltonian and signature quantum number

Let us start with the well-known P+Q Hamiltonian,76)–78)

Ĥ =
∑

k

εkc
†
kck −

∑
τ

Gτ

2

(
A†

τAτ + AτA
†
τ

)
− χ

2

2∑
K=−2

D†
2KD2K , (3.1)

where

A†
τ =

∑
k∈τ

′
c†kc

†
k̃
, Aτ =

∑
k∈τ

′
ck̃ck,

D2K =
∑

τ=n,p

∑
kl∈τ

D
(τ)
2K(kl)c†kcl. (3.2)
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Here, we have D
(τ)
2K(kl) = α2

τ 〈k| r2Y2K |l〉, Gτ and χ denote the pairing and quadrupole
force strengths, respectively, and c†k and ck are the nucleon creation and annihila-
tion operators in the single-particle state k, while c†

k̃
and ck̃ denote those in the

time-reversed state of k. The index τ indicates protons (with τ = p) and neutrons
(with τ = n). Although it is not explicitly mentioned below, it should be kept in
mind that the single-particle index k actually includes the index τ . The notation
Σ′ in the pair operators, A†

τ and Aτ , represents a sum over the pairs (k, k̃). The
factors αn = (2Z/A)2/3 and αp = (2N/A)2/3, multiplying the quadrupole matrix el-
ements, yield equivalent root-mean-square radii for protons and neutrons. Following
Baranger and Kumar,77) we take into account two major shells as the model space,
and we multiply the quadrupole matrix elements D

(τ)
2K(kl) of the upper harmonic-

oscillator shell by the reduction factor ζ = (NL + 3/2)/(NL + 5/2), NL being the
total number of oscillator quanta of the lower shell. Following the conventional pre-
scription of the P+Q interaction,76)–78) we ignore the exchange (Fock) terms. In
other words, we employ the Hartree-Bogoliubov (HB) approximation throughout
this paper.

We introduce the following notations:

F̂ (±)
s ≡ 1

2
(F̂s ± F̂ †

s ),

F̂ (±)
s ≡ {A(±)

n , A(±)
p ,D

(±)
20 ,D

(±)
21 ,D

(±)
22 }. (s = 1 − 5) (3.3)

We then write the P+Q Hamiltonian in the form

Ĥ =
∑

k

εkc
†
kck −

5∑
s=1

κs

2
F̂ (+)

s F̂ (+)
s +

5∑
s=1

κs

2
F̂ (−)

s F̂ (−)
s , (3.4)

where κs = {2Gn, 2Gp, χ, 2χ, 2χ} for s = 1 − 5. Our Hamiltonian is invariant
with respect to a rotation by π about the x axis. The symmetry quantum number
associated with it is called the signature, r = e−iπα. To exploit the signature
symmetry, it is convenient to use nucleon operators with definite signatures defined
by

dk ≡ 1√
2
(ck + ck̃), r = −i (α = 1/2),

dk̄ ≡ 1√
2
(ck̃ − ck), r = +i (α = −1/2), (3.5)

and their Hermite conjugates, d†k and d†
k̄
. The operators F̂

(±)
s are then classified

according to the signature quantum numbers, r = ±1 (α = 0, 1), as

{A(±)
n , A(±)

p ,D
(+)
20 ,D

(−)
21 ,D

(+)
22 }, (r = +1)

{D(+)
21 ,D

(−)
22 }, (r = −1) (3.6)

Note that D
(−)
20 = 0. The HB local minima corresponding to the oblate and prolate

equilibrium shapes possess positive signature, r = +1(α = 0). Therefore, the oper-
ators Q̂(q) and P̂ (q), generating large amplitude collective motion associated with
these shapes, also possess positive signature. In other words, the negative signature
degrees of freedom are exactly decoupled from the large amplitude collective motion
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of interest, and hence we can ignore them. Also, it is readily confirmed that the
K = 1 components associated with the quadrupole operator D̂

(−)
21 exactly decouple

from the K = 0 and 2 components in the local harmonic equations, (2.2) and (2.4).
As is well known, they are associated with the collective rotational motion, and the
large amplitude shape vibrational motion under consideration is exactly decoupled
from them in the present framework. We note, however, that it is possible, with
a rather straightforward extension, to formulate the ASCC method in a rotating
frame of reference. By means of such an extension, we are able to take into account
the coupling effects between the two kinds of large amplitude collective motion.
It is certainly a very interesting subject to study how the properties of the large-
amplitude shape vibrational motion change as a function of the angular momentum,
but such an investigation is beyond the scope of this paper. We note, however, that
an attempt to treat this subject was recently made by Almehed and Walet.80)

Thus, only the components {A(±)
n , A

(±)
p ,D

(+)
20 ,D

(+)
22 } are pertinent to the shape

coexistence dynamics of interest presently. They all belong to the positive signature
sector, and we are able to adopt a phase convention with which their single-particle
matrix elements are real. In the following, we assume that this is the case.

3.2. Quasiparticle-random-phase approximation (QRPA) at the HB local minima

As discussed in the introduction, shape coexistence phenomena imply the exis-
tence of several local minima in the deformation energy surface, which are solutions
of the HB equations. Let us choose one of them and write it |φ0〉. The HB equation
is given by

δ〈φ0|Ĥ −
∑

τ

λτ N̂τ |φ0〉 = 0, (3.7)

where λτ represents the chemical potentials for protons (τ = p) and neutrons (τ =
n). The quasiparticle creation and annihilation operators, a†µ and aµ, associated with
the HB local minimum are defined by aµ|φ0〉 = 0. Similar equations hold for their
signature partners, µ̄. They are introduced through the Bogoliubov transformations,

(
a†µ
aµ̄

)
=

∑
k

(
Uµk Vµk̄

Vµ̄k Uµ̄k̄

)(
d†k
dk̄

)
, (3.8)

and their Hermite conjugate equations. (Here and hereafter, we do not mix protons
and neutrons in these transformations.) In terms of the two quasiparticle creation
and annihilation operators,

A†
µν̄ ≡ a†µa†ν̄ , Aµν̄ ≡ aν̄aµ, (3.9)

the RPA normal coordinates and momenta describing small amplitude vibrations
about the HB local minimum |φ0〉 are written

Q̂ρ =
∑
µν̄

Qρ
µν̄(A†

µν̄ + Aµν̄), (3.10)

P̂ρ = i
∑
µν̄

P ρ
µν̄(A†

µν̄ − Aµν̄), (3.11)

where the sum is taken over the proton and neutron quasiparticle pairs (µν̄), and ρ
labels the QRPA modes. The amplitudes Qρ

µν and P ρ
µν are determined by the QRPA



6 M. Kobayasi, T. Nakatsukasa, M. Matsuo and K. Matsuyanagi

equations of motion,

δ 〈φ0| [Ĥ −
∑

τ

λτ N̂τ , Q̂ρ] −
1
i
BρP̂ρ |φ0〉 = 0, (3.12)

δ 〈φ0| [Ĥ −
∑

τ

λτ N̂τ ,
1
i
P̂ρ] − CρQ̂ρ |φ0〉 = 0, (3.13)

and the orthonormalization condition 〈φ0| [Q̂ρ, P̂ρ′ ] |φ0〉 = iδρ,ρ′ .

