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By means of an RPA calculation based on the deformed Woods-Saxon potential in the
coordinate-mesh representation, we make a comparative study of octupole excitations built
on superdeformed states in the 40Ca region and those in 50S. For the N = Z stable nuclei,
32S and 40Ca, enhancement of octupole transition strengths results from the coherence of the
proton and neutron excitations. Contrastingly, for 50S close to the neutron drip line, we find
that the low-lying state created by the excitation of a single neutron from a loosely bound
low Ω state to a high Ω resonance state acquires an extremely large transition strength. A
similar enhancement of the octupole strength is also found in oblately deformed 40Mg close
to the neutron drip line.

§1. Introduction

In recent years, the physics of unstable nuclei close to the drip line has become
one of the most active fields in nuclear structure physics. New features, such as neu-
tron skins and shell structure near the continuum, are currently being actively in-
vestigated both theoretically and experimentally.1)–3) Although, at present, drip-line
nuclei that allow for relevant experiments are largely restricted to light nuclei, the re-
gion of unstable nuclei that can be explored experimentally will soon be significantly
extended to medium-mass regions, when new facilities for radioactive ion beams start
running. To investigate the possibility of the emergence of excitation modes unique
to unstable nuclei in heavier-mass regions, many attempts have been made using
the self-consistent RPA based on the Skyrme-Hartree-Fock (SHF) method4)–6) and
its extensions, including pairing correlations.7)–10) A number of similar approaches
using different mean fields have also been employed.11)–14) (See Refs. 10) and 15) for
extensive lists of references concerning the self-consistent RPA and mean-field the-
ories.) To describe such weakly bound systems for which the Fermi energy is close
to zero, it is essential to properly treat the particle-hole excitations into the contin-
uum. Thus, the continuum RPA method employing the Green functions that satisfy
the scattering boundary condition has been widely used.4)–7),16),17) Quite recently,
this method was extended to the continuum quasiparticle-RPA, taking into account
pairing correlations.18)–22) However, most of these investigations are restricted to
spherical nuclei. For deformed unstable nuclei, although low-lying Gamow-Teller
β-decay strengths have been investigated23) by means of the standard matrix for-
mulation of the RPA, other low-frequency RPA modes remain largely unexplored,
except some recent attempts to describe low-frequency isovector dipole modes using
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the time-dependent Hartree-Fock method with absorbing boundary conditions24),25)

and gamma vibrations using the quasiparticle-RPA with the BCS approximation.26)

In order to clearly see the deformation effects in unstable nuclei, Inakura
et al.27),28) investigated properties of negative-parity collective excitations built on
superdeformed (SD) states in neutron-rich sulfur isotopes by means of the mixed
representation RPA29)–32) based on the SHF mean field, and found many low-energy
modes possessing strongly enhanced isoscalar octupole transition strengths. They
also studied excitation modes built on the SD states in the 40Ca region with N = Z,
for which the SD yrast states have been discovered in recent experiments.33),34) In
the mixed representation RPA, the particle states are treated using the coordinate-
mesh representation, while the HF basis is used for the hole states. This approach is
fully self-consistent in that the same effective interaction is used in both the mean-
field and RPA calculations. Also, it is unnecessary to introduce an upper cutoff
with respect to the energies of the particle states. On the other hand, it is not
easy in this method to identify microscopic particle-hole configurations generating
individual RPA modes. Therefore, using the deformed Woods-Saxon potential and
the conventional matrix formulation of the RPA, we have made a detailed analysis
of the microscopic structure of octupole excitation modes built on the SD states in
the 40Ca region with N = Z and the 50S region close to the neutron drip line. In
this approach, we can easily obtain a simple and transparent understanding of the
particle-hole configurations generating the RPA eigenmodes.

This paper is organized as follows. In the next section, the frameworks of the
mean-field and RPA calculations are described. In §3.1, the results of the RPA
calculation for the SD states in 32S, 36S and 40Ca are presented and discussed. In
§3.2, we present the result for 50S close to the neutron drip line and suggest that
some low-lying states associated with excitations of a single neutron from a loosely
bound state to a resonance state acquire extremely strong transition strengths. In
§3.3, we discuss excitation modes in the oblately deformed 40Mg and suggest that
the results obtained for 50S are not restricted to the SD states but are rather general
phenomena. Conclusions are given in §4.

§2. Method of calculation

2.1. Mean-field calculation

We consider the single-particle motion in an axially symmetric deformed poten-
tial. Using the standard notation, the Schrödinger equation is written{

− �
2

2m
∇2 + VWSf(r) + VSO∇f(r) · (σ × p) + VC(r)

(1 − τ3)
2

}
Φi = eiΦi. (2.1)

The solutions to this equation take the following form:

Φi(x) = Φi(r, σ, τ) = χqi(τ)
[
φ+

i (ρ, z)eiΛ−
i ϕχ 1

2
(σ) + φ−

i (ρ, z)eiΛ+
i ϕχ− 1

2
(σ)
]
. (2.2)

Here, Λ±
i = Ωi ± 1/2, where Λi and Ωi are the z-components of the total and

orbital angular momenta, respectively, and (ρ, z, ϕ) are the cylindrical coordinates
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of r = (x, y, z):
x = ρ cos ϕ, y = ρ sinϕ, z = z. (2.3)

The subscript qi = +1/2 (−1/2) denotes neutrons (protons). In terms of the wave
functions given in (2.2), the nucleon density is given by

�(ρ, z) =
∑

i

[|φ+
i (ρ, z)|2 + |φ−

i (ρ, z)|2], (2.4)

and the mean-square radii of protons and neutrons are calculated as

〈r2〉τ =
∫

ρdρdzr2�τ (ρ, z)∫
ρdρdz�τ (ρ, z)

, (2.5)

where r =
√

ρ2 + z2 and τ=π or ν, with �π(ρ, z) and �ν(ρ, z) being the proton and
neutron densities.

