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Abstract

By performing fully 3D symmetry-unrestricted Skyrme-Hartree-Fock-

Bogoliubov calculations, we discuss shape coexistence and possibility of

exotic deformations simultaneously breaking the re
ection and axial

symmetries in proton-rich N = Z nuclei: 64Ge, 68Se, 72Kr, 76Sr, 80Zr

and 84Mo. Results of calculation indicate that the oblate ground state of
68Se is extremely soft against the Y33 triangular deformation, and that

the low-lying spherical minimum coexisting with the prolate ground

state in 80Zr may be unstable against the Y32 tetrahedral deformation.
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1 Introduction

The Hartree-Fock-Bogoliubov (HFB) method with the Skyrme interactions is

one of the standard approaches in nuclear structure research [1, 2]. In the last

two decades it has become possible to solve the HFB equations directly in the

coordinate mesh space [3,4]. In recent years, in order to investigate the struc-

ture of drip-line nuclei, the need for such coordinate-space HFB calculations

has been greatly increased and intensive analyses have been made for neutron

radii and skins in spherical neutron-rich nuclei [5{11]: Since the easier HF

plus BCS method breaks down when treating the pairing correlation in weakly

bound systems due to a leakage of nucleons into the continuum, we need to

calculate the mean-�eld (particle-hole) correlations and the pairing (particle-

particle) correlations selfconsistently in order to preserve con�nement of the
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nuclear density while allowing the pairing excitations to positive energy reso-

nant states [3] (see, e.g. [12] and references therein for mean-�eld approaches

other than the Skyrme-HFB method).

Recently, Terasaki, Heenen, Flocard and Bonche [13,14] have removed the

restriction of spherical symmetry in solving the coordinate-space Skyrme-HFB

equations in order to investigate the possibility to get three-dimensional (3D)

deformed solutions in neutron rich nuclei. In their works, a Skyrme interaction

is used to describe the Hartree-Fock (HF) Hamiltonian while a density depen-

dent zero-range interaction is used for the pairing channel. The mean-�eld

HF equations are solved by the imaginary-time evolution method [15] in a 3D

cubic mesh space while the HFB equations are solved in terms of the two-basis

method developed earlier in [16, 17]. The discretization in 3D mesh space has

the advantage over methods relying on an expansion in the harmonic-oscillator

basis that nuclei with exotic deformations can be treated at the same level of

accuracy [18{20]. In these works, however, re
ection symmetries with respect

to three planes are imposed for the nuclear density so that only one spatial

octant is needed to solve the HFB equations.

The major purpose of this paper is to extend their method by removing

the symmetry restrictions mentioned above and investigate the possibility of

exotic shapes simultaneously breaking the axial and re
ection symmetries in

the mean �eld. For this purpose, we have constructed a new computer code

that carries out Skyrme-HFB calculations in the 3D Cartesian-mesh space

without imposing any restrictions on the spatial symmetry. Recently, on the

basis of the Skyrme HF plus BCS calculations with no restriction on the nuclear

shape, Takami, Yabana and Matsuo [21, 22] suggested that the oblate ground

state of 68Se is extremely soft against the Y33 triangular deformation, and

that the low-lying \spherical" minimum coexisting with the prolate ground

state in 80Zr has the Y32 tetrahedral shape. As the �rst application of a fully

3D, symmetry-unrestricted Skyrme HFB method with the use of the density-

dependent, zero-range pairing interaction [13, 14, 17, 23{30], we investigate in

this paper shape coexistence and possibility of non-axial octupole deformations

in proton rich N = Z nuclei in the A = 64� 84 region and examine the above

predictions. These nuclei are especially interesting objects to study, since

proton and neutron deformed shell e�ects act coherently and rich possibilities

arise for coexistence and competition of di�erent shapes (see [31] for earlier

references). In recent years, active experimental studies of these nuclei are

going on by means of combinations of radioactive nuclear beams and new

gamma-ray and charged particle detector systems (see [32{35] for reviews). It

should be noted here that, although extensive theoretical calculations and rich

experimental evidences have been accumulated for axially symmetric octupole

(Y30) deformations, as reviewed in [36,37], only a few calculations using Woods-

Saxon Strutinsky methods are available [38{41] except for light nuclei, and no

�rm experimental evidence exists up to now concerning the non-axial octupole

(Y31, Y32, Y33) deformations in the mean �elds. For light nuclei, non-axial

octupole deformations have been discussed [42{46] in connection with alpha-
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cluster structures [47]; for instance, a triangular structure of 12C [42, 44] and

a tetrahedral shape for 16O [45, 46].