3.3. The HB equation and the quasiparticles in the moving frame

For the P+Q Hamiltonian, the HB equation (2.2) determining the state vector
|φ(q)〉 away from the local minimum reduces to

δ 〈φ(q)| ĥM (q) |φ(q)〉 = 0, (3.14)

where ĥM (q) is the mean-field Hamiltonian in the moving frame,

ĥM (q) = ĥ(q) −
∑

τ

λτ (q)N̂τ − ∂V

∂q
Q̂(q), (3.15)

ĥ(q) =
∑

k

εk(d
†
kdk + d†

k̄
dk̄) −

∑
s

κsF̂
(+)
s 〈φ(q)| F̂ (+)

s |φ(q)〉 . (3.16)

The state vector |φ(q)〉 can be written in terms of a unitary transformation of |φ0〉:

|φ(q)〉 = eθ̂(q) |φ0〉 ,

θ̂(q) ≡
∑
µν̄

θµν̄(q)
(
A†

µν̄ − Aµν̄

)
. (3.17)

Here, the sum is taken over the proton and neutron quasiparticle pairs (µν̄). The
quasiparticle creation and annihilation operators, a†µ(q) and aµ(q), associated with
the state |φ(q)〉, which satisfy the condition aµ(q)|φ(q)〉 = 0, are written

a†µ(q) ≡ eθ̂(q)a†µe−θ̂(q) =
∑

ν

(
Uµν(q)a†ν + Vµν̄(q)aν̄

)
,

aµ̄(q) ≡ eθ̂(q)aµ̄e−θ̂(q) =
∑

ν

(
Vµ̄ν(q)a†ν + Uµ̄ν̄(q)aν̄

)
, (3.18)

where

(
Uµν(q) Vµν̄(q)
Vµ̄ν(q) Uµ̄ν̄(q)

)
=

⎛
⎜⎜⎝

cos(
√

θθT ) −θ
sin(

√
θT θ)√

θT θ

θT sin(θθT )√
θθT

cos(
√

θT θ).

⎞
⎟⎟⎠ (3.19)

Here, θ on the r.h.s. represents the matrix composed of θµν(q), and it is understood
that its elements corresponding to those on the l.h.s. should be taken.

In terms of the quasiparticle operators defined above, the mean-field Hamilto-
nian in the moving frame ĥM (q), the neutron and proton number operators N̂τ , and
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the pairing and quadrupole operators F̂
(±)
s are written in the following forms:

ĥM (q) = 〈φ(q)| ĥM (q) |φ(q)〉 +
∑
µ

Eµ(q)
(
Bµµ(q) + Bµ̄µ̄(q)

)
, (3.20)

N̂τ = 〈φ(q)| N̂τ |φ(q)〉 +
∑

µ

Nτ (µ)
(
A†

µµ̄(q) + Aµµ̄(q)
)

+
∑
µ

NB,τ (µ)
(
Bµµ(q) + Bµ̄µ̄(q)

)
, (3.21)

F̂ (±)
s = 〈φ(q)| F̂ (±)

s |φ(q)〉 +
∑
µν̄

F (±)
s (µν̄)

(
A†

µν̄(q) ± Aµν̄(q)
)

+
∑
µν

F
(±)
B,s (µν)

(
Bµν(q) + Bµ̄ν̄(q)

)
, (3.22)

where

A†
µν̄(q) ≡ a†µ(q)a†ν̄(q), Aµν̄(q) ≡ aν̄(q)aµ(q), Bµν(q) ≡ a†µ(q)aν(q). (3.23)

Note that Eµ̄(q) = Eµ(q) and also that the equalities F
(±)
B,s (µ̄ν̄) = F

(±)
B,s (µν) hold for

the operators under consideration. Explicit expressions for the expectation values
and the quasiparticle matrix elements appearing in the above equations are given in
Appendix A.

3.4. Local harmonic equations in the moving frame

We can represent the infinitesimal generators Q̂(q) and P̂ (q) in terms of A†
µν̄(q)

and Aµν̄(q) as

Q̂(q) =
∑
µν̄

Qµν̄(q)
(
A†

µν̄(q) + Aµν̄(q)
)
, (3.24)

P̂ (q) = i
∑
µν̄

Pµν̄(q)
(
A†

µν̄(q) − Aµν̄(q)
)
, (3.25)

where the sum is taken over the proton and neutron quasiparticle pairs (µν̄). For
the P+Q Hamiltonian, the local harmonic equations, (2.4) and (2.5), in the moving
frame reduce to

δ 〈φ(q)| [ĥM (q), Q̂(q)] −
∑

s

f
(−)
Q,s F̂ (−)

s − 1
i
B(q)P̂ (q) |φ(q)〉 = 0, (3.26)

δ 〈φ(q)|
[
ĥM (q) ,

1
i
B(q)P̂ (q)

]
−

∑
s

f
(+)
P,s F̂ (+)

s − B(q)C(q)Q̂(q) −
∑

s

f
(+)
R,s F̂ (+)

s

+
∑

s

f
(−)
Q,s R̂(−)

s −
∑

τ

fN,τ N̂τ |φ(q)〉 = 0, (3.27)

where the quantities f
(−)
Q,s , etc., are given by

f
(−)
Q,s ≡ −κs 〈φ(q)| [F̂ (−)

s , Q̂(q)] |φ(q)〉 = 2κs(F (−)
s , Q(q)), (3.28)

f
(+)
P,s ≡ κs 〈φ(q)|

[
F̂ (+)

s ,
1
i
B(q)P̂ (q)

]
|φ(q)〉 = 2κsB(q)(F (+)

s , P (q)), (3.29)
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f
(+)
R,s ≡ −1

2
κs 〈φ(q)| [R̂(+)

s , Q̂(q)] |φ(q)〉 = κs(R(+)
s , Q(q)), (3.30)

fN,τ ≡ B(q)
∂λτ

∂q
. (3.31)

Here we have introduced the notation

R̂(±)
s ≡ [F̂ (±)

B,s , (ĥ(q) −
∑

τ

λτ (q)N̂τ )A] ≡
∑
µν̄

R(±)
s (µν̄)

(
A†

µν̄(q) ∓ Aµν̄(q)
)
, (3.32)

where (ĥ(q)−
∑

τ λτ (q)N̂τ )A represents the A†
µν̄(q) and Aµν̄(q) parts of the operator

in parentheses. We also use the notation

(F (−)
s , Q(q)) ≡

∑
µν̄

F (−)
s (µν̄)Qµν̄(q), etc. (3.33)

Note that f
(−)
Q,s , f

(+)
P,s and f

(+)
R,s are linear functions of Qµν̄(q) or Pµν̄(q).

