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Classical periodic orbits responsible for emergence of the superdeformed shell structures
of single-particle motion in spheroidal cavities are identified and their relative contributions
to the shell structures are evaluated. Both prolate and oblate superdeformations (axis ratio
approximately 2:1) as well as prolate hyperdeformation (axis ratio approximately 3:1) are
investigated. Fourier transforms of quantum spectra clearly show that three-dimensional
periodic orbits born out of bifurcations of planar orbits in the equatorial plane become
predominant at large prolate deformations, while butterfly-shaped planar orbits bifurcated
from linear orbits along the minor axis are important at large oblate deformations.

§1. Introduction

In the last decade, superdeformed spectroscopy, i.e., the study of nuclear struc-
ture with large prolate deformations (axis ratio approximately 2:1), has developed
enormously, and further significant progress is expected. 1)-3) It is well known that
the superdeformation is the result of shell effect at large deformation, and in fact re-
alistic calculations of both the Strutinsky-Nilsson type and Hartree-Fock type work
well for describing shell structures observed in experiments at such large deforma-
tions. ¥ The purpose of this paper, however, is not to make some realistic calculations
in relation to recent experimental findings. Rather, we address here the fundamental
question of why a nucleus is superdeformed and investigate the semiclassical origin
of emergence of the superdeformed shell structure in a simple model, a spheroidal
cavity model.

In the periodic-orbit theory, based on the semiclassical approximation of
the path integral, oscillating parts of single-particle level densities are determined
by periodic orbits in the classical counterpart of the single-particle Hamiltonian. We
are particularly interested in shell structure, i.e., level densities coarse-grained to a
certain energy resolution, which are related with short periodic orbits. As is well
known, a nucleus favors such shapes at which prominent shell structures are formed
and its Fermi surface lies in a valley of oscillating level density, increasing its binding
energy in this way.

With a semiclassical approach, Strutinsky et al.?) studied the shell structure
associated with the spheroidal cavity model and found that planar orbits in the
meridian plane are responsible for the shell structure at normal prolate deformations.
In addition, they pointed out that some three-dimensional (3D) periodic orbits ap-

5)- 8)
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pearing at large deformations lead to the shell structure responsible for the fission
isomers whose existence has been known since the 1970s, which have superdeformed
shapes. As emphasized in Ref. 9), shell structures obtained for the spheroidal cavity
model contain basic features, apart from shifts of deformed magic numbers due to
the spin-orbit potential, similar to those obtained by the Woods-Saxon potential
for heavy nuclei and metallic clusters, and thus this model can be used as a simple
model to understand the semiclassical origin of the emergence of regular oscillating
patterns in the coarse-grained quantum spectra at large deformations.

Remarkably, however, two decades after the publication of Ref. 9), to the best of
our knowledge, little exploration of this idea has been undertaken and the qualitative
argument given in that paper has not been fully examined by other researchers,
although the spheroidal cavity model has been used for various purposes.19)-12) A
paper most relevant to the present paper is that of Frisk, ¥) who used the periodic-
orbit theory and the same cavity model mainly to clarify the origin of the prolate-
oblate asymmetry at normal deformations. Although he also briefly discussed the
case of large deformations, the importance of 3D orbits was not mentioned.

In this paper, we identify the most important periodic orbits that determine the
major pattern of the oscillating level density at large deformations, including prolate
superdeformations, prolate hyperdeformations and oblate superdeformations. For
this purpose we make full use of the Fourier transformation method. As briefly
reviewed in the text, by virtue of the scaling property of the cavity model, Fourier
transforms of quantum spectra exhibit peaks at lengths of classical periodic orbits,
enabling us to precisely identify important periodic orbits contributing to the shell
structure. This method has been well known, 8 but it has not been used for the
present subject.