We employ the phenomenological Woods-Saxon potential

f(r) = (1 + exp[(r − R(θ))/a])−1, (2.6)
R(θ) = c(1 + β2Y20(θ)), (2.7)

where c is determined by the volume conservation condition. Though an angle
dependent diffuseness parameter a(θ) is better for a more accurate calculation,35)

we use a constant a = 0.67 fm for simplicity. We also use the standard parameter
values36) for the central and spin-orbit potentials,

VWS = −51 + 33
N − Z

A
τ3, (2.8)

VSO =
1
2
r2
0

(
−22 + 14

N − Z

A
τ3

)
, (2.9)

with r0 = 1.27 fm. The spin-orbit term is written

V̂ls = −1
2
VSO

[
σ+e−iϕ

{
∂f

∂ρ

∂

∂z
− ∂f

∂z

(
∂

∂ρ
+

l̂z
ρ

)}

+ σ−eiϕ

{
−∂f

∂ρ

∂

∂z
+

∂f

∂z

(
∂

∂ρ
− l̂z

ρ

)}
+ σz2

∂f

∂ρ

l̂z
ρ

]
, (2.10)

where σ± = σx ± iσy and l̂z = −i∂/∂ϕ. For protons, we solve the Poisson equa-
tion, ∇2VC(r) = 4πe�π(r), to obtain the Coulomb potential VC . In the present
calculation, we approximate the proton density �π(r) by a Woods-Saxon form.

We can rewrite the Schrödinger equation (2.1) in the matrix form

hφ =
(

h↑↑ h↑↓
h↓↑ h↓↓

)(
φ+

i (ρ, z)
φ−

i (ρ, z)

)
= ei

(
φ+

i (ρ, z)
φ−

i (ρ, z)

)
, (2.11)
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where

h↑↑ = − �
2

2m

[
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

∂2

∂z2
−
(

Λ−

ρ

)2
]

+ VWSf(ρ, z) − VSO
∂f(ρ, z)

∂ρ

Λ−

ρ
,

(2.12a)

h↓↓ = − �
2

2m

[
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

∂2

∂z2
−
(

Λ+

ρ

)2
]

+ VWSf(ρ, z) + VSO
∂f(ρ, z)

∂ρ

Λ+

ρ
,

(2.12b)

h↑↓ = −1
2
VSO

[
∂f(ρ, z)

∂ρ

∂

∂z
− ∂f(ρ, z)

∂z

(
∂

∂ρ
+

Λ+

ρ

)]
, (2.12c)

h↓↑ = −1
2
VSO

[
−∂f(ρ, z)

∂ρ

∂

∂z
+

∂f(ρ, z)
∂z

(
∂

∂ρ
− Λ−

ρ

)]
. (2.12d)

Because this equation possesses time-reversal symmetry, we know that if
Φi = {φ+

i , φ−
i , Ωi} is a solution, then Φī = {−φ−

i , φ+
i ,−Ωi} is also a solution with the

same eigenvalue ei, and thus it is sufficient to solve it for positive Ω only. We also
assume reflection symmetry with respect to the x-y plane. Then, the wave function
φ± possesses z-parity π(−1)Λ∓

as a good quantum number (π being the parity), and
therefore it is sufficient to consider only positive z.

We solve Eq. (2.11) directly in coordinate space. In comparison to the con-
ventional method of using a deformed harmonic oscillator basis,37) this method is
believed to be more effective in the treatment of spatially extended wave functions,
like loosely bound states, resonant states and continuum states. The Hamiltonian
matrix (2.11) is discretized by use of a coordinate mesh in the (ρ, z) plane. The mesh
points are chosen as

ρi =
(

i − 1
2

)
∆, i = 1, 2, · · ·N, (2.13)

to avoid division by zero, where ∆ represents the lattice mesh size. The mesh points
in the z direction are taken as

zj = (j − 1)∆, j = 1, 2, · · ·M. (2.14)

The boundary conditions are set as

φi,M = φN,j = 0, (2.15)

where φi,j = φ(ρ, z). We construct the discretized Hamiltonian matrix by use of the
finite difference method for derivatives and then diagonalize the matrix to obtain
the single-particle wave functions on the two-dimensional lattice. The kinetic en-
ergy term is evaluated using the 9-points formula; its explicit expression is given in
Appendix A.
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2.2. RPA calculation

Using the single-particle basis obtained in the previous subsection, we solve the
RPA equation in the standard matrix formulation,38)

∑
p′h′

(
Aphp′h′ Bphp′h′

B∗
php′h′ A∗

php′h′

)(
fλ

p′h′

gλ
p′h′

)
= �ωλ

(
1 0
0 −1

)(
fλ

ph

gλ
ph

)
, (2.16)

where
Aphp′h′ = (ep − eh)δpp′δhh′ + v̄ph′hp′ , Bphp′h′ = v̄pp′hh′ . (2.17)

Here, the subscripts p and h denote the single-particle states above and below the
Fermi energy (particles and holes), respectively. The antisymmetrized matrix ele-
ments of the residual interaction v are denoted v̄ph′hp′ and v̄pp′hh′ . For v, we employ
the Skyrme-type interaction16) without momentum-dependent terms,

v(r, r′) =
[
t0(1 + x0Pσ) +

1
6
t3(1 + x3Pσ)�(r)

]
δ(r − r′), (2.18)

with t0 = −1100 MeV·fm3, t3 = 16000 MeV·fm6, x0 = 0.5, and x3 = 1.0, Pσ being
the spin exchange operator. Because our calculation is not self-consistent in the sense
that the residual interaction is not related to the mean-field potential, we renormalize
the residual interaction by multiplying it by a factor f to obtain the spurious modes
at zero excitation energy: v → f · v.

