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Abstract

By means of periodic orbit theory and deformed cavity model, we have investigated
semiclassical origin of superdeformed shell structure and also of re
ection-asymmetric

deformed shapes. Systematic analysis of quantum-classical correspondence reveals
that bifurcation of equatorial orbits into three-dimensional ones play predominant

role in the formation of these shell structures.

PACS number: 21.60.-n

1 Introduction

Shell structure, i.e., regular oscillating pattern in the smoothed single-particle level density,

coarse-grained with respect to energy resolution, plays decisive role in determining shapes

of �nite Fermion systems [1{6]. According to the periodic-orbit theory [7{11] based on the

semiclassical approximation to the path integral, shell structure is determined by classical

periodic orbits with short periods. Finite Fermion systems like nuclei and metallic clusters

favor such shapes at which prominent shell structures are formed and their Fermi surfaces

lie in the valley of the oscillating level density, increasing their binding energies in this

manner.

In this talk, we investigate the axially-symmetric deformed cavity model as a simple

model of single-particle motions in nuclei and metallic clusters [8, 10, 12], and try to �nd

the correspondence between quantum shell structure and classical periodic orbits. Our

major purpose is to identify most important periodic orbits that determine major patterns

of oscillating level densities at exotic deformations including prolate superdeformations,

prolate hyperdeformations, oblate superdeformations and re
ection-asymmetric shapes.

In the cavity model, the action integral S
 for a periodic orbit 
 is proportional to the

length L
 of it, S
 =
H


p � dq = �hkL
, and the trace formula for the oscillating part of

the level density is written as

~�(E) '
X



A
k
(d
�2)=2 cos(kL
 � ��
=2); (1)

where d
 and �
 denote the degeneracy and the Maslov phase of the periodic orbit 
,

respectively. Fourier transform ~F (L) of ~�(E) with respect to wave number k is
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�(L� L
); (2)

which may be regarded as `length spectrum' exhibiting peaks at lengths of individual

periodic orbits. In the following, we shall make full use of the Fourier transforms in order

to identify important periodic orbits.

We solve the Schr�odinger equation for single-particle motions in the cavity under the

Dirichlet boundary condition. We have constructed a computer program by which we

can e�ciently obtain a large number of eigenvalues as function of deformation parameters

of the cavity [13]. We have systematically searched for classical periodic orbits in the

three-dimensional(3D) cavities on the basis of the monodromy method [14].

2 Periodic-orbit bifurcations

As is well known, only linear and planar orbits exist in the spherical limit. When

quadrupole deformation sets in, linear (diameter) orbits bifurcate into those along the

major axis and along the minor axis. Likewise, planar orbits bifurcate into those in the

meridian plane (containing the symmetry axis) and in the equatorial plane (perpendicular

to the symmetry axis).

With variation of deformation, 3D and new 2D periodic orbits are successively born

through bifurcations. Bifurcations that are important in the following discussions are

(i) bifurcations from multiple repetitions along the minor axis, which generate butter
y-

shaped planar orbits in the meridian plane, and

(ii) bifurcations from multiple traversals of planar orbits in the equatorial plane, which

generate 3D periodic orbits.

For prolate shapes (i) may be regarded as a limit of (ii), while this distinction is

important for oblate shapes. We shall see that bifurcations of type (ii) are especially

important for shell structure at prolate super- and hyper-deformations and at re
ection-

asymmetric shapes. Bifurcation points for (ii) are determined by stability of equatorial-

plane orbits against small displacements in the longitudinal direction. Bifurcations occur

when the following condition is met:

R2

R1
=

sin(�t=p)2

sin(�q=p)2
; (3)

where R1 and R2 denote the main curvature radii for the longitudinal and equatorial

directions, respectively, and (p,t,q) are positive integers.