Our motive for developing the coordinate-space Skyrme-HFB method is

not only to investigate the possibilities of emergence of new types of symmetry

breakdown in the ground states of proton-rich and neutron-rich nuclei, but

also to investigate, in the future, low-lying modes of excitation of such unsta-

ble nuclei by means of the RPA and the Selfconsistent Collective Coordinate

(SCC) method [48] on the basis of the HFB basis thus obtained. We intend to

proceed in parallel with other calculations with the use of more phenomeno-

logical shell model potentials and separable interactions. The Skryme-HFB

method is suited for this aim, as it provides a local mean-�eld potential so

that such a comparative study is easy.

In Section 2, a brief account of the method of the coordinate-space Skyrme-

HFB calculation is given. In Section 3, results of numerical calculation are

presented and discussed. In Section 4, a conclusion is given.

2 Skyrme-HFB calculation

2.1 Two basis method

For convenience, we here recapitulate the two basis method [13, 14, 16, 17]

adopted as the algorithm of our computer code. In this method, the imaginary-

time evolution method is combined with a diagonalization of the HFB Hamil-

tonian matrix to construct the canonical basis.

We �rst determine the single-particle wave functions �i satisfying the HF

equations

h [� (r)]�i (r) = "i�i (r) (1)

by means of the imaginary-time evolution method [15]. Here h, "i and � (r)

denote the mean-�eld Hamiltonian, the single-particle energies and the total

nuclear density, respectively. (The isospin index � is omitted for simplicity.)

We next diagonalize the HFB Hamiltonian matrix [1]

�
h� � �

��� �h� + �

��
Uk

Vk

�
= Ek

�
Uk

Vk

�
(2)

to get the one-body density matrix � and the pairing tensor �:

� = V �V T ; � = V �UT : (3)

We then diagonalize the density matrix � and obtain the occupation coe�cients

n� and the unitary transformation W which relates the HF wave functions �i
to the canonical basis wave functions '�:
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�kl =
X
�

n�Wk�W
y

�l (4)

'� (r) =
X
j

Wj��j (r): (5)

In the canonical basis '�, the HFB density matrix in the coordinate space is

diagonal:

� (r; r0) =
X
�

n�'� (r)'� (r0)
�
: (6)

These steps are repeated until the convergence is achieved.

The single-particle wave functions and densities are represented on a full 3D

Cartesian mesh space within a spherical container. In the present calculation,

the radius of the spherical container and mesh spacing are set to Rmesh =

10:0 fm and h = 1:0 fm, respectively. Tajima et al. [49, 50] have carefully

examined possible errors due to the use of the mesh size h = 1:0 fm and they

found that, since discretization errors are essentially independent of the nuclear

shape, deformation energies obtained with this mesh size are quite accurate

(see also [51]). Actually, we have constructed the new Skyrme-HFB code by

extending the cranked Skyrme-HF code [52] written previously and applied to

the investigation of the yrast structure of 32S, so that the cranking term can

be included. In this paper, however, we examine only the cases of zero angular

momentum.

2.2 The Skyrme plus density-dependent pairing interactions

We use the SIII parameter set [53] of the Skyrme interaction for the mean-�eld

(particle-hole) channel, which has been successful in describing systematically

the ground state quadrupole deformations in proton and neutron rich Kr, Sr,

Zr and Mo isotopes [19] and in a wide area of nuclear chart [49]. For the pairing

(particle-particle) channel, we use the density-dependent zero-range interaction

[13, 14, 17, 23{30], which has been successful in describing, for instance, the

odd-even staggering e�ects in charge radii,

Vpair (r1; r2) =
V0

2

�
1 � P̂�

�  
1 �

� (r1)

�c

!
� (r1 � r2) (7)

with the notation of [17], where the strength V0 and the density �c are param-

eters and P̂� denotes the spin exchange operator. For these parameters, we

use the standard values [14, 17]: V0 = �1000:0 MeV�fm3, �c = 0:16 fm�3. The

pairing interaction is smoothly cut o� at 5 MeV above the Fermi energy in the
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same way as in [19]. For a more general form of the density dependent pairing

interaction, we refer [54, 55].

To check the dependence on the Skyrme-interaction parameter sets, we

make calculations with the SkM� [56] and SLy4 [57] sets for an example of 68Se.

