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Abstract

The high-spin yrast structure of32S is investigated by means of the cranked Skyrme–Hartree–
Fock method in the three-dimensional Cartesian-mesh representation without imposing restrictions
on spatial symmetries. The result suggests that (1) a crossover from the superdeformed to the
hyperdeformed-like configurations takes place on the yrast line at angular momentumI ' 24, which
corresponds to the “band termination” point in the cranked harmonic-oscillator model, and (2) non-
axial octupole deformations of theY31 type play an important role in the yrast states in the range
56 I 6 13. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since the discovery of the superdeformed (SD) rotational band in152Dy, about two
hundreds SD bands have been found in various mass (A= 60, 80, 130, 150, 190) regions
[1–6]. It turned out that every regions of superdeformation have their own characteristics
and offer a number of interesting questions; investigations of them have been significantly
enlarging and deepening our understanding of nuclear structure. Yet, the doubly magic SD
band in32S, which has been expected for quite a long time [7–10], remains unexplored, and
will become a great challenge in the coming years [6]. Exploration of the SD band in32S
will certainly give a strong impact toward understanding the possible connection between
the SD structure and the molecular resonance phenomena associated with the16O+ 16O
configurations (see, e.g., [11,12] for reviews). More generally speaking, the nucleus32S
seems to be situated in a key position in the investigation of possible relationships (such as
discussed in [13–15]) between the SD states systematically observed in heavy nuclei and
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the cluster structures widely observed in light nuclei (see, e.g., [16] for a review). Thus,
excited states in32S have been theoretically studied by Nilsson–Strutinsky approaches
[7–10], selfconsistent mean-field approaches [17,18], spherical shell-models [19,20], and
cluster-structure and molecular-resonance points of view [21–25].

The aim of this paper is to study the high-spin yrast structure of32S from the point
of view of exploring exotic shapes in nuclear high-spin states by means of the cranked
Hartree–Fock (HF) method with the use of the Skyrme forces [26,27], which is called “the
cranked SHF method”. One of the recent advances in nuclear structure theory is that it has
become possible to carry out the HF calculation in the three-dimensional (3D) Cartesian-
mesh representation [28–30,32]. This approach has been extended [18,33,34] to a rotating
frame by introducing the cranking term and applied to the high-spin yrast states of32S
in Ref. [18] with the use of the BKN interaction [31]. In these cranked HF calculations,
however, parity and signature symmetries are assumed for the intrinsic wave functions
in order to simplify the calculation. We refer an excellent review by Åberg, Flocard and
Nazarewicz [2] for an overview of studies on nuclear shapes in terms of various kinds of
mean-field theory, especially other than the cranked SHF approach.

Recently, we constructed a new computer code for the cranked SHF calculation based on
the 3D Cartesian-mesh representation, which provides a powerful tool for exploring exotic
shapes (breaking both axial and reflection symmetries in the intrinsic states) at high spin
in unstable nuclei as well as in stable nuclei. As a first application of this new code, we
investigated the high-spin yrast structure of32S, and found [35] that (1) a drastic structure
change may occur above angular momentumI ' 24 in the yrast line, and (2) non-axial
octupole deformations of theY31 type arise in the yrast line in the range 56 I 6 13. The
present paper is intended to give a more detailed account of this work. Quite recently,
Molique, Dobaczewski and Dudek [36] investigated several SD configurations in32S (not
restricted to the yrast states) as well as in neighboring odd-A nuclei by means of the
cranked SHF method with the SLy4 force [37] in the harmonic oscillator basis. On the
other hand, they did not discuss the yrast states aboveI ' 24 as well as non-axial octupole
deformations, which are the major subjects of this paper.