We can easily derive the following expressions for the matrix elements Qµν̄(q)
and Pµν̄(q) from the local harmonic equations in the moving frame, (3.26) and (3.27):

Qµν̄(q) =
∑

s

g1(µν̄)F (−)
s (µν̄)f (−)

Q,s +
∑

s

g2(µν̄)
{

F (+)
s (µν̄)f (+)

PR,s

+ R(−)
s (µν̄)f (−)

Q,s +
∑

τ

Nτ (µν̄)fN,τ

}
(3.34)

Pµν̄(q) =
∑

s

g1(µν̄)
{

F (+)
s (µν̄)f (+)

PR,s + R(−)
s (µν̄)f (−)

Q,s +
∑

τ

Nτ (µν̄)fN,τ

}

+ ω2(q)
∑

s

g2(µν̄)F (−)
s (µν̄)f (−)

Q,s , (3.35)

where f
(+)
PR,s = f

(+)
P,s + f

(+)
R,s and

g1(µν̄) ≡ Eµ + Eν̄

(Eµ + Eν̄)2 − ω2(q)
, g2(µν̄) ≡ 1

(Eµ + Eν̄)2 − ω2(q)
. (3.36)

Note that ω2, representing the square of the frequency of the local harmonic mode,
ω(q) =

√
B(q)C(q), is not necessarily positive. The values of B(q) and C(q) depend

on the scale of the collective coordinate q, while ω(q) does not. In other words, the
scale of q can be chosen arbitrarily without affecting the frequency ω(q). We thus
require B(q) = 1 everywhere on the collective path to uniquely determine the scale
of q.

Inserting expressions (3.34) and (3.35) for Qµν̄(q) and Pµν̄(q) into Eqs. (3.28)-
(3.30) and combining them with the condition of orthogonality to the number oper-
ators,

〈φ(q)|[N̂τ , P̂ (q)]|φ(q)〉 = 2i(P (q),Nτ ) = 0, (3.37)

we obtain the linear homogeneous equations

∑
s′τ ′

⎛
⎜⎜⎜⎜⎜⎝

SQ,Q
ss′ SQ,P R

ss′ SQ,N
sτ ′

SPR,Q
ss′ SPR,PR

ss′ SPR,N
sτ ′

SN,Q
τs′ SN,PR

τs′ SN,N
ττ ′

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

f
(−)
Q,s′

f
(+)
PR,s′

fN,τ ′

⎞
⎟⎟⎟⎟⎟⎠

= 0 (3.38)
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for the vectors f
(−)
Q , f

(+)
PR, and fN defined by

f
(−)
Q ≡ {f (−)

Q,1 , f
(−)
Q,1}, (3.39)

f
(+)
PR ≡ {f (+)

PR,1, f
(+)
PR,2, f

(+)
PR,3, f

(+)
PR,5}, (3.40)

fN ≡ {fN,n, fN,p}. (3.41)

Here, we have

SQ,Q
ss′ ≡ 2(F (−)

s , F
(−)
s′ )g1 + 2(F (−)

s , R
(−)
s′ )g2 −

1
κs

δss′ , (3.42)

SQ,P R
ss′ ≡ 2(F (−)

s , F
(+)
s′ )g2 , (3.43)

SQ,N
sτ ′ ≡ 2(F (−)

s , Nτ ′)g2, (3.44)

SPR,Q
ss′ ≡ 2(F (+)

s , R
(−)
s′ )g1 + 2ω2(q)(F (+)

s , F
(−)
s′ )g2 + (R(+)

s , R
(−)
s′ )g2,

+ (R(+)
s , F

(−)
s′ )g1 , (3.45)

SPR,PR
ss′ ≡ 2(F (+)

s , F
(+)
s′ )g1 + (R(+)

s , F
(+)
s′ )g2 −

1
κs

δss′ , (3.46)

SPR,N
sτ ′ ≡ 2(F (+)

s , Nτ ′)g1 + (R(+)
s , Nτ ′)g2, (3.47)

SN,Q
τs′ ≡ ω2(q)(Nτ , F

(−)
s′ )g2 + (Nτ , R

(−)
s′ )g1 , (3.48)

SN,PR
τs′ ≡ (Nτ , F

(+)
s′ )g1 , (3.49)

SN,N
ττ ′ ≡ (Nτ , Nτ ′)g1 , (3.50)

with the notations

(F (−)
s , F

(−)
s′ )g1 ≡

∑
µν̄

F (−)
s (µν̄)g1(µν̄)F (−)

s′ (µν̄), etc. (3.51)

Equation (3.38) takes the form
8∑

σ′=1

Sσσ′(ω2(q))fσ′ = 0 (3.52)

for the vector f composed of

{fσ=1−8} ≡ {f (−)
Q , f

(+)
PR, fN} (3.53)

≡ {f (−)
Q,1 , f

(−)
Q,2 , f

(+)
PR,1, f

(+)
PR,2, f

(+)
PR,3, f

(+)
PR,5, fN,n, fN,p}. (3.54)

Thus, the frequency ω of the local harmonic mode is determined by the condition
det S = 0. The normalizations of f are fixed by

〈φ(q)|[Q̂(q), P̂ (q)]|φ(q)〉 = 2i(Q(q), P (q)) = i. (3.55)

Note that ω2 represents the curvature of the collective potential,

ω2 =
∂2V

∂q2
, (3.56)

for the choice of coordinate scale with which the mass is unity, i.e., B(q) = 1.
In concluding this section, we mention that the reduction of the local harmonic

equations to linear homogeneous equations like (3.52) can be done for any effective
interaction that can be written as a sum of separable terms. Below, we call the local
harmonic equations in the moving frame the “moving frame QRPA” for brevity.
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§4. Procedure of the calculation

4.1. Algorithm to find collective paths

In order to find the collective path connecting the oblate and prolate local min-
ima, we have to determine the state vectors |φ(q)〉 and the infinitesimal generators
Q̂(q) and P̂ (q) by solving the moving frame HB equation (3.14) and the moving
frame QRPA equations, (3.26) and (3.27). Because Q̂(q) and |φ(q)〉 are mutually
dependent, we have to resort to some iterative procedure. We carry this out through
the following algorithm.

