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We derive an analytical trace formula for the level density of two-dimensional elliptic
billiards using an improved stationary phase method. The result is a continuous function of
the deformation parameter (eccentricity) through all bifurcation points of the short diameter
orbit and its repetitions, and possesses the correct limit of circular billiard at zero eccentric-
ity. Away from the circular limit and the bifurcations, it reduces to the usual (extended)
Gutzwiller trace formula, which for the leading-order families of periodic orbits is identical
to the result of Berry and Tabor. We show that the circular disk limit of the diameter-orbit
contribution is also reached through contributions from closed (periodic and non-periodic)
orbits of the hyperbolic type with an even number of reflections from the boundary. We ob-
tain the Maslov indices depending on deformation and energy in terms of the phases of the
complex error and Airy functions. We find enhancement of the amplitudes near the common
bifurcation points of short-diameter and hyperbolic orbits. The calculated semiclassical level
densities and shell energies are in good agreement with the quantum mechanical ones.

§1. Introduction

The periodic orbit theory (POT), developed by Gutzwiller 1), 2) for chaotic sys-
tems, by Balian and Bloch 3) for cavities, and by Berry and Tabor 4), 5) for integrable
systems, has proved to be an important semiclassical tool not only for an approxi-
mate quantization but also for the description of gross-shell effects in finite fermion
systems. 6), 7) Gutzwiller’s approach has been extended to take into account contin-
uous symmetries 6), 8) - 12) and is therefore applicable to systems with mixed classical
dynamics, including the integrable and hard-chaos limits.

An important role is played by the classical degeneracy of the periodic orbits in
systems with continuous spatial or dynamical symmetries: the orbits are then not
isolated in phase space (as assumed in Gutzwiller’s original trace formula, and as is
the case in chaotic systems), but occur in degenerate families with identical actions.
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The degree of degeneracy K is defined as the number of independent parameters
that are necessary to uniquely specify an orbit within each family. For example, the
orbit families with the highest degeneracy in spherical systems with spatial SO(3)
symmetry have K = 3, corresponding to the three Euler angles that specify the
orientation of an orbit within the plane of motion and the orientation of the plane
itself, the orbit families in two-dimensional systems with U(1) rotational symmetry
have K = 1, and the isotropic harmonic oscillator in two dimensions has SU(2)
symmetry and hence orbit families with K = 2. Orbits with different degeneracies K
may also occur in a single system, such as the spherical cavity discussed by Balian
and Bloch 3) where the diameter orbit has K = 2 and all other orbits have K = 3,
the spheroidal cavity 13) where K = 2, 1 and 0 occur (the latter corresponding to
isolated orbits), and elliptic billiard with K = 1 and 0, as discussed in the present
paper.

However, problems arise for all these trace formulae in connection with the break-
ing of a continuous symmetry and with the bifurcation of stable periodic orbits when
a continuous parameter (energy, deformation, external field) is varied. The reason
is that at such critical points the standard stationary phase approximation, used for
integrations in the derivation of the trace formula, breaks down and leads to diver-
gences and/or discontinuities of the amplitudes in the trace formula. This happens
most frequently in mixed systems, but it occurs also in integrable systems. Typical
examples are two-dimensional elliptic billiard and the three-dimensional spheroidal
cavity. In the former, all repetitions of the short diameter orbits undergo bifurca-
tions at specific deformations, whereby new families of hyperbolic orbits are created.
Similarly, in the latter system, the periodic orbits lying in the equatorial plane per-
pendicular to the symmetry axis bifurcate also at specific deformations, whereby
new three-dimensional orbits appear. 13) In both systems, all bifurcations and the
limit to the spherical shape lead to divergent amplitudes in the trace formulae (see
Refs. 6), 11) and 14) – 21)). Since for each family with a given value of K, the ex-
tended Gutzwiller trace formula 6), 8) - 10) has an amplitude proportional to h̄−(1+K/2),
it is evident that the breaking of a continuous symmetry must be accompanied by a
discontinuous change of the amplitudes, which manifests itself in the form of a sin-
gularity when one attempts to reach the unbroken symmetry limit. (An exceptional
situation occurs in anisotropic harmonic oscillators, when changing from irrational
to rational frequency ratios: here the divergences of the different periodic orbit con-
tributions have been shown 23) to cancel identically, such that the trace formulae —
which are quantum-mechanically exact here — hold for arbitrary frequency ratios,
although their analytical form is different in different limits (see also Ref. 7).))

Since symmetry breaking and orbit bifurcations occur in almost all realistic phys-
ical systems, there is a definite need to overcome these singularities. The importance
of bifurcation effects in connection with the emergence of the ‘superdeformed’ shell
structure in atomic nuclei is emphasized in Refs. 6), 18) and 20) – 22). In order to
improve the POT in these critical situations, various methods have been proposed.
As in the treatment of continuous symmetries considered in Refs. 8) – 11), they es-
sentially consist of taking some integrals in the derivation of the trace formula more
exactly than in the standard stationary phase method (SPM).
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Berry and Tabor suggest in Ref. 4) a quite general method to treat bifurcations
in integrable systems. Starting from the trace integral for the level density in action-
angle variables, they reduce it to a Poisson-sum trace formula and perform all trace
integrations except one with the SPM, extending the integration limits from −∞ to
+∞. At bifurcations, this leads to singularities in the amplitudes when the stationary
points are close to the limits of the integration range. According to Ref. 4), in this
case one has to take the integral within the exact finite range. The integration range
need not necessarily include the stationary points (in the case of negative or complex
stationary points), but the latter are assumed to be close to the integration limits.
For integrable systems, this idea was applied to the periodic-orbit families with the
highest degeneracies, for which one can carry out the integrals over the action angles
exactly, giving 2π for each degree of freedom. 5) This is the starting point of a uniform
approximation that was further developed by various authors. 24) - 26)

Another type of uniform approximation was initiated by Ozorio de Almeida and
Hannay 27) (see also Ref. 28)) and developed further by Sieber and Schomerus 29) - 31)

for various generic types of bifurcations. Writing the trace integral in a phase-space
representation, they expand the action around the bifurcation points into so-called
normal forms which usually can be integrated analytically with finite results. The
correct asymptotic recovery of the Gutzwiller amplitudes far from the bifurcation
points can be obtained by a suitable mapping transformation whereby the amplitude
function, together with the Jacobian of the mapping transformation, is expanded up
to an order consistent with that of the action in the exponent of the integrand. Near
the bifurcation points, there is a common contribution of all participating (real or
complex, so-called ‘ghost’) orbits to the trace formula.

A similar technique, starting from the Berry-Tabor approach for integrable
systems and using a ‘pendulum mapping’, was used by Tomsovic, Grinberg and
Ullmo 32), 33) to derive a generic uniform approximation for the breaking of orbit
families with a one-dimensional degeneracy, corresponding to U(1) symmetry, into
pairs of stable and unstable isolated orbits. Finally, some analytical uniform trace
formulae for the breaking of the higher-dimensional SU(2) and SO(3) symmetries
in specific two- and three-dimensional systems have been derived very recently. 34)

Hereby the trace integral was performed over the de Haar measure of the corre-
sponding symmetry groups, as in the derivation of the unperturbed trace formulae
for these continuous symmetries, 10) and the mapping was done onto the forms of
the action integrals obtained in perturbation theory. 35), 36)

It should be mentioned that all the uniform approximations mentioned above can
be used only for one isolated critical point of symmetry breaking or orbit bifurcation.
They fail, in particular, 29) - 31), 33), 34) when two critical points are so close that the
actions of the participating orbits at these points differ by less than ∼ h̄. To our
knowledge, no common uniform treatment of two nearby bifurcations (in the above
sense), or of a bifurcation near a symmetry-breaking point, has been reported to this
time.

In this paper, we propose an approach to simultaneously overcome the diver-
gences due to symmetry breaking and any number of bifurcations in two-dimensional
elliptic billiard and the three-dimensional spheroidal cavity. Although our frame-
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work is quite general, we limit its application here to elliptic billiard. The three-
dimensional spheroidal cavity will be treated in a succeeding paper, 13) and the ex-
tension to non-integrable systems is planned for future research. We start from a
phase-space trace formula, 11), 37) which after some transformations becomes identical
to that obtained from the mixed phase-space representation of the Green function
in Refs. 30) and 38), as explained there and below (see §4.3). Analogous versions of
the phase-space trace formulae are suggested in Refs. 5) and 10).

In contrast to previous investigations, 4), 5), 24) - 26) we calculate the integrals over
angles, also, using the stationary phase method. Note that we also include orbits
with lower degeneracies, such as the isolated diameters in elliptic billiard and the
equatorial orbits in the spheroidal cavity, thereby extending the method of Ref. 4).
Our main point is that the stationary-phase integrals over both action and angle
variables are calculated with expansions of the phase and amplitudes, as in the
standard SPM, but within finite intervals in all cases in which these integrals would
lead to divergences if one or both integration limits were taken to ∞ or −∞. We also
discuss the role of non-periodic closed orbits (see §5.4). For the Maslov indices, which
for the bifurcating orbits depend on the deformation, and near the critical points also
on the energy, we follow the basic ideas of Maslov and Fedoryuk. 39) - 42) We obtain
separate contributions to the trace formula from the bifurcating periodic orbits, and
we remove the singularity of the isolated long diameter (i.e., the separatrix) near the
circular shape of the elliptic billiard in a simpler way than in Ref. 26).

In this way we obtain an analytical trace formula for the elliptic billiard system
that gives finite and continuous contributions at all deformations, including the cir-
cular disk limit and all bifurcation points of the short diameter orbit. Although its
derivation and its explicit form are quite different, our final trace formula is similar
to the uniform approximations mentioned above in the sense that it is connected
smoothly to the standard (extended) Gutzwiller trace formulae for different orbit
types with deformations sufficiently far away from all critical points.

§2. Phase-space trace formula in the closed orbit theory

2.1. Semiclassical trace formula

The level density g(ε) is obtained from the Green function G(r′, r′′; ε) by taking
the imaginary part of its trace:

g(ε) = − 1
π
Im
∫
dr′′
∫
dr′G(r′, r′′; ε)δ(r′′ − r′)

= − 1
π
Im
∫
dr′′
∫
dr′
∫
dp̃G(r′, r′′; ε) exp

[
− i

h̄
p̃ · (r′′ − r′)] . (2.1)

Within the semiclassical Gutzwiller theory, 1), 2) the Green function G(r′, r′′; ε) can
be represented by the sum over all classical trajectories α connecting two spatial
points r′ and r′′ at fixed energy ε. Inserting it into (2.1), we obtain the semiclassical
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level density

gscl(ε) =
2

(2πh̄)(3n+1)/2
Im
∑
α

∫
dr′′
∫
dp̃

∫
dr′|J (p′, tα; r′′, ε)|1/2

× exp
{
i

h̄

[
Sα(r′, r′′, ε)− p̃ · (r′′ − r′)

]− iπ

2
µα

}
. (2.2)

Here Sα(r′, r′′, ε) =
∫ r′′
r′ dr · p is the action along the trajectory α, n is the spa-

tial dimension, and µα is related to the number of conjugate points (i.e., turning
and caustics points along the trajectory). 42) Jα(p′, tα; r′′, ε) is the Jacobian for the
transformation from initial momentum p′ (at the point r′) and time interval tα
(for the classical motion along the trajectory from initial to final point) to the final
coordinate r′′ and energy ε.