After a brief account of the cranked SHF calculational method in Section 2, an overview
of the obtained yrast line for32S is given in Section 3. In Section 4, we discuss properties of
the high-spin limit of the SD band, paying special attention to a band-crossing phenomenon
associated with the level crossing with the rotation-aligned[440]12 level. The result of
the cranked SHF calculation is compared in Section 5 with that of the cranked harmonic
oscillator (CHO) model calculation. In Section 6, effects of the rotation-induced, time-
odd components in the selfconsistent mean field on the properties of the SD band are
briefly discussed. In Section 7, we discuss about theY31 deformed solutions of the cranked
SHF equations, which constitute the yrast line in the range 56 I 6 13. Although, at the
present time, experimental data directly comparable with our theoretical calculations seem
to be unavailable, we briefly remark in Section 8 on some recent experimental references.
Conclusions are given in Section 9.
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2. Cranked SHF calculation

The cranked HF equation for a system uniformly rotating about thex-axis is given by

δ〈H −ωrotJx〉 = 0, (1)

where ωrot and Jx mean the rotational frequency and thex-component of angular
momentum, and the bracket denotes the expectation value with respect to a Slater
determinantal state. We solve the cranked HF equation for a Hamiltonian of the Skyrme
type by means of the imaginary-time evolution technique [28] in the 3D Cartesian-mesh
representation. We adopt the standard algorithm [28–30,34] in the numerical calculation,
but completely remove various restrictions on spatial symmetries. Namely, we basically
use the procedure developed and applied to the yrast line of24Mg by Bonche, Flocard and
Heenen [34], except that the parity and the signature symmetries are not imposed on the
individual wave functions. In this connection, we mention that a similar HF code (with
parity projection but without the cranking term) was constructed by Takami et al. [38] and
successfully applied to the description of cluster structures in light nuclei,8Be, 12C, 16O
and 20Ne. The same code (but without parity projection) was recently used to explore
exotic shapes in proton-richN ' Z nuclei in the80Zr region [39,40], and tetrahedral
and triangular shapes are suggested to appear near the ground states of some nuclei in
this region. In Refs. [34,39,40], the pairing correlations were taken into account in the
BCS approximation. In the present calculation, we neglect the pairing, since they are not
expected to play an important role at high-spin states in32S.

When we allow for the simultaneous breaking of both reflection and axial symmetries,
it is crucial to accurately fulfill the center-of-mass condition〈

A∑
i=1

xi

〉
=
〈

A∑
i=1

yi

〉
=
〈

A∑
i=1

zi

〉
= 0, (2)

and the principal-axis condition〈
A∑
i=1

xiyi

〉
=
〈

A∑
i=1

yizi

〉
=
〈

A∑
i=1

zixi

〉
= 0. (3)

For this purpose we examined several techniques [41] and confirmed that the constrained
HF procedure with quadrupole constraints [42] works well. Thus, we replace the
“Routhian”R =H −ωrotJx in Eq. (1) with

R′ =R −
3∑
k=1

µk

〈
A∑
i=1

(xk)i

〉2

−
3∑

k<k′
µk,k′

〈
A∑
i=1

(xkxk′)i

〉2

. (4)

In numerical calculations, we confirmed that the constraints (2) and (3) are fulfilled to
the order O(10−15) with values of the parametersµk ∼ O(102) andµk,k′ ∼ O(1). We
solved these equations inside the sphere with radiusR = 8 [fm] and mesh sizeh= 1 [fm],
starting with various initial configurations. The 11-point formula was used as the difference
formula for the Laplacian operator. As usual, the angular momentum is evaluated asI h̄=
〈Jx〉.
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In this paper, we use the standard SIII and SkM∗ forces. With the use of the SIII force
[26], Tajima et al. [30] carried out a systematic SHF+BCS calculation for the ground-state
quadrupole deformations of nuclei in a wide area of nuclear chart. They have carefully
examined the possible error due to the use of the mesh sizeh= 1 [fm] and found that the
deformation energies obtained with this mesh size are quite accurate. On the other hand,
the SkM∗ force [27] was designed to accurately describe properties at large deformations
like fission barriers, so that it may be suited for the description of superdeformations [32].
In recent years, several newer versions of the Skyrme forces have been proposed (see,
e.g., Ref. [43]) in order to improve isospin properties of the Skyrme forces. Although the
major purpose of them is to better describing neutron-rich unstable nuclei, it will also be
interesting to employ such versions to examine the dependence of the results reported in
this paper on the effective interactions adopted. We defer such a more extensive calculation
to the future.