At the bifurcation points, trace of the (2� 2) reduced monodromy matrix M repre-

senting stabilities of equatorial-plane orbits becomes TrM = 2, indicating that they are

of neutral stability at these points. The above equation was �rst derived by Balian and

Bloch [8]. We note that, for the special case of prolate spheroidal shapes, R2=R1 is simply

related to the axis ratio a=b as R2=R1 = (a=b)2, a and b being lengths of the major and

the minor axes, respectively, and (p,t,q) represent the numbers of vibrations or rotations

of the periodic orbits with respect to the three spheroidal coordinates. They correspond

to (n�; n�; n�) and (nv; n�; nu) of Refs. [10, 15], respectively. Periodic-orbit bifurcations in

spheroidal cavities have been thoroughly studied by Nishioka et al.[15, 16]
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Figure 1: Oscillating parts of the smoothed level densities for spheroidal cavities, displayed as function of

energy (in unit of �h2=2MR2

0) and deformation. Constant-action lines for some short periodic orbits are

indicated by thick solid and broken lines (see text). The deformation parameter � is related to the axis

ratio � � a=b by � = 3(�� 1)=(2�+1) in the prolate case and by � = �3(�� 1)=(�+2) in the oblate case.

3 Semiclassical origin of superdeformations

Let us �rst discuss spheroidal cavities. In Fig. 1 oscillating parts of the smoothed level

densities are displayed in a form of contour map with respect to energy and deformation.

Regular patterns consisting of several valley-ridge structures are clearly seen. Thick solid

and broken lines indicate constant-action lines for some important periodic orbits on which

we are going to discuss. We here note that, as emphasized by Strutinsky et al.[10], if few

families of orbits having almost the same values of action integral S
 dominate in the

sum in Eq. (1), the valleys in the contour map may follow such lines along which S
 stay

approximately constant.

Figure 2 displays Fourier transforms of the level densities. At normal deformation

with � = 0:3, we notice peaks associated with triangular and quadrilateral orbits in the

meridian plane.

Constant-action lines for the triangular orbits are indicated in Fig. 1 for several values

of eF that go through the spherical closed shells. It is clear that the valleys run along
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Figure 2: Fourier transforms of quantum level densities for spheroidal cavities with � = 0:3, 0.6 (prolate

superdeformation), 0.85 (prolate hyperdeformation) and �0:75 (oblate superdeformation). In the bottoms

of every �gures, lengths (in unit of R0) of classical periodic orbits are indicated by vertical lines. Long,

middle and short vertical lines are used for 3D orbits, planar orbits in the equatorial and the meridian

planes, respectively.

these lines.

With increasing deformation, bifurcations of linear and planar orbits in the equatorial

plane successively take place [15]: Butter
y-shaped planar orbits with (p:t:q)=(4:2:1) bi-

furcate at � ' 0:32 from double repetitions of linear orbits along the minor axis. Then,

3D orbits (5:2:1) bifurcate at � ' 0:44 from �ve-point star-shaped orbits in the equatorial

plane. Similar 3D orbits (6:2:1), (7:2:1), (8:2:1), etc. successively bifurcate from double

traversals of triangular orbits, 7-point star-shaped orbits, double traversals of rectangular

orbits, etc. in the equatorial plane. These 3D orbits form the prominent peaks seen in the

range L = 8 � 9 in the Fourier transform for � = 0:6 (axis ratio 2:1).

Constant-action lines for the 3D orbits (5:2:1) are indicated by thick solid lines in the

region � � 0:44 of Fig. 1. Good correspondence is found between these lines and shapes

of the valleys seen in the superdeformed region. Constant-action lines for the other 3D

orbits mentioned above also behave in the same fashion.

