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Abstract

Classical periodic orbits responsible for emergence of the superdeformed

shell structure of single-particle motion in spheroidal cavities are identi�ed and

their relative contributions to the shell structure are evaluated. Fourier trans-

forms of quantum spectra clearly show that three-dimensional periodic orbits

born out of bifurcations of planar orbits in the equatorial plane become pre-

dominant at large prolate deformations. A new semiclassical method capable

of describing the shell structure formation associated with these bifurcations

is brie
y discussed.

PACS number: 21.60.-n

1 Introduction

Regular oscillation in the single-particle level density (coarse-grained to a certain

energy resolution) is called shell structure, and plays a decisive role in determining

shapes of a �nite Fermion system [1,2]. According to the periodic-orbit theory [3{7]

based on the semiclassical approximation to the path integral, shell structure is

determined by classical periodic orbits with short periods. A �nite Fermion system

(like a nucleus and a metallic cluster) favors such shapes at which prominent shell

structures are formed and its Fermi surface lies in a valley of oscillating level density,

increasing its binding energy in this way.

In this contribution, I would like to point out that 1) there is a unique appli-

cation of the periodic orbit theory to a modern nuclear structure problem; i.e. to

understand the mechanism of emergence of the superdeformed shell structure, and 2)

bifurcation of periodic orbits is responsible for the formation of this new shell struc-

ture. It is my impression that bifurcations are often discussed in connection with

\routes to chaos", but emergence of new ordered structure (in quantum spectra)

through bifurcations is rarely discussed.

�To appear in the Proceedings of the Nobel Symposium \Quantum Chaos Y2K," B�ackaskog

Castle, Sweden, June 13-17, 2000.
yE-mail address: ken@ruby.scphys.kyoto-u.ac.jp

1



Figure 1: Illustration of the rapidly rotating superdeformed nucleus. Here T denotes

the temperature, and the values of angular momentum I and parity � are those

appropriate to the superdeformed band in 152Dy, which was discovered in 1985 by

Twin et al. [8].

2 Nuclear superdeformation

Superdeformed states are cold quantum states embedded in the highly excited warm

region consisting of a huge number of compound nuclear states (see Fig. 1).

Their shapes are similar to the spheroid with the major to minor axes ratio about

2:1. Of course, when we talk about \shapes" of a �nite quantum system like a nu-

cleus, we means intrinsic shapes associated with selfconsistent mean �elds. Thus the

superdeformation is a striking example of spontaneous symmetry breakdown. The

mean �eld is rapidly rotating and generates a beautiful rotational band spectrum (to

restore the broken symmetry). The reason why superdeformed states can maintain

their identities against compound nuclear states (whose level density is high) is that

there is a barrier preventing the mixing between these di�erent kinds of quantum

states (associated with two local minima in the Hartree-Fock potential-energy sur-

face). Therefore, in order to understand why superdeformed nuclei exist, we need

to investigate the mechanism of producing the second minimum in the potential

energy. It is certainly connected to an extra binding-energy gained by the forma-

tion of a new shell structure called the superdeformed shell structure. Our major
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subject is thus to understand the mechanism how and the reason why such a new

shell structure emerges. The semiclassical periodic orbit theory is useful to gain an

insight into the dynamical origin of it.

3 Spheroidal cavity model

Let us consider the spheroidal cavity model as a simpli�ed model for single-particle

motions in heavy nuclei, and try to �nd the correspondence between quantum shell

structure and classical periodic orbits. As emphasized in [6], the shell structure

obtained for this model contains, apart from shifts of deformed magic numbers due

to the spin-orbit potential (although they are important for realistic calculation of

nuclear structure), the basic features similar to those obtained by the Woods-Saxon

potential for heavy nuclei. Of course, it is necessary to examine the dependence

on surface di�useness. In fact, periodic orbits with small angular rotations between

two successive re
ections at the surface (like pentagons) disappear with increasing

di�useness parameter [9]. But, periodic orbits with larger angular rotations (like

star-shaped orbits) survive at the realistic value of the di�useness parameter for the

nucleus [10]. Needless to say, the spheroidal cavity is a special integrable system.

But, we have obtained similar results also for other parametrizations of prolate

cavities (for which the Hamiltonian is non-integrable) [11]. Thus I believe that

the spheroidal cavity model contains the basic features to get an insight into the

problem of our primary concern; i.e. what is a proper semiclassical interpretation

of the superdeformed shell structure.