Let us assume that the state vector |φ(q)〉 and the infinitesimal generators Q̂(q)
and P̂ (q) are known at a specific point of q. We then find the state vector |φ(q+δq)〉
and the infinitesimal generators Q̂(q+δq) and P̂ (q+δq) at a neighboring point q+δq
through the following steps.
Step 1: Construct a state vector at the neighboring point q + δq using P̂ (q):

|φ(q + δq)〉(0) = e−iδqP̂ (q)|φ(q)〉. (4.1)

Though |φ(q + δq)〉(0) does not necessarily satisfy the moving frame HB equation,
(3.14), we can use this state vector as an initial guess for q + δq.
Step 2: Solve the moving frame HB equation (3.14) using Q̂(0)(q + δq) = Q̂(q) as

an initial guess for Q̂(q + δq) and obtain an improved state vector |φ(q + δq)〉(1).
Doing this, we find it important to impose the constraint

〈φ(q + δq)|Q̂(q)|φ(q + δq)〉 = δq (4.2)

for the increment δq of the collective coordinate q, together with the constraints

〈φ(q + δq)|N̂τ |φ(q + δq)〉 = Nτ , τ = p, n (4.3)

for the proton and neutron numbers (Np = Z, Nn = N). The constraint (4.2) is
easily derived by combining Eq. (4.1) with the canonical variable condition (2.8).
The details of this step are described in Appendix B.
Step 3: Solve the moving frame QRPA equations, (3.26) and (3.27), with the use

of |φ(q + δq)〉(1) to obtain Q̂(1)(q + δq) and P̂ (1)(q + δq).
Step 4: Return to Step 2 and solve Eq. (3.14) using Q̂(1)(q + δq).

If the iterative procedure, Steps 2-4, converges, we obtain self-consistent solu-
tions, Q̂(q+δq), P̂ (q+δq) and |φ(q+δq)〉, that satisfy Eqs. (3.14), (3.26) and (3.27)
simultaneously at q + δq. Then, we return to Step 1 to construct an initial guess
|φ(q + 2δq)〉(0) for the next point, q + 2δq, and repeat the above procedure. In this
way, we proceed step by step along the collective path.

The above is a brief summary of the basic algorithm. In actual numerical
calculations, we start the procedure from one of the HB local minima and choose the
lowest frequency QRPA mode as an initial condition for the infinitesimal generators
Q̂ and P̂ at q = 0. Under ordinary conditions, we can proceed along the collective
path following the procedure described above. In some special situations, however,
we need additional considerations concerning the choice of the initial guess, Q̂(0)(q+
δq), in Step 2. Actually, we encounter such situations in some special regions of the
collective path for 72Kr. We give detailed discussion of this point in §§5.3.

We have checked that the same collective path is obtained by starting from the
other local minimum and proceeding in the inverse manner.
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4.2. Details of the calculation

In the numerical calculation, we use the spherical single-particle energies of
the modified oscillator model of Ref. 83), which are listed in Table I, and follow
the conventional prescriptions of the P+Q interaction model,77) except that the
pairing and quadrupole interaction strengths, Gτ and χ, are chosen to approximately
reproduce the pairing gaps and quadrupole deformations obtained in the Skyrme-
HFB calculation carried out by Yamagami et al.82) The values they obtained are
Gn = 0.320 (0.299) Gp = 0.320 (0.309) and χ′ ≡ χb4 = 0.248 (0.255) in units of MeV
for 68Se (72Kr), where b is the length parameter given by b2 = 4

5

(
2
3

)1/3
r2
0A

1/3. The
pairing gaps, ∆τ=p,n, and deformation parameters, β and γ, are defined as usual
through the expectation values of the pairing and quadrupole operators:

∆τ (q) = Gτ 〈φ(q)|
∑
k∈τ

d†kd
†
k̄
|φ(q)〉, (4.4)

β cos γ = χ′〈φ(q)|D̂(+)
20 |φ(q)〉/(�ω0b

2), (4.5)

β sin γ =
√

2χ′〈φ(q)|D̂(+)
22 |φ(q)〉/(�ω0b

2). (4.6)

Here, �ω0 denotes the frequency of the harmonic oscillator potential.

Table I. Spherical single-particle orbits and their energies used in the calculation. The energies

relative to those of 1g9/2 are given in units of MeV.

orbits 1f7/2 2p3/2 1f5/2 2p1/2 1g9/2 2d5/2 1g7/2 3s1/2 2d3/2

protons -8.77 -4.23 -2.41 -1.50 0.0 6.55 5.90 10.10 9.83

neutrons -9.02 -4.93 -2.66 -2.21 0.0 5.27 6.36 8.34 8.80

§5. Results of the calculation

5.1. Properties of the QRPA modes at the local minima in 68Se and 72Kr

For the P+Q Hamiltonian described in §4, the lowest HB solution corresponds
to a oblate shape, while the second lowest HB solution possesses a prolate shape for
both 68Se and 72Kr (see Table II). Their energy differences are 0.30 and 0.82 MeV
for 68Se and 72Kr, respectively. In the QRPA calculations at these local minima, we
obtain strongly collective quadrupole modes with low frequencies. They correspond
to the β and γ vibrations in deformed nuclei with axial symmetry. Although the
former in fact contains pairing vibrational components, we call it a β vibration,
because the transition matrix elements for the quadrupole operator D

(+)
20 are en-

hanced. (A neutron pairing vibrational mode appears as the second QRPA mode
at the oblate minimum in 72Kr; see Table II.) We note that there is an important
difference between 68Se and 72Kr concerning the relative excitation energies of the
β and γ vibrational modes: In the case of 68Se, the frequencies of the γ vibrational
QRPA mode are lower than those of the β vibrational one for both the oblate and
prolate local minima. The situation is opposite in the case of 72Kr; that is, the
frequencies of the β vibrations are lower than those of the γ vibrations. As we see
in the succeeding subsections, this difference leads to an important difference in the
properties of the collective path connecting the two local minima.