Some of these 3D orbits are displayed in Fig. 3. They possess similarities with

�gure-eight shaped orbits in the superdeformed harmonic oscillator with frequency ratio

!?:!z=2:1. An important di�erence between the the cavity model under consideration

and the harmonic oscillator model should be noted, however: In the former they exist for

all deformation parameters � larger than the bifurcation points, whereas in the latter such

periodic orbits appear only for special deformations corresponding to rational ratios of the

major and the minor axes.1

On the other hand, Fourier peak heights associated with new orbits created by bifur-

cations quickly increase with increasing deformation and reach the maxima. Then, they

start to decline. Thus, with variation of deformation, they are replaced by di�erent peri-

1Note, however, that periodic orbits appear through bifurcations also for irrational ratios, if anharmonic

terms like octupole deformations are added; see [17].

4



y

z

x

z

x

y

y

z

x

z

x

y

Figure 3: Three-dimensional orbits (5:2:1) and (6:2:1) in the superdeformed prolate cavity. Their projec-

tions on the (x; y), (y; z) and (z; x) planes are displayed.

odic orbits bifurcated later. We can con�rm this, for instance, by comparing the Fourier

transform for � = 0:6 (axis ratio 2:1) with that for � = 0:85 (axis ratio 3:1). In the latter,

we see prominent peaks in the region L = 11 � 12 associated with 3D orbits (7:3:1),

(8:3:1), (9:3:1) that are bifurcated, respectively, at � ' 0:68; 0:73; 0; 76 from 7-point, 8-

point star-shaped orbits, and triple traversals of the triangular orbits in the equatorial

plane. These 3D orbits resemble with Lissajous �gures of the hyperdeformed harmonic

oscillator with the frequency ratio 3:1.

For oblate spheroidal cavities with � = �0:75 (axis ratio 1:2), we see prominent peaks

at L ' 5:8 associated with butter
y-shaped planar orbits (4:1:1), which are bifurcated at

� ' �0:36 (axis ratio 1:
p
2) from double repetitions of linear orbits along the minor axis.

In addition, just at this shape, new planar orbits (6:1:1) bifurcate from triple repetitions

of linear orbits along the minor axis [16]. We indeed see that a new peak associated with

this bifurcation arises at L ' 7:6.

Constant-action lines for these bifurcated orbits (4:1:1) and (6:1:1) are indicated by

thick solid lines in the region � � �0:36 of Fig. 1. We see clear correspondence between

shapes of these lines and of valleys in the oscillating level density. Combining this good

correspondence with the behavior of the Fourier peaks mentioned above, it is evident that

these periodic orbits are responsible for the shell structure at oblate superdeformation.

The spheroidal cavities are special in that every bifurcated orbits form continuous

families of degeneracy two, which means that we need two parameters to specify a single

orbit among continuous set of orbits belonging to a family having a common value of

action integral (length). We have checked [18], however, that the results obtained for

spheroidal cavities persist also for other parameterizations of quadrupole shapes where

the degeneracy is one. The present results for prolate normal- and super-deformations

con�rm the qualitative argument by Strutinsky et al.[10], except for the strong deformation

dependence, found above, of relative contributions of di�erent periodic orbits.

4 Re
ection-asymmetric shapes

To explore the possibilities that signi�cant shell structures emerge in the single-particle

spectra for non-integrable Hamiltonians, we have carried out analysis of single-particle
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Table 1: List of bifurcation points of important periodic orbits in the spheroidal cavity model. For more

details, see Nishioka et al. [15, 16]

orbit (p:t:q) axis ratio (a=b) deformation � orbit length in R0

(4:2:1) 1.41 0.32 7.1
(5:2:1) 1.62 0.44 8.1

(6:2:1) 1.73 0.49 8.7
(7:2:1) 1.80 0.52 9.0

(8:2:1) 1.85 0.54 9.2

(6:3:1) 2.0 0.6 9.5

(7:3:1) 2.26 0.68 10.3
(8:3:1) 2.42 0.73 10.9
(9:3:1) 2.53 0.76 11.4

(4:1:1) 1.41 �0.36 6.4
(6:1:1) 2.0 �0.73 7.6

motions in re
ection-asymmetric cavities by parameterizing the surface as

R(�)=R0 =
1q

( cos�
a
)2 + ( sin�

b
)2

+ a3Y30(�); (4)