2.2. Phase space variables

Integrating over r′ in Eq. (2.2) along the direction transverse to the trajectory
α with the stationary phase method (SPM), we are left with the integral over the
component of dr′ parallel to the trajectory, which gives just an energy conserving
delta function δ(ε−H(r′,p′)). We hence arrive at the phase-space trace formula 37)

gscl(ε) =
1

(2πh̄)2
Re
∑
α

∫
dr′′
∫
dp′ δ(ε−H(r′,p′))

∣∣J (p′′
⊥,p

′
⊥)
∣∣1/2

× exp
{
i

h̄

[
Sα(p′,p′′, tα) + (p′′ − p′) · r′′]− iνα

}
. (2.3)

Here J (p′′
⊥,p

′
⊥) is the Jacobian for the transformation from initial to final momen-

tum components p′
⊥ and p′′

⊥, respectively, perpendicular to the trajectory α. This
Jacobian is equal to one of the elements of the stability matrix (see, e.g., Ref. 7)).
Sα(p′,p′′, tα) is the action in the momentum representation

Sα(p′,p′′, tα) = −
∫ p′′

p′
dp · r(p), (2.4)

which is related to the usual action in coordinate space

Sα(r′, r′′, ε) =
∫ r′′

r′
dr · p(r) (2.5)

by the Legendre transformation

Sα(r′, r′′, ε)− p′ · (r′′ − r′) = Sα(p′,p′′, tα) + (p′′ − p′) · r′′. (2.6)

The phase να in Eq. (2.3) contains, in addition to π
2µα in Eq. (2.2), the phases arising

from the integration over r′ in the stationary phase approximation.
Note that the integrand in the phase-space trace formula (2.3) (except for the

exponent related to the phase part proportional to r′′) is the semiclassical Green
function in the mixed representation that contains explicitly an energy-conserving
δ-function in our case, unlike the form discussed in Ref. 10). (Consequently, the
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momentum components are not independent, which is important for the following
application of the stationary phase method; see more details in the next subsection
and in §4.) Due to energy conservation, i.e., H(r′,p′) ≡ H(r′′,p′′), the trace formula
(2.3) can be rewritten in an alternative form where the integration variables are
changed from (r′′,p′) to (r′,p′′). The sum in (2.3) runs over all isolated classical
trajectories α with starting momentum p′ and final point r′′ (or with starting point
r′ and final momentum p′′ in the alternative form), for a fixed time interval tα of
the classical motion along α.

2.3. Periodic orbit theory

The trajectories α in the phase space trace formula (2.3) are not necessarily
closed orbits in the usual coordinate space. However, after separation of the ex-
tended Thomas-Fermi part (corresponding to the ‘zero length orbits’) and integra-
tion over one of the momentum components exploiting the δ-function, we use further
semiclassical approximations. We first write the stationary-phase conditions for the
integration variables in (2.3). The stationary conditions for the momentum vari-
able p′ are the closing condition for the trajectories α in the usual coordinate space,
r′ = r′′, and the Jacobian in Eq. (2.3) is unity due to the Liouville Theorem of phase-
space volume conservation (see Ref. 7)). The additional stationary-phase conditions
for the integration over spatial variables r′′ selects the periodic orbits, p′ = p′′, and
we obtain the POT and all known trace formulas including the Poisson-sum trace
formula. 37) We then integrate over components of the phase-space variables exactly
if we have identities for them. Other integrations will be done using an improved
stationary phase method (ISPM). ‘Improved’ here means that we carry out the inte-
grations in finite ranges, after expanding the exponent of the integrand around the
stationary point up to second order terms, and taking the amplitude at the station-
ary point (or use a higher-order expansion of amplitude and phase, if necessary).
All stationary points that appear outside the physical region of integration over the
phase-space variables are also taken into account, even if they are complex. In this
way we obtain simple and continuous analytical solutions that remain finite at all
critical (bifurcation and symmetry-breaking) points. In contrast to other uniform
approximations mentioned in the Introduction, our results appear as explicit sums
over separate contributions that correspond to the periodic orbits in the asymptotic
regions away from the critical points.

§3. Classical mechanics

3.1. Elliptic billiard as an integrable system

We consider an elliptic billiard with axes a and b (with a ≤ b) along the x and
y coordinate axes, respectively, and ideally reflecting walls. This is an integrable
system which can be separated into the elliptic coordinates (u, v) defined in terms
of the Cartesian coordinates (x, y) by

x = ζ cosu sinh v, y = ζ sinu cosh v, ζ =
√
b2 − a2, (3.1)
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with
−π ≤ u ≤ π, 0 ≤ v < vb. (3.2)

Hereby (x, y) = (0,±ζ) are the foci of ellipses given by v = const, and v = vb
is the elliptic boundary. It is convenient to introduce the deformation parameter
η = b/a ≥ 1 and to keep the area of the ellipse constant by setting ab = R2, so that
b = R

√
η and a = R/

√
η. The second constant of the motion, in addition to the

energy ε, is the product of the angular momenta l− and l+ with respect to the two
foci. For the following, it is advantageous to use the single-valued quantity σ defined
by

σ = 1 +
l−l+
2mεζ2

. (3.3)

There are two types of orbits, depending on the relative sign of l− and l+: elliptic
orbits circulating around both foci for l−l+ > 0 or σ > 1, and librating hyperbolic
orbits for l−l+ < 0 or σ < 1. The names used here indicate that the former are
limited to the area between the elliptic boundary given by v = vb and a confocal
elliptic caustic given by v = vc, whereas the latter are confined to the area between
the two branches of a hyperbolic caustic given by u = ±uc and the elliptic boundary.
The critical values for the boundary and the caustics are given by

vb = arccosh
(
η/
√
η2 − 1

)
, vc = arccosh(1/

√
σ), uc = arcsin(

√
σ). (3.4)

In terms of the above quantities, the single-valued action integrals Iu and Iv become

Iu =
∮
pudu =

p ζ

π

∫ uc

−uc

du

√
σ − sin2 u,

Iv =
∮
pvdv =

p ζ

π

∫ vb

vc

dv

√
cosh2 v − σ, (3.5)

where p =
√
2mε = h̄k is the constant classical momentum of the particle. Since

the system is integrable, its Hamiltonian depends only on the actions and not on the
variables u and v, i.e., H(Iu, Iv, u, v) ≡ H(Iu, Iv).

3.2. Periodic orbits

As shown by Berry and Tabor, 4) the periodic orbits of an integrable system can
be found by the condition that the angular frequencies (for angle variables conjugate
to the actions) have rational ratios. In the present case, these frequencies are given
by ωu = ∂H/∂Iu, ωv = ∂H/∂Iv, so that the periodic orbits are characterized by
pairs of positive integers Mu and Mv as

ωu
ωv

≡ 1
2

[
1− F(θ, κ)

F(π2 , κ)

]
=

Mu

Mv
, (Mu ≥ 1, Mv ≥ 2Mu) (3.6)

where
κ = sinuc/ cosh vc, θ = arcsin(cosh vc/ cosh vb), (3.7)
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Fig. 1. Some classical periodic orbits in elliptic billiard are represented by thin solid curves. The

left-hand side corresponds to elliptic triangular (1, 3) and rhomboidal (1, 4) orbits, and the

right-hand side corresponds to the hyperbolic butterfly orbit (1, 4), from Ref. 11).

and F(θ, x) is the elliptic integral of the first kind. 47) The greatest common divisor
of Mu and Mv corresponds to the repetition number M = 1, 2, 3, · · · of a primitive
periodic orbit (nu, nv):

(Mu,Mv) = (Mnu,Mnv) =M(nu, nv). (3.8)

The solutions of Eq. (3.6) for κ and θ which correspond to families of degenerate
periodic orbits with K = 1 are, labeled accordingly for elliptic and hyperbolic orbits,{

κe = 1√
σ

κh =
√
σ

}
,



θe = arcsin

(√
σ(1− 1/η2)

)
θh = arcsin

(√
1− 1/η2

)

 . (3.9)

Figure 1 shows the shortest periodic orbits of each kind. The degeneracy parameter
K was defined as the number of parameters that specify the orbits within a family
with a common action. Due to the separation of variables in elliptic coordinates (3.1)
we have two single-valued action integrals Iu and Iv (3.5). They are related through
the energy conserving equation ε = H(Iu, Iv) and can be written in terms of one
parameter of the family σ (or l−l+); i.e., we have K = 1 (see Refs. 6), 8), 9), 11), 50)
for more details).

3.3. Energy surface

For the energy surface ε = H(Iu, Iv) one can get from Eq. (3.5) the parametric
equations (A.1) for the elliptic orbits and (A.2) for the hyperbolic orbits. 19) The
energy curve (A.1) or (A.2) can also be considered through the single-valued param-
eter σ or double-valued κ defined within the same range 0 ≤ κ ≤ 1 for both kinds
of orbits. The solutions σ found from the periodic orbit equations (3.6) for elliptic
orbits satisfy the inequality σ > 1 in the elliptic part (A.1) of the energy curve. On
the other hand, σ < 1 for the hyperbolic part (see Fig. 2(a)). The two regions are
separated by the separatrix point σs = 1, corresponding to the long diameter orbit,
where the value of the action Iu = I

(s)
u is given by

I(s)
u = 2pζ/π. (σs = 1) (3.10)
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▲

❘ ❘ ❘

(a)

(b)

Fig. 2. Energy surface Iv(Iu) and curvature ∂2Iv/∂I2
u in the upper and lower panels, respectively,

from Ref. 19).

Thus, each phase space torus is split into two regions by the separatrix, a hyperbolic
region and an elliptic region. In the hyperbolic part (0 ≤ σ < 1), the action variable
Iu changes from 0 to the separatrix value I(s)

u . In the elliptic part (1 < σ ≤ σcr), Iu
changes from the separatrix value to the maximum value I(cr)

u that corresponds to a
‘creeping’ (or ‘whispering gallery’) orbit and is given by

I(cr)
u =

2pR
√
η

π
E

(
π

2
,

1√
σcr

)
=

2pR
√
η

π
E

(
π

2
,

√
η2 − 1
η

)
,

σcr = cosh2 vb = η2/(η2 − 1). (3.11)

The short diameter (1,2) and its repetitions M(1,2) correspond to the end point
of the hyperbolic region at σ = 0 (κ = 0), which is isolated in phase space {Θu, Iu}.
Equation (3.6) for the periodic orbits at this σ can be solved analytically with respect
to θ. Identifying the root θ(η, nu/nv) with its definition (3.9) for hyperbolic orbits,
we realize that all short diameters M(1,2) bifurcate at the deformations,

ηbif(M,n) =
1

sin(πnu/nv)
=

1
cos(nπ/2M)

, (n = 1, 2, 3, · · · ,M − 1) (3.12)

and at each bifurcation a new family of hyperbolic orbitsM(nu, nv) withMnv reflec-
tion points is ‘born’. The second equation presents the same bifurcation points and
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shows explicitly that the bifurcation deformations ηbif are also identical to the corre-
sponding divergences of the Gutzwiller amplitudes for short diameters (see Eq. (6.47)
of Ref. 7)). Each of the emerging hyperbolic orbits M1(M −n, 2M) with M1 repeti-
tions and n from Eq. (3.12) coincides exactly with the corresponding short diameter
M1M(1,2) repeated M1M times at the deformation ηbif . For instance, for the triply
repeated short diameter 3(1,2) (M1 = 1,M = 3) there are two bifurcation points
at the deformations ηbif = 2/

√
3 and 2 where the primitive hyperbolic orbits (2,6)

(n = 1) and (1,6) (n = 2), respectively, are born (see these orbits in Fig. 3.6 in
Ref. 19) and discussion nearby, and also Ref. 14) and Fig. 1a there). However, the
short diameters are isolated in the phase space of action-angle variables {Θu,Iu}.
They emerge as terms of the periodic orbit sum which are additional to the families
of hyperbolic tori (see a more detailed discussion below). The contribution of the
primitive short diameter 1(1,2) can be calculated by the original Gutzwiller trace
formula, except near the circular shape. 7), 19) This formula will be improved near all
bifurcation points (3.12) and the circular shape in §5.2.

The long diameter orbits M(1,2) are also characterized by 2M reflection points
and correspond to a specific isolated point in {Θu, Iu} space. They are related to the
separatrix value σ = 1 (κ = 1). Again, their amplitudes can be calculated with the
standard Gutzwiller trace formula for isolated orbits, with the same exception near
the symmetry-breaking point of the circular shape 7), 19) (see §5.3 for the improved
solution in terms of Airy functions near this point).

The limit of a circular disk (η = 1) may in some sense also be considered as a
(one-sided) bifurcation point: Here the family of diameter orbits (with K = 1) break
into two isolated diameters with K = 0 and complicated hyperbolic orbit families
(K = 1) with nu → ∞, nv → ∞, and nu : nv → 1 : 2, when the deformation (η > 1)
is turned on. Inversely, the long and short diameters and hyperbolic orbits that have
K = 0 and 1 in the ellipse, respectively, merge into the families of diameter orbits
with K = 1 as η → 1. The discontinuous change of K at η = 1 is accompanied by a
divergence of the diametric amplitudes in the standard SPM. This is the symmetry-
breaking problem discussed in the Introduction and below in §§5.2 and 5.3.