12 M. Kobayasi, T. Nakatsukasa, M. Matsuo and K. Matsuyanagi

 0  0.1  0.2  0.3
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1

 0

 10

 20
 30

 40

 50

 60

 0  0.5  1
 0

 10

 20

 30

 40

 0  0.5  1

 0

 0.5

 1

 1.5

 2

 0  0.5  1
-2

 0

 2

 4

 0  0.5  1

β

γ

q

V
(q

)(
M

eV
) Prolate

Oblate

q

q

γ(
de

g)

β

γω 
  (

M
eV

   
) 

2
2

∆

∆

∆(
M

eV
)

p

n

q

M
(s

(q
))

(1
/M

eV
)

(b)

(c) (d)

(e) (f)

q

(a)

Fig. 1. Results of the calculation for 68Se. (a) The bold curve represents the ASCC path projected

onto the (β, γ) plane, which connects the oblate and the prolate minima designated by filled

circles. The contour lines were calculated using the conventional constrained HB method and

plotted at intervals of 50 keV. (b) Collective potential V (q) plotted as a function of the collective

coordinate q. Here the origin of q is chosen to coincide with the prolate local minimum, and its

scale is defined such that the collective mass is given by M(q) = 1. (c) Collective mass M(s(q))

with respect to the geometrical length s(q) along the collective path in the (β, γ)-plane, plotted

as a function of q. (d) The triaxiality parameter γ as a function of q. (e) Neutron and proton

pairing gaps, ∆n and ∆p, as functions of q. (f) The lowest two eigen-frequencies squared (i.e.,

ω2 = BC) of the moving frame RPA, plotted as functions of q. These modes at triaxial deformed

shapes are more general than the ordinary β- and γ-vibrations in the oblate and prolate limits

and contain both components. The symbols β and γ are used, however, to indicate the major

components of the moving frame RPA modes.
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Table II. The equilibrium quadrupole deformation parameters (β, γ), the pairing gaps (∆τ ) in

units of MeV, the QRPA eigenenergies �ωρ=1,2 in units of MeV, and the relevant quadrupole

transition matrix elements squared, |Mρ|2 ≡ |〈ρ|D(+)
2K |0〉|2 (ρ = 1, 2). Here, |ρ〉 and |0〉 denote

the QRPA one-phonon and the ground states. The symbols β, γ, and ∆n in the eighth column

respectively indicate the β-, γ- and neutron-pairing vibrational modes; the |Mρ|2 values for

K = 0, 2 and 0 are presented in Weisskopf units.

β γ ∆n ∆p ω1 |M1|2 ω2 |M2|2
68Se (prolate) 0.234 0◦ 1.34 1.42 1.02(γ) 33.66 1.91(β) 12.19
68Se (oblate) 0.284 60◦ 1.17 1.27 1.55(γ) 13.64 2.25(β) 7.67

72Kr (prolate) 0.376 0◦ 1.15 1.29 1.60(β) 12.97 1.67(γ) 14.61
72Kr (oblate) 0.354 60◦ 0.86 1.00 1.15(β) 5.37 1.91(∆n) 0.19

5.2. Collective path connecting the oblate and prolate minima in 68Se

As the γ vibrational mode is the lowest frequency and most collective QRPA
mode at the prolate local minimum, we have chosen this mode as the initial condition
for solving the basic equations of the ASCC method and carried out the procedure
described in §§ 4.1. We thus obtained the collective path connecting the oblate and
prolate local minima in 68Se, which is plotted in Fig. 1(a). As we have extracted
the collective path in the TDHB phase space, which has a very large number of
degrees of freedom, the path drawn in this figure should be regarded as a projection
of the collective path onto the (β, γ)-plane. Roughly speaking, the collective path
goes through the valley that exists in the γ direction and connects the oblate and
prolate minima. If β is treated as a collective coordinate and the oblate and prolate
shapes are connected through the spherical point, the variation of the potential
energy would be much greater than that along the collective path we obtained. The
potential energy curve V (q) along the collective path evaluated using the ASCC
method is displayed in Fig. 1(b). Because we have defined the scale of the collective
coordinate q such that the collective mass is given by M(q) = B(q)−1 = 1 MeV−1,
the collective mass as a function of the geometrical length s along the collective path
in the (β, γ) plane can be defined by

M(s(q)) = M(q)
(ds

dq

)−2
, (5.1)

with ds2 = dβ2 + β2dγ2. This quantity is presented in Fig. 1(c) as a function of
q. The triaxial deformation parameter γ is plotted as a function of q in Fig. 1(d).
Variations of the pairing gaps, ∆τ (q), and of the eigen-frequencies of the moving
frame QRPA equations along the collective path are plotted in Figs. 1(e) and (f).
The solid curve in Fig. 1(f) represents the frequencies squared, ω2(q) = B(q)C(q),
given by the product of the inverse mass B(q) and the local stiffness C(q) of the
solutions of the moving frame QRPA equations, which correspond to the γ-vibration
in the oblate and prolate limits. These QRPA solutions determine the infinitesimal
generators Q̂(q) and P̂ (q) along the collective path. For reference, we also present
in Fig. 1(f) another solution of the moving frame QRPA equations, which possesses
the β-vibrational properties and is irrelevant to the collective path in the case of
68Se. Note that the frequency of the γ-vibrational mode becomes imaginary in the
region 12◦ < γ < 45◦. These results should reveal interesting dynamical properties
of the shape coexistence phenomena in 68Se. For instance, the large collective mass
in the vicinity of γ = 60◦ [Fig. 1(c)] might increase the stability of the oblate shape
in the ground state. A detailed investigation of these quantities as well as solutions
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of the collective Schrödinger equation will be given in a succeeding paper.84)