The intrinsic matrix elements 〈0|Q3K |λ〉 of the octupole operator Q3K between
the excited state |λ〉 and the ground state |0〉 are given by

〈0|Q3K |λ〉 =
∑
ph

(
Qhp

3Kfλ
ph + Qph

3Kgλ
ph

)
=
∑
ph

Mph
3K , (2.19)

and

Qph
3K = 2πδK,Ωp−Ωh

∫
ρdρdz

(
φ+

p (ρ, z)φ+
h (ρ, z) + φ−

p (ρ, z)φ−
h (ρ, z)

)
Q3K(ρ, z) (2.20)

≡ 2πδK,Ωp−Ωh

∫
dρdzQph

3K(ρ, z), (2.21)

where Q3K(ρ, z) = Q3K(r)e−iKϕ = r3Y3K(θ, ϕ)e−iKϕ.
The isoscalar octupole strength function is

SIS(ω) =
∑

λ

|〈0|QIS
3K |λ〉|2δ(�ω − �ωλ), (2.22)

where QIS
3K = Qπ

3K + Qν
3K , and Qπ

3K and Qν
3K are the proton and neutron oc-

tupole operators. The reduced isoscalar octupole transition probability is defined
by B(QIS3) = |〈0|QIS

3K |λ〉|2. The reduced proton and neutron octupole transition
probabilities, B(E3) and B(Qν3), are obtained by replacing QIS

3K with eQπ
3K and

Qν
3K , respectively. Note that these quantities represent intrinsic transition strengths,

and hence the appropriate Clebsh-Gordan coefficients should be multiplied to obtain
transition probabilities in the laboratory frame.
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2.3. Details of numerical calculation

We numerically solved the Schrödinger equation (2.11) in a rectangular box,
using a lattice mesh size ∆ = 0.5 fm. The size of the box used was 2.5 (3.5) times
the half density radii in the directions of the major and minor axes for 32,36S and
40Ca (50S). Bode’s rule was used for the numerical integrations of the RPA matrix
elements (see Appendix B). The deformation parameters β2 were determined so as
to approximately reproduce the shell structure near the Fermi level obtained in the
SHF calculation by Inakura et al.39) Their values for protons and neutrons are not
necessarily the same. The actual values of the box size used in the calculations
are indicated in the figure captions for individual cases, together with the β2 values
adopted. The RPA matrix (2.17) was diagonalized with the cutoff at 30 MeV for
the particle-hole excitation energy. In spherical systems, there is only one spurious
Jπ = 1− mode associated with the center-of-mass motion. In deformed systems,
this mode splits into the Kπ = 0− and 1− modes. We find that, e.g., for 32S, the
factors f0 = 0.7545 and f1 = 0.7723 are needed to obtain the spurious Kπ = 0− and
Kπ = 1− modes at zero energy. Using these f0 and f1 values, we obtain low-lying
Kπ = 2− states at 2.653 and 2.557 MeV, respectively. This difference of about 0.1
MeV indicates the magnitude of the numerical uncertainty caused by ignoring self-
consistency in our calculation. In the following, we choose the factor f such that the
excitation energy of the spurious Kπ = 1− mode becomes zero.
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Fig. 1. Neutron single-particle levels in the deformed Woods-Saxon potential, plotted as functions

of the quadrupole deformation parameter β2. The solid and dotted curves denote positive- and

negative-parity levels, respectively. The SD magic numbers are N = 16, 20 and 34. They are

responsible for the appearance of the SD states in 32S, 36S, 40Ca and 50S.
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§3. Results and discussion

3.1. The SD states in 32S, 36S and 40Ca

We first discuss the result of the RPA calculation for the SD state in 32S. Al-
though the existence of the SD band in 32S has been conjectured for a long time,40)

it has not yet been observed, and this remains a great challenge: As discussed in
Refs. 41)–45), the SD local minimum in 32S corresponds to the doubly closed shell
configuration with respect to the SD magic number Z = N = 16. It involves two pro-
tons and two neutrons in the down-sloping single-particle levels originating from the
f7/2 shell (see Fig. 1). The calculated octupole transition strengths with Kπ = 2−
are displayed in Fig. 2. A prominent peak is seen at about 2.6 MeV with a strongly
enhanced transition strength of about 23 Weisskopf units (1 W.u. � 61 fm6 for 32S).
There are no peaks representing strengths greater than 1 W.u. for other values of K
in this energy region. As shown in Table I, the major component of this RPA mode
is the particle-hole excitation from the [211]1/2 state to the [321]3/2 state. The pro-
ton and neutron excitations act coherently. Other particle-hole configurations also
contribute coherently. Here we note that, although the RPA amplitude fph for the
particle-hole excitation from the [330]1/2 state to the [202]5/2 state is appreciable,
its contribution to the transition matrix element Mph