Figure 2(a) shows the energy surface in action space, in the form of the curve Iv =
Iv(ε, Iu) at fixed energy ε. Specific primitive orbits (withM = 1) are illustrated, with
the arrows pointing to the corresponding stationary points I∗u: the short diameter
(at I∗u = 0 or σ = 0, with Θ∗

u = 0, π), the ‘butterfly’ (or ‘bow-tie’) orbit, the long
diameter (at I∗u = I

(s)
u , with σ = 1 and Θ∗

u = ±π/2), the rhomboidal orbits with
four reflections, and the ‘creeping’ orbit (at I∗u = I

(cr)
u ) as the limit of a ‘whispering-

gallery’ mode with a number of reflections nv = ∞ and winding number nu = 1. The
limits of the separatrix correspond to infinite values of nv and nu for hyperbolic and
elliptic orbits with the ratio nu/nv going to 1/2 from either side (see also Ref. 14)).
We use the same notation for both short and long diameters in terms of the integers
nu, nv and M as for the elliptic and hyperbolic one-parametric families, specifying
them also by the stationary points in the phase space variables σ (or Iu) for all orbits
and Θu for the isolated ones, if necessary.
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3.4. Curvature

A key quantity in the semiclassical theory in terms of the action-angle variables
is the curvature K of the energy surface

K =
∂2Iv
∂I2

u

=
(
∂2Iv
∂σ2

+
ωu
ωv

∂2Iu
∂σ2

)/(
∂Iu
∂σ

)2

. (3.13)

The partial derivatives appearing on the right-hand side above are given in Appendix
A. Figure 2(b) displays K versus Iu. In the limit σ → 0 one finds the curvature
for the twice repeated short diameters considered as primitive orbits. 19) For our
definition of the (non-repeated) primitive orbits, the curvature Ks is larger by a
factor of 2, i.e.,

Ks = − 1
πpRη3/2

, (3.14)

which is finite and negative for all deformations. K remains negative for the entire
hyperbolic part 0 ≤ σ < 1 of the curve, whereas it is positive for the elliptic part
1 < σ < σcr. At the critical points σ = 1 (separatrix) and at σcr (creeping point),
the curvature diverges. It tends to −∞ as one approaches the separatrix from the
hyperbolic side, and to +∞ from the elliptic side. For σ → σcr it also tends to +∞.

§4. Phase space trace formula in action-angle variables

4.1. Action-angle variables

We now transform the phase space trace formula (2.3) from the usual phase
space variables (r,p) to the angle-action variables (Θ, I). The latter are useful
for integrable systems because the Hamiltonian H does not depend on the angle
variables Θ, i.e., H = H(I). For elliptic billiard one has from (2.3)

gscl(ε) =
1

(2πh̄)2
Re
∑
α

∫
dΘ′′

u

∫
dΘ′′

v

∫
dI ′u
∫
dI ′v δ(ε−H(I ′u, I

′
v))

× exp
{
i

h̄

[
Sα(I ′, I ′′, tα) + (I ′′ − I ′) · Θ′′]− iνα

}
, (4.1)

where Θ = {Θu, Θv} are the angles and I = {Iu, Iv} the actions for the elliptic
billiard defined in the previous section. For simplicity we omit here and below
the Jacobian pre-exponential factor of Eq. (2.3), because this Jacobian taken at
the stationary points is always unity when we apply the improved stationary phase
method for calculation of the integral over phase space variables, as noted above.

4.2. Stationary phase method and classical degeneracy

As noted in the Introduction, we emphasize that even for integrable systems
the trace integral (4.1) is more general than the Poisson-sum trace formula which
is the starting point of Refs. 4) and 5) for the semiclassical derivations. These two
trace formulae become identical when we assume that the phase of the exponent also
does not depend on the angle variables Θ, like the Hamiltonian. Then, the integral
over angles in (4.1) simply gives (2π)n, where n is the spatial dimension (n = 2 for
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the elliptic billiard) (see Ref. 5)). In this case the stationary condition for all angle
variables are identities in the 2π interval. This is true for the contribution of the most
degenerate classical orbits, like elliptic and hyperbolic orbits, with K = 1 in elliptic
billiard. For the case of orbits with smaller degeneracy, like the isolated diameters
(K = 0) in elliptic billiard, the exponent phase is strongly dependent on some angles
with definite discrete stationary points. We therefore need to integrate over such
angles using the standard or improved SPM. Other examples are the equatorial
orbits (K = 1) and diameters along the symmetry axis (separatrix with K = 0) in
the spheroidal cavity (n = 3), the degeneracy parameters of which are smaller than
the largest possible value K = Kmax = 2 for the elliptic and hyperbolic orbits in
the meridian plane, and for three-dimensional orbits. We have a similar situation
also for the diameters with K = 2 in the spherical cavity (Kmax = 3), orbits along
the symmetry axis for axially-symmetric cavities, and so on. Thus, the stationary
conditions with respect to the angle variables for orbits with smaller degeneracies
are not identities. Moreover, the stationary points in the cases mentioned above
occupy subspaces of the phase space which are isolated in the rational tori that lead
to separate contributions to the trace formula, except for the most degenerate orbit
families, as we see below for the case of elliptic billiard.

4.3. Stationary phase conditions

We first perform the integral over I ′v in Eq. (4.1) exactly. Due to the energy
conserving δ-function, we are left with the integrals over the angles Θ′′

u and Θ′′
v and

the action I ′u:

gscl(ε) =
1

(2πh̄)2
Re
∑
α

∫
dΘ′′

u

∫
dΘ′′

v

∫
dI ′u

1
|ω′

v|
× exp

[
i

h̄

(
Sα(I ′, I ′′, tα) + (I ′′ − I ′) · Θ′′)− iνα

]
, (4.2)

Sα(I ′, I ′′, tα) = −
∫ I′′

I′
dI · Θ(I). (4.3)

We first write down the stationary phase equation for Iu:(
∂Sα(I ′, I ′′, tα)

∂I ′u

)∗
−Θ′′

u ≡ Θ′
u −Θ′′

u = 2πMu, (4.4)

where Mu is an integer. The star indicates that we take the quantities at the sta-
tionary point I ′u = I∗u. We now use the Legendre transformation (2.6), which reads

Sα(I ′, I ′′, tα) + (I ′′ − I ′) · Θ′′ = Sα(Θ′′,Θ′, ε)− I ′ · (Θ′′ − Θ′), (4.5)

Sα(Θ′,Θ′′, ε) =
∫ Θ′′

Θ′
dΘ · I(Θ).

Making use of this transformation, the stationary phase conditions for angles Θu and
Θv are written as(

∂Sα(Θ′,Θ′′, ε)
∂Θ′′ +

∂Sα(Θ′,Θ′′, ε)
∂Θ′

)∗
≡ I ′′ − I ′ = 0. (4.6)
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For the following derivations we have to decide which stationary phase conditions
from Eqs. (4.4) and (4.6) are identities for the finite volume of the phase-space tori
and which are equations for the isolated stationary points. To do this, we must calcu-
late separately the contributions from the most degenerate (elliptic and hyperbolic)
families (K = 1) to the improved trace formula and those from diameters in elliptic
billiard. These two contributions are different with respect to the above-mentioned
decision concerning the integration over the angles Θ. After the integration over
one of the angle variables, say Θv, corresponding to the identity in the stationary
phase conditions (4.6) due to an invariance of the action along the periodic orbit in
Eq. (4.2), one gets Eq. (7) of Ref. 30) derived earlier by Bruno. 38) Thus, we obtain
the result of Refs. 30) and 38) within periodic orbit theory. Our phase-space trace
formula (2.3) is more general because it can be applied to more exact calculations
of the level density, without using the stationary phase conditions like Eqs. (4.6), in
terms of closed (periodic and non-periodic) orbits.

Note that we have separate contributions coming from each kind of family and
isolated orbits even near the bifurcation points (3.12) where we have the end point.
Taking the deformation within a small distance from ηbif , we are left with two sep-
arate close stationary points and then use the Maslov-Fedoryuk theory 39) - 42) as
for caustic and turning points. Finally, after the integration using the improved
stationary phase method, we look at the limit η → ηbif to the bifurcation point.
In particular, this idea of Maslov and Fedoryuk is applied in Appendix B for the
calculation of the contribution of the long diameter at the separatrix.

§5. Trace formulas for the elliptic billiard

5.1. Elliptic and hyperbolic orbit families (K = n− 1 = 1)

Each family of elliptic or hyperbolic orbits with a common action occupies a two-
dimensional finite area in the elliptic billiard. In this case, the stationary conditions
(4.6) for the integration over the angle variables Θu and Θv become identities, since
the integrand does not depend on the angle variables, and we have the conservation
of the action variable I ′u = I ′′u = Iu fulfilled identically along each classical trajectory
α. Taking the integrals over Θ gives a factor of (2π)2, and we are left with the
Poisson-sum trace formula like in Refs. 4) and 5):

gscl(ε) =
1
h̄2 Re

∑
M

∫
dI δ(ε−H(I)) exp

[
2πi
h̄

M · I − iνM

]

=
1
h̄2 Re

∑
M

∫
dIu

1
|ωv| exp

[
2πi
h̄

M · I − iνM

]
. (5.1)

Here M = (Mu,Mv) are integers which correspond to those in Eq. (3.8). Next
we transform the integration variable in the last expression of Eq. (5.1) from Iu to
σ defined by (3.3). Thus, the level density component δgscl,1 related to the one-
parameter families can be written as a sum of contributions from the hyperbolic



564 Magner, Fedotkin, Arita, Misu, Matsuyanagi, Shachner and Brack

(δg(h)
scl,1(ε)) and the elliptic (δg(e)

scl,1(ε)) parts of the tori. Their sum is

δgscl,1(ε) =
1

πε0pR2
Re
∑
M

1
nv

∫ σcr

0
dσLM

∂Iu
∂σ

exp
[
2πi
h̄

M · I(σ)− iνM

]
, (5.2)

where ε0 = h̄2/(2mR2), I(σ) are the actions defined by Eqs. (3.5), LM are the
‘lengths’ of the primitive orbits with M = 1 given by

LM =
2πnvp
mωv

= 2nvb sin θ

[
E(θ, κ)− F(θ, κ)

F(π2 , κ)
E(π2 , κ) + cot θ

√
1− κ2 sin2 θ

]
, (5.3)

and θ(σ) and κ(σ) are defined by Eq. (3.9). The ‘lengths’ become the true lengths of
the corresponding periodic orbits when they are taken at σ equal to the real positive
roots of Eq. (3.6) inside the integration range. For other values of σ, the ‘lengths’
are nothing else than the functions (5.3) introduced in place of ωv for convenience.
The integration range from the bifurcation point σ = 0 to the separatrix σs = 1
covers the contributions of all hyperbolic orbits. The remaining part of Eq. (5.2)
from σ = 1 to the creeping value σcr gives the contributions from the elliptic tori.

As we see below, the choice of σ as the integration variable significantly improves
the precision of the SPM. We hence apply the stationary condition (4.4) for the phase
in the integrands of Eq. (5.2) with respect to σ rather than to Iu. With Eqs. (3.9),
this condition becomes identical to Eq. (3.6) and determines the stationary phase
point σ′ = σ′′ = σ∗ related to I ′u = I ′′u = I∗u. We have used here the conservation
of σ (or the additional integral of motion l+l−) along the periodic orbit. We now
expand the phase up to second order as

Sα(I ′, I ′′, tα) + (I ′′ − I ′) · Θ′′ = 2πM · I = Sβ(ε) +
1
2
J
‖
β(σ − σ∗)2, (5.4)

where Sβ is the action along the periodic orbit β determined by Eq. (3.6),

Sβ(ε) = 2πM(nuIu(σ∗) + nvIv(σ∗)), (5.5)

and J
‖
β is the Jacobian stability factor with respect to σ along the energy surface:

J
‖
β =

(
∂2S

∂σ2

)
σ=σ∗,β

= 2πM

(
nu

∂2Iu
∂σ2

+ nv
∂2Iv
∂σ2

)
σ=σ∗,β

. (5.6)

It is related to the curvature Kβ (3.13) of the energy surface by

J
‖
β = 2πMnvKβ

(
∂Iu
∂σ

)2

σ=σ∗,β
= 2πMnvε |Kβ |

(
∂Iu
∂σ

)2

σ=σ∗,β
, (5.7)

where ε = +1 for elliptic orbits and ε = −1 for hyperbolic orbits. We now substitute
the expansion (5.4) and take the pre-exponential factor off the integral in Eq. (5.2).
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For the sake of simplicity, we only consider the lowest order in the expansion of the
phase and the pre-exponential factor in Eq. (5.2) in the variable σ, although higher-
order expansions can in principle be used to improve the precision of the SPM. Thus,
we are left with the integral from σ = 0 to 1 for the hyperbolic orbits, and from σ = 1
to σcr for the elliptic orbits.

