597
Progress of Theoretical Physics, Vol. 100, No. 3, September 1998

Periodic-Orbit Bifurcation and Shell Structure
in Reflection-Asymmetric Deformed Cavity

Ayumu SUGITA, Ken-ichiro ARITA* and Kenichi MATSUYANAGI

Department of Physics, Graduate School of Science, Kyoto University
Kyoto 606-8502, Japan
*Department of Physics, Nagoya Institute of Technology, Nagoya 466-8555, Japan

(Received April 24, 1998)

Shell structure of the single-particle spectrum for a reflection-asymmetric deformed cav-
ity is investigated. Clear shell structure emerges for certain combinations of quadrupole
and octupole deformations. Semiclassical periodic-orbit analysis indicates that simultaneous
bifurcations of short periodic orbits in the equatorial plane play predominant roles in the
formation of this new shell structure.

§1. Introduction

Theoretical and experimental exploration of reflection-asymmetric deformed
shapes is one of the current topics of interest in finite many-fermion systems like
atomic nuclei and metallic clusters.?)~® In theoretical calculations, various ap-
proaches such as Hartree-Fock-Bogoliubov methods, microscopic-macroscopic meth-
ods and semiclassical methods have been used for this purpose (see Ref. 1) for a
review). Each method possesses merits and demerits, so that it would be desirable
to explore the subject using various approaches.

A basic motive of the semiclassical periodic-orbit approach” 19 is to under-
stand the origin of shell-structure formation that plays a decisive role in bringing
about symmetry-breaking in the average potential of finite quantum systems. Under-
standing this origin, it would become possible to predict qualitatively where we can
expect a particular deformation to appear in the multi-dimensional space spanned
by various deformation-parameters.

In the conventional wisdom, the shell-structure would be weakened if a reflection-
asymmetric deformation is added to the spheroidal shape. This is because the system
becomes non-integrable when an octupole deformation is added, and the degeneracy
of the periodic-orbits is reduced. Contrary to this expectation, a clear shell structure
was found in Refs. 11) and 12) to emerge for certain combinations of quadrupole and
octupole deformations in the reflection-asymmetric deformed oscillator model. It was
pointed out that this shell-structure is associated with the bifurcation of periodic
orbits.

In this paper, we investigate a three-dimensional cavity as a simple model of
single-particle motion in atomic nuclei and in metallic clusters, and we attempt
to find the correspondence between quantum shell structure and classical periodic-
orbits. We expect that, if we find clear shell structures at certain deformations, they
are related to the stabilities of certain periodic orbits and their bifurcations. Our
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major purpose is then to identify which kind of bifurcation is responsible for the
formation of the shell structure in the cavity model.
A part of this work was previously reported in conference proceedings. 13)

§2. Reflection-asymmetric deformed cavity

To explore whether or not clear shell structure emerges in the single-particle
spectra for non-integrable Hamiltonian, we have carried out an analysis of single-
particle motion in a reflection-asymmetric, axially-symmetric deformed cavity by
parameterizing the surface as

R(8) = Ry 1 + a3Y30(6) |, (21)

V(37 + (330
where a and b are related with the familiar quadrupole deformation parameter &

(equivalent to dosc in Ref. 14)) by a = ((3+6)/(3—26))?/% and b = ((3—24)/(3+6))'/3.
This shape reduces to a spheroid (integrable cavity) in the limit that the octupole
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Fig. 1. Single-particle energy spectra of the deformed cavity plotted as a function of the octupole
deformation parameter az. Dotted and solid lines denote the K = 0 and the doubly-degenerate
K # 0 levels, respectively. The quadrupole deformation parameter is fixed at § = 0.3. The
energy is measured in units of h?/MR3, M being the mass.
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Fig. 2. Shell structure energies of the deformed cavities with § = 0.3 and a3 = 0.0 (a), 0.2 (b),
evaluated with the conventional Strutinsky method and plotted as functions of the particle
number N. The energy is evaluated by setting Ro = 1.2(2N)*/® fm and Mc? = 938 MeV for
nuclei.

deformation parameter as vanishes.

We solve the Schrédinger equation under Dirichlet boundary conditions and eval-
uate the shell energy by means of the Strutinsky method.!®) To efficiently obtain a
large number of eigenvalues as a function of deformation parameters, we have exam-
ined four numerical recipes; the plane-wave decomposition (PWD), 16) the spherical-
wave decomposition (SWD), 17 the boundary integral method (BIM), 1829 and the
coordinate-transformation method (DIAG).2:22) The DIAG is the most effective
method for near-spherical shapes, but it is not good for strongly deformed shapes.
In SWD, PWD and BIM, the eigenvalue problem is converted to a search for the
zeros of real functions, minima of positive functions and zeros of complex functions,
respectively, and we have found that SWD is the most convenient for the present
purpose. Thus we mainly use this method, sometimes cross-checking the results with
other methods.