32 is very small. This can be un-
derstood from the asymptotic selection rules47) for low-energy octupole transitions
in the SD harmonic-oscillator potential with the axis ratio 2:1:

Q30 : ∆Nsh = 1, ∆n3 = 1, ∆Λ = 0, (3.1a)
Q31 : ∆Nsh = 0, ∆n3 = 2, ∆Λ = 1, (3.1b)
Q32 : ∆Nsh = 1, ∆n3 = 1, ∆Λ = 2, (3.1c)
Q33 : ∆Nsh = 2, ∆n3 = 0, ∆Λ = 3. (3.1d)

Here, the shell quantum number is defined as Nsh = 2n⊥ + n3. These selection
rules hold approximately also for the SD Wood-Saxon potential under consideration.
Accordingly, the [330]1/2 → [202]5/2 octupole matrix element is very small, while
that of the [211]1/2 → [321]3/2 excitation is large. Thus, the coherent proton and
neutron excitations from the [211]1/2 hole state to the [321]3/2 particle state are the
major origin of the large octupole transition strength for this RPA mode.

Next, let us discuss the result of the RPA calculation for the SD state in 40Ca.
As mentioned in §1, for this nucleus, the SD yrast band has been discovered in
recent experiments.33),34) The SD shell gap at Z = N = 20 is associated with the
4p-4h excitation (for both protons and neutrons) from below the spherical closed
shell to the f7/2 shell. Figure 3 presents the calculated octupole transition strengths
with Kπ = 1−. It is seen that there are no peaks representing strengths greater
than 1.5 W.u. for other values of K in this energy region. There is a prominent
peak at 2.2 MeV with an isoscalar strength of about 6 W.u. (1 W.u. � 95 fm6 for
40Ca). As shown in Table II, this RPA eigenstate consists of components from the
coherent proton and neutron excitations from [321]3/2 to [200]1/2, which satisfy the
asymptotic selection rule (3.1b).

The SD states in 32S and 40Ca are associated with the SD magic numbers N =
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Fig. 2. Left: The isoscalar and proton octupole strengths, B(QIS3) and B(E3)/e2, for the Kπ = 2−

excitations on the SD state in 32S are plotted in the top and middle panels as functions of the

excitation energy. These were obtained using an RPA calculation with β2 = 0.78 for both

protons and neutrons, using a box of size ρmax × zmax = 8.25 fm ×14.0 fm. The unperturbed

particle-hole strengths are also plotted with dashed lines in the bottom panel. Right: Particle-

hole configurations generating the lowest Kπ = 2− state at 2.6 MeV. Excitations satisfying

the asymptotic selection rule Eq. (3.1) are indicated by thick arrows. The asymptotic quan-

tum numbers [Nn3Λ]Ω are displayed for pertinent levels. The Fermi surfaces for protons and

neutrons are indicated by the dashed lines.

Table I. RPA amplitudes for the 2− state at 2.6 MeV in 32S, calculated with β2 = 0.78 for both

protons and neutrons. It is characterized by B(E3) = 408 e2fm6, B(Qν3) = 306 fm6, B(QIS3) =

1422 fm6, and
P |gph|2 = 1.86×10−1. The single-particle levels are labeled with the asymptotic

quantum numbers [Nn3Λ]Ω. Only components with |fph| > 0.1 are listed.

particle hole εp − εh(MeV) fph Qph
32 (fm3) Mph

32 (fm3)

ν[202]5/2 ν[330]1/2 4.01 −0.293 −0.101 0.040

ν[321]3/2 ν[211]1/2 4.19 −0.631 −13.0 11.5

ν[321]1/2 ν[211]3/2 12.6 −0.141 −11.2 2.27

π[202]5/2 π[330]1/2 3.97 −0.282 −0.248 0.096

π[321]3/2 π[211]1/2 3.93 −0.733 −13.8 13.7

π[321]1/2 π[211]3/2 12.3 −0.138 −11.8 2.35

Table II. RPA amplitudes for the 1− state at 2.2 MeV in 40Ca, calculated with β2 = 0.6 for

both protons and neutrons. It is characterized by B(E3) = 122 e2fm6, B(Qν3) = 153 fm6,

B(QIS3) = 549 fm6, and
P |gph|2 = 4.69 × 10−2. Only components with |fph| > 0.1 are listed.

particle hole εp − εh(MeV) fph Qph
31 (fm3) Mph

31 (fm3)

ν[200]1/2 ν[321]3/2 2.46 0.836 9.08 8.87

π[200]1/2 π[321]3/2 2.59 0.568 10.1 7.06
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Fig. 3. Left: The isoscalar and proton octupole strengths, B(QIS3) and B(E3)/e2, for the Kπ = 1−

excitations on the SD state in 40Ca are plotted in the top and middle panels as functions of

the excitation energy. These were obtained using an RPA calculation with β2 = 0.6 for both

protons and neutrons, using a box of size ρmax × zmax = 8.25 fm ×14.0 fm. The unperturbed

particle-hole strengths are also plotted with dashed lines in the bottom panel. Right: Particle-

hole configurations generating the lowest Kπ = 1− state at 2.2 MeV. The notation here is the

same as in Fig. 2.