3. Structure of the yrast line

The calculated yrast line is displayed in Fig. 1, and angular momenta and deformations
of the yrast states are drawn as functions of rotational frequency in Figs. 2 and 3. In
these and succeeding figures, the calculation were done in step of1ωrot = 0.2 MeV/h̄,
and the calculated points (indicated by symbols) are smoothly interpolated by lines. The
quadrupole deformation parametersβ2 andγ are defined as

(a) (b)

Fig. 1. (a) Excitation energy vs. angular-momentum plot for the yrast structure of32S, calculated
with the SIII force. Density distributions on the planeperpendicularto the rotation axis are shown,
as insets, for the SD band (solid line) and theY31 band (dashed line). The calculation was done in step
of 1ωrot= 0.2 MeV/h̄, and the calculated points (indicated by symbols) are smoothly interpolated
by lines. (b) Same as (a), but with the SkM∗ force.
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Fig. 2. Angular momentumI plotted as a function of rotational frequencyωrot for the SD band and
theY31 band in32S. Results calculated with the SIII and SkM∗ forces are shown by solid and dashed
lines, respectively.

Fig. 3. Quadrupole deformationβ2 plotted as a function of rotational frequencyωrot for the SD band
and theY31 band in32S. Results calculated with the SIII and SkM∗ forces are shown by solid and
dashed lines, respectively.
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β2 cosγ = 4π

5
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It is seen from Figs. 1–3 that the results of the calculations with the SIII and SkM∗ forces
are quite similar: For both cases, the expected SD band becomes the yrast forI > 14, and
it exhibits a singular behavior at aboutI ' 24. As we shall discuss in the next section,
this is due to a band crossing associated with the rotation-aligned[440]12 level, and we
call the yrast states aboveI ' 24 “hyperdeformed (HD)-like configuration” in order to
distinguish them from the SD configuration. This configuration becomes unstable against
fission forI > 34. In addition to the SD and HD-like configurations mentioned above, we
found that the yrast states with 56 I 6 13 possess an appreciable amount of non-axial
octupole deformation of theY31 type, so that we call, for convenience, this region of the
yrast line “Y31 band”, although, as discussed in Section 7, some caution is necessary in
using this terminology.

Thus, the calculated yrast line can be roughly divided into the following four regions:
(1) I 6 4, weakly prolate region,
(2) 56 I 6 13,Y31 deformed region,
(3) 146 I 6 24, SD region,
(4) 266 I 6 32, HD-like region.
Below we first discuss the properties of the high-spin limit of the SD band, and later

about theY31 band. The lowest-spin region will be touched upon in Section 8 briefly.

4. High-spin limit of the SD band

As we saw in Figs. 1–3, the solutions of the cranked SHF equations corresponding to
the yrast SD configuration are obtained fromI = 0 to aboutI = 22.

Fig. 4 shows the potential energy function for the SD state atI = 0, evaluated by means
of the constrained HF procedure [42] with the quadratic constraint on the mass-quadrupole
moment. We see that the excitation energy of the SD state atI = 0 is about 12 MeV.

A particularly interesting point is the behavior of the SD band in the high-spin limit: It
is clearly seen in Figs. 2 and 3 that a jump occurs both in the angular momentumI and
the quadrupole deformationβ2 at ωrot ' 2.9 MeV/h̄. At this point,I jumps from about
22 to 26, andβ2 suddenly increases from about 0.6 to 0.7. Such a discontinuity is well
known [44] to occur in the description of the band crossing phenomena within a standard
framework of the cranked mean-field approach. The point is more clearly seen in Fig. 5
as a singular behavior of the dynamical moment of inertiaJ (2) = dI/dωrot near the band
crossing point. (Other properties ofJ (2) will be discussed in the next section.)