Classical periodic orbits in a spheroidal cavity and their bifurcations with the
variation of the axis ratio have been thoroughly studied by Nishioka et al.14)15)
This paper may be regarded as a continuation of their work in the sense that we
investigate quantum manifestations of these periodic orbits and of their bifurcations.
(Actually, this was the intention also of the work by Nishioka et al.14):15))

We present in §2 the oscillating parts of smoothed level densities as functions
of the deformation parameter of the cavity. The Fourier transformation method is
recapitulated in §3. Periodic orbits and their bifurcations in a spheroidal cavity are
briefly reviewed in §4. The results of the semiclassical analysis of shell structures
are presented in §§6-8 for prolate superdeformations, prolate hyperdeformations and
oblate superdeformations, respectively, and conclusions are given in §9.

A part of this work was previously reported in conference proceedings. 16)

§2. Oscillating level density

We solve the Schrodinger equation for single-particle motion in a spheroidal
cavity under Dirichlet boundary conditions. As is well known, a spheroidal cavity
model is integrable and separable by the spheroidal coordinate system, so that these
coordinates are frequently used for solving the Schrédinger equation. We have,
however, adopted a spherical-wave decomposition method !?) for this purpose. The
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Fig. 1. Single-particle energy diagram for a spheroidal cavity, plotted as a function of the defor-
mation parameter 8. Solid and broken lines represent even- and odd-parity levels. The energy
is measured in units of h2/2M R3, where M and Ry are the mass of the particle and the radius
in the spherical limit, respectively. The spin degeneracy factor 2 is taken into account in magic
numbers in the spherical limit.

reason is merely that we wrote a computer program based on the latter method
for the purpose of efficiently calculating a large number of eigenvalues as function .
of deformation parameters for cavities of general axially symmetric shapes. 18 With
this method, wave functions are expanded in terms of spherical Bessel functions
(for the radial coordinate) and associated Legendre functions (for the polar angle
coordinate), and expansion coefficients are determined so as to fulfill the boundary
conditions (see Refs. 18) and 17) for technical details).

The single-particle energy diagram (as function of deformation parameter )
obtained in this way is shown in Fig. 1. The deformation parameter J is related
to the axis ratio n = a/b by § = 3(n — 1)/(2n + 1) in the prolate case and by
§ = —3(n — 1)/(n + 2) in the oblate case, where a and b denote the lengths of
the major and the minor axes, respectively. The volume-conservation condition is
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Fig. 2. Oscillating part of the smoothed level density displayed as a function of the energy and
deformation parameter 4. Solid, dashed and dotted contour curves correspond to negative, zero
and positive values, respectively. The units of energy are the same as in Fig. 1. Strutinsky
smoothing is used, with the smoothing width parameter Ak = 0.5. Constant-action lines for
important periodic orbits are indicated: Thick solid lines running through the spherical closed
shells are those for tetragonal orbits in the meridian plane. Thick broken and solid lines in
the region § = 0.3 ~ 0.8 are those for five-point star-shaped orbits in the equatorial plane and
for 3D orbits (5:2:1) bifurcated from them, respectively. Broken and solid lines in the region
d = —0.3 ~ —0.7 are those for double repetitions of linear orbits along the minor axis and for
butterfly-shaped planar orbits (4:1:1) bifurcated from them, respectively. Similarly, broken and
solid lines in the region § = —0.6 ~ —1 are those for triple repetitions of linear orbits along the
minor axis and for planar orbits (6:1:1) bifurcated from them, respectively.

imposed so that ab? = R} in the prolate case and a?b = R3 in the oblate case, where
Ry is the radius in the spherical limit.

Figures 2 and 3 display the oscillating part of the smoothed level density in the
form of a contour map with respect to the energy and deformation parameter, which
is coarse-grained with the Strutinsky smoothing parameter Ak = 0.5. We clearly see
regular patterns consisting of several valley and ridge structures. Thick solid and
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Fig. 3. Same as Fig. 2 but for a higher energy region. The correspondence between valley structures

and constant-action curves becomes much clearer in the higher energy region.

broken lines indicate the valley lines predicted by the periodic orbit theory (see §5
and §§6-8 for details).

§3. Fourier transform

Single-particle equations of motion for the cavity are invariant with respect to
the scaling transformation (z,p,t) — (x,ap, a~!'t) and the action integral S, for a
periodic orbit 7 is proportional to its length L,:

S.(E = p?/2M) = fp .dq = pL, = hkL,.