Table III. RPA amplitudes for the 1− state 2.6 MeV in 36S, calculated with β2 = 0.565 and 0.685

for protons and neutrons, respectively. It is characterized by B(E3) = 5.95 e2fm6, B(Qν3) =

189 fm6, B(QIS3) = 262 fm6, and
P |gph|2 = 9.18 × 10−3. Only components with |fph| > 0.03

are listed.

particle hole εp − εh(MeV) fph Qph
31 (fm3) Mph

31 (fm3)

ν[200]1/2 ν[321]3/2 2.71 −0.999 9.71 −10.5

ν[200]1/2 ν[330]1/2 6.11 −0.038 4.46 −0.22

π[200]1/2 π[330]1/2 5.23 −0.062 3.62 −0.28

Table IV. RPA amplitudes for the 2− state 3.9 MeV in 36S, calculated with β2 = 0.565 and 0.685

for protons and neutrons, respectively. It is characterized by B(E3) = 352 e2fm6, B(Qν3) =

97.0 fm6, B(QIS3) = 819 fm6, and
P |gph|2 = 3.52 × 10−2. Only components with |fph| > 0.1

are listed.

particle hole εp − εh(MeV) fph Qph
32 (fm3) Mph

32 (fm3)

ν[321]1/2 ν[202]5/2 4.75 −0.141 −8.37 1.34

ν[440]1/2 ν[321]3/2 5.19 0.137 6.34 1.01

ν[321]1/2 ν[211]3/2 11.7 −0.114 −12.5 1.85

π[321]3/2 π[211]1/2 4.45 −0.970 −12.5 14.2

π[321]1/2 π[211]3/2 12.9 −0.101 −10.8 1.43
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Fig. 4. Upper left: The isoscalar octupole strength B(QIS3) distribution for the Kπ = 1− excita-

tions on the SD state in 36S is plotted in the top panel as a function of the excitation energy.

This was obtained using an RPA calculation with β2 = 0.565 and 0.685 for protons and neutrons,

respectively, using a box of size ρmax × zmax = 8.25 fm ×14.0 fm. The unperturbed particle-

hole strength distribution is also plotted with dashed lines in the bottom panel. Upper right:

Particle-hole configurations generating the lowest Kπ = 1− state at 2.5 MeV. The notation is

the same as in Fig. 2. Lower left: Same as above, but for the Kπ = 2− excitations. Lower right:

Same as above, but for the Kπ = 2− excitation at 3.9 MeV.
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Z = 16 and 20, respectively. It is thus interesting to consider the SD state in
36S, which has Z = 16 and N = 20. Evidence for the existence of the SD band
in this nucleus has been obtained from an SHF calculation.39) The result of the
RPA calculation is presented in Fig. 4, Table III and Table IV. There is a peak
corresponding to Kπ = 1− at 2.6 MeV with an isoscalar strength of about 3.4 W.u.
and another peak corresponding to Kπ = 2− at 3.9 MeV with an isoscalar strength
of about 11 W.u. (1 W.u. � 77 fm6 for 36S). The Kπ = 1− peak is associated
with the particle-hole excitation from [321]3/2 to [200]1/2, while the Kπ = 2− peak
corresponds to the [211]1/2 → [321]3/2 excitation. These particle-hole configurations
are the same as for the Kπ = 1− state in 40Ca and the Kπ = 2− in 32S discussed
above. However, in contrast to the N = Z nuclei, 32S and 40Ca, the coherence of
proton and neutron excitations is absent in the case of 36S. Thus, these RPA modes
in 36S are dominated by specific particle-hole configurations, although appreciable
amounts of other particle-hole configurations collectively contribute to the Kπ =
2− mode (see Table IV). The collectivity of these modes is apparently weak in
comparison with the octupole vibrations built on the SD states in heavy nuclei,48),49)

because the number of particle-hole configurations contributing to the RPA modes
is rather small in the nuclei under consideration. It should be mentioned, however,
that transition strengths much larger than those in our results are obtained for
these nuclei in the mixed representation RPA calculation carried out by Inakura et
al.,27),28) where no cutoff is imposed in the particle-hole excitation energy. The major
cause of this difference may be the rather severe energy cutoff in the present RPA
calculation. (See Ref. 50) for a numerical analysis of the contributions from very
high-lying particle-hole configurations to the transition strengths of the low-lying
RPA modes.)

3.2. The SD state in 50S

In this subsection, we discuss the result for 50S, which is, according to the SHF
calculations,39),46) close to the neutron drip line. The existence of the SD band in this
nucleus is suggested in Ref. 39). The isoscalar octupole strength distribution with
Kπ = 2− calculated with the RPA is presented in Fig. 5. There are no peaks at any
values of K in this energy region other than those corresponding to excitations to the
discretized continuum. As we explain in detail below, the highest peak, at 3.1 MeV,
with Kπ = 2− is associated with the excitation of a single neutron from the loosely
bound [310]1/2 state to the resonance [422]5/2 state. We obtain a peak of similar
nature but with a smaller strength at 2.9 MeV. It is associated with the excitation

Table V. RPA amplitudes for the 2− state at 3.1 MeV in 50S, calculated with β2 = 0.54 and 0.73

for protons and neutrons, respectively. It is characterized by B(E3) = 19.4 e2fm6, B(Qν3) =

5359 fm6, B(QIS3) = 6023 fm6, and
P |gph|2 = 6.42× 10−3. Only components with |fph| > 0.1

are listed.