Fig. 6 displays the shape evolution of the SD band as a function of angular momentum
in the (β2, γ ) plane: With increasing angular momentum, small triaxial deformations
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Fig. 4. Potential energy function atI = 0 for the SD configuration (solid line) relative to that for the
ground state configuration (dashed line) in32S, calculated with the SIII force.

Fig. 5. Dynamical moment of inertiaJ (2) = dI/dωrot plotted as a function ofωrot for the SD
band in 32S. Results calculated with the SIII and SkM∗ forces are shown by solid and dashed
lines, respectively. For reference, the rigid moments of inertiaJrig = m

∫
ρ(r)(y2 + z2)dr with

the calculated densityρ(r) are also indicated.
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Fig. 6. Shape evolution as a function of angular momentum, plotted in the(β2, γ ) plane for the
SD and HD-like configurations in32S. Results calculated with the SIII and SkM∗ forces are shown
separately.

gradually set in and atI ' 24 the shape exhibits a striking “back-bending” toward larger
prolate deformations. Evidently, this is due to the band crossing mentioned above. Such a
singular behavior of the SD band can be noticed also in the previous cranked HF calculation
with the BKN force [18]. In Fig. 6 we also plot theI = 24 and 26 states, which are missing
in Figs. 1–3, by smoothly extrapolating theI–ωrot and(β2, γ )–I curves for the SD and the
HD-like configurations, respectively (see Ref. [44] for the treatment of the band-crossing
region).

The microscopic origin of this singular behavior may be understood when we examine
the single-particle energy diagram in the rotating frame (routhians) presented in Fig. 7. We
see that the rotation-aligned level associated with the[440]12 orbit comes down in energy
with increasingωrot and crosses the Fermi level atωrot ' 2.9 MeV/h̄ which corresponds
to I ' 24. Thus, the yrast states aboveI ' 24 are characterized by the occupation of
the [440]12 level by a single proton and a neutron. According to the deformed harmonic-
oscillator model,N = Z = 18 is a magic number associated with the HD shell structure
with axis ratio 3: 1, in which the[440]12 level is occupied by two protons and two neutrons.
In order to distinguish the yrast states withI > 26 from the SD states belowI ' 24
and keeping in mind a connection to the HD configuration, we call them “the HD-like
configuration” although the magnitude of the quadrupole deformationβ2 obtained in the
SHF calculation is in fact comparable to that of the SD shape rather than the HD shape.

Let us note that if we regard the SD configuration as to correspond to thej–j -coupling
shell model 4p–12h configurationπ[(f7/2)

2(sd)−6] ⊗ ν[(f7/2)
2(sd)−6] (relative to40Ca)

in the spherical limit, the maximum angular momentum that can be generated by aligning
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Fig. 7. Single-particle energy diagram (for neutrons) in the rotating frame for the SD band in32S,
plotted as a function ofωrot. The SIII force is used. Note that the structure of the yrast configuration
drastically changes atωrot ' 2.9 MeV/h̄, so that the diagram is discontinuous about this point,
although levels characterized by the same asymptotic quantum numbers are linked by lines.

the single-particle angular momenta toward the direction of the rotation axis is 24h̄, and
thus “the SD band termination” might be expected at this angular momentum. Interestingly,
our calculation indicates that a crossover to the HD-like configuration takes place just at
this region of the yrast line.