(3-1)
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Thus the semiclassical trace formula for the level density ® is written as
M
n h k n
~ g(E) + Z A (k) cos(kL, — mp-/2), (3-2)

where g(E) denotes the smooth part corresponding to the contribution of the zero-
length orbit, and p, is the Maslov phase of the periodic orbit r. This scaling property
enables us to make use of the Fourier transformation of the level density with respect
to the wave number k. The Fourier transform F(L) of the level density g(E) is
written as

F(L) = / dke=*Lg(E = h2k2/2M)
~ F(L)+ 7Y e ™#r/24,(i8y) §(L — L,), (3-3)
which may be regarded as the ‘length spectrum’ exhibiting peaks at lengths of in-

dividual periodic orbits.® In numerical calculations, the spectrum is cut off by a
Gaussian with cutoff wave number k. = 1/AL as

Far(l) = o [ an e HUSE ()
Y
M ]. 1 2 —3
:ﬁZE—e 7(kn/ke)® g=iknL (3-4)
n n
I —iT : 1 —5(=x
~ Fap(L)+ 7Y e ™/24,(idy) AL’ s(5325)° . (3.5)

§4. Periodic-orbit bifurcations

In this section, we recapitulate the theory of classical periodic orbits in the
spheroidal cavity following Nishioka et al.1%-1%) and Strutinsky et al.?) We focus
our attention on those orbits having short periods.

As is well known, only linear and planar orbits exist in a spherical cavity. When
spheroidal deformations appear, the linear (diameter) orbits bifurcate into those
along the major axis and along the minor axis. Likewise, the planar orbits bifur-
cate into orbits in the meridian plane and those in the equatorial plane. Since the
spheroidal cavity model is integrable, all classical orbits lie on a 3D torus, and, in the
case of a prolate spheroid, periodic orbits are characterized by three positive inte-
gers (p:t:q), which represent numbers of vibrations or rotations with respect to three
spheroidal coordinates. They are denoted as (n¢,ng4,n¢) in Refs. 14) and 15), and
(nw, g, y) in Ref. 9). When the axis ratio 5 of the prolate spheroid increases, hyper-
bolic orbits in the meridian plane and three-dimensional orbits successively appear
through bifurcations of linear and planar orbits in the equatorial plane. Bifurcations
occur when the condition

sin(7t/p)

b sin(mq/p) 1)

n
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is satisfied.

As we see in succeeding sections, the most important orbits for superde-
formed shapes (axis ratio approximately 2:1) are 3D orbits (p:t:q) = (p:2:1) with
p = 5,6,7,---. They bifurcate from planar orbits that turn twice (¢ = 2) about
the symmetry axis. Likewise, planar orbits (4:2:1) bifurcate from linear orbits that
repeat twice along the minor axis. These new-born orbits resemble the Lissajous
figures of the superdeformed harmonic oscillator with frequency ratio w, :w, = 2:1.
Every bifurcated orbit forms a continuous family of degeneracy two, which implies
that we need two parameters to specify a single orbit among a continuous set of orbits
belonging to a family having a common value of the action integral (or equivalently,
the length).

For prolate hyperdeformed shapes (axis ratio approximately 3:1), bifurcations
from linear and planar orbits that turn three times (¢ = 3) about the symmetry
axis are important. The new-born orbits are hyperbolic orbits in the meridian plane
(6:3:1) and 3D orbits (p:3:1) with p =7,8,9,---.

In the case of oblate spheroidal cavities, periodic orbits are classified in Ref. 15)
into two modes, the whispering-gallery (W) mode and bouncing-ball (B) mode. The
systematics of periodic-orbit bifurcations for the W-mode are similar to those for
the prolate case and can be treated by just exchanging the roles of t and ¢g. On the
other hand, B-mode orbits are successively created through bifurcations of multiple
repetitions of linear orbits along the minor axis when the condition

a 1
b sin(wt/p)

n (4-2)
is satisfied. Bifurcations of this kind do not depend on ¢, so that, for instance, planar
orbits (4:1:1) are created simultaneously with two families of 3D orbits (4:1:3/2) and
(4:1:2). (For B-mode orbits, half integer values of g are allowed as well as integers,
due to different definitions of the integration range for the action integral related to
g; see Ref. 15).)