When the stationary point σ∗ is far from the limits of these intervals, one can
extend the integration range from −∞ to ∞ and get the result of the standard
POT. 4) Near the bifurcation points (3.12) of the short diameter orbit (where the
hyperbolic orbit families appear), however, the stationary point σ∗ is close to zero.
In this case we cannot extend the lower limit to −∞, but, rather, we must take
the integral exactly from σ = 0. On the other hand, when the stationary point σ∗
approaches the integration limit σs (3.10) or σcr (3.11), hyperbolic or elliptic orbits
with an increasing number nv of corners appear. In these cases, too, we cannot
extend the integration limits to ±∞. Taking the integral over σ within the finite
limits, we obtain a trace formula in terms of complex Fresnel functions or generalized
error functions. The contributions of the one-parameter orbit families δgscl,1(ε) are
then given in the form

δgscl,1(ε) = Re
∑
β

A
(1)
β (ε) exp

[
ikLβ − iν

(tot)
β

]
. (5.8)

Here, the sum is taken over both elliptic and hyperbolic orbit families, k =
√
2mε/h̄.

The amplitude A(1)
β = |A(1)

β | of the orbit family β is given through

A(1)
β =

Lβ

2ε0πkR2
√
−εiM3n3

v |h̄Kβ |
erf
(
Z‖
β,1,Z‖

β,2

)
. (5.9)

Here Lβ is the ‘length’ of the orbit family (5.3) corresponding to the stationary point
σ∗ (M = 1). We have introduced here the generalized error function erf(z1, z2),

erf(z1, z2) =
2√
π

∫ z2

z1
dze−z2

= erf(z2)− erf(z1), (5.10)

erf(z) being the standard error function 47) with (complex) argument z. The complex
quantities Z‖

β,1 and Z‖
β,2 in (5.9) are given in terms of the Jacobian J

‖
β (5.6) and the

stationary points σ∗:

Z‖
β,1 =

√√√√εi|J‖
β |

2h̄

(
σ

(ε)
min − σ∗) , Z‖

β,2 =

√√√√εi|J‖
β |

2h̄

(
σ(ε)

max − σ∗) , (5.11)

where σ(ε)
min and σ

(ε)
max are related to the integration limits by

σ
(ε)
min =

{
1, ε = 1
0, ε = −1

}
, σ(ε)

max =

{
σcr, ε = 1
1 , ε = −1

}
. (5.12)

The phases ν(tot)
β in (5.8) are related to the Maslov indices. They have a constant

part νβ, which is independent of the deformation η and energy ε. At deformations
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that are far enough from bifurcation points, such that the stationary points are far
enough from the integration limits, we can determine this asymptotic part νβ by
transforming the error functions to Fresnel functions 47) with real limits and extend-
ing the integration limits to ±∞. We thereby arrive at the amplitude A(1)

β of the
standard POT, 4), 11), 44)

A
(1)
β =

Lβ

ε0πkR2
√
M3n3

v |h̄Kβ |
, (5.13)

and νβ is determined by the number of turning and caustic points, as in the theory of
Maslov and Fedoryuk. 39) - 42) In terms of the numbers nv and nu and the repetition
number M , it is given by

νβ =
3π
2
nvM for ε = +1,

νβ =
π

2
(2nu + 2nv)M for ε = −1. (5.14)

From Eqs. (5.8), (5.9) and (5.14) we determine an extra contribution to the total
phase ν(tot)

β

ν
(tot)
β = ν

(tot)
β (η, kR) = νβ − π

4
ε− arg

{
erf
(
Z‖
β,1,Z‖

β,2

)}
, (5.15)

which analytically connects the asymptotic values νβ and depends on the energy
through kR. The final result (5.15) for the total phase depends also on the defor-
mation parameter η.

Note that σ∗ is negative for η < ηbif . In the derivation of Eqs. (5.8) and (5.9),

we have changed the integration variable from σ to z =
√
−εi|J‖

β |/(2h̄)(σ − σ∗) in
order to transfer the kR and η dependence of the integrand to the limits of the
complex generalized error functions (5.10). Note also that our energy and deforma-
tion dependent phase ν(tot)

β are essentially different from those in Ref. 26) and much
simpler in analytical structure. In contrast to Refs. 26) and 29), we have not used
any assumption concerning the smoothness of the phase. Our solution is regular at
the separatrix and creeping points, at all bifurcation points, and in the circular disk
limit. We easily get the correct circular disk limit 46) and the Berry-Tabor result 4)

for larger deformations far from the bifurcations.
Equations (5.8), (5.9) and (5.15) represent one of our central results concerning

the contributions of the degenerate orbit families (K = 1) that simultaneously solves
the symmetry-breaking problem for both hyperbolic and elliptic orbits: near η = 1
and other bifurcation points for all hyperbolic orbits, and near the separatrix σs and
the ‘creeping’ point σcr for all elliptic orbits. The additional contributions of the
isolated orbits (K = 0) will be derived in the following two subsections.

Formally, our result (5.8) coincides with the first main term of the Berry-Tabor
trace formula (see Eq. (24) of Ref. 4)) using the simplest method for the expansions
near the stationary point instead of a more general and more complicated mapping
procedure. The next two terms of their formula, being of higher order in

√
h̄, can be
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obtained by taking account of the linear term in the expansion of the pre-exponential
factor over σ − σ∗. They were neglected in our approach because we are interested
here only in the main term of the SPM expansion, in order to get the simplest
possible solution of the bifurcation problem. With the higher-order corrections, we
should take into account the fact that the ratio of the contribution of the linear term
to that of the zero-order term of the amplitude is of the same order as the relative
contribution of the next order (cubic) term in the expansion of the phase. For a con-
sistent treatment of the level density in the semiclassical asymptotic approximation
kR � 1, one would have to collect both corrections.

5.2. Short diametric orbits (K = 0)

For the contribution of the isolated (K = 0) diameters, only one of the two
stationary phase conditions (4.6) corresponding to the Θv variable is an identity.
The other one for Θu is a nontrivial equation for the discrete number of stationary
points that differs by integer multiples of π. Indeed, due to the integrability of
motion in the elliptic billiard one has

Θu = ωut+Θ(0)
u , Θv = ωvt+Θ(0)

v , (5.16)

where Θ(0) is the initial angle Θ at t = 0. Since the frequency ωu in Eq. (5.16) is zero
for short diameters, for instance, there is no room for an identity in the stationary
phase condition for the variable Θu in Eq. (4.2). Hence, the Poisson-sum trace
formula cannot be applied to get the contribution from the short diameters, unlike
in the derivations in Ref. 24). The stationary points for the integration in Eq. (4.2)
over the angle Θu for short diameters are constants Θ∗

u = πM for M = 0, ±1, · · ·.
Due to the periodicity of the angle variable with the period 2π, we must deal with
the two stationary points Θ∗

u = 0 and π in the integration interval from −π to π
over the angle Θu in Eq. (4.2). We can then reduce the initial integration interval
for the angle variable Θu to the region from −π/2 to π/2, taking into account the
integration over other angles (related to the motion along the same periodic orbit
in the opposite direction) by the factor 2 (due to the time reversal invariance of the
Hamiltonian). Within this reduced integration interval, only one stationary point
Θ∗
u = 0 must be taken into account in the calculation with the improved stationary

phase method.
For the other variable Θv, for the short diameters, we have an identity in the

corresponding equation from Eq. (4.6). The integrand in (4.2) is independent of the
variable Θv, and the integral gives simply 2π. Thus, the integrand for the contri-
bution of the short diameters essentially depends only on Θu and possesses relevant
stationary points. When we take this integral using the SSPM we immediately obtain
Gutzwiller’s result for short diameters with his stability factor in the denominator.
This stability factor is zero at the bifurcation points. Below, we obtain the short
diameter term improved at the bifurcation points. For this purpose we first follow
the same method in the integration over Θu and Iu as we did in the integration
over Iu for elliptic and hyperbolic orbits with highest degeneracies. The integration
interval over Iu for the contribution of the short diameters is also finite from 0 to
the maximal “creeping” value I(cr)

u (3.11), which corresponds to the region of the σ
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variable 0 ≤ σ ≤ σcr.
Thus, for short diameters, we use the stationary condition for the angle variable

Θu and expand the phase of the exponent in Eq. (4.2) about the short diameter,

Sα = SsM (ε) +
1
2
J⊥
sMΘ2

u, (5.17)

with SsM (ε) being the action along the short diameter, SsM (ε) = 4 p(ε) aM , and
Θ∗
u = 0. J⊥

sM is the Jacobian corresponding to the second variation of the action Sα
with respect to the angle variable Θu,

J⊥
sM =

(
∂2Sα
∂Θ′2

u

+ 2
∂2Sα

∂Θ′
u∂Θ

′′
u

+
∂2Sα
∂Θ′′2

u

)
sM

=
(
− ∂I ′u
∂Θ′

u

− 2
∂I ′u
∂Θ′′

u

+
∂I ′′u
∂Θ′′

u

)
sM

,

(5.18)

according to Eq. (4.5). The Jacobian J⊥
sM is expressed in terms of the diametric

curvature Ks (3.14) and Gutzwiller’s stability factor FsM ,

FsM = −

− ∂I′u

∂Θ′
u
− 2 ∂I′u

∂Θ′′
u
+ ∂I′′u

∂Θ′′
u

∂I′u
∂Θ′′

u



sM

= 4 sin2
[
M arccos(2η−2 − 1)

]
, (5.19)

which is independent of the choice of the phase space variables

J⊥
sM = FsMJ

(Θ)
sM = − FsM

4πMKs
, (5.20)

where

J
(Θ)
sM = −

(
∂I ′u
∂Θ′′

u

)
sM

(5.21)

and Ks is the short diametric curvature given by Eq. (3.14) (ε = −1). In the second
equality of Eq. (5.20) we used a simple relation between the Jacobians J (Θ)

sM , J‖
β and

Ks. This relation follows directly from their definitions and simple properties of the
Jacobians:

J
(Θ)
sM J

‖
β(

∂Iu
∂σ

)2 = −1. (5.22)

After the exact integration over Θv in Eq. (4.2) which gives 2π as explained
above, we substitute the expansion (5.17) of the action Sα and take the amplitude
factor at the stationary point Θ∗

u = 0. We take the integral over Θu within the finite
range from −π/2 to π/2. This can be reduced further to the integral from 0 to π/2
with the factor 2 due to spatial symmetry, in addition to the time reversibility factor
2 mentioned above. Integrating over Iu as in the previous subsection, one finally
gets

δg
(s)
scl,0 = Re

∑
M

A(0)
sM exp[ikLsM − iνsM ]. (5.23)
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Here, LsM is the length of the diameter orbit, LsM = 4Ma,

A(0)
sM =

2a
ε0πkR2

1√|FsM | erf
(
Z‖
sM,1,Z‖

sM,2

)
erf
(
Z⊥
sM,1,Z⊥

sM,2

)
, (5.24)

and ZsM,1 and ZsM,2 are defined by

Z‖
sM,1 = 0, Z‖

sM,2 =

√√√√ i
∣∣∣J‖

sM

∣∣∣
2h̄

σcr, (5.25)

Z⊥
sM,1 =

√
−i ∣∣J⊥

sM

∣∣
2h̄

Θ′
u = 0, Z⊥

sM,2 =

√
−i ∣∣J⊥

sM

∣∣
2h̄

Θ′′
u =

π

2

√
−i ∣∣J⊥

sM

∣∣
2h̄

. (5.26)

For any finite deformation and sufficiently large kR, Eq. (5.24) is greatly simplified
by using asymptotics for the first error function and one obtains