5. Comparison with the CHO model

The behavior at the high-spin limit of the SD band obtained in the SHF calculation
possesses some similarities with that expected from the CHO model. This model has
been frequently used [45–50] as a simplified model of rotating mean fields. With obvious
notations, the single-particle Hamiltonian of this model is written as

h′ =
3∑
k=1

h̄ωk

(
c

†
kck +

1

2

)
−ωrotl1, (7)

where

c
†
k =

√
mωk

2h̄

(
xk − ipk

mωk

)
, (8)

with (x1, x2, x3) indicating(x, y, z), etc.
The orbital angular momentum operatorl1 consists of two parts:

l1= l(1N=0)
1 + l(1N=2)

1 (9)
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with

l
(1N=0)
1 = ih̄ ω2+ω3

2
√
ω2ω3

(
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†
3c2− c†

2c3
)
, (10)

l
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1 = ih̄ ω3−ω2

2
√
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(
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†
2c

†
3− c3c2

)
. (11)

For a given value ofωrot or I h̄ = 〈∑A
i=1(l1)i〉, one can determine the oscillator

frequencies(ω1,ω2,ω3) such that the selfconsistency condition between the density and
the potential,

ω2
1

〈
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(
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1

)
i

〉
= ω2
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〈
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(
x2

2

)
i

〉
= ω2

3

〈
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(
x2

3

)
i

〉
, (12)

is fulfilled under a volume conservation condition [50]. Here, the brackets denote
expectation values with respect to Slater determinantal states composed of single-particle
eigenmodes ofh′.

Let us denote the total number of quanta in each of the three directions(k = 1,2,3) at
ωrot= 0 as

Σk =
〈

A∑
i=1

(
c

†
kck +

1

2

)
i

〉
, (13)

and let us continuously follow the configuration specified by the set of values(Σ1,Σ2,Σ3)

which are defined atωrot 6= 0 as the number of quanta associated with the normal modes
of the CHO Hamiltonianh′. In terms ofΣk , the selfconsistency condition atωrot = 0 is
written as

ω1Σ1= ω2Σ2= ω3Σ3. (14)

If the1N = 2 part of the angular momentum operatorl1 is neglected, it is well known
that there exists a maximum angular momentumIc =Σ3−Σ2 for a given configuration
(Σ1,Σ2,Σ3), where the shape is oblate and the symmetry axis coincides with the rotation
axis [45]. This shape evolution is caused by the effect of the1N = 0 part of the cranking
term, which tends to align the angular momentum of individual particles toward the rotation
axis of the system (rotation alignment effect due to the Coriolis force). In the case of
the doubly closed shell configuration for the SD magic numberN = Z = 16 (including
the spin-degeneracy factor 2), corresponding to the SD band in32S, (Σ1,Σ2,Σ3) =
(24,24,48) taking into account protons and neutrons. We would thus expect the “SD
band termination” at the maximum angular momentumIc =Σ3−Σ2 = 24. This number
coincides with that evaluated in the previous section in relation to thej–j -coupling shell-
model configurations.

On the other hand, the1N = 2 part stretches the system toward larger deformations,
and actual shape evolutions as functions of angular momentum are determined by the
competition and balance between these two effects. Fully taking into account both effects
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Fig. 8. Shape evolutions as functions of angular momentum in the (β2, γ ) plane, plotted with
filled and open symbols, respectively, for the SD configuration (Σ1,Σ2,Σ3)= (24,24,48) and the
HD-like configuration(22,24,54) in the CHO model.

of the cranking term, Troudet and Arvieu [49,50] found that there is a critical valueαc of
Σ3/Σ2,

αc=
√

27+√2√
27−√2

' 1.75, (15)

such that the configuration(Σ1,Σ2,Σ3) does not (does) reach the oblate limit ifΣ3/Σ2

is greater (less) thanαc. This is because, for large deformations, the stretching effect of the
1N = 2 term dominates at high spin over the alignment effect of the1N = 0 term. In the
case of32S, the SD configuration haveΣ3/Σ2= ω2/ω3= 2> αc at I = 0. Therefore, the
“oblate limit” mentioned above will not be reached and the shape at the “band termination”
point will be triaxial.