As a typical example, we discuss here the case of § = 0.3. A more systematic
presentation of this work including other cases will be reported elsewhere. 23) Figure 1
displays single-particle spectra calculated as functions of the octupole-deformation
parameter az. It is seen that a new shell structure emerges at about a3 = 0.2. The
deformed magic numbers associated with this shell structure are 26, 42, 70, 114,
172, - -, taking the spin degeneracy factor into account. Note that these numbers
appear at intermediate values between the magic numbers 20, 58, 92, 138, 186, - - of
the spherical cavity. This indicates that, due to the reflection-symmetry breaking of
the cavity, strong Al = 3 mixing takes place among levels with large orbital angular
momenta [ in spherical major shells.
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Figure 2 displays shell-structure energies evaluated with the standard Strutinsky
procedure and plotted as functions of the particle number N. As expected from
Fig. 1, we confirm here that minima develop in association with the formation of
the new shell structure at about az = 0.2. These shell-energy gains are so large
that this shell structure will remain either as minima or valleys with respect to the
octupole shape degree of freedom of the total deformation energy surface, even when
the liquid-drop deformation energies are added to them.

§3. Fourier transform

To understand the physical reason why such a clear shell structure emerges for
a certain combination of the octupole and quadrupole deformations, and to identify
the classical periodic orbits responsible for this shell structure formation, we analyze
the Fourier transform of the quantum spectrum.

The single-particle equations of motion for the cavity are invariant with respect
to the scaling transformation (&, p,t) — (&, ap,a~'t). The action integral S, for the
periodic orbit v corresponds to its length L.:

S.(E = p*/2M) = j{ﬁ. dg = pL., (31)
Y

and the trace formula is written as

p(E) ~ p(E) + > Ak /2 cos(kLy — mpy/2), (3-2)
vy

where p(E) denotes the contributions of orbits of ‘zero-length’, d, the degeneracy
and p., the Maslov phase of the periodic orbit . This scaling property enables us to
make use of the Fourier transformation of the level density with respect to the wave
number k. The Fourier transform F(L) of the level density p(F) is written as

F(L) = / dk k(@226 =L 5 B — j22 1901

~F(L)+Y AlS(L-Ly). (3-3)
Y

This may be regarded as the ‘length spectrum’ exhibiting peaks at the lengths of
individual periodic orbits. ) In numerical calculation, the spectrum is smoothly trun-
cated by a Gaussian with a cutoff wave number k. = 1/AL as

Far(L) = / dk k(422 = kL =3 (k/ke o |2 — R22 /2 M)

_ % Tk /e tknl ¢ bk ko) (3-4)
. 1 (L—L,\?
~ Far(L)+ ) _ Alexp l_§ ( AL7> ] i (3-5)
5

The amplitude A, (or A7) is proportional to the stability factor 1/4/|2 — Tr M| (in



Periodic-Orbit Bifurcation and Shell Structure 601

o5 (a) 6=0.3 2,=0.0

- iy

é 104
59
=
0
l AN A1 (L
2 3 4 5 6 7 8 9
L
25 (b) 8=0.3 a3=0.1
201
15
= 104
[¢9
=]
0_...
' I . yl'||”||'ﬂ|m ‘ '
2 3 4 5 6 7 8 9
L
 (©8=03 a5=02
DO
_ s & Nﬂ
=2 101 \
B
i S—M/\Wv V\/\V/W
01 ' ‘ II. HIHIIHHIIHV '||' | ‘
2 3 4 5 6 7 8 9
L

Fig. 3. Fourier transforms of the quantum level densities for deformed cavities with § = 0.3 and
a3 = 0.0 (a), 0.1 (b), 0.2 (c). The degeneracy index d = 1 (valid for generic periodic orbits) and
Gaussian cutoff wave number k. = v/300 are used in (3-4). In each panel, the lengths of classical
periodic orbits in the axis-of-symmetry (equatorial) plane are indicated by short (long) vertical
lines. The lengths are measured in units of the radius Ry. The classical periodic orbits are
calculated by means of the surface-of-section method, ?*) which enables us to obtain all periodic
orbits whose lengths are less than a certain value.

the stationary-phase approximation), where M, is the monodromy matrix of orbit ~.
It is expected to be enhanced in the vicinity of the bifurcation point where Tr M., = 2
(see Ref. 12)).