5.3. Collective path connecting the oblate and prolate minima in 72Kr

In contrast to 68Se, the lowest-frequency QRPA mode is the β vibration at the
prolate local minimum in 72Kr. For this reason, we have chosen this mode as the
initial condition at the prolate minimum and started the procedure of extracting the
collective path. Then, the collective path first goes in the direction of the β axis in
the (β, γ)-plane. As we go along the β axis, we eventually encounter a situation in
which the two solutions of the moving frame QRPA equations compete in energy,
and they eventually cross. Thus, we see that the properties of the solution with
the lowest value of ω2 = BC change from those of the β vibrational to those of
the γ vibrational case at some point on the collective path. If only the solution
Q̂1(q) with the lowest value of ω2 at the previous point q is always chosen as an
initial guess for Q̂(q + δq) in Step 2 of the algorithm described in §§4.1, then the
direction of the collective path in the (β, γ) plane changes abruptly from the β
direction to the γ direction immediately after the crossing point (in the vicinity of
the point C’ in Fig. 3 presented below), and the numerical algorithm outlined in §§4.1
fails at this point: During the iterative procedure of solving the moving frame HB
equation, we encounter a situation in which the overlap (Q(q),Q(q + δq)) between
the infinitesimal generators Q̂ at the neighboring points q and q + δq vanishes,
because K=0 for the former, whereas K=2 for the latter. The numerical algorithm
(whose details are described in Appendix B) then is no longer effective at this point,
where the overlaps (Nτ , Q(q + δq)) also vanish for the same reason. This problem
exists even if we decrease the step size δq. We find, however, that we can avoid
this difficulty by employing a more suitable initial guess for Q̂(q + δq). Specifically,
we take a linear combination of the two solutions Q̂1(q) and Q̂2(q) at the previous
point q, Q̂(0)(q + δq) = (1− ε)Q̂1(q)+ εQ̂2(q), with a small coefficient ε, as an initial
guess. This improvement is just for the purpose of starting the iterative procedure
at the next point, q + δq, on the collective path, so that the self-consistent solution,
Q̂(q + δq), obtained upon the convergence of the iterative procedure, of course, does
not depend on the values of ε. For instance, we obtain an axially symmetric solution
|φ(q + δq)〉 and a generator Q̂(q+δq) preserving the K quantum number in the region
satisfying β > 0.24 around the prolate minimum, even when we start the iterative
procedure using an initial guess for Q̂(q + δq) that breaks the axial symmetry. We
confirmed that this is indeed the case as long as ε is a small finite value around
0.1. This special care is needed only near such crossing points (as shown below in
Figs. 3-5), where two solutions of the moving frame QRPA equations with different
K quantum numbers compete in energy.

With the improved algorithm mentioned above, we have successfully obtained
the smooth deviation of the direction of the collective path from the β axis toward
the γ direction [see Fig. 2(a)]. We note that the properties of the lowest ω2 solution
of the local harmonic equations also gradually change from those of the β vibrational
to those of the γ vibrational case [see Fig. 2(f)]. The details of the turnover region
are presented in Fig. 3. It can clearly be seen in Fig. 3(a) that there is a gradual onset
of axial-symmetry breaking in the solutions |φ(q)〉 of the moving frame HB equation.
It can also be seen in Fig. 3(b) that there is an avoided crossing between the lowest
two solutions of the moving frame QRPA equations associated with mixing of the
components with K=0 and 2. After a smooth turn in the γ direction, the γ value
increases, with the value of β roughly constant, and the collective path eventually
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Fig. 2. Results of the calculation for 72Kr. The details here are the same as in Fig. 1, except for the

following: In (a), the contour lines are plotted at intervals of 100 keV. In (f), the lowest three

eigen-frequencies squared (i.e., ω2 = BC) of the moving frame RPA are plotted as functions of

q. As mentioned in the caption to Fig. 1, these modes at triaxial deformed shapes are more

general than the ordinary β- and γ-vibrations in the oblate and prolate limits and contain both

components. The symbols β and γ are used, however, in order to indicate the major components

of the moving frame RPA modes. Similarly, the symbol ∆n is used to indicate that the major

component is the neutron pairing vibrational mode.
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Fig. 3. Enlargement of the turnover region of Figs. 2(a) and (f) for 72Kr, where the collective

path turns in the γ direction. A step size δq = 0.0157 and the value ε = 0.1 were used in

the numerical calculation. Every step δq is represented by a filled circle and connected by a

solid curve. The points designated A, B, C, D on the collective path in (a) correspond to those

in (b), which displays the squared frequencies, ω2, of the lowest two solutions of the moving

frame QRPA equations as functions of the collective coordinate q. The open circles represent

those obtained in the calculation with ε = 0, where the mixing effects between the K=0 and 2

components are ignored. The points designated A’, B’, C’ in the latter calculation correspond

to the points A, B, C in the former calculation. In the latter calculation, we could not obtain

the point corresponding to D, because the problem discussed in the main text is encountered

in the numerical algorithm. It was checked that the same collective path is obtained with use

of δq = 0.0314, except that the distances between the successive points are doubled.

approaches the γ = 60◦ axis. Then, we again encounter a similar situation. Adopting
the improved algorithm, we have confirmed that the properties of the lowest ω2

solution change smoothly this time, from those of the γ vibrational to those of the
β vibrational case. The collective path thus merges with the γ = 60◦ axis, and it
finally reaches the oblate minimum.

We have also carried out a calculation starting from the oblate minimum and
proceeded in the inverse manner, obtaining the same collective path. This should
be regarded as a crucial test of the consistency of our calculation. Figure 4 presents
the details of this test: The collective path that started from the prolate minimum
and turned in the γ direction gradually merges with the γ = 60◦ axis. Moving
in the opposite direction, we see a gradual onset of axial symmetry breaking in
the collective path that started from the oblate minimum. We see that the two
results of the calculation for the collective path agree nicely. The importance of
taking account of the mixing between the β- and γ-vibrational degrees of freedom in
solving the moving frame HB and QRPA equations is again demonstrated in Fig. 5,
which displays the details of the turnover region from the γ = 60◦ axis.

Although the collective path plotted in Fig. 2(a) should be regarded as its pro-
jection onto the (β, γ)-plane, the result of calculation indicates that the collective
path runs roughly along the valley in this plane. The potential energy curve V (q),
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Fig. 4. Enlargement of the turnover region of Figs. 2(a) for 72Kr, where the collective path (solid

curve) coming from the prolate minimum merges with the γ = 60◦ axis (dotted line). Every

step δq is represented by an open circle and connected by a solid curve. For comparison, the

result of calculation starting from the oblate minimum and moving in the opposite direction

is represented by open squares. Slight deviations from the solid curve indicate the degree of

precision of the present numerical calculation. The step size δq = 0.0157 and the value ε = 0.1

were used in both cases. The collective path obtained with these different calculations agree

well.

the collective mass M(s(q)), and the variations of the pairing gaps, ∆τ (q), are pre-
sented in Figs. 2(b), (c) and (e), respectively. Their properties are similar to those
for 68Se. In particular, we notice again a significant increase of M(s(q)) in the
vicinity of the oblate minimum.