We refer to a recent work by Reinhard et al. [58] for a detailed and systematic

study of shape coexistence phenomena in relation to the properties of various

versions of the Skyrme interaction. We shall also check the dependence on the

pairing strength V0 adopted.

2.3 Constrained HFB calculation

In order to investigate the deformation properties away from the HFB equi-

librium points, we perform constrained HFB calculations with the use of the

quadratic constraints for the mass-quadrupole (octupole) moments [59] to ob-

tain the energy surfaces as functions of the quadrupole (octupole) deforma-

tions. Because no spatial symmetry is imposed on the 3D mesh space, the

center of mass and the directions of the principal axes of the nucleus can move

freely without a�ecting the total energy. To evaluate the physical quantities

like deformation parameters, it is crucially important to ful�ll the constraints

to keep the center of mass,

*
AX
i=1

xi

+
=

*
AX
i=1

yi

+
=

*
AX
i=1

zi

+
= 0; (8)

and the directions of the principal axes,

*
AX
i=1

(xy)i

+
=

*
AX
i=1

(yz)i

+
=

*
AX
i=1

(zx)i

+
= 0: (9)

These requirements are taken care of by means of the quadrupole con-

straints on these conditions as in our previous study [52].

2.4 Deformation parameters

As measures of the deformation, we calculate the mass-multipole moments,

�lm =
4�

3ARl

Z
rlXlm (
) � (r) dr; (m = �l; � � � ; l) (10)

where � (r) =
P
�
v2� j'� (r)j2, R = 1:2A1=3 fm and Xlm are real bases of the

spherical harmonics,
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Xl0 = Yl0; (11)

Xljmj =
1
p

2
(Yl�jmj + Y �

l�jmj
); (12)

Xl�jmj =
�i
p

2
(Yljmj � Y �

ljmj): (13)

Here the quantization axis is chosen as the largest (smallest) principal axis for

prolate (oblate) solutions. We then de�ne the quadrupole deformation param-

eter �2, the triaxial deformation parameter 
, and the octupole deformation

parameters �3 and �3m by

�20 = �2 cos 
; �22 = �2 sin 
; (14)

�3 =

0
@ 3X
m=�3

�23m

1
A
1=2

; �3m =
�
�23m + �23�m

�1=2
(m = 0; 1; 2; 3) : (15)

For convenience, we also use the familiar notation ��2 for oblate shapes

with (�2; 
 = 60�).

3 Results and discussions

3.1 Quadrupole deformations

The solutions of the Skyrme-HFB equations obtained in the numerical calcu-

lations for 64Ge, 68Se, 72Kr, 76Sr, 80Zr and 84Mo are summarized in Table 1.

The calculated ground-state shape changes from triaxial (64Ge), oblate (68Se,
72Kr), large prolate (76Sr, 80Zr), to spherical shape (84Mo) with increasing

N(= Z). For 68Se, 72Kr, 76Sr, 80Zr and 84Mo, we obtain two or three local

minima close in energy, indicating shape coexistence. These gross features are

consistent with available experimental data [60{66] and previous theoretical

calculations [19, 21,22, 49, 67{77].

The potential energy curves obtained by the constrained HFB calculations

are displayed in Fig. 1 as functions of the quadrupole deformation parameter

�2 and in Fig. 2 as functions of the triaxial deformation parameter 
. Below

we remark on some speci�c points.

As seen in Fig. 2, the calculated potential energy curve for 64Ge is rather

shallow with respect to the 
 degree of freedom so that this nucleus may

be regarded as "
-soft." This result is consistent with the experimental in-

dication [60] and also with the shell model calculation by the Monte Carlo

diagonalization method [75].

Quite recently, an excited prolate band coexisting with the ground-state

oblate band has been found in 68Se [63]. Their quadrupole deformations are
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estimated as �2 � 0:27 and �2 � �0:27, respectively. Although the prolate

excited band-head 0+ state has not yet been observed, its excitation energy is

estimated to be about 0.6 MeV. Our calculated energy di�erence between the

prolate and the oblate HFB solutions, 0.52 MeV, is in good agreement with

this experimental data. The barrier between the prolate and the oblate minima

is about 3 MeV in the plot with respect to �2 in Fig. 1, but it is only about 0.3

MeV in the plot with respect to the triaxial deformation parameter 
 in Fig.2.