A(0)
sM =

2a
ε0πkR2

1√|FsM | erf
(
Z⊥
sM,1,Z⊥

sM,2

)
. (5.27)

The constant part νsM of the Maslov phases in Eq. (5.23) is obtained in the
same way as in the previous subsection:

νsM = 3πM − π

2
. (5.28)

For deformations far from the bifurcation points, the level density δg
(s)
scl,0 (5.23)

asymptotically reduces to the standard Gutzwiller formula for isolated short diame-
ters, 1), 2), 7)

δg
(s)
scl,0(ε) →

2a
ε0πkR2

∑
M

1√
FsM

sin(kLsM − νsM ). (5.29)

The total Maslov phase ν(tot)
sM for the diameter orbits is

ν
(tot)
sM = νsM − arg

{
erf
(
Z‖

1,sM ,Z‖
2,sM

)}
− arg

{
erf
(
Z⊥

1,sM ,Z⊥
2,sM

)}
≈ νsM − arg

{
erf
(
Z⊥

1,sM ,Z⊥
2,sM

)}
(5.30)

for large kR.
Near the bifurcation points where FsM → 0, one obtains from Eq. (5.23) the

finite limit,

δg
(s)
scl,0 → a

πε0kR2
Re
∑
M

1√
2Mih̄ |Ks|

erf
(
Z‖
sM,1,Z‖

sM,2

)
ei(kLsM−νsM )

≈ η1/4

ε0

√
2πkR

Re
∑
M

1√
M

ei(kLsM−νsM−π/4). (5.31)

Note that the two last terms in Eq. (24) of Ref. 4) are smaller than the above
contribution (5.31) at the bifurcation deformations ηbif (3.12) by the factor

√
kR.
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Therefore, these two terms are the next order semiclassical corrections and can be
neglected in comparison with the term (5.31) obtained above. Moreover, the ISPM
solution (5.23) is not related to the “diametric” part of the Poisson-sum trace formula
(5.2) with nu = 1 and nv = 2, as follows from the derivations in Ref. 24) (α1 = 2, α2 =
λ = 2 in the notation of Ref. 24) applied for short diameters in elliptic billiard,
α1 = 2nu) (see below for the more detailed discussion). Thus, our derivation is
essentially different from that suggested earlier in Ref. 24) (where the last two terms
in Eq. (24) of Ref. 4) are retained without considering the contribution (5.31)).

Taking the limit of Eq. (5.31) for η → 1 we obtain the same contribution of the
diameters in the circular disk 46) as found from the “diametric” part of the Poisson-
sum trace formula,

δg
(d)
scl,1(ε) =

1
ε0

√
2πkR

∑
M

1√
M

sin(kLsM − νsM + π/4). (5.32)

The value in this limit is larger by the factor
√
kR than the standard Gutzwiller

result for isolated orbits as at any other bifurcation points.

5.3. Long diameters and the separatrix

As shown in §2, the curvature K goes to +∞ from the right side and −∞ from
the left side near the separatrix (σ = 1) with the same modulus (see Eqs. (A.5),
(A.6) and Fig. 2(b)). The derivation for short diameters of the previous section
with the expansion of the action exponent phase to second order terms cannot be
applied in this case. However, we note that the behavior of the curvature near the
separatrix in the action Iu (or σ) variable is similar to that for the eigenvalues of
the matrix of the second derivatives of the action in the usual coordinate space
near the turning points. One can thus apply the Maslov and Fedoryuk idea for the
calculation of the Maslov indices (see Refs. 39) – 42)). Following this idea we first
expand the phase of the exponent in Eq. (4.1) with respect to the action Iu taking
into account up to third order terms (see Eq. (B.1) in Appendix B). Then we use the
linear transformation (B.9) to the new variable z to get the standard exponent in the
integral representation of the Airy functions. Within this method, we take the small
first derivative (small parameter c1) and the large second derivative (curvature) in
the cubic polynomial expansions (B.1) taking σ within a small distance from the
separatrix σ = 1. After some algebraic transformations we obtain Eq. (B.12) in
Appendix B in the limit σ → 1. Note that an idea similar to that we used here, in
which σ is considered near the singular separatrix point σ = 1 and finally, only after
the calculation of the integrals, the limit σ → 1 is taken, is applied in the derivations
of the separate contributions of the hyperbolic orbit family and short diameters to
the periodic orbit sum, as mentioned above.

For the angle integral in Eq. (B.12), we use the same Maslov-Fedoryuk
method 39) - 42) applied for the caustic case. As a result, one obtains (see Appendix B)

δg
(l)
scl,0(ε) =

b

ε0πkR2
Re
∑
M

e
i[kLlM+ 2

3
(w

3/2

‖ +w
3/2
⊥ )−νlM ]
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×
√√√√√

w‖w⊥∣∣∣c‖2c⊥2 ∣∣∣
[
Ai(−w‖) + iGi(−w‖)

]

×
[
Ai
(
−w⊥,Z⊥

lM,1,Z⊥
lM,2

)
+ iGi

(
−w⊥,Z⊥

lM,1,Z⊥
lM,2

)]
. (5.33)

Here, the complete and incomplete Airy (or Gairy) functions with one and three
arguments (Eq. (B.14)) are used in line with the definitions in Refs. 47) and 48) (see
also Appendix B for the definitions of all other quantities).

For large kR
√
η2 − 1, near the separatrix σ → 1, the parameter w⊥ is negligible

in Eq. (B.17) for the limits Z⊥
1,lM and Z⊥

2,lM and the integration range can be extended
from 0 to ∞. The incomplete Airy integrals in Eq. (5.33) approach the complete
ones and the asymptotic forms of all Airy functions like Ai(−w) and Gi(−w) are
now used. 47) Finally, we asymptotically obtain the standard Gutzwiller result for
the isolated diameters, 1), 2), 7)

δg
(l)
scl,0(ε) = − 2b

ε0kR2
Re
∑
M

e
i[kLlM+ 2

3
(w

3/2

‖ +w
3/2
⊥ )−νlM ]

√√
w‖w⊥
|FlM |

×
[
Ai(−w‖) + iGi(−w‖)

][
Ai(−w⊥) + iGi(−w⊥)

]
→ 2b

ε0πkR2

∑
M

1√|FlM | sin(kLlM − νlM ), (5.34)

where FlM is the Gutzwiller stability factor for long diameters,

FlM = −4 sinh2
[
M arccosh(2η2 − 1)

]
, (5.35)

νlM = 3πM − π

2
. (5.36)

In the second equation we used the asymptotics of the Ai(−w) and Gi(−w) func-
tions. 47) We found also the constant part νlM of the phase by using the Maslov-
Fedoryuk theory. The deformation and energy-dependent Maslov phases are deter-
mined by the additional phases in the exponent and the argument of the product of
the square brackets in (5.33) through complex combinations of the Airy and Gairy
functions and their arguments.

In the circular shape limit, both the upper and the lower limits of the incomplete
Airy functions in Eq. (5.33) tend to zero, and the angle integral has the finite limit
π/2 because c‖2, c⊥3 and w⊥ vanish (see Appendix B). With this, the other factors
near the separatrix σ → 1 ensure that the amplitudes for long diameters diminish
because w‖ (B.11) vanishes at the separatrix (see also Ref. 47)). Therefore, the long
diameter contribution becomes zero in the circular shape limit.

Thus, for deformations far from the bifurcations, the results (5.23) and (5.33) of
the ISPM reduce to the standard Gutzwiller formula. In the circular disk limit the
improved short diameter density (5.23) continuously approaches the diametric contri-
bution to the circular disk density, while the long diameter (separatrix) contribution
diminishes. Note that our ISPM solution (5.33) for the unstable long diameters
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is not related to the Poisson-sum trace formula (5.1), in particular, with its “dia-
metric” part because of the existence of the isolated stationary points for the angle
variable Θu as for short diameters. Moreover, the uniform approximation Eq. (24)
of Ref. 4) is singular at the separatrix because of the divergence of the curvature
Kl for σ → 1, as noted in Ref. 26). However, instead of using the continuation of
the WKB approach to the complex plane as suggested in Ref. 26), we applied the
simpler Maslov-Fedoryuk method 39) - 42) and obtained the analytical dependence of
the Maslov phase on the deformation and energy through the exponent phase and
complex arguments of the Airy functions as well as their complex summations.

5.4. Closed orbits and the circular disk limit

To get a more exact solution for the diameter contribution to the level density
and check the precision of the ISPM, we come back to the initial trace formula
Eq. (2.2) before application of the ISPM for the calculation of this trace.∗) For this
purpose we take exactly the trace integral (2.2) in suitable variables. This is the
trace formula in terms of the sum over all closed (periodic and non-periodic) orbits
α,

δgscl(ε) = 2 (2πh̄)−3/2 m√
p

∑
α

∫
dx dy√
Jα(x, y)

sin(kLα − να), (5.37)

where Jα(x, y) is the stability factor defined through the Jacobian Jα(p′tα, r′′ε) by

Jα(p′tα, r′′ε) =
m2

p

(
∂θ′p
∂ȳ′′

)
α

=
m2

p

1
Jα(x, y)

. (5.38)

Here the deflection δȳ′′ of the final path point in the perpendicular direction of
the local Cartesian system (x̄, ȳ) comes from the angle variation δθ′p of the initial
momentum, 11), 46) (see Fig. 3).

We then simplify the trace formula (5.37), taking the contribution of the main
shortest closed orbits α with the two reflection points denoted below by the index
“co2” as an example. For an arbitrary point (x, y) inside the elliptic billiard, one can
find such orbits “co2” that are triangles with two vertices at the elliptic boundary and
one vertex at the point (x, y) (see Fig. 4). There are two kinds of such orbits. For any
point (x, y) we can plot the hyperbola and ellipse confocal to the boundary, which
are the orbit-length invariant curves. Indeed, moving the initial point (x, y) along
such a hyperbola (or an ellipse) we have the one-parametric family of the triangle-
like orbits with the same action (K = 1). We refer to them as the hyperbolic and
elliptic “co2” orbits, respectively.

For the calculation of the trace integral (5.37) it is convenient to use the elliptic
coordinates (u, v), (3.1). After this coordinate transformation, we can take the sine
function of the action off the v or u integration for the hyperbolic or elliptic “co2”
orbits, respectively, because the action is independent of the corresponding elliptic

∗) Equation (2.1) can be obtained also from the phase space trace formula Eq. (2.3) taking the

integral over two components of the momentum p′ along the energy surface using the stationary

phase method.
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O

O′
p′

y

x
y″

Fig. 3. Illustration of the caustic method for evaluating the stability factor Jα in Eq. (5.38) for the

closed two-reflection orbit “co2”. The deflection angle δθ′
p at the initial point O(r′), variation

δȳ′′ of the final point O′(r′′) with respect to O, and the coordinate system (x̄, ȳ) are shown. The

thick solid curves and dashed curves represent the hyperbolic orbit “co2” and the perturbed

orbit, respectively. The thin solid curve indicates the orbit-length invariant hyperbola confocal

to the boundary.

O O

Fig. 4. Closed non-periodic two-reflection orbits with the elliptic and hyperbolic caustics at the

initial point O(x, y) are indicated by thin and thick solid curves, respectively, for the deformation

η = 1.05 (left-hand side) and 1.2 (right-hand side). O is the vertex common to both triangular

orbits. The dashed curves indicate the orbit-length invariant ellipse and hyperbola crossing

the initial point. The hyperbolic orbit is close to the diameter of the circular shape for small

deformations.

coordinate. Finally, one obtains from Eq. (5.37)

δg
(hco2)
scl,1 (ε) = 2(2πh̄)−3/2mζ2

√
p

∫
du sin(kLhco2(u)− νhco2) dv(sinh2 v + cos2 u)√

Jhco2(x(u, v), y(u, v))
(5.39)

for the contribution from the hyperbolic “co2” orbits (hco2), and a similar equation
for the elliptic “co2” orbits. An explicit expression for the stability factor Jco2(x, y)
evaluated using the caustic method 11) is presented in Appendix C.