Fig. 8 shows the shape evolution in the(β2, γ ) plane, calculated for the SD configuration
of 32S in the CHO model. Here, the result of calculation for the configuration(22,24,54)
is also presented, as an example of the HD-like configurations. We see that, although the
triaxiality slowly sets in with increasing angular momentum, the shape of the SD states
remains rather far from the oblate limit and exhibits a striking “back-bending” at about
Ic = 24 toward larger prolate deformations forI > Ic. Apparently, the behavior near
the critical angular momentumIc for the SD band is quite similar to that of the SHF
solutions presented in the previous section. On the other hand, it should be recalled in
comparing Fig. 8 with Fig. 6 that the highest spin region ofI = 26∼ 32 on the yrast
line corresponds to the HD-like configuration in the SHF solution: While the continuation
of the SD configuration(24,24,48) to theI > 24 region as well as that of the HD-like
configuration(22,24,54) to theI < 26 region are presented for the CHO model, only the
yrast states were obtained and plotted in the SHF calculation.

Fig. 9 shows the angular momentum and the dynamical moment of inertiaJ (2) as
functions of the rotational frequency. We see thatJ (2) gradually decreases until the critical
point. It is interesting to compare this property with that ofJ (2) for the SD band in the
SHF calculation (Fig. 5). Apparently, they are quite similar. This suggests that the gradual
decrease with increasingωrot of the dynamical moment of inertia for the SD band is rooted
in the existence of the critical angular momentumIc associated with the quantum SD
shell structure. We feel that a more detailed investigation of the SD states near the “band
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(a) (b)

Fig. 9. (a) Plot of angular momentum vs. rotational frequency in the CHO model. Solid line is used for
the SD configuration (Σ1,Σ2,Σ3) = (24,24,48), while dashed line for the HD-like configuration
(22,24,54). (b) Same as (a), but for dynamical moment of inertiaJ (2) = dI/dωrot. For reference,
rigid moments of inertiaJrig =m〈

∑A
i=1(y

2+ z2)i〉 for these configurations are also indicated.

termination” point is a very important and challenging subject for a deeper understanding
of the rotational motion of the nucleus as a finite Fermion system,

6. Effects of time-odd components

In this section we shortly discuss about the rotation-induced, time-odd components in the
mean field. The moment of inertia of the SD band is expected to be a good physical quantity
for identifying the effects of the time-odd components, since the pairing correlation plays
only a minor role there. Concerning the effect of various time-odd components on the
moment of inertia, we refer to Ref. [51] for a semiclassical description, to Ref. [52] for a
rotating nuclear matter, and to Ref. [53] for SD bands around152Dy.

Table 1 shows individual contributions from various kinds of time-odd terms. It is
interesting to note that the contributions from terms containing the spin-densityρ(r),
nearly cancel each other and, accordingly, the contribution from the current-density terms,
denoted byB3 + B4, dominates in the sum. Such a remarkable cancellation of the spin-
density terms was not seen in the case of152Dy [53], and may be specific to32S under
consideration.

In Fig. 10 we compare the results of calculation with and without the time-odd
components. It is seen that the time-odd components increase the angular momentum for
a given value ofωrot. Accordingly, the dynamical moment of inertiaJ (2) = dI/dωrot also
increases. This trend is understood from the consideration of the local Galilean invariance
of the Skyrme force [51,53] (for a more general analysis not restricted to the Skyrme force,
see Refs. [45,52]): If the time-odd components is neglected, the local Galilean invariance
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Table 1
Contributions from various terms in the time-odd energy density,

Hodd(r)=−B3j
2−B4

(
j2
n + j2

p

)
+B9(j · ∇ × ρ + jn · ∇ × ρn + jp · ∇ × ρp)