Bifurcation points and variations of lengths with deformation are displayed for
some short periodic orbits in Table I and Fig. 4.

Table I. Bifurcation points of periodic orbits specified by (p:t:g) in the spheroidal cavity. Only
those for short orbits to be discussed in §36-8 are displayed.

orbit (p:t:q) axis ratio (a/b) deformation § orbit length in Rg

(4:2:1) 1.414 0.325 7.127
(5:2:1) 1.618 0.438 8.101
(6:2:1) 1.732 0.492 8.654
(7:2:1) 1.802 0.523 8.995
(8:2:1) 1.848 0.542 9.220
(6:3:1) 2.0 0.6 9.524
(7:3:1) 2.247 0.681 10.421
(8:3:1) 2.414 0.728 11.011
(9:3:1) 2.532 0.758 11.437
(4:1:1) 1414 ~0.364 6.350

(6:1:1) 2.0 -0.75 7.560
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Fig. 4. Variations of lengths of periodic orbits in a spheroidal cavity with respect to the deformation
parameter 6. Only those for short orbits discussed in §§6-8 are displayed. For a more complete
diagram, see Nishioka et al. 1% 1%

§5. Shell structure and constant-action line

Using the trace formula, we can extract information about classical periodic
orbits from the Fourier transforms of the level density. In this section we discuss
another method of using the trace formula, the constant-action line analysis.?) As
stated in §3 (see Eq. (3-2)), the quantum level density can be represented as the
summation over periodic orbits. If a few orbits having nearly the same action in-
tegral dominate in the sum, it is expected that valleys in the contour map of the
oscillating part of the smoothed level density versus energy E and deformation § will
be characterized by constant-action lines S(F, §) = const for those dominant orbits.
The equation for such lines is kL,(8) — wpr/2 = (2n + 1), thus,

1 (2nh(n £ 1/2 4 p/4)
BO) =3 ( L)

2M
As an example, let us examine the shell structure at normal deformations |§| $0.3.
In this region, triangular and tetragonal orbits in the meridian plane give dominant
contributions to the level density. This fact was first pointed out by Strutinsky
et al.9 (Although the triangular orbits were overlooked there, actions of the two
families of orbits scale in the same way as functions of deformation parameter so
that their argument was correct in essence.) The Fourier amplitudes at lengths of
some meridian-plane orbits are plotted in Fig. 5 as functions of the deformation
parameter §. We see that the meridian-plane orbits are important for small § and
that their contributions decline with increasing |§|. In Figs. 2 and 3, constant-

2
) . (n=0,1,2,--") (5-1)
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Fig. 5. Absolute values of the Fourier amplitudes defined in Eq. (3-4), at lengths L = L, of some
short meridian-plane orbits, plotted as functions of the deformation parameter §.

action lines (5-1) for the tetragonal orbits in the meridian plane are indicated. The
period of the shell oscillation is mainly determined by the tetragonal orbits, and the
valley structure of the level density at normal deformation is nicely explained by
their constant-action lines. We also note that the shell effect at spherical shape is
weakened at E ~ 300, and the phase of valley is shifted from that of the constant-
action lines for E ~ 250-350. This is due to the supershell effect associated with the
interference of the triangular and tetragonal orbits. ©):19)

In this way, we can analyze the properties of the shell structure through classical
periodic orbits. In the following sections, we utilize these techniques in order to
identify dominant classical periodic orbits that characterize the shell structures in
superdeformed shapes.