Note that the hyperbolic “co2” orbits with the initial point (x, y) reduce to the
disk diameters crossing the same point in the circular disk limit (see Fig. 4). The
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Fig. 5. (a) Convergence to the circular shape limit: The contribution of the closed two-reflection

orbits of the hyperbolic type “hco2” (see Fig. 4) to the level density δg(kR) is represented

by the solid curve for the deformation η = 1.005, while Gutzwiller’s trace formula (SSPM) for

isolated diameters and the circular disk trace formula are indicated by dotted and dashed curves,

respectively. The dashed curve overlaps with the solid curve, so that it cannot be distinguished

from the latter. (b) Convergence to the Gutzwiller trace formula for η = 1.1. The notation is

the same as in (a).

stability factor Jhco2(x, y), (C.1), turns into the analytical circular disk expression
of Ref. 46). The circular disk limit of the level density (5.39) coincides with the
diameter contribution δg

(d)
scl,1(ε), (5.32), as shown in Fig. 5(a). The opposite limit of

(5.39) far from the bifurcations is the Gutzwiller SPM for the short and long isolated
diameters (see Fig. 5(b)). The contribution of the elliptic “co2” is negligibly small
everywhere, and it vanishes at the circular disk shape as higher order h̄ corrections.

§6. Level density, shell energy and averaging

6.1. Total level density

The total semiclassical POT density can be written as the sum over all periodic
orbit families considered in the previous section,

δgscl(ε) = δgscl,1(ε) + δg
(s)
scl,0(ε) + δg

(l)
scl,0(ε) =

∑
β

δg
(β)
scl (ε), (6.1)

where the first term is the contribution (5.8) from the elliptic and hyperbolic orbits.
The second and third terms are the contributions from the short (5.23) and the long
(5.33) diameters, respectively. Near the circular limit, the last two terms for one
period (M = 1) can be replaced by the contribution of the hyperbolic “co2” orbits
(5.39) to obtain a more precise semiclassical result.

6.2. Semiclassical shell energy

The shell-correction energy δE can be expressed in terms of the oscillating part
δg

(β)
scl (ε) of the semiclassical level density as 6), 7), 11)
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δE = 2
∑
β

(
h̄

tβ

)2

δg
(β)
scl (εF ), N = 2

∫ εF

0
dεg(ε). (6.2)

Here, tβ is the time of the motion along the periodic orbit β (including its repetitions),

tβ =MβTβ =
2πMβ

Ωβ
, (6.3)

where Tβ is the period of the primitive orbit with the Fermi energy εF , Mβ the
repetition number, Ωβ the frequency, and N the particle number. Note that we have
taken into account the spin degeneracy factor 2 in (6.2).

The semiclassical representation of the shell-correction energy (6.2) differs from
that of δg only by the factor (h̄/tβ)2 = (h̄2kF /mLβ)2, which suppresses contributions
from longer orbits. Thus short periodic orbits play dominant roles in determining
the shell-correction energy.

6.3. Average level density

For the purpose of presenting the level density improved at the bifurcation points
we need to consider a level density slightly averaged, thus avoiding the convergence
problems that usually arise when one is interested in a full semiclassical quantization.

The averaging is done by folding the level density with a Gaussian of width Γ :

gΓ (ε) =
1√
πΓ

∫ ∞

−∞
dε′ g(ε′) e

−
(

ε−ε′
Γ

)2

. (6.4)

The choice of the Gaussian form of the averaging function is immaterial and guided
only by mathematical simplicity. For cavities it is also convenient to use the level
density defined as a function of kR averaged with a Gaussian of width γ:

gγ(kR) =
1√
πγ

∫ ∞

−∞
d(k′R) g(k′R) e

−
(

(k−k′)R
γ

)2

, (6.5)

where

g(kR) =
∑
i

δ((k − ki)R) = 2kRε0

∑
i

δ(ε− εi) = 2kRε0g(ε), (6.6)

ε0 = h̄2/2mR2 and the dimensionless parameter γ is related to Γ by

Γ = 2γ
√
εε0. (6.7)

Applying the averaging procedure defined above to the semiclassical level density
(6.1), one obtains 3), 46), 11)

δgΓ,scl(ε) =
∑
β

δg
(β)
scl (ε) e

−
(

Γtβ
2h̄

)2

=
∑
β

δg
(β)
scl (ε) e

−
(

γLβ
2R

)2

. (6.8)
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The latter equation is written specifically for billiard problems in terms of the orbit
length Lβ (in units of a typical length scale R) and γ. The averaging yields an
exponential decrease of the amplitudes with increasing Lβ and/or γ. As shown
in Ref. 11), for γ of order unity, all longer paths are strongly damped and only the
shortest periodic orbits contribute to the oscillating part of the level density, yielding
its gross-shell structure. For a study of the bifurcation phenomenon, however, we
need smaller values of γ.

Finally, we should note that the higher the degeneracy of an orbit, the larger
the volume occupied by the orbit family in the phase space and also, the shorter its
length, the more important its contribution to the average level density.

§7. Quantum elliptic billiard

7.1. Numerical method for the spectrum calculation

Single-particle energies εi of a particle of mass m moving freely inside the elliptic
boundary v ≤ vb can be obtained by a number of numerical methods. Following the
procedure employed in previous works 18), 20) by some of the present authors, one can
expand the deformed single-particle wave functions Ψ(r, θ) into a circular basis with
well-defined orbital angular momentum l as

Ψ
(++)
i (r, θ) =

(e)∑
l=0

AlJl(kir) cos(lθ), Ψ
(−+)
i (r, θ) =

(o)∑
l=1

BlJl(kir) sin(lθ),

Ψ
(+−)
i (r, θ) =

(o)∑
l=1

AlJl(kir) cos(lθ), Ψ
(−−)
i (r, θ) =

(e)∑
l=2

BlJl(kir) sin(lθ), (7.1)

where Jl(x) are the cylindrical Bessel functions of the first kind, ki =
√
2mεi/h̄, the

superscripts (++) etc. indicate the parities with respect to reflections about the x
and y axes, and the superscripts (e) and (o) indicate the sums with respect to even
and odd l, respectively. The expansion coefficients Al and Bl can be determined by
applying Dirichlet boundary conditions.

In the present analysis we employed, in addition to the above circular-wave
decomposition method, the numerical procedure based on a rather standard ap-
proach, the transformation of the Schrödinger equation into an elliptic coordinate
system. 26), 52), 53) In terms of elliptic coordinates (3.1), the Schrödinger equation can
be written as

[√
ξ2 − 1

∂

∂ξ

{√
ξ2 − 1

∂

∂ξ

}
+
√
1− φ2

∂

∂φ

{√
1− φ2

∂

∂φ

}]
ψ(ξ, φ)

+
2mεiζ

2(ξ2 − φ2)
h̄2 ψ(ξ, φ) = 0, (7.2)

where ξ = cosh v and φ = cosu. Following Ref. 52), this equation can be sepa-
rated into two ordinary differential equations by assuming ψ(ξ, φ) = R(ξ)S(φ). The



Symmetry Breaking and Bifurcations in the Periodic Orbit Theory. I 577

  0

100

200

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Axis Ratio η

E
ne

rg
y

Fig. 6. Single-particle spectra (in units of ε0) for elliptic billiard plotted as functions of the defor-

mation parameter η.

functions R and S are solutions of the ordinary differential equations

(ξ2 − 1)
d2Rl(c, ξ)

dξ2
+ ξ

dRl(c, ξ)
dξ

−
[
λl − c2ξ2

]
Rl(c, ξ) = 0,

(1− φ2)
d2Sl(c, φ)

dφ2
− φ

dSl(c, φ)
dφ

+
[
λl − c2φ2

]
Sl(c, φ) = 0, (7.3)

where λl is the separation constant and c = ζ
√
2mεi/h̄ for ξ ≤ ξb = cosh vb. The

internal radial functions Rl(c, ξ) are expanded in terms of Bessel functions of the first
kind. The expansion coefficients and the separation constant λl can be determined
from the three-term recurrence relations found in various references. 47), 52) - 54)

By imposing usual boundary conditions on the radial wave functions, i.e.,
Rl(c, ξb) = 0, one finds the eigenenergies εi. All eigenvalues up to kR ≈ 40 with
the coordinate-transformation method can be calculated numerically in matter of
minutes without overlooking solutions near level crossings, and hence the procedure
is certainly effective for the present model. The results obtained from both numerical
procedures were carefully compared and found to exhibit a nice convergence.

In Fig. 6 the deformation dependence of the single-particle energies for the elliptic
billiard is presented. In the circular limit, the familiar shell gaps are clearly observed,
while different shell gaps start to develop at higher deformations. Below we identify
the semiclassical origin of these shell structures at higher deformations.

7.2. Strutinsky’s smoothed level densities and shell energies

With the aid of the Strutinsky averaging procedure, 57) clear oscillatory patterns
of the coarse-grained level density emerge, as shown in Fig. 7, where (a) and (b)
are obtained with the Gaussian smoothing parameter γ (defined by (6.7)) of 0.30
and 0.64, respectively. As clearly seen from these figures, the choice of a Gaus-
sian smoothing parameter γ is crucial for properly identifying the coarse-grained
level density, and hence the contribution of classical periodic orbits. In the circular
limit η = 1.0, the two Gaussian-smoothed level densities exhibit similar oscillations,
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Fig. 7. Coarse-grained level densities with the Gaussian smoothing parameter γ = 0.3 (a) and 0.64

(b).

whereas the shell gaps for γ = 0.64 start to collapse with increasing deformation.
In particular for deformations η larger than 1.5, strong shell patterns cease to exist
for the case γ = 0.64, while for γ = 0.3 appreciable effects still remain and more
oscillations appear as the deformation increases.

In the semiclassical picture, for a given value of γ the contributions from only
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Fig. 8. Shell structure energy δE (in units of ε0) plotted as a function of both the deformation η

and the particle number N .

those periodic orbits of length up to Lmax ≈ πR/γ can be considered. In this context,
it is important to locate the actual shell-energy minima, irrespective of the choice of
a Gaussian smoothing parameter.

In terms of the particle number N , one can also obtain the shell-correction
energy δE defined as the difference between the sum of single-particle energies of N
lowest levels (taking the spin-degeneracy factor 2 into account) and the Strutinsky
averaged energies, i.e.,

δE =
N∑
i=1

εi − Ẽ, Ẽ = 2
∫ ε̃F

−∞
dε′ ε′ g̃(ε′), (7.4)

with the Fermi energy ε̃F satisfying

N = 2
∫ ε̃F

−∞
dε′ g̃(ε′). (7.5)

Figure 8 illustrates the oscillating pattern of the shell-correction energy δE as
function of both the deformation η and particle number N . It is clear from the figure
that the distance between the major shell gaps shrink with increasing deformation. In
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Fig. 9. Smoothed shell-correction energies for η = 1.5 with Gaussian smoothing parameter γ = 0.3

(dashed curve) and 0.6 (dotted curve). Those without smoothing are plotted by the solid curve.

the considered range of deformation it is found that the actual magic numbers deter-
mined through the above procedure cannot be reproduced with the choice γ = 0.64,
whereas the value γ = 0.3 is sufficiently small to avoid demolishing but sufficiently
large to preserve the actual coarse-grained shell structure. It is explicitly shown in
Fig. 9, where the shell-correction energies are now calculated by applying Gaussian
smoothing parameters γ = 0.3 and 0.64, for the case η = 1.5 as an example. In this
case, the actual magic numbers are found to be · · · , 16, 22, 30, 38, 52, · · ·, which
exactly coincide with those for γ = 0.3, while those calculated with γ = 0.64 show
larger oscillations where magic numbers · · · , 16, 30, · · · are missing. The same is
true for other deformations considered in this paper. Thus, the coarse-grained shell
structure obtained with γ = 0.64 is too rough and therefore we adopt γ = 0.3 to
improve the precision of its description.

7.3. Shell structure and Fourier spectra

Equations of single-particle motion in billiard are invariant with respect to the
scaling transformation (r,p, t) → (r, αp, α−1t). The action integral Sβ for a periodic
orbit β is proportional to its length Lβ:

Sβ(E = p2/2m) =
∮
β
dr · p = pLβ = h̄kLβ. (7.6)

The semiclassical trace formula for the level density is then written as

gscl(ε) = g̃(ε) +
∑
β

Aβ(kR) cos
(
kLβ − π

2
µβ

)
, (7.7)

where g̃(ε) denotes the smooth part corresponding to the contribution of zero-length
orbits, Aβ = |Aβ |, and µβ is the Maslov phase (the deformation and energy depen-
dent phase of Eqs. (5.15) and (5.30) in our improved semiclassical approximation).
As previously discussed, the stationary phase approximation employed in deriving
the Gutzwiller trace formula breaks down at bifurcation points for stable periodic
orbits, and consequently it results in the divergence of the amplitudes Aβ(kR) in
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1.2 (b), 1.5 (c) and 1.7 (d). Some periodic orbits that correspond to peaks are illustrated.