It might be considered that, if the barrier is so low, the two bands built on the

prolate and the oblate solutions interact strongly so that the shape coexistence

picture is too much perturbed in contradiction with the experiment [63]. In

our view, however, description of dynamics by going beyond the static mean-

�eld approximation is necessary in order to discuss the interaction between

the oblate and the prolate structures. In any case, understanding this shape

coexistence dynamics is an interesting subject for future.

The second minimum with �2 � 0:66 seen in the potential energy curve for
84Mo in Fig. 1 may be regarded as a superdeformed solution, since it is related

to the Z = N = 42 deformed shell gap [68] formed by occupying the down-

sloping [431]1/2 levels from the upper major shell by two protons and two

neutrons. This second minimum was also obtained in [21]. It o�ers an inter-

esting possibility that a superdeformed rotational band might be observed at

such a low excitation energy as about 1.5 MeV. From a viewpoint of deformed

shell structure, the ground-state solutions for 76Sr and 80Zr have character-

istics di�erent from the second minimum in 84Mo and may be distinguished

from the superdeformation, although they have large prolate deformations of

�2 � 0:5.

3.2 Non-axial octupole deformations

As a result of the Skyrme-HFB calculations for proton-rich N = Z nuclei

from 64Ge to 84Mo (summarized in Table 1), we have found equilibrium shapes

with �nite non-axial octupole deformations for 68Se and 80Zr. The density

distribution at the HFB local minimum for 68Se with the triangular deforma-

tion superposed on the oblate shape and that for 80Zr with the tetrahedral

deformation are illustrated in Fig. 3.

In addition to the two cases mentioned above, Takami et al. [21] and Matsuo

et al. [22] obtained, in their Skyrme-HF plus BCS calculations, �nite equilib-

rium values of octupole deformations superposed on an oblate shape in 76Sr

and also on a near spherical shape in 84Mo. According to their calculations,

the potential-energy curves are very soft with respect to the octupole deforma-

tion degrees of freedom especially in the four cases mentioned above. In order

to see the properties of the potential-energy curve in the neighborhood of the

HFB equilibrium points and to make a better comparison with the results of

Refs. [21, 22], we have carried out constrained HFB calculations with respect

to the �3m(m = 0; 1; 2; 3) degrees of freedom for these four cases which are

most interesting to us. Since the constrained HFB calculation is very time-
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consuming, in this paper, we draw the potential-energy curve only for the four

cases. We anticipate, however, that a more systematic calculation will soon

become possible, considering a rapid progress of computer environments.

Figure 4 shows the potential-energy curves with respect to the octupole

deformation parameters �3m about the oblate shapes for 68Se and 76Sr, and

about the spherical shapes for 80Zr and 84Mo. These curves are obtained by

the constrained HFB calculations with the octupole operators r3X3jmj as con-

straints. We see that the oblate shape of 68Se is unstable against the triangular

(�33) deformation and the spherical shape of 80Zr is unstable against the tetra-

hedral (�32) deformation, in good agreement with those of the Skyrme-HF plus

BCS calculations of Refs. [21, 22], although local minima of potential energy

curves are extremely shallow in our case. The oblate shape of 76Sr is fairly soft

with respect to the �32 and �33 deformations and the spherical ground state

of 84Mo is barely stable against all �3m degrees of freedom, especially against

�30. In [22] an oblate solution with a �nite equilibrium value of �32 is obtained

for 76Sr, while a similar solution for 76Sr but with a �nite equilibrium value

of �33 and also a nearly spherical solution for 84Mo with a �nite equilibrium

value of �30 is reported in [21]. Although such details di�er depending on

the treatment of the pairing correlations, the basic features, i.e., the softness

to both �32 and �33 of the oblate shape of 76Sr and the softess to �30 of the

spherical shape of 84Mo are in common between the present HFB calculations

and those of [21, 22].

Below we focus our attention on the triangular deformation in 68Se and the

tetrahedral shape in 80Zr and discuss about the microscopic origins of them.

Triangular deformation in 68Se

Generally speaking, octupole correlations are associated with strong cou-

plings between the shell-model orbits with �l = �j = 3 [36, 37]. In the

A = 64 � 84 region under consideration, they are 1g9=2 and 2p3=2. In order

to understand why the oblate shape in 68Se is unstable (or extremely soft)

against the triangular deformation, however, we need to examine the interplay

of the quadrupole and octupole deformation e�ects. Namely, as explained be-

low, the emergence of the triangular deformation is strongly correlated with

the magnitude of the oblate deformation.