particle hole εp − εh(MeV) fph Qph
32 (fm3) Mph

32 (fm3)

ν[303]7/2 ν[431]3/2 3.01 0.133 −11.6 −1.49

ν[422]5/2 ν[310]1/2 3.20 0.967 65.7 66.1

π[321]3/2 π[211]1/2 4.69 −0.138 −12.4 2.26



1262 K. Yoshida, M. Yamagami and K. Matsuyanagi

0

1000

2000

3000

4000

5000

6000

7000
isoscalar

50
S

Kπ=2−

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4

S
tr

en
gt

h 
(f

m
6 )

�ω (MeV)

unperturbed

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

neutron

[310]1/2
[431]3/2

[303]7/2
[422]5/2

-28

-27

-26

-25

-24

-23

-22

-21

-20

E
ne

rg
y 

(M
eV

)

proton

[211]1/2

[321]3/2

Fig. 5. Left: The isoscalar octupole strength B(QIS3) distribution for the Kπ = 2− excitations

built on the SD state in 50S is plotted in the top panel as a function of the excitation energy.

This was obtained using an RPA calculation with β2 = 0.54 and 0.73 for protons and neutrons,
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of a single neutron from the loosely bound [431]3/2 state to the resonance [303]7/2
state. This difference in strength between the two peaks can be understood from
the asymptotic selection rule (3.1c): The former particle-hole excitation satisfies it,
whereas the latter does not. On the other hand, the second highest peak, at 2.8 MeV,
is due to a neutron excitation from the [431]3/2 state to a discretized continuum state
with Ωπ = 1/2−.
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Fig. 7. Angle dependence of the centrifugal

barrier height for the Λ = 2 states in su-

perdeformed 50S. The z- and ρ-axes corre-

spond to θ = 0◦ and 90◦, respectively.

We now discuss the microscopic
structure of the Kπ = 2− excitation at
3.1 MeV in detail. It has an extremely
strong isoscalar strength of B(QIS3) =
41 W.u. and a weak electric strength of
B(E3) = 0.13 W.u. (1 W.u. � 149 fm6

for 50S). As shown in Table V, the ma-
jor component of this RPA mode is the
[310]1/2 → [422]5/2 excitation of a neu-
tron. Their wave functions are plotted
in Fig. 6. Because the [310]1/2 state is
loosely bound and the [422]5/2 state is
a resonance state, their wave functions
extend significantly outside of the half-
density radius of this nucleus. Together
with the fact that this particle-hole con-
figuration satisfies the asymptotic selec-
tion rule (3.1c), the very extended spatial structures of their wave functions are the
main reason why it has the extremely large transition strength.
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Fig. 8. Box size dependence of single-particle

levels with Ωπ = 5/2+ in superdeformed
50S. The [422]5/2 level is stable with re-

spect to variation of the box size.

This [422]5/2 state has an inter-
esting property: Because the centrifu-
gal barrier is angle dependent, it lies
below the barrier along the z-axis and
0.2 MeV above it along the ρ-axis (see
Fig. 7). To determine whether or not
the resonance interpretation of this state
is valid, we first examined the box size
dependence of calculated single-particle
energies. As shown in Fig. 8, the energy
of the [422]5/2 state is found to be stable
with respect to variation of the box size.
We next evaluated the sum of the eigen-
phase, ∆(E) =

∑
a δa(E), following the

procedure of Ref. 51). The eigenphase
is obtained through eigenvalues of the
S-matrix, and their sum has the same
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energy dependence around a resonance as the phase shift in a spherical system,52)

tan(∆(E) − ∆0(E)) =
Γ

2(E − ER)
, (3.2)
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Fig. 9. The eigenphase sum (upper panel) and
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5/2+ state in superdeformed 50S are plot-

ted as functions of energy.
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p〈r2〉 of
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14.25 fm × 22.0 fm. Here, the root-mean-

square radius of neutrons
p〈r2〉ν is 4.44

fm.

where ER and Γ denote the resonance
energy and the total width, respectively.
The sum of the background eigenphases,
∆0(E), is considered a slowly-varying
quantity. The result of this calcula-
tion, presented in Fig. 9, confirms that
the [422]5/2 state can be regarded as
a resonance. Its width is estimated to
be about 0.14 MeV. Furthermore, we
confirmed that the root-mean-square ra-
dius of this state is clearly distinguish-
able from those of discretized contin-
uum states (see Fig. 10). In this fig-
ure, the root-mean-square radius of var-
ious single-particle states are plotted.
We find that not only the resonance
[422]5/2 state but also the weakly bound
[310]1/2 state has a root-mean-square
radius about 2 fm larger than the av-
erage value for neutrons,

√〈r2〉ν = 4.44
fm. This is because the low angular mo-
mentum p1/2 component that has a spa-
tially extended structure becomes dom-
inant in such a Ωπ = 1/2− neutron
level as the binding energy approaches
zero.53),54)

In contrast to the peak at 3.1 MeV
discussed above, the peak at 2.8 MeV
corresponds to the excitation of the
loosely bound [431]3/2 neutron to a dis-
cretized continuum state with Ωπ =
1/2−. Therefore, its position and height
do not have definite physical mean-
ings. In fact, these values change as
the box size is varied. This peak
even disappears when smaller boxes are
used in the numerical calculation (see
Fig. 11), whereas the peak position and
the height associated with the [310]1/2
→ [422]5/2 excitation is stable, as long

as a box larger than ρmax×zmax = 12.25 fm ×20.0 fm is used. We should also mention
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Fig. 11. The isoscalar octupole strength B(QIS3) distributions for the Kπ = 2− excitations on the

SD state in 50S, obtained using an RPA calculation with β2 = 0.54 and 0.73 for protons and

neutrons, respectively, using a box of size ρmax × zmax = 10.25 fm ×16.0 fm (left) and 12.25 fm

×20.0 fm (right). The neutron root-mean-square radii
p〈r2〉ν are 4.42 fm and 4.44 fm. The

unperturbed particle-hole strengths are also plotted with dashed lines in the bottom panels.