Eq. (7.7), whereas in the present ISP treatment, those amplitudes are smooth func-
tions of both deformation and energy.

In order to examine the classical-quantum correspondence in shell structure,
one can perform the Fourier transform F (L) of the quantum level density g(ε) with
respect to the wave number k,

F (L) =
∫
dk e−ikLg(ε)e−

1
2

(
k
kc

)2
=

1
2ε0R2

∑
i

1
ki
e−ikiLe

− 1
2

(
ki
kc

)2

, (7.8)

which may be regarded as a ‘length spectrum’ exhibiting peaks at lengths of indi-
vidual periodic orbits. Here the Gaussian factor is included to smoothly cutoff the
spectrum in the high-energy region. In numerical calculations, we use kc = kmax/

√
2,

kmax being the maximum wave number included. The above method of taking the
Fourier transform of the quantum level density is known to be a powerful tool to in-
vestigate the role of classical periodic orbits in the appearance of shell fluctuations in
quantum systems, and from such observations one can also extract the semiclassical
contributions of individual periodic orbits.

Fourier spectra for deformations η = 1.0, 1.2, 1.5 and 1.7 are presented in
Figs. 10(a)–(d), respectively. At the axis ratio η = 1.0, the diameter and elliptic
orbits are found to be equally important. The fact that the main contribution to the
gross-shell structure comes from the shorter periodic orbits implies the significance
of three classical periodic orbits in the circular limit, namely the diameter, triangu-
lar, and square shape orbits. As the deformation increases, the Fourier amplitudes
for triangular and rhombic orbits still exhibit fairly strong effects, while those for
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diameter orbits start to decline quickly and significant rearrangement can be ob-
served. In particular at deformations η = 1.5 and 1.7, one can conclude, in addition
to triangular and rhombic shape orbits, the gross-shell fluctuations are also governed
by the (1,4) hyperbolic orbits bifurcated from the 2(1,2) short diameter orbit at the
critical deformation η =

√
2.

Figure 11(a) displays the deformation dependence of Fourier amplitudes cal-
culated from the quantum single-particle spectra. Here the enhancement of peaks
indicates a larger contribution from the corresponding classical periodic orbits β of
length Lβ to the shell structure. In the circular limit, the system possesses the high-
est symmetry, and the breaking of this symmetry due to a small deviation of its shape
results in the orbital bifurcation. With increasing deformation, the short diameter
orbits with M repetitions M(1,2) also bifurcate and create hyperbolic orbits at the
critical deformations ηbif given by Eq. (3.12). The length of those classical periodic
orbits as a function of deformation can be calculated, 14) as shown in Fig. 11(b). It
is clearly seen from both figures that the bifurcations of stable periodic orbits give
rise to an increase in the Fourier amplitudes. The significant enhancements seen
in the figure exactly coincide with the corresponding lengths of the newly created
hyperbolic orbits, and hence they stress the importance of the orbital bifurcations.

In this context, similar enhancements for the case of a spheroidal cavity of su-
perdeformed shape were also reported in Ref. 21), where superdeformed shell struc-
ture is associated with bifurcations of periodic orbits with two repetitions on the
equatorial plane. In the present work, particular attention is paid to investigate
such correlations between bifurcations of stable periodic orbits and quantum level-
density oscillations.

In Fig. 12, Fourier peak heights for some of the important hyperbolic orbits,
namely those bifurcated from the short diameter orbits of 2, 3 and 4 repetitions,
2(1,2), 3(1,2) and 4(1,2), are displayed as functions of the deformation parameter
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η. Interestingly, the Fourier peaks for these newly created orbits exhibit a univer-
sal deformation dependence; that is, their heights reach the maxima shortly after
their bifurcation points and quickly decrease with increasing deformation. Such
remarkable features were already seen in Fig. 8, where the shell valleys for η approx-
imately larger than 1.5 can be understood to vary along the constant-action lines
S(k, η) = const of the (1,4) hyperbolic orbits, as explained below.

Suppose some classical periodic orbits β of length Lβ are the dominant compo-
nents in the semiclassical trace formula for the oscillating level density. Then the
shell valley maxima/minima follows the constant-action lines Sβ(k, η) = const of
those dominating classical periodic trajectories. Referring to Eq. (7.7), such lines
are determined by

kLβ − π

2
µβ = (2n+ 1)π, n = 0, 1, 2, · · · . (7.9)

We demonstrate the above dependence in Fig. 13(a), where the smoothed level
densities are plotted in the k-η plane. As indicated in Fig. 13(b), it is interesting
to note that the shell valley structures seen in Fig. 13(a) can be described by the
constant-action lines of three major periodic orbits: Near the circular limit, the
shell valleys vary along those of elliptic (mainly triangular and rhombic) orbits; in
the right-half region of Fig. 13(a) the influence of newly created (1,4) hyperbolic
orbits is visible; and the contribution of short diameter orbits are less pronounced
but certainly non-negligible throughout the considered range of deformation. The
equality Eq. (7.9) indicates the inverse proportionality relation between the orbital
length Lβ and wave number k. As the length of a trajectory β increases, the values of
k decrease, and consequently the smoothed level densities exhibit more oscillations.
In particular, since the length of the (1,4) hyperbolic orbits gradually increases for
η ≈ √

2 –1.7 and then slowly decreases for η > 1.7, the corresponding constant-
action lines behave in the same manner. Such a tendency was already observed in
Fig. 8, where the contribution from the (1,4) hyperbolic orbits to the shell energy
δE is apparent in the region η > 1.5, indicating the essential role of the orbital
bifurcations in quantal shell formations.

§8. Comparison between quantum and semiclassical calculations

Figures 14–16 show the modulus of the complex amplitude for a few short or-
bits. The semiclassical amplitudes for the hyperbolic “butterfly” M(nu, nv) = (1, 4)
and elliptic triangular (1,3) orbit families calculated using the ISPM are in good
agreement with the exact calculation of the Poisson-sum trace integral (4.2) (see
Figs. 14 and 15, respectively). All ISPM amplitudes are continuous function of the
deformation through the bifurcation point η =

√
2. A significant enhancement of

the butterfly amplitude is seen at the deformation η = 1.5 –1.6 slightly to the right
of the bifurcation point (see Fig. 14).

The ISPM amplitude for the primitive short diameter 1(1,2) quickly approaches
the Gutzwiller SSPM result as one goes away from the circular limit and, for larger
deformations, its magnitude is relatively small compared with those of the other
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orbits mentioned above (see Fig. 15).
In Fig. 16 we compare the ISPM result with the modulus of the “diametric”

part of the Poisson-sum trace formula corresponding to nu = 1, nv = 2 and M = 2,
which is regarded in Ref. 24) as representing short and long diameters, as well as the
standard Gutzwiller results. The ISPM amplitude for the bifurcating short diameter
2(1,2) has the maxima; at the bifurcation deformation

√
2, which is significantly

larger than the butterfly and triangular amplitudes, and at the circular shape (see
also Figs. 14 and 15). (Similar maxima at the circular shape appear for any short
diameter orbit. The maximum for the short diameter 1(1,2) is the largest one, in
particular, larger than for the triangular orbit (see Fig. 15(a)).) As seen from Fig. 16,
there is the same circular shape limit for the ISPM approach and the “diametric”
part of the Poisson-sum trace formula, which is identical to the diameter family
amplitude in the circular disk.
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Apparently, the behavior of the ISPM amplitude for two repetitions of the
short diameter 2(1,2) is essentially different from that of the “diametric” part of
the Poisson-sum trace integral, which exhibits no enhancement near the bifurcation
point. Thus, the Poisson-sum trace formula (5.1) describes families with maximum
degeneracy, like hyperbolic and elliptic orbits, rather than isolated diameters. For
isolated orbits with smaller degeneracy, like diameters in elliptic billiard the Poisson-
sum trace formula cannot be applied because of the isolated stationary points for
the angle Θu variable. This is the reason for the agreement of the ISPM and SSPM
asymptotics unlike for the “diametric” term of the Poisson-sum trace integral in
Eq. (5.1). This implies that the diameters cannot be included in the usual EBK
rational torus quantization. However, the diameters could be included in a more
general quantization rule in terms of the averaged ISPM level densities (6.1) in a
similar way as that pointed out in Refs. 9) and 12).

We note a significant improvement of the ISPM results compared to the SSPM
for σ close to the separatrix value 1 and the creeping value σcr (3.11). These cases
might seem to be important only in the limit η → ∞ when σcr tends to unity.
However, even for 0 ≤ η <∼ 2 we meet situations in which the stationary points are
close to the critical points σ = 1 and σ = σcr, so that we must integrate within the
finite limits.

We compare in Fig. 17 the semiclassical level densities δgscl(kR) calculated using
the ISPM with the quantum results for the averaging parameter γ = 0.3. The results
obtained with the ISPM are in good agreement with quantum results even near the
bifurcation point

√
2, where the SSPM gives a divergent result due to the zeros of

the stability factor FsM for short diameters 2(1,2). For deformations like 1.2 and 1.7
far from the bifurcation, one obtains a fair agreement between the ISPM and the
SSPM.

Figure 18 displays the nice convergence of the ISPM results to those using the
circular disk trace formula for η → 1. This convergence is seen for any small defor-
mation when the semiclassical parameter kR becomes sufficiently large. With the
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Fig. 17. Quantum and semiclassical (ISPM) oscillating level densities δg(kR) versus kR for several

deformations. The averaging parameter γ = 0.3, the parameter of Strutinsky’s shell correction

method γ̃ = 2.0, and the correction polynomial degree 2M = 6 are used.

inclusion of the closed (periodic and non-periodic) hyperbolic orbit contribution, one
gets even better agreement with the quantum densities near the circular disk shape.
For deformations far from the circular shape (η >∼ 1.1) and far from other bifurcation
points, the contribution of the hyperbolic “co2” orbits approach Gutzwiller’s SSPM
result for the isolated diameters (see Fig. 5(b)).

For the averaging parameter value γ = 0.64, we have good convergence of POT
sums for the ISPM and SSPM with a few short periodic orbits with M ≤ 1, nu = 1
and nv ≤ 10. This is due to the damping factor in Eq. (6.8) which ensures the
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convergence of the POT sum. For the smaller value γ = 0.3 we need more orbits
with M ≤ 2, nu ≤ 2 and nv ≤ 10. Note that for γ = 0.3 we have much better
agreement of the ISPM results with the quantum mechanical calculations than in
the case of SSPM for the deformations near the bifurcations including the transition
to the circular shape (see Fig. 7).
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Figures 19 and 20 show nice agreement of the ISPM results for the shell-
correction energies with the corresponding quantum results. Note that we can sub-
stitute the exact Fermi energy εF into the semiclassical shell energy δE (6.2) by using
the second equation of (6.2) for the particle number and quantum level density, as
in Ref. 11). This is important to get the correct behavior of the shell-correction
energy as a function of particle number N , as explained in Ref. 11). It is evident
from Fig. 20 that the nice agreement between the ISPM and quantum results in
the strongly deformed region of η ≥ √

2 cannot be attained without including the
contributions from bifurcating 2(1,2) and (1,4) orbits.

In all our calculations we used the semiclassical approximation improved at the
bifurcation points which becomes better with increasing kR for all deformation sizes
including the bifurcation points.