In the cavity model, single-particle equations of motion are invariant with respect

to the scaling transformation (x;p; t)! (x; �p; ��1t) and the action integral Sr for

a periodic orbit r is proportional to its length Lr:

Sr(E = p2=2M) =

I
r

p � dq = pLr = �hkLr: (1)

Thus the semiclassical trace formula for the level density is written as

g(E) =
X
n

�(E � En) =
M

�h2k

X
n

�(k � kn)

' �g(E) +
X
r

Ar(k) cos(kLr � ��r=2); (2)

where �g(E) denotes the smooth part corresponding to the contribution of the zero-

length orbit and �r is the Maslov phase of the periodic orbit r. The Fourier transform

F (L) of the level density g(E) with respect to the wave number k is written as

F (L) =

Z
dk e�ikLg(E = �h2k2=2M)

' �F (L) + �
X
r

e�i��r=2Ar(i@L) �(L� Lr): (3)

By virtue of the scaling property of the cavity model, the Fourier transform exhibits

peaks at lengths of classical periodic orbits, so that it may be regarded as the \length
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Table 1: Bifurcation points of short periodic orbits.

orbit (p:t:q) axis ratio (a=b) deformation � orbit length in R0

(4:2:1)
p
2 0.32 7.1

(5:2:1) 1.62 0.44 8.1

(6:2:1)
p
3 0.49 8.7

(7:2:1) 1.80 0.52 9.0

(8:2:1) 1.85 0.54 9.2

spectrum" [4]. In the following, we shall make use of the Fourier transforms in order

to identify the most important periodic orbits that determine the major pattern of

oscillations in the coarse-grained quantum spectrum.

4 Bifurcation of periodic orbit

As is well known, only linear and planar orbits exist in a spherical cavity. When

spheroidal deformations occur, the linear (diameter) orbits bifurcate into those along

the major axis and along the minor axis. Likewise, the planar orbits bifurcate

into orbits in the meridian plane and those in the equatorial plane. Since the

spheroidal cavity is integrable, periodic orbits are characterized by three positive

integers (p; t; q), which represent numbers of vibrations or rotations with respect

to three spheroidal coordinates. When the axis ratio � of the prolate spheroid in-

creases, hyperbolic orbits in the meridian plane and three-dimensional (3D) orbits

successively appear through bifurcations of (repeated) linear and planar orbits in the

equatorial plane. Bifurcation points are determined by stability of equatorial-plane

orbits against small displacements in the longitudinal direction, and bifurcations

occur when the condition

� �
a

b
=

sin(�t=p)

sin(�q=p)
: (4)

is satis�ed [4, 12], where a and b denote the lengths of the major and the minor

axes, respectively. With increasing �, planar orbits (4:2:1) bifurcate from the linear

orbit that repeats twice along the minor axis. With further increase of �, 3D orbits

(p:t:q) = (p:2:1) with p = 5; 6; 7; � � � successively bifurcate from the planar orbits

that turns twice (t = 2) about the symmetry axis. These new-born orbits resem-

ble the Lissajous �gures of the superdeformed harmonic oscillator with frequency

ratio !
?
:!z = 2:1. Every bifurcated orbit forms a continuous family of degeneracy

two, which implies that we need two parameters to specify a single orbit among a

continuous set of orbits belonging to a family having a common value of the action

integral (or equivalently, the length).
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5 Constant-action lines and Fourier transform

Figure 2 displays the oscillating part of the smoothed level density in the form

of a contour map with respect to the energy and deformation parameter. Regular

patterns consisting of several valley-ridge structures are clearly seen. As emphasized

by Strutinsky et al. [6], if few families of orbits having almost the same values of

action integral S
 dominate in the sum in Eq. (2), the valleys in the contour map

may follow such lines along which S
 stay approximately constant. In this �gure,

tick solid lines running through the spherical closed shells indicate the constant-

action lines for tetragonal orbits in the meridian plane. It is clear that the valleys

run along these lines. A detailed discussion on this point is made in Ref. [14]. On the

other hand, tick broken and solid lines in the region � = 0:3 � 0:8 indicate those for

the �ve-point star shaped orbits in the equatorial plane and for the 3D orbits (5:2:1)

bifurcated from them, respectively. Good correspondence is found between these

lines and the valley structure seen in the superdeformed region. Constant-action

lines for the other 3D orbits listed in Table 1 also behave in the same fashion.

The magnitudes of contributions of individual orbits are found to exhibit a re-

markable deformation dependence. Figure 3 shows the Fourier transform of the

quantum spectrum at � = 0:6 (axis ratio 2:1). We see that these 3D orbits form

prominent peaks in the range L = 8 � 9. Figure 4 displays the deformation depen-

dence of the Fourier amplitudes jF (L)j de�ned in Eq. 3 at lengths L = Lr of these

orbits. We see that the Fourier peak heights associated with new orbits created by

bifurcations quickly increase with increasing deformation and reach maximal values.

Then, they start to decline. Thus we conclude that the bifurcations of equatorial-

plane orbits play essential roles in the formation of the superdeformed shell structure,

and this shell structure is characterized by the 3D orbits (p:2:1).

Some of these 3D orbits are displayed in Fig. 5. They possess similarities with the

�gure-eight shaped orbits in the axially symmetric harmonic-oscillator, that appear

when the frequency ratio becomes exactly 2:1 [15]. It is important, however, to note

a di�erence in that they exist in the cavity model for all deformation parameters �

larger than the bifurcation points (not restricted to the special point of axis ratio

2:1). In view of the fact that more than 200 superdeformed rotational bands have

been systematically observed and they have varying deformations in the range � =

0:4 � 0:6 [16{18], it seems more appropriate and general to de�ne the concept

of superdeformation in terms of the shell structure generated by these 3D orbits

(p:t:q)=(p:2:1) (rather than geometrical shapes alone).