When 68Se (N = Z = 34) is oblately deformed, the high 
 levels [404]9
2

and [413] 7
2

stemming from the 1g9=2 orbit go down in energy and approach

the Fermi surfaces for N = Z = 34 and strong Y33 couplings with [301]3
2

and

[310]1
2

levels (associated with the 2p3=2 orbit) take place. These Y33 coupling

e�ects are seen as repulsions between these levels in Fig. 5 which displays

the neutron single-particle energies as functions of the triangular deformation

parameter �33. Here, the single-particle energies mean eigenvalues of the HF

Hamiltonian with the density � (r) determined by the HFB equations, and the

asymptotic Nilsson quantum numbers are used only for convenience of labeling

these levels: they are, of course, not good quantum numbers.
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In this �gure, results of calculation with use of the SkM� and SLy4 interac-

tions are also shown for comparison. We note that the Y33 coupling e�ects are

slightly weaker in the case of the SkM� and SLy4 interactions in comparison

with the case of the SIII interaction. This is because the spacings between

the levels coupled by the Y33 operator are the smallest for the SIII interaction:

The spacings at the oblate equilibrium deformations between the [404]9/2 and

[301]3/2 levels are about 2.8, 3.4 and 3.6 MeV, and those between the [413]7/2

and [310]1/2 levels are about 3.8, 4.1 and 4.2 MeV for the SIII, SkM� and

SLy4 interactions, respectively. Thus, as shown in Fig. 6, the potential energy

curve with respect to the triangular �33 deformation is softest for the case

of the SIII interaction, although they are soft also for the cases of the SkM�

and SLy4 interactions. Note that, in making this comparison, we have chosen

the pairing-interaction strength V0 such that the resulting pairing gaps � take

about the same values for calculations with di�erent Skyrme interactions (in

order to make the e�ects of the pairing correlations approximately the same

for all cases), as shown in the right-hand part of Fig. 6.

The importance of the triangular Y33 deformation superposed on the oblate

shape was previously pointed out by Frisk, Hamamoto and May [78] in terms of

a two-level model as well as the modi�ed oscillator model which simulates the

one-particle spectra in an in�nite-well potential. Our result of the Skyrme-

HFB calculation provides a realistic example which is consistent with their

arguments.

Tetrahedral deformation in 80Zr

As shown by Hamamoto, Mottelson, Xie and Zhang [79], the tetrahedral

symmetry associated with the Y32 deformation brings about a bunching of

the single-particle levels and create a remarkable shell structure: The N =

Z = 40 is one of the magic numbers for such tetrahedral shapes. Such a shell

e�ect is common to various �nite Fermion systems, and in fact the tetrahedral

deformation has been predicted, for instance, for sodium clusters consisting of

40 atoms by the density functional Kohn-Sham calculation [80, 81], in which

there is no spin-orbit coupling. The instability of the spherical shape of 80Zr

against the Y32 deformation, as exhibited in Fig. 4, is evidently connected to

the magic number N = Z = 40 for the tetrahedral shape.

Figure 7 shows the single-particle energy diagrams as function of octupole

deformation parameter �3m(m = 0; 1; 2; 3). As expected, we can see for the case

of m = 2 a remarkable bunching of single-particle levels and an increase of the

shell gap at N = 40 with increasing �32, while the other octupole deformations

(m = 0; 1; 3) do not exhibit such a feature. Looking into details, one notices a

�ne splitting of the 1g9=2 level into three levels which correspond to irreducible

representations of the double tetrahedral (spinor-Td) group [41,45]; a twofold-

degenerate level and two fourfold-degenerate levels.

Thus, the tetrahedral shell gap at N = Z = 40 emerges even under the

presence of the strong spin-orbit coupling. It should also be noted that the
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tetrahedral minimum is obtained in the calculation selfconsistently including

the pairing correlations.

3.3 Pairing gaps

In this subsection, we �rst examine dependence of the pairing gaps on defor-

mations, and then discuss about dependence of the non-axial octupole defor-

mations on the pairing strength. The result of calculation for the pairing gaps

at equilibrium deformations in each nucleus is listed in Table 1. As the pairing

gaps in the HFB theory depend on single-particle levels, the numbers listed in

this Table are averages of the diagonal elements in the HF basis, �i�i, over 5

MeV interval in the vicinity of the Fermi surfaces.