§9. Conclusion

The most essential new result of this paper in comparison to the Berry-Tabor
theory are the two additional terms (the second and third ones in Eq. (6.1)) in the
improved trace formula for elliptic billiard. These two terms represent the contribu-
tions from the short and long diameters which are continuous functions through all
bifurcation points. For deformations far from the bifurcation points, we asymptot-
ically obtain the standard Gutzwiller result for isolated diameters and the correct
trace formula for diameters in spherical limit of circular billiard. Our results for the
hyperbolic and elliptic orbits improved near the bifurcation points are simpler than
those suggested within the uniform approximation. 4), 26)

Making use of our improved trace formula, we have demonstrated the importance
of bifurcations of the repeated short diameter orbit in the emergence of shell structure
at large deformations.
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Appendix A
Curvatures

The actions Iu and Iv given by Eq. (3.5) are expressed explicitly in terms of the
elliptic integrals. 47), 49) For elliptic orbits one has

Iu =
2
π
ζ
√
2mεσ E
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σ
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,

Iv =
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π
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√
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while for hyperbolic orbits,
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Equations (A.1) and (A.2) may be regarded as equations for the energy surface
ε(Iu, Iv) written in terms of the parameter σ for its elliptic and hyperbolic parts,
respectively.

The curvature K of the energy curve is obtained by differentiating Eqs. (A.1)
and (A.2) with respect to the parameter σ. In this way one gets Eq. (3.13) with the
following derivatives for elliptic orbits:
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while for hyperbolic orbits,
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(
θh, σ,

√
σ
)−Π

(
π

2
, σ,

√
σ

)

+F
(
π

2
,
√
σ

)
− F
(
θh,

√
σ
)]
. (A.4)

With Eq. (A.3) we obtain the curvature Kβ (3.13) for elliptic orbits as

Kβ =
π

4pζ
κ

F2(π2 , κ)

[
F(θ, κ)
F(π2 , κ)

Π

(
π

2
, κ2, κ

)
−Π(θ, κ2, κ) +

η
√
η2 − 1√

1− (1− κ2)η2

]
.

(A.5)
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For hyperbolic orbits we have

Kβ =
π

4pζ
1

κ2 F2(π2 , κ)

[
Π(θ, κ2, κ)− F(θ, κ)

F(π2 , κ)
Π

(
π

2
, κ2, κ

)]
. (A.6)

Appendix B
Separatrix

As for the case of turning points, 39) - 42) one writes

1
h̄

[
Sα(I ′, I ′′, tα)− (I ′′ − I ′) · Θ′′] = c

‖
0 + c

‖
1x+ c

‖
2x

2 + c
‖
3x

3 + . . .

≡ τ
‖
0 + τ

‖
1 z +

1
3
z3. (B.1)

Here,
x = (I ′u − I ′u

∗)/h̄, (B.2)

c
‖
0 =

1
h̄

[
S∗
α(I

′, I ′′, tα)− (I ′ − I ′′)∗ · Θ′′∗] = 1
h̄
S∗
α(Θ

′,Θ′′, ε), (B.3)

c
‖
1 =
(
∂Sα
∂I ′u

−Θ′′
u

)∗
= Θ′

u −Θ′′
u → 0, (σ → 1) (B.4)

c
‖
2 =

h̄

2

(
∂2Sα

∂I ′u
2

)∗
= 2πMh̄K‖ → ∞, (σ → 1) (B.5)

c
‖
3 =

h̄2

6

(
∂3Sα

∂I ′u
3

)∗
=

2πh̄2M

3

(
∂K‖

∂Iu

)
< 0, (σ → 1) (B.6)

where the symbol ∗ indicates that I ′u = I ′′u = I∗u. The asymptotic behavior of the
constants c‖i near the separatrix σ ≈ 1 was found from

K‖ → π log[(1 + sin θ)/(1− sin θ)]
pζ(σ − 1) log3(σ − 1)

, (σ → 1) (B.7)

θ → θh(η) formally, see (3.9),

∂K‖

∂Iu
→ −2π2 log[(1 + sin θ)/(1− sin θ)]

(pζ(σ − 1) log2(σ − 1))2
. (σ → 1) (B.8)

The second equality in Eq. (B.1) was obtained by a linear transformation with some
constants α and β,

x = αz + β, α = (3c‖3)
−1/3, β = −c‖2/(3c‖3), (B.9)

τ
‖
0 = (c0 − c1c2/(3c3) + 2c32/(27c

2
3))

‖, τ
‖
1 = α[c1 − c22/(3c3)]

‖. (B.10)

Near the stationary point for σ → 1, one has c‖1 → 0 and τ‖1 → −w‖ with the positive
quantity

w‖ =

(
c22

(3c3)4/3

)‖
→
∣∣∣∣M log[(1 + sin θ)/(1− sin θ)]pζ(σ − 1)

2h̄ log(σ − 1)

∣∣∣∣
2/3

. (B.11)
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Using the expansion (B.1) in Eq. (4.1) and taking the integral over the angle Θ′′
v

exactly, i.e. writing 2π instead of this integral, one gets

δg
(lM)
scl = −2

h̄
Re
∑
α

∫
dΘ′′

u

1
|ω∗

v |
ei(τ0−να)

√√√√√
w‖
c
‖
2

×
[
Ai
(
−w‖,Z‖

lM,1,Z‖
lM,2

)
+ iGi

(
−w‖,Z‖

lM,1,Z‖
lM,2

)]

≈ −2
h̄
Re
∑
α

∫
dΘ′′

u

1
|ω∗

v |
ei(τ0−να)

√√√√√
w‖
c
‖
2

[
Ai
(
−w‖

)
+ iGi

(
−w‖

)]
,

(B.12)

where

Z‖
lM,1 =

√
w‖, Z‖

lM,2 =

√√√√ c
‖
2√
w‖

I
(cr)
u

h̄
+√

w‖. (B.13)

Here, Ai(−w, z1, z2) and Gi(−w, z1, z2) are incomplete Airy and Gairy functions, 48){
Ai(−w, z1, z2)
Gi(−w, z1, z2)

}
=

1
π

∫ z2

z1
dz

{
cos
sin

}(
−wz + z3/3

)
, (B.14)

and Ai(−w) and Gi(−w) are the corresponding standard complete functions. 47) Here
we used in the second equation of Eq. (B.12) the fact that for any finite deformation
η and large kR near the separatrix (σ → 1) one gets (see Eq. (B.11))

Z‖
lM,1 → 0, Z‖

lM,2 → 4

[
M log[(1 + sin θ)/(1− sin θ)]pζ

2(σ − 1)2 log4(σ − 1)

]1/3

×
[

η√
η2 − 1

E

(
π

2
,

√
η2 − 1
η

)
− 1

]
→ ∞. (B.15)

Using an analogous expansion of the action τ0 in Eq. (B.12) with respect to
the angle Θ′′

u to third order and making a linear transformation like Eq. (B.9), one
arrives at Eq. (5.33). We introduced in (5.33) several new quantities, like

w⊥ =

(
c22

(3c3)4/3

)⊥
> 0, (B.16)

Z⊥
lM,2 =

√
w⊥, Z⊥

lM,2 =
π

2

(∣∣∣3c⊥3 ∣∣∣)1/3 +√
w⊥, (B.17)

c⊥2 =
1
2h̄

(J⊥
α )

∗ =
1
2h̄

(
∂2Sα

∂Θ′
u
2 + 2

∂2Sα
∂Θ′

u∂Θ
′′
u

+
∂2Sα

∂Θ′′
u
2

)∗

lM

= − FlM

8πMK‖ , (B.18)

where FlM is the stability factor for long diameters (see Eq. (5.35)):

c⊥3 =
1
6h̄

[
∂3Sα

∂Θ′
u
3 + 3

∂3Sα

∂Θ′
u
2∂Θ′′

u

+ 3
∂3Sα

∂Θ′
u∂Θ

′′
u
2 +

∂3Sα

∂Θ′′
u
3

]∗

=
1
6h̄

[
∂J⊥

α

∂Θ′
u

+
∂J⊥

α

∂Θ′′
u

]∗
< 0. (B.19)
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Note that, according to Eq. (B.18), the quantity c⊥2 goes to 0 near the separatrix (σ →
1) as in the caustic case. This is the reason that the Maslov-Fedoryuk theory 39) - 42)

can be used for the transformation of the integral over the angle Θ′′
u in Eqs. (B.12)

into Eq. (5.33).

Appendix C
Jacobians for Closed Orbits with Two Reflection Points

The Jacobian J
‖
co2 defined by the derivative in Eq. (5.38) for closed orbits α like

“co2” with two reflection points, J‖
co2 =

(
δȳ′′/δθ′p

)
co2

, can be calculated by means of

the caustic method. 11) The main idea of this method is to use a specific property of
the trajectories in the billiard system like elliptic cavity. These trajectories consist
of straight lines which are tangent to a curve called an elliptic or hyperbolic caustic
between turning points. Our trajectory stability problem for the variations δȳ′′ at
a given δθ′p (see Fig. 3) is much simplified by reducing it to the calculation of the
caustics semi-axes ac, bc and ac + δac, bc + δbc for the closed orbit “co2” and its
δθ′p deflection, respectively. For the case of closed non-periodic orbits “co2”, the
semi-axes ac and bc and their variations are functions of the initial point (x, y), in
contrast with the stability problem for the periodic orbits of Ref. 11). The orbit-
length invariant curve (confocal-to-boundary ellipse or hyperbola crossing the point
(x, y) (see Fig. 4)) and its semi-axis variations play a similar role for the calculation
of the “co2” stability factor J‖

co2 with that of the boundary parameter for the periodic
orbits in Ref. 11). In this way this stability factor is obtained in the form

J
‖
co2 =

q0 − q1√
1 + q1

D, D =
x′′ − x

δθ′p
, (C.1)

where x′′ is the x-coordinate of the final point O′ (see Fig. 3), and q0 and q1 are
the tangents of the slope angle for the initial and final directions of particle motion
along the orbit “co2”,

q0 = ±xc1
yc1

(
bc
ac

)2

, q1 = ±xc2
yc2

(
bc
ac

)2

. (C.2)

Here, the upper and lower signs stand for the hyperbolic and elliptic closed orbits,
(xc1, yc1) and (xc2, yc2) are the first and last tangent-to-caustics points of the trajec-
tory “co2”,

xc1 =
Bc +

√
B2
c −AcCc

Ac
, yc1 =

{
1

(ac − x)/|ac − x|

}
bc

√
1±
(
xc1
ac

)2

, (C.3)

xc2 =
Bc −

√
B2
c −AcCc

Ac
, yc2 =

{
−Ac/|Ac|

1

}
bc

√
1±
(
xc2
ac

)2

, (C.4)

respectively, and

Ac = b2cx
2 ∓ a2

cy
2, Bc = ∓a2

cb
2
cx, Cc = a4

c(b
2
c − y2). (C.5)
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The semi-axes ac and bc, as functions of the initial point (x, y) for the hyperbolic
and elliptic caustics for the orbit “co2” (see Fig. 4), are given by

ac = a

√
∓(bx − bc)Z

bx + bc
, bc = b

√
1−Z, (C.6)

where ax and bx are the semi-axes for the confocal-to-boundary hyperbola and the
ellipse crossing any current initial and final point (x, y) of the orbit “co2” inside the
elliptic billiard,

b2x =
x2 + y2 + b2 − a2 ∓√(x2 + y2 + b2 − a2)2 − 4y2(b2 − a2)

2
,

a2
x = ∓(b2x − b2 + a2), (C.7)

and Z is the root of the cubic algebraic equation

(1− η2)2Z3 +

[
(1 + η2)2

(
bx
b

)2

+ 1− η4

]
Z2

+

[
2η2 − 1− 2(1 + η2)

(
bx
b

)2
]
Z +

(
bx
b

)2

− 1 = 0. (C.8)

The factor D in Eq. (C.1) is given by

D =
2axΦaG

A0
, (C.9)

where

Φa = η2fc

[
∓4a2

cb
2 + η2(a2 ± a2

c)
2 − b4c/η

2

2ac(b2 − b2c ± η2a2
c)2

]
, (C.10)

fc = 2

[
d0x+

q0(d2
0 − b2 + a2)
1 + q2

0

]
, d0 = y − q0x, (C.11)

G =
2B0d0q0 +A0(b2x ∓ a2

x − d2
0)− C0(1 + q2

0)

2
√
B2

0 −A0C0

− d0q0

+
(1 + q2

0)(B0 −
√
B2

0 −A0C0)

A0
, (C.12)

with

A0 = b2x ∓ a2
xq

2
0 , B0 = ∓a2

xd0q0, C0 = ∓a2
x(d

2
0 − b2x). (C.13)

Here we have used the invariance of the Jacobian J (x, y) with respect to time re-
versal.
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