6 Semiclassical method capable of treating the bi-

furcation

We have evaluated the amplitudes A in the trace formula (2) by means of the

Fourier transforms of quantum spectra. Now we attempt to calculate them by

semiclassical method. As is well known, however, the amplitude A evaluated by

the conventional stationary-phase approximation diverges at the bifurcation point.
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Thus, for describing the bifurcation phenomena under consideration, Magner et al.

have developed a periodic-orbit theory free from the divergence [19]. Here I would

like to brie
y discuss basic ideas of this work.

Since the spheroidal cavity is integrable, we can develop semiclassical method

along the line initiated by Berry and Tabor [5]. As usual, we start from the trace

integral for the level density in action-angle variables. In the conventional scheme,

however, one considers families of orbits with the highest degeneracies (like 3D

orbits) but those with lower degeneracies (like equatorial-plane orbits) are not nec-

essarily taken into account. Hence we need to extend the Berry-Tabor approach in

order to treat the bifurcation of interest. We thus consider all kinds of stationary

points, and calculate (for the lower degeneracy orbits) the integrals over angles, too,

by an improved stationary-phase method. \Improved" here means that the trace

integrals over both action and angle variables are calculated, as usual, by expanding

the exponent of the integrand about the stationary point up to the second order, but

the integrations are done within the �nite physical region as in [5]. If the integration

ranges are extended, as usual, to �1, singularity arises in the amplitude, since, at

the bifurcation, a stationary point lies just on the edge of the physical integration

range. The stationary points need not necessarily lie inside the physical region of

integration over the action-angle variables, but they are assumed to be close to the

integration limits. In fact, a bifurcation occurs when one of the stationary points

crosses the border from the unphysical region (negative values of the action vari-

able) and enter the physical region. As we move away from the bifurcation points,

thus obtained contributions from the lower degeneracy orbit families asymptotically

approach the results of the conventional stationary-phase approximation.

This approach has been successfully applied to the elliptic billiard model, and it

is shown that the bifurcation of the (butter
y-shaped) hyperbolic orbit family from

the repeated short-diameter orbit is responsible for emergence of shell structure at

large deformations. For instance, it is clearly seen in Fig. 6 that the amplitude of

the bifurcating orbit is signi�cantly enhanced in the vicinity of the bifurcation point.

Namely, we obtain the maximum instead of the divergence at the bifurcation point.

We are now applying this approach to the spheroidal cavity model, and the result

will be published in the very near future [19].

7 Concluding remarks

We have discussed quantum manifestations of short periodic orbits and of their

bifurcations in the spheroidal cavity, and identi�ed the classical periodic orbits re-

sponsible for the emergence of the quantum shell structure at large prolate defor-

mations. Fourier transforms of quantum spectra clearly indicate that 3D periodic

orbits born out of bifurcations of the planar orbits in the equatorial plane generate

the superdeformed shell structure. A new semiclassical method capable of describ-

ing the shell-structure formation associated with these periodic-orbit bifurcations is

brie
y discussed.
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Figure 2: Oscillating part of the smoothed level density displayed as a function of the

energy (in unit of �h2=2MR2

0
) and deformation parameter �. Here M and R0 denote

the mass of the particle and the radius at the spherical shape, respectively. The

deformation parameter � is related to the axis ratio � � a=b by � = 3(��1)=(2�+1)

in the prolate case discussed in the text. Solid, dashed and dotted contour curves

correspond to negative, zero and positive values, respectively. Constant-action lines

for important periodic orbits are indicated by thick solid and broken lines (see text).

This �gures is taken from [13].
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Figure 3: Length spectrum (Fourier transform of quantum level density) for the

spheroidal cavity with � = 0:6 (axis ratio 2:1). At the bottom, the lengths (in unit

of R0) of classical periodic orbits are indicated by vertical lines. Long, middle and

short vertical lines are used for 3D orbits, planar orbits in the meridian, and planar

orbits in the equatorial planes, respectively. This �gures is taken from [13].
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Figure 4: Deformation dependence of the Fourier amplitudes de�ned in Eq. (3),

at lengths L = Lr of the butter
y-shaped hyperbolic orbit (4:2:1) in the meridian

plane and of 3D orbits (p:2:1). Solid curves correspond to those for equatorial-plane

orbits from which these orbits are bifurcated. This �gures is taken from [13].
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Figure 5: Three-dimensional orbits (5:2:1) and (6:2:1) in the superdeformed prolate

cavity (axis ratio � = 2). Their projections on the (x; y), (y; z) and (z; x) planes are

displayed. This �gures is taken from [13].
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Figure 6: Deformation dependence of the amplitudes A for the second repetition

of the short diameter 2(1,2) and the butter
y orbits 1(1,4) in the elliptic billiard,

calculated at kR0 = 50 by the improved stationary-phase method of Ref. [19]. Their

absolute values are drawn by solid curves as functions of the axis ratio �. For

comparison, standard results of the extended Gutzwiller trace formula are plotted

by short-dashed curves. This �gure is taken from [19].
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