+B10ρ
2+B11

(
ρ2
n + ρ2

p

)
+B12ρ

αρ2+B13ρ
α
(
ρ2
n + ρ2

p

)
,

to the energy (in MeV), calculated atωrot = 1.0 MeV/h̄ for the SIII and SkM∗ forces. Here,
(jn,jp) and(ρn,ρp) denote the nucleon currents and the spin densities (for neutrons and protons),
respectively, andj = jn + jp andρ = ρn + ρp (see Ref. [34] for their explicit expressions). In
the columns designated by coefficientsBi , values after the spatial integration are listed, while the
total value

∫
drHodd(r) and the sum of contributions from the current terms (the first two terms

in the r.h.s. of the above equation) are shown in the columns denoted by “total” and “B3 + B4”,
respectively. For reference, the effective massm∗ in nuclear matter for each force is also listed.

B3 B4 B9 B10 B11 B12 B13 total B3+B4 m∗/m

SIII −1.94 0.79 −0.17 −0.77 0.86 0.37 −0.18 −1.04 −1.15 0.76
SkM∗ −1.83 0.90 −0.38 −0.44 2.45 0.00 −1.65 −0.95 −0.93 0.79

(a) (b)

Fig. 10. (a) Angular momentumI plotted as a function ofωrot for the SD band in32S. Solid line
with filled squares (dashed line with open squares) indicates the result with (without) the time-odd
components. The SIII force is used. (b) Same as (a), but with the SkM∗ force.

is violated and we obtain the moment of inertia associated with the effective massm∗.
By including the time-odd components, however, the local Galilean invariance is restored
and we get the moment of inertia associated with the nucleon massm. The calculated
result presented in Fig. 10 is consistent with this expectation, but a more quantitative
analysis is not necessarily easy, because, as seen in Fig. 5, the calculated moment of inertia
significantly deviates from the rigid-body value due to the shell effect.
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7. Y 31 deformation

As mentioned in Section 3, we found that the yrast states in the region 56 I 6 13
possess a significant amount of non-axial octupole deformations of theY31 type. It should
be emphasized that such an exotic deformation is absent atI = 0 but emerges at high spin.
It has become possible to get this kind of solution by using the new cranked SHF code
allowing for the simultaneous breaking of both axial and reflection symmetries.

As in [39], we define the octupole deformation parametersα3m as

α3m = 4π

3AR3

〈
A∑
i=1

(
r3X3m

)
i

〉
(m=−3, . . . ,3) (16)

with R = 1.2A1/3 fm. HereX3m is a real basis of the spherical harmonics,

X30= Y30, X3|m| = 1√
2

(
Y3−|m| + Y ∗3−|m|

)
,

X3−|m| = −i√
2

(
Y3|m| − Y ∗3|m|

)
, (17)

where the quantization axis is chosen as the largest and smallest principal inertia axes for
prolate and oblate solutions, respectively. The yrast solutions in the region 56 I 6 13
haveα31 6= 0 butα3m = 0 for m 6= 1. (See Ref. [54] for a general discussion on this kind
of deformation and its consequence on rotational spectra.) Fig. 11 shows the calculated
values of theY31 deformation as a function ofωrot. We see that theα31 value quickly rises
whenωrot exceeds 1 MeV/h̄.

Fig. 11. Non-axial octupole deformationα31 plotted as a function ofωrot for theY31 band in32S.
Results calculated with the SIII and SkM∗ forces are shown by solid and dashed lines, respectively.
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Fig. 12. Single-particle energy diagram (for neutrons) in the rotating frame for theY31 band in32S,
plotted as a function ofωrot. The SIII force is used.

Fig. 13. Potential energy function for theY31 band in32S atωrot= 2.0 MeV/h̄, calculated by means
of the constrained HF procedure with the SIII force. Note the scale of the ordinate.