When octupole deformation is added to the prolate shape (at normal deformation),

spheroidal symmetry is broken and, accordingly, contribution of the triangular and quadri-

lateral orbits in the meridian plane decline. However, we have found that remarkable

shell structure emerges for certain combinations of quadrupole and octupole deformations

[17, 13]. As an example, Fig. 4 shows shell-structure energies calculated for � = 0:1 and

a3 = 0:2 with the Strutinsky procedure. Remarkable shell-energy gains are obtained by

such deformations for systems above the spherical closed shells. This appears consistent

with the result of realistic calculations by Frauendorf and Pashkevich [5] for shapes of

sodium clusters.

Semiclassical origin of this quadrupole-octupole shell structure is again connected with

bifurcation of `equatorial'-plane orbits. Figure 5 shows the Fourier transform. We can

clearly identify new peaks associated with orbits (3:1:1) and (4:1:1) bifurcated from trian-
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Figure 4: Shell structure energies (in unit of �h2=2MR2

0) of the re
ection-asymmetric cavity with � = 0:1

and a3 = 0:2, evaluated with the Strutinsky method and plotted as function of particle number N counting

the spin degeneracy factor of two. For comparison, those for � = 0:1 and a3 = 0:0 are plotted by broken

lines.
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Figure 5: Same as Fig. 2, but for re
ection-asymmetric cavity with � = 0:1 and a3 = 0:2.

Figure 6: Illustration of a shape at the bifurcation point. A sphere tangent to the boundary at the

'equatorial' plane is indicated by a broken line.

gular and square orbits in the `equatorial' plane at the center of the larger cluster of the

pear-shaped cavity.

The key to understand the reason why bifurcations from `equatorial'-plane orbits play

important roles at �nite octupole deformations may lie in the following point: Stability

of these orbits is crucially dependent on the curvature of the boundary. The curvature

radius in the longitudinal direction changes as the octupole deformation parameter a3
varies, and at certain combinations of � and a3, it matches with the equatorial radius,

as illustrated in Fig. 6. At this point, periodic orbits in the equatorial plane acquire

local spherical symmetry, and form local continuous set of periodic orbits leaving from the

`equatorial' plane. This continuous set makes a coherent contribution to the trace integral

and signi�cantly enhances the amplitudes associated with these orbits. This is just the

bifurcation point of orbits in the `equatorial' plane, and 3D orbits bifurcate from the above

local continuous set. One can readily check that for R2 = R1 all orbits (p = 2; 3; 4; : : :) in

the `equatorial' plane simultaneously satisfy the bifurcation condition (3) with t = q = 1.

Some periodic orbits born out of these bifurcations are displayed in Fig. 7. Note that

octupole deformations play crucial role in creating this kind of bifurcations, that occurs

from a single turn (t = 1) of the `equatorial'-plane orbits (it did not occur for quadrupole

shapes).

Figure 7: Some short periodic orbits bifurcated from `equatorial'-plane orbits.
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5 Conclusions

Classical periodic orbits responsible for the emergence of superdeformed shell structure for

single-particle motions in spheroidal cavities are identi�ed and their relative contributions

to the shell structures are evaluated. Both prolate and oblate superdeformations as well as

prolate hyperdeformations are investigated. Fourier transforms of quantum spectra clearly

indicate that 3D periodic orbits born out of bifurcations of planar orbits in the equatorial

plane become predominant at large prolate deformations, while butter
y-shaped planar

orbits bifurcated from linear orbits along the minor axis are important at large oblate

deformations.

We have also investigated shell structures for re
ection-asymmetric cavities. It is

found that remarkable shell structures emerge for certain combinations of quadrupole

and octupole deformations. Fourier transforms of quantum spectra clearly indicate that

bifurcations of triangular and square orbits in the `equatorial' plane play crucial roles in

the formation of these new shell structures.
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