Quite recently, Almehed and Walet studied the oblate-prolate shape coexistence
phenomenon in 72Kr by means of an approach similar to the ASCC method but with
some additional approximations80) and found a collective path going from the oblate
minimum over a spherical energy maximum into the prolate secondary minimum.
We have also obtained such a collective path when we impose axial symmetry on the
solutions |φ(q)〉 of the moving frame HB equation and always use only K=0 solutions
of the moving frame QRPA equations. However, when we relax such symmetry
restrictions and follow the lowest ω2 solution of the moving frame QRPA equations,
we obtain the collective path presented in Fig. 2, which breaks the axial symmetry.
The reason for this disagreement is not clear at present. With the parameter values
they used for the P+Q Hamiltonian, they did not encounter the change in properties
of the lowest moving-frame-QRPA mode on the collective path from those of the β
vibrational to those of the γ vibrational case. However, it is interesting that they in
fact encountered the avoided crossing with a γ-vibrational mode, similar to the one
shown in Fig. 2(f), and obtained a collective path that turns into the triaxial plane
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Fig. 5. Enlargement of the turnover region of Figs. 2(a) and (f) for 72Kr, where the collective path

(solid curve) coming from the oblate minimum starts to deviate from the γ = 60◦ axis (dotted

line). The numerical calculation was done starting from the oblate minimum and using the

step size δq = 0.0157 and the value ε = 0.1. Every step δq is represented by a filled circle

and connected by a solid curve. The points designated A, B, C, D on the collective path in

(a) correspond to those in (b), which displays the squared frequencies, ω2, of the lowest two

solutions of the moving frame QRPA equations as functions of the collective coordinate q. Note

that the values of q in this figure are measured from the oblate minimum. The open circles

represent those obtained in the calculation with ε = 0, where the mixing effects between the

K=0 and 2 components are ignored. The points designated A’, B’, C’ in the latter calculation

correspond to the points A, B, C in the former calculation. In the latter calculation, we cannot

get the point corresponding to D, because the problem discussed in the main text is encountered

in the numerical algorithm. The slight wiggles along the successive points seen in (b) are due to

numerical error, and they indicate the degree of precision of the present numerical calculation.

It was checked that the same collective path is obtained with use of δq = 0.0314, except that

the distances between the successive points are doubled.

in their calculation for states with angular momentum I = 2.

§6. Concluding remarks

We have applied the ASCC method to the oblate-prolate shape coexistence phe-
nomena in 68Se and 72Kr. It was found that the self-consistent collective paths run
approximately along the valley connecting the oblate and prolate local minima in the
collective potential energy landscape. This is the first time that the self-consistent
collective paths between the oblate and prolate minima have been obtained in real-
istic situations starting from the microscopic P+Q Hamiltonian. Recently, the gen-
erator coordinate method has been used in a number of cases to describe a variety of
shape coexistence phenomena, with β employed as the generator coordinate.47),48)

The triaxial shape vibrational degrees of freedom were also ignored in the exten-
sive variational calculations by the Tübingen group.49),50) The result of the ASCC
calculation, however, strongly indicates the necessity of taking into account the γ
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degree of freedom, at least for the purpose of describing the oblate-prolate shape
coexistence in 68Se and 72Kr. In order to evaluate the mixing effects between the
oblate and prolate shapes, taking into account the triaxial deformation dynamics,
we have to quantize the classical collective Hamiltonian obtained in this paper and
solve the resulting collective Schrödinger equation. This will be the subject of a
subsequent paper.84)

Acknowledgements

This work was done as a part of the Japan-U.S. Cooperative Science Pro-
gram “Mean-Field Approach to Collective Excitations in Unstable Medium-Mass
and Heavy Nuclei”, and is supported by a Grant-in-Aid for the 21st Century COE
“Center for Diversity and Universality in Physics” from the Ministry of Education,
Culture, Sports, Science and Technology (MEXT) of Japan and also by Grants-in-
Aid for Scientific Research (Nos. 14540250 and 14740146) from the Japan Society for
the Promotion of Science. The numerical calculations were performed on the NEC
SX-5 supercomputer at Yukawa Institute for Theoretical Physics, Kyoto University.

Appendix A
Explicit Expressions of the Quasiparticle Matrix Elements

Combining the successive Bogoliubov transformations, (3.8) and (3.18), the
quasiparticles, a†µ(q) and aµ(q), associated with the state |φ(q)〉, can be written
in terms of the nucleon operator, d†k and dk̄, as

(
a†µ(q)
aµ̄(q)

)
=

∑
k

(
Uµk(q) Vµk̄(q)
Vµ̄k(q) Uµ̄k̄(q)

) (
d†k
dk̄

)
(A.1)

Making use of the inverse transformation,
(

d†k
dk̄

)
=

∑
µ

(
Ukµ(q) Vkµ̄(q)
Vk̄µ(q) Uk̄µ̄(q)

)(
a†µ(q)
aµ̄(q)

)
, (A.2)

one can easily derive explicit expressions for the expectation values and the matrix
elements of the operators F̂

(±)
s appearing in Eq. (3.22):

〈φ(q)| F̂ (+)
s=1,2 |φ(q)〉 = −2

∑
µ

∑
k

(kk̄|A(+)
τ=n,p|0)Ukµ(q)Vk̄µ(q),

F
(±)
s=1,2(µν̄) =

∑
k

(kk̄|A(±)
τ=n,p|0)

(
Ukµ(q)Uk̄ν̄(q) ± Vkν̄(q)Vk̄µ(q)

)
,

F
(±)
B,s=1,2(µν) =

∑
k

(kk̄|A(±)
τ=n,p|0)

(
Ukµ(q)Vk̄ν(q) ± Ukν(q)Vk̄µ(q)

)
,

〈φ(q)| F̂ (+)
s=3,5 |φ(q)〉 = 2

∑
µ̄

∑
kl

(k|D(+)
2,K=0,2|l)Vkµ̄(q)Vlµ̄(q),

F
(+)
s=3,5(µν̄) =

∑
kl

(k|D(+)
2,K=0,2|l)

(
Ukµ(q)Vlν̄(q) + Ukν(q)Vlµ̄(q)

)
,

F
(+)
B,s=3,5(µν) =

∑
kl

(k|D(+)
2,K=0,2|l)

(
Ukµ(q)Ulν(q) − Vkν̄(q)Vlµ̄(q)

)
. (A.3)
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The expectation values of the anti-Hermitian operators A
(−)
τ=n,p vanish. The quan-

tities (k|D(+)
2K |l), etc., appearing in the above expressions are the matrix elements

between the single-particle states defined by Eq. (3.5):