In the literatures, slightly di�erent quantities like averages of the diagonal

matrix elements in the canonical basis, ����, weighted by the coe�cients of

the Bogoliubov transformation, u�v� [82{84] or v2� [3], are used for similar

purposes. Figure 8 compares these quantities for the case of triangular defor-

mations superposed on the oblate shape in 68Se. We see that the two average

quantities, h�i�ii and h����u�v�i, are approximatelty equal. We also con�rm

that the averages do not signi�cantly depend on the averaging interval.

Figures 9, 10 and 11 display the variation of the pairing gaps with the

quadrupole deformation parameter �2, the triaxial deformation parameter 
,

and the octupole deformation parameters �3m(m = 0; 1; 2; 3), respectively.

We observe that gross features of deformation dependence of the pairing gap

correlate with the corresponding potential-energy curves displayed in Figs. 1,

2 and 4, respectively. Such correlations are rather easy to be understood from

the behavior of the single-particle level density near the Fermi surface, i.e., from

the well-known (spherical or deformed) shell e�ects that the level density near

the Fermi surface becomes relatively low in the vicinities of the local minima of

the potential energy curve [85]. Thus, the pairing correlation becomes weaker

and the paring gap decreases near the local minima. On the other hand, the

level density becomes relatively high and the pairing gap increases near the

local maxima of the potential-energy curve.

Because of signi�cant shape changes in the sequence of isotopes (isotones)

in the A = 64 � 84 region, it is not always easy to extract the magnitudes

of pairing correlations from experimental odd-even staggerings of binding en-

ergies and to assess the appropriateness of the pairing-interaction strength

V0 = �1000 MeV� fm3 used in our HFB calculations. Quite recently, how-

ever, Satu la, Dobaczewski and Nazarewicz [86] have proposed a method for

separating out the pairing correlation e�ects from the deformed mean-�eld

(single-particle energy) e�ects on the odd-even staggerings, and evaluated av-

erage pairing gaps; these are in the range 1:0 � 1:6 MeV for the mass region

under consideration [87]. We note that these values agree rather well with the

well-known global trend �� = 12=
p
A MeV [88], which are in the range 1:3�1:5

MeV for A = 64�84. Our calculated values of the pairing gaps, listed in Table

1 and drawn in Figs. 9,10,11, mostly lie in this range of values, so that we
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may say that the adopted strength for V0 is reasonable.

Another possible source of ambiguity in evaluating the pairing gaps is the

proton-neutron isoscalar pairings which are expected to play an important

role in the N = Z nuclei (see, for example, [89, 90] and references therein).

We have assumed that such isoscalar pairings are absent in the states under

consideration. Although this assumption should be examined, there are some

experimental indications [90, 91] that this may be a fairly good approxima-

tion. It is clear that we need a more systematic and detailed investigations,

both theoretical calculations and experimental explorations, for a better un-

derstanding of the pairing correlations in the proton-rich N = Z nuclei in the

A = 64 � 84 region.

In order to examine the sensitivity of the calculated results to the strength

V0 of the pairing interaction, we have made a calculation of the potential energy

curve about the oblate shape in 68Se as a function of the triangular octupole

deformation parameter �33 for V0 = �900;�1000 and �1100 MeV�fm3. The

result is shown in Fig. 12. As expected, the potential energy curve becomes

shallower with increasing (absolute value of) V0. Thus, the local minimum at

�33 � 0:10 disappears with 10% increase of the (absolute) value of V0. In any

case, the potential is so shallow that we cannot associate a de�nite physical

signi�cance with the equilibrium values of �33. We can still draw from these

calculations an important conclusion that the oblate ground state of 68Se is

extremely soft with respect to the triangular octupole deformation.

3.4 Discussions

Actually, we need a more detailed investigation on the physical implication of

the extremely soft potentials like those with respect to the triangular deforma-

tion in 68Se and for the tetrahedral shape degree of freedom in 80Zr. As is well

known in the case of the axially symmetric Y30 octupole deformation [92{96],

a de�nite minimum develops at �nite value of �30 after the parity projection

when the mean-�eld potential is very soft with respect to �30. For the case of

non-axial octupole deformations, a similar e�ect of the parity projection has

been demonstrated by Takami, Yabana and Ikeda [42] for light nuclei. It re-

mains to be examined whether or not the situation is similar for the non-axial

octupole deformations in medium-mass nuclei under consideration.