§6. Prolate superdeformations

Figure 6 displays Fourier transforms of quantum spectra for prolate spheroidal
cavities with deformation parameter values § = 0.1 ~ 0.6. At normal deformations
with § = 0.1, as mentioned in the previous section, we notice peaks associated with
triangular and tetragonal orbits in the meridian plane. With increasing deformation,
bifurcations of linear and planar orbits in the equatorial plane successively take place.
Thus, the highest peak at L ~ 7 of the Fourier transform for § = 0.4 is associated with
butterfly-shaped planar orbits (p:t:q) = (4:2:1) that bifurcate at § ~ 0.32 from double
repetitions of linear orbits along the minor axis. For § = 0.5, the prominent peaks
at L ~ 8 and 8.6 correspond to 3D orbits (5:2:1) and (6:2:1) bifurcated respectively
from five-point star-shaped orbits and double traversals of triangular orbits in the
equatorial plane. With further increase in §, the same kind of 3D orbits successively
bifurcate from equatorial-plane orbits. For § = 0.6 (axis ratio n = 2), peaks around
L ~ 9 are associated with 3D orbits (7:2:1) and (8:2:1) that are bifurcated from 7-
point star-shaped orbits and double traversals of rectangular orbits in the equatorial
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Fig. 6. Length spectra (Fourier transforms of quantum level densities) for spheroidal cavities with
deformation parameter § = 0.1,0.4,0.5 and 0.6. The cutoff wave number k. = v/600 is used in
Eq. (3-4). At the bottom of each figure, the lengths of classical periodic orbits are indicated by
vertical lines. Long, middle and short vertical lines are used for 3D orbits, planar orbits in the
meridian, and planer orbits in the equatorial planes, respectively.
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Fig. 7. Three-dimensional orbits (5:2:1) and (6:2:1) in the superdeformed prolate cavity with de-
formation & = 0.6 (axis ratio 7 = 2). Their projections on the (z,y), (y,2) and (z, z) planes are
displayed.

plane.

In Figs. 2 and 3, constant-action lines for the 3D orbits (5:2:1) are indicated.
Good correspondence is found between these lines and the valley structure seen in the
superdeformed region with § around 0.6. Thus we can conclude that the bifurcations
of equatorial orbits play essential roles in the formation of the superdeformed shell
structure, and this shell structure is characterized by the 3D orbits (p:2:1).

Some of these 3D orbits are displayed in Fig. 7. They possess similarities with the
figure-eight shaped orbits in the superdeformed harmonic oscillator with frequency
ratio w) :w, = 2:1. An important difference between the cavity model under consid-
eration and the harmonic oscillator model should be noted, however: In the former,
such periodic orbits exist for all deformation parameters ¢ larger than the bifurca-
tion points, whereas in the latter, such orbits appear only for special deformations
corresponding to rational ratios of the major and minor axes.

On the other hand, the magnitudes of contributions of individual orbits are
found to exhibit a remarkable deformation dependence. Namely, Fourier peak heights
associated with new orbits created by bifurcations quickly increase with increasing
deformation and reach maximal values. Then, they start to decline. This behavior
is seen in Fig. 6. Figure 8 displays the deformation dependence of the Fourier
amplitudes |F(L)| defined in Eq. (3-4) at lengths L = L, for some classical periodic
orbits, which confirms the behavior noted above. This behavior has not been pointed
out in the previous papers. It should be emphasized that the relative magnitudes
and the deformation dependence of contributions of individual periodic orbits found
here are significantly different from those roughly estimated in Ref. 9).

To get a deeper understanding of the mechanism of the enhancements associated
with the bifurcations noted above, a semiclassical approximation that goes beyond
the stationary phase approximation used in deriving the trace formula (3-2) may
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Fig. 8. Same as Fig. 5 but for meridian-plane hyperbolic orbits and 3D orbits (p:2:1) (left-hand

side) and (p:3:1) (right-hand side). Solid curves correspond to those for equatorial-plane orbits
from which these orbits are bifurcated.

be required. Such a semiclassical theory applicable for three dimensional deformed
cavities is not available at present and remains a challenging subject for future study.