The microscopic origin of the growth of the non-axial octupole deformationα31

may be understood when we examine the single-particle energy diagram in the rotating
frame (routhians) presented in Fig. 12. We note that a strong coupling and a quasi-
level crossing between the rotation-aligned[330]12 orbit and the[211]12 orbit take place
near the Fermi surface in the region 1.0 6 ωrot 6 2.2 MeV/h̄. The matrix element of



138 M. Yamagami, K. Matsuyanagi / Nuclear Physics A 672 (2000) 123–140

the r3Y31 operator between the two single-particle states is large, since they satisfy the
selection rule for the asymptotic quantum numbers(1Λ = 1, 1nz = 2). This strong
coupling is responsible for theα31 deformation appearing in this region of the yrast
line.

Fig. 13 shows the potential energy function with respect to theα31 direction, calculated
by means of the constrained HF procedure. Note the scale of the ordinate. Although
we obtain a clear minimum at a finite value ofα31, the potential is rather shallow in
this direction, so that the amplitude of the quantum-mechanical zero-point vibrational
motion might be larger than the equilibrium deformation. If this is the case, a treatment
of dynamics going beyond the mean-field approximation is required in order to investigate
the consequence of theα31 deformation on the quantum spectra in the yrast region under
consideration. This is beyond the scope of the present paper.

It may be desirable to extend the potential energy curve in Fig. 13 to theα31= 0 limit.
It turned out, however, difficult to do so, because many level-crossings take place with
decreasingα31. (If we extrapolate to this limit assuming parabolic dependence onα31, we
obtain about 2 MeV as a very crude estimate of the energy gain due to theα31 deformation.)
For the same reason, it is also difficult to follow the continuation of theY31 band to the
higher spin region as soon as it departs from the yrast line.

8. Some remarks on experimental data

Although rich experimental data are available for excited states of32S, the high-spin
yrast region in which we are interested is rather poorly known at the present time.
Accordingly, we discuss experimental references only briefly.

For low-spin states withI 6 7, detailed spectroscopic data are available up to excitation
energy 11.76 MeV [19,20]. These excited states are shown to be well described by the
spherical shell model calculations [19,20]. In these works, some negative-parity states were
interpreted as octupole–quadrupole phonon multiplets. As a matter of fact, we need to go
beyond the simple mean field theory in order to discuss such spectroscopic data in the
low-spin region.

Highly excited states have been studied by various nuclear reactions as well as16O–
16O scattering. Investigating the16O(20Ne, α)32S(α)28Si (g.s.) reaction, Morita et al. [55]
suggested possible band structures of the quasi-molecular configuration of16O+ 16O and
of some parity-doublet-like structures with angular momenta 5−,6+, (7−), (8+) at the 12–
15 MeV region. Recently, Curtis et al. [56] investigated the region withI = 10–16 and
the excitation energy 32–38 MeV by means of the12C(24Mg, 16O16O)4He reaction, and
suggested an existence of highly deformed states in this region. It is tempting to compare
these experimental data with our theoretical calculations. The experimentally explored
regions are, however, about 10 MeV above the theoretical yrast line. Therefore, a more
detailed spectroscopic study is needed in order to associate these data with the yrast
structure.
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9. Conclusions

We have investigated the high-spin yrast structure of32S by means of the cranked SHF
method in the 3D Cartesian-mesh representation without imposing restrictions on spatial
symmetries, and suggested that

(1) a crossover from the SD to the HD-like configurations takes place on the yrast line
at angular momentumI ' 24, which corresponds to the “band termination” point in
the CHO model, and

(2) non-axial octupole deformations of theY31 type play an important role in the yrast
states in the range 56 I 6 13.

In conclusion, we would like to stress again that the calculated yrast line forI = 14–
20 lies about 10 MeV below the observed molecular resonance region associated with
the 16O–16O configurations. Thus, a yrastγ -spectroscopy with higher resolving power is
strongly desired in order to explore the high-spin region of the yrast line of32S.
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