More generally speaking, investigations of modes of excitation and of exci-

tation spectra associated with the instabilities toward the non-axial octupole

shape deformations is one of the major challenges for future. The present

paper should be regarded as providing a HFB mean-�eld basis for a study

of dynamics by means of methods like the quasiparticle RPA and the SCC

method [48].
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4 Conclusion

We have constructed a new computer code that carries out Skyrme-HFB cal-

culations in the 3-dimensional Cartesian-mesh space without imposing any

restriction on the spatial symmetry, and investigated shape coexistence and

non-axial octupole deformations in proton-rich N = Z nuclei, 64Ge, 68Se,
72Kr, 76Sr, 80Zr and 84Mo. The ground state shape changes from triaxial

(64Ge), oblate (68Se, 72Kr), large prolate (76Sr, 80Zr), to spherical (84Mo) as

N(= Z) increases, in agreement with the available experimental data and the

previous theoretical calculations. The instability toward the Y33 triangular de-

formation of the oblate ground state of 68Se and that toward Y32 tetrahedral

deformation of the excited spherical minimum of 80Zr, pointed out by Takami

et al. [21,22] on the basis of the Skyrme-HF plus BCS calculations, have been

con�rmed by the fully selfconsistent Skyrme-HFB calculations with the use of

the density-dependent zero-range pairing interaction.

The symmetry-unrestricted Skyrme-HFB computer code constructed in

this work provides a selfconsistent mean-�eld basis for future investigation

of collective modes of excitation in neutron-rich nuclei with neutron skins as

well as in proton-rich nuclei.
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Oblate Spherical Prolate

g.s.
64Ge �; 
 = 0:27; 25� (triaxial)

�3 = 0:0

�p = 1:25;�n = 1:12

g.s. 0.52
68Se �; 
 = 0:28; 60� �; 
 = 0:26; 0�

�3 = �33 � 0:08 �3 = 0:0

�p = 1:28;�n = 1:13 �p = 1:29;�n = 1:15

g.s. 0.92
72Kr �; 
 = 0:32; 60� �; 
 = 0:40; 0�

�3 = 0:0 �3 = 0:0

�p = 1:03;�n = 1:23 �p = 1:25;�n = 0:92

1.79 g.s.
76Sr �; 
 = 0:30; 60� �; 
 = 0:51; 0�

�3 = �33 � 0:0 �3 = 0:0

�p = 1:47;�n = 1:43 �p = 0:67;�n = 0:50

0.86 1.01 g.s.
80Zr �; 
 = 0:20; 60� �; 
 = 0:0; 0� �; 
 = 0:51; 0�

�3 = 0:0 �3 = �32 � 0:15 �3 = 0:0

�p = 1:02;�n = 0:82 �p = 0:68;�n = 0:39 �p = 0:79;�n = 0:78

0.20 g.s. 1.52
84Mo �; 
 = 0:16; 60� �; 
 = 0:0; 0� �; 
 = 0:66; 0�

�3 = 0:0 �3 = �30 � 0:0 �3 = 0:0

�p = 1:46;�n = 1:42 �p = 0:74;�n = 0:72 �p = 0:0;�n = 0:0

Table 1: Solutions of the HFB equations for proton-rich N = Z nuclei in the

A = 64 � 84 region. For each nucleus, numbers in the �rst line indicate excitation

energies measured from the ground state. The symbol � indicates that the potential

energy curve is extremely shallow about the equilibrium value. Pairing gaps �p and

�n are here de�ned as averages of diagonal elements �i�i over 5 MeV interval around

the Fermi surface, and their values (in MeV) at the equilibrium deformations are

listed.
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Figure 1: Potential energy curves calculated by the constrained Skyrme-HFB

method for 64Ge, 68Se, 72Kr, 76Sr, 80Zr and 84Mo are drawn as functions of the

quadrupole deformation parameter �2. The SIII interaction is used for the particle-

hole channel, while the density-dependent pairing interaction with V0 = �1000:0

MeV�fm3 and �c = 0:16 fm�3 is used for the particle-particle channel.
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Figure 2: Potential energy curves calculated at �xed �2 by the constrained Skyrme-

HFB method for 64Ge and 68Se are drawn as functions of the triaxial deformation

parameter 
. The e�ective interactions used are the same as in Fig. 1.