§7. Prolate hyperdeformations

Figure 9 displays Fourier transforms for 4 = 0.7 and 0.8. For é ~ 0.7, the
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Fig. 9. Same as Fig. 6 but for § = 0.7 and 0.8 (axis ratio n ~ 2.3 and 2.7).
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Fig. 10. Same as Fig. 7 but for 3D orbits (7:3:1) and (8:3:1) in the hyperdeformed prolate cavity
with deformation § = 0.8.

peak at L ~ 10.3 is associated with 3D orbits (7:3:1) bifurcated from 7-point star-
shaped orbits in the equatorial plane. For § = 0.80, we see a rise of the peak at
L ~ 10.8, which is associated with 3D orbits (8:3:1) bifurcated from 8-point star-
shaped orbits in the equatorial plane. They are displayed in Fig. 10. These 3D
orbits resemble the Lissajous figures of the hyperdeformed harmonic oscillator with
frequency ratio w) :w, = 3:1. In the same manner as for the 3D orbits responsible
for superdeformations, Fourier peak heights associated with these newly appearing
orbits rapidly increase after the bifurcations, reach the maxima and then decline
with increasing deformation (see Fig. 8). Thus, also in this case, bifurcations of
equatorial orbits (but of different types (p:3:1)) play the major role in the formation
of this shell structure.

§8. Oblate superdeformations

Finally let us consider oblate deformations. Figure 11 displays Fourier trans-
forms of quantum spectra for oblate spheroidal cavities with § = —0.3 ~ —0.85. For
0 = —0.3, the two dominant peaks are associated with triangular and tetragonal
orbits in the meridian plane. For é == —0.4, we see a dominant peak at L ~ 6.3
in addition to the peaks associated with the meridian-plane orbits. This new peak
is associated with the butterfly-shaped planar orbits (4:1:1) bifurcated from double
repetitions of linear orbits along the minor axis.

At § = —0.75 (axis ratio n = 2), the other peak at L ~ 7.5 becomes important.
This peak is associated with the triple traversals of linear orbits along the minor
axis, which bifurcate just at this shape to planer hyperbolic orbits (6:1:1). They
make a predominant contribution for § = —0.85 (peak at L ~ 7.1).

Constant-action lines for these bifurcated orbits (4:1:1) and (6:1:1) are indicated
in Figs. 2 and 3. We see clear correspondence between the shapes of these lines and
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Fig. 11. Same as Fig. 6 but for oblate cavities with § = —0.3 ~ —0.85.

the shape of valleys in the oscillating level density. Combining this good correspon-
dence with the behavior of the Fourier peaks mentioned above, it is evident that
these periodic orbits are responsible for the shell structure at oblate superdeforma-
tions with an axis ratio of approximately 2:1. According to the classification given
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in § 4, these are W-mode orbits.

In contrast to W-mode orbits, B-mode 3D orbits do not seem very important,
although those with (p:t:q) = (5:1:2),(6:1:2),--- etc. are already bifurcated from
equatorial-plane orbits in the superdeformed region. This is an important difference
between the prolate and the oblate superdeformations in the spheroidal cavity model.

§9. Conclusions

Classical periodic orbits responsible for the emergence of the superdeformed shell
structure for single-particle motion in spheroidal cavities were identified and their
relative contributions to the shell structures were evaluated. Both prolate and oblate
superdeformations as well as prolate hyperdeformations were investigated.

Fourier transforms of quantum spectra clearly show that 3D periodic orbits born
out of bifurcations of planar orbits in the equatorial plane become predominant
at large prolate deformations, while butterfly-shaped planar orbits bifurcated from
linear orbits along the minor axis are important at large oblate deformations.

Good correspondence between constant-action lines for these periodic orbits and
valley structures in the oscillating part of the smoothed level density confirms the
above conclusions.

After writing this paper, we learned that Magner et al.?%) carried out an exten-
sive semiclassical analysis of shell structure in large prolate cavities. In their work,
a rather large coarse-graining parameter « for the level density was used, so that
the equatorial-orbit bifurcations discussed in this paper were not clearly seen. It
remains a challenge for future study to develop a semiclassical theory capable of
treating equatorial-orbit bifurcations, and the phase-space trace formula proposed
in Ref. 20) seems to provide a general framework for this aim.
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