The arrows indicate the threshold energy, Eth = 1.4 MeV.

that the convergence of the numerical calculation is insufficient for the unperturbed
strength of the [310]1/2 → [422]5/2 transition, because the root-mean-square radius
of the [422]5/2 state still increases from 5.90 fm to 6.54 fm for a larger box, with
ρmax × zmax = 14.25 fm ×22.0 fm. Therefore, the calculated transition strength has
only qualitative meaning.

Finally, let us make a comparison between the spatial distributions of the Kπ =
2− octupole strength associated with individual particle-hole excitations on the SD
state in the drip line nucleus 50S and those in the stable nucleus 32S. Figure 12 plots
the spatial distribution functions Qph

3K(ρ, z) for some major configurations generating
the low-lying Kπ = 2− modes in 32S and 50S. It is clear that the particle-hole
excitations in 50S have spatial distributions significantly extended outside of the
nucleus, while those in 32S are peaked around the surface region. This spatially
extended structure brings about a strong enhancement of the octupole strength in
50S. This can be regarded as one of the unique properties of excitation modes in nuclei
close to the drip line. Note that this mechanism of transition strength enhancement
is different from the threshold effect associated with the excitation of a loosely bound
neutron into the non-resonant continuum.55)
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32 (ρ, z) for some particle-hole excitations generating the

low-lying Kπ = 2− states in superdeformed 32S and 50S. The contour lines are plotted at

intervals of 0.02 fm. The panels denoted (a), (b) and (c) correspond to the [211]1/2 → [321]3/2,
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bottom panels, (f) and (g), display the neutron density distributions of the SD states in 32S

and 50S, respectively. The contour lines are plotted at intervals of 0.003 fm−3. The neutron

root-mean-square radii,
p〈r2〉ν , are 3.49 and 4.44 fm for 32S and 50S, respectively.

3.3. The oblately deformed state in 40Mg

To show that the strong enhancement of the transition strength for an excitation
from a loosely bound state to a resonance state is not restricted to the SD states
but expected to be a rather general phenomenon in nuclei close to the drip line,
we present in this subsection another example of the RPA calculation for 40Mg.
According to the HF-Bogoliubov calculations,56),57) this nucleus is situated close to
the neutron drip line and possesses both prolate and oblate local minima.

Figure 13 displays the octupole transition strengths for the Kπ = 3− excita-
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was obtained using an RPA calculation with β2 = −0.2 for both protons and neutrons, using
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also plotted with dashed lines in the bottom panel. The arrow indicates the threshold energy

Eth = 0.82 MeV. Right: Particle-hole configurations of neutrons generating the Kπ = 3− state

at 6.2 MeV. The levels denoted [404]9/2 and [404]7/2 correspond to resonances, while other

levels in the positive energy region represent discretized continuum states.

Table VI. RPA amplitudes for the 3− state at 6.2 MeV in the oblately deformed 40Mg, calculated

with β2 = −0.2 for both protons and neutrons. It is characterized by B(E3) = 1.09 e2fm6,

B(Qν3) = 9280 fm6, B(QIS3) = 9482 fm6, and
P |gph|2 = 1.46 × 10−3. The particle states

other than the ν[404]9/2 and ν[404]7/2 resonances represent discretized continuum states. Only

components with |fph| > 0.1 are listed.

particle hole εp − εh(MeV) fph Qph
33 (fm3) Mph

33 (fm3)

ν 7/2+ ν[301]1/2 5.84 −0.142 −56.0 7.81

ν 5/2+ ν[301]1/2 5.92 0.156 49.6 7.58

ν 5/2+ ν[301]1/2 6.06 0.211 −0.526 −0.109

ν[404]9/2 ν[301]3/2 6.24 0.909 −96.7 −89.5

ν 3/2+ ν[301]3/2 6.45 0.171 −37.4 −6.51

ν[404]7/2 ν[301]1/2 6.52 0.160 −82.1 −13.3

tions on the oblately deformed state in 40Mg. Among several peaks in the isoscalar
strength distribution, we can give a clear physical interpretation for the two promi-
nent peaks at 6.2 and 6.6 MeV: The former is created by the excitation of a neutron
from the loosely bound [301]3/2 state to the resonance [404]9/2 state, while the lat-
ter is from the loosely bound [301]3/2 state to the resonance [404]7/2 state. These
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lines are plotted at intervals of 0.003 fm−3. The root-mean-square radius of neutrons,
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is 4.06 fm. (b) Spatial distribution function Qph
33 (ρ, z) for the [301]3/2 → [404]9/2 excitation on

the oblately deformed state in 40Mg. The contour lines are plotted at intervals of 0.02 fm. (c)

Same as (b), but for the [301]1/2 → [404]7/2 excitation.