Let us investigate how these peaks change when the shape parameters of the
cavity are varied. Figure 3 displays, as an example, how the pattern of the Fourier
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transform (3-4) changes as a function of a3, fixing the quadrupole deformation pa-
rameter at § = 0.3. The highest peaks at the spheroidal limit (a3 = 0) are associated
with triangular and quadrilateral orbits in the axis-of-symmetry plane, whose degen-
eracies are two. It is clearly seen that the heights of peaks decline with increasing as.
This is because the octupole deformation breaks the spheroidal symmetry and the
degeneracy reduces to one corresponding to rotation about the symmetry axis. On
the other hand, we can clearly see that the heights of other peaks rise with increasing
a3. These peaks are found to be associated with the diameter, triangular and square
orbits in the equatorial plane*) at the center of the larger cluster of the pear-shaped
cavity.

§4. Periodic-orbit bifurcation

The key to understanding the reason that short periodic orbits in the equa-
torial plane start to play increasingly important roles at finite octupole deforma-
tion may lie in the following point: The stability of these orbits is crucially de-
pendent on the curvature of the boundary. The curvature radius in the longi-
tudinal direction changes as the octupole deformation parameter as varies, and
at certain combinations of 4 and a3, it matches with the equatorial radius, as
illustrated in the top-leftmost figure in Fig. 4. At this point, periodic orbits
in the equatorial plane acquire local spherical symmetry,*) and form a locally
continuous set of periodic orbits leaving from the equatorial plane. This con-
tinuous set makes a coherent contribution to the trace integral and significantly
enhances the amplitudes associated with these orbits. This is just the bifurcation
point of orbits in the equatorial plane, and new periodic orbits bifurcate from the
above locally continuous set. We present in Fig. 5 some periodic orbits born out of
the above-mentioned bifurcation.

This kind of bifurcation can be regarded as a special example of the phenomena
that Balian and Bloch called ‘accidental degeneracy’: According to Ref. 8), bifurca-
tions occur when the condition

Ry _ sin(mt/p)?
R,  sin(ng/p)?

is met, where R; and Ry denote the main curvature radii for the longitudi-
nal and equatorial directions, respectively, and the integers (p, ¢, ¢) correspond
respectively to the number of vertices, the number of turns about the symmetry
axis, and the number of vibrations in direction of the symmetry axis. Note that,
for Ri = Rg, all orbits (p = 2,3,4,---) in the equatorial plane simultaneously
satisfy the above bifurcation condition with ¢ = ¢ = 1. This type of bifurcation
is quite peculiar in that the local degeneracy changes by two at the bifurcation
point.

(4-1)

*) For convenience, we call the plane where the radius of the circular section assumes its maxi-
mum value ‘the equatorial plane’, although it does not go through the center of the cavity.
**) Namely, the curvature of the boundary in the vicinity of the equatorial plane locally coincides
with that of a sphere.
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Fig. 4. Periodic orbits in the deformed cavity with § = 0.3 and a3 ~ 0.16 (at bifurcation). For each
periodic orbit, the length L and the trace of the monodromy matrix, Tr M, are indicated. Those
in the axis-of-symmetry plane are displayed in the upper panel and those in the equatorial plane
in the lower panel. Only linear, triangular and quadrilateral orbits are displayed. In the top
left-most figure, a sphere tangent to the boundary at equatorial plane is indicated by a broken

line.
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Fig. 5. Some short periodic orbits bifurcated from the equatorial-plane orbits. The deformation
parameters are § = 0.3 and a3z = 0.2
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Fig. 6. Bifurcation line of the equatorial-plane periodic orbits in the quadrupole-octupole deforma-
tion parameter space. For § = 0.3, bifurcation occurs at az >~ 0.16.
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Figure 6 displays a bifurcation line of this kind in the quadrupole-octupole
deformation parameter space. The bifurcation occurs at az ~ 0.16 for the case
of § = 0.3. In general, clear shell structures will appear along the bifurcation line.
Due to these shell structures, large shell energy gains are expected for certain nuclei
with such octupole deformations.

§5. Conclusion

We have investigated the shell structure of the single-particle spectrum in a
reflection-asymmetric deformed cavity. It may be found that clear shell structure
emerges for certain combinations of quadrupole and octupole deformations. The
Fourier transform of the quantum spectra clearly indicates that simultaneous bifur-
cations of the diameter, triangular and square orbits in the equatorial plane play
predominant roles in the formation of this new shell structure.

It will be very interesting to investigate whether or not this mechanism of shell
enhancement provides a semiclassical interpretation of the reflection-asymmetric
shapes of some metallic clusters recently found in the realistic calculations by Frauen-
dorf and Pashkevich.? Also, the origin of mass-asymmetry in nuclear fission may be
studied in a similar manner (cf. a recent paper by Brack et al.2%).

It remains as a challenge for the future to develop a semiclassical trace formula
which can quantitatively treat the type of bifurcation discussed in this paper.
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