(k|D(+)
2K |l) ≡ (0|dkD

(+)
2K d†l |0),

(kk̄|A(±)
τ |0) ≡ (0|dk̄dkA

(±)
τ |0), etc., (A.4)

where |0) is the vacuum for the nucleon operators (d†, d). The matrix elements of
the Bogoliubov transformations, (A.1) and (A.2), possess the following symmetries:

Uµk = Uµ̄k̄ = Ukµ = Uk̄µ̄, Vµk̄ = −Vµ̄k = Vkµ̄ = −Vk̄µ. (A.5)

It is also easily seen that equalities

(k̄|D(+)
2,K=0,2|l̄) = (k|D(+)

2,K=0,2|l), (A.6)

F
(±)
B,s (µ̄ν̄) = F

(±)
B,s (µν), F

(±)
B,s (νµ) = ±F

(±)
B,s (µν) (A.7)

hold for the pairing and quadrupole operators under consideration {A(±)
n , A

(±)
p ,D

(+)
20 ,D

(+)
22 }.

The expectation values 〈φ(q)| N̂τ |φ(q)〉 and the matrix elements Nτ (µ) and NB,τ (µ)
of the neutron and proton number operators are readily obtained from those of F̂

(+)
s=3

by replacing (k|D(+)
20 |l) with δkl and restricting the sum over the single-particle index

k to neutrons or protons.

Appendix B
Solving the Moving Frame HB Equation

We solve the moving frame HB equation using a method similar to the imaginary
time method.85) Let

∣∣φ(i)(q)
〉

be the state vector at the iterative step i. We first
calculate the mean-field Hamiltonian associate with it:

ĥ(i)(q) =
∑

k

εk(d
†
kdk + d†

k̄
dk̄) −

∑
s

κs〈F̂ (+)
s 〉(i)F̂ (+)

s ,

〈F̂ (+)
s 〉(i) ≡

〈
φ(i)(q)

∣∣∣ F̂ (+)
s

∣∣∣φ(i)(q)
〉

. (B.1)

Using the quasiparticle operators b
(i)†
µ and b

(i)
µ defined by

b(i)
µ

∣∣∣φ(i)(q)
〉

= 0, (B.2)

we then generate the state vector at the (i + 1)th step as∣∣∣φ(i+1)(q)
〉
≡ exp X̂(i+1)

∣∣∣φ(i)(q)
〉

X̂(i+1) = − ε
(
ĥ(i)(q) −

∑
τ

λ(i+1)
τ (q)N̂τ − µ(i+1)(q)Q̂(q)

)
+

+ ε
(
ĥ(i)(q) −

∑
τ

λ(i+1)
τ (q)N̂τ − µ(i+1)(q)Q̂(q)

)
−

≡
∑
µν̄

x
(i+1)
µν̄

(
X

(i)†
µν̄ − X

(i)
µν̄

)
, (B.3)
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where ε is a small parameter,

X
(i)†
µν̄ = b(i)†

µ b
(i)†
ν̄ , X

(i)
µν̄ = b

(i)
ν̄ b(i)

µ , (B.4)

and the subscripts + and − denote the two-quasiparticle creation and annihilation
parts of the operator in the parentheses, respectively. It should be noted that, in con-
trast to the conventinal imaginary time method, the unitary operator exp X̂(i+1) is
used here so that the normalization is preserved during the iteration. The Lagrange
multipliers λ

(i+1)
τ (q) and µ(i+1)(q) are determined by the constraint equations

〈
φ(i+1)(q)

∣∣∣ N̂τ

∣∣∣φ(i+1)(q)
〉

= N (0)
τ ,〈

φ(i+1)(q)
∣∣∣ Q̂(q − δq)

∣∣∣φ(i+1)(q)
〉

= δq, (B.5)

where N
(0)
n and N

(0)
p are the neutron and proton numbers of the nucleus under

consideration. Similar but slightly different constraints were utilized by Almehed
and Walet.79) Expanding the left-hand sides up to first order in x(i+1), we obtain
equations determining them:

⎛
⎝ (Nn, Nn) (Nn, Np) (Nn, Q(q))

(Np, Nn) (Np, Np) (Np, Q(q))
(Q(q − δq),Nn) (Q(q − δq),Np) (Q(q − δq),Q(q))

⎞
⎠

⎛
⎜⎝

λ
(i+1)
n (q)

λ
(i+1)
p (q)

µ(i+1)(q)

⎞
⎟⎠

=

⎛
⎜⎝

(N (0)
n − 〈N̂n〉(i))/2ε + (h(i)(q),Nn)

(N (0)
p − 〈N̂p〉(i))/2ε + (h(i)(q),Np)

(δq − 〈Q̂(q − δq)〉(i))/2ε + (h(i)(q),Q(q − δq)),

⎞
⎟⎠ ,(B.6)

where the quantities (Nτ , Nτ ′), (Nτ , Q(q)), etc., are defined by (3.33), except that
the coefficients Nτ (µ),Qµν̄(q), etc., involved in these quantities are here defined with
respect to the two-quasiparticle creation and annihilation operators, X

(i)†
µν̄ and X

(i)
µν̄ .

Using the state vector
∣∣φ(i+1)(q)

〉
, we calculate the mean-field Hamiltonian ĥ(i+1)(q)

at the (i + 1)th step, and repeat the above procedure until convergence is attained.
The mean-field Hamiltonian thus obtained takes the following form:

ĥM (q) = ĥ(q) −
∑

τ

λτ (q)N̂τ − µ(q)Q̂(q)

= 〈φ(q)| ĥM (q) |φ(q)〉 +
∑
µν

hµν(q)
(
b†µ(q)bν(q) + b†µ̄(q)bν̄(q)

)
. (B.7)

Finally we introduce the quasiparticle operators a†µ(q) and aµ(q) that diagonalize
ĥM (q):

ĥM (q) = 〈φ(q)| ĥM (q) |φ(q)〉 +
∑

µ

Eµ(q)
(
a†µ(q)aµ(q) + a†µ̄(q)aµ̄(q)

)
. (B.8)

It is easy to see that µ(q) = ∂V/∂q. In actual calculations, the above procedure is
a part of the double iterative algorithm described in §4. Specifically, we carry out
the above iterative procedure using the constraint operator Q̂(q)(n) that is obtained
in the n-th iteration step determining the infinitesimal generators, Q̂(p) and P̂ (q).
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