resonance states are associated with the g9/2 orbit, which has a high centrifugal bar-
rier. Due to the spatially extended structure of this type of particle-hole excitation,
they acquire extremely large transition strengths; the isoscalar octupole strength
of the former (latter) is about 90 (39) W.u. (1 W.u. � 95 fm6 for 40Mg). The
major components of the RPA amplitudes of the Kπ = 3− mode at 6.2 MeV are
presented in Table VI. Other peaks in this figure are due to excitations to discretized
continuum states; e.g., the peak at 3.8 (5.8) MeV is associated with the excitation
from the [301]3/2 ([301]1/2) state to the discretized continuum Ωπ=3/2+ (7/2+)
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state. Therefore, their positions and peak heights do not have definite physical
meanings. This conclusion was obtained by examining the box size dependence of
single-particle energies and their eigenphase sums. Typical results of these calcu-
lations are presented in Figs. 14 and 15. The widths of the resonant [404]9/2 and
[404]7/2 states are estimated to be about 0.8 and 1.2 MeV, respectively.

Finally, we show in Fig. 16 the spatial distribution functions Qph
33(ρ, z) for the

[301]3/2 → [404]9/2 and [301]1/2 → [404]7/2 excitations, together with the neutron
density distribution of the oblately deformed state in 40Mg. It is clearly seen that
the strengths of these particle-hole excitations extend far from the nuclear surface.
Furthermore, we notice that the peak positions of the two distributions, shown in
(b) and (c), differ considerably. This can be regarded as the major reason that the
two particle-hole configurations do not strongly mix with each other in the RPA
eigenmodes, despite the fact that their unperturbed energies are fairy close (see
Table VI). This is quite different from the familiar situations for low-frequency RPA
modes in stable nuclei, in which the strength distribution functions of many particle-
hole configurations have peaks near the nuclear surface and tend to mix with each
other, generating collective vibrational modes.

§4. Conclusions

By means of the RPA calculation based on the deformed Woods-Saxon potential
in the coordinate-mesh representation, we have carried out a comparative study of
octupole excitations built on the SD states in the 40Ca region and those in 50S. In
the N = Z stable nuclei, 32S and 40Ca, the enhancement of the octupole transition
strength results from the coherence between the proton and neutron excitations. By
contrast, in 50S close to the neutron drip line, we have found that the low-lying state
created by the excitation of a single neutron from a loosely bound low Ω state to
a high Ω resonance state acquires an extremely large transition strength. We have
made a detailed study of the spatial distributions of particle-hole transition strengths
and confirmed that this enhancement of the strength is a natural consequence of the
fact that these particle and hole wave functions extend significantly outside of the
nuclear surface. To show that this kind of enhancement phenomenon is not restricted
to the SD states, we have also presented another example for oblately deformed 40Mg
close to the neutron drip line.

The present calculation indicates that, as we approach the drip line, it becomes
increasingly difficult to generate collective modes of excitation by coherent superpo-
sitions of many particle-hole excitations. This is because the bound particle states
disappear and individual resonance wave functions possess different spatial struc-
tures. It should be emphasized, however, that the pairing correlation is not taken
into account in the present calculation. Quite recently, one of the authors (M. Y.)
showed58) that collectivity emerges in nuclei close to the drip line, owing to the pair-
ing anti-halo effect:59) The self-consistent pairing correlation in the continuum brings
about spatial localization of particle-hole excitations, which helps in generating the
collective modes of excitation. Thus, it is an important next step to investigate how
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the results presented in this paper are modified by the pairing correlation.
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Appendix A
Numerical Derivative

For wave functions of the form Φ(ρ, ϕ, z) = φ(ρ, z)eiΛϕ, we have

∇2φ(ρ, z)eiΛϕ =
(

1
ρ

∂

∂ρ
+

∂2

∂ρ2
− Λ2

ρ2
+

∂2

∂z2

)
φ(ρ, z)eiΛϕ. (A.1)

Using the coordinate-mesh representation and the 9-points formula, the derivative
parts can be written as

(
1
ρ

∂

∂ρ
+

∂2

∂ρ2
+

∂2

∂z2

)
φi,j

=
1

∆2

[
287000
5040

φi,j +
(

8064
5040

+
672

840(i − 1/2)

)
φi+1,j +

(
8064
5040

− 672
840(i − 1/2)

)
φi−1,j

−
(

1008
5040

+
168

840(i − 1/2)

)
φi+2,j −

(
1008
5040

− 168
840(i − 1/2)

)
φi−2,j

+
(

128
5040

+
32

840(i − 1/2)

)
φi+3,j +

(
128
5040

− 32
840(i − 1/2)

)
φi−3,j

−
(

9
5040

+
3

840(i − 1/2)

)
φi+4,j −

(
9

5040
− 3

840(i − 1/2)

)
φi−4,j

+
8064
5040

(φi,j+1 + φi,j−1) − 1008
5040

(φi,j+2 + φi,j−2)

+
128
5040

(φi,j+3 + φi,j−3) − 9
5040

(φi,j+4 + φi,j−4)

]
. (A.2)
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Appendix B
Numerical Quadrature

For numerical integration, we use Bode’s rule given by∫ xi+4

xi

f(x)dx =
2∆

45
(7fi + 32fi+1 + 12fi+2 + 32fi+3 + 7fi+4) + O(∆7). (B.1)

This formula is a generalization of the well-known Simpson’s rule, and it is derived
by taking into account polynomials up to quartic order in the Taylor expansion for
interpolation between the mesh points.60)
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