Figure 3: Density contour surfaces at the half central density of the Skyrme-

HFB solution with the oblate plus triangular shape (�2 = �0:28; �33 = 0:08) for
68Se (left-hand side) and that with the tetrahedral shape (�2 = 0:00; �32 = 0:15) for
80Zr (right-hand side), listed in Table 1.
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Figure 4: Potential energy curves calculated by the constrained Skyrme-HFB

method are drawn as functions of the octupole deformation parameters �3m(m =

0; 1; 2; 3) about the oblate shape for 68Se and 76Sr, and about the spherical shape

for 80Zr and 84Mo. One of the �3m(m = 0; 1; 2; 3) is varied while the other �3m's are

�xed to zero. The e�ective interactions used are the same as in Fig. 1.
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Figure 5: Neutron single-particle energies for 68Se plotted as functions of the oc-

tupole deformation parameter �33 about the oblate shape. Here, the single-particle

energies mean eigenvalues of the HF Hamiltonian with the density � (r) determined

by the HFB equations. Results for the SIII, SkM� and SLy4 parameter sets are com-

pared. Equilibrium quadrupole deformations obtained for each Skyrme interaction

are �2 = �0:28;�0:25 and �0:24 for SIII, SkM� and SLy4, respectively. Solid (bro-

ken) lines indicate levels which have positive (negative) parity in the limit �33 = 0.

The projection of the angular momentum on the symmetry axis, 
, is a good quan-

tum number only at �33 = 0. The arrows indicate the �
 = 3 coupling associated

with the triangular Y33 deformation as discussed in the text. The single-particle

spectrum for protons is almost the same as for neutrons.
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Figure 6: Comparison of the HFB potential energy curves for 68Se about the oblate

shape as functions of the triangular deformation parameter �33, calculated for dif-

ferent versions of the Skyrme interaction (left-hand side). The pairing-interaction

strengths V0 are chosen such that the average pairing gaps become approximately

equal for all Skyrme interactions (as displayed in the right-hand side). The calcu-

lated deformation parameter �2 are �0:28;�0:25 and �0:24 for the SIII, SkM� and

SLy4 interactions, respectively.
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Figure 7: Neutron single-particle energies for 80Zr plotted as functions of the oc-

tupole deformation parameters �3m(m = 0; 1; 2; 3) about the spherical shape. Here,

the single-particle energies mean eigenvalues of the HF Hamiltonian with the density

� (r) determined by the HFB equations. The SIII interaction is used. Solid (broken)

lines indicate levels which have positive (negative) parity in the limit �32 = 0. The

single-particle spectrum for protons is almost the same as for neutrons.
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Figure 8: Comparison of di�erently de�ned average pairing gaps for 68Se, plot-

ted as functions of the triangular deformation parameter �33 superposed on

the oblate shape. Here, h�i�ii�E =
P

i fif�igig�i�i�i=
P

i fif�igig�i, huv�icano =P
� u�v� h'� j�j'�i =

P
� u�v� [82{84] and



v2�

�
cano

=
P

� v
2
� h'� j�j'�i =

P
� v

2
�

[7], where fi = (1 + exp[("i � �F � �E=2)=�])�1=4; gi = (1 + exp[("i � �F +

�E=2)=�])�1=4 with �E = 3 or 5 MeV.
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Figure 9: Variations of the pairing gaps �� (�= p, n) calculated by the constrained

Skyrme-HFB method as functions of the quadrupole deformation parameter �2 for
64Ge, 68Se, 72Kr, 76Sr, 80Zr and 84Mo. The e�ective interactions used are the same

as in Fig. 1.
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Figure 10: Variations of the pairing gaps �� (� = p, n) calculated by the constrained

Skyrme-HFB method as functions of the triaxial deformation parameter 
 at �xed

�2 for
64Ge and 68Se. The e�ective interactions used are the same as in Fig. 1.
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Figure 11: Variations of the pairing gaps �� (�= p, n) calculated by the constrained

Skyrme-HFB method as functions of the octupole deformation parameter �3m(m =

0; 1; 2; 3) about the oblate shape for 68Se, 76Sr, and about the spherical shape for
80Zr, 84Mo. The e�ective interactions used are the same as in Fig. 1.
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Figure 12: Comparison of the potential energy curves (left-hand side) and average

pairing gaps for protons (right-hand side) calculated by the constrained Skyrme-

HFB method as functions of the triangular deformation parameter �33 about the

oblate shape for 68Se with use of di�erent strengths V0 of the density-dependent

pairing interaction (and with the same SIII interaction ).
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